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Abstract

The thesis project develops an Iron Bird, a simulation of a wing of a regional air-
plane. The simulator is partially physical(half wing,sensors,actuators) and partially
virtual(second half wing).

The project is part of the AstIb Clean Sky2(CS2) European project. The ASTIB
(development of Advanced Systems Technlogies and Hardware/Software for the
flight simulator and Iron Bird demonstrators for regional aircraft) project brings
together 7 European companies and academic partners led by LEONARDO. It
aims at supporting the improvement of the Technlogical Readiness Level for a sig-
nificant number of equipments that are being considered of critical importance for
the future Green Regional Aircraft (GRA). The design and production of the Iron
Bird is responsibility of CERTIA. The Iron Bird is the ground test bench allowing
the integration of the different aircraft systems. This Iron Bird is equipped with
new innovations(semi-virtual,innovative loading systems, health monitoring,etc..).
The thesis work is about receiving the models (developed by aeronautical engi-
neers), deploying them on the computers, testing and improving them until com-
plete validation. The simulation of a wing during a flight requires several com-
puters: FMSC(Flight Mechanics Simulation Computer) to simulate the flight dy-
namics; FCC(Flight Control Computer) to control the airplane during the flight;
HMS(Health Management System) for reactive and proactive maintenance. The
computers rely on various MatLab/Simulink models.

The workflow follows the principles of theModel-based Software Design(MBSD),
that is based on the development of a model of the plant and the controller focusing
on the details that are useful to understand system’s behaviour. A significant ad-
vantage of following that approach is the automated code generation, which allows
to automatically translate the Simulink model into code that can be executed on
a dedicated hardware. In a first phase models are tested in a simulation environ-
ment, then they have to be executed in real time to verify the interactions between
the models and the shared memory. Executing a model in real time requires the
usage of high-performance platforms. The chosen one is NI VeriStand, a software
designed also for Hardware-in-the-loop(HIL) and Software-in-the-loop (SIL) simu-
lations. In order to import the model in VeriStand we need a dll(dynamic linkink
library) file. It is obtained as result of code generation. The models received from



the partners are modified to make them suitable for code generation. This means
substituting every source block with an Input Port and every sink block with an
Output Port. Then code is generated and the model, translated into a dll, is ported
to NI VeriStand. Next step is, exploiting VeriStand, to map inputs and outputs
on the reflective memory. In this way the 3 models composing the project shall be
able to interact with each other. Last step is, indeed, to verify their interactions.
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Chapter 1

Introduction

1.1 A More Electrical Aircraft

Air transport contributes today about 3% to global greenhouse gas emissions, with
traffic expected to triple by 2050. Although other sectors are more polluting (elec-
tricity and heating produces 32% of greenhose gases), this expected growth makes
it necessary to address aviation’s environmental impact. Meeting the EU’s climate
and energy objectives will require a drastic reduction of the sector’s environmental
impact by reducing its emissions. Maximising fuel efficiency, using less to go far-
ther, is also a key cost-cutting factor in a very competitive industry - and as air
traffic increases, better noise reduction technologies are needed. But game-changing
innovation in this sector is risky, complex and expensive, and requires long-term
commitment. That’s why all relevant European stakeholders must work together
to develop proof-of-concept demonstrators.

Reducing the power consumption and thus the fuel burn is a major target for
the next generation of aircraft. Two technological areas on which can be possible
work are wing load alleviation and electrical actuation. Load alleviation is a tech-
nique for redistributing aircraft loads encountered during flight with the purpose
of reducing the wing root bending moment. Electrical actuation can contribute to
the reduction of the non-propulsive power because electromechanical actuators rely
on a power less subject to losses and lighter to distribute, besides presenting higher
reliability and maintainability with a lower life-cycle cost. These two areas have
been widely addressed in the past years.
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Introduction

Over the last years, several industrial programmes initiated the concept of a
More Electric Aircraft. In particular, the aero-equipment industry has started to
develop a more electrical actuation with Electro Hydrostatic Actuators(EHA) and
to introduce ElectroMechanical Actuators(EMA) for auxiliary equipment. This has
provided incremental approaches to address hydraulic circuits issues (Power-by-
Wire technologies, 2-hydraulic/2-electric power distribution architecture and use of
EMA for some systems).

Several collaborative research and development projects also started to develop
an All-Electric Aircraft, showing the effectiveness of electrical actuation. EMA
systems are so considered the best option for the aircraft of the future considering
they are:

• Less complex;

• Better suited to long term storage;

• Energy saving with respect to hydraulic systems;

• Installation and maintenance are easier;

• Power distribution management easier.

Nevertheless, there still exist technological barriers for a widde adoption of
EMA. For example, the sensitivity to certain single point of failures that can lead
to mechanical jams, and so on.

The promising perspectives of load alleviation / load control technologies as
well as electrical actuation for flight control surfaces and landing gear need to be
thoroughly investigated and verified in order to gain the necessary confidence and
maturity level for moving to their implementation in a flying demonstrator. This
requires:

• Development of suitable prototype components integrating the innovative fea-
tures capable of making electrical actuation an accepted proposition for future
flight controls and landing gears;

10



1.2 – The ASTIB project

• Design and construction of an integration test rig (Iron Bird) allowing verifi-
cation and validation of:

– Enhanced electrical power distribution and load management technol-
ogy;

– Electrical landing gear technology;

– Flight control system technology

• Development of a health monitoring platform able to collect and process data
provided by the sensors of the aircraft structure and systems such to assess
the aircraft health status.

The Iron Bird will enable integration and testing of the new technologies in a
relevant environment.

