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Abstract

Nowadays, Unmanned Aerial Vehicles (UAVs) applications are crucial in several
domains, either civilian or military as these systems are mainly used within hostile
environments while ensuring user integrity or industrial and academic sectors while
coping with specific needs and services.
For instance, UAVS are significantly used in the field research missions, as for
example volcanic-activity’s monitoring, climate change studies, crowds-management,
management/surveillance and epidemiological tracking. Multi-Agent Systems
(MASs) represent a trending topic in the UAVs field since the related literature
shows that many applications are enhanced. Indeed, MAS is an ensemble of
individual agents sharing some information to achieve a collective objective, as the
cooperation could enhance the effectiveness of the mission accomplishment with
respect to the action of a single agent.
Collective behaviour implies an efficient inter agent’s and surrounding environment
information flow (topology) and a coordination protocol must shape the formation,
the agreement value and the synchronization strategy for completing the mission.
Many examples can be found in nature, for example in migratory birds, forming a
network of collaborating entities that fly together in different shaped coordinated
formations (flocking) or other species that agree about an interest variable (motion,
communication, ...) to enhance mutual benefits, that include predators’ survival,
collective foraging, long distance migration, and, thus, the acquirement of more
dynamic efficiency as the main advantage.
In particular, the flocking behaviour is a one of the key aspects of the MASs
development and implementation, including the interaction and communication
between the elements of a group, the perception that each entity has of the whole
flock (or sub-group of the flock) and of each flock mate, the detection of external
disturbances and obstacles.
Despite the evolving trending topic and the promising MAS applications, numerous
technological and scientific challenges are still to be addressed and solved: firstly
the efficient definition of a communication protocol, the implementation on real
UAVs, subjected to several software and hardware failures.
The main focus of this thesis is the MAS model definition for consensus problems.
In detail, by efficiently representing the system by graphs, the consensus algorithms
are verified in MATLAB&Simulink environment and completed including the
knowledge of the leader of the desired trajectory. A centralized-based model is
firstly proposed, but a distributed model is the target of the work.
Different formations are compared (e.g. spatial placement, sensors’ sensitivity
and detection area, addition of obstacles, . . . ) in terms of observability and



controllability, aiming to the identification of the topologies that allow to reconstruct
the initial states by implementing an observer and, afterwards, a PID controller.
At last, the model are experimented on real MASs together with the initialization
of a new environment for UAVs wherein basic flight tasks will be tested.
In the future, the model will be expanded by considering topologies changing
overtime, such as the addition/removal of nodes or by considering the efficient
action of the formation when avoiding an obstacle or going through a narrow
passage and by an in-depth application to the real environment, with the option of
estimating external disturbances.
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Chapter 1

Introduction

Nowadays, Unmanned Aerial Vehicles (UAVs) applications are crucial in several
domains, either civilian and military. Considering their operational profile, these
systems are mainly used within hostile environments while ensuring user integrity.
The application range of UAVs spans largely within the civilian domain. Industrial
and academic sectors are currently involving different types of UAVs (aircrafts,
rotorcrafts and hybrids) to cope with specific needs and services.
For instance, unmanned aerial robots are significantly used in-the-field research
missions: volcanic-activity monitoring, climate-change studies, crowds managemen-
t/surveillance and epidemiological tracking.
In the last years, MASs have received an extensive attention from the scientific
community, this is justified by the numerous applications that have been enhanced
by increasing the number of agents. Popular applications (see Figure 1.1) include
agriculture (e.g. crops imagery), weather monitoring (e.g. high-resolution map-
ping), collective transport (platooning), smart cities (e.g. traffic management),
surveillance (e.g. homeland security), search and rescue (e.g. earthquake assess-
ment), entertainment industry (e.g. movie shootings), just to mention a few.
A MAS is composed of interconnected sub-systems whose control algorithm is com-
monly based on distributed schemes and depend on the information collected from
surrounding agents (neighbors). In fact, achieving collective coordinated behavior
based on local information stands as one of the main challenges in multi-vehicle
schemes.
Despite the promising MAS applications, it encompasses a wide spectrum of tech-
nological and scientific challenges to be addressed and solved. In this regard,
numerous are the works in literature that have faced the related issues and have
inspired the present thesis. The very first simulation of a flock is given by [1],
that, starting from the bio-inspired behavior, models a distributed system of par-
ticles performing aggregate motion, as result of the communication between the
particles, basing on three basic rules: flock centering, collision avoidance, velocity
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Figure 1.1: MAS current applications: (left) platooning, (right) aerial crops
cartography

matching. A simulation of the three rules can be found in [2], where, additionally,
the definition of a group objective, obstacle avoidance and split/rejoin maneuver
are investigated. A similar behavior-based approach to flocking is presented and
simulated on ground robots by [3], in which the formation, again, follows a waypoint
trajectory, split and rejoin to avoid hazards. Another method is given by [4], that
develops a discrete-time model of autonomous agents moving with same velocity
but different headings: in this research it is demonstrated that the agents can be
forced to move in the same direction if the heading of a single agent is updated
referring to the average heading of his neighbourhood. This behavior is furthermore
investigated, theoretically demonstrated and explained in [5]. In [6], the authors
address general consensus algorithms, present theoretical results on the consensus
convergence properties and conclude with a numerical example to validate the
proposed consensus algorithms. The MAS is described through matrix theory,
graph theory and control theory. In detail, in the simulations it is demonstrated
the importance of the connection degree of the graph in the determination of the
speed of consensus reaching. Similarly, in [7], the same relation between algebraic
connectivity and consensus is demonstrated, by analysing three cases: 1) directed
networks with fixed topology; 2) directed networks with switching topology; and 3)
undirected networks with communication time-delays and fixed topology. In [8] it
is considered a decentralized information exchange between the agents and each
one is supplied with a common reference, describing the effect of the topology on
the stability of the formation.
One of the most common consensus algorithm is represented by the randez-vous
goal, as studied in [9], in which a model predictive control is actuated under some
constraints, or in [10], in which it is proposed an algorithm able to converge all the
agents to a common value, providing theoretical results on both time-invariant and
time-variant topologies. The velocity matching algorithm, instead, is addressed
by [11], where the topology is considered to be constant overtime, leading to an
unrealistic model of flocking, in opposition with [12] in which the authors address a
dynamic topology to simulate the collision avoidance rule. In [13], [14], [15] and [16],
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the authors study a second-order consensus for MAS with fixed directed topology
and communication constraints, concluding that the consensus can be reached
if the general algebraic connectivity is larger than a threshold value and if the
topology can be considered as fixed for long-enough intervals of time. Fascinating
conclusions are retrieved by [17], in which, by analysing a time-dependent topology,
it is observed that convergence’s speed to the desired state isn’t directly propor-
tional to the communication links, as an increasing number of communication links
could lead to a degradation of the performance.
The consensus algorithms are ulteriorly expanded by the definition of a desired
trajectory in [18], in which the several agents follow virtual leaders, representing
the reference waypoint track, in a distributed and coordinated fashion. At the end,
the analysis of observability and controllability of different topologies, as well as the
basic linear control of the model, is addressed by [19], [20],[21], where the desired
trajectory is provided to a single agents, determining a leader/follower structure.
In particular, [19] explores the requirements that satisfy the controllability and
observability of the dynamic model’s topologies, with interesting simulation of flock
trajectory tracking control: a state feedback control, applied only to the leader,
allows the tracking of the center of mass’s motion and the states of the followers
are observed directly from the input and the output of the leader.
Concerning what it is listed above, this thesis is focused on the modeling and the
control of specific MAS topologies meant to reach spatial consensus, i.e. position
and velocity consensus, and investigates the relation between communication flow
and control.

1.1 Problem statement

The actual thesis addresses the consensus of Multi-Agent Systems considering
diverse topologies. In practice, the success of the collective motion consensus relays
on the capacity of agents to acquire inter-agent states, for both, position, in the
kinematic case, and velocity in the dynamic one. Some scenarios require specific
formations, however, these are not compatible with specific inter-agent sensory
profile: e.g. the conical perception shape of ultrasound range finder or cameras.
The latter will degrade the formation (consensus) to eventually have an unstable
behavior. In the case where some states are not available, state observers are
commonly used; provided the system verifies the observability property/condition.
In the MAS case, observability is computed considering the MAS state-space system
(process model) as well as the output system (measurement model). Depending on
the formation configuration, and the underlying inherent topology, the observabilty
condition might not be met. Thus, considering that in the MAS observability
is topology-dependent suggests that there exists a set of topologies guaranteeing
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observability while meeting certain navigation profile.

