
POLITECNICO DI TORINO
Master degree course in Computer Engineering

Master Degree Thesis

Predicting Deep Reinforcement
Learning agents learning time for
video game playing: a data-driven

approach

Supervisors
prof. Paolo Giaccone
prof. Andrea Bianco

Candidate
Alessandro Lovaldi

Academic Year 2020-2021



Acknowledgements

Vorrei ringraziare con tutto il mio cuore la mia famiglia che mi ha sempre supportato
durante la mia carriera scolastica. In particolare voglio ringraziare la mia mamma
e il mio papà, Elena e Roberto, senza i quali non avrei avuto al fortuna di poter
spendere la mia gioventù solamente preoccupandomi dello studio.
Voglio anche ringraziare i miei amici che evito di elencare per evitare di dimenticare
qualcuno. Gli ringrazio per avermi sempre spinto a dare del mio meglio.
Infine voglio ringraziare coloro che mi hanno aiutato a completare questo lavoro;
i mei supervisori Paolo Giaccone, Andrea Bianco e German Sviridov. Loro mi
hanno seguito passo dopo passo nei mesi necessari per la relalizzazione di questa
tesi, aiutandomi con le loro idee e consigli a potarla a termine nei miglior modo
possibile.

2



Abstract

In the last few decades, machine learning has made massive progress. This progress
has made machine learning useful in a wide range of studies. One of the flourishing
research filed is the one that applies machine learning to gaming. Countless rein-
forcement learning models have been created for a wide range of game genres.
Many studies and applications make use of AI agents trained with one of those
models. As an example, the work the inspired this thesis proposes to use an AI
agent to assess the Quality of Experience in cloud gaming services. Training an
agent from zero has some inconveniences. One of the problems is the high variance
of the duration of the training phase. This variance is due to many factors. The
main ones are the reinforcement learning model selected, the hardware used to run
the training, and the complexity of the game.
The goal of this thesis is to identify which characteristics make a game complex
to be learned by an AI agent and how this complexity affects the time of learning.
More precisely, we have studied if it is possible to predict how long it takes for a
selected model to learn a game. This prediction is based solely on the game features.
For our research, the games selected are Atari games and the model selected is
Double DQN. DDQN is a deep reinforcement learning algorithm able to play at a
superhuman level Atari games.
We have achieved our goal by modifying an existing DDQN model to gathered data
from tens of Atari games during the training phase. The data collected describe
two main aspects of the game: the shape of the reward signals and the visual
component. The shape of the rewards is a key aspect of reinforcement learning.
Reward frequency and magnitude can heavily influence the model performance. The
visual component is considered because the DDQN uses as input the frame’s pixels.
We then used unsupervised machine learning techniques, like linear regression anal-
ysis, to research the correlation between the game characteristics and the training
duration.



Contents

1 Introduction 4
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Application of artificial bots in gaming industry . . . . . . . 4
1.1.2 Thesis’s problem tackled and idea . . . . . . . . . . . . . . . 5

1.2 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries/Background 7
2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Limits of classical reinforcement learning . . . . . . . . . . . 10

2.2 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 DQN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 DDQN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Other models . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Deep Reinforcement Learning for video game playing . . . . . . . . 14
2.3.1 Mapping DQN on games . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Atari dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Other examples of games . . . . . . . . . . . . . . . . . . . . 15

2.4 Correlation coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Pearson correlation coefficient . . . . . . . . . . . . . . . . . 17
2.4.2 Spearman’s rank correlation coefficient . . . . . . . . . . . . 17

2.5 Regression analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Estimating game difficulty from synthetic data 23
3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 General description . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Which data can be gathered? . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2



3.2.3 MSE and what it means . . . . . . . . . . . . . . . . . . . . 26
3.2.4 SSIM and what it means . . . . . . . . . . . . . . . . . . . . 26

3.3 Data Elaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 VAR SD and CV and what they mean . . . . . . . . . . . . 27
3.3.2 Entropy what it means . . . . . . . . . . . . . . . . . . . . . 28

3.4 Data gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1 Games considered . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Data gathering procedure . . . . . . . . . . . . . . . . . . . 29
3.4.3 Running on HPC . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Procedure polishment . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.1 Refine the data . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Results 35
4.1 Result analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Correlation Coefficients results . . . . . . . . . . . . . . . . . 36
4.1.2 Regression Results . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Result discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Discussion 43
5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Game clustering based on obtained data . . . . . . . . . . . 43
5.1.2 Analyse more complex games . . . . . . . . . . . . . . . . . 43
5.1.3 More advanced data analysis . . . . . . . . . . . . . . . . . . 44

5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Bibliography 45

3



Chapter 1

Introduction

1.1 Motivation

1.1.1 Application of artificial bots in gaming industry
For the last decade, thanks to the advent of the internet, the videogame industry
has boomed. The popularity of the videogames is increased thanks to the global
success of different multiplayer games and mobile games.
In the same years, machine learning has been and still is a hot topic in computer
science. Machine learning algorithms have been applied in many fields of everyday
life. Gaming is one of the fields in which machine learning has been found useful.
One of the uses of machine learning in videogames is the creation of non-player
characters, also known as NPC. In single-player games, the character controlled by
the players has to face CPU-controlled enemies. In multiplayer games, instead is a
common feature to be able to add NPCs in a game as a way for a player to train
his skills. In both cases, the best CPU-controlled bots are the one the behaves like
humans. NPCs not skilled enough makes the game not challenging and soon boring
for the players. An extremely skilled AI agent, on the other hand, makes the game
too hard and too frustrating to be enjoyed.
By studying the gameplay of human players, machine learning algorithms can be
used to create bots that have human-like behaviors. A better game AI could highly
enhance the gameplay quality.
Procedural content generation (PCG) is the branch of computer science that studies
the application of AI technologies for the creation of content. Multiple studies
apply PCG to the computer generation of game stages. One of these studies uses
information gathered from players’ questionnaires in order to generate Super Mario
levels [1]. PCG techniques that predict map entertainment values have been used to
automatically generate maps for the real-time strategy game Starcraft [2]. Another
study uses PCG to create tracks for racing games the better suit the player’s driving
style [3]. These are just a few examples in which machine learning algorithms have

4



1.1 – Motivation

been applied in the production of videogame content.
During the last years a new way to play videogames is born; cloud gaming. Instead of
buying the game and make it run on the local driver, the user can pay a subscription
to play games on the server of the provider. The player’s device sends to the server
the inputs and the server sends back the output video. This kind of service is very
dependent on the network performances. Various games need different latencies to
reach a satisfying quality of experience. A study has been made to compute the
maximal acceptable latency by each game by using AI agents [4]. By measuring
the decrease in performance of an AI agent in correlation with the increase of the
latency it is possible to classify games based on their latency requirement. The
service provider could then prioritized the internet packets of the more demanding
games to ensure the best possible QoE for all its customers.
These are just few examples in which machine learning technologies can be applied
to gaming.

1.1.2 Thesis’s problem tackled and idea
Even though there are many ways in which it is possible to apply machine learning
to videogames its use also has some inconveniences.
One of the biggest problems with machine learning is that, if not already present
online, you have to train your agent from scratch. The training of an agent is
often long and very computationally expensive. Computers with dedicated GPUs
are needed to complete the training in a reasonable time. If at least one resource
between time or computational power is limited it would be useful to have a priori
estimation of the time needed for the training in order to evaluate if the use of an
AI agent is worth the resources investment.
Right now there are no tools able to predict the time required to train an agent to
play the desired game. The duration of the training doesn’t only depend on the used
hardware. The chosen model and game have also an impact on the time needed.
Most of the models use the video output of the game as the input for the agent
training. it is reasonable to assume that some of the characteristics of the game
probably influence the ability of the model to learn the game quickly. The intuition
that gave birth to this work is that games in which many frames are very similar to
each other are the ones more difficult to learn for machine learning models. The
reasoning behind this idea is that with a lesser variation in the frames the model
has less information to use for improving the agent’s policy.
If this assumption is true, it may be possible to create a framework able to predict
the duration of the training based on the game features. Gathering game statistics,
such as information regarding the game video output, is often an easier and faster
process than the agent training procedure. In this work, we study the behavior of
the training of multiple Atari games using a Double DQN model in order to find,
if present, the correlation between the time of learning of a game and some of its

5



Introduction

characteristics. In case a correlation is found we will use that relationship to create
a theoretical prediction model for the training duration of a game.

1.2 Outline of Thesis
In chapter 2, we discuss the background knowledge needed to better understand
the work done. More precisely, in the first part of chapter 2 we talk about the
theory behind machine learning and some of the machine learning algorithms used
to train agents able to play videogames. In the later part of the chapter, we instead
illustrate statistical notions regarding correlation coefficients and linear regression
analysis that will be helpful to understand the meaningfulness of our results.
In chapter 3, we describe which game statistics we have decided to collect and
why. We also explain the procedure followed to gather such data and how we have
elaborated them to obtain the needed information.
In chapter 4, we present and explain the results obtained.
In the last chapter, chapter 5, we offer some ideas on possible future works on the
topic dealt addressed in this thesis. Finally, we conclude with a summary that
recaps the most important points of the paper.

6



Chapter 2

Preliminaries/Background

2.1 Machine Learning
Machine learning is the field of computer science that studies computer algorithms
that recognize and exploit information present in data without the direct intervention
of human help. Machine learning algorithms can be divided into general families
depending on which learning techniques the model exploits. The great majority of
the algorithm can be divided between supervised learning, unsupervised learning,
and reinforcement learning.
Supervised learning algorithms work utilizing labeled data. Supervised learning
is more commonly utilized in classification problems. The model takes as input a
set of label data, called the training set. The goal of the model is to exploit the
knowledge present in the training set to form a policy able to classify unlabeled data.
The model improves its policy by minimizing the loss function. The loss function
is a function that quantifies how much the current classification differs from the
ground truth. For supervised learning to work well often is needed a huge quantity
of label data and that is not always the case.
Unsupervised learning tries to discover hidden patterns in the input data. More
specifically unsupervised learning is applied, for example, in clustering problems
where the goal is to discover if the data can be grouped in clusters or in regression
problems where the model tries to use the present information to decipher the
correlation between the data and so be able to predict future values based on some
of their features.
Reinforcement learning takes a completely different approach. It tries to learn a
task through experience by interacting with its environment.

