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Abstract 

Nowadays, electricity is increasingly becoming the centre of sustainability and is 

revolutionizing the mobility of people. The future is electric. 

Electric vehicles have widely introduced themselves into modern society and will 

undoubtedly be the protagonists of the new urban and extra-urban mobility. 

Everything evolves. The world is constantly developing to make life better and 

easier. Electric bicycles and scooters, day by day, are taking root more and more in 

the daily mobility of people by reconstructing the concept of light urban mobility. 

Unfortunately, these vehicles, even if eco-sustainable, are not yet equipped with any 

system that allows drivers to recognize any dangers along the way that could 

jeopardize the safety of these vehicles. My thesis goes in this direction, with the aim 

of simplifying the way of getting around cities trying to make movements safer. 

Hence my thesis project, focused on the development of a smart sensor for obstacle 

detection. I immediately showed interest in the idea of designing a real-time sensor 

that could detect obstacles on the road and help the driver to avoid them. In 

particular, the creation of a sensor prototype and the development of the logic for 

its programming interested me a lot. 

The purpose of this work is to understand if it is possible to design a sensor able to 

correctly detect objects or road irregularities and to communicate with the user in 

real-time. In collaboration with Teoresi company, I created a POC (proof of concept) 

to prove its feasibility. 

The project started from scratch, so I had to take initiative on everything: make 

initial assumptions, choose and assemble the main and peripheral components, 

connect and design all the hardware, program the software by writing code and 

studying its logic, test the sensor under different conditions by analysing all the data 

and, finally, examine the results. Therefore, I had to take care of every single part of 

the project and this is the reason why, initially, I was a little bit scared, but then, I 

got very excited. 

 

 

 

 

 

 

 



6 
 

 

 



7 
 

Contents 

 
Introduction ............................................................................................................................. 11 

Preliminary Sensor Characterization .................................................................................. 13 

1.1 Use period ................................................................................................................. 13 

1.2 Sensor position ........................................................................................................ 14 

1.2.1 Front/Back choice ........................................................................................... 14 

1.3 Type of detected obstacles .................................................................................... 15 

1.4 Pointing distance ..................................................................................................... 15 

1.4.1 Speed and Stopping distance ........................................................................ 15 

1.4.2 Height e inclination ......................................................................................... 17 

Sensor search ........................................................................................................................... 19 

2.1 Distance sensor technology ................................................................................... 19 

2.1.1 Ultrasonic sensor ............................................................................................. 20 

2.1.2 Infrared sensor ................................................................................................ 21 

2.1.3 LiDAR sensor .................................................................................................... 22 

2.1.4 Technology comparison and choice ............................................................ 23 

2.2 LiDAR sensors .......................................................................................................... 25 

2.3 Sensor choice ............................................................................................................ 26 

2.3.1 LIDAR-Lite v3 ................................................................................................... 26 

Hardware Design ..................................................................................................................... 29 

3.1 LIDAR-Lite v3 characteristics ............................................................................... 29 

3.1.1 Connection and wiring ................................................................................... 31 

3.1.2 I2C interface ...................................................................................................... 32 

3.2 Elegoo Uno board .................................................................................................... 34 

3.2.1 Technical specifications ................................................................................. 34 

3.2.2 Communication between Elegoo UNO and LIDAR -Lite v3 ...................... 36 

3.3 Other components ................................................................................................... 38 

3.3.1 LCD Display ....................................................................................................... 38 

3.3.2 RGB Led ............................................................................................................. 40 

3.3.3 Passive buzzer .................................................................................................. 41 

3.3.4 SD Card Reader ................................................................................................ 41 

3.3.5 Power Bank ....................................................................................................... 42 

3.4 Final hardware architecture ................................................................................. 44 

Software Programming .......................................................................................................... 47 



8 
 

4.1 Microcontroller configuration .............................................................................. 47 

4.1.1 Development environment ........................................................................... 48 

4.2 Sensor programming .............................................................................................. 50 

4.2.1 Control registers .............................................................................................. 55 

4.2.2 Configuration of the registers ....................................................................... 57 

4.3 Measurement errors ............................................................................................... 60 

4.3.1 Data filtering .................................................................................................... 60 

4.3.2 Returned signal strength ............................................................................... 62 

4.4 Other components programming......................................................................... 65 

4.4.1 Display programming ..................................................................................... 65 

4.4.2 Led programming ............................................................................................ 65 

4.4.3 Buzzer programming ...................................................................................... 66 

4.4.4 SD card reader programming ....................................................................... 67 

4.5 Obstacle detection logic ......................................................................................... 69 

4.5.1 Logic programming ......................................................................................... 73 

4.5.2 Ditch/Bump detection .................................................................................... 75 

4.5.3 Ditch/bump code description ....................................................................... 77 

4.5.4 Possible problems in depth computation ................................................... 79 

4.5.5 Step detection ................................................................................................... 79 

4.5.6 Steep descent or escarpment detection ...................................................... 82 

4.5.7 Generic stationary obstacle detection......................................................... 84 

4.5.8 Moving obstacle detection ............................................................................. 85 

Prototype tests ......................................................................................................................... 87 

5.1 Prototype installation ............................................................................................ 87 

5.2 Phase I: Free road measurements check ............................................................ 90 

5.2.1 Asphalt road ..................................................................................................... 90 

5.2.2 Dirt road ............................................................................................................ 91 

5.2.3 Pavé .................................................................................................................... 93 

5.3 Phase II: obstacle recognition ............................................................................... 94 

5.3.1 Cylindrical obstacle ......................................................................................... 94 

5.3.2 Set of obstacles ................................................................................................. 95 

5.3.3 Road bump of 10 cm ....................................................................................... 97 

5.4 Phase III: steps recognition ................................................................................... 98 

5.4.1 Sidewalk ............................................................................................................ 98 

5.5 Phase IV: sensor complete logic ......................................................................... 101 

5.5.1 Generic stationary obstacle ......................................................................... 101 



9 
 

5.5.2 Moving obstacle ............................................................................................. 103 

5.5.3 Climatic conditions influence ...................................................................... 104 

5.5.4 Obstacle reflection problems ...................................................................... 106 

Conclusions ............................................................................................................................. 107 

References .............................................................................................................................. 109 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

Introduction 
 

 

 

In recent years, environmental problems due to 𝐶𝑂2 generated by urban traffic have 

led many cities to block entire categories of vehicles with emissions above the limits. 

This is the reason why many companies have begun to invest more in electric 

vehicles, allowing for a rapid and strong introduction of eco-sustainable light 

mobility, especially within large metropolitan cities. 

In addition, due to the serious covid-19 pandemic, after the period of the first 

lockdown, in Italy for example, the Ministry of the Environment provided the 

"Mobility Bonus": a measure introduced with the aim of encouraging eco-

sustainable private mobility. 

Electric scooters, in particular, are among the protagonists of post-lockdown 

mobility. The convenience of these vehicles, their low costs and the possibility of 

social distancing have led to a boom in both purchases and the flowering of sharing 

services. [2] This choice, also linked to independence and fluidity in travel, has led 

many people, especially commuter workers, not to privilege either public transport 

such as subways and buses, or private vehicles and taxis (subject to traffic and 

parking).  

But, on the other hand, with the increasing use of electric two-wheeled vehicles, the 

number of accidents involving these vehicles has also grown rapidly. The causes of 

these accidents are due to the dangers that, very often, the driver of the vehicle 

encounters during the journey travelled, starting from obstacles due to the nature 

of the carriageway up to moving obstacles such as pedestrians and motor vehicles 

that can represent a much more unpredictable danger. If we exclude the accidents 

caused by driver distraction, autonomous falls are the most recurrent cause, due to 

the vehicles’ nature which, being very unstable, suffer from many road bumps such 

as holes and disconnections. [2] 

Each year, the Central Statistics Service of Accident Insurance (SSAINF) records 

around 31,000 cases of bicycle accidents. 
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Suva, one of the leading companies for Swiss compulsory accident insurance, 

analyzed the accident reports and found that in about half of the cases the accident 

was almost always due to a specific danger. 

According to statistics, the most frequent danger for cyclists is represented by 

sidewalks and cracks in the road surface. But even the tram tracks represent a 

considerable danger together with trees, shrubs, roots, escarpments or speed 

bollards. In addition to these, there are accidents caused by other motor vehicles, 

other cyclists or other people. In these cases, predictive driving is important to allow 

to identify in time the dangers and moves of other road users. [3] 

It often happens, however, that cyclists do not realize the extent of the danger or can 

get distracted while driving. Therefore, the goal of the project is to create a sensor 

able to detect, in real time, the dangers that can put the driver at risk, becoming the 

cause of an accident. 

To verify the feasibility of our idea, we will create a POC (proof of concept). The 

problem will be analyzed and studied from all points of view, a prototype of the 

sensor will be created and, at the end, the necessary tests to verify its operation will 

be performed. 
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Chapter 1 

 
 

Preliminary Sensor 

Characterization 

The idea of the project was born for my thesis purposes, therefore, I had to start 

from the scratch from all points of view. Before proceeding to search for the sensor, 

I analyzed and chose the initial conditions that could best characterize it. To draw 

up the guidelines useful for sensor design, I initially studied all the key points of the 

project to be developed and the characteristics necessary to define it, including: 

 

• Use period 

• Sensor position 

• Pointing Distance 

• Type of detected obstacles 

 

 

1.1 Use period 

Electric scooters and bicycles are vehicles that can be used at any time, both day and 

night, and throughout the year (although the hottest periods are preferred). 

Furthermore, the climatic conditions represent a very important factor that could 

greatly influence the measurements of a sensor and, despite the low percentage of 

use of these means in unfavorable conditions (such as fog, rain or snow), it must, 

however, be taken into consideration. and I need to analyze the behavior of the 

sensor in such situations, since it is precisely in these climatic conditions that the 

risks and dangers on the road increase. Therefore, there is a need for a sensor 

capable of being effective all day in favorable climatic conditions, and possibly, even 

in unfavorable ones. 
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1.2  Sensor position 

The dangers that the driver may encounter while driving may arise in front of him 

(under his eyes) and, sometimes, even behind him. 

The rear-end collision by cars or other motor vehicles, in addition to being very 

dangerous (if not lethal), due to the great disparity in mass between the two 

vehicles, is also unpredictable, since the danger presents itself behind the driver. 

The choice of the sensor position becomes, therefore, relevant to discriminate the 

type of obstacles/dangers that may arise. 

 

 

1.2.1  Front/Back choice 

The sensor project is aimed at both types of electric vehicles, and must therefore be 

able to be used on both scooters and electric bicycles. 

Despite the similarity between the dangers to which the two electric vehicles are 

exposed, there are, however, some structural differences that distinguish them. 

In the electric scooter, unfortunately, the rear is almost inexistent, since it is 

represented by the rear wheel alone plus the fender, if any. The positioning of a 

sensor at a few centimeters from the roadway would therefore become 

uncomfortable and ineffective, as well as more easily breakable. 

Opposite considerations must be done for the front of the two vehicles which, on the 

other hand, are somewhat similar due to the presence of the handlebar, at a height 

of about 1 meter. A large number of these electric vehicles already have a small 

display on it that indicates the speed or the state of charge of the battery and so, it 

could also house the sensor. 

 

 

 
Fig. 1.2.1 : Representative pics of the two vehicles 
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1.3 Type of detected obstacles 

The obstacles that the driver may encounter along the roadway are not few. 

Predictive guidance is important for anticipating dangers that can suddenly arise. 

Many accidents are due to unevenness in road surface which can manifest in many 

ways: 

 

• Shrubs e roots 

• Tram tracks 

• Ditches 

• Road Bumps 

• Sidewalks and steps 

 

Others, instead, are due to moving obstacles such as animals, people or other 

vehicles which, being less predictable, can be the most dangerous. [3] 

The choice made for this project was to start from the recognition of obstacles of 

different materials and sizes, proceeding, then, towards a discrimination between 

the most frequent obstacles in a usual urban ride, such as ditches, bumps, 

steps/sidewalks and obstacles of larger size. 

 

 

1.4 Pointing distance 

Distance range is a fundamental feature in a measurement sensor and is one of the 

key factors in sensor design. 

“But… why are we talking about pointing distance and not about maximum distance 

range?” 

To detect the different obstacles, in fact, the key idea was to tilt the sensor down, the 

way to cross the roadway at a precise distance. In this way, we obtain a constant 

average distance between the sensor and the ground, which we call pointing 

distance, and on whose variation the whole logic of the project is concentrated. 

 

 

1.4.1  Speed and Stopping distance 

In order to correctly prevent obstacles and, thus, calculate the pointing distance, the 
speed and stopping distance of the vehicles must be taken into account. 
The law of 28 February 2020 established the equation of electric scooters with 
cycles, placing constraints on the continuous nominal power of the vehicle (not 
exceeding 500 W) and for the maximum speed that cannot exceed 25 km/h. [4] 
Therefore, taking this speed as the maximum limit, we calculated the maximum 
stopping distance, to understand how soon the obstacle must be detected so that the 
driver has the sufficient time to dodge or stop. The stopping distance is calculated 
with the following formula: 
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𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑑𝑖𝑡𝑎𝑛𝑐𝑒 =  𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒 +  𝑏𝑟𝑎𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

 

The reaction time is 1 second but can vary, depending on the driver's clarity and his 
reflexes. 
The braking distance is the distance traveled by a vehicle from the moment the 
braking action begins until it stops completely and depends on many factors, 
including: 

• Speed 
• Deceleration 
• Friction coefficient between tires and road 
• Vehicle mass 
• Road slope 

 
 
There are many factors to consider, but, for simplicity, the following formula has 
been used: 

 

𝑏𝑟𝑎𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  =   
𝑣2

2 ∙ 𝑔 ∙ 𝜇
 =   

(6,94 𝑚/𝑠)2

2 ∙ 9,8 𝑚/𝑠2 ∙ 0,8
 =   3,07 𝑚 

 

where, the earth gravity acceleration value ‘g’ is used as deceleration under braking 
and the friction coefficient ‘𝜇’ is equal to the optimal asphalt condition value, while 
‘v’ is the vehicle speed. It should be noted that the friction coefficient can be reduced 
from 0.8 to a value of 0.05 in icy road conditions, thus, making the braking distance 
16 times greater. [5] Taking into account the reaction space at maximum speed and 
at braking time t equal to 1 second, we obtain: 
 

𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒 =   25 𝑘𝑚/ℎ ∙  1 𝑠 =  6,94 𝑚  

 

𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  6,94 𝑚 +  3,07 𝑚 =   10,01 𝑚 
 

The stopping space also represents the minimum distance in which an object must 
be found in order to be avoided. The sensor, therefore, will be positioned so that the 
beam points the road at a distance of 10 m, as reported in the calculations just made. 
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1.4.2  Height e inclination 
The height and the inclination of the sensor both depend on the pointing distance. 
The best position for the sensor, of course, will be the highest possible because this 
allows to obtain the pointing distance with the greatest angle of inclination. If, for 
example, you think of positioning the sensor at the bottom, the angle of inclination 
is reduced so much that the direction of the sensor becomes almost parallel to the 
ground. If you take into account the oscillations of the vehicle while driving, you 
immediately understand that this brings to have a high number of errors in the 
measurements. 
The graph (indicative) in Fig. 1.4.2 shows how, as the angle of inclination α 
decreases, the pointing distance d becomes ever closer to the value of the stopping 
space. 
 

 
 

Fig. 1.4.2 : Difference between top (red) and bottom (green) sensor placement 
 
 
 

It was, therefore, chosen to position the sensor on the handlebar, where the 
maximum height is reached for both vehicles. 
Once the sensor height has been established, which on average is about 1 m (based 
on the height of the handlebar) and the maximum stopping distance just computed, 
it is finally possible to calculate the pointing distance 'd' and the inclination of the 
sensor 'α' by applying trivially the theorems of right triangles. 
 
 

𝑑 =   √(10 𝑚)2 + (1 𝑚 )2  =   10,04 
 
 

1 𝑚

sin (α)
 =  

𝑑

sin (90°)
         →          α =   sin−1  (

1 𝑚 ∙ sin(90°)

𝑑
)  =   5,68° 

 
The value of α is obviously a theoretical and ideal value which in reality is neither 
feasible nor repeatable. In the test phase, further on, we will try to get as close as 
possible to this ideal value. It should also be noted that although the sensor has been 
positioned at the maximum height, the pointing distance and the stopping space 
differ by only 4 cm. This means that the sensor could be subject to oscillations that 
cause non-negligible measurement variations. This structural constraint could be a 
problem for sensor operation. Later it will be explained how the problem was 
partially avoided via software with an algorithm that filters the data received from 
the sensor. 
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Chapter 2 

 
 

Sensor search 

The number of available sensors on the market is increasing rapidly, due to the great 

competition that has now been created in the IoT field. With the presence of a large 

number of sensors on the market, it becomes essential to dedicate time to this 

choice, as it allows us to select the most appropriate and useful features for the final 

purpose. The search for the distance sensor to be used for obstacle detection is one 

of the most important phases of the project, since all the study that will be done 

during the thesis, derives from the sensor data. 

 

 

2.1 Distance sensor technology 

Distance sensors can solve an incredible variety of problems and, depending on the 

application, it is necessary to select the distance sensor with the most suitable 

measurement technology. 

The principle of operation of distance sensors is very similar, but differs in the 

construction method and in the technology used. The distance of the detected 

obstacle depends on the variation between the emission of a signal and its return. 

This variation can be measured either through the time of the return signal or 

through the intensity of the return signal. 

After extensive research, the technologies on the market turned out to be numerous. 

Excluding proximity sensors and all technologies with a distance range of less than 

one meter, the main remaining ones are: 

 

• Ultrasonic Sensor 

• Infrared Sensor 

• LiDAR Sensor 

   

Radar sensors were excluded from the list, since, a priori, they were considered 

unsuitable for our needs. 