1.2 The ASTIB project

The ASTIB(development of Advanced Systems Technologies and hardware/soft-
ware for the flight simulator and Iron Bird demonstrators for regional aircraft)
project brings together 7 European companies and academic partners led by LEONARDO.
Its goal is to develop new technologies for the future regional aircraft. ASTIB is
specifically focused on contributing to generate technological advancements to be
implemented in a future Green Regional Aircraft(GRA); its main objectives are to
support the improvement of the Technological Readiness Level up to above TRL 5
for a significant number of electrical equipment that are being considered of critical
importance for the future GRA. This will help supporting industrial application
decisions for future deployments of GRA.

In particular, ASTIB will develop:

• Electromechanical actuators(EMAs) with their associated electronic control
units (ECUs) for selected flight control surfaces;

• Electrically actuated one main and one nose landing gears;

• Reliable prognostics and health management functions for the electromechan-
ical actuators;
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• An advanced multi-functional integration, verification and validation test rig
("Iron Bird");

• Contribution to the development of a health monitoring validation platform;

• Tools for evaluation of the benefits of an integrated health monitorin platform.

1.3 Model-based Software Design

The project has been developed following the principles of Model-based Software
Design. To understand what this means, let’s start with an example. Let’s think we
want to design a controller for an industrial robot or a vehicle and put our attention
on the code necessary. Software complexity is becoming one of the dominant cost
items in several sectors, including automotive, avionic and industrial markets. It
can be reduced using:

• a structured process

• a more effective way of developing and validating the code,

• a more effective way of reusing code.

Following a traditional approach implies handwritten code and the only way to
verify requirements fulfilment is through a “trial and error” procedure. Tests can be
done only at the end of the process and on a physical prototype, increasing costs.
If a single requirement changes, the whole system must be redesigned, increasing
the already large time needed for production and delivery of the final product.

Figure 1.1: Traditional approach timetable
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1.3 – Model-based Software Design

As can be seen in figure 1.1, test and development phases are strictly separated
and if a redesign phase is needed, the time to have a finalized product becomes
longer (15 months). This is not acceptable nowadays.

Model-driven Engineering(MDE) offers an alternative that allows to reduce
time-to-market and development costs.

Figure 1.2: Model-driven engineering design flow

Principles of MDE are:

• Abstraction from specific realization technologies

– A model should care about system’s behaviour not its implementation

– Requires modelling languages that do not hold specific concepts of real-
ization technlogies

• Automated code generation from abstract models

• Separate development of application and infrastructure

According to this approach, there will be a software tool to translate a project
in software. Usually the project consists of one or more models. A model is a
representation of the original system that includes only the key features useful to
understand its behaviour. Modelling is the key of this approach. The functionality
of the application we want to develop will be modelled using a language that is ab-
stract enough to allow to work without specifying too much details (e.g. Simulink
and Stateflow). A transformation tool will automatically generate the code relative
to the model, applying to it some transformations defined through a specification
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language. The advantage of this approach is that the model can be continuously
refined throughout the whole development process and it can be simulated at any
time to see how the system behaves. Multiple scenarios can be tested without any
risk and without using specific and expensive machinery.

The typical design flow of model-based software design is the so-called “V-
Shaped” development flow, shown in the picture below.

Figure 1.3: MBSD V-shaped development flow

It is possible to perform simulation during the whole process in order to avoid
unwanted behaviours at the end. The best thing is to perform simulations to verify
each step to avoid going back of several steps if an error occurs. Different types
of test can be performed: Model-in-the-loop (MIL), Software-in-the-loop (SIL),
Processor-in-the-loop (PIL) and Hardware-in-the-loop (HIL).

Model-in-the-loop testing

It can be performed in the first steps of the V-Shaped design flow when both the
plant (system to be controlled) and controller (algorithm controlling the plant) are
modelled. It is performed on a PC. Models are developed using a suitable domain-
specific language (e.g. Simulink/Stateflow). The simulation is used to validate the
correct behaviour of the controller looking only at the functional aspect. For ex-
ample, we can test if the plant is able to follow a given input.

14



1.3 – Model-based Software Design

(a) MIL in V-shaped (b) MIL scheme

Figure 1.4: Model-in-the-loop testing

Code generation and Software-in-the-loop testing

When MIL tests give acceptable results, the model of the controller is translated
into code by means of the so-called code generation. It implies the application of
some transformations defined by trough a specification language. For example, it
allows to transform a Simulink model into C code. Software-in-the-loop is the step
done after code generation to validate the correct behaviour of the software resulting
from the controller model. The software is co-simulated with the plant model, by
executing both on the development PC. The goal is to evaluate the behaviour of
the code resulting from the controller model, looking again at its functional aspect.

(a) SIL in V-shaped (b) SIL scheme

Figure 1.5: Software-in-the-loop testing

Processor-in-the-loop testing

After validating the software, the successive step is the Processor-in-the-loop test.
It is performed using different machines. The model of the control algorithm is
translated into code and deployed on an embedded processor (e.g. an evaluation

15



Introduction

board or an ECU). It is then executed in combination with a model of the plant
running on a simulation environment into the development PC. In this way, the
designer can verify the correct operations of the code implementing the controller
while running on the hardware that will be used in the final product or one close
to it. In this kind of test we are interested in the functional aspect of the controller
too, still neglecting the real time behaviour.

(a) PIL in V-shaped (b) PIL scheme

Figure 1.6: Processor-in-the-loop testing

Hardware-in-the-loop testing

The last type of test is called Hardware-in-the-loop (HIL). It is performed using
different machines. It consists in running a software implementation of a control
algorithm in a microprocessor-based system, for example an evaluation board or
the target hardware, in combination with a real-time plant model that is executed
by a real-time computer. The input/output connections between the two elements
are implemented using the very same connections that will be used in the real
application. Some hardware components belonging to the physical plant may also
be connected. In this stage, validation of the software is done in real-time, consider
both the functional and timing properties of the software.