2.1.1 Reinforcement learning
The reinforcement learning approach is very similar in the way humans learn things.
An agent interacts with the environment receiving different stimuli depending on

7



Preliminaries/Background

whether the action computed is positive or negative in order to reach the goal.
In the same way, our brain releases substances like dopamine when we engage in
productive behaviors.
To understand how reinforcement learning works, it is important to understand
the key concepts that define it. A reinforcement learning task is composed of an
environment. The representation of the environment at time i is called state si.
The set of all possible environment states is called S. The agent interacts with the
environment through a defined set of actions a0, a1, ..., an ∈ A. When the agent, at
step i, performs the action ai this action has an effect on the state si that transits
to state si + 1. [5]
To infer how good an action ai is in state si the agent receives a signal, called a
reward r. The reward can be positive in case the action makes the agent reach
one of the task’s goals, negative in case of failure, and 0 if the action has not an
immediate effect on the state of the task. The triggering factors and the magnitude
of the rewards are highly task-dependent.
The function that selects which action to select for the current state is called policy
π. More precisely the policy π is a mapping from each state, si ∈ S , and action,
ai ∈ A , to the probability π(si, ai) of taking action ai when in state si. The model
goal is to create the optimal policy π∗. The better policy is the one that maximizes
the cumulative reward R obtained during the task. [5]

Figure 2.1. A scheme of the the basic reinforcement learning mechanism. At each
iteration the agent selects an actions to interact with the environment. The selected
action makes the environment transit to state s + 1 and produce the reward r + 1.

The simplest policy is the greedy one; in which the agent selects the action which
gives the highest immediate reward. This strategy is few times the optimal one. A
better way to produce a strategy is to compute the value of each state. If the state
representation can fully describe the environment it is possible to forecast all the

8



2.1 – Machine Learning

future actions chosen by policy π starting from state si. Therefore it is possible to
compute the expected cumulative reward R for state si. Given a police π and a
state si we can compute the state value function V π(si) as the expected sum of the
rewards starting from state si and following policy π. [5]

V π(si) = Eπ{R|s = si}

A possible strategy is therefore select the action that leads to the state with the
highest value. Similarly to the state value function, that returns the value of the
state, it is possible to compute the action-value function Qπ(si, ai) that evaluates
the expected reward by selecting the action ai in the state si and then following the
policy π in all the following states. [5]
The action-state function is defined as:

Qπ(si, ai) = Eπ{R|s = si, at = ai}

2.1.2 Q-Learning
Different reinforcement learning algorithms use different ways to update their policy.
In this work, we focus on Q-learning. In Q-learning, the goal is to compute the
best possible approximation of the Q value for all actions and in all states. The
action-state value of action ai in state si is updated with the formula:

Q(si, ai) = Q(si, ai) + α[ri+1 + γmaxaQ(si + 1, a) − Q(si, ai)]

Where Q(si, ai) is the current values associated to the pair si, ai. α is the learning
rate, i.e. a value between 0 and 1 that regulates how big is each adjustment of
the Q-value. ri+1 is the reward received when ai is selected and γ is the discount
factor. The discount factor is a value between 0 and 1. Its purpose is to regulate
how much the expected future reward affects the updating of the current Q-value.
Furthermore, a discount factor less the 1 guarantees the convergence of the action-
state value. maxaQ(si + 1, a) indicates that the current Q-value is updated based
on the maximum expected Q-value of the following state [5].
In Q-learning, the policy is not considered in the update of the state-action value.
The policy utilized the majority of the time is the greedy one. The action selected
in state si is the one with the greater action-state value. A greedy policy works
only if all the approximated Q-values tend to their real ones. To guarantee that
the agent explores all the actions and updates the Q-values of each of them the
algorithm selects ϵ percent of the time a random action. ϵ represents the exploration
factor. The policy that takes the greedy action 1 − ϵ percentage of the time is
called ϵ-greedy policy. With infinite exploration time, It is proven that Q-learning
converges to the optimal action-selection policy [6].

9



Preliminaries/Background

Figure 2.2. The Q-learning algorithm [5]

2.1.3 Limits of classical reinforcement learning
Reinforcement learning works particularly well when the task tackled has a limited
set of states and the state representational can fully describe the environment. The
problem is the vast majority of real problems do not have these characteristics.
For example, create an agent able to play Atari2600’s games, as we do this work,
is not feasible with a classical reinforcement learning algorithm. Since the state
representation utilized are the pixels of each frame the states are too many and too
complex.
To solve more complex tasks, reinforcement learning is combined whit deep learning
giving birth to deep reinforcement learning.

2.2 Deep Reinforcement Learning

2.2.1 Deep Learning
Deep learning can solve a vast gamma of problems, including ones where a high
dimensional representation is required. It is common practice, for example, to use
deep learning in image-related tasks.
Deep learning models utilize networks composed of a series of layers. Each of these
layers applies a non-linear function to the input data. This type of network is called
Convolutional Neural Network (CNN).
The most common type of layer is the convolutional layer. A convolutional layer is
composed of parametrized filters, also called kernels, which have a small receptive
field. These filters compute convolutional operations on the input data and then
pass the results to the next filter. Usually in a convolutional neural network are
present multiple convolutional layers. Each layer has the duty of learning a specific

10



2.2 – Deep Reinforcement Learning

feature of the input image. Starting from the figures’ edges and arriving at complex
subjects. [7] [8]
Poling layers are used for non-linear down-sampling operations. Down-sampling
is utilized in machine learning to reduce the dimensionality of the internal repre-
sentation of the data. The most common polling layer implements max pooling.
Max pooling is an operation done on data which have a matrix representation. The
input matrix is dived into regular sub-regions. For each of these sub-regions, only
the higher value is kept. In this way, a smaller matrix is created. The new matrix,
even if smaller, retains most of the information of the original one. [9] Reduce the
dimensions of data it is useful to model since it removes the noisy unhelpful portion
of the data and helps to speed up to subsequent computations. This type of layer is
very commonly used in image related models.
The last portion of CCN is often formed of a series of fully connected layers. The
fully connected layers are the ones that extract the information computed by the
previous layers and produce the final results. [9] For example in a reinforcement
learning setting the last layer, called the output layer, produces the probability to
be picked for each action. Instead in the supervised learning case, the output layer
produces the probability of correctness of each label.

2.2.2 DQN
Combing the Deep learning approach with Q-learning theory has given birth to the
deep Q-network (DQN) [10]. DQN uses a deep network to estimate the Q-Value of
reinforcing learning problems. It has been tested on 49 Atari games using as input
raw pixels, proving its ability to tackle a gamma of different tasks.
DQN is formed of 3 convolutional layers followed by 2 fully connected layers that
produce the estimated Q-value for each valid action.
Previous attempts of using a non-linear approximator to approximate the action-
value function suffered from high instability. This is the case of a neural network
approximator. The instability is due to many causes. Some of them are the
correlations present in the sequence of observations and the fact that variation of
the Q-values makes the policy change causing a variation of the data distribution.
To improve stability in the DQN model experience replay has been introduced. The
experience replay mechanism works by storing the agent experience. Each experience
value ei a step i is formed of the state representation si, the action selected ai, the
reward obtained ri, and the resulting state si+1. After a fixed number of steps, a
random experience value is extracted by a uniform distribution and it is used to
update the loss function. The presence of experience reply helps with the instability
because it randomizes the sequence of the samples analyzed by the system, lowering
sampling correlation which reduces the variance of the updates.
As briefly mentioned in section 2.1 in machine learning, the loss function measures the
distance between the present performance of the model and the optimal performance.

11



Preliminaries/Background

The loss function has as parameters the parameters of the neuronal network layers.
During training, the model updates its parameters in an attempt to minimize the
loss function. The loss function’s minimum corresponds to the best parameters’
value since they are the values that produce the least distance to the optimal
solution. The search of the minimum is done by stochastic gradient descent, i.e. the
parameters are modified in the direction in which the loss function is the steepest
by an amount controlled by the learning rate. The loss function utilized in DQN is
the following:

Li = E(s, a, r, s′)[(r + γmax′
aQ(s′, a′; θ−

i ) − Q(s, a; θi))2]

where γ is the discount factor, θi are the parameters of the Q-network at time i,
and θ−

i are the target parameters at iteration i.
To reduce instability, every C steps, the network is duplicate. The copied network is
the target network, i.e. the network that computes the target values for the following
C steps. The target values are obtained by approximating the optimal target values
r + γmax′

aQ∗(s′, a′) with r + γmax′
aQ∗(s′, a′; θ−

i ) where θ−
i are the parameters of

the current target network.This modification improves stability because in this way
a modification of the Q-value by the main network does not influence the target
value, reducing oscillation.

2.2.3 DDQN

One of the problems of the DQN model is its tendency to overestimate actions. This
problem is due to the fact that the DQN model uses the same value to both select
and evaluate actions. The Double DQN (DDQN) [11] uncouples the selection and
evaluation procedure. To do so, DDQN modifies the target approximation function
utilized by DQN. The target used by DQN can be written as:

Y = r + γQ(s′, max′
aQ∗(s′, a′; θi); θi)

The modified target utilized in DDQN is instead:

Y = r + γQ(s′, max′
aQ∗(s′, a′; θi); θ′

i)

To least modify the original DQN code the implementation of DDQN uses the
parameters θ of the online network to select the action following the ϵ-greedy policy.
The estimation is done by utilizing the parameters θ− of the target network instead.
Tests have shown that DDQN performs better than the standard DQN model on
the 49 Atari games considered in the original DQN paper.

12



2.2 – Deep Reinforcement Learning

2.2.4 Other models

Besides the DQN and the DDQN model exist many other models that can play
arcade games at the same, if not better, level as humans [12]. All these models use
as input raw pixels.
Some of these models are, like the DDQN model, modifications of DQN. This is the
case with Deep Recurrent Q-Learning that adds to the DQN network a recurrent
layer [13]. The General Reinforcmentent Learning Architecture, called Gorilla
architecture, is a distributed version of DQN. Gorilla uses parallel agents which
experience is collected in a distributed replay memory. Gorilla outperforms DQN
in 41 of the 49 Atari games used as a test [14]. Another modification of DQN is
Dueling DQN. This model further develops the DDQN idea of splitting the action
selection and action evaluation process. After the convolutional layers, the network
split into two branches one selects the actions, and the other evaluates them. [15]
Another family of models implements the Actor-Critic method (AC). The AC
method combines the stochastic gradient descent approach with temporal difference
learning. In TD learning the value function, the function that computes the expected
cumulative reward of a state, is computed as

V (s) = V (s) + α(R(s) + γV (s′) − V (s))

where V (s) is the current value of state s, V (s′) is the value of the next state s′,
R(s) is the current reward, and α is the learning rate.
Updating the state value in this way, the future value of the future states backprop-
agates to the previous ones. Some of the models that implement an AC method are
the A3C, A2C, ACER, and UNREAL. [12]
A3C stands for Asynchronous Advantage Actor-Critic. It uses parallel agents that
asynchronously update the actor-critic network [16]. The synchronous version of the
A3C model is called A2C [12]. The actor-critic experience replay model (ACER)
is an actor-critic model that, as the name suggests, implements the concept of
experience replay [17]. UNREAL stands for UNsupervised REinforcement and
Auxiliary Learning. The UNREAL algorithm is a modification of A3C which makes
use of experience replay. The replay memory technique is used to learn auxiliary
tasks. Auxiliary learning is a branch of machine learning. In auxiliary learning, the
model learns to solve one or more secondary tasks concurrently with the main task.
The information learned for the secondary tasks is used by the model to improve
the main task performance. UNREAL has a similar performance to A3C on arcade
games, but it has been proven better in other domains. [18]
The ones describe are just a few of the models existent. There are many other
models able to have humanlike or even better performance in playing arcade games.
Even more if broad the spectrum to other game genres like first-person shooters,
fighting, and racing games.