Radar signals work better with obstacles that are far away from the receiver (much 

more than 10 meters). Their waves have dimensions that don’t go below the 

millimeter allowing them to be effective in any climatic condition but making it 

difficult to discriminate obstacles (which is our purpose), especially if they are in 
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motion. In fact, although the millimeter can be considered a relatively small measure 

in everyday life, in reality in the spectrum of electromagnetic waves it is one of the 

largest wavelengths, if we consider that the wavelength of UV rays is 100,000 times 

smaller. Finally, we also need to take into account the cost of a radar sensor that is 

relatively high. 

 

  

2.1.1  Ultrasonic sensor 
The ultrasonic sensor, also known as “Sonar”, detects the objects distance by 

emitting high frequency ultrasonic waves ( >20 kHz ) that are inaudible to the 

human ear (which perceives sounds between 20 Hz and 20 kHz). 

Depending on the type of sensor used, distances can vary, from a few centimeters 

up to tens of meters. 

Ultrasonic sensors emit ultrasonic pulses that travel in a cone-shaped beam using a 

vibrating device known as a piezoelectric transducer, which generates the 

ultrasonic wave. [6] 

 

 

Fig. 2.1.1 : Ultrasonic sensor          

 

The ultrasonic pulses are reflected by an object and the generated echo is received 

by the ultrasonic sensor and converted into an electrical signal by the piezoelectric 

transducer. This principle is known as sound propagation time. The sensor 

measures the interval between the ultrasonic pulse emitted and the echo received 

and calculates the distance to the object using the speed of sound in the air, which 

at room temperature is approximately 344 m/s. 

Ultrasonic sensors are able to detect objects of different material regardless of their 

shape, color or state even if some objects could limit the ultrasonic sensors action 



21 
 

range; for example, objects with a large, smooth and sloping surface, or objects made 

of porous materials. 

In addition to the surface properties, the sensing distance of an ultrasonic sensor 

also depends on the object angle. The longest sensing distances are achieved with 

objects that have a flat surface (standard reflector) placed at an exact right angle 

(90°) to the sensor axis. Very small objects or objects that reflect sound only partially 

reduce the detection distance. [7] 

 

2.1.2  Infrared sensor 

The infrared sensor detects the distance by emitting an IR ray, invisible to the 

human eye, and calculating the angle of reflection of the ray. There are different 

types of infrared transmitters based on their wavelengths, output power and 

response time. 

The IR sensors have two lenses: an IR LED emitter lens that emits a light beam and 

a photodiode that is sensitive to the position on which the reflected beam will fall. 

IR distance sensors work according to the triangulation principle; they measure the 

distance based on the angle of the reflected ray. 

 

   

Fig. 2.1.2 : Infrared sensor 

 

 

The infrared light emitted by the IR LED emitter generates a light beam that hits the 

object and is reflected from a certain angle. The reflected light, then, reaches the 

photodetector which determines the distance of the reflecting object. [8] 

The photodiode, in fact, is sensitive to the light emitted by the LED. The resistance 

of the photodiode and the output voltage change in proportion to the received light; 

therefore, the sensor defines the distance based on the intensity of the received 

signal. [9] These sensors are efficient both day and night even if some sensors can be 
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affected by sunlight, especially if it is directed against the photodiode. Common 

infrared sensors tend to have small dimensions and are able to measure the distance 

of objects that have complex surfaces, but, although very accurate, they have not a 

very high reading frequency. Also, the action range of infrared sensors is only a few 

meters (usually <5m).  [8] 

 
 

2.1.3  LiDAR sensor 
The acronym LiDAR (Light Detection and Ranging) identifies the technology that 

measures the distance from an object by illuminating it with a laser light and which, 

at the same time, is able to return high-resolution three-dimensional information on 

the surrounding environment. The LiDAR sensor can be considered a laser distance 

sensor and measures the distance of obstacles by emitting light waves (instead of 

sound or radio waves). The distance to the object can be determined by measuring 

the elapsed time between the emission of the pulse and the reception of the 

backscattered signal. 

Knowing that the propagation speed of light is fixed (c ≈ 300,000 km / s), it’s 

possible to easily calculate the time it takes for a light beam to go from a source to a 

(reflective) target and to go back towards the light detector (placed next to the 

emitting light source). 

 

 

Fig. 2.1.3: LiDAR sensor 

 

This measurement principle is usually referred to as “Time of Flight” (ToF). The time 

of flight can be obtained by sending an impulsive signal using a laser, but also by 

measuring the phase and frequency of the reflected light signal with respect to a 

reference signal. [10] 

LiDAR sensors have a very high resolution. In fact, light has wavelengths λ shorter 

than those of radio waves, infrared or ultrasound waves and this increases the 
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detection resolution allowing it to recognize objects of any shape and size. 

Furthermore, the LiDAR reading frequency is very high and guarantees rapidity in 

measuring distances. 

The sensor sends and receives laser pulses in nanoseconds, obtaining a high number 

of measurements per second. This has considerable importance as it allows to detect 

even moving obstacles, where quick measurements are needed. [8] 

 

2.1.4  Technology comparison and choice 

Analyzing and choosing the most suitable technology is essential to reach the right 

compromise between the advantages and limitations that it can involve, since it 

allows the designers the best choice for their application. Key features are listed 

below:  

• Distance range 

• Resolution 

• Reading Frequency 

• Environmental conditions dependency 

• Obstacle complexity dependency 

• Costs 

 

The ultrasonic sensor is not affected by the color and transparency of the object and 

works well even in dark places as it uses sound waves, but has a low reading 

frequency and, above all, a very limited range. The same considerations can be made 

for the infrared sensor that can detect objects with complex surfaces, even in the 

dark, but has a range limited to only few meters away. 

Both sensors, ultrasonic and infrared, have a lower reading frequency than the 

LiDAR sensor since their principle of operation is based on waves with a much lower 

λ wavelength, thus allowing to carry out much less measurements per second. 

The LiDAR sensor, therefore, is the most complete and performing as it has a very 

high range (some even reach more than 1000 m) and a high reading frequency, such 

as to allow the detection of objects that move very quickly, as anticipated in the 

previous paragraph. [8] 

Furthermore, it is necessary to take into consideration the study on the sensor 

positioning carried out in the previous chapter where we found the need to place 

the sensor at the maximum vehicle height (1m), thus making it possible to reach a 

pointing distance of 10 m only with an inclination angle α not exceeding 6°. 

Such a small inclination angle greatly affects the efficiency of a distance sensor, 

making it more difficult to obtain correct measurements. It is especially in this case 

that a higher reading frequency, such as that of LiDAR sensors, becomes 

fundamental, since a greater number of readings leads to a greater quantity of non-

erroneous measurements.  
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Tab. 2.1.4: Comparison of technologies 
 

 

As can be seen from the table (Tab. 2.1.4), LiDAR technology is the best from almost 

all points of view. What makes difference is, above all, the high resolution and the 

speed of measurement, even at long distances, which allow to discriminate many 

more objects than other technologies, whatever their size or shape. 

LiDAR, however, is very expensive and this represents, as mentioned before, the 

only concrete drawback of this technology. On the other hand, this project does not 

have as its purpose the search for an inexpensive sensor but has the single goal of 

verifying the feasibility of a sensor effective for detecting obstacles. Despite its cost, 

therefore, LiDAR will be the technology on which we will lay the foundations of the 

whole project. 

 

 

 

 

 

 

 

 Ultrasonic Infrared LiDAR 

Suitability for Long 

Range Sensing 
No No Yes 

Resolution High 
Variable according 

to distance  
Very High 

High reading 

frequency 
No No Yes 

Sensitive to external 

conditions 
Yes No No 

Suitability to use for 

complex objects 
No Yes Yes 

Costs Low Low High 
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2.2 LiDAR sensors 

LiDAR technology, acronym for Light Detection and Ranging or, sometimes, 

expressed as Laser Imaging Detection and Ranging, is a technique that today, is used 

in everything related to distance measurement, as it allows you to measure, in an 

extraordinarily fast and precise manner, the distance between the measuring point 

and the destination point. 

These sensors are often used as scanners: they can easily "read" the territory by 

identifying its hills, ditches, their depth and so on; for this reason, in recent years 

this technology has been increasingly used in mapping the morphologies of the 

territory, helping to establish the level differences between the terrains. With the 

data provided by the LiDAR it is possible to create numerous Digital Surface Models 

(DSM) with a very high precision and a very small margin of error (it is not a 

coincidence that this margin is often even measured in a few centimeters).  

The laser scanning technique allows you to reproduce the environment in an 

extremely detailed manner. For this reason, today it is one of the most widely used 

localization and navigation systems, so much so that people make more and more 

extensive use of it and its applications are greatly increasing. [11] 

Even the automotive sector, therefore, has undergone a profound innovation for 

some years thanks to this new technology that has become fundamental in the 

development of ADAS systems (acronym for Advanced Driver Assistance Systems): 

advanced systems that assist vehicles making them automated and safe. The LiDAR 

sensor, along with other complementary sensors, helps achieve complete 

automation as it provides highly accurate data. The accuracy of the measurements 

and the high range of this sensor allow it to detect objects very quickly, therefore, it 

is able to provide help to the driver in real time. [12] 

Unlike the automotive field, no particular driver assistance systems have yet been 

developed in two-wheeled vehicles. The LiDAR sensor could provide the driver with 

quick information on obstacles along the way helping him to avoid them. 

It can certainly be admitted that this technique is one of the most innovative and 

useful ever. More and more people are turning their attention to LiDAR technology, 

even if it is still a technology that has the drawback of not being cheap. [11] 

But many companies are already trying to cut the its production costs… 
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2.3 Sensor choice 

After considering and analyzing all available sensor technologies and identifying 

LiDAR as the best, we moved on to a market research. 

Although it is still an emerging technology, a fair amount of LiDAR sensors is already 

available on the market and it was necessary to choose the one that represented the 

best compromise in terms of characteristics, in particular, distance range, cost and 

performance. 

After careful research, the characteristics of various sensors on the market were 

evaluated and the final choice fell on the "LIDAR-Lite v3". 

The choice was heavily influenced by the ability to customize and configure the 

sensor through parameters, used for the distance measurement algorithm, including 

range, speed and sensitivity. Furthermore, since it is one of the most commercialized 

LiDAR sensors, lots of information is available online and this is, undoubtedly, very 

relevant for a quick and easy implementation and integration of the device. 

 

 

 
 

Fig. 2.3.1 : LIDAR-Lite v3 

 

 

2.3.1  LIDAR-Lite v3 

The LIDAR-Lite v3 (Fig. 2.3.1) is a compact and high-performance optical distance 

measurement sensor and uses a single-chip signal processing method with minimal 

hardware. This sensor is highly configurable by the user so you can adjust between 

accuracy, operating range and measurement time. It can be used as a building block 

for applications where small size, light weight, low power consumption and high 

performance are important factors, such as robots and drones. [13][14] 
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In the LIDAR-Lite v3, a laser beam is emitted from the transmitter and the time it 

takes for reflection to go back is measured by the receiver. The distance can be 

calculated using the following equation: 

 

𝑑 =  
𝑐 ∙ 𝑡

2
 

 

where, 'd' is the distance of the reflected object in meters, 'c' is the speed of light (3.0 

x 108 m/s) and 't' is the time it takes (in seconds) for the light to leave the 

transmitter, bounce off the object and return to the receiver. Finally, it divides by 2 

since the light must make a double trip (towards the object and back). [10] 

The unique signal processing method transmits an encoded signature and searches 

for that signature in the return signal, enabling highly reflective detection with eye-

safe laser power levels. 

Before performing the first measurement, the LIDAR-Lite v3 performs a correction, 

or "bias correction", allowing you to refine the accuracy of the measurements that 

may vary based on changes in ambient light. This allows for maximum sensitivity. 

The device thus sends the signal directly from the transmitter to the receiver, setting 

the delay for a reference distance and periodically recalculating this delay after 

several measurements. 

After making the correction, the device performs a series of acquisitions to obtain a 

measurement. It should be borne in mind that the LIDAR-Lite v3 has a very high 

reading rate and is able to provide a large number of measurements in a few seconds 

(including bias correction). [15] 

In the following chapters we will analyze all the hardware and software features 

related to the LiDAR and the rest of the components used to complete the sensor 

project. 
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Chapter 3 

 
 

Hardware Design 
The purpose of this project phase is to create the sensor prototype that will be 
installed on an electric scooter or bicycle to study and test its operation. The creation 
of a prototype allows the designer to better analyze the interaction between 
hardware and software and to make all the necessary changes to correctly study the 
operation of the device and correct any problems that may arise. After having found 
the right measurement sensor and having characterized it at its best, I analyzed all 
the physical and electrical characteristics of the sensor and the communication 
protocol that allows the LIDAR-Lite v3 to communicate with the microcontroller and 
consequently with the user. In particular, the prototype created is composed of 
several devices including: 
 

• LIDAR-Lite v3 sensor 
• Elegoo Uno R3 microcontroller 
• Display LCD 
• Led RGB 
• Passive Buzzer 
• SD card reader 
• Power bank 
• Other passive elements 

  

 

3.1 LIDAR-Lite v3 characteristics 

The LIDAR-Lite v3 sensor is very light and compact. Its weight, of only 22 g, and its 
small size allow it to be used in many applications (Tab 3.1a). The device is equipped 
with a 905 nm (1.3 W) single-stripe laser transmitter, with an optical aperture of 
12.5 mm (Tab 3.1b). 
The diffusion of the laser beam depends on the distance of the obstacle: for very 
small distances (<1m) the diameter of the beam is as large as the size of the lens 
while, for distances greater than one meter it can be estimated simply using the 
following equation: 
 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

100
= 𝑙𝑎𝑠𝑒𝑟 𝑏𝑒𝑎𝑚 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑡 𝑡ℎ𝑎𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

 
The spread of the beam is about 8 mrad (~ 0.5 °). So, for example, at a distance of 10 

meters, as in our case, the laser beam will have a diameter of 10 centimeters. [14] 
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Regulatory Approvals: CLASS 1 LASER PRODUCT CLASSIFIED EN/EIC 60825-1 2014. 

This product is in conformity with performance standards for laser products under 21 

CFR 1040, except with respect to those characteristics authorized by Variance Number 

FDA-2016-V-2943 effective September 27, 2016. [15] 
 
 
In short, as regards the safety of the laser beam, Class 1 indicates its safety under all 
conditions of common use. 
 
 

Specifications Measurement 

Size 20 x 48 x 40 mm 

Weight 22 g 

Operating Temperature -20 a 60 °C 

 
Tab 3.1a: Physical Property 

 

 

Specifications Measurement 

Wavelenght 905 nm (nominal) 

Total laser power 1.3 W 

Beam diameter at laser aperture 12 x 2 mm 

Divergence 8 milliradian 

 
Tab 3.1b: Laser Property 

 

The Lite-v3 requires a voltage between 4.5 and 5.5 V DC (5 V nominal) with a power 

consumption of 105 mA during an acquisition which becomes 135 mA in continuous 

operation (Tab 3.1c). Therefore, it shows a very low energy consumption. 

 

 

Specifications Measurement 

Power 
5 Vdc nominal 
4.5 Vdc min, 5.5 Vdc max. 

Current 
105 mA idle 
135 mA continuous operations 

 
Tab 3.1c: Electrical Property 
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The sensor has a laser beam that reaches 40m with an accuracy of ± 10cm, which is 

reduced to 2.5cm for distances of less than 5m. 

The update rate of the LIDAR-Lite v3, in normal operation, is typically 270 Hz, but if 

it is used in "fast mode" it reaches 650 Hz and, for small distances, it also reaches an 

update rate greater than 1000 Hz, that is 1000 acquisitions per second. [15] 

Since a measurement, by default, is processed over 5 acquisitions, the sensor 

provides a large amount of measurements in a short time. The number of 

measurements per second will be estimated later in the debugging phase.  

 

 

 

Specifications Measurement 

Range (70% reflective target) 40 m 

Resolution ± 1 cm 

Accuracy < 5 m ± 2.5 cm typical* 

Accuracy ≥ 5 m ± 10 cm typical 

Update Rate (70% Reflective target) 
270 Hz typical 
650 Hz fast mode** 
> 1000 Hz short range only 

Repetition rate 
∿50 Hz default 
500 Hz max 

 
* Non linearità presente sotto 1 m 
** Sensibilità ridotta 

 

 

Tab 3.1d: Performance 

 

 

3.1.1  Connection and wiring 
The sensor can be connected to the microcontroller via a rectangular electric latch-

lock port that connects the sensor to a 6-wire cable (Tab 3.1.1). 

The wires have different colors in order to be more easily identified within the 

circuit: in particular, red and black are used for power supply, as is commonly the 

case, while green and blue are used for the I2C connection. 

Instead, the other 2 wires, orange and yellow, respectively represent the enabling of 

the power supply (via internal pull-up) and the control of the connection mode. [14] 
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Wire Color Function 

  

Red 5 V DC (+) 

Orange Power enable 

Yellow Mode control 

Green I2C SCL 

Blu I2C SDA 

Black Ground (-) 

 
Tab 3.1.1: Connections 

 

As previously anticipated, there are two configurations for this device: 

 

• I2C – serial communication bus between device and microcontroller 
 

• PWM – bidirectional signal transfer method that sends acquisitions and 

receives the distance measurement via the Mode Control pin. 

 

According to the chosen communication mode, there is a different hardware 

configuration of the device, in order to optimize the circuit at an electrical level. 
In this project, we will use the I2C serial interface. 