1.2 Contributions
In general, the actual thesis provides a detailed description of the relationship
between collective navigation and topologies. Specifically, the contributions are:

• An observability extensive study conducted for three formations considering
different perception profiles;

• In a similar way, a controllability study is presented to verify feasible topolo-
gies/formations for specific perception profiles;

• A simulation stage, performed to validate consensus algorithms;

• An experimental stage, described in detail envisioning forthcoming validation
of the herein proposed configurations.

1.3 Outline
The remainder of thesis is the following: in Chapter 2 some theoretical preliminaries
are given, with a detailed introduction to the graph theory, an overview of MAS
classification and a deepening of consensus algorithms.
In Chapter 3, the information flow elapsing between the entities is characterized,
through the definition of a topology described by graphs, meaning that a coordi-
nation protocol will shape the formation, the whole-set agreement value and the
synchronization strategy for completing the goal. In this chapter the simulation
of the position and velocity consensus algorithms is addressed, on a model of
three-agents formation, characterized by homogeneous point-mass nodes organized
in hierarchical anatomy. Subsequently to the verification of the two algorithms, it
is investigated the addition of an observer to the simulation.
In Chapter 4 a brief introduction to the very first configuration of the quadrotor
Crazyflie will be given with the experimentation of simple algorithms implementing
basic flight manouvers.
Finally, in Chapter 5, the conclusion of the thesis are collected, with some future
perspectives.
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Chapter 2

Theoretical Preliminaries

This chapter details essential concepts necessary to acquire an in-depth understand-
ing of MAS. Going throughout these aforementioned concepts is crucial regarding
forthcoming simulation and experimental stages.
This is outlined as follows:

• Basics of graph theory;

• Basics of Observability and Controllability;

• Basics of Multi-Agent Systems;

• Centralized, Decentralized and Distributed systems;

• Bioinspired Consensus;

• MAS model;

• Consensus theory and algorithms.

2.1 Basics on Graph Theory
A Multi-Agent System can be modeled as a group of dynamical systems (or
agents), which has an information exchange topology represented by information
graphs[22][23].
A graph is defined as G = {V,E} and consists of a set of vertices (or nodes)
V = 1, ..., N and edges E. Some distinguishing concepts used in the study and
characterizing the graph theory are listed below.

Undirected graph: in an undirected graph the nodes i and j can get informa-
tion from each other, i.e. ∀i, j ∈ V, (i, j) ∈ E ⇔ (j, i) ∈ E. An example of
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α1 α2

α3α4 α5

(a) Undirected graph

α1 α2

α3α4 α5

(b) Directed graph (digraph)

Figure 2.1: Topology’s examples

undirected graph can be seen in Fig.2.1(a).

Directed graph: a directed graph (or digraph) is formed by vertices connected
by edges with a specified direction [24]. The edges are represented by arrows:
consider two nodes i, j ∈ V, if the arrow points from i to j then the first looks for
the information from the latter, not viceversa. In the case in which the arrow is
bidirect, the two vertices gain information from each other. A directed graph can
be seen in Figure 2.1(b).

Connected graph: in a connected graph every vertex is connected to, at least,
another vertex. In other words, if for every two nodes i, j ∈ V there is a path from
x to y, e.g. the graph in Figure 2.1(a) is not connected.

Distance: the distance d(i, j) between two nodes is the number of edges of the
shortest path from i to j, e.g. in Figure 2.1(a) the distance between the nodes 1
and 6 is 3.

Diameter : the diameter diam(G) of the graph G is the maximum distance d(i, j)
over all pairs of nodes:

diam(G) = max(distG)(i, j) | i, j ∈ v) (2.1)

Adjacency matrix : the adjacency matrix could be represented in two different ways,
based on the adjacency between nodes: two nodes i and j are called adjacent if there
is an edge E : (i, j) between the two nodes, i.e. ξ = (i, j) ∈ V× V | i, j : adjacent.
The binary adjacency matrix A = [aij] ∈ V× V is defined as:

aij =
1 if i and j are adjacent;

0 otherwise.
(2.2)

6
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Instead, the weighted adjacency matrix Aw = [awij
] ∈ V× V is defined as:

awij
=
αij if i and j are adjacent;

0 otherwise.
(2.3)

with αij as the weight of the edge E : (i, .j).
Note that the adjacency matrix is always a square matrix and it is symmetric
(A = AT ) for undirected graph.

Incidence matrix: in an incidence matrix the rows correspond to the vertices
of a graph, the columns to the edges. It is defined as I = [iij] ∈ V× E [25], with:

iij =


1 if the edge goes from i to j;
−1 if the edge goes from j to i;
0 if i and j are not connected by an edge.

(2.4)

Degree matrix: The degree matrix D of G is the diagonal matrix V × V with
elements dii equal to the cardinality of node i’s neighbor set Ni = j ∈ V : (i, j) ∈ E.

Laplacian matrix : the Laplacian matrix L = [lij] of G is defined as L = D −A:

lij =


di if i = j;
−1 if (i, j) ∈ E;
0 otherwise.

(2.5)

The row sums of L are zero and, thus, the vector of ones is an eigenvector corre-
sponding to eigenvalue λi(G) = 0, i.e., L = 0.
For connected graphs, L has exactly one zero eigenvalue, and the eigenvalues can
be listed in increasing order 0 = λ1(G) < λ2(G) ≤ ... ≤ λN(G), where the second
eigenvalue λ2(G) is called the algebraic connectivity.
For undirected graphs, L is symmetric (L = LT ) and positive semi-definite, i.e.,
considering a non-zero column vector z of n real numbers, zTLz > 0.
Moreover, L = II Í for a digraph, where I is the incidence matrix.

Example 1 - Undirected graph
Consider the undirected graph in Figure 2.2(a), to better clarify the concepts
explained before.
The binary and weighted adjancency matrices, the degree matrix and the Laplacian
matrix are, respectively:

A =


0 1 0 0 0
1 0 0 1 1
0 0 0 1 1
0 1 1 0 1
0 1 1 1 0

 , Aw =


0 e1 0 0 0
e1 0 0 e2 e4
0 0 0 e3 e6
0 e2 e3 0 e5
0 e4 e6 e5 0

 , D =


1 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 3

 , L =


1 −1 0 0 0
−1 3 0 −1 −1
0 0 2 −1 −1
0 −1 −1 3 −1
0 −1 −1 −1 3

 .
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α1
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e1

e2

e3

e4

e5

e
6

(a)
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Figure 2.2: Examples of undirected graph (a), (c) and directed graph (digraph)
(b), (d)

Example 2 - Directed graph
Another example is the directed graph in Figure 2.2(b).
Here, the binary and weighted adjancency matrices, the degree matrix and the
Laplacian matrix are, respectively:

A =


0 1 0 0 0
0 0 0 1 1
0 0 0 0 0
0 1 1 0 0
0 1 1 1 0

 , Aw =


0 a12 0 0 0
0 0 0 a24 a25
0 0 0 0 0
0 a42 a43 0 0
0 a52 a53 a54 0

 , D =


1 0 0 0 0
0 2 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0 0 0 3

 , L =


1 −1 0 0 0
0 2 0 −1 −1
0 0 0 0 0
0 −1 −1 2 0
0 −1 −1 −1 3

 .

Example 3 - Incidence matrix
By considering the undirected graph in Figure 2.2(c) and the directed graph in
Figure 2.2(d),the incidence matrices related to both cases are calculated as follow:

Iundirected =


e1 e2 e3 e4

A1 1 1 0 0
A2 1 0 1 1
A3 0 0 1 0
A4 0 1 0 1

 Idirected =


e1 e2 e3 e4

A1 −1 1 0 0
A2 1 0 1 −1
A3 0 0 −1 0
A4 0 −1 0 1


8
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2.2 Basics of Observability and Controllability
In control theory, observability refers to the ability to monitor the internal states
of a system given the values of the output[26]. The observability is strictly related
to the controllability, that measures the capability to drive a system to a desired
state, given an input with finite duration.
Given a state-space representation as the following:ẋ = Ax +Bu

y = Cx +Du
(2.6)

the observability matrix O is defined as:

O =


C

C · A
..

C · An−1

 (2.7)

where n is the number of states of the system.
The key concept is that, when the observability matrix is full rank, the initial
conditions of the system can be found from the output values (the system is
observable): rank(O) = n.
The controllability matrix, for a system as the one in eq.(2.6) is:

C =
1
B A ·B ... An−1 ·B

2
(2.8)

where n is, again, the number of states of the system.
If the controllability matrix is full rank, the system is fully controllable:
rank(C) = n.
Controllability and observability are dual aspects of the same problem and, so, the
study of the observability is an important issue to stabilize the controllability of
the system. In fact, if the system is controllable, all the components of the output
y of the state-space system can be derived.