13



Preliminaries/Background

2.3 Deep Reinforcement Learning for video game
playing

2.3.1 Mapping DQN on games
Key aspects that make a model performing are the task’s environment representation
and an effective way for the agent to interact whit it.
In the case of DQN [10], the task is to play any Atari games with similar performance
that an expert human can achieve. Each state representation is composed of the
pixels of the frame and the current score. In the case in which the game contemplates
multiple lives also this number is part of the state.
Each Atari frame is a 210 x 160 pixels image. Each pixel can be one of the possible
128 colors. Due to its extremely limited computational power, the Atari2600 can only
handle few objects on the screen in the same frame. To overcome this restriction,
when the game required many simultaneous entities the game developers used to
make half of the objects appear on screen in the odd frames and the other half
during the even frames. Atari games run at 60fps. The refresh rate is high enough to
let the player sees both sets of objects on the screen simultaneously. This stratagem
could heavily impact the performance of the model if not handled. The model does
not perceive the frames as a sequence like the human eyes, but it just analyzes one
frame at a time. This means that the agent could only see half of the object at
every given instant if the frame were taken as they are. In the implementation of
the DQN model to resolve this issue, each frame is combined with the previous one.
The encoding takes the highest value for each pixel color of the two frames. In this
way on each frame both sets of objects are present. A further preprocessing step is
applied to each frame. To reduce the dimensionality each image gets rescaled to 84
x 84 pixels format. Furthermore, a function extracts the Y channel, the luminance,
of each image. This procedure makes them black and white, reducing the dimension
needed to represent each frame.
Since the agent’s goal is to maximize the score, the simplest choice is to map the
reward with the game’s point. Each time an agent’s action scores points in the
game, the model generates a reward signal of equal magnitude.
The agent interacts with the environment emulating all the possible combinations of
buttons allowed in the game. When the game file is loaded in ALE (Arcade Learning
Environment), the emulator reads from it all the action a player can execute. The
actions are then mapped to integer values. An action can not only correspond to
the pressing of a button but also to a combination of them. An Atari game can
have from 4 to 18 actions.
To improve the model’s performance a technique called Frame Skipping is used [19].
Frame skipping consists of making the agent select an action every k frame instead
of at all steps. In the frames in which the agent doesn’t select a new action the
last action chosen is repeated. Frame skipping makes the model run k times faster

14



2.3 – Deep Reinforcement Learning for video game playing

since selecting an action is way more computationally expensive than making the
environment advance of one step. A selection of a large value for k lets the model
play more games in a fixed interval, but the agent can select an action less frequently
making it less performing. The preselected value of k is 4.

2.3.2 Atari dataset
The games utilized in the DQN study are 49 games from the Atari2600 dataset. The
Atari2600, released in 1977, is one of the first home consoles ever created. Due to its
old age, the computational power of the hardware is quite limited. The games run
on an 8-bit CPU alongside a RAM of just 128 bytes. Even though the computational
power is quite limited the Atari2600 games are varied and represent a wild range of
different tasks. Starting from the simple Pong where the goal is just to rebound
a dot to the other half to the screen. Passing through a more complex game like
Ms. Pacman in which the model as to learn how to navigate the maze of each stage
avoiding colliding with the chasing ghosts. Arriving at the very difficult task to
learn as Montezuma’s Revenge in which the player controls a character the has to
move in different rooms filled with enemies and trap and find keys to open doors to
collect treasures. All these different game’s type is tackle by the same algorithm
and solved more or less well by only analyzing the state composed of the frame and
the score and without having any other previous knowledge on any of them.

2.3.3 Other examples of games
The reinforcement learning models have been applied, as well as arcade games, to
many other game genres [12].
Racing games are one of the challenges in which researchers apply machine learning
models. In a racing game, an agent has to learn how to navigate the track as
fast as possible managing the accelerator and the brake pedal in continuous time.
In more realistic games the agent has to learn how to change gear and avoid the
other cars. A popular platform used for this kind of study is TORCS. TORCS is a
fully customizable 3D racing environment that, as DQN, uses pixels as input. AI
models developed on racing games can be useful in the real world as self-driving
technologies.
Another popular game genre in which deep learning is applied to videogames is the
first-person shooter. In FPS games the player is put in the shoes of a soldier who
has to shoot at some kind of enemy. In this type of game, the agent has to learn to
recognize and quickly aim at the opponents. Furthermore, it has to learn how to
navigate the 3D world. A common game used as a benchmark is Doom (id Software,
1993–2017). Between the models applied to this genre, there are also various DQN
versions.
Open-world games offer a completely different challenge. These videogames don’t

15



Preliminaries/Background

Figure 2.3. A screenshot of Montezuma’s Revenge for Atari2600

have a clear goal. The player is let free to roam a vast 3D world and do whatever he
likes. All the reinforcement learning algorithms are based on the concept of reward.
Open-world games present a big challenge for reinforcement learning since the lack
of an objective makes reward shaping a difficult task. Reward shaping consists of
adding artificial rewards to encourage positive behaviors that are not rewarded by
the game itself.
Lastly, real-time strategies games (RTS) have also been subject to AI studies. In
this kind of game, the player has to control many units at a time. Often the goal
is to manage the map resources to build buildings and train soldiers to destroy
the enemy base. Each of the units created has to be managed by the player, that
has to quickly strategy how to overwhelm the opponent. The environment often
used is the one offered by StarCraft (Blizzard Entertainment, 1998–2017). Blizzard
Entertainment has developed an API to enable software interaction with its game.
This API is the result of a collaboration between the game developers and the
DeepMind project of Google. [20]

16



2.4 – Correlation coefficients

2.4 Correlation coefficients
In statistics, the necessity to compute the correlation between two variables is
a common problem. A possible way to resolve it is to compute a correlation
coefficient. A correlation coefficient is a number that represents how strong is the
statistical relationship of two features. There are various techniques to compute
such correlation. In our work, we have utilized the Pearson correlation coefficient
and Spearman’s rank correlation coefficient.

2.4.1 Pearson correlation coefficient
The Pearson correlation coefficient (PCC), also called Pearson’s r or ρ, is a measure
of the linear correlation present between two variables. Given two random variables
X and Y , the PCC is computed by dividing the covariance of the two variables by
the product of their standard deviations.

ρXY = cov(X, Y )
σxσy

Where cov(X, Y ) is the covariance of X and Y. σx and σy are instead the respective
standard deviation of X and Y . For a series of sample Pearson’s r can be computed
as:

rxy =
∑︁n

i=1(xi − x̄)(yi − ȳ)√︂∑︁n
i=1(xi − x̄)2 ∑︁n

i=1(yi − ȳ)2

Where n is the number of samples and x̄ is the series average. The PCC value is
bounded between -1 and 1. A higher magnitude of the coefficient corresponds to a
higher correlation between the two variables. The sign indicates if the correlation is
a direct correlation or an inverse correlation. A ρ of 0 means that the two variables
are not correlated linearly.

2.4.2 Spearman’s rank correlation coefficient
The Spearman’s rank correlation coefficient, also called Spearman’s ρ or rs, measures
the rank correlation between two variables. It is computed exactly as the Pearson
correlation coefficient with the difference that the coefficient is computed using the
ranks of the values and not the values themselves. The lowest value is mapped
to rank 1, the second-lowest to 2, and so forth. After every value of X has been
transformed to its rank value rgXi

and every value of Y to rgYi
we compute ρ as:

ρ = cov(rgX , rgY )
σrgX

σrgY

17



Preliminaries/Background

The formula is the same as Pearson’s coefficient but applied to the value of the ranks.
The benefit of Spearman’s rank correlation coefficient is that it doesn’t assume the
data belong to a normal distribution. Furthermore, Spearman’s coefficient better
evaluates non-linear correlation with respect to Pearson’s coefficient as long as the
correlation is monotonic.

2.5 Regression analysis
Correlation coefficients are useful to understand if a correlation is present between
two variables. The use of regression analysis makes it possible to discover an
approximation of the model that predicts the value of the independent variable Y.
Furthermore, regression analysis allows us to study the combined effect of multiple
variables on the behavior of the dependent variable Y.

2.5.1 Linear Regression
The simplest form of regression is linear regression. In 2 dimensional space, the goal
of linear regression is to find the best fit line that better represents the relationship
between a dependent variable y and the independent variable x. The concept
of linear regression can be easily applied also in spaces with more than just 2
dimensions. For example, the correlation between y and a set of two variables x1
and x2 is described by a 3-dimensional plane. More formally, the dependent variable
y is the linear combination of kindependent variables or regressors x1, x2, ...xn .

y′ = β0 + β1x1 + β2x2 + ...βnxn + ϵi

Where β0, β1, ...βn are the unknown coefficient that we are looking for and ϵi is the
error in the values measurement. i ranges from 1 to n, where n denotes number of
data points. Going forward we will talk about the 2-dimensional case for simplicity,
but all the concepts are also valid in higher dimensions spaces. We make use of the
linear regression analysis to precisely study the cases with more than 2 dimensions
since in such instances the correlation coefficients explained before are not applicable.
In the 2D settings, we have multiple measurements belonging to only one feature x.
Each value of x corresponds to one value of the dependent variable y. We define
the error term ei of the point (xi, yi) as the difference between the measured value
yi and the estimated value y′

i of the best fit line. The best fit line is the line the
minimizes the sum of the squared errors. The errors are squared because if not the
sum of the negative errors and the positive ones will cancel out to 0. There are
infinite lines that make the sum of the errors to be 0. Utilizing the square of the
errors we transform all the errors values into positive ones resolving the problem
of them adding up to 0. There is only one line that minimizes the sum of squared
errors.