(a) HIL in V-shaped (b) HIL scheme

Figure 1.7: Hardware-in-the-loop testing
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1.4 – Goals and used tools

1.4 Goals and used tools

The thesis work aims to validate the models, received from and designed by aero-
nautical engineers, that are part of the Iron Bird. This implies deploying them
on the development PC, testing and improving them until complete validation. In
particular, it is about performing SIL tests using NI VeriStand.

MATLAB Simulink

According to MBSE the key concept is the model of the functionality we want
to design. A model reflects the relevant section of the original system properties,
so focusing on important properties only. Modeling requires to use a language that
is abstract enough to allow the designer not specifying too much details. The used
language is Simulink.

Simulink is a MATLAB-based graphical programming environment for mod-
eling, simulating and analysing multidomain dynamical systems(Wikipedia, n.d.).
Simulating block diagrams, it allows to understand and analyse complex systems
and implement them with high quality. It provides tools useful to improve design
efficiency.

Starting from a model designed in Simulink is possible to generate code to pro-
totype, test in real time and deploy onto an embedded system. Throughout the
whole development process, the designer can continuously verify and validate the
design.
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NI VeriStand

To perform SIL test and consider also the real time aspect of the simulation, a
different simulation environment is required. The chosen one is NI VeriStand that
is designed also for HIL tests.

VeriStand is a software for real-time test applications, such as stimulus genera-
tion, data acquisition, and calculated and custom channel scaling (National Instru-
ments, n.d.).

This software helps in configuring I/O channels, data logging, stimulus genera-
tion. It is possible also to import simulation models and control algorithms. With
VeriStand is possible interact with and monitor the application using a run-rime
editable user interface. Its usage doesn’t require coding knowledge but it is possible
to use several software environments (ANSI C/C++, Python, ...) to add custom
functionality. VeriStand helps test engineers reducing time needed to test their
products.

18



Chapter 2

Iron Bird Architecture

Investigating and verifying the effectiveness of load alleviation, load control tech-
nologies and electrical actuation requires the design and construction of an integra-
tion test rig, as we already said. Develop that advanced multi-functional integra-
tion, verification and validation test bench is one of the main objectives of ASTIB
and the main point of this thesis. The test rig is known as Iron Bird (IB) and
CERTIA is in charge of its design as well as its production.

Considering the IB, ASTIB objectives are:

1. Design, development and construction of a specif infrastructure able to:

- Allow testing of new flight control architectures

- Accept the installation and allow testing of the electrical power distri-
bution system

- Reproduce the aircraft installation and allow testing of the electrical
landing gear system

- Reproduce the aircraft installation of a few selected flight control surface

- Install programmable load banks simulating aircraft electrical loads in
order to complete the global aircraft electrical system simulation

2. Implement a simplified aircraft model capable to verify system’s behaviour in
a simulated flight condition by allowing:

- Simulation of aircraft mechanics

19



Iron Bird Architecture

- Simulation of the sensors

- Real-time computation of aerodynamic loads

- Simplified aeroelastic model of the aircraft

- Interfacing with the flight control computer

3. Implement real-time features to enhance the Iron Bird functionalities as:

- Generation of aerodynamic loads acting on the flight control surfaces
and on the landing gears

- Mathematical models of the flight control actuators

- Virtual wing computer that will simulate in real-time the same actual
equipment installed on the IB

4. Enable faults simulation in the components under test

5. Support the testing activities

6. Provide a platform suitable for future installation of other components of the
flight control system

The Iron Bird will be used to verify and validate the functionality and perfor-
mances of significant equipment of the flight control system; it will be developed
for permitting verification of this equipment under simulated failure conditions,
thereby supporting the aircraft integration and certification process (Andrea Del-
lacasa, 2017).

It will allow to simulate a wing of a regional airplane. The simulator is partially
physical and partially virtual. Indeed, the Iron Bird is equipped with half real
aircraft system,that is the left semi wing, while the other half, the right semi wing,
will be simulated by a specific module.

Two configurations are possible: with winglet (WL) installed or the wingtip (WT)
installed.

20



Iron Bird Architecture

The following picture shows the architecture of the Iron Bird.

Figure 2.1: Iron Bird Architecture

In particular, figure 2.1 highlights modules and units composing the test rig and
how they shall communicate with each other exploiting the shared memory.

As Politecnico di Torino, our job is about the real-time conversion of the
Flight Mechanics Simulation Computer(FMSC), the Flight Control Com-
puter(FCC) and the Health Management System Module(HMSM). Each of
them consists in a Simulink model, designed by aeronautical and mechanical engi-
neers, and deployed on a PC. The red-dotted module is the Actuator Simulation
Module (ASM) and it shall simulate the response from all those modules.

Figure 2.2: ASM communication diagram
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Iron Bird Architecture

2.1 Actuator Simulation Module

The ASM is a part of the Iron Bird, designed to:

• Verify and validate aircraft systems technologies up to TRL 5

• Support the Flight Control System (FCS) Load Control/Load Alleviation
system design

• Enable inter-system integration and verification

• Support the the achievement of the FCS permit-to-fly for the demo flight
configuration of FTB#1

Thus, the main goal of ASM is to simulate in real-time actuators for the right
wing, the right main landing gear and tail actuators to get a full aircraft configu-
ration for ground testing. The second target is to enable tests to be executed even
if a real actuator is missing. In this case it will be replaced by its real-time model.