2.3 Basics of Multi-Agent Systems
The MAS is defined as a network of individual entities, now on called agents,
sharing information to achieve a collective objective [27]. An agent is defined as a
flexible and intelligent autonomous entity capable of perceiving the environment
and adapting accordingly [28][29]. It is straightforward noticing the effectiveness
of single-agent versus multi-agent systems while fulfilling a determined assign-
ment/mission. Collective behavior relies, indeed, on efficient inter-agent’s and
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surrounding environment information flow (i.e. topology) [30].
In general, the collective goal defines a coordination protocol that shapes, for
instance, the formation and synchronized displacement (formation or coordinated
motion)[31]. One can find examples in nature, migratory birds flying in different
shaped coordinated formations (echelons), as ducks flying in V-shaped formations
to optimize energy and, thus, increasing flight endurance/distance [32].
Collective behavior might be classified based on Architecture-Organization, Learn-
ing method, Communication protocol, Coordination.

Architecture and Organization

A first classification can refer to internal architecture of the system:

• an homogeneous architecture is composed of agents with the same internal
architecture [33] (Local Goals, Sensor, Capabilities, Internal states, Inference
Mechanism and Possible actions) but different physical location;

• an heterogeneous architecture is composed by agents that differ in ability,
structure and functionality [34].

Another classification could be based on the agents’ organization (Figure 2.3):

• hierarchical organization could help in the achievement of a common goal [35]:
the control is distributed among the various agents (uniform hierarchy) or
concentrated in a single agent, that is at the highest level of the hierarchy
(simple hierarchy);

• in a holonic organization [36] an agent, that appears as a single entity, is
composed of many sub-agents bound together by commitments;

• in coalitions a small group of agents is temporarily created until the achieve-
ment of a common goal;

• in teams the agents create a team and define a group goal which differs with
their own goal.

Learning

• active learning;

• reactive learning;

• learning based on consequence.
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a) Hierarchical Organization c) Coalitions

b) Holonic Organization

Layer 3

Layer 2

Layer 1

A
ct
io
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a
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d) Teams

Team 1

Team 2

Team 3

:Agent

Figure 2.3: Examples of hierarchical organization (a), holonic organization (b),
in coalitions (c), in teams (d)

Communication

• Local communication: information flow is bidirectional and not through
intermediates;

• blackboards: a group of agents share a data repository.

Coordination

It can be achieved by applying constraints on the joint action choices of each agent
or by utilizing he information collated from neighbouring agents.

• coordination through protocol;

• coordination via graphs;

• coordination through belief models.
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a) Centralized b) Decentralized c) Distributed

Central node

Client node

Figure 2.4: Examples of centralized (a), decentralized (b) and distributed (d)
systems

2.4 Centralized, Decentralized and Distributed
Systems

A distinction between Centralized, Decentralized and Distributed Systems is neces-
sary to discriminate one from the other and identify the most suitable to depict the
model of Multi-Agent Systems. All the three systems can work, all have advantages
and disadvantages that make them more or less stable and reliable than others.

Centralized System

Centralized systems are systems in which one or more client nodes are directly
connected to a central node. Main characteristics are:

• all the client node are synchronized to the central node clock (global clock);

• central node coordinates all the client nodes resulting in a single central unit;

• Risk of dependent failure since if the central node fails, all the system crashes;

• client/server architecture.

Decentralized System

In decentralized systems, there is not a central node but multiple, resulting with a
final behavior of the system that is the aggregate of the decisions of the individual
nodes. Main characteristics are:

12
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• every node has its own clock, there isn’t a global synchronization between
nodes;

• multiple central nodes means multiple central units;

• also in decentralized systems the risk of dependent failure is present but,
considering that a central node serves a part of the system, the whole system
can continue with its mission;

• peer-to-peer structure (all nodes are peers of each other without any supremacy)
or master-slave architecture (one node can become master, helping in the
coordination of a part of the system, always without supremacy).

Distributed System

In distributed systems, similarly to the decentralized ones, every node makes its own
decision. But here there isn’t the centralization anymore, resulting in a cooperation,
no single entity receives and responds to the request. The main characteristics are:

• no global clock;

• nodes apply consensus protocols to provide a concurrent action;

• every time a node fails, it doesn’t affect the functioning of the others;

• peer-to-peer, client-server or n-tier architectures (in the last the operation is
distributed between the nodes).

2.5 Bioinspired Consensus Problems
Prior works [37][38][39][40] describe the way animals "agree" about an interest
variable (motion, communication, ...) to enhance mutual benefits. This includes:
predators survival (wood pigeons, ostriches[41],...), collective foraging (wolves
packs, dolphins[42], thresher sharks, lions, ..), long-distance migration (sardines,
wildebeests, gazelles, swallows, ...), and, thus, the acquirement of more dynamic
efficiency as the main advantage.
This collective animal behavior can be classified by considering the different species
in which it’s showed up:

• Flocking: the flocking behavior, also called murmuration, is exhibited by
groups of birds in flight or during foraging (Figure 2.5(a));

• Swarming: it is a collective behavior seen in animals of similar size which
aggregate together, migrating in some direction. In particular, it is applied to
insects [43];
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(a) (b)

(c) (d)

Figure 2.5: (a) birds flocking, (b) school of fishes, (c) herd of wildebeests, (d) ant
colony

• Schooling: in nature fishes join for social purposes, forming schooling. School-
ing is referred to a group of fishes that swim in the same direction in a
coordinated manner [44] (Figure 2.5(b));

• Herding: it applies to groups of tetrapods, e.g. in herds, a social group of
certain animals of the same species, or in packs, a group of canids (Figure
2.5(c));

• Ant colony: In a colony ants have their own role, cooperate and treat one
another non-aggressively (Figure 2.5(d)).

Another interesting behavior is related to Algal Blooms, that is the accumulation in
the population of algae. Although algae are not self-propelled as animals, blooms
can be compared to the previous behaviors, as they are formed as consequence of a
nutrient entering in the aquatic system.
The consensus problem seen in nature it’s the main topic of biomimetics, that tries
to emulates the models, systems, and elements of nature for the purpose of solving
complex human problems [45] and can be a great hook for the flock simulation,
as already done by Reynolds in 1986. Hence, it is essential a deep analysis of the
relation and communication between the elements of a group, especially for what
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concern the perception that each entity has of the whole flock and of each flock
mate.

2.6 Multi-Agent Systems Model
MASs are complex and, thus, not easy to model.
The basic idea is to evaluate the real flocking behavior and to define a set of rules
that could efficiently predict how a system changes over time, starting from an ini-
tial state. In the years, several models were developed, but the most reliable comes
from the simulations of Craig Reynolds, that emulates boids (simple representation
of birds) moving together according to basic rules[1].
In the model presented by Reynolds, a boid is said to perform a geometric flight
since it moves along a path, not defined in advance, that can be described in
3D space. The object’s own coordinate system is used to model small linear mo-
tions that together represent a continuous curved path, representing a discrete
approximation of real flight, in which turning and moving happen continuously
and simultaneously. In particular, the geometric flight is based on incremental
translations along the object’s local positive Z axis (forward direction) together
with steering-rotations about the local X and Y axes (pitch and yaw).
Geometric flight adopts a simple model of viscous speed damping to represent a
creature with a finite amount of available energy: if the boid continually accelerates
in one direction, it will not exceed a certain maximum speed. Also, a maximum
acceleration is used to truncate over-anxious requests for acceleration, hence pro-
viding for smooth changes of speed and heading.
Once the concept of geometric flight is explained, the building of a simulated flock
can start. Three basic rules are adopted, that represent the opposing forces of
collision avoidance and the urge to join the flock:

• Collision Avoidance (Separation): avoid collisions with nearby flockmates
(Figure 2.6(a));

• Velocity Matching (Alignment): attempt to match velocity with nearby flock-
mates (Figure 2.6(b));

• Flock Centering (Cohesion): attempt to stay close to nearby flockmates
(Figure 2.6(c)).