18



2.5 – Regression analysis

Figure 2.4. Example of regression line

We can use the sum of the squared errors to infer how good is the best fit line to
explain the correlation between the independent variable and the dependent one.
We consider the sum of the squared differences between the values predicted by the
regression and the mean values of y, ȳ, as the amount of variance explained by the
regression. This value is called SSR, Sum of Squares due to Regression.

SSR =
n∑︂

i=1
(y′

i − ȳ)2

y′
i indicates the predicted value of dependent variable Y by the best fit line for the

value xi. The sum of the squared error is called SSE and it indicates the amount of
variance that our model is not able to explain.

SSE =
n∑︂

i=1
(yi − y′

i)2

The sum of SSR and SSE gives SST, Sum of Squares Total. SST indicates the total
variation of the points from the mean. SST can also be computed as

SST = SSR + SSE =
n∑︂

i=1
(yi − ȳ)2

We can compute the proportion of variance explained by our model by computing
R2. R2 is defined as the SSR divided by the SST.

R2 = 1 − SSE

SST
= SSR

SST

R2 varies from 1 to 0. Smaller is the SSE, hence the points are closer to the line,
higher is R2. A regression line that passes through all the data points has an R2 of

19



Preliminaries/Background

1. On the contrary, if many points a far from the regression line R2 will be closer to
0.
The R2 value can sometimes be misleading. This is especially the case when our
model is described by more than one feature. With a rising number of features the
R2 value always increases. The improvement of the coefficient happens even if the
added feature is useless in order to describe the correlation. The reason for this
phenomenon is that every time a new independent variable is added the degrees of
freedom(df) of the model decrease and, on the other hand, the number of constraints
increases. We can compute the degrees of freedom of the model as

df = n − k − 1

where n is the number of samples and k is the number of independent variables. In
the extreme case in which df equals 0 R2 is always 1, no matter the distribution of
the points. This concept is easy to understand in the 2-D case. With only one x we
have 0 df when we have only 2 measurements. No matter where the 2 points are,
there will be always a line the passes through both of them. The selection of β0 and
β1 is therefore fixed.
A better representation of the explanatory power of our model is given by the
adjustedR2. The adjustedR2 takes into consideration the model’s df . It is computed
through the formula

adj.R2 = 1 − (SSE

SST
) n − 1
n − k − 1 = 1 − (1 − R2) n − 1

n − k − 1

Adding a useless feature to the model will decrease the adjustedR2, but a useful
one increases it. The adjustedR2 is not bounded between 0 and 1.
Besides the adjustedR2, we have other statistical tools to understand how good is
the regression line is in explaining the correlation under examination. One of these
tools is called F-test.
The F-test is useful to compute with which level of significance we can reject the null
hypothesis H0. The null hypothesis states that all the coefficients of the regression
are equal to 0, i.e. there is no relationship between the dependent variable and
the independent ones. The F-test takes this name because it assumes that the test
statistics have an F-distribution. The F-value is computed as:

F(k,df) =
SSR

k
SSE

df

Where k is the number of independent variables of the model. Computing the
area between the absolute value of the computed F-value and +∞ under the F-
distribution we obtain the probability that the model performance is due to random
chance. This probability is called the p-value. In statistics, it is common to consider
the 95% significance level. If our p-value is less than 0.05 we can reject the null

20



2.5 – Regression analysis

Figure 2.5. Example F-test in which the F-value is 3.232. Since it is higher than
2.84 we can reject the null hypothesis H0 with more than 95% confidence

hypothesis H0 with a confidence of 95% or more.
The use of the linear regression analysis is useful in our study because the

relationship that we want to find could be formed from the contribution of multiple
independent variables. When multiple features are used in the regression it is
convenient to understand which of them is actually helpful to the model. To gain
this knowledge the t-statistic is used. The t-statistic of the feature xi is computed
as

ti = βi

SE(βi)
Where βi is the coefficient of variable xi in the regression and SE(βi) indicates the
standard error of βi. Assuming a t-distribution of the data, if the null hypothesis
were true the t-statistics would be 0 since βi would be equal to 0. As with the
F-value, we compute the area under the t-distribution in the interval (|ti|, +∞)
to quantify the probability of getting an equal or higher value of βi due to pure
chance. The lower is this probability higher is the statistical significance that the
independent variable has. Furthermore, we can compute the 95% confidence interval
for each independent variable. If 0 does not belong to the interval we are 95%
confident that that feature correlates with the dependent variable. In other words,
we are 95% sure that the value of βi is not 0, therefore, having an impact on the
regression model.

21



Preliminaries/Background

Figure 2.6. Example T-test in which the T-value is -2.085. Since it is lower than
-1.645 the probability of getting such value by chance it is less than 5%. The feature
is inversely correlated to the y since the t-value is negative.

22



Chapter 3

Estimating game difficulty from
synthetic data

In this chapter it is described in detail how we studied the correlation between the
training time and the intrinsic characteristics of the Atari2600 games. The goal is
to be able to predict the time of training of a random game with the DDQN model.

3.1 Methodology

3.1.1 General description
The procedure followed consists of training, using the DDQN model, multiple Atari
2600 games. Each training period is composed of 500 epochs. An epoch can be
considered as a training session in which the model tries to improve its policy. As
already explained in the reinforcement learning section the policy is the function
utilized by the system to select the best action for the current state of the game.
Each epoch is formed of 25000 steps, where each step is the elaboration of one
frame.
Since it is of our interest to study how a game is learned and not to achieve the
best performing agent, we have to consider not only the more trained and therefore
better performing model as often occurs in projects that use AI. We also need to
study all the intermediate less skilled models. To do so we sample with a delta of 4
epochs the agent model during the training period. Each of these models is utilized
to gather data on how the features of each game impact the training process. The
data gathering process, from here onward referred to as the evaluation phase, is
done by making each model play 50 games during which a series of key statistics
are collected. These data are then analyzed through statistical and unsupervised
machine learning techniques to find, if present, a correlation between the time of
learning of a game and its characteristics.

23



Estimating game difficulty from synthetic data

Figure 3.1. Example of a learning curve of a game reaching peak performance.
During the training process the model is sampled with constant delta

Time of learning

It is fundamental to define a measurement that can represent the time of learning
of a game since it is the cornerstone measure of this work. Our goal is in fact to
predict the time of learning of each game.
The model improves its performance with each epoch of training until it reaches its
peak performance. When we refer to the concept of peak performance we do not
refer to the best performance possible on the game, but just the best performance
reachable by the model on that specific task.
We consider a game to be "learned" by the agent when it reaches 90% of the score
of the peak performance. We consider as the time of learning (ToL) the number of
epochs that are needed to learn the game. Taking this metric as an indicator of
how quickly a game is learned has some positive features. First of all, it is very
simple to compute. Furthermore, the choice of considering the number of epochs
instead of the effective time needed makes the measurement machine-independent
and game-independent. The time needed to complete an epoch depends on the
hardware used to run the training and the game played, but its computational

24



3.2 – Which data can be gathered?

amount for a fixed game is constant and set to be equal to the one needed to
elaborate 25000 frames. This makes the conversion between the number of epochs
to a time unit of measurement trivial. It is just needed to run few epochs of training
of the target game on the target machine and keep track of how long does it takes in
average to complete one epoch and then multiple that measurement to the number
of epoch indicated by the ToL to have an estimate on how long is going to be the
training. This is the exact goal of this work, predict the time of learning a game
without discovering it a posteriori after days of training.

3.2 Which data can be gathered?
Given that the DQN model learns is policy-based only on the video frames and the
score it is important to analyze which data can be gathered in these domains that
can impact the time of learning of each game.

3.2.1 Actions
The number of actions is a very important aspect that characterizes the complexity of
a game. In the DQN based model, the agent needs to explore all the possible actions
at every possible state to correctly assign at each of them a Q-value. Intuitively, it
is easy to understand that, the more actions are present, the larger is the space of
possibilities that in each state have to be evaluated to found the optimal one. So it is
logical to think that with a bigger number of actions higher is the complexity of the
game. The number of actions used by a game is easily obtained by the Tensorpack
DDQN implementation at the moment the game environment is loaded.
A possibility to be considered is that just a subset of the total number of actions is
utilized during the playing time with the rest rarely used by the model. It is then
useful to keep track of the percentage in which each action is selected to explore
these possibilities.

3.2.2 Reward
A hypothesis worth studying is the one that links the ToL with qualities of the
reward signal. The concept of reward is a key aspect of reinforcement learning. The
DDQN agent receives a reward signal each time it scores some points. Therefore the
magnitude and the frequency of the rewards are solely dependent on the game. It is
shown in many studies that reward shaping can increase the learning performance
of an agent. For example, in the Visual Doom AI Competition 2016 the winning
agent was trained using an A3C using reward shaping to overcome the problem of
sparse rewards present in Doom. [21] Since the frequency and the magnitude of the
rewards are independent characteristics of each game the hypothesis is that games

25



Estimating game difficulty from synthetic data

with more frequent rewards or/and with bigger rewards are more easily learnable.
To study this hypothesis we have to keep track of all the rewards received by the
model during the game both in terms of magnitude and also in terms of relative
frames distance to have their temporal behavior.

3.2.3 MSE and what it means
The DQN model base is learning using the video information instead of reading the
state of the game straight from the RAM. The information contained in each frame
can be summarized as the difference between itself and a previous frame. If the
majority of the frames are very similar to each other the amount of "information"
that the model can utilize to improve the policy is very low and this can be reflected
in the learnability of the game. To represent this amount of information we utilize
the Mean Square Error MSE. The MSE is computed through the formula:

1
n

n∑︂
i=1

(X2 − Y 2)

The MSE is therefore the average of the squared differences of X and Y, where
usually Y is the predicted value and X is the result of an experiment. In our case,
X and Y represent the luminosity value of a pixel of two adjacent greyscaled frames.
Since all the differences are squared the MSE can only be a positive value. If the
MSE is 0 that means that the two images exactly equal, on the contrary, larger is
the MSE larger is the difference between the two frames. The magnitude of the
MSE can be then seen as the information present in the transition between frame Y
to frame X.