 

3.1.2  I2C interface 
The LiDAR Lite v3 sensor can be connected to an I2C bus as a slave, under the control 
of an I2C master device. Supports fast data transmission (fast mode) at 400 kHz. The 
I2C bus operates internally at 3.3 Vdc. An internal level change allows the bus to 
operate at a maximum of 5 Vdc. The internal 3 kΩ pull-up resistors ensure this 
functionality and allow the I2C host a simple connection. 
The device has a 7-bit address (128 possible different addresses) with a default 

value of 0x62. The effective 8-bit I2C address is 0xC4 for writing and 0xC5 for 

reading. [15] 

 
 
 
I2C protocol 

The I2C protocol (Fig. 3.1.2) uses a bus with a clock signal (SCL) and a data line (SDA) 
and 7 possible addressing bits. A bus has two types of nodes: 

• Master – the device that outputs the clock signal 
 

• Slave – the node that synchronizes on the clock signal without being able to 
control it 



33 
 

You can have multiple slaves and multiple masters connected, but in our case, we 
only have one on each side. The master and the slave will be, respectively, the 
microcontroller and the LIDAR-Lite v3. 
 
 

 
 

Fig. 3.1.2: I2C serial protocol 

 

In the following points there is a brief description that explains how the I2C protocol 
works and how reading and writing occurs in a communication. 
 

1. The master initiates the data transfer by establishing a start configuration, 
that is, when a high-to-low transition occurs on the SDA line while SCL = 1. 
The next byte is the address byte, which consists of 7 bits of address followed 
by the read/write bit (1/0) with ‘0’ status indicating a write request. The 
write operation is used as the initial stage in both read and write operations. 
 

2. The data is transmitted on the bus in a 9-bit sequence (8 data bits plus an 
acknowledgment bit). The transaction on the SDA line must occur when 
SCL=0 and remain stable when SCL = 1. 
 

3. The data byte follows the address byte and is saved in the I2C control register 
with the address of the first register to be read (bit 5:0) together with the 
flags for the automatic increase of the register (bit 7). 
 

4. If a read operation is required, a "stop bit" is inserted by the master at the 
end of the first data frame followed by the initialization of a new start 
configuration, i.e. the address of the slave with the "read bit" set to 1. The new 
address is followed by the reading of one or more bytes of data. 
After the slave has received confirmation of the address validity, the master 
releases the SDA line. At the end of the data reception, the master sends an 
“acknowledge bit” before continuing the cycle. 

 
5. To continue with a write operation, Step 3 is followed by one or more 8-bit 

blocks with the slave sending an "acknowledge bit" at the end of each 
successful transfer. At the end of the write cycle, the master performs a stop 
configuration to end the operation. [15] 
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3.2 Elegoo Uno board 

ELEGOO UNO R3 (Fig. 3.1.2) is a microcontroller based on the ATmega328. It has 14 
digital input / output pins (6 of which can be used as PWM outputs), 6 analog inputs, 
a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header and a 
reset push button. 

 

 

Fig. 3.2: Elegoo UNO R3 Board 

 

Contains everything needed to support the microcontroller; it is sufficient to 
connect it to a computer with a USB cable or power it with an AC-DC adapter or with 
a battery. The UNO card differs from all previous cards in that it does not use the 
USB to serial FTDI driver chip. Instead, it has the Atmega8U2 programmed as a USB 
to serial converter. 
The UNO version (1.0) and version 1.1 are the reference versions of Arduino. The 
Uno is the latest in a series of Arduino USB boards and is the reference model for the 
Arduino platform. [16] 

 
 

3.2.1  Technical specifications 
 

Power Supply 
Elegoo UNO can be powered via USB connection or with an external power supply. 
The power source is automatically selected. 
In our project, the microcontroller was powered in both ways, depending on the 
need. During the programming of the microcontroller, it was powered via USB 
connection while in the test phase a power bank was used to facilitate the tests on 
the vehicle. 
The board can operate on an external 6 to 20V power supply. However, if powered 
with less than 7 V, the 5 V pin may supply less than 5 V and the board may be 
unstable. If more than 12 V are used, the voltage regulator may overheat and damage 
the board. The recommended range is, therefore, between 7 and 12 V.  
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The power pins are as follows:  
 

• VIN. The input voltage to the Arduino board when using an external power 
source (as opposed to the 5V provided by the USB connection). 
 

• 5V.  The regulated power supply used to power the microcontroller and 
other components on the board. It can be supplied by USB or another 
regulated 5V power supply. 
 

• 3V3. A 3.3 V power supply generated by the on-board controller. The 
maximum current draw is 50 mA. 
 

• GND.   Ground pin 
 

• IOREF.   This pin on the Elegoo board provides the voltage reference with 
which the microcontroller operates. [16] 

 
 

Specifications Measurement 

Operating Voltage 5 V 

Input Voltage (recommended) 7-12 V 

Input Voltage (limit) 6-20 V 

Digital I/O Pins 14 

PWM Digital I/O Pins 6 

Analog Input Pins 6 

DC Current for I/O Pin 40 mA 

DC Current for 3.3V Pin 50 mA 

Flash Memory 
32 KB (ATmega328) of which 
0.5 KB used by bootloader 

SRAM 2 KB (ATmega328) 

E2PROM 1 KB (ATmega328) 

Clock Speed 16 MHz 

LED_BUILTIN 13 

Dimensions 68.6 x 53.4 mm 

Weight 25 g 

 

Tab. 3.2.1: MCU Tecnical Specifications 
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Memory 
The Atmega328 has a 32 KB flash memory for storing the code (of which 0.5 KB is 
used for the boot loader); It also has a 2 KB SRAM and a 1KB E2PROM (which can be 
read and written with the E2PROM library). [16] 

 
Input/Output 
Each of the 14 digital pins on UNO R3 can be used as input or output, using the 
“pinMode ()”, “digitalWrite ()” and “digitalRead ()” functions. The pins are powered 
at 5 V. Each pin can supply or receive a maximum of 40 mA and has an internal pull-
up resistor (disconnected by default) of 20-50 kΩ. In addition, some pins have 
specialized functions:  
 

• Serial: Pin 0 (RX) and Pin 1 (TX). Used to receive (RX) and transmit (TX) TTL 
serial data (transistor-transistor logic).  

 
• External Interrupt: Pin 2 and Pin 3. These pins can be configured to trigger 

an interrupt on a low level, a rising or falling edge, or a change in value. 
 

• PWM: Pin 3, 5, 6, 9, 10 e 11. Provides an 8-bit PWM output with the 
"analogWrite ()" function. 

 
• SPI: Pin 10 (SS), Pin 11 (MOSI), Pin 12 (MISO) and Pin 13 (SCK). These pins 

support the SPI communication (Serial Peripheral Interconnection). 
 

• LED: Pin 13. There is a built-in LED connected to digital pin 13. When the pin 
is at the High value, the LED is on, when the pin is at the Low value, it is off. 

 
 
The UNO board has 6 analog inputs, each of which provides 10 bits of resolution (i.e., 
1024 different values). By default, they measure from GND up to 5 volts, although it 
is possible to change the upper limit of their range using the AREF pin and the 
“analogReference ()” function. Furthermore, the analog pins 4 (SDA) and 5 (SCL) 
support a second I2C connection through the “Wire” library. 
Finally, there are two more pins on the board: 
 

• AREF. Reference voltage for the analog inputs. 
 
• Reset. A Low value on this line resets the microcontroller. 

Typically used to add a reset button to the shields blocking the manual one 
on the board. [16] 

 

 

 

3.2.2  Communication between Elegoo UNO and LIDAR -Lite v3 
The figure below shows how the LiDAR sensor was connected to the Elegoo 
microcontroller. There are 4 connections, in particular: 
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• The red wire of the LIDAR-Lite (5 Vdc) has been connected to the 5V pin of 
the microcontroller. 

• The green wire of the LIDAR-Lite (I2C SCL) has been connected to the SCL pin 
of the microcontroller. 

• The blue wire of the LIDAR-Lite (I2C SDA) has been connected to the SDA pin 
of the microcontroller. 

• The black wire (Ground) of the LIDAR-Lite has been connected to the GND 
pin of the microcontroller. 

• The yellow and orange wires of the LIDAR-Lite have not been used as they 
are not needed for the I2C connection. 

 

 

Fig. 3.2.2: Elegoo UNO - LIDAR-Lite connections 

 

To maintain a constant voltage, it is recommended to insert a 680 μF capacitor 
between the power supply (5 V) and GND, as it mitigates the peak current at power 
up. [14] 

Better if inserted as close as possible to the LIDAR sensor, as can be seen in Fig. 3.2.2.  
The recommended value is 680 μF, but any value that comes close is fine. In the 
project, for example, a 470 μF electrolytic capacitor was used (exactly the value that 
precedes the 680 μF one in the E6 series). 
 
 
Note: care must be taken to correctly connect the capacitor since it is a polarized 
component and the inversion of polarity leads to a rapid destruction of the same. 
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3.3 Other components 

The LIDAR-Lite v3 and the Elegoo UNO microcontroller are not the only components 
of the sensor prototype we are designing. In fact, other electronic components have 
been added to the circuit in order to facilitate both the debug part in the 
programming and the test part, immediately after, to get immediate feedback on the 
operation of the device. 
The programming of the software requires a continuous checking procedure due to 
errors (bugs) that the programmer encounters frequently, both in the programming 
phase itself and in the following ones. The debugging activity is, therefore, very 
important, if not essential. The distance sensor, however, is a device that must be 
installed on a two-wheeled vehicle and it follows the need to have on-board 
components that allow to recognize system errors even without the use of a 
computer, especially in test phase. 
In these cases, a visual/auditory feedback greatly helps the programmer to 
recognize the problems that may arise from incorrect writing of the code. In addition 
to being a quick debugging solution, acoustic and visual devices could also be very 
important to alert the user about the dangers that arise while driving. 
To complete the circuit, we added an LCD display and an RGB LED for visual 
feedback and a buzzer for acoustic signaling. It should be underlined that the HMI 
present in the project is used only for the purpose of debugging and testing the 
device. The creation and optimization of the user interface is not part of the thesis 
project purpose. 
To simplify the connection of all components, an EIC-104 1680-point Breadboard 
was also used, so as to have a base on which to compact the entire circuit. 
 

 

3.3.1  LCD Display 

 
Fig. 3.3.1: LCD Display  

 

The LCD display is a very useful component both in the debug phase and in the test 
phase to read the measurements made in real-time by the sensor. It features LED 
backlighting and can display two lines with up to 16 characters on each line. You can 
see the rectangles for each character on the display and the pixels that make up each 
character. 
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The display has a total of 16 pins to connect it to the board: 
 

• VSS. Pin used to connect to GND. 
• VDD. Pin used to connect to 5 V. 
• VO. Pin used to adjust the LCD contrast. 
• RS. Register select pin to manage where data is to be written in the LCD 

memory. 
• R/W. Pin for selecting the writing or reading mode. 
• E. Enable pin. 
• D0-D7. Pin used to read and write data. Only 4 of the 8 pins are needed. 
• A, K. Pins used to control the LED backlight. They are connected to 5 V and 

GND respectively. 
 
 
The LCD display needs 6 Arduino digital pins, all set as digital outputs, to which RS, 

E, D4, D5, D6 and D7 pins will be connected. To be powered it needs 5V, therefore, 

we simply need to connect it to the breadboard power supply. 

It is necessary to make a series of connections to complete the circuit that is shown 
in Figure 3.3.1. 

 

 
 

Fig. 3.3.1: Display connection schematic 

 
 

To adjust the brightness of the display and control its contrast, it is also necessary 

to use a 10 kΩ potentiometer, connected through the V0 pin. Care must be taken to 

ensure that the yellow cable between the potentiometer cursor and pin 3 (V0) of 

the display is well connected, otherwise the potentiometer would not work and the 

display would appear to be off. [17] 
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3.3.2   RGB Led 
The acronym LED stays for light emitting diodes. Traditional LEDs are those that 
can emit only one type of light, usually white (Fig. 3.3.2a). 

 

                                           

Fig. 3.3.2a: RGB Led  

 

At first glance, the RGB (red, green, blue) LED looks like a normal LED. However, 

inside the usual LED, there are actually three LEDs, one red, one green and one blue. 

This could be very useful for visual signaling in testing phase, since, based on the 

color of the LED, it is possible to discriminate between ranges of distances. 

By controlling the brightness of each of the individual LEDs you can mix the different 

intensities to get any color you want. By overlapping different colors and intensities, 
we can obtain a light characterized by different shades. 

 

 
 

Fig. 3.3.2b: LED connection schematic 

 

There are 4 wires, three of which are the positive connections of the LEDs while the 

fourth and last wire (common cathode) represents the negative connection and is 

common to all three LEDs. The common cathode is easy to recognize because it is 

the longest cable. Each internal LED requires a 220 Ω resistor to prevent the flowing 

of too much current into the LED, therefore, the three positive LED cables 

(corresponding to the three colors) are connected to the digital output pin of the 
UNO R3 board through these resistors. [18] 
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3.3.3   Passive buzzer 
The buzzer is an audio signaling device. For a real-time system that aims to improve 

the safety of two-wheeled vehicles, the acoustic signaling is much more important 

than the visual one and was therefore fundamental both in the debug phase and in 

the sensor test phase. 

Passive buzzers, unlike active buzzers, do not have an internal oscillator: they need 

an external frequency power source. In particular, to use a passive buzzer, it is 

necessary to provide it with a square wave which in Arduino we obtain with a PWM 

signal. The ability to control the frequency of the PWM signal allows us to reproduce 

notes or sounds by vibrating the air. Different vibrations generate different sounds. 

The buzzer has only two cables: positive and negative. [19] 

To connect the buzzer to the UNO R3 board, the positive (red) part is connected to 

a digital pin, while the negative (black) part is connected to GND, as shown in Figure 

3.3.3. 

 

 

Fig. 3.3.3: Buzzer connection schematic 

 

 

3.3.4   SD Card Reader 
The SD card reader (Fig. 3.3.4) allows to facilitate applications that require the use 

of an external memory to save data. In an application like this one, it is essential if 

we want to have a data warehouse to analyze. Through the display it is possible to 

view the measurements in real-time but, to analyze the data, detect any errors and 

to perform the tuning of all the sensor parameters it is more efficient to register a 

database. 

This module allows a simple interface with the Arduino board and can be used as a 

simple peripheral. Through appropriate programming of the card, it is possible to 

read and write to an SD memory. The device uses the SPI protocol to communicate 

with the microcontroller. 
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Fig. 3.3.4: SD card reader module 

 

 

The SD card reader has, thus, 6 pins: 

 

• VCC pin – power supply pin to be connected to the 5 V of the UNO R3 board. 

 

• GND pin – to be connected to the microcontroller GND pin. 

 

• MISO pin – device data output. 

 

• MOSI pin – device data input. 

 

• SCK pin – Clock pin generated by the Elegoo UNO board for data 

synchronization. 

 

• SS pin – used by the board to enable the devices if there are more 

peripherals in communication. 
 

The first two pins are used to power the peripheral while the other 4 are used for 

communication with the microcontroller. The SPI (Serial Peripheral Interface) 

interface is a type of serial communication that occurs between a "master" device 

(the UNO R3 board) and one or more devices called "slaves" (SD card reader). Data 

transmission on the SPI bus is based on the shift registers operation. Each device, 

both master and slave, is equipped with an internal shift register whose bits are 

output and, simultaneously, entered, respectively, through the MOSI output (Master 

Out Slave In) and the MISO input (Master In Slave Out) and they are synchronized 

via an SCK clock signal. [20] 

 

 

3.3.5   Power Bank 
To correctly simulate the operation of the distance sensor it was necessary to test it 
on a bicycle. The UNO R3 board has an external power jack available through which 
it is possible to power the microcontroller with a 9 V battery but for greater 
convenience we used a power bank connected through the USB port. 
The power bank has a capacity of 20,000 mAh ensuring a power of 45 W. It has 
several input / output ports: 
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• Input Micro-USB: DC 5 V / 2 A 

 
• Input USB di type-C: CC 5V/3A, 9V/2A, 15V/2A, 20V/1,5A 

 

• Output USB di type-C: CC 5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/2.25A 
 

• Output USB 1-2: DC 5V/3.4A (in total). Max 2.4 A for each. 
 

The power bank used (Fig. 3.3.5) also has the "power delivery" (PD) function which 
guarantees the possibility of supplying any appropriate voltage/current 
combination among those available (up to a maximum power of 45 W), simply by 
communicating with the powered device. [21] 

 

 

 

Fig.3.3.5 Power Bank 
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3.4 Final hardware architecture 

Connecting all the electronic components together we got the complete final circuit 
in Figure 3.4b. Almost all digital pins of the microcontroller were used. The 
breadboard was only half powered (on 2 columns only), while the other half was left 
without power so that the microcontroller could also be placed there to make the 
prototype more compact. 
As you can see in Figure 3.4b, the sensor cables have been reinforced with tape as 
being thinner wires than normal male-to-male cables, they can come off very easily. 
Reinforcing the connection thus avoids receiving incorrect values from the sensor 
due to the disconnection of some wires. The yellow and orange cables were not 
connected, as mentioned in the previous paragraphs, because they were not 
necessary for the I2C serial connection. For a faster recognition of the connections, 
the colors red (5 V) and black (GND) have been used for all the power connections 
while, for the rest, different colors have been used according to the electronic 
components in order to recognize them more easily in the breadboard. 
Obviously, the prototype size, a little rough, is due to the presence of the breadboard 
and power bank. If we consider that in an electric vehicle the power is supplied by 
the integrated battery and the circuit is printed on a PCB of a few centimeters, the 
dimensions are considerably reduced, thus obtaining a small, compact and light 
device. 
The block diagram of the final architecture is shown below. 
 
