
POLITECNICO DI TORINO
DEPARTMENT OF CONTROL AND COMPUTER ENGINEERING (DAUIN)

Master Degree in Computer Engineering

Master Degree Thesis

Automatic Binary Analysis and
Instrumentation of Embedded
Firmware for a Control-Flow

Integrity Solution

Author: Valentina Forte

Supervisor: Paolo Ernesto Prinetto

April, 2021

Abstract

The growing number of connected embedded systems has enabled the so-called IoT (In-
ternet of Things), nowadays present in numerous scenarios of our daily life: from mobile
phones to televisions, from wearable devices to surveillance systems, from medical devices
to transport and industrial control systems. Since IoT devices often exercise control of crit-
ical infrastructures, they naturally become the target of cyber-attacks, which undermine
to take possession not only of the data exchanged by them, but also of their control func-
tionalities, breaking into possible software vulnerabilities present within the executed code.
The goal could be gaining complete access to the device, but also altering its behavior by
injecting malicious code or making it unusable.

Applications executed on embedded systems are generally written in C and C++ lan-
guages, which provide high performance, but could also introduce bugs and flaws that
can be exploited to corrupt memory, since memory management is entirely entrusted to
the programmer. Secure programming rules should be followed when writing C and C++
code, to avoid common problems such as pointer ambiguity, memory leakage and buffer
overflow. By exploiting these coding errors, an attacker can override the contents of a
memory location, whether they are local variables, data structures or return addresses of
a function, to change the instructions execution flow. This is one of the basic principles of
an advanced exploit paradigm, called Code-Reuse Attack (CRA).

CRA are implemented through attack techniques like Return-Oriented Programming
(ROP) or Jump-Oriented Programming (JOP), that harness the execution of malicious ac-
tions by reorganizing snippets of few machine instructions (called gadgets) already present
in memory. In the common threat model, the attacker, through memory corruption, is
able to force the execution of the code to be hijacked towards a chain of these gadgets,
which in its entirety produces the execution of a malware.

Control-flow Integrity (CFI) solutions proof that it is possible to mitigate the effects
of these attacks by adopting protection mechanisms that safeguard the integrity of the
execution flow. Through the computation of the Control-Flow Graph (CFG), it is possible
to determine the set of valid destinations for all machine code instructions involving a
control-flow transfer (such as branches, calls and returns).

The aim of this thesis is to provide an automatic tool capable of extracting the CFG and
instrumenting the binary code of the program in such a way that it is resilient to memory
corruption problem. The tool is responsible of the offline part of a hybrid CFI technique
for protecting embedded systems, which involves the presence of a reconfigurable hardware
in the chip. The technique also provides a careful edge classification, that helps to narrow
control-flow transfers needing protection. In this way, the instrumentation overhead in

1

terms of code memory occupation and execution time is minimized.
A Python script is developed to accomplish this expectation, with the support of r2pipe

module that handle the interaction with the reverse-engineering framework Radare2.

2

Contents

1 Introduction 5

2 Background 9
2.1 Embedded Software Security . 9
2.2 Buffer Overflow . 10
2.3 Code Injection Attacks . 11

2.3.1 Memory Protection . 12
2.4 Code-Reuse Attack (CRA) . 12

2.4.1 Return-Oriented Programming (ROP) 13
2.4.2 Variants of ROP . 15

2.5 Mitigation and Countermeasures . 15
2.5.1 Address Space Layout Randomization (ASLR) 15
2.5.2 Stack Canaries . 15
2.5.3 Control-Flow Integrity (CFI) . 16

3 Control-Flow Integrity: State of the Art 17
3.1 Software-based Solutions . 17

3.1.1 Binary Instrumentation Tools . 19
3.2 Hardware-based Solutions . 20

3.2.1 Branch Target Encryption . 21
3.2.2 Shadow Call Stack (SCS) . 21
3.2.3 Basic Block Signature Verification 22
3.2.4 Instruction Set Architecture (ISA) Modification 22

4 The Investigated Solution: FPGA-based Control-Flow Integrity 23
4.1 Basic Definitions and Edge Classification 23
4.2 Protection Mechanism . 26
4.3 The FPGA-based CFI Monitor . 29

5 Automatic Tool Features 35
5.1 Adopted Strategies . 35
5.2 Code Analysis . 37

5.2.1 Parsing . 40
5.2.2 Extraction . 41
5.2.3 Reconstruction . 44

3

5.2.4 Recognition . 45
5.2.5 Instrumentation . 45

6 Experimental Results 47

7 Conclusions and future works 51

Bibliography 55

4

Chapter 1

Introduction

Technological advances have contributed to the production and dissemination of modern
“smart objects”, completely changing the aspect of the world. The impressive number of
connected devices, constituting the so-called Internet-of-Things (IoT), grows to accomplish
the relentless demand to bring the objects of our everyday experience into the digital
world, to optimize the services from which people already benefit. The profits offered in
terms of productivity make embedded systems increasingly essential. For this reason, their
proliferation is employed in an enormous range of applications, such as phones, wearable
devices, surveillance cameras, medical devices and industrial control systems.

To provide significant performance in terms of execution speed, simplicity and low
power consumption, many of these applications are executed on low-cost devices, so-called
bare-metal systems. The essential characteristic is the absence of a middleware abstraction
layer, like the operating system, as the instructions are executed directly on the under-
lying hardware. The criticality of security in these setups arises from the fact that, by
default, they do not provide any native defence mechanism, exposing to obvious risks crit-
ical functionalities, communications and sensitive data. In most cases, embedded systems
face technical challenges that make it even more difficult to implement solutions that are
robust, safe and lightweight at the same time against any cyber threat.

Furthermore, most of the daily used devices are connected to the Internet, and this
increases their exposure to cyber-attacks. The abundant hardware and software vulnera-
bilities present, united with weak defensive lines often adopted, make these machines an
attractive target. The comprehension of the impact of cyber threats to this category of
devices is crucial: injecting malicious code into the firmware or hijacking its control-flow
can affect the device’s performance, radically alter its behaviour, reduce battery life, steal
data, render it inoperable, or even involve it in a botnet.

In [1], researchers dealt with the protection of bare-metal machines, analyzing the basic
architecture and how the lack of adequate safety mechanisms can endanger the entire device
(Figure 1.1). The achievement of strategies that focus on the security pillars, summarized
in the CIA paradigm (Confidentiality, Integrity, Availability), must consider hardware lim-
itations, mainly related to:

• limited memory size and reduced computation capabilities;

• lack of support for task isolation;

5

Introduction

• inapplicability of most solutions to ARM-based architecture;

• lack of operating system intervention;

Moreover, many hardware security features frequently remain unused or easily bypassed
and, in general, are not enough to guarantee complete system security. Even data and
code section must be protected against possible memory corruption-based attack to prevent
system alteration with dramatic changes.

Figure 1.1: The basic architecture of bare-metal systems [1].

The exploited vulnerabilities have contributed to developing many defence techniques,
among which the Control-Flow Integrity (CFI) solutions stand out [2]. The basic idea
of such protection mechanisms is to have an online monitor, e.g., a piece of hardware or
software, that is able to ensure the integrity of the program flow, and the fact that the
application only follows predefined paths, without the possibility of redirecting it through
malicious sections of the code. In order to do this, the Control-Flow Graph (CFG) [3]
of the program must be extracted from the code before runtime, to correctly instruct the
monitor about allowed and not allowed branches. The monitor could be the program itself,
e.g., through the insertion of additional instructions to verify branches [4], or a dedicate
hardware unit that computes the necessary checks.

This thesis aims to provide an automatic Python tool to extract the CFG and implement
protections at binary level for ARM-based architecture. Chapter 2 analyses significant
threats present at the software level and mitigations that have been studied. Chapter
3 provides state of the art relevant to Control-Flow Integrity, identifying software and
hardware techniques and offering an overview of binary instrumentation tools. Chapter 4

6

Introduction

discusses a hybrid CFI-solution for protecting embedded systems, of which the Python tool
is a significant part. Chapter 5 explains the organisation and the implementation strategy
of the developed tool. Chapter 6 illustrates the tool performances and the obtained results.
Finally, Chapter 7 concludes the work and offers suggestions for future improvements.

7

8

Chapter 2

Background

The present Chapter aims to analyze the most common embedded software vulnerabilities,
entry points to perform memory corruption attacks. The provided technical background
concepts are essential to examine control-flow hijacking attacks and investigated counter-
measures.

2.1 Embedded Software Security
Most of the embedded software applications are developed using memory-unsafe languages,
such as C and C++. These languages offers high performance possibilities, but at the same
time, they leave to programmers the responsibility of directly managing the memory. This
opens the door to a wide plethora of unintentional errors that can be exploited to corrupt
memory: it is statistically impossible to write a completely bug-free program. However,
vulnerabilities are too often the result of hasty or wrong programming procedures, that
leave critical infrastructures exposed. These issues are often due, for instance, to the
adoption of insecure encoding practices, e.g., the usage of a code library that contains
vulnerabilities, or handles memory pointers improperly.

The leading cause of misconceptions is a result of inadequate memory management by
code writers. With pointer usage, the programmer is granted unrestricted memory access,
and assumes the responsibility to ensure the execution of secure operations.

Major issues that can be encountered with this type of approach are:

• Memory leakage [5]: it refers to dynamic memory allocation without any release,
with consequently heap’s saturation.

• Use-after-free [6], also known as dangling pointer : it concerns handling a pointer
that terminates his lifecycle and could store a memory address employed by another
program.

The exploitation of these memory corruption vulnerabilities, in best cases, bring to
program crashes; otherwise, in worst cases, attackers get to have unbounded memory
availability and to jeopardize the entire system, altering his native behaviour.

If the application code is somehow leaked (e.g., for insecure storing and transmission
policies, for employ of known and old modules, or for reverse engineering), attackers can

9

Background

scan every single part of the code to identify weak points to attack. They can often find
authentication processes that can be defeated or bypassed, allowing them to control the
device during a cyber attack. They also seek for entry point to launch buffer-overflow
attacks [7] and other denial-of-service attacks against the device. Analysis of firmware
images frequently reveals symbol tables and text strings, which can be used to reverse-
engineer functionalities and identify weak points. In some cases, password hashes and
security keys can be leaked.

Two separate issues must be treated with solid security. First, security vulnerabilities
introduced during the design and development phases must be found and addressed. This
range from insecure string management practices, like using sprintf() for copying strings
instead of more secure variants like snprintf(), to hidden backdoors and encryption keys
stored in plaintext.

Second, system security features should be included in the initial system design stage.
Adoption of strong authentication, secure boot, hardware-based secure key storage, en-
crypted communication, and secure firmware updates are necessary security items for all
devices. Otherwise, embedded software development is forced to an effortless design, be-
cause the resources available to the target device limit the ability to use higher-level pro-
gramming languages, both for used memory and execution time.

Replacing these unsafe programming languages with others more reliable cannot be
considered the only strategy. It would mean re-writing many lines of code and training
hard the entire audience of embedded software developers. This states the necessity to
apply new defence mechanisms to mitigate the effect of these kinds of attacks, such as
memory protection, Address Space Layout Randomization (ASLR) [8], stack canaries [9]
and Control-Flow Integrity, whose details are treated in Section 2.5.

2.2 Buffer Overflow
Attacks based on buffer overflow vulnerabilities [7] represent a major threat in a security
system. Lack of input validation in the developed code with programming languages con-
sidered as “memory unsafe” can be exploited as a weapon to achieve the highest privileges
and subvert program functionality to control the host entirely.

To plan code attack, it is sufficient to provide a sequence of input characters that
overcomes boundaries of the destination buffer. The insertion of more data than the buffer
can handle overruns the content of adjacent memory addresses, corrupting or overwriting
the data held in that space [10].