3.2.4 SSIM and what it means
The MSE is a useful means able to describe through a number the similarity of two
frames, but it doesn’t tell all the story. If we take for example two black and white
figures, A and B. Figure A depicts a black square in a white background, instead,
figure B depicts the same square of figure A but white in a black background. Even
though the figure represents the same subject, and for a human their similarity is
obvious, if we compute the MSE between the two figures the result would be a very
high value. The cause is that the luminosity of every pixel is the largest possible.
The two images have a structural similarity that is not reflected in the difference
between each pixel value.
To study the information present in the difference between pixels’ structure we make
use of the SSIM, structural similarity index. The SSIM is a full reference metric
in which values are included between 0 and 1. A SSIM of 0 means that the two
images are completely different and instead if the SSIM is 1 they are two structural
equal images. The SSIM index is calculated on various windows of an image. The

26



3.3 – Data Elaboration

measure between two windows x and y of common size N × N is computed with
the formula:

(2µxµy + c1)(2σxy + c2)
(µ2

x + µ2
y + c1)(σ2

x + σ2
y + c2)

Where µx and µy are respectively the average of x and y, σ2
x and σ2

y the variance
of x and y and σxy is the covariance of x and y. The two variable c1 and c2 are
used to stabilize the division with weak denominator and their are computed as
c1 = (k1L)2, c2 = (k2L)2 , where L is the dynamic range of the pixel values and
k1 = 0.01 k2 = 0.03 by default.
The SSIM is usually used to compute the similarity between a distorted image and
its uncompressed original. In our case, as with the MSE, we utilize the SSIM to
compute the structural similarity between the present frame and a frame in the past
as a means to identify the amount of variation and therefore information present in
the visual component of the game.

3.3 Data Elaboration
To further investigate the possible underlying correlation between how easy the
model to learn a game and the data that we gather it is possible to extract from the
later some useful characteristics such as the coefficient of variance and the entropy.

3.3.1 VAR SD and CV and what they mean
One of the data’s characteristics that is useful to consider is their variance (VAR),
i.e. how much the data are sparse with respect to their average value. In statistics
the variance of a data distribution X is computed as follow

V ar(X) = E[(X − µ)2]

where E(x) is the expected value of x and µ is the mean of the distribution. The
Variance is often represented by σ2, this is due to the fact σ is the symbol chosen
to represent the standard deviation (SD). The standard deviation is, therefore, the
square root of the variance and is the most common way to compute how much the
distribution’s data are close to the distribution’s mean. As more data are near the
mean of the distribution more the SD value is low. The SD has the same unit of
measure of the data of the distribution. The Coefficient of Variation(CV) is defined
as the division of the SD by the mean µ

CV = σ

|µ|
This measure is dimensionless.
We will compute the CV of the reward, MSE, and SSIM measurements to study if
there is a correlation between more variation of the data and a faster ToL.

27



Estimating game difficulty from synthetic data

3.3.2 Entropy what it means
With the word entropy in this work, we do not refer to the scientific concept, but the
measurement of information present in a distribution. The two concepts share the
same name because both describe the amount of randomness and uncertainty that,
as we have already explained in the case of two adjacent frames, can be correlated
with the amount of information present in the distribution. The entropy applied
in information theory has been theorized by Claude Shannon in 1948 and that’s
why it is also called Shannon entropy [22]. The entropy of a random variable X is
computed as

H(X) = −
n∑︂

i=1
P (xi)log(P (xi))

where x1, x2, .. xn are the possible outcome of X and P (xi) is the probability of ith

outcome. For a better interpretation and ease the comparison of different entropy
value it is used to normalize the entropy through the formula

η = H

Hmax

= −
n∑︂

i=1

P (xi)log(P (xi))
log(n)

The normalized entropy is also called efficiency and is represented by the letter η.
As whit the CV we are going to study the correlation between the entropy present
in the reward, MSE, and SSIM data to further explore the hypothesis that more
information in this data corresponds to a faster ToL.

3.4 Data gathering
In this section, we now describe how we were able to gather all the data described
in the sections before.

3.4.1 Games considered
The games considered in our work are a subset of the Atari dataset. We have chosen
these games for two reasons.
First, the Atari games represent a standard benchmark for multipurpose deep
reinforcement learning models since they contain a vast range of different tasks.
They have been used also as the benchmark for the DDQN model that we have
selected. This allows us to study which are the characteristics of a game that
influence the ToL on a fixed model.
Second, the learning of Atari games is less computational intensive relative to the
other type of games. This allows us to train agents at more games in a shorter
period on our limited hardware resources.

28



3.4 – Data gathering

3.4.2 Data gathering procedure

The procedure starts with the training of an agent using the DDQN model to
play Atari 2600 games. The training lasts for 500 epochs. Every 4 epochs the
agent model is saved. Every sampled model can achieve a score in correlation
with the number of epochs its training lasted. Each of these models goes through
an evaluation procedure that consists of playing 50 games. The code has been
modified such that during each of these games the information regarding action,
reward, MSE e SSIM are saved on a tab-separated values (TSV) file. A TSV file
is a simple text file where each data column is separated by a tab character. To
be more precise the reward information is saved on file with name reward_log_n,
where n is a number between 1 and 50 that correspond to the number of games
played. In the Tensorpack DDQN implementation one episode, i.e. one game, is
executed in the function play_one_episode in the file common.py. This function
has the task to apply the current policy to select the action for the current state
(the current frame and score). When the action is chosen it is used as a parameter
of the environment function step that returns the information to the next state and
the reward returned by the selected action. This reward is intercepted by a custom
function called step_eval present in the file atari.py. If the reward is different from
0 the information regarding the frame in which the reward is received, that action
that has triggered that reward, and the magnitude of the reward are saved on the
TSV file. Furthermore, at the start of the evaluation task, an array of length 18 has
been initialized with 0s. Each cell of the array corresponds to a counter of possible
action. Every time an action is taken the corresponding counter is increased by one.
For example, if the chosen action is mapped to the value 4 then the 5th cell(since
the first cell is cell 0) of the array is increased by one.
At the end of the evaluation process, the action array is appended to a file called
name_action.txt, where the name is the name of the game evaluated. This file it
is utilized to study which action are used and which are not by the model playing
each game.
Also, the frame information is computed in the custom function eval_step in atari.py.
Since the delta between frame can be a factor in the result we compute the MSE
and the SSIM between frames distant from each other 30 frames, 60 frames, and
120 frames that correspond to a distance of 0.5 s, 1 s, and 2 s in real-time since
an Atari game runs at 60 frames per second. For simplicity, the frames considered
are greyscaled. As for the reward information the data are saved in a TSV file
called image_log_n where n is the number of games played. At every delta, the
current frame is compared with the previous frame that has been stored in a specific
variable. In each comparison, the MSE and SSIM are computed and saved on file
then and the value of the variable containing the past frame is substituted with the
current frame.
At the end of the evaluation phase of one game 125 folders (one for each model) are

29



Estimating game difficulty from synthetic data

produced. Each folder stores 50 files (one for each evaluation game) containing all
the information needed regarding the reward, and another50 files containing the
MSE and SSIM computation. A final file is created that stores the total count of
use of each action.

3.4.3 Running on HPC
The training phase and the subsequent evaluation phase are, as often is with machine
learning, very computationally expensive and take a very long time with a system
without a dedicated GPU. To execute the computation we have utilized the hardware
of the LEGION cluster offered by the initiative HPC@POLITO managed by the
DAUIN (Dipartimento di Automatica e Informatica del Politecnico di Torino). [23]
The cluster LEGION has installed 4 Nvidia Tesla V100 SXM2, one of which can
complete on average the 500 epochs of training in 2 days and complete the evaluation
phase in 1 day.
To make run the DDQN implementation on the cluster some preliminary steps are
needed. There is a problem of compatibility between the CUDA version present on
the cluster and the one utilized by the code that makes that the software doesn’t
recognize the GPUs present on the cluster. One of the possible solutions to the
problem, and then utilized by us, is to create a Singularity container in which are
installed the right version of the CUDA driver and the requirement needed i.e.
TensorFlow-GPU, gym[atari], and the Tensorpack library. The training python file
can then be run in the Singularity container using the Singularity module present
on the cluster resolving the compatibility issue.
Each job on the cluster is queued to the scheduler of the cluster through the sbatch
command. The sbacth command takes as an argument a sbatch file in which one has
to specify the resources needed, the modules to load, and the commands to execute.
The jobs queue is managed through the open-source Slurm workload manager. [24]

3.5 Procedure polishment
The procedure described above was run and refined multiple times until reaching
its final form. We now discuss the most important improvements made.

Turning off dynamic learning rate/exploration

After the first runs utilizing the method described above, we have noticed a peculiar
behavior in the scores of the game analyzed. At epoch 400 there was a visible jump
in performance as can be seen in figure 3.3.

This behavior can be easily traceable to the setting of the learning rate and
exploration parameters.
The learning rate parameter is a common feature of machine learning algorithms,

30



3.5 – Procedure polishment

Figure 3.2. Ms. Pacman score with changing hyper-parameters at epoch 400

it controls how big is the step the model takes toward the better solution at every
iteration. A too big learning rate worsens the performance because the model has
a lack of precision that makes it is easier for the best solution to be overshot. A
too small learning rate is also harmful because the model becomes very slow in
reaching the optimal solution and it runs into the problem of getting stuck in a
local minimum or maximum. The learning rate in the stock version of the DDQN
model is set to change during the training to enhance the performance of the model.
In the first 60 epochs is set to 0.001, between epoch 60 and epoch 400 it is set to
0.0005, and finally from epoch 400 onward to 0.0001.
The exploration rate instead is unique to some reinforcement learning algorithms.
It balances the ratio between exploitation and exploration done by the agent. The
DQN algorithm is based on making a greedy decision most of the time, i.e. selecting
the action with the highest value, exploiting its knowledge. However, it is important
that a percentage of time it selects a random action from the subset no containing
the greedy one. This is necessary so that the agent explores all the other possible
actions, refining their values and converging little by little to the real value of each
action ensuring that the action with the max value is indeed the best one. The
percentage of time in which a random action is selected is defined by the exploration
rate.
Like the learning rate also the exploration rate is set to change during training in
the stock version of the model. It is set to be 1 (that means that every action is
chosen randomly) in the first 10 epochs, 0.1 between epoch 10 and epoch 400 and
0.01 from epoch 400 onward.
It is easy to understand that a lower learning rate and especially a lower exploration
factor makes that after epoch 400 the performance improves drastically. Since our

31



Estimating game difficulty from synthetic data

goal is not performance but to study what makes a game difficult to learn is better
to set this parameter constant during all the training. The values selected are 0.005
for the learning rate and 0.1 for the exploration.