 

 

 

Fig. 3.4a: Schematic Block Diagram 
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Fig. 3.4b: Prototype photo 
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Chapter 4 

 
 

Software Programming 
In the previous chapters we studied and analyzed the main characteristics on which 
the project is based and we created a hardware prototype that connects all the 
electronic components with each other. 
In this phase of the project, however, the configuration of all devices is described, 
the way to be able to communicate correctly with the microcontroller, and the 
function that each of them must perform inside the sensor is established. 
Programming is closely linked to the logic of what is going to be created and how it 
works. This, in fact, is an implementation phase in which we created the software 
(the mind of the sensor), which will then be loaded into the microcontroller to make 
the sensor work. 
Before delving into the arguments related to the study of the sensor operating logic, 
we will start with the initialization and configuration of all the devices that make up 
the system. 
 
 
 

4.1 Microcontroller configuration 

Elegoo Uno R3 is a hardware platform consisting of a series of electronic boards 
equipped with a microcontroller. It is combined with a simple integrated 
development environment, Arduino IDE, for programming the microcontroller. All 
software is open-source and freely available on the web, and circuit diagrams are 
freely distributed. 
In some cases, the board's microcontroller is pre-programmed with a bootloader 
which makes it easy to load programs onto the board's built-in flash memory. The 
ATmega328, for example, comes pre-programmed with a bootloader that allows you 
to load new code onto it without the use of an external hardware programmer. It 
communicates using the original STK500 protocol. It is also possible to bypass the 
bootloader and program the microcontroller via the In-Circuit Serial Programming 
(ISP) header using Arduino ISP or similar. 
Conceptually, programs are loaded on all boards through a serial port. Elegoo UNO, 
on the other hand, is managed via USB, using an Atmega832 microcontroller 
programmed as a USB-serial converter. The Rx and Tx LEDs on the board flash when 
data is transmitted via the USB to serial chip and via the USB to computer 
connection. 
The data remains stored on the board and can only be deleted by rewriting new data 
or by performing a reset operation. [22] 
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4.1.1  Development environment 
The Arduino IDE (Integrated Development Environment) is a cross-platform 
application written in Java. To allow the drafting of the source code, the IDE includes 
a text editor able to compile and load the working and executable program on the 
board with a single click. 
This development environment is provided with a C/C ++ software library, called 
"Wiring": the availability of the library makes it much easier to implement common 
input/output operations via software. 
Arduino programs are written in a language derived from C/C ++. When opening the 
Arduino programming software and creating a new sketch, the programmer is only 
required to define two main functions, in order to create an executable file (Fig. 
4.1.1): 
 

• void setup () – function invoked only once, at the beginning of a program, 
and used for the initial settings that will remain unchanged during the 
execution of the program; 

 
• void loop () – function invoked repeatedly, whose execution is interrupted 

only when the power supply to the board is cut off. 
 
The term "void" indicates procedures which must not return anything and which 
are used to introduce functions. Between the braces you have to write the code with 
the commands to be executed on the microcontroller. 
In the setup function, all the necessary information is given to the board before 
running the program. For example, it is possible to set some ports of the board as 
input or output, or to initialize the various devices. It may also contain commands to 
be executed by the microcontroller, but they are executed only once (at the 
beginning of the program). 
 
 
 

 
 

Fig. 4.1.1: Arduino IDE 
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In the loop function, on the other hand, there are all the information relating to the 
execution of the program and all the commands related to it. This function 
represents the heart of the program, the commands inside it are always repeated in 
order and when the code ends, it starts all over again (as in a loop). Once loaded on 
the UNO R3 board, therefore, the program will continue to run as long as the device 
is connected to the power supply. [23] 
To see the results of a program running on the microcontroller, from the IDE, it is 
possible to activate a serial monitoring window on which we can see the output of 
instructions embedded in the program itself. To do so, we use the function: 
 

Serial.print(parameter); 

 

The serial monitoring function is very important and will be used a lot in the 
configuration phase of the Lidar sensor and, above all, in the debugging phase of all 
the electronic components. 
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4.2 Sensor programming 

Some libraries are already incorporated in Arduino but, for this project, to simplify 
the programming of the LIDAR-Lite v3 sensor and for its correct functioning, we 
added another one ("LIDARLite.h") provided by the manufacturer. The library was 
added with an import tool included in the IDE. 
Before implementing the two functions described in the previous paragraph, the 
libraries must be included at the beginning of the code. The purpose of the software 
libraries is to provide a collection of functions ready for use, that is, reuse of code, 
avoiding the programmer having to rewrite the same functions or data structures 
every time and thus facilitating development and maintenance operations. 
 
 

#include <Wire.h> 

#include <LIDARLite.h> 

 
 
Through the "include" instruction, the program recognizes the functions or data 
structures of the libraries that will be used by the programmer. After including the 
libraries, the global variables and data structures used in the project are declared 
and initialized. 
 
 

//Globals 

LIDARLite lidarLite; 

int cal_cnt = 0; 

 
 
The two slashes "//" are used to introduce descriptions or comments which are 
often useful for the programmer to recognize the code. These statements are 
invisible in the program and are not recognized as code by the compiler. 
The first line of code creates the "lidarLite" object belonging to the LIDARLite class. 
The created object acquires all the properties of this class. From the programming 
point of view, it is possible to say that a class acts as a type for a certain object 
belonging to it. This type of programming is called object-oriented programming. 
A variable “cal_cnt” (calibration counter) of integer type was then created and it was 
initialized to the value '0'. This variable has the function of a counter and, later, 
during the description of the “loop ()” function, I will explain its operation. 
At this point the “setup ()” function is configured by carrying out the initial settings. 
The serial connection between the computer and Arduino is initialized with the 
"Serial.begin()" instruction. Both sides of the serial connection, i.e., both the 
computer and the Arduino, need to have the same connection in order for the data 
to be read correctly. In this case the set transmission speed is “9600 bit/s” which is, 
usually, the default value for Arduino. 
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void setup () { 

 

  Serial.begin(9600); 

 

  lidarLite.begin(0, true); 

  lidarLite.configure(0); 

} 

 

 
 
The other two instructions in the setup function concern the configurations of the 
Lidar sensor. The two functions "begin ()" and "configure ()" belong to the 
“LIDARLite” class of the homonymous library and are called through the lidarLite 
object. The "begin ()" instruction, for example, initializes the sensor by configuring 
it with 2 parameters: 
 

1. The first parameter sets the device in configuration ‘0’, or default 
configuration, which guarantees balanced performance between 
measurement speed and accuracy. 

 
2. The second parameter determines the speed of the I2C connection. By default, 

the base frequency of the I2C connection is set to 100 kHz, but if “true” 
parameter is set, the frequency increases to 400 kHz allowing the sensor to 
work at a faster speed. 

 
The second instruction, on the other hand, allows to configure the sensor using a 
series of pre-set configurations to choose from. This allows the programmer to 
optimize the distance sensor based on the type of project and on the use to be made 
of it. For now, the default configuration will be kept, but, in the next paragraph 
(4.2.2) all the ways in which it is possible to configure the device will be analyzed in 
detail: starting from the preset configurations up to the setting of individual 
registers that characterize the sensor properties. 
After making the initial settings, the program enters the “loop ()” function, which 
contains the body of the whole program that will be executed continuously. 
The “loop ()” function is the main Arduino function that contains all the program 
logic and all the functions used within it. The principal functions are listed below: 
  

• Distance () – function used for distance detection (including bias receiver 
correction) 

 
• Store () – function that takes care of saving the correctly performed 

measurements and filtering them. 
 

• Obstacle () – function that takes care of all the logic for obstacle detection 
 

Other functions (less important) have been created to program the components 
used for debugging and testing phase. We will explain these functions in the 4.4 
successive paragraph. 
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To get a clearer idea of the sequence of operations performed by the sensor for the 
entire obstacle recognition process, the Flow Chart of the main function “loop ()” has 
been shown below (Fig. 4.2a). 
 
 

 
 

Fig. 4.2a: Loop function Flow Chart 
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At the beginning of the cycle, the integer variable “dist” (distance) is declared. It will 
be used to temporarily store, in each cycle, the measurement performed by the 
LIDAR-Lite v3 sensor. 
 

void loop () { 

  int dist; 

 

  if (cal_cnt == 0) { 

    // bias correction 

    dist = lidarLite.distance();  

  } else { 

    // no bias correction 

    dist = lidarLite.distance(false);  

  } 

} 

 

 
The main part of the code begins with the conditional statement “if ()". 
The “distance ()” function, contained in the LIDARLite library, allows you to acquire 
the measurements performed by the sensor. 
When this function is called, a distance measurement is performed and the result is 
stored in the variable “dist”. The measurement is carried out through the following 
steps: 
 

1. The value 0x03 (normal measurement) or 0x04 (measurement with 
correction at the receiver) is written in register 0x00 to start an acquisition. 

 
2. Register 0x01 is read (through the “read ()" command) and if the first bit is 

'0' then the sensor is ready for measurement otherwise the sensor is busy 
and goes in loop until the first bit becomes '0'. 

 
3. Two consecutive bytes are read and saved from register 0x8f. 

 
4. The first value (high byte) is inserted into an array and shifted by 1 byte, then 

the second value (low byte) is added. The result of this operation is the 
distance measured in cm. 

 
 
As already described above (paragraph 2.3.1), the Lidar Lite sensor can perform 
measurements by performing an accuracy correction at the receiver (receiver bias 
correction). 
The “if/else” statement allows to choose between these two types of measurements 
based on the condition of the “cal_cnt” variable. Only and exclusively if the variable 
“cal_cnt” is equal to ‘0’, the Lidar sensor performs a measurement with correction; 
in all other cases the measurement is performed without bias correction. To do so, 
you must enter the boolean parameter "false" when calling the function. 
Since the variable “cal_cnt” is initialized to ‘0’, it follows that the first measurement 
will be made with bias correction. 
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But how does the value of the “cal_cnt” variable change? 
 

// counter increment 

cal_cnt++; 

cal_cnt = cal_cnt % 100; 

 
After performing a measurement acquisition, the value of the “cal_cnt” variable 
(which has the counter function) is increased, thus passing from ‘0’ to ‘1’. 
The next line of code, on the other hand, is used to reset the counter when the 
variable reaches the value 100. In this case the (default) value ‘100’ is set as the 
counter limit, but any other value can be set. Using the "%" operator, the “cal_cnt” 
variable is divided by 100 and updated with the division "remainder". 
Through this logic, it follows that the value of the variable will be reset to the value 
‘0’ only and exclusively if it reaches the value ‘100’, since from the division we obtain 
“quotient = 1” and “remainder = 0”. 
According to the logic of the program, therefore, a distance measurement with bias 
correction is initially performed, while the other 99 will be faster as they are 
performed without bias correction; from here, the same cycle will be repeated over 
and over. After acquiring the measurement and increasing the counter value, we 
used the "Serial.print(dist)" monitoring instruction which allows the programmer to 
display the value of the variable passed as a parameter on the screen. 
 

// Output distance on display 

Serial.print (dist); 

Serial.println (“cm”); 

 
The second instruction, on the other hand, is used to complete the measurement 
with the measurement unit. The LIDAR Lite v3 sensor resolution (see Tab. 3.1d) is 
1cm and, exactly for this reason, its measurements are reported in centimeters. 
 

 
 

Fig. 4.2b: distance measurements on Serial Monitor 
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Before compiling the program, the serial COM port connecting the Arduino and the 
computer was set. 
The program is then compiled and loaded on the UNO R3 board, where it will be 
executed in loop on the microcontroller. By opening the serial plotter function in the 
Tools section, it is possible to view all the measurements performed by the sensor 
(Fig. 4.2b). 
In this case, test measurements were initially carried out, placing the sensor on the 
floor, with the beam directed perpendicular to the ceiling. 
 
 

4.2.1  Control registers 
The LIDAR Lite sensor can be configured with different parameters in order to 

customize the algorithm for measuring distances. As already mentioned in the 

previous chapters, this is a strong point of this device. Performance may vary based 

on the setting of control registers that allow the user (programmer) to configure the 

device by choosing the right compromise between speed, distance range and 

sensitivity. Below, we will analyze the use of some of the most important 

configurable registers. [15] 

 

Note: Register values are encoded in the hexadecimal (and not decimal) system. This 

allows for a quick switch to binary code by substituting 4-digit groups. Each 

hexadecimal digit represents 4 bits, therefore, with 2 hexadecimal digits it is possible 

to change the value of an 8-bit register. All registers contain 1 byte and can be both 

read and written. 

 

RECEIVER BIAS CORRECTION 

Address Name Description Initial Value 

0x00 ACQ_COMMAND Device command -- 

 

The first register, ACQ_COMMAND, can be set to choose whether or not to have the 

receiver bias correction at the receiver. By omitting the correction routine, the 

device can perform distance measurements faster. 

Unfortunately, accuracy and sensitivity are adversely affected if environmental 

conditions change (e.g., target distance, device temperature and optical noise). To 

have good performance, it was preferred to perform the receiver bias correction of 

the receiver periodically by doing it at the beginning of 100 sequential 

measurements (as recommended).  

This register also has a very important reset function; in fact, by setting the value 

0x00 in the register, it is possible to reset all the registers to the initial default value. 
[15] 
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MAXIMUM ACQUISITION COUNT 

Address Name Description Initial Value 

0x02 SIG_COUNT_VAL Maximum acquisition count 0x80 

 

The maximum acquisition count limits the number of times the device will integrate 

acquisitions to find a correlation record peak (from a returned signal), which occurs 

at long range or with low target reflectivity. The LIDAR-Lite v3 sensor, in fact, 

performs a measurement after making multiple acquisitions. It is logical to think 

that a greater number of acquisitions allows to reduce the percentage of 

measurement error, especially when using at high range or if the target hit by the 

laser beam does not correctly reflect the signal. 

In our case, the sensor pointing distance will be kept constantly at 10 m, but we don’t 

know the reflectivity of the target which could vary according to the material it is 

made of. 

Therefore, it could be useful to increase the value of this register to increase the 

probability of receiving correct measurements, and above all, more accurate. 

Increasing the value of this parameter, however, increases the response time, 

therefore, it is necessary to find the right compromise in setting all the parameters. 
[15] 
 

MEASUREMENT QUICK TERMINATION DETECTION 

Address Name Description Initial Value 

0x04 ACQ_CONFIG_REG Acquisition mode control 0x08 

 

The ACQ_CONFIG register is an enabling register that allows you to activate or 

deactivate other registers with different functions. The logical value of each bit 

involves the enabling of multiple registers and we paid attention to two of these bits: 

 

Bit Function 

3 Measurement quick termination 

5 Measure delay 

 

You can enable quick-termination detection by clearing “bit 3” (setting it to ‘0’ 

value). The device will terminate a distance measurement early if it anticipates that 

the signal peak in the correlation record will reach maximum value. This allows for 
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faster and slightly less accurate operation at strong signal strengths without 

sacrificing long range performance. 

Bit 5, on the other hand, allows you to choose the delay to be used for measurements. 

The default delay (0xc8) between two automatic measurements corresponds to a 

repetition frequency of 10 Hz. By configuring this register to ‘1’, you enable the use 

of the MEASURE_DELAY register where you can set a specific value: for example, 

0x14 corresponds to a repetition of 100 Hz. A low delay results in a high repetition 

frequency of the measurements. [15] 

 

Address Name Description Initial Value 

0x45 MEASURE_DELAY 
Delay between automatic 
measurements 

0x14 

 

It must be taken into account that the delay is calculated after the measurement has 

been completed. This means that the duration of the measurement (which can vary 

with the signal strength) affects the repetition rate. Therefore, if greater speed is 

desired, we will not only need a low delay but we will also need to limit the 

maximum number of acquisitions. 

 

DETECTION SENSITIVITY 

Address Name Description Initial Value 

0x1c THRESHOLD_BYPASS Peak detection threshold bypass 0x00 

 

The default valid measurement detection algorithm is based on the peak value, 

signal strength, and noise in the correlation record. This can be overridden to 

become a simple threshold criterion by setting a non-zero value. 

To have a high sensitivity with frequent incorrect measurements, we can leave the 

default value ‘0’ or we can set it to a not too high value, such as “0x20”. On the other 

hand, to have a reduced sensitivity and have fewer incorrect measurements, it is 

better to set a higher threshold value, such as “0x60”. Care must be taken to set the 

threshold. If it is too high there is the risk that the sensor will not be able to carry 

out all the measurements correctly. [15] 

 

 

4.2.2  Configuration of the registers 
The LIDAR-Lite v3 sensor, in addition to being widely configurable by setting its 

control registers, also has several configurations preset, included in the library, each 

with ad hoc instructions according to the application in which the user needs. 

 

 



58 
 

There are 6 configurations preset and they are identified by numbers: 

 

0. Default mode – It is the default configuration and it allows balanced 

performances. 

 

1. Short range, high speed – It is optimized for short range measurements and 

increases the sensor speed. 

 

2. Default range, higher speed short range – It is used for all measurements but 

is optimized for short range ones. 

 

3. Maximum range – Uses “0xff” maximum acquisition count to optimize the 

sensor for long range measurements. 

 

4. High Sensitivity detection – It overrides default valid measurement detection 

algorithm, and uses a threshold value for high sensitivity and noise. 

 

5. Low Sensitivity detection – It overrides default valid measurement detection 

algorithm, and uses a threshold value for low sensitivity and noise. 

 

Each of these configurations optimizes the sensor in different ways according to the 

user's needs. 

In our project there is a need for a high detection speed, since this allows for a 

greater number of measurements. The quantity of measurements affects the correct 

detection of obstacles and, above all, the vehicle speed must be taken into 

consideration: the sensor, in fact, is not stationary. 

