
Politecnico di Torino

Master’s Degree Course in Computer Engineering

Master’s Degree Thesis

Development and test of an Iron Bird (Airplane
wing simulator)

Supervisor:
Prof. Luca Ardito

Co-supervisor:
Prof. Maurizio Morisio

Candidate:
Chenguang Long

Academic year 2020/21
Torino

Abstract

Context : Reducing the power consumption and thus the fuel burn is a major target
for the next generation of aircraft. Two technological areas that can contribute to
the power saving are wing load alleviation and electrical actuation. Load alleviation
is a technique for redistributing aircraft loads encountered during flight with the
purpose of reducing the wing root bending moment, hence allowing a lighter wing
design with a resulting weight saving, reduction of the needed propulsive power.
Electrical actuation can contribute to the reduction of the non-propulsive power
because electromechanical actuators, when compared to the hydraulic actuators,
rely on a power less subject to losses and lighter to distribute, besides presenting
higher reliability and maintainability with a lower life-cycle cost.

Goal : The aim of this thesis’ work is simulating of the wing during a flight requires
a number of computers: FMSC Flight Mechanics Simulation Computer to simulate
the flight dynamics; FCC Flight Control Computer to control the airplane during
the flight, HMS Health Management System for reactive and proactive mainte-
nance.

Contents

List of Figures 4

1 SUMMARY 7

2 Architecture of Iron Bird 21
2.1 Introduction to real time simulation 22

Description of the Flight Mechanics Simulation Computer . 23
2.2 Flight Control Computer . 31
2.3 Health Management System Module 33
2.4 Reflective Memory and Synchronization 37

3 Mapping Flight Mechanics Simulation Computer (FMSC) 39
3.1 Code generation . 40
3.2 Deployment inside Veristand SystemExplore 41
3.3 Setting ports . 43
3.4 Mapping set . 45

For example . 47

4 Conclusions 49

Bibliography 52

3

List of Figures

1.1 Model-based Software Engineering flow 13
1.2 V-shaped development flow of Model-based Software Design 15

2.1 Architecture of IB . 22
2.2 Communication of architecture . 23
2.3 Rigid model in Simulink. 24
2.4 Rigid and Flexible models. 25
2.5 Bending Right Wing. 26
2.6 Torsion Right Wing. 26
2.7 Accelerations at the wing root. 26
2.8 Hinge Moments Block. 27
2.9 Elevator Hinge Moment. 29
2.10 Rudder Hinge Moment. 29
2.11 Right Aileron Hinge Moment. 29
2.12 Right Wingtip Hinge Moment. 30
2.13 HMSM . 33
2.14 Interface . 34
2.15 Features Behaviour . 35
2.16 Histograms (fault detection in progress) 35
2.17 Confidence (fault detection completed) 36

4

6

Chapter 1

SUMMARY

7

SUMMARY

The thesis project develops an Iron Bird, a simulation of a wing of a regional
airplane. The simulator is partially physical (half wing, sensors, actuators) and
partially virtual (second half wing). The project is part of the AstIb Clean Sky2
(CS2) European project. The ASTIB (development of Advanced Systems Technolo-
gies and hardware/software for the flight simulator and Iron Bird demonstrators
for regional aircraft) project brings together 7 European companies and academic
partners led by LEONARDO. It aims at supporting the improvement of the Tech-
nological Readiness Level for a significant number of equipments that are being
considered of critical importance for the future Green Regional Aircraft (GRA).
The design and production of the Iron Bird is responsibility of CERTIA. The Iron
Bird is the ground test bench allowing the integration of the different aircraft sys-
tems. This Iron Bird is equipped with new innovations (semi-virtual, innovative
loading systems, health monitoring, etc.). The thesis work is about receiving the
models (developed by aeronautical engineers), deploying them on the computers,
testing and improving them until complete validation. The simulation of the wing
during a flight requires several computers: FMSC (Flight Mechanics Simulation
Computer) to simulate the flight dynamics; FCC (Flight Control Computer) to
control the airplane during the flight, HMS (Health Management System for reac-
tive and proactive maintenance. The computers rely on various MatLab Simulink
models. The workflow follows the principles of the Model-based software design,
that is based on the development of a model of the plant and the controller with
focusing on the details that are useful to understand system’s behaviour. A signifi-
cant advantage of following that approach is the automated code generation, which
allows to automatically translate the Simulink model into code that can be executed
on a dedicated hardware. In a first phase models are tested in a simulation environ-
ment. Then they have to be executed in real time to verify the interactions between
the models and the shared memory. Executing a model in real time requires the
usage of high-performance platforms. The chosen one is NI VeriStand, a software
designed also for Hardware-in-the-loop (HIL) and Software-in-the-loop (SIL) sim-
ulations. In order to import the model in NI VeriStand we need a dll (dynamic
linking library) file. It is obtained as result of code generation. The models received
from the partners are modified to make them suitable for code generation. This
means substituting every source block with an Input Port and every sink block with
an Output Port. Then code is generated and the model, translated into a dll, is