3.5.1 Refine the data
We have defined the ToL as the number of epochs needed for the model to reach
90% of the peak performance, this definition is not straightforward to apply to the
real data. This is because in practice the score-epoch graph is not as smooth as
one can imagine due to the random component of the exploration and the seed of
the game that introduces disturbance on the performance of the agents during the
evaluation phase. The result of these disturbances can be seen in the score graph
where the average of the score increases in correlation with the number of epochs of
training but this growth is characterized by a heavy seesaw behavior. This seesaw
behavior makes the concept 90% of top performance and of the top performance
itself volatile since they are heavily affected by random peaks of performance. To
counteract this phenomenon suitable precautions have to be taken.
First of all, is necessary to tackle the intrinsic random nature of the training phase
since 10% of the time the agent selects a random action to explore the space of
possibilities. This generates somewhat different learning curves even though they all
converge to the same policy and so to the same performance given enough epochs
of training. To minimize this effect we have chose to run the all procedure 5 times
on the same game and consider as a learning curve the average of the 5 runs. To
further get rid of the random factor that affects the data we also apply a rolling
average on the learning curve, this will help us smooth the peaks allowing more
precise measurement of the ToL.
To contrasts the randomness present in the Atari games, a fixed seed has been
selected for all the games played in the evaluation procedure.

3.6 Data analysis
After collecting all the data regarding a game this data have to be analyzed. Each
of the 5 training-evaluation procedures run for a game creates a folder each of them
containing 125 additional folders, one for each model saved during the 500 epochs
training (only one model every four is saved). Inside each of these 125 folders are
present 100 files, 50 files containing the reward information of the 50 evaluation
games played and 50 containing the information collected regarding the frames.
The data analysis of this huge amount of files is done thanks to the python library
pandas.
Pandas allow us to elaborate each of these files in few lines of codes instead of
reading each of the lines by line. The elaboration of the file storing the rewards

32



3.6 – Data analysis

information and the frame information is for the most part identical. Each file
contains the information regarding one epoch that is loaded in a pandas dataframe.
These data are elaborated to extract the metrics discussed before that are in case
of the reward files the total score, the mean reward, the reward frequency, the
entropy of the rewards, and the reward’s coefficient of variation. All this data, that
represents in a few number an epoch, are taken and added as a row to another
dataframe that can be viewed as a table of a database where each row contains
the information of a specific epoch of a specific training-evaluation run. Pandas
allow us to collapse the 5 lines corresponding to the same epoch to just one line by
effectuating a group by operation on the epoch field of the table. The resulting line
is the mean of each field of the five rows with the same epoch number. We have
now a 125 rows dataframe storing the information of the average training behavior
of a specific game. We compute the rolling average (with window 10 and minimum
period 1) of the score series and we obtain the final learning curve of the game.
This is the curve utilized to compute the game’s time of training.

Figure 3.3. The learning curve of the game Boxing. In blue the curve before the
rolling average and in orange after

To summarize all the game characteristics in few numbers we compress the
125-row table in just one line computed as the average value of each column. Each
row presents the information regarding the mean reward value, the reward frequency,
the reward CV, the reward efficiency for the reward aspect and the MSE mean,
MSE CV, MSE efficiency, the SSIM mean, the SSIM CV, and the SSIM entropy for
the frame analysis aspect. For each measurement regarding the MSE and SSIM 3
values are stored, one for each delta between frames considered.
These values with the addition of the number of actions, computed for each game
tested, are utilized in the last phase of the process where we use simple non supervised

33



Estimating game difficulty from synthetic data

machine learning techniques to look for the correlation between them and the ToL.

34



Chapter 4

Results

At the end of the evaluation phase, we obtain numerous statistics for each game.
More specifically, we have got the average ToL, obtained from 5 different training
times, and other 14 features. These 14 features correspond to the number of actions,
8 reward features, and 6 frame-related features. For each of the frame-related
features, we have recorded 3 values to prove if the delta between frames affects the
result. Our goal is to find the correlation between the mentioned ToL value with
the other game statistics.

Figure 4.1. Table storing part of the gathered data. The data are normal-
ized and color-coded. The colors go from the dark green for the lowest value
to red for the highest value.

35



Results

4.1 Result analysis
We have computed Pearson’s and Spearman’s correlation coefficient and applied the
regression analysis between the game data that we have collected during the game
evaluation phase and their corresponding time of learning. All the computations
have been executed on the normalized data since the high difference in magnitude
can affect the results. All the data have been normalized following the formula

xnorm = x − min(x)
max(x) − min(x)

This guarantees that all the data are in the interval [0, 1].

4.1.1 Correlation Coefficients results
We compute both the Pearson correlation coefficient and Spearman’s rank correlation
coefficient for all the games’ features gathered. The results are displayed in table
4.1.
We can notice that the feature with the highest correlation is the coefficient of
variation of the mean square error computed on frames taken every delta frames.
The average coefficient value is -0.5, which is a strong indication of the presence
of a relationship between the two variables. The correlation is inverse since both
Pearson’s and Spearman’s coefficients are negative. The results show that higher is
the variation in the frame differences lower is the ToL of the game.
Another consideration that can be extracted is that the delta used to compare the
frames has almost no impact on the results. All the features have very similar
coefficient values even if they have been computed with different deltas. Since
multiple features with different delta are redundant it is optimal to select only one
of them for future calculations. We have selected the features computed with a delta
of 60 frames since it is a good trade-off between the precision of the measurement
and the amount of data that have to be stored and analyzed.
The magnitude of Pearson’s coefficient of few other features is higher than 0.25.
One of those features is the coefficient of variation of the SSIM. Even its Spearman
coefficient values are close to -0.4. The correlation between the SSIM’s CV and
the ToL should be the same that links the MSE’s CV and the ToL since the two
measurements quantify the difference between frames. We deduce that the MSE is
the better measurement to study the frames’ differences in this study.
The other features that have both coefficients with a magnitude above 0.25 are
the score and mean reward. The two statistics are logically connected. A high
average reward means an average high score. It is especially interesting to study
the correlation between the average reward and the ToL since it is a quantity easy
to compute.
All other features have correlation coefficients with a magnitude lower than 0.25.

36



4.1 – Result analysis

Too low to convincingly sustain the presence of any correlation between one of them
and the ToL.

Pearson Spearman
#actions 0,2103 0,2772
Score -0,2678 -0,2934
Delta Score -0,2463 -0,2849

REWARDS
Frequency 0,1644 0,0560
Number -0,2350 -0,2159
Reward_M -0,2620 -0,3448
Reward_CV -0,0599 -0,1012
Reward_E -0,0873 -0,1577

MSE
MSE_30_M -0,1955 -0,1668
MSE_60_M -0,1880 -0,1899
MSE_120_M -0,1735 -0,1815
MSE_30_CV -0,4119 -0,4884
MSE_60_CV -0,4693 -0,5732
MSE_120_CV -0,5039 -0,5461
MSE_30_E 0,2497 0,3624
MSE_60_E 0,1872 0,3522
MSE_120_E 0,1227 0,2804

SSIM
SSIM_30_M 0,1833 0,3363
SSIM_60_M 0,1778 0,3058
SSIM_120_M 0,1640 0,2103
SSIM_30_CV -0,2643 -0,2826
SSIM_60_CV -0,2749 -0,3557
SSIM_120_CV -0,2655 -0,3793
SSIM_30_E 0,0192 -0,0848
SSIM_60_E 0,0007 -0,0599
SSIM_120_E -0,0530 -0,0690

Table 4.1: Table containing all the correlation coefficients
results. The final letter after the underscore of some
features indicates that the feature is the mean in the case
of M, the coefficient of variation in the case of CV, or
the entropy in the case of E. For example, Reward_M
indicates the reward’s mean and SSIM_E is the entropy
of the frames’ SSIM. In the case of the MSE and SSIM
the number indicates the frames delta.

37



Results

4.1.2 Regression Results
To further analyze the possible existing correlation, we have also analyzed the data
with a linear regression model. As well as study the correlation between just one
variable and the ToL, we have also studied the correlation between the time of
learning and every pair of the other features. The pair order does not influence the
results.
First of all, we start by analyzing the R2 and the adjustedR2 of all the regressions
computed. The results are displayed in table 4.2. We can notice how the best fit
planes with the higher R2 are the ones in which one of the two features is the CV
of the MSE. All these R2 are between 0.307 and 0.22. Adding a new independent
variable to the model always increases the R2. If we compare the R2 of the model
with only the MSE’s CV as variable and the ones in which is paired with other
features we can notice that in many cases there is a very marginal increase. We
can therefore claim that the extra feature paired with the CV of the MSE is not
very effective. The paired variable that better improves the R2 values is the SSIM’s
entropy. The pair CV of MSE and SSIM entropy is the only one with a R2 higher
than 0.3. If we analyze the adjustedR2 values we can notice that the best performing
model remains the one with the MSE’s CV and SSIM entropy. The model with only
the MSE’s CV is the third-best model adjustedR2 wise. This result confirms what
the correlation coefficients indicate.
All the models containing the CV of MSE have a p-value associated with the F-test
lower of 0.05. We can therefore be more than 95% confident that these results
are not due to chance. If we analyze the t-values of the top-performing pair we
discover that we cannot reject the null hypothesis for the SSIM entropy. Its p-value
associated with the t-test, when paired with the CV of MSE, is 0.139. Too high
for a 95% confidence level. On the other hand, the p-value of the CV of MSE is
less than 0.009 in that regression model. The linear regression analysis concludes
that the only correlation present to be statistically significant is the one between
the ToL and the MSE’s CV.
The good correlation coefficient values for the average reward do not correspond
with the regression analysis results. Both the R2 and adjustedR2 are lower than 0.1.
Furthermore, the statistical tests show a probability of 23.9 % that the regressor
value is due to random chance. In conclusion, the correlation between the ToL and
the mean reward is too weak to be considered for the predictive model.