However, as described in chapter 1, the sensor positioning limits strongly affect the 

quality of the measurements. An inclination angle of only 5/6 ° greatly influences 

both the quantity of rays reflected back from the ground, due to the diffusion 

properties of the light, and the accuracy of the measurements performed. In fact, 

with a difference of only a few degrees between the laser beam direction and the 

ground plane, small differences in the sensor installation accuracy would be enough 

to compromise the accuracy of the measurements. 

Furthermore, the different reflectivity of the obstacles affects the return signal 

strength and this is a not negligible problem that forces us to privilege the accuracy 

of the measurements. 

To have a more detailed description of the environment and the obstacles that may 

be encountered along the route, therefore, it is necessary to make as many 

measurements as possible but, above all, to make as many acquisitions as possible 

to improve the accuracy of the measurements performed. 

A compromise had to be found in sensor configurations and control register settings. 

Initially, in order to increase the accuracy of the measurements, the “Maximum 

range” mode was chosen among the configuration presets. The latter optimizes the 

LIDAR-LITE v3 sensor by maximizing the number of acquisitions made for a 

measurement. 



59 
 

 

// Maximum range 

write (0x02, 0xff, lidarliteAddress); 

write (0x04, 0x08, lidarliteAddress); 

write (0x1c, 0x00, lidarliteAddress); 

 

In particular, the value of the SIG_COUNT_VAL register (address 0x02), is set to the 

value “0xFF” (which corresponds to 255). The “maximum acquisition count”, 

therefore, has been set to the maximum allowed number. It should be noted that, to 

take a measurement, 255 acquisitions can be made but this does not mean that this 

happens for all measurements. In fact, the value '0' has been set in bit 3 of the 

ACQ_CONFIG register (address 0x04) which allows the measurement to be 

terminated earlier if the sensor detects a high signal correlation. 

In this way, if the sensor detects a peak in signal correlation, it quickly completes the 

measurement, otherwise, it performs as many acquisitions as possible to improve 

the accuracy of the measurement. 

With these configurations, on the one hand the accuracy of the measurements has 

been improved but, on the other hand, the speed of the sensor is conditioned by the 

number of acquisitions performed to complete a measurement. 

Unfortunately, with the following configuration I found a considerable reduction of 

the measurement debugging the sensor, so I chose to set the “default” mode and to 

modify the “maximum acquisition count” register with the value “0x90” that is 

greater than the default one (0x80) but not excessively high. 

This modification slows down the sensor speed, but not too much, so it was possible 

to compensate for this constraint by activating the “MEASURE_DELAY” mode. The 

latter was set by enabling the register of the same name (address 0x45) and setting 

bit 5 in the ACQ_CONFIG register to ‘1’. 

Increasing the repetition rate of measurements speeds up the sensor without 

affecting the accuracy of the measurements. 

The necessary settings for our device can therefore be made by adding only two 

instructions in the “setup ()” function of the program. 

 

write (0x02, 0x90, lidarliteAddress); 

write (0x04, 0x28, lidarliteAddress); 

 

“0x90” represents the maximum acquisition number for each measurement while 

"0x28" is the value that the ACQ_CONFIG register assumes when you need to enable 

quick termination mode and set the use of the MEASURE_DELAY register. 
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4.3 Measurement errors 

In chapter 1, I computed the pointing distance of the sensor; this distance, in ideal 

conditions (perfectly flat road), should always be constant and therefore maintain 

the value of 10 m. 

Unfortunately, the behavior of the sensor in reality differs significantly from that in 

ideal conditions. In fact, the operation of the sensor is subject to many factors that 

can affect the accuracy in measuring distances. 
 

 

4.3.1  Data filtering 
First of all, two-wheeled vehicles are very unstable and this characteristic creates, 

in turn, instability in the sensor as well. While the vehicle is in motion, it is subject 

to oscillations along the axis normal to the ground caused by road irregularities, but 

also along the parallel axis due to small oscillations that the driver carries out while 

driving. The latter is a well-known instability problem while moving in light two-

wheeled vehicles. 

This leads to measurement errors that cause the pointing distance value to fluctuate, 

while it should be constant and equal to 10 m. Furthermore, as explained in Chapter 

1, the angle of inclination of the sensor is 5/6 °; this means that the laser beam is 

almost parallel to the ground plane and small oscillations would be enough to 

generate large variations in the measurements. 

Figure 4.3.1a shows the trend of the sensor measurements traced by the Arduino 

plotter which highlights the variation from the ideal and constant value of 10 m. 

 

 

 
 

Fig. 4.3.1a: Trend of measurements traced by serial plotter 

 

 

As shown in the graph, there are many peak values which could be a problem for the 

correct functioning of the obstacle detection logic. In addition to this, there is an 

offset of 3-4 centimeters due to an error in mounting and fixing the sensor on the 
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vehicle (this because is a prototype). The accuracy of the measurements is ± 15 cm 

and is a high uncertainty considering that the vehicle is still stationary. To solve this 

problem, a data filtering algorithm was used in order to reduce the error percentage 

of the measurements and to have more stable values closer to the theoretical 10 

meters. 

“What does the data filtering algorithm consist of?” 

The mathematical procedure of the “moving average” was used to filter the data. 

Through a conditional instruction in the “loop ()” function, the “store ()” function is 

called. It allows us to temporarily record the measurements. 

Initially, we used an algorithm based on a “for ()” loop, but later the code was 

optimized with a better algorithm which allowed to obtain about 5 more 

measurements per second.  

Whenever a measurement is received, it is stored sequentially in an array, exploiting 

the “store_cnt” variable used as a counter to scroll the position in that array.  

Measurement after measurement, within the “store ()” function, an algorithm is used 

to generate the average value through the values contained in the array. 

 
 

distAvg = (distAvg * SAMPLE_NUM) - distArray[store_cnt]; 

 

distArray[store_cnt] = distance; // Store measurements 

 

distAvg = distAvg + distArray[store_cnt]; 

 

 

Each time the function is called, the oldest measurement in the array is subtracted 

from the sum "distAvg" of all measurements, then instead, the newest one is saved 

in the array and added to the other measurements. The result is saved updating the 

variable itself. At the end, the value of the variable represents the sum of all the 

measurements in the array. 

By dividing the obtained value by the number of “SAMPLE_NUM” measurements 

present in the vector, we obtained the average value of the measurements. 

 

distAvg = distAvg / SAMPLE_NUM; // Average Computation 

 

The time window considered, therefore, is not fixed. As soon as a new measurement 

is inserted into the array, it replaces the older one. In this way there is not a fixed 

average based on a certain set of values, but a moving average. 

In the calculation of the moving average, the number of elements is fixed, but the 

time window considered advances: the oldest measurement in the series is 

gradually replaced with the new one. This mathematical procedure causes the 

average to move in progression with the trend of the measurements. 
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Thanks to the calculation of the moving average, it is possible to have a much cleaner 

“distAvg” average value by reducing the noise. Figure 4.3.1b shows the trend of the 

average value plotted by the plotter. 

Considering the average of the measurements instead of the effective value, it was 

possible to obtain more compliant measurements which allow to limit the influence 

of incorrect acquisitions due to any possible oscillations of the vehicle. 

 

 

 
 

Fig. 4.3.1b: Trend of filtered measurements traced by serial plotter 

 

 

If you compare the results obtained by filtering the measurements with those shown 

in Figure 4.3.1a (without filtering), you immediately notice a radical difference. First 

of all, there are no more peak values, but above all, the measurements accuracy has 

improved a lot. The uncertainty has reached a value of ± 3 cm (five times lower than 

before) which is more than acceptable. 

 

 

4.3.2 Returned signal strength 
In addition to instability errors, measurements can also be affected by errors due to 

incorrect signal reception. The correct reception of a reflected signal is strongly 

influenced by several factors: 

 
• TARGET DISTANCE 

The relationship of distance (D) to returned signal strength is an inverse 

square. So, with increase in distance, returned signal strength decreases by 

1/𝐷2 or the square root of the distance. 

 

• TARGET SIZE 

The relationship of a target’s Cross Section (C) to returned signal strength is 

an inverse power of four. The device transmits a focused laser beam that 

spreads at a rate of approximately 0.5° as distance increases. The 
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approximate beam spread in degrees can be estimated by dividing the 

distance by 100. When the beam is larger than the target, the signal returned 

decreases by 1/𝐶4 or the fourth root of the target’s cross section. The 

diameter of the laser beam at a distance of 10 m is “10 cm”. According to these 

considerations, therefore, it will be difficult to detect obstacles smaller than 

10 cm because the returned signal strength is reduced by an amount that 

depends exponentially on the size of the obstacle. 

 

• ASPECT 

The aspect of the target or its orientation towards the sensor affects the 

observable cross section and, therefore, the amount of returned signal 

decreases as the aspect of the target varies from the normal. 

 

 

• REFLECTIVITY 

Reflectivity characteristics of the target’s surface also affect the amount of 

returned signal. These characteristics can be divided into three categories: 

 

1. Diffuse Reflective Surfaces 

To this category belong all those materials which, instead of sending 

the laser ray back at a precise angle, cause a uniform dispersion of the 

incident ray. These materials can be read very well by the sensor. 

 

2. Specular Surfaces 

Specular surfaces can be found in those materials that have a smooth 

quality that reflect energy instead of dispersing it. It is usually very 

difficult or impossible for the device to recognize the distance of many 

specular surfaces. Reflections off of specular surfaces tend to reflect 

with little dispersion which causes the reflected beam to remain small 

and, if not reflected directly back to the receiver, to miss the receiver 

altogether. The device may fail to detect the object unless viewed from 

the normal. 

 

3. Retro-reflective Surfaces 

Retro-reflective surfaces reflect radiation in the same direction as the 

source with minimal dispersion and are very efficient even with wide 

ranges of incidence angles. An example of a retro-reflective surface is 

the reflector. 

 

 

In summary, the correct detection of an obstacle depends on many factors and, most 

of the time, on the characteristics of the object itself and on how it is placed when 

the sensor beam hits its surface. A small and poorly reflective object, for example, 

can be very difficult to detect if it is distant. Due to the small inclination angle, in fact, 

the probability that the signal will be reflected back in the same direction is very 

low, with the risk of receiving a rather weak returned signal. [15] 
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If the sensor receiver does not detect the acquisitions correctly, there is the 

possibility that the sensor cannot perform a measurement, thus giving the “Error 

value” at the output (encoded with a "1 cm" measurement) which indicates a failed 

measurement. 

To prevent incorrect measurement detection from affecting the data filtering 

function, I inserted an “if ()” statement to exclude incorrect measurements from the 

filter. Values of “1 cm”, could strongly influence the average value of distance 

measurements, especially if there are surfaces that are difficult to detect and for 

which many measurements fail. On the other hand, however, these measurements 

are very important to analyze the possible malfunction of the sensor in the various 

cases of use. 

 

 
 

if (dist == 1) { 

    Error = true; 

    err_cnt ++;  

} else { 

    Error = false; 

    err_cnt --; 

     

    if (err_cnt < 0) { 

      err_cnt = 0; 

    } 

} 

 

 

 

The number of failed measurements is, therefore, stored in a variable “err_cnt” (used 

as a counter) in order to calculate the percentage of failed measurements. If a “1 cm” 

distance is recognized, the “Error” flag is enabled and the counter is incremented. If, 

otherwise, a different distance is detected (correct measurement) the counter is 

decremented. When the “err_cnt” value becomes negative, it is reset to ‘0’. 

In addition, the counter is automatically reset to ‘0’ every 100 milliseconds to keep 

the effectiveness of the measurements updated in the time frame. 

In the test phase, this function will be very useful to analyze the correct functioning 

of the sensor and to discriminate how the different factors affect the detection of 

distance measurements. 
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4.4 Other components programming 

In the “loop ()” function there are other secondary functions used to control the 

operation of the other components used. Mainly, these components are used in the 

debugging and testing phase. 

 

 

4.4.1 Display programming 
To communicate with the LCD display, the "LiquidCrystal.h" library was included 

before the "setup ()" function and the "lcd" object belonging to the "LiquidCrystal" 

class was created. This way we initialize the library by associating any needed LCD 

interface pin with the Elegoo board pin number it is connected to. 

 

 
#include <LiquidCrystal.h>          // Lcd library 

LiquidCrystal lcd (RS, E, D4, D5, D6, D7); 

 
 

Subsequently, the “begin ()” function (available in the library) was used to initialize 

the LCD display in the “setup ()” function. The two input parameters in the function 

are used to set the number of columns and rows of the LCD (16 columns, 2 rows). 

 
 
lcd.begin (16, 2);           // LCD initialization 

 
 

In the loop, the "print ()" function included in the LCD library was used to send data 

output to the LCD display, whenever needed. 

 

 
lcd.print (dist); 

lcd.print (“cm”); 

 
 

 

4.4.2 Led programming 
The RGB led allows us to have a visual feedback both in the debug phase and in the 
test phase. To program the LED, in the “setup ()” function we need to define the three 
pins that have been used as output. The “pinMode ()” function is used to configure 
the specific pin as an input or output. Through the “digitalWrite ()” function it is 
possible to switch on or off the single internal LEDs (HIGH=ON, LOW=OFF) 
 
 

pinMode (RED, OUTPUT);       // red LED initialization 

digitalWrite (RED, HIGH);    // Set default configuration 
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In the "loop ()" function, we used the "analogWrite ()" function not only to turn on 

the LEDs but also to set the intensity of the LEDs. The input parameter can assume 

a value between 0 and 255 and by mixing the various intensities of the three LEDs, 

different colors can be obtained, as mentioned in paragraph 3.3.2. 

 
 

analogWrite (RED, 127);    // Set default configuration 

 

 

For the obstacle detection logic, the “switchLeds ()” function was used. Different 

colors were used according to the different types of obstacles detected. Therefore, a 

different color is assigned to each value of the “flag” variable. For example, if "flag" 

has the value '1', the green color is set, while, if "flag" has the value '2', the yellow 

color is set and so on. 

 
 

void switchLeds () {       // Function to manage LEDs 

 

  if (flag == 1) {...}   // green = road bump case 

 

  else if (flag == 2) {...}  // yellow = step up  
  ... 

} 

 

 

 

4.4.3 Buzzer programming 
The buzzer is used for acoustic signaling. Here too, in the “setup ()” function we need 

to define the pin that was used as output and through the “pinMode ()” function we 

configured the specific pin as output. 

 
 

pinMode (BUZZ, OUTPUT);      // buzzer initialization 

 

 

In the “loop ()” function, on the other hand, the “buzzer ()” function was used to 

generate an acoustic frequency with a 50% duty cycle. To set the intensity of the 

signal, we used the "alert ()" function which receives the variable "x" as input. The 

latter can be set with different values based on the obstacle type. For example, the 

lower the value of "x" the more the frequency and, therefore, the alert intensity will 

increase. 

In our logic, the value of "x" will depend directly on the value of the obstacle distance 

the way that if is very distant, there will be a high value of "x" and, therefore, a low 

intensity alert will occur, and vice versa. 
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void alert (int x) {       // x = frequency management 

 

    if ((cal_cnt % x) == 0) 

        buzzer (); 

} 

 

 

 

4.4.4 SD card reader programming 
 

Due to the absence of available digital pins, in the test phase, the SD card reader was 

connected to the microcontroller by disconnecting the LED and the buzzer. In fact, 

the SD card reader uses the SPI serial communication, available only on digital pins 

10, 11, 12 and 13. For the correct functioning of the device, we added two libraries: 

the "SPI.h" library for communication and the "SD.h" library for the device 

management. First of all, therefore, a “fileToWrite” object belonging to the “File” class 

has been created. 

 
 

#include <SPI.h>           // SPI library 

#include <SD.h>            // SD library 

File fileToWrite; 

 

 

In the “setup ()”, we employed the “begin (10)” function (using the SD library) to 

initialize the device. The input parameter “10” represents the digital pin to which 

the “CS” signal of the reader is connected. 

 

SD.begin (10);     // SD card reader initialization 

 

All the code used for file writing on the SD card has been enclosed in the “SDwriter()” 

function. The latter allows you to open the chosen file using the "open ()" function, 

verify its correct opening and, if so, write all the information we need, exactly as if 

you wanted to send data to the serial monitor. At the end the file is closed simply 

using the “close ()” function. 
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void SDwriter () { 

 

  //file opening in writing mode 

  fileToWrite = SD.open ("data.txt", FILE_WRITE);  

    

  if(fileToWrite) {     //If the file was correctly opened 

 

    fileToWrite.print(distAvg);    //file writing   

    ... 

    fileToWrite.close();        //file closing      

  } 

} 
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4.5 Obstacle detection logic 

After configuring the sensor in the best possible way and writing the algorithm that 

allows us to refine the measurements made by the sensor, I paid attention to the 

obstacle detection logic. 

The sensor we are going to develop should detect obstacles in real time and instantly 

alert the driver so that he has time to notice the obstacle and avoid it or stop before 

hitting it. To correctly notify obstacles it is necessary to know the speed of the 

vehicle and to have a synchronous system capable of providing us with constant 

measurements over time. 

To correctly perform the calculations useful for detecting obstacles, it is very 

important to understand how many measurements the sensor performs in a given 

time ΔT, in order to understand how accurately it is possible to detect obstacles. 

We need ΔT to be constant and, therefore, all the measurements made by the sensor 

to be synchronous. After writing all the programming code, it may happen that the 

sensor takes different times between one measurement and another. The causes of 

this can be different: 

 

• The detection of some obstacles may be more difficult due to the material 

type of the obstacle and its shape. 

• The execution of some instructions may take more time than others (for 

example instructions to write on LCD, serial monitor or SD card). 

• The detection of some obstacles may require the use of more instructions 

than others. 

 

To obtain a synchronous system as much as possible, I created a scheduler by using 

a simple "if ()" statement that executes all the code related to the program logic only 

if a certain time ΔT has elapsed. 