An example of a famous buffer overflow vulnerability is the HeartBleed bug [11], found
in OpenSSL: here, the insertion of malformed inputs allows to read more data than should
be permissible. The presence of this fault compromises the secret keys used, the names
and passwords of users and their data.

Typically, the program’s control flow can be altered by performing two alternative
strategies: Code-Injection Attack or Code-Reuse Attack (CRA).

10

2.3 – Code Injection Attacks

2.3 Code Injection Attacks
Memory corruption vulnerabilities are not just exploited to read memory content and over-
write it, working on the target application’s weaknesses. Thus, the adversary can leverage
a buffer overflow vulnerability to change the stack’s return address, function pointer, local
variables, and heap content. The lack of data input validation allows the attacker, during
the execution, to provide more data than the stack can contain. If the program function
does not notify the error, the values are saved the same but overwrite and corrupt the
stack (stack smashing [12]). Stack smashing is performed by the attacker to introduce and
execute malicious payloads into a vulnerable computer program.

This type of attack is called Code Injection (Figure 2.1) and generally involves two
challenges:

1. find a way to inject the malicious payload into the memory;

2. force the Program Counter (PC) or Instruction Pointer (IP) to point to the injected
code.

Figure 2.1: Code injection attack.

The first step is to discover an entry point in the application. The main goal is to take
control of the computer system to perform any action with a sufficient level of privileges.
This ability, known as Arbitrary Code Execution (ACE) aims to open up, for example,
a command shell out of the program by introducing in memory the machine code corre-
sponding to system("/bin/sh"). Once a terminal is available, every command can be
launched, i.e., to steal information, disable or modify functionalities.

For the attack to be launched, the program flow must be diverted to the malicious

11

Background

payload, compromising the PC’s value. It is known that most common computer architec-
ture keep the return address of a function at the top of the stack, to be restored at RET
time. Above that, the local variables are stored, and among these, an input buffer could
be present, or any other memory space filled with an input content. Therefore, by over-
running a memory buffer onto the stack, the attacker overwrites the saved return address
in the stack to alter the contents of the saved PC, making it to point at the beginning of
the payload. In this way, at return time, the execution is redirected to the point where the
malware was inserted (Figure 2.1).

2.3.1 Memory Protection
To face the abovementioned threats, a mechanism to protect memory access must be
introduced. The most widespread security policy is known as Data Execution Prevention
(DEP) [13] or Write XOR Execute [14]. The basic idea is to mark loaded pages into the
heap, stack or in other memory segments as writable (W) or executable (E), but not at the
same time, making injected payload “non-executable”. This policy can be applied with the
employment of Memory Protection Unit (MPU) [15], that automatically process memory
access requests checking, for each segment, the admission rights and, in case of violation,
triggers a protection or permission fault.

However, W XOR X policies do not fully solve problems related to memory corruption:
such defenses are in fact limited to preventing a code-injection attack. Contol-flow redi-
rection is still possible if the adversary wants to execute code already present in memory,
as in the case of a code-reuse attack.

2.4 Code-Reuse Attack (CRA)
After the introduction of memory-protection-based defenses, attackers found an efficient
way to hijack the program control flow, instead of injecting new instructions in memory.
In this way, no attack attempt is detected by common non-executable-page policies. The
strategy of inserting external code is preempted by an approach that tends to reorganize
the existing code to perform arbitrary calculations.

This advanced exploit paradigm is referred to as Code-Reuse Attack (CRA), and consists
of identifying small fragments of code, called gadgets, that end with a transfer instruction
of the control flow (such as jump, call or return instructions). The memory is not filled with
code, but with a long sequence of addresses, each pointing to the beginning of a gadget.
Mechanism of CRAs is summarized in Figure 2.2.

Also in this case, the starting point is a software-level vulnerability that allows over-
writing the return address of the weak function so that after its execution, the PC content is
corrupted to point to the first gadget in the chain to begin the attack. In selecting gadgets,
the attacker has access to the code in the program’s address space, and more important, in
the functions’ libraries linked to the application. In fact, these are common to all systems,
so they constitute a huge amount of gadget source for the attacker. In other cases, the
attacker could even exploit entire functions in such libraries.

This is the concept behind return-to-libc [16] exploits, that make use of buffer overflow
vulnerability to redirect control flow to the C Standard Library’s (libc) sensitive functions.

12

2.4 – Code-Reuse Attack (CRA)

Figure 2.2: Code reuse attack.

In this way, a call function is simulated, having as parameters data inserted into the stack
and controlled by the attacker.

The idea about the reorganization of code already presents in the memory segment
allows generalizing the variant of this new paradigm of attack that achieves the maximum
expression in Return-Oriented Programming (ROP) [17] [18]. Subsequently, the attack
scheme extends connecting gadgets with specific features. Thus, concepts such as Jump-
Oriented Programming (JOP) [17], Call-Oriented Programming (COP) [19], Counterfeit-
Object-Oriented Programming (COOP) [20] and others [21] [22] have been introduced.

2.4.1 Return-Oriented Programming (ROP)
The most advanced and traditional version of CRAs is the Retun-Oriented Programming
(ROP) [23], that aims to overrun the return address of the running program by corrupting
the stack content (Figure 2.3).

ROP combines gadgets which are often limited to a couple of statements that end
with return instruction (RET), to lead the program to achieve more complex executions.
Each piece of code will perform a specific task, e.g., such as read/write operation from/to
memory, arithmetic logic procedures between registers.

By reorganizing the gadget’s chain, it is possible to completely change the task to
accomplish, enabling the attacker, without any privilege, to read or write memory content,
stealing information or destroying the system. To launch the attack, the adversary must
first inspect the application and carefully select the ROP gadgets to use, storing the “fake”
return addresses onto the stack. Then, he overwrites the return address with the first
gadget’s address to divert the original stream as soon as the function extracts with a POP
instruction the value from the top of the stack.

The addresses of chosen gadgets must be arranged into the stack so that, when the RET
instruction is performed, the first gadget’s return address is used to corrupt the PC content,

13

Background

and so will switch the control to the next gadget in the chain, and so forth for the others
in the sequence (Figure 2.4).

Figure 2.3: Stack corruption with fake return addresses [24].

Figure 2.4: Example of Return-Oriented Programming attack [24].

14

2.5 – Mitigation and Countermeasures

2.4.2 Variants of ROP
As already mentioned, ROP is not the only method to manipulate the control-flow of an
existing binary code. Jump-Oriented Programming (JOP) [17] is the most popular ROP-
derived attack, which activates the execution of a given function through a sequence of
indirect jump instructions. While in ROP each gadget ends with the RET instruction, in
JOP each functional gadget ends with an unconditional JMP instruction. The addresses
allowed in the normal execution of a program are collected in a dispatch table located in
any memory section containing a vulnerability. The final JMP or POP reg instruction of
the gadget is redirected to dispatcher gadget, that passes the control to the next gadget in
the table to achieve a negative effect. After the jump, the procedure continues so that the
functional gadget moves the control back to the dispatcher gadget to establish the next
one to call by updating the PC [17].

Among other techniques of ROP variants, we have to cite Call-Oriented Programming
(COP) [19], that involves indirect calls and Function-Oriented Programming (FOP) [21],
that relies on gadgets built on the existing C functions. More in general, each instruction
that involves the PC register, processing as a result of any operation, represents the starting
point of altering the original program stream.

2.5 Mitigation and Countermeasures
The fight against memory corruption bugs is a great challenge. After having listed the
main threats that could alter the firmware’s behaviour and allow the attacker to gain
control of the system, possible countermeasures are examinated in this Section, highlighting
advantages and disadvantages of each in costs and performance.

2.5.1 Address Space Layout Randomization (ASLR)
Address Space Layout Randomization (ASLR) is a procedure based on the randomization
of address space. This involves that the base address of an executable, the location of
heap, stack and code in a process address space, are randomly replaced in memory each
time the process is created [8]. The hacker might guess or conduct a brute-force attack on
critical memory addresses.

Depending on the space size and the entropy level, the difficulty level for the attacker
may increase consistently. However, like stack execution prevention checks, this technique
does not grant perfect security: if addresses are stored on a low number of bits, ASLR can
be bypassed with brute-force attacks, repeating different addresses until success.

2.5.2 Stack Canaries
This method involves generating an arbitrary secret number pushed into the stack under
the return address at each function call. Consequently, this ensures defence only for stack
memory vulnerabilities. Before each function return, the canary value is checked against the
original value. If no alteration is detected, program execution normally resumes, otherwise
it ends immediately [9].

15

Background

Stack canaries seem an efficient mechanism to mitigate any stack smashing. However,
two techniques can demonstrate how to bypass them:

• Stack Canary leaking: if an attacker can read the content of the canary stack,
this value can be used while filling the stack with corrupted values, so no alarm is
generated;

• Brute-force attack: the canary value is determined when the program starts for
the first time. If the program forks, it maintains identical values in child processes,
and the attacker uses this to replicate the brute-force attack on all child processes.

2.5.3 Control-Flow Integrity (CFI)
The enforcement of Control-Flow Integrity (CFI) security feature has been proposed by
Abadi et al. [2], and it is the most powerful solution against control-flow hijacking attacks,
but also very expensive and difficult to implement.

First, the program flow is extracted through the generation of Control Flow Graph
(CFG) [3], then different strategies are provided to encourage the program to follow it
or eventually detect any violation. The CFG obtains the representation of all possible
paths that could be covered by the code, in which two essential elements are distinguished:
vertices also called basic blocks that are sets of statements, and edges that links two or
more basic blocks by control-flow transfers instruction, such as jumps, calls, returns.

Once defined how execution crosses over the code, software or hardware techniques will
be used to verify the legal flow by comparing the final target address of control-flow transfer
instruction with the licit ones present in the CFG.

After CFI’s digression offered in Chapter 3, the discussion will focus on a hybrid CFI
solution for preserving embedded systems, with the implementation of binary instrumen-
tation process and the monitoring through a reconfigurable hardware.

16

Chapter 3

Control-Flow Integrity: State
of the Art

Procedures adopted to safeguard CFI enables to verify that program execution complies
with the CFG generated before runtime. In the present Chapter, some known CFI im-
plementations, both hardware-based and software-based, are introduced. Moreover, the
Chapter gives a brief introduction to the principal binary instrumentation tools.

3.1 Software-based Solutions
The effectiveness of software-based CFI relies on two components:

1. the extraction of the information about the execution stream through the CFG gen-
eration;

2. the insertion of appropriate instructions at control-flow branches to verify the com-
pliance with the CFG.

The objective is to compare the program’s actual behaviour to a precomputed model to de-
tect any possible deviation. The purely-software CFI methods ensure the correct traversing
of possible contemplates paths extracted from CFG with code or binary instrumentation
enforcement. With the insertion of reliable information into CFG, it is possible to avoid
any corruption of the victim program’s execution flow.

The analysis and instrumentation of binary code can follow two alternatives: static [25]
or dynamic binary instrumentation (DBI) [26] [27], whose dissimilarity resides in process
realisation. The static instrumentation (SBI) (Figure 3.1) modifies the binary project
permanently before its execution, applying alteration directly on the file stored in memory,
while in the dynamic process, the program is monitored during the execution step without
the insertion of any instruction into executable, by analysing one instruction at the time
via an iterative algorithm and adding the instrumented instruction on-the-fly, as shown in
Figure 3.2.