Static collision avoidance and dynamic velocity matching are complementary since
the first represents the urge to steer away from an imminent impact and it is based
on the relative position of the flockmates and ignores their velocity, the latter is
based only on velocity and ignores position.
Thanks to velocity matching between neighbors, it is assumed separations between
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(a) (b) (c)

Figure 2.6: Graphic representations of: (a) Collision avoidance (Separation), (b)
Velocity Matching (Alignment), (c) Flock centering (Cohesion)

boids remains approximately invariant with respect to ongoing geometric flight,
so collision is improbable. The main purpose of static collision avoidance is, then,
to establish the minimum required separation distance, instead, velocity matching
tends to maintain it.
Flock centering makes a boid want to be near the centre of the nearby flockmates
(localized perception) and correctly allows simulated flocks to bifurcate (e.g. to
avoid an obstacle). In fact, if the individual boid can stay close to its nearby
neighbors, it does not care if the rest of the flock turns away.
This simplified model does not completely represent the birds’ sense, because the
entities are modelled with a short-range perception: in this case if two flocks are
enough far apart, they would not join together.
Analysing real behaviour of birds, there is no limit to the complexity of the flocks,
leading to assume that the birds can fly with any number of flockmates. In fact, it
was supposed that the bird might be aware of only itself, its two or three nearest
neighbours and the rest of the flock [44].
In simulation the unlimited number of members cannot be taken in account and a
neighbourhood must be outlined. The neighborhood is defined as a spherical zone
of sensitivity centered at the boid’s local origin, in which the sensitivity decreases
exponentially with the distance.
Moreover, the sensitivity should be increased in the forward direction and be
proportional to the boid’s speed, since being in motion needs a bigger consciousness
in what is ahead.
Now, what can be considered part of a neighbourhood? Two different formulations
are established: one establishes that all boids within a certain radius are part of
a neighbourhood, based on the second, the neighbourhood is composed by the N
closest boids.
A challenging issue is the splitting of a flock to avoid an obstacle, it increases the
complexity of the model. Once the geometric shape and dimension of the obstacle
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are well represented, it is possible to proceed with two different shapes of collision
avoidance:

• Field of forces method: the boids are subjected to a growing repulsive force as
they get nearer to the obstacle.
Advantages: easiness of the model, in fact, the geometry of the field is easy
and, so, the acceleration of the boids approaching the obstacle.
Disadvantages: in the case in which the boid gets close to the obstacle with an
opposite angle to the direction of his force field, the boid will be only slowed
down and, in the worst case, it will not avoid the obstacle; the force field do
not allow a boid to ignore an obstacle to which it passes alongside; boids must
be properly modelled to avoid non homogeneous distribution of the field (e.g.
too strong close to the obstacle but too weak far away from it).

• Steer-to-avoid method: the boid avoids only the obstacles it faces along the
flight. This method is more robust and it models in a better way the real
flocking behavior. The obstacle might not be on the way, but an object of fear
(predators) in the surroundings.

2.7 Consensus algorithms
Consensus is a fundamental problem in the control of MASs and it concerns with
the task of a group of interacting agents reaching a common goal based on the
communication and exchange of information between the entities.
In fact, the coordination and synchronization of agents could improve the possibility
to achieve a optimal global solution, in contrast to the action of independent agents.
This topic is, also, strictly related to the system and graph theories, through which
a consensus problem could be solved by dividing it into easier small problems.
Synchronization can be obtained by implementing a fault tolerant system, in which
a limited number of faulty processes could be discarded in order to not affect the
final result, and by applying constraints on the actions of agents. Some principal
requirements of a consensus protocol are:

• Agreement: all correct processes (faults free) must agree on the same value;

• Weak validity: the output of a correct process must be the input of at least
one correct process;

• Strong validity: if all correct processes receive the same input value, they must
all output that value;

• Termination: all processes must eventually decide on an output value.
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A special case of consensus problem concerns the development of protocols used
to decide to which agent is assigned what task , so a set of rules to determine the
individual roles of each vehicle.
Other relevant consensus problems could be the rendez-vous problem (in which a
group of entities meets at a common location at a common time), synchronization,
flocking and formation controls.
A consensus problem in MASs can be represented by a directed or undirected graph
(see sec. 2.1), where each agent is represented by a vertex and it’s characterized by
a decision parameter [6]. Suppose that each agent has a dynamic as the one that
follows:

ẋi = f(xi, ui), i ∈ V (2.9)
A dynamic graph is a dynamical system described by its topology and the vector
of states x [7], but in the case of fixed topology (during all the time or during
the majority of the time), as the one considered here, the dynamical system is
described by the vector x only, and, then, each agent is described by the following
differential equation:

ẋ = f(x).
Let χ be a function of x = (x1, x2, ..., xV )T and x(0) be the initial state of the
system. The following decision-value is generated:

y = χ(x)

The χ-consensus problem is asymptotically solved by a protocol if and only if there
exists an asymptotically stable equilibrium x∗ satisfying x∗

i = χ(x(0)) for all i ∈ V.
Some special cases for χ-consensus are:

• Average-consensus: χ(x) = Ave(x) = 1/N(qN
i=1 xi), i ∈ V;

• Max-consensus: χ(x) = max xi, i ∈ V;

• Min-consensus: χ(x) = min xi, i ∈ V.

In this thesis, the first consensus protocol taken into consideration, which will be
called Kinematic consensus protocol, is the following [5][46][8][47][48]:

ẋi = −α
NØ
j=1

aij (xi − xj)⇔ ẋi = −α
NØ
j=1

lijxj, i, j ∈ V (2.10)

with N the number of agents and α a weighting factor.
It can be easily demonstrated by considering the following example: consider a
set of three agents defined by an initial position and the following Adiacency and
Laplacian matrices:

x0 = [x0A1 x0A2 x0A3 ]T
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A =

 0 1 1
1 0 1
1 1 0

 L =

 2 −1 −1
−1 2 −1
−1 −1 2


The first half of the equation, ẋi = −αq3

j=1 aij(xi − xj), i, j ∈ V, α = 1, lets to:

ẋ1 = −a11(x0A1 − x0A1)− a12(x0A1 − x0A2)− a13(x0A1 − x0A3) = −2x0A1 + x0A2 + x0A3

ẋ2 = −a21(x0A2 − x0A1)− a22(x0A2 − x0A2)− a23(x0A2 − x0A3) = −2x0A2 + x0A1 + x0A3

ẋ3 = −a31(x0A3 − x0A1)− a32(x0A3 − x0A2)− a33(x0A3 − x0A3) = −2x0A3 + x0A1 + x0A2

and the second half, ẋi = −αqN
j=1 lijxj, i, j ∈ V, α = 1, leds to:

ẋ1 = −l11x0A1 − l12x0A2 − l13x0A3 = −2x0A1 + x0A2 + x0A3

ẋ2 = −l21x0A1 − l22x0A2 − l23x0A3 = −2x0A2 + x0A1 + x0A3

ẋ3 = −l31x0A1 − l32x0A2 − l33x0A3 = −2x0A3 + x0A1 + x0A2

verifying the equality.
The eq.(2.10) causes the information state xi of vehicle i to be driven toward the
information states of its neighbors[10], leading to an agreement, without, however,
specifying the agreement value. So, the agents reach the consensus if

lim
t→∞

x1(t) = .... = lim
t→∞

xn(t)

The stability of the system ẋ = −α · Lx depends on the location of the eigenvalues
of the Laplacian matrix L [49].
The agreement value corresponds to the Center of Mass (CoM) of the initial
positions of the three agents, as it will be demonstrated in sec.3.3. The kinetic
consensus algorithm can be enriched by the addition of a navigational term that
will specify the desired agreement value:

ẋi = −α
nØ
j=1

aij (xi − xj))−KP · Γ (xi − xd) ⇔

ẋi = −α
NØ
j=1

lijxj −KP · Γ (xi − xd) , i, j ∈ V.
(2.11)

with α and KP as weighting term and Γ a matrix defining which agent is aware of
the desired agreement value, namely determining the leader.
Since the protocol in eq.(2.10) is based on the kinematics of the system, the agents
will move with an initial velocity that will be constant in the time (acceleration is
null), thereby a second protocol must be considered to cover the dynamics of the
agents.
The above-mentioned consensus algorithm can be extended by considering the
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acceleration contribute, obtaining a dynamic consensus algorithm[13][50][51][52][53]:ẋi = vi, i ∈ V
v̇i = −αqn

j=1 aij (xi − xj)− β
qn
j=1 aij (vi − vj) , i, j ∈ V

⇔

ẋi = vi, i ∈ V
v̇i = −αqn

j=1 lijxj − β
qn
j=1 lijvj, i, j ∈ V

(2.12)

where xi ∈ RN is the position state vector of the i-th agent, vi ∈ RN is the
velocity state vector of the i-th, ui ∈ RN is the control protocol of the i-th agent.
Moreover α, β > 0 represent weighting factors and aij represents the element of
the adjancency matrix describing the formation, as well as lij, representing the
elements of the Laplacian matrix.
The second-order consensus is reached when:

vfi
=

NØ
j=1

Λj · vj(0), i, j ∈ V

with vfi
the final velocity of i-th agent, Λj the non-negative left eigenvector of the