Inside the "loop ()" function, I used the "millis ()" instruction to calculate the time 

elapsed between the instant t2 when the code execution begins and the instant t1 

when it ends (and have to start over). 

 
 

void loop () { 

 

t1 = millis (); 

   

  if (t1-t2 >= dT) { 

 

    t2 = millis (); 

    ...      // code execution 

  } 

} 
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If the difference t1 - t2 is equal to or greater than the ΔT value, then a new cycle can 

be performed. 

To calculate the correct Δt time value, I computed the average execution time of the 

code and the average number of measurements performed by the sensor. 

Using the serial monitor, I obtained the average number of measurements per 

second, equal to about 45 measurements/s. 

 

ΔT𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1000 𝑚𝑠

45 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠
= 22,2 𝑚𝑠 

 

The number of measurements was initially very low due to the numerous 

instructions used to write on the LCD display and to save data on the SD memory. 

Consequently, the average cycle time ΔT𝑎𝑣𝑒𝑟𝑎𝑔𝑒 obtained was very high. 

Therefore, it was necessary to optimize the written code for logic programming in 

order to speed up the execution of a cycle time and increase the number of 

measurements. To solve the problem related to writing on the LCD I decided to use 

a refresh counter "refresh_cnt" in order to write the measurements on the screen 

only once in 10. 

 
 

if (refresh_cnt == 0) { 

 

    lcd.setCursor(0, 0); 

    lcd.print(distAvg); 

} 

 

refresh_cnt++; 

refresh_cnt = refresh_cnt % 10; 

 

 

A similar strategy has been adopted for saving data on the SD memory. Opening the 

file and saving data to it is a much more time-consuming operation than simply 

writing to the display. 

To avoid opening the file every time a new measurement is received, I resorted to 

the use of two "String" type variables and a "SD_cnt" counter. 

 
 

sdData = String (distAvg); 

sdData.concat(", "); 

SDtemp = String(flag); 

sdData.concat(SDtemp); 

 

 

Each time a measurement is received, it is concatenated into a string thanks to the 

use of a temporal variable ("SDtemp") and the "concat ()" function. With each 

measurement received, the counter is incremented and only when it reaches the 

maximum value, the file is opened and the value of the entire string is written. 
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if (SD_cnt == 39) 

{ 

    ...    // open file and store the string 

} 

 

SD_cnt++; 

SD_cnt = SD_cnt % 40; 

 

 

It was not possible to create a string of more than 40 measurements as the size (in 

terms of bytes) of the buffer used for serial communication was exceeded. For each 

measurement, the value of the “flag” variable was also saved, in order to understand 

if the logic used for the obstacle detection was correct. Therefore, the counter 

number was set to 40. 

After making these optimizations, using the serial monitor and doing the 

computations, the average number of measurements made by the sensor per second 

has risen to 130. This value is much better, in fact, if you calculate the average time 

between two consecutive measurements (cycle time), you get: 

 

ΔT𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1000 𝑚𝑠

130 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠
= 7,7 𝑚𝑠 

 

 

Subsequently, using the "millis ()" instruction, I calculated, the minimum cycle 

execution time to verify that the data were coherent. As shown in Figure 4.5 below, 

I got ΔT𝑚𝑖𝑛 = 7 𝑚𝑠. 

 

 

 
 

Fig. 4.5: Detection of the minimum cycle execution time 
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The average time, however, cannot represent the correct value of the scheduler as it 

is not constant. To have a constant value, I proceeded by step by increasing the value 

of ΔT until the execution time ΔT reached a constant value. 

With ΔT = 8 𝑚𝑠 I was able to reach the goal but for greater safety, I decided to 

maintain a certain margin by setting ΔT = 10 ms. 

In this way, the sensor takes a measurement precisely every 10 milliseconds for a 

total of 100 measurements per second. 

By dividing by the vehicle speed, it is possible to obtain the number of 

measurements made for each meter traveled: 

 

•  

𝑁 @10 km/h  =
100 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑡𝑠

𝑠⁄  

2,77 𝑚/𝑠
=  36 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

𝑚⁄   

 

 𝑑@10 km/h =
100 𝑐𝑚 

36 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑡𝑠
𝑚⁄

≈ 2,8 𝑐𝑚  

 

•  

𝑁 @25 km/h  =
100 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑡𝑠

𝑠⁄  

6,94 𝑚/𝑠
=  14 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

𝑚⁄   

 

𝑑@25 km/h =
100 𝑐𝑚 

14 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠
𝑚⁄

≈ 7,2 𝑐𝑚 

 

 

According to the calculations, considering a speed of 10 km/h (average speed of a 

bicycle), the sensor is able to perform 36 measurements every meter; therefore, it 

is able to take a measurement in less than 3 cm. Instead, considering a speed of 25 

km/h (maximum speed allowed), the sensor is able to make 14 measurements, that 

is one measurement every 7,2 centimeters. 

As the vehicle speed increases, the number of measurements, that the sensor 

performs every meter, decreases and, therefore, the probability of correctly 

detecting an obstacle decreases. At maximum speed, the sensor may not detect small 

obstacles. 

The speed factor is very important in detecting obstacles as it allows us to adapt the 

acoustic signal to the speed with which the driver risks hitting the obstacle. 

In my project, I have chosen that the sensor operates only for speeds equal to or 

greater than 5 km/h for two reasons: 

 

1. On average, two-wheeled electric vehicles already exceed 5 km/h with the 

first push you give to get moving. Therefore, it is difficult to go at a lower 

speed if you consider that the average speed of an adult person is 5 km/h. 
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2. If the speed is lower than 5 km/h it means that the driver is either braking or 

cannot accelerate as if there are many obstacles or people close in front of 

him. This could lead to a continuous beeping of the sensor due to the 

presence of very close obstacles and it would be very unpleasant to hear the 

repeated sound of the buzzer incessantly. 

 

In light of these considerations, I have chosen to disable all the sensor logic if the 

speed is lower than 5 km/h. 

 
 

void obstacle (int distance, long distAvg) { 

 

    if (Speed == 5) { 

         

        ... // all logic with flag evaluation 

    } 

} 

 

 

 

 

4.5.1 Logic programming 
Each obstacle requires a different type of logic to be developed and, therefore, 

different instructions to be executed based on the obstacle type. At the software 

level, all the logic used for obstacle detection has been incorporated into the 

“obstacle ()” function.    

 

obstacle (dist, distAvg); 

 

This function receives in real time the distance measurement "dist" carried out by 

the sensor and the temporary average value of the measurements "distAvg". 

Through these two data, it performs all the necessary computations to detect the 

presence of an obstacle and discriminate the type of obstacle. 

The first thing the function does is understand what kind of obstacle the sensor is 

detecting. 

To discriminate the different cases, I used a "flag" variable which is set with different 

values depending on the obstacle. Table 4.5.1 shows the different values that the 

variable can assume. 

The "flag" variable is set to the default value '0' and will remain so if the sensor does 

not detect any obstacles. If, on the other hand, the measurements made by the 

sensor begin to deviate from the value of 10 meter, the "flag" variable will be set 

thanks to the use of conditional instructions "if/else ()". 

Figure 4.5.1 shows the graph of the finite state machine (FSM), which allows you to 

better understand what happens in the “obstacle ()” function. 
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Flag Obstacle Type 

4 Moving Obstacle 

3 Generic Stationary Obstacle 

2 Step Up 

1 Road Bump 

0 No obstacle 

-1 Ditch 

-2 Step Down 

-3 Discent / Ravine 

 
Tab. 4.5.1: Flag table 

 

 

The state machine shows how obstacle detection occurs from a logical point of view. 

At the beginning, the sensor starts from the "No obstacle" state, which we can 

consider as the default state. 

Whenever the sensor detects no obstacles, it will be in that state. From the default 

state, there are four possible cases: 

 

1. The measured distance starts to increase. 
2. The measured distance starts to decrease. 
3. The measured distance increases radically. 
4. The measured distance decreases radically. 

 

From the code logic point of view, if the distance starts to increase, the case of the 

ditch will be set immediately (flag = -1), vice versa, if the distance starts to decrease, 

the case of the road bump will be set (flag = 1). Furthermore, these two states are 

intermediate states for other states since, as soon as a change in the pointing 

distance is detected, the sensor is not able to immediately understand the type of 

obstacle in front of it and it will start by setting either the case "ditch” (greater 

distance) or the “bump” case (shorter distance). The sensor will be able to 

understand the type of obstacle only by noting the occurrence of different conditions 

through the succession of measurements. 

For example, if the measured distance decreases there may be more possible cases: 

it could be a road bump, a step or a generic obstacle with greater size. 

Then, the sensor will scan the type of obstacle through an algorithm and a series of 

conditional statements "if/else ()" and based on the type it will set another state. 

The only types of obstacles that can be immediately discriminated are moving 

obstacles and descents (or ravines), since in these two cases there is a clear and 

conspicuous change from the 10 meters distance to the new measured distance. For 
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example, if the distance changes rapidly from 10 meters to 30 meters, it means that 

there is a ravine of 2 meters or a very steep descent. 

 

 
 

Fig. 4.5.1: Obstacle type detection FSM 

 

 

 

4.5.2 Ditch/Bump detection 
If we consider a sensor with a constant pointing distance (10 m), detecting obstacles 

on the roadway can be translated into measuring the difference between the ideal 

value and the measurements made by the sensor. If, for example, there is a ditch on 

the road, the distance detected by the sensor should increase for a certain amount 

of time, before returning to the ideal value of 10 meters. Similarly, if there is a road 

bump, step or any other object on the roadway, the detected distance should 

decrease more and more until the sensor laser beam has passed that obstacle. 
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By calculating the variation of the distance pointed by the LiDAR, it is also possible 

to mathematically obtain the depth or height of the obstacle. 

 

 

Fig. 4.5.2a: Obstacle height measurement 
 

 

 

Fig. 4.5.2b: Ditch depth measurement 
 

 

If you consider that between the sensor height and the distance pointed by it there 

is a ratio of 1:10, you can easily calculate the size of the obstacle by dividing the 

maximum variation of the measurement from the pointed distance by 10. 

If, for example, an obstacle 𝑥1 is interposed in front of the vehicle and breaks the 

LiDAR beam up to a minimum distance of 8 meters, the height of the obstacle will be 

computed as follows: 

 

ℎ𝑒𝑖𝑔ℎ𝑡 𝑥1
 =   

10 𝑚 −  8 𝑚

10
= 0.2 𝑚 = 20 𝑐𝑚 

 

If, on the other hand, the sensor beam crosses a ditch and the measured distance 

increases, reaching, for example, a maximum value of 11 meters, the ditch depth 𝑥2 

will be calculated as follows: 

 

𝑑𝑒𝑝𝑡ℎ 𝑥2
=   

11 𝑚 −  10 𝑚

10
= 0.1 𝑚 = 10 𝑐𝑚 
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4.5.3 Ditch/bump code description 
Two-wheeled vehicles, as mentioned in the previous paragraphs, are subject to 

various oscillations due to their instability; therefore, it was necessary to include a 

tolerance range to prevent these oscillations from causing the presence of false 

obstacles. 

Therefore, I have set a threshold value MIN_VAR which allows us to be sure that the 

sensor is detecting a real obstacle. POINT_DIST, on the other hand, represents the 

pointing distance and is also a constant set to the fixed value of 10 meters. If the 

difference between the average distance “distAvg” and the constant POINT_DIST 

exceeds the threshold value MIN_VAR the variable "flag" is set to the corresponding 

value. 

 
 

if (flag == 0) { 

 

    If (distAvg - POINT_DIST > MIN_VAR) {  

               

        flag = -1;    // Ditch/StepDown/Discent 

 

    } else if (POINT_DIST - distAvg > MIN_VAR) {      

  

        flag = 1;     // roadBump/StepUp/genericObstacle 

 

    } 

} 

 

 

The threshold value can be changed, but a compromise is needed because if the 

value is too low, we can risk to detect false obstacles while, if it is too high, we can 

omit the detection of some small obstacles.  

The Lidar-Lite v3 sensor, for distances greater than 5 m, has an accuracy of ± 10 cm 

(as reported in Table 3.1d). If we take into account the 1:10 ratio between sensor 

height and laser beam diagonal, an accuracy of ± 10 cm corresponds to an obstacle 

height accuracy of ± 1 cm. However, the “signal strength” factor described in 

paragraph 4.3.2 have also to be taken into consideration; at a distance of 10 meters, 

we have a beam diameter of 10 cm (dist/100) and it is all the more difficult to detect 

obstacles the smaller they are compared to the beam diameter. 

The MIN_VAR value was initially set at 50 cm (with a corresponding height accuracy 

of ± 2 cm) but, in the test phase, it will be necessary to verify the effectiveness of this 

value or to modify it in order to find the right compromise. After having performed 

the discrimination, based on the value of the "flag" variable, a specific piece of code 

is then executed to detect the obstacle height or depth peak where, the "ditch" and 

"bump" variables are used to keep trace of the minimum and maximum value 

respectively. The structure of the code is the same for both types of obstacles but 

with opposite logic. The following is the code relating to the ditch case to understand 

how the code is structured. 

 



78 
 

Once you have entered the specific case of the ditch, there are only two possibilities: 

 

1. If the difference between the distance “dist” and the constant POINT_DIST 

exceeds the threshold value MIN_VAR it means that the sensor has started 

measuring an obstacle. From when the ditch detection begins, the 

measurements performed are compared with the minimum “ditch” value and 

if a new peak value is detected, the variable is updated to that value. 

 

2. If, otherwise, this difference is less than the threshold value, it means that the 
laser beam has passed the obstacle and is returning to detect the theoretical 
10 meters. At this point, it is possible to output the peak value found 

corresponding to the ditch depth. 

 

To exit the "ditch" case, the value of the "flag" must be reset to '0' in order to return 

to the initial condition from which, then it is possible to search for a new obstacle. 

It is therefore clear that once the discrimination has been performed and the flag 

has been set to the corresponding value, it will not be possible to enter in another 

obstacle case state if the detection of the current obstacle is not completed. 

To reset the "flag" and all other variables used, I exploited the "End" variable. The 

latter is set to "true" at the end of the obstacle detection. If “End” is true all the 

variables used in the obstacle case are reset and you return to the initial state. 

The code relating to the road bump case has not been reported, but has a logical 

structure equal and opposite respect to the ditch case. 

 

 
DITCH code 

 

if (flag == -1) { 

 

  if (distance - POINT_DIST > MIN_VAR) {     

   

  // Ditch still detected 

    if (distance > ditch) { 

      ditch = distance; 

    } 

 

  } else if (distance - POINT_DIST <= MIN_VAR) { 

   

  // End of the ditch 

      lcd.print ((ditch-POINT_DIST)/10); 

      lcd.print (" cm "); 

      End = true; 

  } 

} 
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4.5.4 Possible problems in depth computation 
The height or depth computation of the obstacle is performed by searching for the 

maximum or minimum value in the range of measurements executed on the 

obstacle. In the case in which the sensor detects the ditch depth there is, however, 

the possibility that the calculated depth is not correct. In fact, it must be taken into 

account that the sensor laser beam points to the ground transversely and it could 

happen that the sensor is unable to perform measurements on the entire surface of 

the ditch, but only on a part of it (the final part). 

If we consider, for example, the ditch represented in Figure 4.5.4, it is possible to 

notice that there is a blind area (highlighted in green) that the laser beam will never 

reach. The laser sensor is unable to obtain the measurement relative to the true 

depth of the ditch since the range of measurements performed on the ditch does not 

map its entire area but only a part. 

 

 

Fig. 4.5.4: Depth computation problem 
 
 

In the case showed in figure, the sensor will detect a depth of 10 cm (distance change 

of 1 metro), but in reality, the ditch is deeper and the real depth will not be detected 

by the sensor. 

This can happen when the ditches are narrow and deep; more precisely, considering 

a line obtained by joining the point where the ditch begins with its deepest point, if 

the inclination of this line (respect to the line) is greater than that of the laser beam, 

it will not be possible to detect its true depth. 
 

  

4.5.5 Step detection 
The most classic obstacle you can run into when driving a two-wheeled vehicle is 

the sidewalk. The latter is one of the most frequent causes of accidents. 

The detection of a step was conceived as an extension of the ditch/bump case. In 

fact, assuming that the sensor laser beam is going to point a step, the taken 

measurements should deviate from the 10 meters value, decreasing or increasing 

until they reach a constant value. The sensor, therefore, will initially recognize a 

bump or ditch and only at the end, when the sensor will realize that it is receiving 

constant peak measurements, it will discriminate the obstacle as a step. 

Figure 4.5.6a shows the case in which the sensor detects a “up step” S1. 
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The measurements made by the sensor will decrease until they reach a constant 

value (highlighted in yellow) as the laser beam points to a plane with greater height. 

 

 

 

Fig. 4.5.5a: Up step measurement 

 

 

 Fig. 4.5.5b: Down step measurement  
 
 

The same thing happens in the opposite case. When the sensor beam is going to 

point a “down step” (Figure 4.5.6b), the value of the measurements increases until 

it reaches a new constant value as the beam detects to a difference in plane height. 

By repeating the calculations made in the previous paragraph, it is possible to detect 

the height of the steps, in the same way, by computing the difference between the 
measurements of the two planes and dividing by 10. 

 

ℎ𝑒𝑖𝑔ℎ𝑡 𝑆1
 =   

10 𝑚 −  8,5 𝑚

10
= 0.15 𝑚 = 15 𝑐𝑚 

 

𝑑𝑒𝑝𝑡ℎ 𝑆2
=   

11,5 𝑚 −  10 𝑚

10
= 0.15 𝑚 = 15 𝑐𝑚 

 

It is obvious that, if we consider the ascent and descent from the same step, the 

height value detected by the sensor, in both cases, must be the same. 