The main advantage of DBI is that it avoids the code relocation problem. Moreover, the
use of a more straightforward approach prevents errors related to disassembly generation

17

Control-Flow Integrity: State of the Art

or binary rewriting. However, runtime analysis requires more execution time, and it is
more resource-consuming than the SBI [28]. In both cases, four steps are distinguished
[29]:

1. Parsing: the key objective is to make the content readable and extract information
about the data and code section by generating disassembly code in the static method
or monitoring the stream one instruction at a time in the dynamic one. This step also
collects details about data structures and code reorganisation, emphasising symbols,
labels, and variables;

2. Analysis: once retrieved the program structure, this action enables to locate instruc-
tion, variables, function and data that can be employed to reconstruct CFG;

3. Transformation: the core task is to find vulnerable points, i.e., control-flow transfer
instruction, and it proceeds with the relative binary instrumentation;

4. Code generation: it generates the final protected executable file.

Figure 3.1: Static binary instrumentation approach.

Code instrumentation enriches CFG with necessary metadata to protect critical instruc-
tion exploited by attackers to perform ROP or JOP attacks. The basic scheme [4] identifies
each indirect call with a pair of unique IDs to identify the branch starting location (the
source) and the destination of it (target). The correctness of execution depends on the
runtime comparison and the verification of these IDs, essential to ensure the integrity. If
there is a matching between the ID stored before the source branch and the ID inserted in
correspondence to the instruction of jump target destination, it means the followed stream

18

3.1 – Software-based Solutions

Figure 3.2: Dynamic binary instrumentation approach.

is legal and compliant with what is described by CFG; otherwise, it has been tampered
with by a potential attack.

The foremost disadvantage is that the CFI software approach often appends a large
amount of code and data structure that penalise execution time and memory occupation,
representing a problem for systems with restricted resources. Control-Flow Locking (CFL)
[30] is an alternative to the classical implementation of binary instrumentation to reduce
defects due to performance overhead. It protects indirect JMP, RET or CALL instructions by
accessing in mutual exclusion, without managing synchronisation primitives. The arbitrary
lock ensures exclusive access to that section until the correspondent unlock value releases
it.

The consecutive access to an occupied section triggers a system violation and suspends
the execution. The final destination contains the corresponding value for unlock, that
allows identifying direct or indirect returns from a function call and, before passing the
control to the next instruction, must reinitialise starting value in such a way that it is
feasible to “lock” the critical section without notifying false mistakes.

Others propose solutions like CFIMon [31], relying on Intel architecture features, and
MoCFI [32], though for ARM architectures instead, which require the operating system’s
mediation. For this reason, it does not apply to bare-metal systems. The code instru-
mentation is reached through an external process that interacts with memory and other
registers.

3.1.1 Binary Instrumentation Tools
Based on advantages and disadvantages of instrumentation techniques, tools have been
developed to analyze the binary, detect changes in the flow and identify memory access,

19

Control-Flow Integrity: State of the Art

following the static or dynamic approach.
Among the most popular, it is undoubtedly Pin [33], a tool by Intel that monitors the

user application’s behaviour while it is running. The binary instrumentation framework
is available for Windows and Linux, but only on Intel platforms, making it unsuitable for
ARM-based embedded systems. Pin provides APIs, called Pintools written in C/C++, to
create its analysis tool. The provided APIs identify two types of events:

• instrumentation routines, that define where to insert the instrumentation;

• analysis routines, that describe the action to be taken when activating it.

There are two implementation modes:

• JIT : it creates a copy of the application and edits Just in time (JIT), thus never
executing the original code;

• Probe: it directly modifies the original by inserting instrumentation instructions,
granting better performance but being more limited.

Pin allows us to run the program, intercept control transfer points, add instructions to
the code via APIs, put the instrumented track in the code cache and then run it.

An example of a static instrumentation toolkit is PEBIL [25], which operates on x86
platforms. The main objective is to create an efficient tool capable of optimizing the
instrumentation insertion times. The process is based on the addition of a jump instruction
at each critical point, which transfers control to the instrumented code. The basic principle
is to save the program status, perform the function to which jump, restore the status and
return the control to the caller.

Dynist [34] represents a middle way between the two possible approaches, since it can
instrument the code before executing it (static instrumentation) or during the execution
(dynamic instrumentation). This strategy is the most efficient of those proposed, as it
gathers the benefits of both methods. It provides APIs for binary analysis, rewriting and
runtime patching. Investigation of CFG, functions and control-flow transfer instructions
is done by static analysis, to reduce execution costs. If it needs to detect runtime cases
due to system events, such as creating a thread, or if the CFG is incomplete (e.g., due to
indirect jumps, calls), dynamic analysis is used to obtain greater precision.

For each basic block, edge, function and loop, it identifies the locations where to put
the security code, called instrumentation points, and instrumentation instructions, called
code snippets, that add information in the CFG. The dynamic phase identifies the accesses
in memory, decoding the operations and addresses that regulate the program flow. In this
step, it can solve the indirect jump instructions and protect the instrumentation points.

3.2 Hardware-based Solutions
Hardware-assisted CFI monitor overcomes performance losses introduced by routines at
the software level. Inspections about the validity of the traversed path face a technical
challenge to limit cost and ensure at the same time security principles.

The processor architecture must be revised to sustain CFI dedicated features necessary
to handle direct access to registers or monitor data flow on the bus, raising the cost for the

20

3.2 – Hardware-based Solutions

hardware component’s addition. In contrast, the solution becomes much faster with the
running checks done in parallel, in a way that the novel module can interact directly with
the processor or pipeline intermediate stage.

3.2.1 Branch Target Encryption
The authors in [35] and [36] provides an adequate defence against ROP e JOP attacks
with a technique based on the encryption of the return address of called function and
the instruction of indirect jump destination, involving a key which is inaccessible to the
adversary. The support of an additional hardware component, inevitable for a fast and
transparent encryption procedure, does not imply the modification of Instruction Set Archi-
tecture (ISA). Indeed, it maintains high performance, applying a satisfactory compromise
between security and costs.

The operating principle consists of encrypting the return address of a function before
executing it and so before pushing it onto the stack. When the RET instruction is performed,
the address is extracted from the top of the stack, it is decrypted, and then the processor
jumps to the obtained address. If the destination has been tampered with, the decryption
output results in an illegal address, leading to exception and arresting the system.

In the case of indirect jumps, instead, a secret key will be used to encrypt critical
instructions that could be compromised to alter the program flow. During the load phase,
the jump destination instructions are encoded, and when they have to be executed at
runtime, they are decoded by using the corresponding secret key. Moreover, in that event,
if the result hijacks the original flow, the error is notified with the consequent execution
stops.

The module responsible for the encode protection is joined by the help of the Physical
Unclonable Function (PUF) [37] or the Advanced Encryption Standard (AES) [38] algo-
rithm. Proposals based on random key generation with PUF are cost-effective, because
introduce fewer delay, but suffer from a cryptographic point of view, because the encode/de-
code procedure is implemented through a single XOR operation. Moreover, they are more
exposed to memory leakage, so the adversary could trace back the key with a careful analy-
sis of plaintext and ciphertext. To partially solve the problem, it could be to useful update
periodically the involved key, making difficult the tracking key operation [36].

The version that uses the AES algorithm increases the delay in the achievement of the
process. However, it is undoubtedly the more secure, as it does not allow the attacker to
decrypt instruction if he does not possess the key.

3.2.2 Shadow Call Stack (SCS)
Shadow Call Stack [39] (SCS) enforcement guarantees system protection only against at-
tacks that overwrite the return address stored onto the stack after call function. The idea
is to create an additional stack, called shadow stack, that is invisible to the programmer
in the user process, and is included in processor architecture, to create secure copies of
the return addresses. The double-stack structure is in fact synchronized, so that at every
function call, the return address is pushed onto the execution stack and then the exact
value is copied onto the secondary stack.

21

Control-Flow Integrity: State of the Art

Unlike what happens in the user process’s stack, the shadow stack only stores the
corresponding return addresses’ value, not to impact memory occupation. At return time,
the execution integrity is verified by comparing the two return addresses through a POP
operation from the top of both stacks to detect a possible violation. If they are inconsistent,
an exception is triggered, otherwise the execution proceeds normally [40] [41] [42].

The hardware support needed to realize a shadow stack may be intrusive, even if not
requiring any instruction set modification. The secondary stack must be in fact placed
somewhere away from the user program memory, otherwise the defense is pointless. Having
it directly inside the processor is the best option, but also the most expensive, as it requires
silicon modifications.

3.2.3 Basic Block Signature Verification
Another way to monitor CFI with low-power consumption has been demonstrated in [43] by
enforcing CFI with primary block signature verification. Here, CFG verification involves
the hash algorithm application, through a dedicate unit closely linked to the processor
[44], or interfaced directly with the processor pipeline [45]. The term basic block defines
a set of sequential statements that do not include any JMP instruction, except for the last
instruction that jumps to the adjacent block in the CFG.

Once encoded, each basic block is inserted as a new entry in a memory segment inac-
cessible to the user process, e.g., in a signature table [43] [46], mapped in the address space
of the target application. During the runtime step, the signature of the current basic block
is produced and compared with the stored one and also the next block in the sequence
must be checked to detect a mismatch for possible control flow alteration or to complete
the process.

The realization of the CFI-cache module [43] [47] bounded to both the memory bus
and the processor allows monitoring the execution stream and keeping track of basic block
information. A supplementary hardware unit follows the instruction flow and compares
the current target address with the pre-computed one and, if the signature violation is
recognized, the system raises the interrupt. Integrity checks are done in parallel with the
program execution, to optimize performance.

3.2.4 Instruction Set Architecture (ISA) Modification
According to CFG information, the extension of the original Instruction Set Architecture
(ISA) could be a valid alternative to enforce CFI policies. The additional instructions
handle the interaction with data structures, registers and labels involved in insecure control-
flow transfer statements. The objective is to force, in a controlled way, the instruction flow
to explore the original path determined by CFG extraction.

In [48], the ISA modification allows protecting return from called function, leaving
exposed to vulnerability the control-flow transfer statements. The completeness is reached
in [49], that provides security features also to calls and indirect jumps, with the assistance
of PUSH and POP instruction, and those for comparing current label with the expected one.
The main drawback is related to runtime overhead and costs introduced by additional
instructions and used data structure stored in memory.

22

Chapter 4

The Investigated Solution:
FPGA-based Control-Flow
Integrity

The present Chapter describes the approach proposed in “A FPGA-based Control-Flow In-
tegrity Solution for Securing Bare-Metal Embedded Systems” [24], a paper of the last year
authored by Prof. Paolo Prinetto and his PhD team here in Politecnico di Torino. The
study provides details about a hybrid CFI technique that combines static binary instru-
mentation with the realization of CFI monitor implemented using a piece of reconfigurable
hardware connected to the processor. This research outlines the starting point for the
python tool development, discussed in Chapter 5.

4.1 Basic Definitions and Edge Classification
Before going into the details, it is essential to provide basic concepts in the context of
Control-flow Integrity. As already anticipated in the previous Chapters, the validity check
of program flow are based on the reconstruction of its structure with the use of two principal
elements:

• Basic block (BB): it defines a set of instructions performed sequentially, as they are
free of flow-transfer instruction, except for the last one that passes the control to a
subsequent basic block.

• Edge: it identifies a link between two basic blocks, expressed by a control-flow trans-
fer instruction, through which the execution moves from a starting basic block, called
source, to the destination one, called target.

Combining these two obtains the maximum expression in the Control-flow Graph, rep-
resenting the source code reorganization in blocks and edges. The instruction ending the
BB allows distinguishing the edge in:

• Forward edge: it binds source BB to the next one inside the same function or to
the first BB of another function;

23

The Investigated Solution: FPGA-based Control-Flow Integrity

• Backward edge: it refers typically to function returns; it transfers the control from
the last BB of a function to the next BB that was in sequence after the one ended
with a CALL instruction.

Moreover, branch statements express target destinations with an encoded label, as in
the direct edge, or with a register content, as in the indirect edge.