Laplacian and vj(0) the initial velocity of j-th agent.
When considering the second-order consensus algorithm, it is assumed that each
agent can continuously and in a constant way sense its neighbors, thereby the
topology is constant, because the time-varying variables lead to a non-linear
dynamics. In the reality this is not reasonable, since the agents in motion cannot
maintain a constant formation, but it can be assumed that the acceleration of the
agents is zero, v̇i = 0, in the small time intervals in which the topology cannot be
maintained constant.
As before, the dynamic consensus algorithm can be implemented by the specification
of the desired trajectory, resulting in the following system of equations:ẋi = vi, i ∈ V

v̇i = −αqn
j=1 lijxj −KP · Γ (xi − xd)− β

qn
j=1 lijvj −KD · Γ (ẋi − ẋd) , i, j ∈ V

with KP , KD as weighting factors that will implemented in a PD-control of the
system.
It will seen in the next chapter that other crucial requirements are directed topolo-
gies and communication constraints, as it will be verified that consensus can be
guaranteed if the general algebraic connectivity of the strongly connected topologies
and measure of the communication among the agents are larger than some threshold
values, respectively.
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Chapter 3

Application of Consensus
Algorithms

3.1 Application of Consensus Algorithms
In this chapter it is aimed the identification of the topologies with the best ob-
servability and controllability trends. In addition, a model will be built, of a
three-agents formation and the consensus algorithms will be simulated on it, con-
stituting the background of the next exprimental stages.
The chapter is outlined as follow:

• Observability Analysis;

• Simulation of Kinematic Consensus Algorithm;

• Simulation of Dynamic Consensus Algorithm;

• Addition of the Observer

3.2 Observability analysis
The analysis of observability is intended to detect the optimal formation, in terms of
observability and, then, controllability (see sec.2.2). It is recalled that an observable
system allows to get the initial conditions from the outputs. In order to analyze
multiple cases, in the tests there is a classification in terms of formation, sensor
sensitivity shape and their operating situation (all the sensors are properly working
or some failures arise).
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Recalling that the observability matrix is calculated as:

O =


C

C · A
..

C · An−1

 ,

it is necessary to define a state-space representation of the system that includes the
consensus algorithms: consider the kinematic consensus algorithm, it is reported
below as:

ẋi = −
nØ
j=1

lijxj, i, j ∈ V ⇔ ẋ = −Lx

recalling that lij corresponds to the element of the Laplacian matrix describing
the topology. It will considered only the equation in the Laplacian version since it
results to be more versatile in the Simulink model.
By assuming a null input vector (u = 0) and substituting the kinematic consensus
protocol in the state-space systemẋ = Ax +Bu

y = Cx +Du

the following system results: ẋ = Ax = −Lx

y = Cx
(3.1)

coming to the important conclusion that

A = −L (3.2)

So the Observability matrix is modified as it follows:

O =


C

C · (−L)
..

C · (−L)n−1

 , (3.3)

Hence, the observability of the system depends on the Laplacian matrix.
Three agents’ arrangements in the space are identified, corresponding to three
formation shapes:

• Straight Vertical Line (SVL);

• Straight Horizontal Line (SHL);
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Figure 3.1: Straight vertical line, straight horizontal line and V-shaped line
formations of several agents
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Figure 3.2: Straight vertical line, straight horizontal line and V-shaped line
formations with conical, circular and arched sensitivity shapes considering only
three agents

• V-shaped Line (VL).

The succeeding figures, indeed, will refer to just three agents such as in the
simulations. In Figure 3.2 the three-agents formations are displayed with three
different sensitivity shapes of sensors (conical, circular and arched shapes) that
lead to a different exchange of information between the agents, as described by the
corresponding graphs.
The sensitivity depends on the distance between the agents, the radius of the
sensitivity shape and, for the conical and arched shapes, on the angular diameter.
Assumptions are made to obtain a simple protocol to test the different formations:
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Sensor type Sensitivity shape Field of View (FoV)
Lidar Lite conical ≈ 71◦

M8 Lidar spherical 360◦ horizontal
20◦ (+3◦/-17◦) vertical

URG-04LX-UG01 arched 240◦ horizontal
Laser Range Finder

Table 3.1: Real sensor’s examples

• The distance between the agents is supposed to be almost constant and within
the circular (Figure 3.2(b)), the conical (Figure 3.2(a)) or the arched (Figure
3.2(c)) sensitivity areas;

• The agents are supposed to keep the formation;

• The parameters that describe the sensitivity area of the agent’s sensor are
constant and, in case of an error, the sensitivity area is considered to be null.

The information coming from the sensors is represented by the output vector
y = [y1; y2; y3] and an error in the i-sensor leads the corresponding yi to be null.
Then, different cases are analyzed:

• a: the three agents’ sensors correctly work, outputs y1, y2 and y3 are known;

• b: a misbehavior affects the third agent, the two outputs y1 and y2 are known
but not y3;

• c: a misbehavior affects the first agent, the two outputs y2 and y3 are known
but not y1;

• d: a misbehavior affects the second agent, the two outputs y1 and y3 are
known but not y2;

• e: only the output y1 is known since misbehaviors affect both the second and
the third agents;

• f : only the output y2 is known since misbehaviors affect both the first and
the third agents;

• g: only the output y3 is known since misbehaviors affect both the first and
the second agents.
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Sensor Formation a: b: c: d: e: f : g:
y1,y2,y3 y1,y2 y2,y3 y1,y3 y1 y2 y3

SVL o o o o
conical SHL o

VL o o
SVL o o o o o o

circular SHL o o o o o o
VL o o o o
SVL o o o o

arched SHL o o o o o o
VL o o o o o o

Table 3.2: Table with the observability results for conical and circular sensors in
SVL, SHL, VL formations, considering different cases

In Figure 3.3, 3.4 and 3.5, the several cases are represented in the three formations
with the conical and the circular sensitivity shapes, but the same cases are considered
also in the case of the arc-shaped sensor.
In the first analysis, it was considered the case in which both L = −A and C
matrices change from case to case, in fact matrix C accounts for the known output
components in the different cases and L depends on the communication.
Having three agents, the states are n = 3 and, then, observability matrix is always

O =

 C
C · A
C · A2

 =


C

C · (−L)
C ·

1
−L2

2


Observability test’s results are collected in Table 3.2. It is essential to understand
how the different formations or the use of different sensors influence the observability
of the system. As it can be seen from the results, a comparison between the sensors
can be done, especially by considering the same graphs but different exchanging
of information. Two examples can be considered: a first comparison can be done
between the SVL formation with circular and conical sensitivity shapes, resulting
in the improvement of performances in the case of undirected graph (SVL with
circular shape), as this topology is observable in more cases with comparison with
the directed graph (SVL with conical shape).
Same can be concluded by considering the VL formation with conical and arched
shaped sensors: again, the observability is verified in more cases when the topology
is undirected (arched shaped sensor).
Furthermore, the circular shaped sensor gives the best observability trend and, in
particular, the two SHL and SVL formations result to be observable in more cases.
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Figure 3.3: Different cases for SVL and SHL formations with conical shaped
sensor
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Figure 3.4: Different cases for VL with conical shaped sensor and SVL with
circular shaped sensor
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Figure 3.5: Different cases for SHL and VL formations with circular shaped
sensor
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With this result, the question has been raised whether additional states, for
example the inclusion of obstacles along the trajectory, could implement the
observability among the cases. The obstacles are considered as non-animated
elements (their output is unknown) and they can be only sensed by the agents.
In Figure 3.6, 3.7, 3.8, the three different formation, with conical and circular
sensor’s shapes only, are represented with additional obstacles. In particular, the
following topologies are taken in account:

• T1: one obstacle seen only by A1;

• T2: one obstacle seen only by A2;

• T3: one obstacle seen only by A3;

• T4: one obstacle seen by A1 and A2;

• T5: one obstacle seen by A2 and A3;

• T6:one obstacle seen by A1 and A3;

• T7: two obstacles, the first is seen by A1 and A2, the second is seen by A2
and A3;

• T8: two obstacles, the first is seen by A1 and A2, the second is seen by A1
and A3;

• T9: two obstacles, the first is seen by A1 and A3, the second is seen by A2
and A3;

• T10: three obstacles, each one seen by a couple of agents.

Not all the topologies are physically possible for the different formations, in fact
only the V-shape formation allows all the ten topologies.
Despite not all the different cases are displayed in the Figure 3.6, 3.7, 3.8, they are
considered in the tests.
To have a clear idea, a complete example of T1 topology in the case of SHL
formation with a circular sensor’s shape follows.