8

SUMMARY

ported to NI VeriStand. Next step is, exploiting VeriStand, to map inputs and out-
puts on the reflective memory. In this way the 3 models composing the project shall
be able to interact with each other. Last step is, indeed, to verify their interactions.

9

SUMMARY

Air transport contributes today about 3% to global greenhouse gas emissions,
with traffic expected to triple by 2050. Although other sectors are more polluting
(electricity and heating produces 32% of greenhouse gases), this expected growth
makes it necessary to address aviation’s environmental impact. Meeting the EU’s
climate and energy objectives will require a drastic reduction of the sector’s envi-
ronmental impact by reducing its emissions. Maximising fuel efficiency, using less
to go farther, is also a key cost-cutting factor in a very competitive industry – and
as air traffic increases, better noise reduction technologies are needed. But game-
changing innovation in this sector is risky, complex and expensive, and requires
long-term commitment. This is why all relevant European stakeholders must work
together to develop proof-of-concept demonstrators. Reducing the power consump-
tion and thus the fuel burn is a major target for the next generation of aircraft.
Two technological areas on which can be possible work are wing load alleviation
and electrical actuation. Load alleviation is a technique for redistributing aircraft
loads encountered during flight with the purpose of reducing the wing root bending
moment. Electrical actuation can contribute to the reduction of the non-propulsive
power because electromechanical actuators rely on a power less subject to losses
and lighter to distribute, besides presenting higher reliability and maintainability
with a lower life-cycle cost. These two areas have been widely addressed in the past
years. Over the last years, several industrial programmes initiated the concept of
a More Electric Aircraft. In particular, the aero-equipment industry has started
to develop a more electrical actuation with Electro Hydrostatic Actuators (EHA)
and to introduce electromechanical actuators (EMA) for auxiliary equipment. This
has provided incremental approaches to address hydraulic circuits issues (Power-by-
Wire technologies, 2-hydrulic/2-electric power distribution architecture and use of
EMA for some systems). Several collaborative research and development projects
also started to develop an All-Electric Aircraft, showing the effectiveness of elec-
trical actuation. EMA systems are so considered the best option for the aircraft of
the future considering they are:

• Less complex

• Better suited to long term storage

• Energy saving with respect to hydraulic systems

• Installation and maintenance are easier

10

SUMMARY

• Power distribution management easier.

Nevertheless, there still exist technological barriers for a wide adoption of EMA.
For example, the sensitivity to certain single point of failures that can lead to me-
chanical jams, and so on. The promising perspectives of load alleviation / load
control technologies as well as electrical actuation for flight control surfaces and
landing gear need to be thoroughly investigated and verified in order to gain the
necessary confidence and maturity level for moving to their implementation in a
flying demonstrator.
This requires:

•Development of suitable prototype components integrating the innovative features
capable of making electrical actuation an accepted proposition for future flight
controls and landing gears

•Design and construction of an integration test rig (Iron Bird) allowing verification
and validation of:

oEnhanced electrical power distribution and load management

oElectrical landing gear technologytechnology

oFlight control system technology

•Development of a health monitoring platform able to collect and process data pro-
vided by the sensors of the aircraft structure and systems such to assess the aircraft
health status

ASTIB – Advanced Systems Technologies and hardware/software for
the flight simulator and Iron Bird

The ASTIB (development of Advanced Systems Technologies and hardware/soft-
ware for the flight simulator and Iron Bird demonstrators for regional aircraft)
project brings together 7 European companies and academic partners led by LEONARDO.
Its goal is to develop new technologies for the future regional aircraft.

11

SUMMARY

ASTIB is specifically focused on contributing to generate technological advance-
ments to be implemented in a future Green Regional Aircraft (GRA); its main
objectives are to support the improvement of the Technological Readiness Level
up to above TRL 5 for a number of significant electrical equipment that are being
considered of critical importance for the future GRA. This will help supporting in-
dustrial application decisions for future deployments of GRA. In particular, ASTIB
will develop:

• Electromechanical actuators (EMAs) with their associated electronic control units
(ECUs) for selected flight control surfaces

• Electrically actuated one main and one nose landing gears

• Reliable prognostics and health management functions for the electromechanical
actuators

• An advanced multi-functional integration, verification and validation test rig
("Iron Bird")

• Contribution to the development of a health monitoring validation platform

• Tools for evaluation of the benefits of an integrated health monitoring platform.