During an attack, the goal of the attacker is to subvert the program flow, altering
the code pointer stored in memory or registers. This is possible by exploiting the target
addresses of indirect jumps. In ARM architectures, indirect jumps are identified as the
category of instructions that modifies the Program Counter (PC) content with a non-
constant operand, using a register to indicate the destination, or a value retrieved from
memory sections that are at risk of corruption (Table 4.1).

CFG extraction shows all possible paths starting from the examined binary’s entry-
point. However, it is possible to immediately locate flow deviation only related to direct or
unconditional branches. In presence of indirect edges, finding the destination address is a
non-trivial process. It is necessary to examine the operand involved in the edge instruction,
tracing back its history until its origin, and identify its final target.

The reconstruction of this so-called origin tree (Figure 4.1) consists of following back
all the instruction that contribute to form the branch operand, and that access to memory
or register values, which corruption alters the execution flow to unwanted address. In
embedded system executable, where no external library is linked at runtime, and the
code is all statically present in memory, the process of finding a finite number of possible
destination for each branch is always feasible [24], but the complexity changes with the
increasing number of instruction. The ultimate result will be a tree with a register involved
in branch instruction as root, and all memory accesses location, constant value or value
derived from external input as leaves. This event helps in building the register content,
and insert pieces of information to CFG to assign at each edge all reachable destinations,
protecting its integrity.

The initial assumption states that, in bare-metal systems, the Flash memory stores the
binary file permanently, excluding the opportunity of any modification during the running
phase. So, the code memory can be assumed as incorruptible.

Figure 4.1: ARM code segment and origin tree of the register involved in the indirect jump
[24].

A further division between secure and insecure edge allows overcoming design restric-
tion, by applying binary instrumentation only to branches that are at actual risk of hi-
jacking. An edge is insecure if its branch operand, i.e., the final address value, is the

24

4.1 – Basic Definitions and Edge Classification

Assembler syntax Instruction Description

BL label Branch with link

Branch to label and store the next instruction address
into Link Register (LR). The instruction belongs to
the direct jumps category, but LR could be altered
inside the subroutine, causing an unpredictable
branch

BLX Rm Branch with link and
exchange

Branch to address stored in Rm, set the address of
LR to the next instruction and change the instruction
set to ARM or Thumb state

BX Rm Branch and exchange

Branch by copying the Rm address into the
program counter PC and exchange, if necessary,
the instruction set to ARM or Thumb mode,
determined by the last significant bit (LSB) of Rm

ADD PC, PC, Rm Add without carry Modify PC address adding it the Rm content and
the execution branches to the resulting address

MOV PC, Rm
Move content from
source (Rm) to
destination (PC)

Update PC address with the copy of the Rm content
and the execution branches to the new address

TBB [Rn, Rm] Table branch byte
Branch that use a table of the single-byte offsets to
modify PC address. Rn identifies the pointer to the
table and Rm the index into the table

TBH [Rn, Rm] Table branch halfword The same of TBB instruction but use a table of
halfword offsets

POP PC
LDMIA sp!, reglist

Pop registers from
stack

Pop the address from the stack into PC, bringing
to jump. This is usually used to return from a
subroutine, where LR content is stored before
executing the called function and restored with
a copy into PC before return with one of these
instructions

Table 4.1: Critical jump instruction in ARM language [50].

combination of data coming from the vulnerable memory section, whose contents could be
modified through memory vulnerabilities. This implies that all the direct edges are secure,
since the address is determined a priori. Also, every indirect edge that depends on a value
“never leaving the code” (i.e., always stored in Flash memory or in processor registers,
with no transits in data memory) is secure as well.

The reconstruction of a register’s history as an argument of the branch instruction is
performed by static code analysis. When the program runs, the processor could receive
an interrupt request, triggering the execution of an Interrupt Service Routine (ISR). This
event can happen everywhere in the code, and at any time, with no possibility of forecasting
it. Since it is impossible to know in advance if and when these routines are executed, it is
impossible to automatically include this information in the CFG.

Every time the processor must execute an ISR, it stores in memory the registers and
the current program context, to be restored as soon as the routine ends. Moreover, ISRs

25

The Investigated Solution: FPGA-based Control-Flow Integrity

could contain a vulnerable buffer used to corrupt memory and launch an attack. As a
consequence, ISRs constitute a critical aspect to take into account [51]. First, the defence
mechanism must preserve program state and registers, saving the content at ISR entry
point. Second, the offline analyzer must scan the instructions of the ISR and protect
the critical jumps as in any other function. Finally, before returning the control to the
static code, the execution context must be perfectly restored. The inclusion of specific
instrumentation code before and after the ISR execution ensures that the outgoing program
state has remained consistent with the incoming one.

4.2 Protection Mechanism
Hardware techniques presented so far built their defensive lines directly on the underlying
architecture, with the request of changing the processor design and involving a significant
increase in production costs and system complexity. Instead, the presented mechanism
ensures the same security results, integrating the CFI monitor on reprogrammable hardware
(FPGA) closely connected to the processor. In other words, during the execution, the
FPGA act as a CFI monitor that inspects the firmware flow through specific additions
included in the firmware, and involving the CPU-FPGA interface (Figure 4.2).

The first step is to be done ahead of the execution, and it is about creating an instru-
mented binary version, which secures critical points in the code that, once compromised,
may alter the original flow. The instrumentation process includes single STORE instruc-
tions, aiming to communicate to the FPGA the current position inside the code. Given
an insecure edge, these instructions are inserted before the branch and before the first in-
struction of the destination site. All source-destination pairs are extracted from the CFG,
so they are part of the information that the FPGA has to know in advance. For this, pairs
are encoded into the programming bitstream of the FPGA, that is loaded in the device at
the same time of the CPU Flash programming. In other words, at programming time,

• the CPU is programmed with an instrumented version of the binary firmware, con-
taining additional STORE information, needed to transmit information to the FPGA
at runtime;

• the FPGA is programmed with an architecture able to accept input from the CPU and
verify the compliance of such data with the CFG, whose information are embedded
inside the architecture itself.

At runtime, after the reset of the system, the CPU runs and without the need of
any further intervention, STORE instructions communicate sensitive position to the FPGA
monitor. The monitor detects violations in two main ways:

• when a non-valid destination label is received after a valid one, meaning that the
destination is not to be paired with the source;

• when no label is received after the reception of the source label; this means the flow
has been redirected to a non-instrumented site, which by definition is non-valid.

Whenever a violation is sensed, the FPGA uses a hard fault signal to stop the CPU
activity, or to perform a corrective action depending on preferences.

26

4.2 – Protection Mechanism

Figure 4.2: The CPU-FPGA connection [24].

The implemented strategy includes the offline and the online phase. In the former,
static analysis of the code is performed, with relative binary file instrumentation to defend
its vulnerable edges. The fundamental premise is that it is always possible to establish the
target of direct or indirect edge and preserve the program context during the ISR manage-
ment. To sustain this assumption, it occurs to find all of the possibly vulnerable location
and determine the destination associated with them. For each of these, the CPU sends to
FPGA a unique identifier (ID) of the BB, together with an operational code that identifies
the nature of the value and the action to be performed on the FPGA. Operational codes
are formed depending on the possible cases that may happen, i.e., on the basis of the edge
classification presented by the solution described in [24] (Table 4.2). The inserted STORE
instruction towards the FPGA has the aim of communicating two types of data:

1. a unique ID, equal to the the secure hash of the code location (or, if you want, of the
current basic block, ended with the control-flow transfer);

2. a register content, to be sent to FPGA at entry and exit points of ISRs (for program
context protection).

The found typologies are:

1. Forward insecure edge with a single target: the CPU emits the source BB ID before
branching and then sends the target BB ID at arrival;

2. Backward insecure edge with a single target: same as the previous;

3. Forward insecure edge with multiple targets: as in 1., but applying instrumentation
to all reachable destinations;

4. Backward insecure edge with multiple targets: as in 2., but applying instrumentation
to all reachable destinations;

5. Forward secure edge to a routine ending with a backward insecure edge with multiple
targets: the transfer action does not need protection, because the edge is secure, but
it is essential to ensure that the return address is not modified. This implies that the
CPU transmits to FPGA the BB’s ID to which the routine must come back;

27

The Investigated Solution: FPGA-based Control-Flow Integrity

6. Forward insecure edge to a routine ending with a backward insecure edge with single
target: CPU sends the source BB’s ID before performing the transfer instruction, and
the target BB ID when the previous action is completed, in order to verify the calling
point identity and the legality of the destination;

7. Forward insecure edge to a routine ending with a backward insecure edge with multiple
targets: same as the previous, but instrumenting all possible return locations;

Instead, to preserve the program context, the code sites in which insert protection are:

• The entry point of ISR: before executing interrupt routines, it is essential to store the
register pushed automatically by an ARM processor (i.e., R0, R1, R2, R3, R12, LR, PC,
xPSR) in a dedicated stack into FPGA, by inserting as many STORE instructions as
there are registers. In addition, it follows the same procedure to save in the FPGA
the other registers pushed by the program (other than those pushed automatically);

• The exit point of ISR: after saving registers pushed by programs, before leaving the
ISR and switching the control to static code, it enters in reverse order as many STORE
instructions before the call.

As you may notice, no LOAD operation is performed from the FPGA, but just STOREs. This
is done to ensure maximum of security. The monitor inside the FPGA performs the checks
about the context internally, and interrupts the FPGA if a mismatch is found.

The code entered in the instrumentation procedure for both the edges and program
context protection is shown in Figures 4.6 and 4.5.

After the instrumentation, the elements obtained will be (i) the instrumented firmware
and (ii) the table containing all the source-destination associations for each insecure edge.
In the last offline stage, a secure bootloader is responsible for loading the rewritten binary
version, storing into FPGA the jump table converted in a bitstream. The bootloader also
correctly sets the CPU-FPGA connection, depending on the interface, in such a way to
grant correct communication at runtime.

Figure 4.3: The workflow of protection mechanism [24].

28

4.3 – The FPGA-based CFI Monitor

4.3 The FPGA-based CFI Monitor
In general, the protection mechanism inserts a STORE instruction before forward or back-
ward insecure edges, and, once reached the final target, communicates again the position.
Internally, the FPGA design adopts three distinct data structures to handle different types
of transfer instructions (Figure 4.4):

• a Secure Edge Table to store all of the correlation between the starting label and
the arrival one;

• a Secure ID Stack used as stack for static function calls, to confirm the return to
the exact caller point;

• a Secure Register Stack to manage registers content before and after the ISRs
execution and defend the program state.

A central Control Unit processes the received sensitive information and distinguishes it
based on the opcode received. The procedure allows examining the collected data with
the expected one through a set of hardware comparators. In the presented technique,
the monitor combines the source and destination ID with a XOR operation, and uses the
obtained result to access the Secure Edge Table. To this location, it founds the details
about the specific edge, which uniquely identify it.

In the implementation presented in [24], the communication with the CPU allows the
transfer of:

• a 16-bit data passed on the bus;

• a 6-bit address that defines the opcode.

Table 4.2 shows the meaning of such opcodes.
Following 4.2, data received by FGPA can be of two types:

1. a unique ID that identifies the hash of a position in the code (13 bit);

2. a value representing half of the content of a 32-bit register (16 bit).

In the first case, the 3 top-most bits are left to 0. When received both source and target,
the monitor combines them through simple XOR, resulting in a new 13-bit value. This
value is used to address the internal Secure Edge Table, that is 8192-word large, with a
16-bit word for each entry. Entries are encoded as follows:

• the first 3 bits define the existence and identity of the edge within the CFG (Table
4.3);

• the following 13 bits report the source ID, to univocally get back to any information
about the branch (in fact, this value put in bitwise XOR with the combination, gives
back the target ID).