To implement the logic that allows to detect a step it is necessary to use a time 

variable. In fact, the only way to verify that a measurement remains constant is to 
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check its value over time. To do so, it is necessary to verify, after a certain movement 

𝑑𝑥, that the value of the average distance returns to be constant. But, the time 𝑡𝑥  it 

takes to execute this movement varies according to the vehicle speed. Practically: 

  

𝑡𝑥 =  
𝑑𝑥

𝑣𝑣𝑒ℎ𝑖𝑐𝑙𝑒
 

 

where, 𝑣𝑣𝑒ℎ𝑖𝑐𝑙𝑒 is the vehicle speed. 

To choose the value of 𝑑𝑥 it was necessary to find the right compromise since, if it is 

too high it can lead to latency in the detection of the obstacle, if too low the "distAvg" 

value may not have had enough time to stabilize. The value of the 𝑑𝑥 movement has 

been initially set to 50 centimeters. 

Each time a cycle is performed in the “loop ()” function, a “cycle_cnt” counter is 

incremented and knowing the cycle time value, calculated previously, it is possible 

to have a time reference. As soon as the sensor begins detecting the obstacle, the 

value of "cycle_cnt" is copied to the "start_mis" variable. By multiplying the 

difference between the values of these two variables by the cycle time ΔT, it is 

possible to obtain the time elapsed from the start of the obstacle detection. 

 

𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 = (𝑐𝑦𝑐𝑙𝑒_𝑐𝑛𝑡 − 𝑠𝑡𝑎𝑟𝑡_𝑚𝑖𝑠) ∗ ΔT 

 

If the elapsed time is greater than 𝑡𝑥 and the average distance "distAvg" remains 

constant, the obstacle is recognized as a step. 

 

Note: 

To obtain the time 𝑡𝑥 , the vehicle speed must also be known. In most electric two-

wheeled vehicles there is a sensor that detects the speed of the vehicle or, in any 

case, this parameter is calculated thanks to the position data obtained from the GPS 

in real time. Since there is no sensor available to detect the 𝑣𝑣𝑒ℎ𝑖𝑐𝑙𝑒 speed, in the test 

phase some speed values have been set manually to check the correct operation of 

the sensor. 

 

 
DOWN STEP code 

 

if ((cycle_cnt - start_mis >= tx) && 

     (abs (distance – distAvg) <= MIN_VAR)) { 

            

    if ((ditch - POINT_DIST <= STEP_MAX)) { 

        flag = -2;       // down Step 

 

    } 

} 
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UP STEP code 

 

if ((cycle_cnt - start_mis >= tx) && 

     (abs (distance – distAvg) <= MIN_VAR)) { 

            

    if ((POINT_DIST – bump <= STEP_MAX)) { 

        flag = 2;       // up Step 

 

    } 

} 

 

 

 
 

4.5.6 Steep descent or escarpment detection 
Very steep descents, escarpments or, even worse, ravines are obstacles that can 

seriously endanger the life of a two-wheeler driver. The detection of this type of 

obstacle is very simple to perform as if you have a large escarpment or a steep 

descent the distance measured by the sensor will increase considerably. 

If there is a slope with a more inclined plane than the laser beam, the measurements 

made by the sensor will not gradually increase since, as described in the previous 

paragraph, there will be a hidden area that the beam will never be able to point. 

What the sensor is able to target is the plane next to the grading as shown in the 

following Figure 4.5.6. 

  

 

 
 

Fig. 4.5.6: Escarpment depth measurement 
 
 

In the figure you can clearly see how the measured distance changes sharply from 

the 10 meters standard distance to reach 22 meters on the next plane. In this case 

the sensor will detect a depth equal to the difference in height of the two planes. 
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𝑑𝑒𝑝𝑡ℎ =   
22 𝑚 −  10 𝑚

10
  =  1,2 𝑚 

 

It should be noted that, in this case, it is not possible to distinguish the type of 

obstacle in front of us. Due to the blind area that cannot be detected by the sensor, 

the latter is able to detect the depth but cannot understand if there is an escarpment 

or a descent in front of it. In fact, all the area highlighted in green is hidden and the 

inclination angle “α” of the plane could be either a few degrees or 90°. Therefore, I 

will only limit myself to generically indicating the type of obstacle, showing its 

depth. 

To detect this type of obstacle, at the software level, I simply used the "if ()" 

conditional statement. If the distance value suddenly increases by a value greater 

than 10 meters (corresponding to a difference in height of 1 meter), the value of the 

"flag" variable is set to "-3". 

 
 

if (distAvg - POINT_DIST > 1000) { 

    flag = -3; 

} 

 

 

Once the type of obstacle has been recognized, the depth value is continuously 

updated and output on the display. Then the sound signal is also activated through 

the “alert ()” function with a frequency that varies progressively according to the 

value of the speed variable "Speed" and the time elapsed from the detection of the 

obstacle. 

 

 
ESCARPMENT code 

 

if (flag == -3) { 

 

    if (distance > ditch) { 

        ditch = distance; 

    } 

    //display alert 

    // sound alert 

} 
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4.5.7 Generic stationary obstacle detection 
The detection of a generic obstacle is done as an extension of the bump case. The 

LiDAR sensor, in fact, initially recognizes the measurement change but is not yet able 

to understand if the obstacle is just a road bump or is a much bigger obstacle. As 

shown in the FSM in Figure 4.4, as soon as the sensor detects a distance decrease, it 

will initially set the "bump" case and only later, if certain conditions are matched, it 

will set the "generic obstacle" case.  

“What are these conditions?” 

If the measured distances exceed a certain BUMP_MAX threshold, then the obstacle 

is classified as a "generic obstacle" and not as a “bump”. 

Road bumps usually reach a maximum height of 10-15 centimeters, therefore, 

BUMP_MAX has been set to a value of 150 centimeters (which corresponds to a 

height detection of 15 cm). 

 
 

if (POINT_DIST - bump > BUMP_MAX) { 

    flag=3; 

} 

 

  

Once the obstacle is detected, you enter a cycle similar to that of the “bump” but, 

here, in addition, the distance from the obstacle is also monitored over time. In fact, 

we could have a big stationary obstacle, higher than the sensor, and the measured 

distance would continue to decrease without ever returning to point to the ground. 

Therefore, as the distance decreases, a beep signal is emitted with increasing 

frequency. 

If the driver does not deviate the obstacle, the warning signal will continue until the 

possible impact with the obstacle. If, on the other hand, the driver does not deviate 

the obstacle but brakes, the vehicle speed is reduced and if the speed falls below the 

5 km/h threshold the sensor will not work. As mentioned in paragraph 4.5, the 

sensor will be activated only if a certain threshold speed is exceeded, therefore, if 

the driver brakes o slows down, the warning signal ends because the driver has 

noticed the danger and it is not necessary to have a harassing sound. 

Unfortunately, the sensor prototype created is unable to distinguish obstacles 

higher than the sensor, as shown in figure 4.5.7. If the laser beam is interrupted at a 

distance of 5 meters, for example, the sensor cannot distinguish whether it is a 

person, a wall or an ascent. 

The sensor emits a single beam which, although it is not point-like (the diameter is 

about 10 centimeters at a distance of 10 meters), it can only detect obstacles that 

are in the direction in which it is pointed. 
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Fig. 4.5.7: Generic stationary obstacle detection 

 

 

Furthermore, since the height of the sensor is 1 meter, it is not possible to detect the 

size of very tall objects. Since the sensor is able to calculate the height of obstacles 

based on how much the measured distance varies, it follows that the higher the 

obstacles are, the closer they will be. This is why I decided to only detect the height 

of obstacles up to a maximum of 50 centimeters, while in all other cases the sensor 

notifies the obstacle only based on its proximity in order to accentuate the danger. 
 

 

GENERIC STATIONARY OBSTACLE code 

 

if (flag == 3) {      // generic stationary obstacle 

     

    ... //same operations as bump 

 

    if (((cycle_cnt - start_mis) > (100/(Speed/3.6))) && 

         (POINT_DIST - distAvg > BUMP_MAX)) {   

       

      if (refresh_cnt == 0) { 

        // alert on display 

        // alert with buzzer 

      } 

    } 

} 

 

 

 

4.5.8 Moving obstacle detection 
The detection of a moving obstacle differs from the case of a stationary obstacle and 

can be recognized quickly. By moving obstacle, we mean both an obstacle that cross 

the driver trajectory without stopping and an obstacle that suddenly places itself in 

the vehicle trajectory. 

When an obstacle is moving and cuts the laser beam, the distance measured by the 

sensor decreases sharply and then returns to the standard 10 meters value. 
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if ((POINT_DIST - distAvg > MIN_VAR) && 

     (distAvg - dist > STEP_MAX)) { // Moving Obstacle 

     

    flag = 4; 

} 

 

 

Therefore, with a sharp decrease of the distance, the "flag" is set to the value ‘4’. 

After that, the sensor immediately signals the passage of the obstacle and monitors 

its distance if it continues to remain in the path of the vehicle, signaling to the driver 

the proximity of the obstacle. 

 

 
MOVING OBSTACLE code 

 

if (flag == 4) {     // Moving obstacle  

       

    if (POINT_DIST - distAvg > MIN_VAR) { 

         

        if (distAvg < hump) { 

          hump = distAvg; 

        } 

   

        if (refresh_cnt == 0) { 

            // alert on display 

            // alert with buzzer 

        } 

         

    } else { 

        End=true; 

    } 

       

} 
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Chapter 5 

 
 

Prototype tests 
The test phase is a very important and decisive phase as it allows us to understand 

the feasibility of our POC. In the last part of my thesis project, I performed tests on 

the sensor prototype to analyze its data and verify its correct functioning. In 

particular, it is necessary to check if the parameters chosen during the programming 

of the device are effective or if I need to make changes to optimize the operation of 

the sensor. 

Testing a prototype is not an easy task and, therefore, I decided to proceed step by 

step, starting from the simple distinction between obstacle and free road and then 

gradually adding other features, up to testing the sensor in its complete operation. 

In this way it is also easier to identify errors and malfunctions of the device, starting 

from the most generic cases up to the most specific ones. 

 
 

 

5.1 Prototype installation 

The installation of the sensor, besides being the first part of this phase, is certainly 

the most relevant one. In fact, if the sensor is not fixed correctly, there is the risk of 

compromising the accuracy of the measurements performed and, therefore, the 

operation of the sensor. 

In order to perform the tests, it was necessary to mount and fix the sensor prototype 

on a two-wheeled vehicle and, in my case, I used a mountain bike. 

It was not easy to place the prototype due to the particular geometry of the bicycle. 

The LiDAR sensor needed a very strong and stable anchor; therefore, it was fixed to 

the center of the handlebar using an iron frame and plastic cable ties. 

The iron support structure was created by hand, using two corner plates and some 

screws. I created a structure that was as rigid and resistant as possible, in order to 

keep the sensor motionless if the vehicle was subjected to particularly strong 

vibrations or blows (such as colliding with a road bump). 

Referring back to the study carried out in chapter 1, the sensor was placed at a 1-

meter height, tilting the sensor to obtain a pointing distance that was as close as 

possible to the theoretical 10 meters. 

Below there are some photos showing how the sensor prototype was fixed to the 

vehicle. In particular, in figure 5.1b (side view) it is possible to notice the small 

inclination angle of the sensor. With a just 5 ° angle (approximately) it almost seems 

as if the laser beam has a direction parallel to the ground. Due to vehicle vibrations, 
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there is a risk that the distance measured by the sensor may change and alter the 

correct functioning of the device, therefore, it will be important to analyze the 

behavior of the vehicle on road surfaces with different conformations. 

 

 

 
 

Photo 5.1a: Structure used for Lidar sensor fixing 

 

 

 

 
 

Photo 5.1b: Sensor tilt (side view) 
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The breadboard, which contains the Elegoo UNO microcontroller, the LCD display, 

the buzzer and the SD reader, was placed on the bike handlebar while the power 

bank was fixed on the top of the frame for added convenience. Both were fixed with 

transparent polypropylene adhesive tape. Photo 5.1c shows the complete structure 

of the prototype used for the entire test phase. 

 
 

 
 

Photo 5.1c: Complete prototype structure 
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5.2 Phase I: Free road measurements check 

After placing and fixing the sensor prototype on the bicycle and creating my test 

vehicle, the first test phase on the device began.  

Initially, a very simplified version of the complete code was loaded in order to verify, 

first and foremost, the basic behavior of the sensor during a ride. The first version 

of the code allows to discriminate only the presence of an obstacle without 

performing any recognition logic. In this regard, I started the test phase by analyzing 

the accuracy of the measurements made by the sensor to check if the thresholds and 

parameters set during programming were correct. 

The oscillations and vibrations to which the vehicle is subjected during the ride can 

affect the accuracy of the measurements, compromising the obstacles recognition. 

To understand how the different road surface conformations could influence the 

behavior of the device, I performed tests on different types of terrain and road 

pavements and, subsequently, I analyzed the data provided by the sensor. Using an 

internal courtyard of the Teoresi company, I tested the sensor's behavior on three 

road types: dirt road, pavé (cobblestones) and asphalt road. 

Since I used a non-electric bicycle, I could not set a cruising speed of 10 km/h and, 

therefore, I tried to manually maintain a similar constant average speed, checking 

with a bicycle speedometer. 

 

 

5.2.1 Asphalt road 

 
 

The asphalt covers most of the urban roads and is the place where the vehicles 

usually move. First of all, therefore, I ran test on a common asphalted city road. From 

the data, I would have expected an almost low margin of fluctuations as asphalt 

roads usually have a certain homogeneity, as the roads are flattened. 

Graph 5.2.1 shows the trend of the measurements performed by the sensor during 

a short ride on the asphalt. The graph shows the distances measured (in 

centimeters) by the sensor on the ordinate axis, while on the abscissa the time axis 

that is shown in milliseconds. The ordinate axis was voluntarily overturned in order 

to have a clearer representation. 

From the graph it is possible to see how the asphalt road surface, although it may 

seem smooth and homogeneous, still presents some ripple due to the soil 

geomorphology. For this reason, the measurements taken outside differ 

significantly from those carried out internally. 
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Graph 5.2.1: Measurements on the asphalt road 
 
 

The trend of the measurements is therefore very different from the one supposed. 

First of all, it is necessary to modify the value of the thresholds so that the sensor 

does not detect false obstacles due to the oscillations to which the vehicle is 

subjected.  

The “MIN_VAR” value, initially set at 20 centimeters, was thus increased to 50 

centimeters. This means that, now, the sensor will not be able to discriminate 

obstacles with a height lower than 5 centimeters. 

 

 

5.2.2 Dirt road 

 

Subsequently, I performed tests on a dirt road. What I expected was a worse 

behavior than the one obtained in the asphalt case. The nature of the ground, 

extremely uneven and full of breaches, should have led to numerous oscillations of 

the vehicle, greatly influencing the value of the measurements. 
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The data relating to the measurements taken on the dirt road are shown in graph 

5.2.2. 

As expected, the measurements taken undergo a large variation due to vehicle 

oscillations. Although the terrain is uneven, and therefore, it is right to think of 

obtaining a road layout full of roughness, the measurements obtained far exceed the 

threshold set of 50 centimeters, even reaching peaks of 150 centimeters (i.e., 15 cm 

in height). 

The cause of this is not only the nature of the ground but also the presence of the 

shock absorbers which on the one hand favor a softer ride, but, on the other hand, 

create a wavy movement that affects the sensor measurements. Accordingly, it is for 

sure not possible to apply a complete obstacle recognition logic if the vehicle is 

subjected to constant oscillations. Indeed, with an error threshold of 15 cm, small 

obstacles such as road bumps, ditches and steps could not be recognized; instead, 

obstacles that greatly increase or decrease the sensor measurements, such as slopes 

or large obstacles, would be easily recognized. The most dangerous obstacles, 

therefore, should still be detected by the sensor despite the numerous oscillations. 

 

 

 

Graph 5.2.2: Measurements on dirt road 
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5.2.3 Pavé 

 

Pavé is a traditional type of outdoor road paving made up of stone or porphyry 

cubes. The size of the pavé cubes is in the order of ten centimeters, therefore, even 

if it is a not very homogeneous pavement, it should not cause significant oscillations 

to the vehicle, since the dimensions of the bicycle wheels are far greater than the 

distance of the stones. 

If we had used a scooter, we would most probably have had more wobble due to the 

small size of its wheels. Here too, I performed several tests to check the results of 

the measurements. The data in graph 5.2.3 are not very different from those 

obtained for the asphalt road as free road measurements are contained into the 

threshold levels. 

From now on, therefore, for convenience, the pavé-clad inner courtyard area was 

used to perform the next obstacle tests. 

 

 

 

Graph 5.2.3: Measurements on pavé 
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5.3 Phase II: obstacle recognition 

In this second test phase, the code loaded on the device was modified by adding the 

possibility of recognizing obstacles just with the variation of the measured distance 

(regardless of the type and size of obstacles). I performed a series of tests using 

different types of obstacles including two cardboard boxes of different heights (26 

cm and 34 cm), a cemented polystyrene cylinder (30 cm) and two 10 cm roll-ups. 

 

 

Photo 5.3: Obstacles used in tests 

 

 

As I didn’t have a road bump available, two roll-ups were used next to each other to 

simulate the “bump case”. 

The graphs used show the measurements performed over elapsed time, the two 

threshold levels, the maximum values measured by the sensor and I also reported 

the behavior over time of the "flag" variable used to discriminate obstacles. In this 

phase only two values were used: 

• 1 for the obstacles that exceed the high threshold. 

• -1 for the obstacles that exceed the low threshold. 

 

 

5.3.1 Cylindrical obstacle 
To correctly simulate the behavior of the sensor I used different obstacles made of 

different materials, sizes and shapes. 