12

SUMMARY

MODEL-BASED SOFTWARE DESIGN
The project has been developed following the principles of Model-Based Software
Design. To understand what this means, let’s start with an example. Let’s think we
want to design a controller for an industrial robot or a vehicle and put our attention
on the code necessary. Software complexity is becoming one of the dominant cost
items in several sectors, including automotive, avionic and industrial markets. It
can be reduced using a structured process, a more effective way of developing and
validating the code, a more effective way of reusing code. Following a traditional
approach implies handwritten code and the only way to verify requirements fulfil-
ment is through a “trial and error” procedure. Tests can be done only at the end of
the process and on a physical prototype, increasing costs. If a single requirement
changes, the whole system must be redesigned, increasing the already large time
needed for production and delivery of the final product.

Figure 1.1. Model-based Software Engineering flow

13

SUMMARY

Model-driven engineering (MDE) offers an alternative that allows to reduce time-
to-market and development costs. Principles of MDE are:

•Abstraction from specific realization technologies

oA model should care about system’s behaviour not its implementation

oRequires modelling languages that do not hold specific concepts of realization
technologies

•Automated code generation from abstract models

•Separate development of application and infrastructure.

According to this approach, there will be a software tool to translate a project
in software. Usually the project consists of one or more models. A model is a
representation of the original system that includes only the key features useful to
understand its behaviour. Modelling is the key of this approach. The functionality
of the application we want to develop will be modelled using a language that is ab-
stract enough to allow to work without specifying too much details (e.g. Simulink
and Stateflow). A transformation tool will automatically generate the code relative
to the model, applying to it some transformations defined through a specification
language. The advantage of this approach is that the model can be continuously
refined throughout the whole development process and it can be simulated at any
time to see how the system behaves. Multiple scenarios can be tested without any
risk and without using specific and expensive machinery. The typical design flow of
model-based software design is the so-called “V-Shaped” development flow, shown
in the picture below.

14

SUMMARY

Figure 1.2. V-shaped development flow of Model-based Software Design

It is possible to perform simulation during the whole process in order to avoid
unwanted behaviours at the end. The best thing is to perform simulations to verify
each step to avoid going back of several steps if an error occurs. Different types
of test can be performed: Model-in-the-loop (MIL), Software-in-the-loop (SIL),
Processor-in-the-loop (PIL) and Hardware-in-the-loop (HIL).

15

SUMMARY

Model-in-the-loop testing
It can be performed in the first steps of the V-Shaped design flow when both the
plant (system to be controlled) and controller (algorithm controlling the plant) are
modelled. It is performed on a PC. Models are developed using a suitable domain-
specific language (e.g. Simulink/Stateflow). The simulation is used to validate the
correct behaviour of the controller looking only at the functional aspect. For ex-
ample, we can test if the plant is able to follow a given input.

Code generation and Software-in-the-loop testing
When MIL tests give acceptable results, the model of the controller is translated
into code by means of the so-called code generation. It implies the application of
some transformations defined by trough a specification language. For example, it
allows to transform a Simulink model into C code. Software-in-the-loop is the step
done after code generation to validate the correct behaviour of the software result-
ing from the controller model. The software is co-simulated with the plant model,

16

SUMMARY

by executing both on the development PC. The goal is to evaluate the behaviour
of the code resulting from the controller model, looking again at its functional
aspect.(Wikipedia, n.d.).

Processor-in-the-loop testing After validating the software, the successive step
is the Processor-in-the-loop test. It is performed using different machines. The
model of the control algorithm is translated into code and deployed on an em-
bedded processor (e.g. an evaluation board or an ECU). It is then executed in
combination with a model of the plant running on a simulation environment into
the development PC. In this way, the designer can verify the correct operations of
the code implementing the controller while running on the hardware that will be
used in the final product or one close to it. In this kind of test we are interested in
the functional aspect of the controller too, still neglecting the real time behaviour.

Processor-in-the-loop testing The last type of test is called Hardware-in-the-
loop (HIL). It is performed using different machines. It consists in running a soft-
ware implementation of a control algorithm in a microprocessor-based system, for

17

SUMMARY

example an evaluation board or the target hardware, in combination with a real-
time plant model that is executed by a real-time computer. The input/output
connections between the two elements are implemented using the very same con-
nections that will be used in the real application. Some hardware components
belonging to the physical plant may also be connected. In this stage, validation of
the software is done in real-time, consider both the functional and timing properties
of the software.