29

The Investigated Solution: FPGA-based Control-Flow Integrity

Edge Typology Opcode Related Action
Backward insecure edge with single target,
Forward insecure edge with a single target,
Forward insecure edge with multiple targets,
Forward insecure edge to a routine ending
with a backward insecure edge with single
target

0x60000000 The received value is stored pending the arrival of the next one.
In the meantime, the timer is triggered.

Backward insecure edge with single target,
Backward insecure edge with multiple
targets,
Forward insecure edge with multiple targets,
Forward insecure edge with single target,
Forward insecure edge to a routine ending
with a backward insecure edge with single
targets,
Forward insecure edge to a routine ending
with a backward insecure edge with multiple
targets

0x60000002

The value is combined with that previously received at
0x60000000, 0x60000006 or 0x60000008. The result allows
access to the table containing all the edge information. When
FPGA has to check the caller, the data’s identity is verified
with the value on top of the Secure ID Stack. If the timer expires
before something is received, or the combination is not
recognized, or the top stack does not match, an exception is
triggered.

Forward secure edge to a routine ending with
a backward insecure with multiple targets 0x60000004 The value is pushed into the Secure ID Stack.

Backward insecure edge with multiple
targets 0x60000006 The value is stored pending the arrival of the next one. FPGA

checks the caller identity. In the meantime, the timer is activated.
Forward insecure edge to a routine ending
with a backward insecure edge with
multiple targets

0x60000008 The value is stored pending the arrival of the next one. In the
meantime, the timer is activated.

Entry point of ISR 0x6000000A The value is relative to ISR management and so it is pushed into
the Secure Register Stack.

Exit point of ISR 0x6000000C
The data validity is compared and checked with the value on the
top of the Secure Register Stack. If they mismatch, an exception
is triggered.

Table 4.2: Opcode received by FPGA and related action to perform

Header Meaning
000 No edge
100 Valid edge

Table 4.3: Header code used to define the edge existence.

Therefore, if a valid entry is found, the CPU execution is not interrupted and proceeds
normally. Otherwise, the monitor sends an interrupt signal to the CPU to stop the process.
Moreover, if the executed routine can be called at multiple points in the code and then
there are more insecure return points, the FPGA also saves the unique ID of the function’s
endpoint, which corresponds to the instruction immediately following that of the jump
that determines the call. Hence, when it has to go back after performing the function, the
monitor not only examines to return to one of the established return points, but checks to
return to the exact point that made the last call.

The jumps attestation is accompanied by a timer that limits the IDs’ waiting time. As
soon as it receives the source ID, it activates the timer. This is set exactly to the time
taken to perform the edge for that CPU architecture. If the target ID is not sent within the
time, it means that the attacker managed to divert the flow to another code block. In this

30

4.3 – The FPGA-based CFI Monitor

case, the violation is notified with the activation of an interrupt. In order to have all of this
working, the program execution must not be suspended by any other hardware interrupt
between the sending of the source ID and the sending of the destination ID, i.e., during
the branch time. For this reason, the instrumentation code includes an interrupt disable
instruction, placed before performing these STORE operations in order to obtain exclusive
control to send the ID, jump to the destination and transmit the final ID. At destination,
the instrumentation code will end up with a specular instruction re-enabling interrupts.

Another security feature considered in FPGA design is the inability to access this private
resource in any way in the application. To accomplish this constraint, any reference to the
FPGA, such as addresses and control signals, is removed by the instrumentation tool if
found. The only authorised access is the one introduced by the STORE instructions added
by the tool. The abovementioned secure bootloader is the only actor able to configure
the FPGA before the integrity checks. Before ending its activity, the bootloader should
program the MPU to make the access to itself impossible.

Figure 4.4: CFI monitor schema used for protection [24].

31

The Investigated Solution: FPGA-based Control-Flow Integrity

(a) Instrumentation for types 1), 2), 3), 6).

(b) Instrumentation for type 4).

(c) Insturmentation for type 5). (d) Instrumentation for type 7).

Figure 4.5: Instrumentation code based on edge classification.

32

4.3 – The FPGA-based CFI Monitor

Figure 4.6: Instrumentation code for ISRs.

33

34

Chapter 5

Automatic Tool Features

The goal of the thesis is to provide an automatic tool to support the hybrid solution
presented so far. It mainly focuses on realising a Python script that deals with the binary
instrumentation process during the offline phase. The following Chapter presents the
implemented strategy stages, from the disassembly file analysis to instrumentation scheme,
the code organisation, the used data structures and the cooperation with the reverse-
engineering framework Radare2.

5.1 Adopted Strategies
The analysis of the procedures used for control-flow integrity shows that the effectiveness
of the protection mechanisms lies essentially in:

• the extraction of the CFG to establish the correct edges correlation;

• the insertion of the instrumentation code used to protect critical points checked at
runtime.

As explained before, the static analysis accuracy does not allow reconstruction of the
complete CFG. Mainly, it fails to trivially identify the destinations of indirect jumps, and
a more in depth analysis is required. Moreover, it should be taken into account that the
execution of ISRs cannot be foreseen by the CFG as a static code analysis generates this.

The objective of the implemented tool is not only to extract the manifest CFG from the
firmware, but to enrich it with the missing information to identify the target of all reachable
jumps, even indirect ones, and protect the program context during the ISRs, as explained
in [24]. The described features constitute the starting point of the script development,
focusing on realising part of the offline phase, and primarily dealing with the automatic
process of analysis and code instrumentation.

Before going into the details of the solution, it is necessary to point out that the consid-
ered instruction set is the ARM ISA, which is adopted the vast majority of IoT devices on
the market. The challenges faced to accomplish a secure solution applicable to any ARM
microcontroller are mainly related to:

35

Automatic Tool Features

1. the presence of instructions that alter PC value through operations that involve dan-
gerous registers, which content is composed of values coming from memory potentially
corrupted;

2. the lack of proper RET machine instructions: unlike x86 architecture, that ends the
execution of a function with a RET instruction, ARM routines terminate with branch
statements whose final destination depends on the link register (LR) value, like BX LR,
or from the return address loaded from the top of the stack with a POP or load multiple
(LDMIA) instruction, or from branch statements handled by unconditional direct jump;

3. the application of multiple instructions set inside the same binary file: principally,
the instruction can belong to the proper ARM set, with 32-bit instructions, or the
Thumb set, in which most of the instructions are encoded on 16 bits, with few others
on 32 bits.

All these factors form the basis on which each stage of the script has been developed.
Thus, the central aspect to focus on is overcoming the static analysis limitation due to the
call graph’s partial recovery by reconstructing all possible PC-based instruction targets.
The tool implementation outlines 5 stages:

1. Parsing: it examines the file containing the disassembly instructions of all the func-
tions employed in the source code by translating it into an assembly file;

2. Extraction: it outlines the general program stream exploring all the performed
function calls and retrieves the CFG of those functions that include indirect edges;

3. Reconstruction: it is responsible for determining the storing locations where indi-
rect branch operands transited (registers, memory), tracing their history, and there-
fore collecting the instructions that contributed to the value;

4. Recognition: it identifies the edges and classifies them based on specifications;

5. Instrumentation: it applies the instrumentation statements based on the discov-
ered edge typologies.

Figure 5.1: Stages of strategy implementation.

The script activity enjoys the support of the external module r2pipe [52], that handles
the communication with the reverse-engineering framework Radare2 (r2) through pipes.
As mentioned on the Radare2 Github repo [53]:

36

5.2 – Code Analysis

Radare project started as a forensics tool, a scriptable command-line hexadecimal
editor able to open disk files, but later added support for analyzing binaries,
disassembling code, debugging programs, attaching to remote gdb servers...

During the research, the tool has been widely used both through the Cutter 1 version,
offering a graphical interface, and r2pipe 2 for interaction in “quiet mode” directly in the
developed script. The offered API receives as a parameter a string executed as a command
on the r2 console and returns as result strings with information about binary analysis.
The application requires the installation of Radare2 on the system on which the Python
code runs.

Moreover, the script has 2 launch modes. Both of them perform the entire procedure,
receiving as parameter the <disassembly_listing> and the <file_elf>, but the second
one allows to produce a statistic file with the addition of the "-report" flag. The generated
report.txt file includes details about examined files, such as the list of direct function
calls, secure jumps, insecure jumps and their resolution and protection schema applied
during the instrumentation process. More attention will be given to the various steps’
internal structure in the coming Sections, explaining the methodologies and data structures
used.

5.2 Code Analysis
The code structure let to better understand strategies and methods adopted in each stage.
The practical workflow organisation involves the use of three classes: Cfi, BasicBlock and
Protection. The first one, Cfi, is the main class and handles the cooperation with the
others. It contains data structures necessary to store:

• the disassembly code of the file received as input, in a dictionary that has the hex-
adecimal address as key and the corresponding instruction as value;

• the association between the direct jump, identified by a hardcoded label (dictionary
value), and the analogous position in the generated file, recognised by a unique row
(dictionary key);

• the functions traversed starting from the program entry point thought the manifest
direct edges;

• the ISRs routines inside the disassembly file;

• the info about basic blocks recovered by CFG reconstruction, in a dictionary that has
the BB ID as key and the BasicBlock object as value;

• details on insecure edges, such as the address, function name which belongs to, register
involved;

1Cutter, the graphical user interface for Radare2, https://cutter.re/
2r2pipe, module to script Radare2

37

https://cutter.re/

Automatic Tool Features

• the specifications required for the instrumentation process.

Moreover, the Cfi class manages cooperation with the r2pipe module. When the main
creates the Cfi’s instance, the constructor tries to establish the connection to the pipe using
the ELF filename, related to the disassembly input file, as a parameter of the statement
r2pipe.open(ELF_filename). Once completed, the session is created and saved as a class
attribute called anywhere in the code. Before the script terminates the execution, Cfi
closes the connection with the complementary operation r2.quit().

The BasicBlock class is defined as a container of helpful information to reconstruct a
register’s history as an operand of an indirect jump. The essential BB elements are:

• a unique ID, correlated to the line number where the BB is located in the assembly
file;

• the name of the function the BB belongs to;

• the list of the incoming edges;

• the list of the outgoing edges;

• the instructions included in the BB;

• a boolean value to mark as “visited” the BB when traversing it, and as “not visited”
when the search ends. It is helpful to avoid infinite loops during the origin tree
reconstruction.

Other class attributes keep track of the history of the register involved in the jump and
processed by internal methods to derive the final destinations.

The last one is the Protection class, whose attributes are the JSON array received
from the Cfi class and an option attribute that manages a switch case to select the type
of edge for the instrumentation process.

The UML diagram summarizing the class scheme of the tool is in Figure 5.2.

38

5.2 – Code Analysis

Figure 5.2: UML class diagram.

39

Automatic Tool Features

5.2.1 Parsing
The code instrumentation consists of the inclusion of specific statements corresponding
to the critic control-flow transfer instructions. The re-writing binary operation starts
from parsing its disassembly listing (".list" file format), which contains the complete
disassembly of the section ".text" of the firmware. Besides providing readable details
about the binary code, this file also contains the disassembly of common library functions
used, as the linking is of course static. Thus, it is possible to investigate them and protect
against possible attacks derived from memory-corruption vulnerabilities.

Each line of the disassembly file holds 3 parameters: from left to right, it reports the
hexadecimal address, the machine language instruction at that location and finally, the
mnemonic of the instruction (some lines also have a comment as fourth value, generated
automatically). At this stage, the script reads the code listing and converts it into an
assembly file. This step is crucial, as it is more challenging to apply the instrumentation
process in the disassembly file: in fact, each instruction insertion would imply the inclusion
of the hexadecimal address that must be calculated consistently, respecting both the align-
ment and the width of the instruction. To avoid further complications, it works directly
on the assembly file.