Example: SHL - circular - T1
The states are four: the three agents and one obstacle. The observability matrix is,
in the all the cases, the following:

O =


C

C · A
C · A2

C · A3
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For each cases the two matrices L = −A and C are calculated. Case a: all the
sensors are correctly working and there is an obstacle that can be seen by the first
agent.

L =


2 −1 0 −1
−1 2 −1 0
0 −1 1 0
0 0 0 0

 ; C =

 1 0 0 0
0 1 0 0
0 0 1 0

 .

Case b: an error affects the third agent:

L =


2 −1 0 −1
−1 2 −1 0
0 0 0 0
0 0 0 0

 ; C =
5

1 0 0 0
0 1 0 0

6
.

Case c: an error affects the first agent:

L =


0 0 0 0
−1 2 −1 0
0 −1 1 0
0 0 0 0

 ; C =
5 0 1 0 0

0 0 1 0

6
.

Case d: an error affects the second agent:

L =


2 −1 0 −1
0 0 0 0
0 −1 1 0
0 0 0 0

 ; C =
5

1 0 0 0
0 0 1 0

6
.

Case e: an error affects the second and the third agents:

L =


2 −1 0 −1
0 0 0 0
0 0 0 0
0 0 0 0

 ; C =
#

1 0 0 0
$

.

Case f : an error affects the first and the third agents:

L =


0 0 0 0
−1 2 −1 0
0 0 0 0
0 0 0 0

 ; C =
#

0 1 0 0
$

.

Case g: an error affects the first and the second agents:

L =


0 0 0 0
0 0 0 0
0 −1 1 0
0 0 0 0

 ; C =
#

0 0 1 0
$

.

This kind of procedure is, then, repeated for each topology and the results are
collected in the Table 3.3.
In the case in which the observability matrix is full rank and, then, the system
is observable, all the states can be observed, thus, resolving the problem of the
missing outputs
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Figure 3.6: Configurations with additional obstacles in SHL formations with
conical (a) and circular (b) shaped sensors
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Figure 3.7: Configurations with additional obstacles in SVL formations with
conical (a) and circular (b) shapes
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Figure 3.8: Configurations with additional obstacles in VL formations with conical
(a) and circular (b) sensor’s shape

Sensor & T a: b: c: d: e: f : g:
Formation y1,y2,y3 y1,y2 y2,y3 y1,y3 y1 y2 y3

T1 o
T2 o

conical T3 o
SHL T4 o

T6 o
T7 o
T1 o o o
T2 o

circular T3 o o o
SHL T4 o o o

T6 o o o
T7 o

32



Application of Consensus Algorithms

T1 o o
T2 o

conical T3 o o
SVL T4 o

T6 o o
T7 o
T1 o o o
T2 o

circular T3 o o o
SVL T4 o o o

T6 o o o
T7 o
T1 o
T2 o o
T3 o o
T4 o o

conical T5 o
VL T6 o o

T7 o
T8 o
T9 o
T10 o
T1 o o o
T2 o o o
T3 o o o
T4 o o o

circular T5 o o
VL T6 o o o

T7 o
T8 o
T9 o
T10 o

Table 3.3: Observability results in different formations by adding obstacles
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Formation Input a: b: c: d: e: f : g:
y1,y2,y3 y1,y2 y2,y3 y1,y3 y1 y2 y3

A1
A2

VL A3
A1-A2 c c c c
A2-A3 c c c c
A1-A3 c c c c
A1 c c
A2

SVL A3 c c
A1-A2 c c c c
A2-A3 c c c c
A1-A3 c c c c
A1 c c
A2

SHL A3 c c
A1-A2 c c c c
A2-A3 c c c c
A1-A3 c c c c

Table 3.4: Table with the controllability results (L changes with the cases)

By comparing the obtained results, it can be seen how the additional states do
not improve but, rather, affect the observability of the system. Note that in table
the arc-shaped sensor is not reported.
For the sake of completeness, taking into account only the formation given by
the circular shaped sensor, the analysis is extended to the controllability, as the
system derived from this topology is observable in more cases and it will be applied
in the next simulations. Recalling that a system is said to be controllable if the
controllability matrix

C =
1
B A ·B ... A2 ·B

2
=
1
B (−L) ·B ... (−L)2 ·B

2
calculated as above for a three-agent formation, is full rank, the analysis is performed
only in the case in which no obstacle is detected and impede the trajectory.
The results are collected in the Table 3.4, showing that, as in the observability
analysis, the two SHL and SVL formations are controllable in more cases than in
the VL formation.
During the analysis, the question raises whether it is fair to consider a Laplacian
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Sensor Formation a: b: c: d: e: f : g:
y1,y2,y3 y1,y2 y2,y3 y1,y3 y1 y2 y3

SVL o o o o
conical SHL o o

VL o o o
SVL o o o o o o

circular SHL o o o o o o
VL o o o o o
SVL o o o o

arched SHL o o o o o o
VL o o o o o o o

Table 3.5: Table with the observability results for conical and circular sensors in
SVL, SHL, VL formations, considering different cases

Formation A1: A2: A3: A1-A2: A2-A3: A1-A3:
VL c c c
SVL c c c c c
SHL c c c c c

Table 3.6: Table with the controllability results (L in the best case)

matrix changing case by case or whether, instead, the Laplacian should reflect the
ideal case, in which all the sensors are properly working, and let only the C matrix
to represent the failure in one or more outputs.
Again, the study of observability and controllability are repeated in the case in
which no obstacles are encountered during the trajectory, resulting in the Tables 3.5
and 3.6, the latter studied again only for the formations with circular shaped sensor,
as it gives the best results in terms of observability. From the obtained tables, it
can be deduced that the observability results aren’t affected with exception of the
VL formation, in which the case e becomes observable in every sensor’s shape.
The controllability analysis is, instead, streamlined and, overally, improved.
In conclusion, it will be reasonable to consider from now on the Laplacian to always
be the ideal one and to include the failures in the model thanks to the C matrix,
representing the system’s outputs.

35



Application of Consensus Algorithms

3.3 Simulation of Kinematic Consensus Protocol
Afterwards, the kinematic consensus algorithm is tested on a model of three agents
developed in MATLAB&Simulink R2019b environment.
In general the simulation is composed by a main script in which the initial positions
of the three agents, the simulation parameters and the plotting indications are
defined. The main script is associated to a Simulink model in which the topology
and the kinetic consensus equation are specified in a function, in order to determine
the actual position and velocity of each agent.
The simulations start from the simplest problem statement and incrementally add
details to provide a realistic description of the kinetic consensus problem.

Reaching of the CoM

As first instance, the aim is to verify the kinematic consensus algorithm and,
accordingly, the convergence of three agents in a unique point, the CoM, starting
from different initial positions.
In the simulation, only the case of the spherical sensor is considered, because it
is easier to consider the same and constant degree of perception on the x and y
axes, such as the systems with the spherical sensor are observable in more cases in
comparison to the other sensor’s shapes.
The main script is shown below:

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % XY I n i t i a l c o n d i t i o n s
3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 x0_1 = 0 ; y0_1 = 0 ;
5 x0_2 = 10 ; y0_2 = 5 ;
6 x0_3 = 0 ; y0_3 = 10 ;
7 x i0 = [ x0_1 ; y0_1 ; x0_2 ; y0_2 ; x0_3 ; y0_3 ] ;
8
9 cons_time = 0 ;