Goals and used tools
The thesis work aims to validate the models, received from and designed by aero-
nautical engineers, that are part of the Iron Bird. This implies deploying them
on the development PC, testing and improving them until complete validation. In
particular, it is about performing SIL tests using NI VeriStand.

MATLAB Simulink
According to MBSE the key concept is the model of the functionality that we want
to design. A model reflects the relevant section of the original system properties,
so focussing on important properties only.

18

SUMMARY

EXPECTED RESULTS
The technologies developed under CS2 will reduce environmental pollution and

noise levels and will therefore improve the quality of life. The close collaboration
between the partners of CS2 will accelerate the pace of technological progress and
create a mutual win-win situation. CS2 will help Europe’s aeronautics sector re-
mains competitive. Europe currently has a world market share of 40% and the
global aviation sector is expected to grow by 4-5% per year. But faced with fierce
competition Europe needs to develop new technologies to create new market oppor-
tunities and new highly specialised jobs. For stakeholders in the EU-13 countries
the new, enlarged JTI offers more opportunities to participate in building the best
technologies.

19

20

Chapter 2

Architecture of Iron Bird

21

Architecture of Iron Bird

2.1 Introduction to real time simulation

In this part all models are built and running by Matlab/Simulink in PC environ-
ment.The Figure represents the architecture of the IB. It demonstrates the various
systems integrated into the IB and the communicative relation between each com-
ponent of the test bench. The Simulation module should simulate in real time

Figure 2.1. Architecture of IB

environment and get response from the modelled Iron Bird equipment.Since only
the half side of the Iron bird is the real wing(left semi wing),so the right side will be
simulated in the Simulation Module way in order to obtain full ground test results.
The Simulation Module shall be designed and developed following a modular and
parametric philosophy.

The FMSC FCC and HMSM are parts of the Iron Bird. They are designed and
integrated and operated to:

2.1) FMSC: The primary purpose of the Flight Mechanics Simulation Computer
(FMSC) is for the aircraft to be able to perform simulations(both longitudinal
and lateral directional plane) under real-time conditions to verify the perfor-
mance of various devices in a real-time environment.The model is based on
the aircraft selected for the Iron Bird experiments, which will be a turbo-prop
aircraft with 90 seats (TP90), it can be dividend into Aeroelastic Model ,

22

2.1 – Introduction to real time simulation

Figure 2.2. Communication of architecture

Rigid Body Mechanics , Flexible Body Mechanics , Gust Simulation
, Hing Moments.

The FMSC accepts the following inputs: elevator deflection δδδe, rudder deflec-
tion δδδr , right aileron deflection δδδaR , left aileron deflection δδδaL , and winglet
deflection δδδw or wingtip deflection δδδwtip. The whole systems are developed
in Matlab/Simulink environment and every block,subsystem are validated us-
ing a fixed-step integrator(Runge-Kutta) with a sample time Ts = 0.01s.

During simulation we set mass equal to 20147 kg,mach speed equal to 0.3, without
aerodynamic derivatives and altitude is 20000ft in Turin with innovative wing tip.

2.2) FCS: The Flight Control System (FCS) is the part of the IB in order to control the
airplane during air. It consists with Flight Control Computer (FCC), the Remote
Interface Unit (RIU) and some other subsystems representing Winglet and Wingtip
that refers to the Electronic Actuation Control Unit (EACU).

2.3) HMSM:TheHealth Management System Module(HMSM) wilL provide an advanced
integrated reasoning system that integrates a set of tools that can automatically han-
dle failures based on predictive information to enhance vehicle safety and decision
support.A health monitoring verification platform and tools that can evaluate overall
performance are also one of the goals of the ASTIB project.

Description of the Flight Mechanics Simulation Computer

2.1.1) Aeroelastic Model: The aeroelastic model of the aircraft is developed under
some assumptions,that are introduce this paragraph:

– the inertial tensor in body reference frame IB is considered diagonal.

23

Architecture of Iron Bird

– the only deformable element for this 6 DoF aircraft model is the wing.

– the flexible components and deformations are modelled considering only
the 1st and 2nd symmetric bending modes and the 1st symmetric torsional
mode.

– the A/C weight is constant in time.

– the sweep angle = 0.

In order to reduce the complexity of computation and reduce the computa-
tional load as much as possible, Strip theory modelled is adopted to simulate
the aerodynamic force and moments. Under this theory, the load is only re-
lated to the flow direction of ’local flow’.The natural modes of the structure
are used with the Galerkin method to express the deformation as truncated
series expansions.