Features R2 Adj.R2 F-stat P>|F| t1 P > |t1| t2 P > |t2|
MSE_CV SSIM_E 0,307 0,234 4,208 0,0307 -2,901 0,009 1,542 0,139
Frequency MSE_CV 0,263 0,186 3,398 0,0548 1,056 0,304 -2,47 0,023
MSE_CV 0,22 0,181 5,648 0,0276 -2,376 0,028
Reward_E MSE_CV 0,238 0,158 2,974 0,0752 0,674 0,509 2,399 0,027
Number MSE_CV 0,236 0,155 2,928 0,0779 -0,619 0,543 -2,118 0,048
MSE_M MSE_CV 0,223 0,142 2,733 0,0905 0,28 0,783 -2,145 0,045

38



4.1 – Result analysis

Reward_Cov MSE_CV 0,223 0,142 2,731 0,0907 0,275 0,786 -2,318 0,032
Delta MSE_CV 0,222 0,141 2,718 0,0916 0,235 0,817 -1,988 0,061
MSE_CV SSIM_M 0,222 0,14 2,711 0,0921 -2,156 0,044 0,209 0,837
Actions MSE_CV 0,221 0,139 2,689 0,0937 0,096 0,925 -2,073 0,052
Reward_M MSE_CV 0,22 0,138 2,684 0,0941 -0,044 0,965 -1,922 0,07
Score MSE_CV 0,22 0,138 2,684 0,0941 -0,041 0,968 -1,903 0,072
MSE_CV MSE_E 0,22 0,138 2,683 0,0941 -2,124 0,047 0,009 0,993
MSE_CV SSIM_CV 0,22 0,138 2,683 0,0941 -1,877 0,076 -0,013 0,99
SSIM_CV 0,076 0,029 1,635 0,216 -1,279 0,216
Actions Reward_M 0,119 0,026 1,282 0,3 1,041 0,311 -1,269 0,22
Frequency Reward_M 0,119 0,026 1,277 0,302 1,037 0,313 -1,404 0,176
Score 0,072 0,025 1,545 0,228 -1,243 0,228
Reward_M 0,069 0,022 1,474 0,239 -1,214 0,239
Number Reward_M 0,115 0,022 1,24 0,312 -1,003 0,329 -1,137 0,27
Actions SSIM_CV 0,111 0,018 1,189 0,326 0,873 0,393 -1,197 0,246
Score SSIM_CV 0,108 0,015 1,156 0,336 -0,837 0,413 -0,885 0,387
Delta 0,061 0,014 1,292 0,269 -1,136 0,269
Number SSIM_CV 0,105 0,011 1,114 0,349 -0,79 0,439 -1,028 0,317
Number 0,055 0,008 1,169 0,293 -1,081 0,293
Delta SSIM_CV 0,102 0,007 1,078 0,36 -0,746 0,465 -0,934 0,362
Reward_M SSIM_CV 0,102 0,007 1,075 0,361 -0,743 0,466 -0,836 0,413
SSIM_M SSIM_CV 0,101 0,007 1,07 0,363 -0,736 0,471 -1,213 0,24
Frequency SSIM_CV 0,101 0,006 1,062 0,365 0,726 0,477 -1,246 0,228
Score MSE_E 0,1 0,005 1,056 0,368 -1,171 0,256 0,773 0,449
Score SSIM_M 0,099 0,004 1,045 0,371 -1,193 0,248 0,759 0,457
Score Reward_M 0,097 0,002 1,02 0,38 -0,771 0,45 -0,728 0,475
SSIM_CV SSIM_E 0,094 -0,002 0,9809 0,393 -1,401 0,177 0,615 0,546
Score SSIM_E 0,093 -0,002 0,9756 0,395 -1,397 0,179 0,67 0,511
Actions 0,044 -0,004 0,9258 0,347 0,962 0,347
Delta SSIM_M 0,09 -0,006 0,9401 0,408 -1,105 0,283 0,783 0,443
Score Frequency 0,09 -0,006 0,9374 0,409 -1,145 0,266 0,614 0,546
Delta MSE_E 0,089 -0,006 0,9334 0,411 -1,066 0,3 0,775 0,448
Reward_M MSE_M 0,089 -0,007 0,9311 0,411 -1,061 0,302 -0,656 0,52
Delta Reward_M 0,088 -0,008 0,9167 0,417 -0,635 0,533 -0,755 0,46
Reward_M SSIM_M 0,088 -0,008 0,9137 0,418 -1,081 0,293 0,631 0,536
Actions Score 0,087 -0,009 0,9109 0,419 0,573 0,573 -0,949 0,355
MSE_E SSIM_CV 0,084 -0,012 0,8706 0,435 0,417 0,681 -1,007 0,327
Reward_M MSE_E 0,083 -0,013 0,8624 0,438 -0,999 0,33 0,55 0,589
MSE_M 0,035 -0,013 0,7325 0,402 -0,856 0,402
MSE_E 0,035 -0,013 0,7264 0,404 0,852 0,404
Actions SSIM_M 0,083 -0,014 0,8596 0,439 1,032 0,315 0,896 0,382
Number SSIM_E 0,082 -0,014 0,853 0,442 -1,306 0,207 0,75 0,462

39



Results

Number MSE_E 0,082 -0,014 0,8518 0,442 -0,989 0,335 0,749 0,463
Number MSE_M 0,082 -0,015 0,8464 0,444 -0,981 0,339 -0,742 0,467
Frequency Delta 0,081 -0,016 0,8338 0,45 0,643 0,528 -1,053 0,305
Score MSE_M 0,08 -0,017 0,8281 0,452 -0,962 0,348 -0,418 0,681
SSIM_M 0,032 -0,017 0,653 0,429 0,808 0,429
MSE_M SSIM_CV 0,079 -0,018 0,8135 0,458 0,261 0,797 -0,948 0,355
Score Delta 0,079 -0,018 0,8118 0,459 -0,61 0,549 0,38 0,708
Number SSIM_M 0,079 -0,018 0,811 0,459 -0,985 0,337 0,695 0,495
Reward_M Reward_E 0,079 -0,018 0,8101 0,46 -1,21 0,241 -0,453 0,656
Actions Delta 0,078 -0,019 0,8082 0,46 0,605 0,552 -0,839 0,412
Delta SSIM_E 0,078 -0,019 0,8008 0,464 -1,266 0,221 0,593 0,56
Reward_E SSIM_CV 0,077 -0,02 0,7945 0,466 -0,182 0,858 -1,197 0,246
Reward_CV SSIM_CV 0,076 -0,021 0,7836 0,471 -0,113 0,911 -1,222 0,237
Actions Number 0,076 -0,022 0,7776 0,474 0,648 0,524 -0,804 0,432
Frequency 0,027 -0,022 0,5554 0,465 0,745 0,465
Score Number 0,075 -0,023 0,7689 0,477 -0,636 0,533 -0,255 0,802
Score Reward_E 0,073 -0,024 0,7502 0,486 -1,159 0,261 -0,173 0,864
Score Reward_CV 0,072 -0,026 0,7357 0,492 -1,182 0,252 -0,056 0,956
Actions MSE_M 0,072 -0,026 0,7341 0,493 0,863 0,399 -0,75 0,462
Number Delta 0,072 -0,026 0,7329 0,494 -0,474 0,641 -0,58 0,569
Reward_M SSIM_E 0,071 -0,026 0,7291 0,495 -1,208 0,242 0,232 0,819
Actions Frequency 0,07 -0,027 0,7202 0,499 0,942 0,358 0,732 0,473
Actions MSE_E 0,07 -0,027 0,72 0,5 0,851 0,406 0,732 0,473
Reward_M Reward_CV 0,069 -0,029 0,7089 0,505 -1,16 0,261 -0,128 0,9
Delta MSE_M 0,068 -0,03 0,6979 0,51 -0,822 0,421 -0,398 0,695
Delta Reward_E 0,062 -0,037 0,6293 0,544 -1,051 0,307 -0,172 0,865
Frequency Number 0,062 -0,037 0,6246 0,546 0,362 0,721 -0,838 0,413
Delta Reward_CV 0,061 -0,038 0,6155 0,551 -1,076 0,295 -0,061 0,952
MSE_M MSE_E 0,059 -0,04 0,5945 0,562 -0,694 0,496 0,69 0,499
Number Reward_CV 0,058 -0,041 0,5818 0,569 -1,045 0,309 -0,224 0,825
Number Reward_E 0,057 -0,042 0,5737 0,573 -0,997 0,331 -0,187 0,853
Reward_E 0,008 -0,042 0,1537 0,699 -0,392 0,699
MSE_E SSIM_M 0,054 -0,045 0,5442 0,589 0,673 0,509 0,62 0,543
Frequency MSE_M 0,054 -0,045 0,5436 0,589 0,614 0,546 -0,738 0,47
Reward_CV 0,004 -0,046 0,07205 0,791 -0,268 0,791
Frequency MSE_E 0,052 -0,048 0,5223 0,601 0,585 0,566 0,709 0,487
Frequency SSIM_M 0,052 -0,048 0,5201 0,603 0,638 0,531 0,706 0,489
Actions SSIM_E 0,05 -0,05 0,4969 0,616 0,997 0,331 0,33 0,745
SSIM_E 0 -0,05 1,06E-05 0,997 0,003 0,997
Actions Reward_E 0,045 -0,055 0,452 0,643 0,867 0,397 0,153 0,88
Actions Reward_CV 0,045 -0,056 0,4459 0,647 0,906 0,376 0,109 0,915
MSE_M SSIM_E 0,039 -0,062 0,3866 0,685 -0,879 0,39 0,273 0,788

40



4.2 – Result discussion

Reward_CV MSE_E 0,038 -0,063 0,3798 0,689 0,259 0,798 0,83 0,417
MSE_M SSIM_M 0,038 -0,063 0,3773 0,691 -0,361 0,722 0,238 0,814
Reward_E MSE_M 0,038 -0,063 0,3765 0,691 -0,235 0,817 -0,776 0,447
Reward_CV MSE_M 0,037 -0,064 0,3653 0,699 -0,183 0,857 -0,812 0,427
Reward_E MSE_E 0,037 -0,065 0,362 0,701 -0,181 0,858 0,757 0,458
Reward_CV SSIM_M 0,036 -0,065 0,3597 0,703 -0,31 0,76 0,805 0,431
MSE_E SSIM_E 0,036 -0,066 0,3523 0,708 0,839 0,412 0,118 0,907
Reward_E SSIM_M 0,035 -0,066 0,3495 0,709 -0,276 0,786 0,741 0,468
SSIM_M SSIM_E 0,035 -0,067 0,3404 0,716 0,825 0,42 0,242 0,812
Frequency Reward_E 0,03 -0,072 0,2911 0,751 0,658 0,519 -0,23 0,82
Frequency Reward_CV 0,028 -0,074 0,2769 0,761 0,695 0,495 -0,16 0,875
Frequency SSIM_E 0,027 -0,075 0,2639 0,771 0,727 0,476 -0,015 0,988
Reward_CV Reward_E 0,009 -0,095 0,09082 0,914 -0,188 0,853 -0,336 0,741
Reward_E SSIM_E 0,009 -0,096 0,0819 0,922 -0,405 0,69 0,133 0,896
Reward_CV SSIM_E 0,004 -0,101 0,03464 0,966 -0,263 0,795 -0,029 0,977

Table 4.2: The table contains F-value, t-values, and corre-
sponding p-value for single feature and pair of features. The
features with the nomenclature MSE and SSIM are the ones
computed on MSE and SSIM of frames taken 60 frames apart.