ASM will not interact directly with FCCs, FMSC and HMSM; all data shall pass
through the Engineering Test Station(ETS) and be stored in the reflective memory
optical ring. Simulation module will get inputs from the reflective memory optical
ring, coming from:

- ETS for the models parameters

- FMSC for the air load

- FCCs for electromechanical actuators (EMAs) position commands

- Electronic Control Unit (ECU) for EMAs commands

ASM output will be copied into the reflective memory optical ring toward FCCs,
ECU and ETS as shown in figure 2.2.

Simulation module is designed to be able to work in two operating modes:

• An Iron Bird Mode, where all electromechanical actuators can operate.
This corresponds to the main mode of operation, representative of a full
aircraft
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2.2 – Flight Mechanics Simulation Computer

• A standalone mode in which ASM can be controlled by the Central Control
Unit (CCU) to simulate one or several actuators’ model without receiving
signals from the others. This allows to check and evaluate the performance
of a given EMA once set the model parameters.

2.2 Flight Mechanics Simulation Computer

The Flight Mechanics Simulation Computer (FMSC) is the part of the IB in charge
of simulating the flight dynamics. Its main target is to offer real-time simulation,
on both longitudinal and lateral directional plane, with the purpose of checking the
equipment behaviour in a simulated real-time context. The model depends on the
aircraft selected for experiments, which will be a turbo-prop with 90 seats (TP90).

The Simulink model consists of several subsystems, including one representing
the rigid model mechanics; one for the flexible body mechanics; one for computa-
tion of hinge moments and one representing the sensors.

Inputs to FMSC are: elevator deflection δe, rudder deflection δr, right aileron
deflection δar , left aileron deflection δal , and winglet deflection δw or wingtip deflec-
tion δwtip. A pecentage of throttle variation is also included.

Every block and subsystem are validated using a fixed-step integrator (Runge-
Kutta) with a sample time Ts = 0.01s.

Aeroelastic Model

The aeroelastic model of the aircraft is also taken into account in FMSC. It is
developed under the following assumptions:

- Inertial tensor in the body reference frame is considered diagonal

- The only deformable element for this 6 DoF aircraft model is the wing

- the flexible components and deformations are modelled considering only the
1st and 2nd symmetric bending modes and the 1st symmetric torsional mode

- the A/C weight is constant in time
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- the sweep angle Λ = 0

Strip theory is used for modelling aerodynamic forces and moments. It allows
to describe them as a function of the direction of the local flow only, and to reduce
complexity and computational cost.

Rigid Body Mechanics

To describe the rigid body mechanics nonlinear equations of motion are consid-
ered. The rigid model has as inputs the step variation of the formerly listed inputs
together with initial trim conditions.

Figure 2.3: FMSC Rigid Model

The computed outputs are:

• the state vector x = {u, v, w, p, q, r, φ, θ, ψ}, where u,v,w are the linear ve-
locity components of the A/C, p,q,r the angular rates and φ, θ, ψ the Euler
angles.

• an auxiliary vector that collects V,α and β, where V is A/C speed, α the
angle of attack and β the sideslip angle.

• the air density ρ

• the velocity vector in NED reference frame

• the accelerations of the state vector for the sensor model

• air pressure
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• current coordinates, i.e. longitude and latitude

Flexible Body Mechanics

The successive block of the 6 DoF simulator implemented by the model, represents
the flexible body mechanics.It is linked to the rigid model by means of the quantities
listed before.

Figure 2.4: Rigid and flexible models

The flexible model is designed according to a Lagrangian approach and treats
the wing as a deformable element, while tail and fuselage are taken as rigid parts.
The deformation state of each flexible element is described following the Galërkin
method, that allows to approximate the progress of the deformation with truncated
series expansions.

Gust Simulation

A gust of wind produce a change in system aerodynamics, giving rise to an induced
incidence on the wing for every node of the aerodynamic model. In the model, the
gust effect is represent by a constant input that is true if considered, false otherwise.

Hinge Moments

Hinge moment is the technical name for the force required to deflect a control sur-
face. It grows rapidly as control surface get larger and speed get higher (Garrison,
2018).
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A dedicated subsystem, connected directly with the rigid model (green block),
is in charge of calculating the hinge moments acting on control surfaces. This
block takes as inputs velocity of the aircraft, wingtip, winglet and aileron deflec-
tions (CMDs in the model), and air density and returns the corresponding hinge
moments.

Figure 2.5: Hinge Moments block

Sensor Model

Finally, a subsystem models the sensors installed on the aircraft. There are three
accelerometers on each half-wing, an inertial measurement unit (IMU) and a global
positioning system (GPS).

Subsystems for the previously mentioned sensors are present inside the blue
block. Every half-wing has a subsystem which contains three blocks, one for each
simulated accelerometer.
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Figure 2.6: Sensor Model

2.3 Flight Control System

The Flight Control System (FCS) is the part of the IB in charge of controlling the
airplane during the flight. It includes the Flight Control Computer (FCC), the
Remote Interface Unit (RIU) and some other subsystems representing Winglet and
Wingtip that refers to the Electronic Actuation Control Unit (EACU).

FCS is designed as a unique big Simulink model, simulated with a fixed-step
discrete solver and a step time of 10ms set at model level.

The model provides five types of functionalities:

• Interface Management : subsystems representative of FCCs, RIUs and Actua-
tion are connected each other through A429 ports. This functionality is used
only in the Simulink model.

• Simulation: this provides the behavioral model of the real equipment

• Stimulation - Type I, modeled internally to FCCs to animate the model with
the expected outputs

• Stimulation - Type II, used to feed the actuation subsystem through a kind
of failure/event injection
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• Stimulation - Type III, used to feed FCS model with data from the Cabin
Dummy and from the A/C accelerometers.