2.1.2) Description of the Rigid Body Mechanics: Besides the initial trim condition,
the input of this model is a kind of step variation function. In addition, due
to the lack of aerodynamic parameters (such as the corresponding derivative),
the model does not include winglet deflections.

Figure 2.3. Rigid model in Simulink.

•As outputs, the system evaluates:

– The state vector x = u, v, w, p, q, r, φ, θ, ψ, where u, v, w are the
linear velocity components of the A/C in body reference frame, p, q, r
the angular rates and φ, θ, ψ the Euler angles.

24

2.1 – Introduction to real time simulation

– An auxiliary vector which collects V, α and β, where V is A/C speed,
α the angle of attack, β angle of sideslip is also included.

– The air density ρ, calculated thanks to the ISA atmosphere model, and
the altitude.

– The velocity vector in North-East-Down (NED) reference frame.

– Moreover, the accelerations of the state vector are included for the sensor
model.

2.1.3) Description of the Flexible Body Mechanics The module connected with Rigid
model is flexible body, which has 6 DoF. The flexible model is constructed

Figure 2.4. Rigid and Flexible models.

based on the Lagrangian approach, which considers the wing as a deformable
component. While the tail and fuselage are regarded as rigid parts.The defor-
mation state of the whole flexible part will be described based on the Galërkin
method that is to evolution bending and torsion of wings.

25

Architecture of Iron Bird

– Bending Right Wing:

Figure 2.5. Bending Right Wing.

– Torsion Right Wing:

Figure 2.6. Torsion Right Wing.

– Accelerations at the wing root.

Figure 2.7. Accelerations at the wing root.

26

2.1 – Introduction to real time simulation

In the model both half wings are considered, but in this section only right
half wing results will be represented to avoid redundancy.

2.1.4) Description of Gust Simulation: Gust input causes a variation of the system
aerodynamics, with an induced incidence on the wing for every node of the
aerodynamic model.

2.1.5 Description of Hinge Moments: This subsystem(pink one) connected with
Rigid model works to calculate the hinge moments acting on the control
surface. The input source of the module is the velocity of A/C , the deflection
of the elevator, and the density of the air, while the output source is the hinge
moments acting on the aileron, elevator, and rudder.

Figure 2.8. Hinge Moments Block.

Inside this block there are three different sections, one for each control surface.
Both the aileron and the winglet surface are modelled starting from data received

27

Architecture of Iron Bird

from LDO and CIRA. No data are provided for the elevator and rudder surfaces.
(Garrison, 2018).

28

2.1 – Introduction to real time simulation

Followings are relative performance .

• Elevator Hinge Moment:

Figure 2.9. Elevator Hinge Moment.

• Rudder Hinge Moment:

Figure 2.10. Rudder Hinge Moment.

• Right Aileron Hinge Moment

Figure 2.11. Right Aileron Hinge Moment.

29

Architecture of Iron Bird

• Right Wingtip Hinge Moment:

Figure 2.12. Right Wingtip Hinge Moment.

30

2.2 – Flight Control Computer

2.2 Flight Control Computer

2.2.1 The model consists of following functionalities:

– Interface management:
The subsystems represented by FCCs , RIUs and Actuation are inter-
connected by A429 ports.In the simulation of Real time,the multiplex-
er/demultiplexer was used to connect each other in Simulink and the
corresponding simulated fields are also grouped.

– Simulation :
The main purpose of this function is to validate the model behavior of
this real equipment.

– Stimulation – Type I
In order to make the model be able to get the expected output,this type
of stimulation will be performed inside the modeled FCC subsystems.
The following commands are processed during the run:

∗ The enumerative contents are modified acting on “Manual Switches”.

∗ The data contents are modified acting on “Slider Gains”.

– Stimulation – Type II
This type of stimulation is in order to active the actuation subsystem
by introducing instructions for similar malfunction or failure. Accord-
ing to the final Iron Bird utilization, type 2 stimulation shall be com-
manded by the ETS, providing inputs to the “STIM inputs” ports of the
AIL/WT/UWL/LWL.dll/.exe

– Stimulation – Type III
This type of stimulation is performed by applying data from Cabin
Dummy (trim commands and failure reset command) and acceleration
from A/C to the FCS model. These inputs are connected to actuate sub-
system of the FCC or WL/WT. According to the final ETS(Engineering
Test Station) for stimulating these subsystems.