10 rad2deg = 180/ p i ;
11 Ts = 0 . 0 5 ; %sampling time
12
13 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 % SIM Conf igurat ion
15 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 delay = 0 ;
17 Tsim = 15 ;
18 sim ( ’ SimXYkin ’ , Tsim ) ;
19
20 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 % TIME of reach ing consensus
22 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
23 f o r i = 1 : l ength ( t )
24 i f ( abs ( xi_dot ( i , : ) ) < ones ( 1 , 6 ) ∗ 0 . 0 1 )
25 cons_time = t ( i ) ;
26 i = 1000 ;
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27 break
28 end
29 end
30 cons_time
31
32 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33 % PLOTS
34 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
35 xi_x = [ x i ( : , 1 ) , x i ( : , 3 ) , x i ( : , 5 ) ] ;
36 xi_y = [ x i ( : , 2 ) , x i ( : , 4 ) , x i ( : , 6 ) ] ;
37 xi_dot_x = [ xi_dot ( : , 1 ) , xi_dot ( : , 3 ) , xi_dot ( : , 5 ) ] ;
38 xi_dot_y = [ xi_dot ( : , 2 ) , xi_dot ( : , 4 ) , xi_dot ( : , 6 ) ] ;
39
40 lw = 1 ; t = tout ( : , 1 ) ;
41
42 f i g u r e (1 )
43 subplot ( 2 , 1 , 1 )
44 px = p l o t ( t , xi_x , ’ LineWidth ’ , lw ) ;
45 s e t ( px , { ’ Color ’ } , { ’b ’ ; ’ r ’ ; ’ g ’ }) ;
46 x l a b e l ( ’ $t$ [ s e c ] ’ )
47 y l a b e l ( ’ $\xi_x$ [m] ’ )
48 l egend ( ’A_1 ’ , ’A_2 ’ , ’A_3 ’ ) ;
49 subplot ( 2 , 1 , 2 )
50 py = p l o t ( t , xi_y , ’ LineWidth ’ , lw ) ;
51 s e t ( py , { ’ Color ’ } , { ’b ’ ; ’ r ’ ; ’ g ’ }) ;
52 x l a b e l ( ’ $t$ [ s e c ] ’ )
53 y l a b e l ( ’ $\xi_y$ [m] ’ )
54 l egend ( ’A_1 ’ , ’A_2 ’ , ’A_3 ’ ) ;
55
56 f i g u r e (2 )
57 subplot ( 2 , 1 , 1 )
58 px = p l o t ( t , xi_dot_x , ’ LineWidth ’ , lw ) ;
59 s e t ( px , { ’ Color ’ } , { ’b ’ ; ’ r ’ ; ’ g ’ }) ;
60 x l a b e l ( ’ $t$ [ s e c ] ’ )
61 y l a b e l ( ’ $\xi_dot_x$ [m/ s ] ’ )
62 l egend ( ’A_1 ’ , ’A_2 ’ , ’A_3 ’ ) ;
63 subplot ( 2 , 1 , 2 )
64 py = p l o t ( t , xi_dot_y , ’ LineWidth ’ , lw ) ;
65 s e t ( py , { ’ Color ’ } , { ’b ’ ; ’ r ’ ; ’ g ’ }) ;
66 x l a b e l ( ’ $t$ [ s e c ] ’ )
67 y l a b e l ( ’ $\xi_dot_y$ [m/ s ] ’ )
68 l egend ( ’A_1 ’ , ’A_2 ’ , ’A_3 ’ ) ;
69
70 f i g u r e (3 )
71 px = p l o t ( xi_x , xi_y , ’ LineWidth ’ , lw ) ;
72 s e t ( px , { ’ Color ’ } , { ’b ’ ; ’ r ’ ; ’ g ’ }) ;
73 hold on ; g r i d on ;
74 a1 = p l o t ( xi_x ( l ength ( t ) , 1 ) , xi_y ( l ength ( t ) , 1 ) , ’ Color ’ , ’ b ’ , ’ Marker ’ , ’ o ’ ) ;
75 a2 = p l o t ( xi_x ( l ength ( t ) , 2 ) , xi_y ( l ength ( t ) , 2 ) , ’ Color ’ , ’ r ’ , ’ Marker ’ , ’ o ’ ) ;
76 a3 = p l o t ( xi_x ( l ength ( t ) , 3 ) , xi_y ( l ength ( t ) , 3 ) , ’ Color ’ , ’ g ’ , ’ Marker ’ , ’ o ’ ) ;
77 x l a b e l ( ’ $\xi_x$ [m] ’ )
78 y l a b e l ( ’ $\xi_y$ [m] ’ )
79 l egend ( ’A_1 ’ , ’A_2 ’ , ’A_3 ’ ) ;

In the line 18 of the main script, the Simulink model in Figure 3.9 is called.
In particular, the model is composed by the function that, applying the kinetic
consensus equation (eq.(2.10)), gives as output the velocity of each agent, from the
feedback of the actual position.
The Topology function script follows:
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Figure 3.9: Simulink

1 f u n c t i o n xi_dot = fcn ( x i )
2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 % D e f i n i t i o n o f Topology
4 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 L = [ a11 a12 a13 ; a21 a22 a23 ; a31 a32 a33 ] ;
6
7 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 % Transformation from 1D to 2D
9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 Im = [ 1 0 ; 0 1 ] ;
11 Kp = diag ( ones ( 3 , 1 ) ) ;
12 Lm = kron (Kp∗L , Im) ; %Kronocker product
13
14 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 % Convergence at CoG
16 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 x i _ t i l d e = x i ;
18
19 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 % Consensus term
21 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 xi_dot = − (Lm ∗ x i _ t i l d e ) ;

By changing the Laplacian matrix in the line 5 of the Topology script, is possible
to experiment the different topologies.

Example of VL formation:
As first example, it could be considered the VL-shaped formation, with an undi-
rected and connected topology as in Figure 3.5, case a.
From the simulation the following plots are displayed:

• Figure 1: x and y positions with respect of time (Figure 3.10(a));

• Figure 2: x and y velocities with respect of time (Figure 3.10(b));

• Figure 3: y-position with respect to x-position (Figure 3.10(c)).
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(a)

(b)

(c)

Figure 3.10: CoG reaching without considering an offset in VL formation, case
(a)
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As said before, the agents converge from the initial positions to a common point,
that corresponds to the CoM, in the general case:

xCoG = mA1x0A1 +mA2x0A2 +mA3x0A3

mA1 +mA2 +mA3
= x0A1 + x0A2 + x0A3

3

yCoG = mA1y0A1 +mA2y0A2 +mA3y0A3

mA1 +mA2 +mA3
= y0A1 + y0A2 + y0A3

3
and in the specific example:

xCoG = 0 + 10 + 0
3 ≈ 3.33 yCoG = 0 + 5 + 10

3 = 5 (3.4)

In addition, the moment in which all the velocities reach the zero value, represents
the consensus reaching time.
The same experiment was repeated considering the different formations and the
seven cases in which the sensors could stop with the usual working operation.
It follows a list resuming the results:

• In Figure 3.11(a), the final aim is the VL formation and A3 isn’t aware of the
other two agents and so it is stuck in his initial position. A1 and A2, that can
sense A3, will try to reach the consensus by moving together to the A3;

• In Figure 3.11(b), the final aim is the VL formation and both the sensors of
A2 and A3 aren’t working in a proper way. Instead, A1 has information about
both and it will move to the middle point between the two, corresponding
with the CoM of the system;

• In Figure 3.11(c) again, A3 cannot sense the other two agents but in this case
the agents want to reach a SHL formation. The result is the same of Figure
3.11(a), with a similar trajectory;

• In Figure 3.11(d) only the sensor of A1 is working and it can sense only A2,
according to the SHL formation, so it will reach consensus by moving to A2,
ignoring the existence of A3.

In conclusion, when agent’s sensor is not working correctly, the agent remains stuck
to its initial position, the remaining agents try to reach consensus considering only
the information they already have, corresponding to the different topologies.
This result is totally coherent to what already cited in the Section 2.7, i.e. the
kinetic consensus algorithm doesn’t specify the agreement value: in case of isolated
agent, the agreement value will be computed only considering the sub-group of
communicating agents.
In the light of the results, can be demonstrated the dependency between a strongly
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(a) (b)

(c) (d)

Figure 3.11: CoG reaching without considering an offset of a VL formation
topology

connected graph and reaching of consensus.
Recalling that a graph is connected when, considering the set of nodes (i, j) ∈ V,
there is a path between any node i and node j, a graph is said to be strongly
connected when between the two nodes i, j there is a directed path from i to j and
viceversa.
In particular:

• If a graph is strongly connected, then its matrix is irreducible [54];

• Consider the Laplacian matrix of a strongly connected graph, it is irreducible
and [55]:

1. L1N = 0;
2. there is a positive vector ξ = (ξ1, ξ2, ..., ξN)T , such that ξTL = 0;
3. there exists a positive-definite diagonal matrix Ξ = diag(ξ1, ξ2, ..., ξN),

such that L̂ = ΞL+LT Ξ
2 is a symmetric matrix and qN

j=1 l̂ij = qN
j=1 l̂ji = 0

for all i = 1,2, ..., N .
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Variable case a: case b: case c: case d: case e: case f : case g:
y1,y2,y3 y1,y2 y2,y3 y1,y3 y1 y2 y3

tconsV L
2.54 6.64 6.64 6.92 3.66 3.82 3.66

tconsSV L
6.22 15.44 15.44 6.92 6.92 3.82 3.82

tconsSHL
6.22 15.44 15.44 6.92 6.92 3.82 3.82

λ2V L
3 1 1 1 0 0 0

λ2SV L
1 0.382 0.382 1 0 0 0

λ2SHL
1 0.382 0.382 1 0 0 0

Table 3.7: Table collecting time needed to reach consensus and the algebraic
connectivity in VL, SVL, SHL formations, considering different cases

• For a strongly connected graph with Laplacian matrix L, let’s define [13]:

a(L) = min
xT ξ=0,x /=0

xtL̂x
xTΞx b(L) = max

xT ξ=0,x /=0

xtL̂x
xTΞx

and call a(L) General Algebraic Connectivity. a(L) is greater than 0 if and
only if the graph is connected[56][57].