It covers both the flying configurations of the Iron Bird, with either the winglet
(WL) installed or the wingtip (WT) installed.

The Simulink representation is made up of several subsystems:

- 3 FCC subsystems, standing for FCC A, FCC B and FCC C

- 3 RIU subsytems, for RIU A, RIU B and RIU C.

- 4 Aileron subsystems (LH Outer, LH Inner, RH Inner, RH Outer), 2 Wingtip
(LH and RH), and 4 Winglet (LH Upper, LH Lower, RH Upper, RH Lower).

- 3 subsystems generating the different types of stimuli.

Flight Control Computer

There are three different FCCs, FCC A, FCC B and FCC C. They are fed by type
I stimuli to generate almost all the outputs. They interface also with trim and
failure reset commands given by type III stimuli.

From a lower level point of view, the work done by these subsystems is to group
the signals needed for WL/WT and Inner/Outer Aileron respectively and forward
them to the subsystems representing that actuators.
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Figure 2.7: FCC subsystem
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Remote Interface Unit

There are three blocks representing the Remote Interface Unit: RIU A, RIU B and
RIU C.

They provide re-routing of messages from the input ports to the output ports,
implementing so the Interface Management functionality.

Figure 2.8: RIU subsystem
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Aileron subsystem ports

This represents one of the actuation systems mounted on the A/C. In the model
we have 4 subsystems referencing to the Aileron: LH Outer, LH Inner, RH Outer
and RH Inner Aileron.

Figure 2.9: Aileron subsystem
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Wingtip subsystem ports

Another actuation system. There are two wingtip subsystems: LH and RH wingtip.

Figure 2.10: Wingtip subsystem

Winglet subsystem ports

Another actuation system. For the winglet there are 4 subsystems: LH Upper, LH
Lower, RH Upper and RH Lower.

Figure 2.11: Winglet subsystem
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2.4 Health Management System Module

ASTIB project will also contribute to the development of a health monitoring val-
idation platform and the tools for the evaluation of the benefits of such integrated
platform. Its goal is to collect and process data provided by the sensors mounted
on the aircraft structure and systems such to evaluate the aircraft health status.

The Health Management System Module (HMSM) will give an advanced
integrated reasoning toolset that incorporates justified levels of automated fault
accommodation based on prognostic information for enhanced vehicle safety and
decision support.

The status of the system is continually monitored with sensors. Data are col-
lected and analysed. The first phase consists in a pre-processing of the data (outliers
removal, transformation, ...). Then they are used within a diagnostic algorithm;
anomalies are reported when there is a change from a healthy state and the root
identified.

Finally, a prognostic algorithm is used to determine how much remaining life
the component/system has. This time is also used for on-board tactical control or
off-board strategic planning, giving the decision maker enough time to manage the
health of the system and take the most appropriate action prior to the failure.

Health Management System Module will perform three key functions:

• Allow injection of simulated degradations and their progression to verify the
merits of Prognostics and Health Management (PHM) algorithms

• Receive and store actuators measured data

• Implement prognostics and health management functions

As can be seen in figure 2.12, the user can choose which electromechanical
actuator mathematical model consider and the fault to be implemented. This
permits to perform HIL tests and studying growth of a specific fault for a single
actuation system.

During normal operations of the Iron Bird, HMSM will receive data from both
simulated and real EMAs and some additional variables useful for PHM analysis.
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Figure 2.12: HMSM Architecture

These data can be saved by the user and retrieved to execute PHM algorithms
that will use them to provide the EMAs health status.Data can be eventually pre-
processed to reduce the dimension of the file containing them.

Since prognostic functions do not need to run in real-time, the prognostics
functions will run on a common hardware and can be launched also in an external
computers.

This module can, then, be divided into two part:

- An offline one, meaning it won’t be running in real-time. It aims to run PHM
algorithms and to show the pilot the system status. It consists, indeed, in a
graphical user interface designed and developed in Matlab, shown below.

Figure 2.13: HMSM Graphical User Interface
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It can be seen as divided in two main groups: Main and Documentation.
The second gives a short guide about how to interact with the software. The
’Main’ tab consists of two sections, one from which the user can select the
inputs and another used by the software to graphically show the results. The
’DATA IMPORT’ panel is used to load the data set from a file, of which the
name must be specified. The ’RUN’ button let PHM algorithm start.

The visual feedback is provided by three graphical tabs which are ’Features
behaviour’,’Fault Detection’ and ’Prognosis’. The first and the second show
graphical informations about the selected features. In particular they show
their trend over test duration and their pdfs as histograms, respectively. The
last tab depict the estimated Remaing Useful Lifetime (RUL).

- An online one, that will interface with the optical ring and the ETS.

This part is responsible for fault injection and data storage. It consists, like
FMSC and FCS, in a Simulink model that will be converted in real time.
The model can be described as an acquisition system that will propagate
data from the Iron Bird to the offline part of HMSM. It has to be specified
that only the right semi-wing is represented, since only this part is simulated
by the ASM. Data from real actuators, also needed for PHM analysis, will be
provided by a dedicated acquisition box.

Like other components in the Iron Bird, also HMSM is interfaced with them
and with the ETS by means of a reflective memory card.

The described functionalities allow to identify three operating modes for this
module:

1. HIL tests : in this mode the user can select an actuator model, a specific
fault and a fault-to-failure trend to create a data set to be analysed by PHM
algorithm

2. Passive Mode: in which data from tests are periodically stored and analysed
to evaluate the status of real equipment

3. Active Mode: it is possible to inject a fault into mathematical model of the
chosen EMA while normal IB tests are running
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2.5 Reflective Memory and Synchronization

The Iron Bird can be correctly considered a multiprocessors system, since it con-
sists of several PCs. Hence, a way to make them capable to communicate with each
other is needed.