2.2.2 The model consists of the following subsystems:

– 3 FCC subsystems: FCC A,FCC B and FCC C

31

Architecture of Iron Bird

All outputs of the system are determined by the response of FCC Mod-
els(type I stimuli).The corresponding response and interface also con-
tains both trim and Failure reset commands(type III stimuli).COM1 and
COM2 lanes are equivalent to S1 and S2 sections. They are independent
of each other.

– 3 RIU subsystems: RIU A,RIU B and RIU C
The re-routing messages between the input ports and output ports are
provided by RIU models.So the main role of these models is to manage
the interface.

– 4 Aileron subsystems: 2 Wingtip subsystems and 4 Winglet subsystems
are representative of the actuation systems on the A/C wings (flap and
spoilers excluded)
COM and MON lanes are modelled independently of each other, but they
can interact with each other when needed.Both lanes are fed with Type
II stimuli and, for WT and lower WL only, with the A/C accelerometer
simulation (type III stimuli).

32

2.3 – Health Management System Module

2.3 Health Management System Module

The Health Management System Module will perform the following key func-
tions:

- Allow injection of simulated degradations and their progression to verify the
merits of the PHM algorithms.

- Receive and store actuators measured data.

- Implement the prognostics and health management functions developed in
the research project.

As shown in the figure below, HMSM can adjust the response parameters of
the simulated electromechanical actuators. In general, HMSM will receive
signals from reflective memory, including test and real EMAs, as well as some
additional variables that help PHM analysis. The user will be able to enable

Figure 2.13. HMSM

the storing of data and will have access to the saved file for the unit manage-
ment and for selecting the data to be analysed by the prognostics and health
monitoring functions. The data will be stored after an eventual pre-processing
(e.g. features extraction, fault detection) to limit the file dimension. Upon

33

Architecture of Iron Bird

user request it will be possible to run the PHM algorithms that will retrieve
the selected data and provide as feedback to the user the EMAs health status
and all relevant information.Because the Prognostics Function will run on
hardware in Iron Bird as well as on external computers, the algorithm does
not need to run in real time. So HMSM has two sets of software that are
composed to inject errors and store data in real time and PHM algorithm to
work offline. HMSM interconnects with other devices in Iron Bird through
reflective memory card.A TCP-IP connection is foreseen for loading reference
parameters and files during the initialisation phase of the Iron Bird. The just
presented functionalities allow to define following operating modes:

– HIL tests: user can select an actuator model, a specific fault and a
fault-to-failure trend to create a data set to be analysed by the PHM
algorithm.

– Passive Mode: data coming from Iron Bird tests can be periodically
stored and analysed to assess the health status of the real equipment.

– Active Mode: inject a fault into the mathematical model of the EMA
while user is performing normal Iron Bird tests or complete HIL tests.

The interface is divided in two main tab groups: “Main” and “Documenta-
tion”.The “Main” tab can be generally divided in two parts; one dedicated to
the input through which the user can interact with the software and another
one used by the software to provide visual feedbacks. The purpose of "DATA

Figure 2.14. Interface

IMPORT" panel is to load data from user-defined files, and the algorithm

34

2.3 – Health Management System Module

will examine these file names and the data contained in the files. At the
same time, during the loading process, the "Loading Data" indicator will be
displayed in orange. Once the data is successfully loaded, it will turn green.
If the light is red, it indicates that the load failed and the "Run" button func-
tion will be restricted.Under the green light, press the "Run" button, and
the PHM algorithm will be executed.The algorithm’s feedback results will
be provided by a GUI with three graphical options: "Features Behaviour",
"Fault Detection", and "Prognosis". The "Features Behaviour" TAB shows
features related to the running state during the test.

Figure 2.15. Features Behaviour

Fault Detection consists of two tabs in which the characteristics of the sys-
tem are represented by a histogram that effectively highlights exceptions when
they are detected.

Figure 2.16. Histograms (fault detection in progress)

35

Architecture of Iron Bird

The confidence information reflected by "confidence" is related to the associa-
tion level of the exception declaration, thus identifying the size of the injection
defect.

Figure 2.17. Confidence (fault detection completed)

The prognosis tab allows to depict the performed RUL estimates. By default,
only the first prediction is shown, but users can change this by operating the
dedicated slider.

36

2.4 – Reflective Memory and Synchronization

2.4 Reflective Memory and Synchronization

Since "Iron Bird" is a system composed of multiple processors, many comput-
ers need to communicate with each other.Reflective memory is a very efficient
way to address that need.There are two main types of systems based on how
data and information are shared. The first type of system has multiple ter-
minal processors and one global physical memory. In the latter case, each
processor has its own local memory.
Reflective Memory is unique in its special shared Memory system. The sys-
tem can make multiple independent computers realize data sharing. At the
same time Reflective Memory keeps a independent copy of every connected
system in the entire shared network. In addition, extremely high transmis-
sion speed and very low transmission latency are all crucial advantages when
building real-time systems.(ABACO Systems, n.d.)