Initially, only one obstacle was placed in the middle of the road: the cylinder. 

The data relating to the measurements carried out are shown in graph 5.3.1 below. 

The graph shows the presence of some disturbances during the ride that lead some 

measurements to exceed the lower threshold. This may be due to a simple "offset" 

caused by a slight displacement of the sensor. In fact, although the sensor has been 

rigidly fixed, it is always possible that it undergoes small displacements due to 

continuous percussion. 

Despite the presence of these disturbances, the height of the obstacle was detected 

correctly since the minimum measurement detected by the sensor is 700 cm. 

Referring to the formula with which I computed the height of the obstacle, we obtain 

a result identical to the real height of the obstacle.  

 

ℎ𝑒𝑖𝑔ℎ𝑡 =   
1000 𝑐𝑚 −  700 𝑐𝑚

10
= 30 𝑐𝑚 
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Even if we consider an offset of 10-20 cm, the height of the obstacle would have an 

increase of 1-2 cm. Remembering that our goal is not to accurately detect the height 

of obstacles but only to detect the extent of the danger, the way to prevent an 

accident, we can say that the result obtained is still very good. 

 

 

 

Graph 5.3.1: Measurements performed on cylindric obstacle 
 

 

 

5.3.2 Set of obstacles 
After testing using only one obstacle, I performed tests with multiple obstacles. In 

particular, in addition to the cylinder, I also used the 26 cm box and the 10 cm roll-

up and I placed them as shown in the photo 5.3.2. 

In this case there were no disturbances in the measurements and the sensor only 

detected real obstacles. The measurements were also very accurate because I 

detected maximum heights of 30 and 25 centimeters, as evidenced by the two 

straight lines (black and gray). The height of the second obstacle measured has an 

error of 1 centimeter compared to the real height of the obstacle, but it is completely 

irrelevant to our purposes.  

 

ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑏𝑠1 =   
1000 𝑐𝑚 −  700 𝑐𝑚

10
= 30 𝑐𝑚 

 

ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑏𝑠2 =   
1000 𝑐𝑚 −  750 𝑐𝑚

10
= 25 𝑐𝑚 
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Photo 5.3.2: Arrangement of obstacles 
 

 

 

 

Graph 5.3.2: Measurements performed on a set of obstacles 
 

 

In graph 5.3.2, above, it is also possible to note (red circle) how accurate the 

detection of the height of the roll-up was (1000 - 900 = 10 cm), although it is not 

recognized by the sensor as a distinct obstacle. 
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5.3.3 Road bump of 10 cm 
To test the detection of a road bump, I used two 10-centimeter roll-ups placed side 

by side. It should be noted that road bumps with a height lower than 5 centimeters 

cannot be correctly detected by the sensor due to the set threshold levels. But, the 

real danger of road bumps arises when their size exceeds 10 centimeters: for 

example, in cities there are many raised pedestrian crossings that reach a height of 

20 centimeters. 

Graph 5.3.3 shows the result of the measurements made on the obstacle. 

 

 

 

Graph 5.3.3: Measurements performed on a 10 cm obstacle 
 

 

Looking at the graph, you can see how the sensor recognized the obstacle by 

recording a minimum measurement of 885 cm, that is, an obstacle height of 11.5 cm. 

 

ℎ𝑒𝑖𝑔ℎ𝑡 𝑏𝑢𝑚𝑝 =   
1000 𝑐𝑚 −  885 𝑐𝑚

10
= 11,5 𝑐𝑚 

 

We could think of an error of a few centimeters but, later, I realized that the effective 

height of the roll-ups has been increased due to the presence of the handles of the 

case. So, the measurements are more than congruent. 

Moreover, before detecting the obstacle, there was probably the presence of a slight 

oscillation which registered the presence of a false obstacle. Registering a false 

obstacle (a smaller and shorter one) is not a very serious thing, if we are talking 

about a few centimeters; the important thing is not to detect many of them, as the 

continuous signaling could disturb the driver. 
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5.4 Phase III: steps recognition 

In the third stage, the sensor logic has been made more complex, adding the ability 

to recognize steps and sidewalks. Obviously, it will be possible to detect only 

differences in height greater than 5 centimeters since the sensor threshold levels 

are always valid. The graphs used show the value over time of the "flag" variable 

which, this time, can assume two more values than in the previous phase: 

• 2 for up steps. 

• -2 for down steps.  

 

In the area at my disposal there was a sidewalk that flanked both the pavé and the 

dirt road. I used, therefore, the sidewalk to perform the various tests. The sidewalk 

available was 15 centimeters high, as shown in photo 5.4 below. 

 

 

 
 

Photo 5.4: Sidewalk height 
 

 

 

5.4.1 Sidewalk 
Using the sidewalk, I performed a series of tests by detecting the measurements 

performed in the case of a down-step or an up-step. 

Graph 5.4.1a shows the measurements obtained in the down-step case. The graph 

shows a peak of measurements of 1150 centimeters. By doing the calculations it 

turns out that the height of the detected step corresponds exactly to the height of 

the sidewalk. 

 

ℎ𝑒𝑖𝑔ℎ𝑡 𝑠𝑡𝑒𝑝 =   
1150 𝑐𝑚 −  1000 𝑐𝑚

10
= 15 𝑐𝑚 

 

The measurements made present some disturbances but remain constantly above 

the threshold, therefore, the "flag" remains set to the value '2' as it should be. The 

disturbances in the graph are due to the presence of dirt road after the sidewalk and 
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it is completely normal for similar oscillations to occur due to the differences in level 

of the ground. At the end, we can see the values return above the threshold since the 

road ends and there is a wall that fences the area. 

 

 

 
 

Graph 5.4.1a: Measurements performed on a down step 
 

 

In the event that the vehicle was on the road and there was a sidewalk in front of it, 

the behavior would be equal and opposite. This time I performed the tests on the 

pavé side, for greater comfort in the trajectory. Graph 5.4.1b shows the data relating 

to the up-step case. 

The measurements reported are in line with what we expected, even though I 

detected a peak 3 centimeters higher than the real size of the sidewalk. This time, 

therefore, the user will be alerted with the presence of a slightly higher bump than 

its real size. 

 

ℎ𝑒𝑖𝑔ℎ𝑡 𝑠𝑡𝑒𝑝 =   
1000 𝑐𝑚 −  820 𝑐𝑚

10
= 18 𝑐𝑚 

 

The cause of this may be due to a particular oscillation that occurred just as the laser 

beam was starting to detect the step. The measurements after this peak remain 

constant, even more than in the previous case and this is completely normal, if we 

consider that the vehicle is on the pavé and the current oscillations mirror those 

provided by the data in the free road graph 5.2.3. 

900
920
940
960
980
1000
1020
1040
1060
1080
1100
1120
1140
1160
1180
1200

1 3
6

7
1

1
0

6

1
4

1

1
7

6

2
1

1

2
4

6

2
8

1

3
1

6

3
5

1

3
8

6

4
2

1

4
5

6

4
9

1

5
2

6

5
6

1

5
9

6

6
3

1

6
6

6

7
0

1

7
3

6

7
7

1

8
0

6

8
4

1

8
7

6

9
1

1

9
4

6

9
8

1

1
0

1
6

1
0

5
1

1
0

8
6

1
1

2
1

ce
n

ti
m

et
er

s

milliseconds

down Step

measurements High Threshold Low Threshold max Step

-2

-1

0

1

2



100 
 

 

 
 

Graph 5.4.1b: Measurements performed on an up-step 
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5.5 Phase IV: sensor complete logic 

The last test phase of the project focuses on the detection of any type of obstacle, 

considering both stationary obstacles on the road and moving obstacles that can 

suddenly appear in front of the driver. 

This is the reason why, now, I loaded the complete code of the sensor logic and in 

the graphs, thus, the “flag” variable can assume any value among those shown in 

paragraph 4.5.1. 

To complete the logic, 3 more values were added: 

 

• 3 for generic stationary obstacles. 

• 4 for moving obstacles. 

• -3 for steep descents or escarpments.  

 

Since it was not possible to simulate the steep descent case, the tests were 

performed only on the recognition of stationary or moving obstacles. 
 

 

5.5.1 Generic stationary obstacle 
To simulate the recognition of a generic stationary obstacle, I used the 26 cm 

cardboard box but it was placed standing on its longer side, in order to reach a height 

higher than that of the sensor. The precise height of the obstacle does not matter, 

because in this case the sensor will not be able to calculate it. 

 

 
 

Photo 5.5.1: Obstacle arrangement 
 

 

The generic stationary obstacle has to be detected by the sensor as an extension of 

the road bump case. Therefore, we expected the sensor to initially detect a road 

bump and, immediately after, to recognize the presence of a large obstacle blocking 

our trajectory. In Graph 5.5.1, the data shows exactly this behavior. 

In the example shown in the graph, I made a front run against the obstacle and, for 

this reason, the sensor continued to detect the obstacle until I reached one meter 

from it. 
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I have chosen this dataset, in particular, to make it immediately evident what can 

happen while an obstacle is being detected. If we look at the part of the graph circled 

in black, we notice a sudden disturbance while the sensor is detecting the obstacle. 

This disturbance is due to the vehicle driving dynamics; indeed, the obstacle is 26 

centimeters wide and it is enough to move the bicycle handlebar a few degrees to no 

longer detect the obstacle and have that strange disturbance. It cannot be called a 

disturbance because the measurements have not been altered but it is the driver 

who has changed direction and no longer points at the obstacle. 

This is one of the problems that can occur when driving a very dynamic vehicle such 

as a bicycle. However, it must be taken into account that if a small swerve is enough 

to no longer detect the obstacle, it means that it takes very little to no longer have 

the obstacle in front of our trajectory. The bicycle, in fact, or even the scooter, are 

very slim vehicles: the bicycle wheels can reach a maximum of 10 centimeters while 

the handlebar occupies about 60 centimeters. 

Despite this, the “flag” variable has always continued to detect the presence of an 

obstacle in that time frame because the average value of the measurements has not 

fallen below the threshold level, due to the effect of the “distAvg” average value. 

Again, I detected a slight oscillation which led some measurements to exceed the 

low threshold level, signaling the presence of a false obstacle. 

 

 

 

Graph 5.5.1: Measurements performed on a big stationary obstacle 
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It should be specified, as already mentioned in paragraph 4.5.7, that the obstacle 

could be either a stationary person or a wall, therefore, it is not possible to 

distinguish the different possible cases using only a single beam distance sensor.  

 

 

5.5.2 Moving obstacle 
To perform tests on a moving obstacle, I asked a colleague for help. While I drove 

the vehicle, he walked perpendicularly to my direction, cutting my way. 

Graph 5.5.2 shows the case in which the obstacle suddenly passes in front of the 

vehicle without stopping. From the data used in the graph, you can notice a sudden 

surge in measurement values that allows the sensor to recognize the obstacle and 

signal it as a moving obstacle. In this case, the peak detected does not correspond to 

the true distance in which the obstacle crossed the vehicle trajectory, since I used 

the average distance in the graph. But, on the contrary, I exploited the real distance 

value for the acoustic and visual signaling, thus, allowing to provide the user with 

the right warning of danger based on the obstacle distance. 

 

 

 
 

Graph 5.5.2: Measurements performed on a moving obstacle 
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In the event that the obstacle remains in the path of the vehicle, the sensor would, 

however, continue to signal to the user the proximity of the obstacle as it comes 

closer to it, exactly as in the case of a generic stationary obstacle, using an acoustic 

signal acoustic with higher frequency according to the danger. Still here, there are 

some slight oscillations that lead to the detection of small false obstacles. 

Since all the disturbances obtained in the graphs are caused by oscillations that 

bring the measurements to exceed the threshold level by no more than 10 

centimeters, I came to the conclusion that setting the two threshold levels to 60 

centimeters (instead of 50) could solve the problem. However, it must be taken into 

account that the range of detected obstacles is further reduced, making undetectable 

all obstacles with a height lower than 6 centimeters. 

 

 

5.5.3 Climatic conditions influence 
The testing phase of the sensor prototype was carried out in the last months of my 

thesis project (from mid-February until the first days of March). Unfortunately, in 

this time period, there were no adverse weather conditions: there were no rainy 

days, except very light rainfall (almost imperceptible). Before the test phase, the 

device was briefly tested during days with heavy rain and even snow. Unfortunately, 

the sensor was not yet equipped with the SD card module and it was not possible to 

store the measurements and errors detected by the sensor. Therefore, I could not 

analyze the data and create graphs, but I can say that, on those days, looking at the 

error messages on the LCD display, huge amounts of errors were detected.                 

The sensor was unable to perform the measurements correctly, both in the rain and, 

especially, in the snow. 

“Why this behavior?” 

The distance measured by the sensor depends on the reflected energy that is 

detected by the receiver and, in case of precipitation, the reflected laser beam may 

be disturbed and the receiver may not receive the signal correctly. In addition, the 

presence of liquids on the road could cause inadequate dispersion of the laser beam. 

For this reason, liquids can be a relevant problem in obstacle detection. 

In case of a flat and highly reflective liquid surface, the reflected energy of the laser 

may not be detected unless the beam hits that surface from normal. On the contrary, 

small surface ripples can create an enough dispersion of the reflected energy to 

allow the detection of the liquid even if the laser beam comes from other directions. 
[15] 
For this reason, I decided to carry out tests by spraying water on a pavé stretch 

simulating the behavior of the sensor, the way to check whether the presence of 

liquids on the road could affect the measurements performed. 

Graph 5.5.3 shows the data obtained and a conspicuous presence of errors was 

recorded during the piece of wet road. The white area in the graph (circled in black) 

highlights the absence of measurements performed correctly. Furthermore, the 

number of measurements taken has not been only decreased significantly, but those 
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measurements have also been altered due to the reflective effect of the water on the 

road. 

This problem should not be underestimated, in fact, as you can see in the graph, a 

measurement peak of more than 1700 cm is reached; this signaled the presence of 

a 70 centimeters false obstacle (circled in grey). 

 

 

 

Graph 5.5.3: Measurements performed on wet pavé 
 

 

The results obtained show us how difficult it is to obtain correct measurements 

when the road is wet. For “wet road” I means a surface sprinkled with water and not 

simply humid. 

In case of heavy rainfall, probably, there would be errors not only due to the 

presence of water on the road, but also due to water drops or snowflakes that cross 

the laser beam and significantly alter the probability of performing a measurement 

correctly. 
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5.5.4 Obstacle reflection problems 
Obstacles of different materials, shapes and sizes were used throughout the test 

phase and no obstacle reflection problems were detected. From the data obtained 

from tests performed, no measurement error was detected; this means that the 

signal strength has never been compromised and the sensor has always correctly 

performed the measurements of obstacles on all types of road surfaces under 

examination. 

The only measurement errors were found indoors, in a very large room with a 

perfectly flat and smooth floor, when I was taking measurements to verify the 

correct functioning of the sensor. The causes of these errors have not been analyzed 

in detail since the sensor was designed to operate on vehicles, and therefore 

outdoors. Probably, it would have been very interesting to carry out tests on a road 

covered with smooth marble blocks, typical of some historic centers. 
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Conclusions 
 

During the test phase, the sensor proved to be very reliable for the detection of 

obstacles on asphalted or paved roads (such pavé). 

The sensor was able to recognize the dangers by also detecting in most cases the 

exact height or depth of the obstacles. Unfortunately, in order to avoid the detection 

of false obstacles, it was necessary to set a threshold of 60 cm which does not allow 

to detect obstacles with a height of less than 6 centimeters. This is due to the 

numerous oscillations that the vehicle is subjected to while driving. 

The sensor prototype was built entirely with my hands and however rigid the iron 

structure created may be, it is subject to small inclinations which affect the distance 

measured by the sensor by means of an offset. In addition, the shock absorbers on 

the vehicle can create an undulatory movement of the entire vehicle, consequently 

changing the height and angle of inclination of the sensor which, therefore, no longer 

constantly detects the 10 meters distance. 

Probably, the use of a more rigid vehicle such as a traditional bicycle or an electric 

scooter could reduce the amount of oscillations due to the effect of the shock 

absorbers, but also increase them due to the absence of the same. Tests should be 

carried out on each vehicle and an appropriate threshold level should be chosen for 

each one. 

For sure, the sensor cannot be used adequately on unpaved or uneven roads such as 

dirt roads, since the large number of oscillations involves such a high error as not to 

allow correct recognition of obstacles. The latter does not represent a measurement 

error, as the sensor has always detected the distances correctly during the tests, but 

it is an error due to the sensor position which, moving, compromises all the 

calculations performed to create the logic of obstacle detection. 

The sensor, on the other hand, was designed to be used in urban centers where there 

are mostly asphalted and paved roads. 

By running the tests at a speed of 10 km/h, the sensor was able to correctly detect 

obstacles. It was not possible to carry out tests at higher speeds as there was not too 

much space available, but since the number of measurements per meter performed 

inversely depends on the speed of the vehicle, doubling the speed you halves the 

number of measurements. To keep the sensor efficiency constant and correctly 

detect obstacles even at high speeds, a more powerful microcontroller should be 

used, capable of minimizing code execution times. 

The presence of adverse climatic conditions can considerably compromise the 

operation of the sensor both by creating voids of measurements (the sensor cannot 

perform the measurements correctly) and by altering their value (the sensor detects 

false obstacles). On the other hand, with the absence of precipitation, the sensor has 

always performed correctly the measurements on any road and with obstacles of 

different shapes and sizes. 

In summary, if a moderate speed is maintained, the designed sensor will be able to 

correctly detect obstacles and provide the user with information and alerts in real 

time. 
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At the end of my thesis project, given the results obtained in the testing phase, I was 

able to ascertain the feasibility of the POC. 
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