Two types of multiprocessors systems can be distinguished according to the
way they share data and informations: shared-memory systems and distributed-
memory systems. In the first case, we have multiple CPUs and a single global
physical memory while in the latter each processing node has its local memory. A
third approach exists, it is called Distributed-Shared-Memory (DSM) and combines
the advantages of the previous. In words, a DSM system logically implements the
shared-memory model on physically distributed-memory design (Baek, 2002).

A Reflective Memory network is a special type of shared memory system which
enables multiple, separate computers to share a common set of data. Reflective
Memory networks maintain an independent copy of the entire shared memory set in
each attached system. Extremely low data latency is the key benefit of a high-speed,
hardware-driven network like Reflective Memory. This low-latency performance
is of paramount importance when building real-time systems such as simulators
(ABACO Systems, n.d.).

The key feature of a Reflective Memory System (RMS) is, indeed, that each
computer physically has its own local memory. Memory updates can occur over dif-
ferent types of interconnections. As example we cite the RT-CRM, Real-Time and
Channel-based Reflective Memory that is based on memory channel, i.e. hardware
assisted, virtual connection-based memory to memory transfer of data (Chia Shen,
2001). It represents an approach similar to the one used in this project. Indeed, as
we will see later, the reflective memory used is organized in channels and each of
them will be reserved for each input or output signal involved in the project.

The Iron Bird software simulations need to be synchronized, in order to achieve
flight tests integrity and to ensure that all data have been produced during the
same cycle. The used algorithm is based on reflective memory events, in particular
an handshake between a master scheduler (the ETS) and all the involved software
modules. The master scheduler receives commands from the test rig operator and,
exploiting the Iron Bird optical ring, it pilots the following states:
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• Initialization: executed once when ’Start’ command is received and is reserved
for the modules initialization and configuration

• Execution: executed iteratively until ’Stop’ command is received from the rig
operator. It is composed of the following sub-states:

– Write cycle: software modules copy their output data into the optical
ring, with the purpose of sharing them for the next execution cycle. In
this phase ETS takes the needed data from the physical interfaces and
copy them into reflective memory area

– RT cycle: the software modules execute their specific algorithm and
tasks

– Read cycle: the software modules retrieve from reflective memory area
the input data necessary for their execution. ETS converts those data
into the physical interfaces.

• Stop: executed once when ’Stop’ command is received to stop the current test
and software modules execution.

For handshake communication between scheduler and nodes, two reflective mem-
ory events are used:

- Interrupt#1, sent by the scheduler to all the nodes to command the current
state

- Interrupt#2, sent by every node as acknowledge

An enumerative value is used as parameter of the previous events:

- 1000: Inizialization

- 1001: Read

- 1002: Write

- 1003: Stop

- 2000: Acknowledge
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Before going on with the next phase, the master scheduler have to collect all
the acknowledge messages to ensure all the modules finished computations.

The master scheduler is able to check and notify in the ETS GUI LogSystem
the following error conditions:

- any software module execution overrun detection, compared to real time cycle
duration

- any missing acknowledge from modules

The ETS keeps track of number of consecutive overruns. If a single system runs
late for N consecutive cycle the entire test sequence must be stopped.
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The following image provides a sequence diagram of the described algorithm:

Figure 2.14: Synchronization algorithm
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Chapter 3

Real-time conversion of Flight
Control System

The task assigned to our team is about real-time conversion of the three models
described in the previous chapter and then mapping their inputs and outputs on
the reflective memory optical ring. This last operation is needed to make FMSC,
FCS and HMSM able to communicate with each other and with the ETS.

In order to run a Simulink model in real-time, a common way is to deploy it on a
different simulation environment capable of considering also the timing properties.
NI VeriStand is a software environment with these features and the one chosen
for our purposes. Importing a model in VeriStand requires a dll (dynamic linking
library) file, in other words a file describing the model in a way understandable
to NI software. Such a file is obtained as result of code generation, performed by
mean of Simulink embedded coder.

3.1 Code Generation

To be translated into code, a model shall be suitable for code generation. By
the way, in most cases this is not a verified condition and the model needs to be
modified in its design such as in its settings.

Refactoring is needed if blocks such as "Step", "Ramp" or other from Source
library, as well as "Scope" from Sinks library are present. These blocks must be
removed and substituted with NI VeriStand Inports or standard Input Ports, and
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NI VeriStand Outports or standard Output Ports respectively, otherwise VeriStand
won’t be able to correctly recognize inputs and outputs from the dll.

The following figure shows an example of the previous:

Figure 3.1: Refactoring example

Since the model we received from the designers was not compliant with the
above statement, we firstly had to modify it and make it similar to the right side
of figure 3.1.

From a practical point of view, our goal is to generate a dll file for each subsys-
tem composing the model, load that file in VeriStand and map inputs and outputs
on the reflective memory. This requires each subsystem in the model to be ex-
tracted from it and treated separately.

Let’s consider as an example the subsystem representing the LH Inner Aileron.
We put it in a single Simulink file and try to generate the dll file describing it.

Figure 3.2: Original LH Inner Aileron
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In order to perform code generation correctly we have to check some settings.

- In solver section, we usually put type=fixed-step and solver=discrete. The
fixed-step size is a number chosen according to the time requirements. We
read from requirements that is 10 ms. Since the application will run contin-
uously, we also set inf as stop time.

Figure 3.3: Solver settings

- In hardware implementation tab, we put Intel as device vendor and x86/Pentium
as device type since we know our files will run on devices with these features.