The translation step processes each row to extract only the assembly instruction via suit-
able regular expression (regex3). Moreover, the associated hexadecimal address is stored
as a unique key in a dictionary not to lose the connection to these pieces of information
and facilitate its use with direct access.

The regex construction considers instructions on 16 bits and 32 bits inside the same
file. Specifically, regex applied differs for the match with:

• name of the function;

• branch instruction;

• instruction ending with a comment;

• statement on 16 bits or 32 bits.

In most cases, the single goal is to isolate the address and the instruction, while in the
presence of branch instruction, it is also necessary to resolve linked hexadecimal address
thought explicit label generation. All of these operations lead to the creation of assembly
file "out.s", whose text results transformed as in the following examples (Figure 5.3):

3Regular Expression 101, website used to create and test regex, https://regex101.com/

40

https://regex101.com/

5.2 – Code Analysis

080801d4 <frame_dummy>:
80801d4: b508 push {r3, lr}
80801d6: 4b03 ldr r3, [pc, #12] ; (80801e4 <frame_dummy+0x10>)
80801d8: b11b cbz r3, 80801e2 <frame_dummy+0xe>
80801da: 4903 ldr r1, [pc, #12] ; (80801e8 <frame_dummy+0x14>)
80801dc: 4803 ldr r0, [pc, #12] ; (80801ec <frame_dummy+0x18>)
80801de: f3af 8000 nop.w
80801e2: bd08 pop {r3, pc}
80801e4: 00000000 .word 0x00000000
80801e8: 2000ca90 .word 0x2000ca90
80801ec: 0808b714 .word 0x0808b714

(a) Disassembly code fragment.
frame_dummy:

push {r3, lr}
ldr r3, [pc, #12] ; (80801e4 <frame_dummy+0x10>)
cbz r3,lab0_frame_dummy
ldr r1, [pc, #12] ; (80801e8 <frame_dummy+0x14>)
ldr r0, [pc, #12] ; (80801ec <frame_dummy+0x18>)
nop.w

lab0_frame_dummy: pop {r3, pc}
.word 0x00000000
.word 0x2000ca90
.word 0x0808b714

(b) Assembly code fragment.

Figure 5.3: Code listing conversion.

5.2.2 Extraction
The extraction stage represents the core of the script, together with the reconstruction one.
The aim is to track the observed firmware’s general flow starting from the entry point and
traversing the so-called Global Call Graph (GCG). The result is a graph that has (i) the
entry function as root, identified by the entry point address, (ii) the direct call functions as
internal nodes and (iii) the routines that end the execution passing the control to the caller
as leaves. The term “direct calls" only refers to the BL label type instructions, as, after
performing the routine to which jump, they must return the control to the next instruction
after the executed branch statements. Direct calls detected by the unconditional jump are
considered safe because they never return to the caller.

The same procedure is valid for ISRs routines, with the difference that it is not possible
to establish the exact point in which they will be called. The graphic representation of the
GCG is exported in ".png" format if it is chosen to launch the script in report mode.

The GCG extraction allows reducing the number of functions to only parse those that
are performed. A recursive algorithm cross over each routine directly called from the entry
point. This step finds the indirect branch instructions and direct calls to other functions

41

Automatic Tool Features

that constitute the subsequent internal nodes of the graph. The search continues recurring
on the newly-found nodes, until it reaches a function that does not include direct calls.
This last one represents a leaf of the graph, and generally ends with a BX LR instruction,
to return the control to the caller, or ends with an unconditional jump, as shown in Figure
5.4.

Figure 5.4: Global call graph representation.

In compliance with the ARM Architecture Procedure Call Standard (AAPCS) [54], func-
tions can be performed by direct calls with BL instructions or indirect calls with BLX in-
structions. The BL instruction forces the execution of a routine specified by a label, copying
its address in PC and storing into LR the return address, which is equal to the next instruc-
tion in sequence. In the easier case, it passes the control to the called function, performs
the instructions and returns to the caller with BX LR statements. It is possible to state
that BX LR is a secure edge if LR is not modified from the branch to the moment in which
the return address is restored. If LR suffers alteration, it could be tampered with to hijack
the flow anywhere, so it needs protection.

Not all the function calls follow this schema. In other cases, the return address is pushed
onto the stack before branching. If the function requires more than three parameters to
work, the first subroutine instruction will be PUSH or STMDB instructions, involving of a
variable number of registers (R4-R9, R10, R11) and the return address contained in LR.
Before passing to the callee, it restores the register values and writes return address in the
PC.

The BLX instruction defines a forward indirect edge to an address stored in a register
and whose target destination cannot be determined with static analysis. The program
flow can be altered if the register is formed on values from the memory section at risk

42

5.2 – Code Analysis

of corruption. In general, the adversary exploits the instructions with PC as the final
destination by updating the address with a constant value, received input or data coming
from memory to hijack the execution to unpredictable locations. It is necessary to recover
the “origin tree” of the register involved in the indirect edge to determine all the reachable
targets.

Once found all the indirect jumps, the tool proceeds with the CFG generation, only
for the functions that include the branch, in such a way to provide with helpful data
structure the algorithm responsible for tracking history and limit the operation only to
passed function. The recovery operation identifies the BB chain that forms the function,
saving for each BB (i) a unique ID, (ii) the list of incoming and outgoing edge and (iii) the
instructions. All of these connection between BBs determine the CFG for each function
(Figure 5.5).

The general idea is to extract CFG “on-demand”, so the tool does not create it for
all functions in the file, but only for those that must be processed for the production of
the origin tree. Thus, it begins to trace the history, parsing the function’s instruction
containing the insecure edge, and “demand” the CFG for the caller function only if the
end condition is not reached. In this way, it avoids instantiating BB objects that will never
be passed as not involved in the origin tree.

Consequently, the current step and the reconstruction one are strictly dependent, which
increases the algorithm complexity. However, the adopted strategy is more convenient than
performing the extraction for all the functions related to memory occupation and execution
times.

Figure 5.5: Chain of BBs obtained from CFG’s reconstruction.

43

Automatic Tool Features

5.2.3 Reconstruction
The reconstruction of the origin tree follows the theory illustrated in the previous Chapter.
First, the script analyzes the indirect jump instruction to locate the register whose content
is of interest. It traces back its history until it reaches all the locations of memory or con-
stants that make up the result. If the resulting address is constructed from a code memory
address, it is not considered insecure, since the code memory is assumed as incorruptible,
while if the final address belongs to the data section, it is considered potentially insecure
and it needs protection. The main branch typologies found in firmware disassembly are:

• BLX Rm;

• BX LR (if LR is involved in others operation before return to its caller);

• TBB[PC, Rm] or TBH[PC, Rm];

• LDR.W PC,[Rn, Rm, LSL #imm];

The last two instructions usually translate the switch-case statements. In TBB or TBH,
it copies directly to PC the value of the register and can get all the destinations through
R2, as they are all as the outcoming edge of the BB that contains the only TBB statement.
While in the case of LDR, the value of PC is formed by Rn’s address pointing to a table to
which is added Rm, representing the offset. Then it needs to find the values of these two
registers to reconstruct the value of PC. The alternative is to recover only the value of Rn,
which is the starting address of the table and identifies all those contained in it as possible
values. This choice is made because the offset Rm, LSL #imm indicates that the function
is within a loop, and as Rm changes, it is possible to have access to several addresses in the
table, if not all.

In other cases, the tracking process depends on the complexity of the code. The task
is executed by a recursive algorithm that starts from the jump instruction and goes back
to the previous BBs checking the incoming edges, looking for the first instruction that
uses that register to save the result. The crossed blocks are marked as visited until the
exploration ends, to avoid infinite loops during the process. The instruction is saved in a
list that is defined as an attribute of class BB. Before proceeding, it updates the register
to be searched using an operand to produce the current instruction result.

The analysis studies the different ARM instructions encountered, from arithmetic to
logical operations, move, load and store operations. If the jump depends on a register
whose value is loaded from the stack via Stack Pointer (SP), the tool must keep track of
all the operations in which SP is involved, i.e., PUSH-like and POP-like instructions, to know
the location to which SP points and recover its contents. In that case, the register to look
at is the one pointed by SP, and the reconstruction operations consider how it is increased
or decremented according to the PUSH/POP encountered.

The search continues within the current BB until all instructions have been read and
then resumes its path to the previous BB. The access happens directly considering that the
current BB’s incoming edge coincides with the previous BB’s ID. Once the BB is changed,
the same considerations are repeated with every recursive call until the termination condi-
tion is reached, generally expressed by LDR Rm, [PC, #imm]. This format is used to load
in Rm a constant value stored in the .text section, whose position is relative to the current

44

5.2 – Code Analysis

PC. Therefore, it is the starting point for recover the final register value to which jump by
following the flow of found history instructions.

If the termination condition is not found in the BB of the function that contains the
jump, as mentioned before, it is necessary to generate the CFG of the caller function. Then,
it resumes the search from the jump instruction and follows the path defined backwards.
For simplicity, we have defined a limit of requests of the CFG to a maximum of 2, after
which the script raises the alarm. Otherwise, it becomes too complicated to reconstruct
history. In general, the source tree’s complexity is closely related to the complexity of the
firmware code written by the programmer. The extraction and reconstruction procedure is
summarized in Figure 5.6.

Thus, the tool processes the history in reverse order. The BB method reads every state-
ment in the history list, isolates operands, and “emulates” the ARM statement, saving the
final record at the registry used to contain the result. If there are LDR or STR instructions,
the method interacts with a copy of the data map to recover the indicated location or store
the value that could be accessed later.

If the termination condition points to a code memory address, it is unnecessary to
continue to process the other instruction because it brings a secure position in the code.
While if it leads to a data memory address, the script must recover all the achievable
destinations.

5.2.4 Recognition
After identifying all the target destinations, it is necessary to classify each edge depending
on defined typologies. The mechanism follows the GCG as initially, but this time the flow
contains additional information recovered from indirect jump resolution. For each critical
edge encountered, the tool creates a JSON element that includes, as fields, edge type, label,
the position of the source instruction and the related target instruction of the branch.

5.2.5 Instrumentation
The last step is the instrumentation process applied to assembly statements obtained in the
first stage. The additional instructions are inserted by parsing the JSON array previously
created. The “type” value constitute a filter for choosing the appropriate instrumentation
code based on edge classification, as shown in Figure 4.5 and 4.6.

45

Automatic Tool Features

Figure 5.6: Flowchart of Extraction and Reconstruction procedure.

46

Chapter 6

Experimental Results

The present Chapter offer some results extracted from the performance analysis of the
Python tool. The division in 5 stages of the entire procedure allows isolating and studying
each of these singularly to estimate the applied algorithm’s efficiency.

The Python tool Radon1 evaluates the code complexity by:

• Cyclomatic complexity: it corresponds to the number of decision blocks that determine
the number of linearly independent paths and assigns a rank from A simple block to
F very complex block;

• Raw metrics: it gives details about the total number of lines of code (LOC) and logic
lines of code (LLOC);

Table 6.1 collects the main value of these metrics for each class to have a general
overview. The main class Cfi has greater average complexity than the other two. Rank
C, which means “slightly complex blocks”, is attributed to the fact that more complex
methods can be found there. In particular, the dependence is more significant in those
dealing with the CFG’s extraction and the reconstruction of the jump origin tree. The
presence of numerous decision blocks used to find the proper instruction processed, derive
the register on which to make the next recursive call, and verify the termination condition,
dramatically increases the method’s complexity, but is unavoidable for collecting the right
instructions.

Class N. Blocks LOC LLOC Avg. Complexity
Cfi 17 1047 920 C
BasicBlock 27 433 401 A
Protection 9 150 64 A

Table 6.1: Code analysis.