In fact, the key feature of "RMS" is that every day the computer has its
own local physical memory, and different types of memory can be connected
to each other for updates. If take RT-CRM for example.Real-Time and
Channel-based Reflective Memory that is based on memory channel, i.e. hard-
ware assisted, virtual connection-based memory to memory transfer of data
(Chia Shen, 2001). It represents an approach similar to the one used in this
project. Indeed, as we will see later, the reflective memory used is organized
in channels and each of them will be reserved for each input or output signal
involved in the project.
For the "Iron Bird" of this project, the simulation of the whole software part
needs real-time synchronization. In order to ensure the integrity of the entire
flight test, and all relevant data can be generated within a time period. A
reflective memory-based algorithm is necessary, especially when dealing with
the handshake between the main scheduler (ETS) and all software modules.

The master scheduler receives commands from the test rig operator and, ex-
ploiting the Iron Bird optical ring, it pilots the following states:

– Initialization: executed once when ’Start’ command is received and is
reserved for the modules initialization and configuration

37

Architecture of Iron Bird

– Execution: executed iteratively until ’Stop’ command is received from
the rig operator. It is composed of the following sub-states:

∗ Write cycle: software modules copy their output data into the op-
tical ring, with the purpose of sharing them for the next execution
cycle. In this phase ETS takes the needed data from the physical
interfaces and copy them into reflective memory area

∗ RT cycle: the software modules execute their specific algorithm and
tasks

∗ Read cycle: the software modules retrieve from reflective memory
area the input data necessary for their execution. ETS converts
those data into the physical interfaces.

– Stop: executed once when ’Stop’ command is received to stop the current
test and software modules execution.

For handshake communication between scheduler and nodes, two reflective
memory events are used:

– Interrupt#1, sent by the scheduler to all the nodes to command the
current state

– Interrupt#2, sent by every node as acknowledge

An enumerative value is used as parameter of the previous events:

– 1000: Inizialization

– 1001: Read

– 1002: Write

– 1003: Stop

– 2000: Acknowledge

Before proceeding to the next stage, the master scheduler must receive all
validation information to ensure that all modules have completed the corre-
sponding computations.

38

Chapter 3

Mapping Flight Mechanics
Simulation Computer (FMSC)

39

Mapping Flight Mechanics Simulation Computer (FMSC)

In order to carry out the model’s input and output mapping.First, FMSC’s
Simulink model will be converted to a ’DLL’ file through code generation by
Matlab.Then the dll file will be deployed inside Veristand System Explorer
and according to the number of inputs and outputs, set the corresponding
number of ports.Finally, the ports are connected to each other according to
the corresponding relation of RFM files.

3.1 Code generation

To import the model in NI VeriStand we need a dll (dynamic linking library)
file. This file describes the model in a way VeriStand can understand. It is
obtained as a result of code generation. To perform code generation we have
to change some model settings. (National Instruments, n.d.).

In particular we set:

– In solver section type=fixed-step, solver=discrete and fixed-step size se-
lected according to the time requirements

40

3.2 – Deployment inside Veristand SystemExplore

– In hardware implementation device vendor= Intel and device type=x86/Pentium

– In code generation system target file=NIVeriStand.tlc

Now the model can be built and if there aren’t errors,the dll will be obtained
and which is needed to import the model in VeriStand.

3.2 Deployment inside Veristand SystemExplore

NI Veristand allow to manage several independent models and compile and
run several models from different partners (this thesis is about FMSC) by
using the custom device to manage reflective memory.

– Copy the dll file in the "Model" folder of the NIVS poject. Open the
.nivssdf file and navigate in the tree.

41

Mapping Flight Mechanics Simulation Computer (FMSC)

– Add a simulation model import all parameters

Until now the project can be run and with a complete access to inputs /
outputs / parameters of the models from NIVS interface.When the reflective
memory custom device will be ready,Hardware / Custom Device can be added
and then use System Mappings to connect the inputs / outputs of the models
to reflective memory variables.