Figure 3.4: Hardware implementation settings

- In code generation tab, we have to select the needed Target Language Com-
piler, i.e. one of the tlc files that Simulink suggests. Since we’ll use the dll
inside NI VeriStand, we must choose NIVeriStand.tlc as system target file.
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Figure 3.5: Code Generation settings

Now that settings are correctly fixed, we can build the model using Simulink
Embedded Coder. It can be launched by clicking the corresponding button in the
toolbar or with the keyboard shortcut CTRL+B.

Figure 3.6: Simulink build button

The process is automatic and can be followed opening the Diagnostic Viewer
window. If there are no errors, at the end of the process a folder will be created.
It is named according to this pattern

modelName_targetFile_rtw

where:

- modelName is the name of the Simulink file without its extension (.slx)

- targetFile is the name of the tlc file we selected in code generation tab

- rtw stands for Real-Time Workshop and indicates that we want C code to be
generated

Since we named the model LH_Aileron_Inner_EACU_v0_2016b and we chose
NIVeriStand.tlc as system target file, the new folder will be named:

LH_Aileron_Inner_EACU_v0_2016b_niVeriStand_rtw

The just created folder contains the C files (*.c and *.h) relatives to the model
together with a dll file. As mentioned before, this last file is the one we are interested
in. Next step is to import the model in NI VeriStand.
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3.2 Import in VeriStand

The project in VeriStand is described by several files. To add the model we have
to open the system definition file, the one with extension .nivssdf. A window like
this will open:

Figure 3.7: System definition explorer

To add the model, we have to copy it in the ’Model’ folder of our NI VeriStand
project. To achieve this, we click on ’Models’ in the tree on the left side of previous
window and then on ’Add a Simulation Model’ button that appears on the toolbar.

Figure 3.8: NIVS Add Simulation Model button
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On clicking it, this dialog will open:

Figure 3.9: NIVS Add Simulation Model path

Now we have only to give a name for the model we want to add and specify
the absolute path to the dll file in the file system. It is also possible to manage the
decimation regards the main frequency and the core of processor we want to use.

After this step, we’re able to run the project, with a complete access to inputs,
outputs, and parameters of the model from NIVS interface. The first check we do
is about the correct identification of inputs and outputs. We look at the Inports
and Outports folders under the model we just added.

Figure 3.10: Empty Inports and Outports

In figure 3.10, we can see the above mentioned folders are empty. That’s mean
that something is wrong with the model.

As can be seen in figure 3.2, the model received from designers appears with a lot
of "From" blocks as inputs and "Go to" blocks as outputs. Using them VeriStand
is not able to recognize any input and/or output.

Hence, we have to remove all "From" and "Go to" blocks and replace them
with NI VeriStand Inport and NI VeriStand Outport respectively. They can be
found in the "NI VeriStand Blocks" folder of Simulink Library Browser, that will
automatically appear once completed the installation of NI software.
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An important aspect is naming of such elements in the model. In order to
make it understandable for other people working on it and make it capable of
communicating with the other models composing the Iron Bird, each port shall
have a specific name indicated in the Interface Communication Document (ICD)
given to us as an excel file.

Once added the NI ports and renamed them according to the ICD, we have to
repeat the code generation process and import the new dll in VeriStand.

This is how all inputs and outputs of the subsystem should look before code
generation:

Figure 3.11: LH Inner Aileron Inputs

Figure 3.12: LH Inner Aileron Outputs
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And this is a part of what we should see in Inports and outports folders in NIVS
System Explorer Window:

Figure 3.13: LH Inner Aileron NIVS inports

Figure 3.14: LH Inner Aileron NIVS outports
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We repeated the same process for all the subsystems composing the model re-
ceived from Leonardo S.p.A to obtain the following dll files:

- FCCA_Sim_v0_2016b.dll

- FCCB_Sim_v0_2016b.dll

- FCCC_Sim_v0_2016b.dll

- LH_Aileron_Inner_EACU_v0_2016b.dll

- LH_Aileron_Outer_EACU_v0_2016b.dll

- LH_Winglet_Lower_EACU_2016b.dll

- LH_Winglet_Upper_EACU_2016b.dll

- LH_Wingtip_EACU_2016b.dll

- RH_Aileron_Inner_EACU_v0_2016b.dll

- RH_Aileron_Outer_EACU_v0_2016b.dll

- RH_Winglet_Lower_EACU_2016b.dll

- RH_Winglet_Upper_EACU_2016b.dll

- RH_Wingtip_EACU_2016b.dll

- RIUA_Sim_v0_2016b.dll

- RIUB_Sim_v0_2016b.dll

- RIUC_Sim_v0_2016b.dll

where ’2016b’ indicates the version of MATLAB we used throughout the whole
project.
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Once imported all of them in VeriStand, this is how ’Models’ folder in systen
definition file looks like:

Figure 3.15: NIVS Models Folder

3.3 Mapping on Reflective Memory

When the names of all input ports and output ports are compliant with the names
in ICD documents, the model has the right features to communicate with the other
parts of the Iron Bird but it still is not able to do it. To communicate with the Ac-
tuator Simulation Model (ASM), Flight Mechanics Simulation Computer (FMSC),
Health Management System Module and other parts of the project, each subsystem
of the model shall know where to find the necessary data for its computations and
where to write the produced results.

According to project requirements, these operations has to be done exploiting
the reflective memory optical ring. Hence the subsequent step is to map each input
and output on it.

First of all, for compatibility reasons we have to rename our controller in Target
folder as OPAL. In this way our partners can easily merge our work with theirs.
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Then, we need to add the reflective memory to our project in VeriStand System
Explorer. We received the representation of the memory from CERTIA, the French
company involved in this project. It consists of several files that we need to add all
to the system definition file tree.