1Radon’s documentation, https://radon.readthedocs.io/en/latest/

47

https://radon.readthedocs.io/en/latest/

Experimental Results

Besides, the reconstruction phase is closely linked to the extraction phase of CFG. The
method examines all the instructions included in its path, going back until it reaches the
root. In the best case, the termination condition is within the function. Therefore, the set
of instructions and the process of reconstruction of the final value can be obtained quickly.
In the worst case, it will demand the extraction of the caller’s CFG, and it will have to
repeat the whole procedure.

All this strongly depends on the firmware code structure and how the calls to the
other functions are defined in the firmware source code. If the code is linear enough, the
disassembly will hardly contain indirect jump instructions to be solved. For example, if in
the main() function, the programmer handles calls to other functions within a switch-case
statement, this will be automatically translated through an indirect jump instruction access
to the jump table.

Another costly operation in terms of execution times (but not complex at the code
structure level) is the parsing step. At this stage, the script must read all the file lines,
filter the data, and rewrite it into another file. The use of appropriate regex simplifies
finding instructions in each row, but the resolution of addresses through labels at the jumps
adds additional costs. The execution time of the stage, in general, undoubtedly depends
on the number of lines to process.

The other classes, BasicBlock and Protection, are instead composed of effortless
methods concerning the activities they perform. For example, the instrumentation process
reads the information obtained from the previous step and inserts the correct instructions
based on the jumps’ classification by making direct access to the position where it goes to
perform the writing operation.

The script validity has been demonstrated by testing different benchmarks and compar-
ing the obtained results (Table 6). These benchmarks have been chosen from the MiBench
online library 2, which provides common benchmarking programs to test embedded sys-
tems’ performance. The Table reports the number of instructions composing the binary
of the firmware after compilation and with no protection, the execution times of each of
the tool steps (in seconds), the number of direct calls and of insecure edges found, and the
final number of machine instruction after the application of the protection.

2http://vhosts.eecs.umich.edu/mibench//

48

http://vhosts.eecs.umich.edu/mibench//

Experimental Results

Benchmark Instr. (no prot.) Parsing (s) Direct Call Extraction (s) Insec. Edge
BITCOUNT 20554 9.0035167 177 6.1345312 11
DIJKSTRA 20529 8.3118812 186 7.2268513 11
SHA 13663 7.6490014 127 4.6812931 14
RIJNDAEL 25685 9.7907316 197 13.937783 11
CRC 20320 8.3461010 178 6.3364535 10
STRING 12960 7.2736033 127 4.4640792 14

Benchmark Reconstruction (s) Recognition (s) Instrumentation (s) Instr. (prot.)
BITCOUNT 2.0416360 0.9700785 0.1179562 21366
DIJKSTRA 1.9285040 0.9283237 0.0988015 21327
SHA 1.5535502 0.2436774 0.1224835 13959
RIJNDAEL 2.4204537 1.0149302 0.1239938 26494
CRC 1.8562357 0.8226949 0.0969530 21042
STRING 1.5635721 0.1432315 0.0667889 13217

Table 6.2: Experimental results.

Benchmark’s instrumentation process was lanched 100 times for each program to derive
more accurate average values. Note that, for instance, the parsing phase’s execution time
grows linearly with the number of input file instructions, as well as the increase of direct
calls also raises the extraction time mostly related to the determination of GCG, obtained
through a recursive algorithm. This trend relies on the number of functions created and
used by the programmer, plus the library functions invoked. Instead, recognition and
instrumentation operations are among the simplest in code structure, and execution times
are almost negligible compared to those at other stages.

The Python library memory_profiler3 allows obtaining further analysis by monitoring
the process line by line and outlines how the various methods’ memory profile varies. The
result is shown in a plot to highlight the points where there is greater use of memory.
For simplicity, the profile examined is an extract of the overall result (Figure 6.1), as they
are the operations to require more memory. The initial curve grows in correspondence
with the increase of the extracted instructions from the disassembly and memorized in
the dictionary; then, it has an almost constant track during the analysis of the GCG, and
the BB’s extraction of the functions contain the indirect jumps. The peaks, instead, are
in correspondence with the examination of the BB and the paths’ reconstruction. The
part repeated after the dotted line is related to the request of extraction of the CFG of
the calling function and its reconstruction, which, as we see, has the same trend as the
previous phase.

3Memory Profiler Github page, https://github.com/pythonprofilers/memory_profiler

49

https://github.com/pythonprofilers/memory_profiler

Experimental Results

Figure 6.1: Plot of memory profiler.

50

Chapter 7

Conclusions and future works

This thesis aims to provide an automatic Python tool capable of extracting the CFG for
those functions containing control-flow transfer instruction and instrumenting the pro-
gram’s binary code to safeguard its activity from memory corruption vulnerabilities. The
paper “A FPGA-based Control-Flow Integrity Solution for Securing Bare-Metal Embed-
ded Systems” [24], published by Prof. Paolo Prinetto and his PhD team at Politecnico
di Torino, constitute the starting point of the script development. The research focuses
on realising part of the offline phase of a hybrid CFI technique for protecting embedded
system, which merges static binary instrumentation with the realisation of a CFI monitor
summarised in FPGA.

The objective of the implemented tool is not only to extract the manifest CFG from the
firmware, but to enrich it with the missing information, derived from static binary analysis,
to identify the target of all reachable jumps, even indirect ones, and protect the program
context during the ISRs. The protection mechanism is implemented at the binary level
for ARM-based architecture and so suitable for the vast majority of IoT devices on the
market.

Starting from the disassembly code analysis, the tool reconstructs the CFG for those
function that contains insecure control-flow transfers, i.e., those whose final location de-
pends on a value that has even partially transited through areas of memory at risk of
corruption. Compared with others’ solution, the developed script offers a strategy for
finding the indirect edges’ target. Implementing a recursive algorithm allows tracing the
origin path of the involved register to estimate all the valid destination target addresses.
According to edge classification, once source-destination pairs have been identified, the en-
forcement proceeds with the instruction-level instrumentation on assembly representation.

The study proves that it is always possible to reconstruct the origin tree of a jump to
identify the memory locations that make up the destination address. The results extracted
from the Python tool performance analysis show that the average complexity is mainly
related to the fact that there are methods more elaborated than others. While some
of these are composed of effortless methods concerning their activities, like recognition
and instrumentation phases, others functions are strictly conditioned by other methods’
activity. In particular, the dependence is more significant in those dealing with the CFG’s
extraction and the reconstruction of the jump’s origin tree. So, execution time and memory
consumption rely on the depth of the origin tree. If the register’s history involved in a

51

Conclusions and future works

branch is related to few instructions, the final target destination can be obtained quickly.
Otherwise, it requires a further CFG extraction to achieve the desired outcome.

Thus, the realisation of the entire procedure, the execution time, and the memory use
strongly depend on the complexity of the programmer’s code, the library functions used
and how the disassembly code translates the program instructions. The use of Python
allows building a robust, flexible and portable application. Besides, it offers the ability
to take advantage of external modules, such as r2pipe, to interact with the Radare2
reverse-Engineering framework and analyse the firmware binary in simple steps. The main
disadvantage is that Python uses large amounts of memory for application implementation,
but it is a good trade-off compared to other programming languages’ performance.

The tool is tested on different benchmarks with positive results, but improvements
are expected in the future. First, it is worth to optimise the most complex methods to
improve performance for the running time and the memory used. Moreover, the process
that operates on the origin tree data must be extended to all possible ARM instructions,
as the tool now identifies just a reduced set composed by the most common instructions
and emulates the operation to find the final result. For example, the set should include all
the logic operation and all the arithmetical ones that work with flags, even if this kind of
statements are hardly ever involved in the branch origin tree.

52

Acknowledgements

I would like to thank Professor Paolo Prinetto for giving me the great opportunity to
work on this thesis. Infinite gratitude goes to Gianluca Roascio and Nicolò Maunero for
having guided and encouraged me with patience in developing the project and the final
elaboration, and for having always been super professional and helpful.

A special thanks go to all the people who have joined me on this troubled but satisfying
journey. Thanks to all the family and my fantastic parents for the endless love and support.
I would like to thank Angela, Elena, Gaia and Marina for always making me feel at home
and having shared joys and desperation on alternate days. Thanks to my boyfriend, Luigi,
for always being there and not making me lose (entirely) mental health. I also thank my
little Lucio for the study breaks and for the affection shown despite the distance.

Without you there, this adventure would not have been the same.

53

54

Bibliography

[1] A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Srivastava, J. Koo, S. Bagchi,
and M. Payer. «Protecting bare-metal embedded systems with privilege overlays».
In: 2017 IEEE Symposium on Security and Privacy (SP). IEEE. 2017, pp. 289–303.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. «Control-flow integrity princi-
ples, implementations, and applications». In: ACM Transactions on Information and
System Security (TISSEC) 13.1 (2009), pp. 1–40.

[3] K. S. Kumar and D. Malathi. «A Novel Method to Find Time Complexity of an Algo-
rithm by Using Control Flow Graph». In: 2017 International Conference on Technical
Advancements in Computers and Communications (ICTACC). 2017, pp. 66–68. doi:
10.1109/ICTACC.2017.26.

[4] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. «Control-flow integrity». In:
Proceedings of the 12th ACM conference on Computer and communications security.
ACM. 2005, pp. 340–353.

[5] CWE-401: Missing Release of Memory after Effective Lifetime. https://cwe.mitre.
org/data/definitions/401.html. [Online; accessed 03-March-2020]. 2020.

[6] CWE-416: Use After Free. https://cwe.mitre.org/data/definitions/416.html.
[Online; accessed 03-March-2020]. 2019.

[7] CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer.
https://cwe.mitre.org/data/definitions/119.html. [Online; accessed 28-
October-2019]. 2019.

[8] H. Shacham, M. Page, B. Pfaff, EJ. Goh, N. Modadugu, and D. Boneh. «On the
effectiveness of address-space randomization». In: Proceedings of the 11th ACM con-
ference on Computer and communications security. 2004, pp. 298–307.

[9] C. Cowan, S. Beattie, RF. Day, C. Pu, P. Wagle, and E. Walthinsen. «Protecting
systems from stack smashing attacks with StackGuard». In: Linux Expo. 1999.

[10] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. «Buffer overflows: Attacks and
defenses for the vulnerability of the decade». In: Proceedings DARPA Information
Survivability Conference and Exposition. DISCEX’00. Vol. 2. IEEE. 2000, pp. 119–
129.

[11] The Heartbleed Bug. https://heartbleed.com/. [Online; accessed 03-March-2020].
2020.

55

https://doi.org/10.1109/ICTACC.2017.26
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/119.html
https://heartbleed.com/

BIBLIOGRAPHY

[12] A. One. «Smashing the stack for fun and profit». In: Phrack magazine 7.49 (1996),
pp. 14–16.

[13] Microsoft Support. A detailed description of the Data Execution Prevention (DEP).
https://support.microsoft.com/en-us/help/875352/a-detailed-description-
of- the- data- execution- prevention- dep- feature- in. [Online; accessed 05-
March-2020].

[14] PaX Team. PaX Non-Executable Pages Design and Implementation. https://pax.
grsecurity.net/docs/noexec.txt. [Online; accessed 05-March-2020]. 2003.

[15] O. Stecklina, P. Langendörfer, and H. Menzel. «Design of a tailor-made memory
protection unit for low power microcontrollers». In: 2013 8th IEEE International
Symposium on Industrial Embedded Systems (SIES). IEEE. 2013, pp. 225–231.

[16] Getting around non-executable stack (and fix). https://seclists.org/bugtraq/
1997/Aug/63. [Online; accessed 05-March-2020]. 1997.