4.2 Result discussion
Our original hypothesis was that a big difference between adjacent frames would
make a game easier to learn for the model. This idea was based on the fact that the
DDQN model uses as states representation the game’s output frames. A game in
which the frame change often should be easier to learn because the model receives
more information with respect to a game in which the frames a very similar between
each other. We also suspect that some of the characteristics of the reward signal
could affect the ToL. The only correlation that we have found is instead with the
coefficient of variation of the mean square error of the adjacent frames. This means
that the ToL is not affected if the adjacent frames are very dissimilar from each
other. We have demonstrated this statement by proving that there is no correlation
between the average MSE and the ToL. What instead affects the ToL is the variation
of the variation of the frames. The games that are learned faster are the ones in
which the CV of the MSE is high.
What we also discovered is that there is not any evident relationship between the
frequency, magnitude, or number of rewards received by the model during a game
and its ToL. The lack of correlation with the reward magnitude can be explained by
the fact that the algorithm, for stability reasons, clips the reward between -1 and 1.
It was instead surprising to find that the frequency and number of the rewards do

41



Results

not correlate with the difficulty with which the model learns the game. More and
more frequent rewards should help the system to sooner reach the correct estimation
of each action Q-value. Our data say that that is not true. The correlation between
the number of rewards and ToL may be present, but more sophisticated statistical
tools are needed to highlight it.

4.3 Model
The correlation analysts showed the presence of a relationship between the mean
Coefficient of Variation computed between frame 60 frames apart. We can therefore
exploit this relationship to create a model the can predict the ToL based only on the
characteristic of the game. Since the CV of the MSE is a feature strictly related to
the game itself it is relatively easy to compute its average in a small amount of time.
Analyzing the data gathered from us on the CV of the MSE it is possible to notice
that such measure is quite stable during all the training phase. This quality allows
us to have a good estimation by training an agent only for few epochs. Usually, no
more than 50 epochs are needed to obtain a valid estimation of the average CV of
the MSE. Thanks to the estimation of the CV and the linear regression model we
can therefore forecast the number of epochs needed for the agent to learn the game.
The epochs utilized for the estimation of the CV are also useful to estimate how long
does it takes to complete an epoch on the currently used hardware. Multiplying the
estimated number of epochs and the time needed to finish an epoch it is possible to
predict the time needed to train an agent.
If we call ECV the estimated CV of the MSE and ET the estimated time for the
computation of one epoch it is possible to predict the game ToL by applying the
formula

ToL = (380.62 − 69.19ECV )ET

Where 393.39 and -71.56 are the beta0 and beta1 obtained through the regression
analysis.

42



Chapter 5

Discussion

5.1 Future work
The work described in this thesis can be expanded and improved. We discuss in
this section some ways in which that can be done.

5.1.1 Game clustering based on obtained data
The learning curves produced by DQN training of Atari games have already been
studied in other research works. In particular, after performing hierarchical clustering
on the learning curves, three clusters of games have been found [25]. It is interesting
to study if it is possible to perform clustering starting from the data we collected
to reproduce the same clusters. If achieved, this will prove that the form of the
learning curves is correlated with some of the game’s characteristics. Furthermore,
by studying what makes games belong to the same cluster, it may be possible to
bring to light new insights on which game’s qualities affect the ToL.

5.1.2 Analyse more complex games
Even though the Atari dataset is a commonly used benchmark for the deep rein-
forcement learning model, an agent able to play Atari games is not very useful to
the solution of many real-world problems. Most of the modern games are vastly
more complex with respect to the Atari ones. For the prediction tools theorized in
this work to be more useful more complex and modern games have to be studied.
Due to the limited computational power at our disposal we have focused our research
on Atari games. The DQN model and the models derived from it have been proven
effective also on more complex games like Doom. Gathering and analyzing data from
more recent games could bring the creation of a more useful and precise prediction
tool.

43



Discussion

5.1.3 More advanced data analysis
Our data analysis has been focused to find a linear relationship between the ToL
and the games’ features. A linear correlation is the easiest to find and study. A
more detailed data analysis can be performed using more complex unsupervised
machine learning algorithms.
It is possible the relationship between the ToL and a subset of the games’ features
is not governed by a linear model. Studying the data using polynomial regression
models may discover a correlation that our linear analysis could not found. Therefore
a more complete data analysis may increase the precision of the model.

5.2 Conclusion

5.2.1 Summary
In this thesis, we tackled the problem of the high variance in the time needed to
train AI agents to play different videogames.
The goal is to identify which characteristics make a game complex to be learned by
an AI agent and how this complexity affects the time of learning. More precisely,
we have studied if it is possible to predict how long it takes for a selected model to
learn a game. This prediction is based solely on the game features.
For our research, the games selected are Atari games and the model selected is
Double DQN. DDQN is a deep reinforcement learning algorithm able to play at a
superhuman level Atari games.
We have achieved our goal by modifying an existing DDQN model to gathered data
from tens of Atari games during the training phase. The data collected describe
two main aspects of the game: the shape of the reward signals and the visual
component. The shape of the rewards is a key aspect of reinforcement learning.
Reward frequency and magnitude can heavily influence the model performance. The
visual component is considered because the DDQN uses as input the frame’s pixels.
We then used unsupervised machine learning techniques, like linear regression
analysis, to research the correlation between the game characteristics and the
training duration. The data analysis brought to light the presence of an inverse
correlation between the ToL and the coefficient of variation of the mean square
error taken between frames 60 frames apart. The correlation found differs from
our original hypothesis. Our idea was that the more the consecutive frames are
different from each other more easily the model would be able to learn the game.
We instead found that the average MSE is not a good indicator to forecast the
ToL. What matters is the variation of the variation of the frames. If the MSE of
adjacent frames is constant during the game, even if high, the model has a harder
time learning the game with respect to a game in which the MSE between adjacent
frames is variable.

44



Bibliography

[1] N. Shaker, G. Yannakakis, and J. Togelius, “Towards automatic personalized
content generation for platform games,” in Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, vol. 5, no. 1,
2010.

[2] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, and G. N. Yan-
nakakis, “Multiobjective exploration of the starcraft map space,” in Proceedings
of the 2010 IEEE Conference on Computational Intelligence and Games. IEEE,
2010, pp. 265–272.

[3] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic personalised
content creation for racing games,” in 2007 IEEE Symposium on Computational
Intelligence and Games. IEEE, 2007, pp. 252–259.

[4] G. Sviridov, C. Beliard, A. Bianco, P. Giaccone, and D. Rossi, “Removing
human players from the loop: Ai-assisted assessment of gaming qoe,” in IEEE
INFOCOM 2020-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2020, pp. 1160–1165.

[5] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[6] F. S. Melo, “Convergence of q-learning: A simple proof,” Institute Of Systems
and Robotics, Tech. Rep, pp. 1–4, 2001.

[7] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau, “An
introduction to deep reinforcement learning,” arXiv preprint arXiv:1811.12560,
2018.

[8] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no.
7553, pp. 436–444, 2015.

[9] “Convolutional neural network,” https:/en.wikipedia.org/wiki/
Convolutional{_}neural{_}network, accessed: 2021-02-15.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level
control through deep reinforcement learning,” nature, vol. 518, no. 7540, pp.
529–533, 2015.

[11] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with dou-
ble q-learning,” in Proceedings of the AAAI Conference on Artificial Intelligence,

45

https:/en.wikipedia.org/wiki/Convolutional{_}neural{_}network
https:/en.wikipedia.org/wiki/Convolutional{_}neural{_}network


Bibliography

vol. 30, no. 1, 2016.
[12] N. Justesen, P. Bontrager, J. Togelius, and S. Risi, “Deep learning for video

game playing,” IEEE Transactions on Games, vol. 12, no. 1, pp. 1–20, 2019.
[13] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially observable

mdps,” arXiv preprint arXiv:1507.06527, 2015.
[14] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. Pan-

neershelvam, M. Suleyman, C. Beattie, S. Petersen et al., “Massively parallel
methods for deep reinforcement learning,” arXiv preprint arXiv:1507.04296,
2015.

[15] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Du-
eling network architectures for deep reinforcement learning,” in International
conference on machine learning. PMLR, 2016, pp. 1995–2003.

[16] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”
in International conference on machine learning. PMLR, 2016, pp. 1928–1937.

[17] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and
N. de Freitas, “Sample efficient actor-critic with experience replay,” arXiv
preprint arXiv:1611.01224, 2016.

[18] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and
K. Kavukcuoglu, “Reinforcement learning with unsupervised auxiliary tasks,”
arXiv preprint arXiv:1611.05397, 2016.

[19] M. Bellemare, J. Veness, and M. Bowling, “Investigating contingency awareness
using atari 2600 games,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 26, no. 1, 2012.

[20] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo,
A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser et al., “Starcraft ii: A
new challenge for reinforcement learning,” arXiv preprint arXiv:1708.04782,
2017.

[21] Y. Wu and Y. Tian, “Training agent for first-person shooter game with actor-
critic curriculum learning,” 2016.

[22] C. E. Shannon, “A mathematical theory of communication,” The Bell system
technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[23] “Hcp@polito,” https://hpc.polito.it/, accessed: 2021-03-15.
[24] “Slurm worklod manager,” https://slurm.schedmd.com/documentation.html,

accessed: 2021-03-15.
[25] E. Emekligil and E. Alpaydın, “What’s in a game? the effect of game complexity

on deep reinforcement learning,” in Workshop on Computer Games. Springer,
2018, pp. 147–163.

46

https://hpc.polito.it/
https://slurm.schedmd.com/documentation.html

	Introduction
	Motivation
	Application of artificial bots in gaming industry
	Thesis's problem tackled and idea

	Outline of Thesis

	Preliminaries/Background
	Machine Learning
	Reinforcement learning
	Q-Learning
	Limits of classical reinforcement learning

	Deep Reinforcement Learning
	Deep Learning
	DQN
	DDQN
	Other models

	Deep Reinforcement Learning for video game playing
	Mapping DQN on games
	Atari dataset
	Other examples of games

	Correlation coefficients
	Pearson correlation coefficient
	Spearman's rank correlation coefficient

	Regression analysis
	Linear Regression


	Estimating game difficulty from synthetic data
	Methodology
	General description

	Which data can be gathered?
	Actions
	Reward
	MSE and what it means
	SSIM and what it means

	Data Elaboration
	VAR SD and CV and what they mean
	Entropy what it means

	Data gathering
	Games considered
	Data gathering procedure
	Running on HPC

	Procedure polishment
	Refine the data

	Data analysis

	Results
	Result analysis
	Correlation Coefficients results
	Regression Results

	Result discussion
	Model

	Discussion
	Future work
	Game clustering based on obtained data
	Analyse more complex games
	More advanced data analysis

	Conclusion
	Summary


	Bibliography