42

3.3 – Setting ports

3.3 Setting ports

According an excel file named <RFM affectation> which is describing the
reflective memory allocation .Followed this file there are 2116 input signals
and 1443 output signals. In order to engage shared memory custom there are
several files have to be extracted in the folder:

At same time those rules should be followed:

– Name the controller as "OPAL"

– Add the custom device "RefMem DMA Slave"

– Add the model

– In the custom device, add 2 blocks as shown below:

43

Mapping Flight Mechanics Simulation Computer (FMSC)

Block1 is aim to 2116 input signals should have these properties :

– "Read" mode

– Number of data channels : 2116

– Block address = 1

Block2 is aim to 1443 output signals should have these properties :

– "write" mode

– Number of data channels : 1443

– Block address = 243

At this point, all the preparation work of mapping has been completed.

44

3.4 – Mapping set

3.4 Mapping set

For the mapping step, first should open the mapping window by clicking the
icon focused hereafter :

Select the controller in the list at the top to "OPAL"

45

Mapping Flight Mechanics Simulation Computer (FMSC)

For each variable, select source and destination variables as shown, then click
at "Connect" button :

All outports of the model should be connected to block 2 of RFM custom
device, and all block 1 of RFM custom device should be connected to inports
of the model.Addresses of RFM variables, as declared in the RFM affectation
file, are calculated with block address (block 1 address = 1, block 2 address
= 430) + variable address in the block.

46

3.4 – Mapping set

For example

– Input
The address of the ’RH UP WL Deflection’ is determined to be 15 based
of the RFM document and the signal is determined from the Configura-
tion as the input signal.

It is therefore certain that it should interconnect with channel 14 in
BLOCK1 calculated by formula input signals should be minus 1 .

– Output:
The address of the ’AirPressure’ is determined to be 1586 based of the
RFM document and the signal is determined from the Configuration as
the Output signal.

47

Mapping Flight Mechanics Simulation Computer (FMSC)

It is therefore certain that it should interconnect with channel 1156 in
BLOCK2 calculated by formula output signals should be minus 430.

48

Chapter 4

Conclusions

This thesis is helpful to show the advantages of following a model-based ap-
proach in developing applications like control systems or, as in our case, in
aerospace or in automotive fields.

In particular, we surely think about automated code generation and rapid
control prototyping, referring with this to model simulation inside NI VeriS-
tand.

The automated code generation permitted the team involved in the project to
almost forget about the code. We only cared about the correct file extension
that we needed. In other words, we checked only if a dll file were correctly
generated.

Rapid control prototyping allows to analyze the performances and the in-
tegration of the various parts considering also the real time aspect in the
simulation.

Considering the real-time aspect allowed us to shorten the testing time, and
gave us the possibility to understand how the code for the three models we
dealt with, behaves in a situation very similar to the final one, without having
a physical prototype of the whole Iron Bird.

Our tests showed that the modules composing CERTIA’s test bench are able

49

Conclusions

to correctly communicate with each other. It is, then, possible to assert that
Politecnico carried out his task in a proper way.

50

Conclusions

51

Bibliography

ABACO Systems. (n.d.). Reflective memory network. Retrieved
from https://www.abaco.com/download/real-time-networking
-reflective-memory

Chia Shen, I. M. (2001). Rt-crm: Real-time channel-based reflective memory.
Mitsubishi Electric Research Laboratories .

Garrison, P. (2018). Hinge moments explained. Flying .
National Instruments. (n.d.). What is veristand? Retrieved

from https://www.ni.com/it-it/shop/data-acquisition-and
-control/application-software-for-data-acquisition-and
-control-category/what-is-veristand.html

Wikipedia. (n.d.). Simulink — Wikipedia, the free encyclopedia. Retrieved
from https://en.wikipedia.org/wiki/Simulink

52

https://www.abaco.com/download/real-time-networking-reflective-memory
https://www.abaco.com/download/real-time-networking-reflective-memory
https://www.ni.com/it-it/shop/data-acquisition-and-control/application-software-for-data-acquisition-and-control-category/what-is-veristand.html
https://www.ni.com/it-it/shop/data-acquisition-and-control/application-software-for-data-acquisition-and-control-category/what-is-veristand.html
https://www.ni.com/it-it/shop/data-acquisition-and-control/application-software-for-data-acquisition-and-control-category/what-is-veristand.html
https://en.wikipedia.org/wiki/Simulink

	List of Figures
	SUMMARY
	Architecture of Iron Bird
	Introduction to real time simulation
	Description of the Flight Mechanics Simulation Computer

	Flight Control Computer
	Health Management System Module
	Reflective Memory and Synchronization

	Mapping Flight Mechanics Simulation Computer (FMSC)
	Code generation
	Deployment inside Veristand SystemExplore
	Setting ports
	Mapping set
	For example

	Conclusions
	Bibliography