[17] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. «Jump-oriented programming:
a new class of code-reuse attack». In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security. ACM. 2011, pp. 30–40.

[18] H. Shacham et al. «The geometry of innocent flesh on the bone: return-into-libc
without function calls (on the x86).» In: ACM conference on Computer and commu-
nications security. New York. 2007, pp. 552–561.

[19] A. Sadeghi, S. Niksefat, and M. Rostamipour. «Pure-Call Oriented Programming
(PCOP): chaining the gadgets using call instructions». In: Journal of Computer
Virology and Hacking Techniques 14.2 (2018), pp. 139–156. issn: 2263-8733. doi:
10.1007/s11416-017-0299-1. url: https://doi.org/10.1007/s11416-017-
0299-1.

[20] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. Sadeghi, and T. Holz. «Counterfeit
Object-oriented Programming: On the Difficulty of Preventing Code Reuse Attacks
in C++ Applications». In: 2015 IEEE Symposium on Security and Privacy. 2015,
pp. 745–762. doi: 10.1109/SP.2015.51.

[21] Y. Guo, L. Chen, and G. Shi. «Function-Oriented Programming: A New Class of Code
Reuse Attack in C Applications». In: 2018 IEEE Conference on Communications and
Network Security (CNS). 2018, pp. 1–9. doi: 10.1109/CNS.2018.8433189.

[22] L. Deng and Q. Zeng. «Exception-oriented programming: retrofitting code-reuse
attacks to construct kernel malware». In: IET Information Security 10.6 (2016),
pp. 418–424.

[23] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. «Return-oriented program-
ming: Systems, languages, and applications». In: ACM Transactions on Information
and System Security (TISSEC) 15.1 (2012), p. 2.

[24] N. Maunero, P. Prinetto, G. Roascio, and A. Varriale. «A FPGA-based Control-Flow
Integrity Solution for Securing Bare-Metal Embedded Systems». In: 2020 15th Design
& Technology of Integrated Systems in Nanoscale Era (DTIS). IEEE. 2020, pp. 1–10.

[25] MA. Laurenzano, MM. Tikir, L. Carrington, and A. Snavely. «Pebil: Efficient static
binary instrumentation for linux». In: 2010 IEEE International Symposium on Per-
formance Analysis of Systems & Software (ISPASS). IEEE. 2010, pp. 175–183.

56

https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://pax.grsecurity.net/docs/noexec.txt
https://pax.grsecurity.net/docs/noexec.txt
https://seclists.org/bugtraq/1997/Aug/63
https://seclists.org/bugtraq/1997/Aug/63
https://doi.org/10.1007/s11416-017-0299-1
https://doi.org/10.1007/s11416-017-0299-1
https://doi.org/10.1007/s11416-017-0299-1
https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1109/CNS.2018.8433189

BIBLIOGRAPHY

[26] Z. Huang, T. Zheng, Y. Shi, and A. Li. «A dynamic detection method against
ROP and JOP». In: 2012 International Conference on Systems and Informatics (IC-
SAI2012). 2012, pp. 1072–1077. doi: 10.1109/ICSAI.2012.6223219.

[27] Z. J. Huang, T. Zheng, and J. Liu. «A dynamic detective method against ROP attack
on ARM platform». In: 2012 Second International Workshop on Software Engineering
for Embedded Systems (SEES). 2012, pp. 51–57. doi: 10.1109/SEES.2012.6225491.

[28] D. Andriesse. Practical Binary Analysis: Build Your Own Linux Tools for Binary
Instrumentation, Analysis, and Disassembly. no starch press, 2018, pp. 224–263.

[29] M. Wenzl, G. Merzdovnik, J. Ullrich, and E. Weippl. «From hack to elaborate tech-
nique—a survey on binary rewriting». In: ACM Computing Surveys (CSUR) 52.3
(2019), pp. 1–37.

[30] T. Bletsch, X. Jiang, and V. Freeh. «Mitigating code-reuse attacks with control-
flow locking». In: Proceedings of the 27th Annual Computer Security Applications
Conference. ACM. 2011, pp. 353–362.

[31] Y. Xia, Y. Liu, H. Chen, and B. Zang. «CFIMon: Detecting violation of control flow
integrity using performance counters». In: IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2012). 2012, pp. 1–12. doi: 10.1109/DSN.
2012.6263958.

[32] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund, S. Nürnberger, and
A.R. Sadeghi. «MoCFI: A Framework to Mitigate Control-Flow Attacks on Smart-
phones.» In: NDSS. Vol. 26. 2012, pp. 27–40.

[33] M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. Hazelwood, A. Jaleel,
C. Luk, G. Lyons, H. Patil, et al. «Analyzing parallel programs with pin». In: Com-
puter 43.3 (2010), pp. 34–41.

[34] AR. Bernat and BP. Miller. «Anywhere, any-time binary instrumentation». In: Pro-
ceedings of the 10th ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools. 2011, pp. 9–16.

[35] Y. Li, Z. Dai, and J. Li. «A Control Flow Integrity Checking Technique Based on
Hardware Support». In: 2018 IEEE 3rd Advanced Information Technology, Electronic
and Automation Control Conference (IAEAC). 2018, pp. 2617–2621. doi: 10.1109/
IAEAC.2018.8577547.

[36] P. Qiu, Y. Lyu, J. Zhang, D. Wang, and G. Qu. «Control Flow Integrity Based on
Lightweight Encryption Architecture». In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 37.7 (2018), pp. 1358–1369. doi: 10.1109/
TCAD.2017.2748000.

[37] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas. «Silicon physical random func-
tions». In: Proceedings of the 9th ACM conference on Computer and communications
security. ACM. 2002, pp. 148–160.

[38] J. Daemen and V. Rijmen. «AES proposal: Rijndael». In: (1999).
[39] H. Ozdoganoglu, CE. Brodley, TN. Vijaykumar, and BA. Kuperman. «Smashguard:

A hardware solution to prevent attacks on the function return address». In: Technical
Report (2000).

57

https://doi.org/10.1109/ICSAI.2012.6223219
https://doi.org/10.1109/SEES.2012.6225491
https://doi.org/10.1109/DSN.2012.6263958
https://doi.org/10.1109/DSN.2012.6263958
https://doi.org/10.1109/IAEAC.2018.8577547
https://doi.org/10.1109/IAEAC.2018.8577547
https://doi.org/10.1109/TCAD.2017.2748000
https://doi.org/10.1109/TCAD.2017.2748000

BIBLIOGRAPHY

[40] C. Bresch, A. Michelet, L. Amato, T. Meyer, and D. Hely. «A red team blue team
approach towards a secure processor design with hardware shadow stack». In: 2017
IEEE 2nd International Verification and Security Workshop (IVSW). 2017, pp. 57–
62. doi: 10.1109/IVSW.2017.8031545.

[41] C. Bresch, D. Hély, A. Papadimitriou, A. Michelet-Gignoux, L. Amato, and T. Meyer.
«Stack Redundancy to Thwart Return Oriented Programming in Embedded Sys-
tems». In: IEEE Embedded Systems Letters 10.3 (2018), pp. 87–90. issn: 1943-0663.
doi: 10.1109/LES.2018.2819983.

[42] A. Francillon, D. Perito, and C. Castelluccia. «Defending embedded systems against
control flow attacks». In: Proceedings of the first ACM workshop on Secure execution
of untrusted code. ACM. 2009, pp. 19–26.

[43] A. Chaudhari and J. A. Abraham. «Effective Control Flow Integrity Checks for Intru-
sion Detection». In: 2018 IEEE 24th International Symposium on On-Line Testing
And Robust System Design (IOLTS). 2018, pp. 1–6. doi: 10.1109/IOLTS.2018.
8474130.

[44] W. Wang, M. Liu, P. Du, Z. Zhao, Y. Tian, Q. Hao, and X. Wang. «An Architectural-
Enhanced Secure Embedded System with a Novel Hybrid Search Scheme». In: 2017
International Conference on Software Security and Assurance (ICSSA). 2017, pp. 116–
120. doi: 10.1109/ICSSA.2017.14.

[45] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl, N. Asokan, and
A. Sadeghi. «LO-FAT: Low-Overhead control Flow ATtestation in hardware». In:
2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC). 2017, pp. 1–6.
doi: 10.1145/3061639.3062276.

[46] M. Milenković, A. Milenković, and E. Jovanov. «A framework for trusted instruction
execution via basic block signature verification». In: Proceedings of the 42nd annual
Southeast regional conference. 2004, pp. 191–196.

[47] J. Danger, A. Facon, S. Guilley, K. Heydemann, U. Kühne, A. Si Merabet, and M.
Timbert. «CCFI-Cache: A Transparent and Flexible Hardware Protection for Code
and Control-Flow Integrity». In: 2018 21st Euromicro Conference on Digital System
Design (DSD). 2018, pp. 529–536. doi: 10.1109/DSD.2018.00093.

[48] L. Davi, M. Hanreich, D. Paul, A.R. Sadeghi, P. Koeberl, D. Sullivan, O. Arias, and
Y. Jin. «HAFIX: hardware-assisted flow integrity extension». In: Proceedings of the
52nd Annual Design Automation Conference. ACM. 2015, p. 74.

[49] N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis. «Hcfi: Hardware-
enforced control-flow integrity». In: Proceedings of the Sixth ACM Conference on Data
and Application Security and Privacy. ACM. 2016, pp. 38–49.

[50] J. Yiu. The definitive guide to the ARM Cortex-M3. Newnes, 2009.
[51] N. Maunero, P. Prinetto, and G. Roascio. «CFI: Control Flow Integrity or Control

Flow Interruption?» In: 2019 IEEE East-West Design Test Symposium (EWDTS).
2019, pp. 1–6. doi: 10.1109/EWDTS.2019.8884464.

[52] Radare2 Team. Radare2 r2pipe GitHub repository. https://github.com/radareorg/
radare2-r2pipe. 2017.

58

https://doi.org/10.1109/IVSW.2017.8031545
https://doi.org/10.1109/LES.2018.2819983
https://doi.org/10.1109/IOLTS.2018.8474130
https://doi.org/10.1109/IOLTS.2018.8474130
https://doi.org/10.1109/ICSSA.2017.14
https://doi.org/10.1145/3061639.3062276
https://doi.org/10.1109/DSD.2018.00093
https://doi.org/10.1109/EWDTS.2019.8884464
https://github.com/radareorg/radare2-r2pipe
https://github.com/radareorg/radare2-r2pipe

BIBLIOGRAPHY

[53] Radare2 Team. Radare2 GitHub repository. https://github.com/radare/radare2.
2017.

[54] ARM Limited. Procedure call standard for the ARM architecture. http://infocenter.
arm.com/help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf. 2009.

59

https://github.com/radare/radare2
 http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf
 http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf

	Introduction
	Background
	Embedded Software Security
	Buffer Overflow
	Code Injection Attacks
	Memory Protection

	Code-Reuse Attack (CRA)
	Return-Oriented Programming (ROP)
	Variants of ROP

	Mitigation and Countermeasures
	Address Space Layout Randomization (ASLR)
	Stack Canaries
	Control-Flow Integrity (CFI)

	Control-Flow Integrity: State of the Art
	Software-based Solutions
	Binary Instrumentation Tools

	Hardware-based Solutions
	Branch Target Encryption
	Shadow Call Stack (SCS)
	Basic Block Signature Verification
	Instruction Set Architecture (ISA) Modification

	The Investigated Solution: FPGA-based Control-Flow Integrity
	Basic Definitions and Edge Classification
	Protection Mechanism
	The FPGA-based CFI Monitor

	Automatic Tool Features
	Adopted Strategies
	Code Analysis
	Parsing
	Extraction
	Reconstruction
	Recognition
	Instrumentation

	Experimental Results
	Conclusions and future works
	Bibliography