Figure 3.16: Reflective Memory files

We have to copy those files in a folder that we called RefMem DMA Slave and
move it to the folder ’National Instruments\NI VeriStand 2017\Custom Devices’.
Now we can add it to the project, right-clicking Custom Devices in the tree and
selecting RefMem DMA Slave from the drop down menu.

Figure 3.17: NIVS Custom Devices
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In our custom device, we have to add 2 blocks. For adding blocks we have to
select the reflective memory and click on ’Add DMA Block’ button on the right-
side of the system explorer that automatically add a folder in the custom device
hierarchy.

Figure 3.18: Custom Devices Add Blocks

In the screen that appears next, we can set the features of each block. We can
give a name, specify an address and the type (i.e. read or write). Beside this we
can add the needed number of data channels.

The first block, that we called Block1, should have these properties:

- "Read" mode

- 2116 data channels

- Block address = 1

Figure 3.19: DMA Block 1
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The other block, Block2, should have instead these properties:

- "Write" mode

- 1443 data channels

- Block address = 430

Figure 3.20: DMA Block 2

While Block1 will be used for mapping the inputs of each model, Block2 will be
used for the outputs. At this point the reflective memory is properly added to the
project and we can start mapping inputs and outputs.

Let’s open the Configure Mappings utility from NI VeriStand System explorer,
clicking the corresponding button in the toolbar:

Figure 3.21: Configure Mappings button
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In the dialog that will open we have to select our controller, OPAL, from the
Network list

Figure 3.22: System Configure Mappings

Then for each signal, we select ’Source’ and ’Destinations’ navigating in the tree
and confirm clicking on ’Connect’ button.

Figure 3.23: System Configuration Mappings

Confirmed mappings will be shown in the lower part of the above dialog.
As already said, all the signals in Outports folder shall be connected to Block2

of RefMem DMA Slave, and all channels of Block1 shall be connected to each signal
in Inports folder.

To properly perform this operation, we need to know, for every variable, the
address of the memory cell that will be written or be read. It is represented by
an integer, indicating the channel in the corresponding block, and all of them are
given to us into an excel file, that is RFM affectation, where RFM stands for
ReFlective Memory.
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Addresses of the RFM variables declarered in RFM affectation file, are calcu-
lated as

block_address + variable_address_in_block

Let’s make a couple of examples.
We consider the signal

COM_TO_FCC_COM1_EACU_MOD_ACK_REQ,

that is an output. Since it is an output it should be connected to a channel in
Block2. To select the correct channel, we look for COM_TO_FCC_COM1_EACU_MOD_ACK_REQ
in the RFM Affectation file. It can be found at the line 1314.

We know that the address of Block2 is 430, so the channel for the considered
signal is calculated as

line_in_excel - 430

Applying this we obtain that the channel shall be 884. We select the considerd
signal from ’Source’ in 3.22 and Channel 884 from ’Destination’ and click ’Connect’
button.

On the other hand, inputs of each model have to be connected to Block1. Its
address is 1, so to select the channel we have to modify the previous formula as:

line_in_excel - 1

After this modification, we proceed the very same way as for outputs.

Once mapping has been done, CERTIA performed some tests to better under-
stand how to position FCCs, EACUs and RIUs in the hardware system. The main
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result is that it is more efficient to run FCS components directly on the ETS cal-
culator rather than passing through the Simulation Model (SM). This means that
mapping is not needed for Flight Control System.

The reason is that the time required for writing the shared-memory rises with
the number of variables to be written. Since on the real time system we have a
fixed-time step, time needed to write the variables cannot exceed it. Otherwise a
system overrun occurs.

Together with CERTIA partners, we noticed that FCCs, EACUs and RIUs sub-
systems are not very complicated for the ETS and they have to run only at 100Hz
and most of the involved variables are computed as NI Inport = NI outport. For
this reason we tried to run it directly on the ETS to see if this additional CPU load
is tolerable. Since it still stays around 50% of CPU load, we considered it acceptable.

3.4 Mapping of FMSC and HMSM

The workflow described in the previous section has to be repeated in the very
same way for both Flight Mechanics Simulation Computer and Health Management
System Module. So, adding NI Inports and NI outports in the Simulink models,
generate the dll and use NI VeriStand to map inputs and outputs on the reflective
memory optical ring.

Also for the two cited modules, like for the FCS, addresses of the variables on
the reflective memory can be found in the same excel file.

For the health module, to meet a requirement from the designer about the file
generated from RT computer to record data, we had to add another custom device
that is the Embedded Data Logger. Using it, we were able to put all the data
collected into a single file and group them according to the actuator from which
they came.
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Conclusions

This thesis is helpful to show the advantages of following a model-based approach
in developing applications like control systems or, as in our case, in aerospace or in
automotive fields.

In particular, we surely think about automated code generation and rapid con-
trol prototyping, referring with this to model simulation inside NI VeriStand.

The automated code generation permitted the team involved in the project to
almost forget about the code. We only cared about the correct file extension that
we needed. In other words, we checked only if a dll file were correctly generated.

Rapid control prototyping allows to analyze the performances and the integra-
tion of the various parts considering also the real time aspect in the simulation.

Considering the real-time aspect allowed us to shorten the testing time, and
gave us the possibility to understand how the code for the three models we dealt
with, behaves in a situation very similar to the final one, without having a physical
prototype of the whole Iron Bird.

Our tests showed that the modules composing CERTIA’s test bench are able
to correctly communicate with each other. It is, then, possible to assert that
Politecnico carried out his task in a proper way.
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