If Ξ = µIN and the network is undirected, by calculating the eigenvalues of the
Laplacian matrix L of the graph G, they can be ordinated as:

0 = λ1 ≤ λ2 ≤ ... ≤ λn.

λ2, corresponding to the second smallest eigenvalue of L, is called Algebraic Con-
nectivity of G, as in this case a(L) = λ2. In addition, b(L) = λN .
Comparing VL, SVL and SHL-shaped formations, in the best case (all the outputs
are known), the corresponding Laplacian matrices are respectively:

LV L =

 2 −1 −1
−1 2 −1
−1 −1 2

 ; LSV L =

 1 −1 0
−1 2 −1
0 −1 1

 ; LSHL =

 1 −1 0
−1 2 −1
0 −1 1

 .
and the diagonal matrices containing the eigenvalues of each Laplacian:

DV L =

 0 0 0
0 3 0
0 0 3

 ; LSV L =

 0 0 0
0 1 0
0 0 3

 ; LSHL =

 0 0 0
0 1 0
0 0 3

 .
Such that λ2V L

= 3, λ2SV L
= 1, λ2SHL

= 1.
The same calculation is repeated for every case in the three formation, as well as
the measure of the time needed to reach the consensus and the results are collected
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Figure 3.12: Addition of offset in the three formations

in the Table 3.7.
Making a comparison between the gathered data, it’s evident that bigger is the
algebraic connectivity, that means, more the graph is connected, faster (in a
exponential fashion) the consensus is reached [7].
The result is coherent with what cited before: when the graph is not connected,
the consensus is reached only for the agents in the sub-connected graph, the not
connected nodes will be remain stuck in their original position.

Addition of offset

The second step was to define an offset between the agents, considering that real
agents have a physical encumbrance.
In this case, a fixed offset is considered, to emulate the reality, in which the agents
will respect a minimum safety distance between each other, to avoid collisions.
Considering the fixed offsets means that the whole formation can be compared to
a rigid body. In the future, the interaction between two agents should be modeled
as a damped mass-spring system.
In the three different formations, the offsets were defined taking into account the
CoM as the origin of the relative system of reference. The final positions of each
agent are defined as following:

• VL formation (Figure 3.12(a)):

pA1 =
è
− l

2 ,−
l
3 sin 60

é
pA2 =

è
0, 2l

3 sin 60
é

; pA3 =
è
l
2 ,−

l
3 sin 60

é
. (3.5)

• SVL formation (Figure 3.12(b)):

pA1 = [0,−l] ; pA2 = [0,0] ; pA3 = [0, l] . (3.6)
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• SHL formation (Figure 3.12(c)):

pA1 = [−l,0] pA2 = [0,0] ; pA3 = [l,0] . (3.7)

with l the distance between two agents, as figured in Figure 3.12.

Example of VL formation:
Taking into account the example of a VL formation without offsets, the following
lines were added in the Topology function script:

14 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 % O f f s e t a dd i t i o n
16 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 L=0.6;
18 o f f s e t_x = [ 0 , L/2 , −L / 2 ] ’ ;
19 o f f s e t_y = [ ( 2 / 3 ) ∗L∗ s i n ( p i /3) , −(1/3)∗L∗ s i n ( p i /3) , −(1/3)∗L∗ s i n ( p i /3) ] ’ ;
20 o f f s e t = [ o f f s e t_x ( 1 , 1 ) ; o f f s e t_y ( 1 , 1 ) ; o f f s e t_x ( 2 , 1 ) ; o f f s e t_y ( 2 , 1 ) ; o f f s e t_x

( 3 , 1 ) ; o f f s e t_y ( 3 , 1 ) ] ;
21
22 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
23 % Convergence at CoG
24 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 x i _ t i l d e = x i − o f f s e t ;
26
27 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 % Consensus term
29 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 xi_dot = − (Lm ∗ x i _ t i l d e ) ;

So, firstly the offset between agents is defined, as in the eq,3.5, the offset is subtracted
from the actual position and, at the end, the consensus term is calculated.
As in the previous example of VL formation, three different plots are reported:

• Figure 1: x and y positions with respect of time (Figure 3.13(a));

• Figure 2: x and y velocities with respect of time (Figure 3.13(b));

• Figure 3: y-position with respect to x-position (Figure 3.13(c)).

Changing the offset, as the ones in the eq.3.6 and eq.3.7, resulting in the graphs in
Figure 3.14.
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(a)

(b)

(c)

Figure 3.13: Examples of CoG reaching considering the offset between the agents,
in VL formation
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(a) (b)

Figure 3.14: Addition of offset in SVL (a) and SHL (b) formations

Definition of a leader

In this new step, the main objective is to define a leader, that is the only that is
aware of the desired trajectory, and let the other agents follow the leader. Until
now, the desired trajectory wasn’t specified, so a new function block is added to
the Simulink model, as in Figure 3.15, that, receiving as input the current time,
gives as output the desired position, velocity and acceleration.
The desired coordinates will be sent to the function Topology.
In Desired Trajectory script were defined the desired constant final position (time-
invariant desired trajectory) and a desired circular trajectory (time variant desired
trajectory). The script is the following:

1 f u n c t i o n [ hmotiondx , hmotiondy ] = fcn ( t )
2 f = 0 . 1 ; %f r e q in Hz
3 r ad i u s = 3 ; %r ad i u s in meters
4 s e l = 2 ;
5 Tsim = 25 ;
6 Ts = 0 . 0 5 ;
7 i = 0 ;
8
9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 % Desired Tra jec tory
11 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 i f ( s e l ==2) %% constant s e t p o i n t
13 xd = 6 ;
14 xdotd = 0 ;
15 xddotd = 0 ;
16
17 yd = 2 ;
18 ydotd = 0 ;
19 yddotd = 0 ;
20 end
21
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Figure 3.15: Modified version of Simulink model

22 i f ( s e l ==3) %% c i r c u l a r t r a j e c t o r y
23 xd = ra d iu s ∗ cos (2∗ pi ∗ f ∗ t ) ;
24 xdotd = − r ad i u s ∗2∗ pi ∗ f ∗ s i n (2∗ pi ∗ f ∗ t ) ;
25 xddotd = − r ad i u s ∗ cos (2∗ pi ∗ f ∗ t ) ∗ ( (2∗ pi ∗ f ) ^(2) ) ;
26
27 yd = ra d iu s ∗ s i n (2∗ pi ∗ f ∗ t ) ;
28 ydotd = ra d iu s ∗2∗ pi ∗ f ∗ cos (2∗ pi ∗ f ∗ t ) ;
29 yddotd = − r ad i u s ∗ s i n (2∗ pi ∗ f ∗ t ) ∗ ( (2∗ pi ∗ f ) ^(2) ) ;
30 end
31
32 hmotiondx = [ xd ; xdotd ; xddotd ] ;
33 hmotiondy = [ yd ; ydotd ; yddotd ] ;

Once that the Desired Trajectory function is created, the desired coordinates are
sent to the Topology function and they will influence the consensus term.
In the experiments it was introduced the Γ matrix that stabilizes which agent is
aware of the trajectory and, then, is the leader. Assuming that only the first agent
has the information about the desired position, the Γ matrix is constructed as:

Γ =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


. (3.8)

The square matrix Γ will multiplied by the desired trajectory vector

xd = [x1d
; y1d

; x2d
; y2d

; x3d
; y3d

] (3.9)
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meaning that only the information related to x1d
and y1d

will be taken into account.
Moreover, there will be considered two cases, affecting the Laplacian matrix:

• The leader is aware of the other agents;

• The leader isn’t aware of the other agents, more realistic in the case of the
definition of a leader-slave structure.

Firstly, the consensus term is modified by the addition of the a navigational feedback
term[10], giving the knowledge of the desired final position.x̃i = xi − xoffseti , i ∈ V

ẋi = −α · L · x̃i −KP · Γ · (xi − xd) + Γ · ẋd, i ∈ V
(3.10)

The Topology script is modified adding the following lines:

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % Desired t r a j e c t o r y terms
3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 x_desired = [ xd ( 1 , 1 ) ; yd ( 1 , 1 ) ; xd ( 1 , 1 ) ; yd ( 1 , 1 ) ; xd ( 1 , 1 ) ; yd ( 1 , 1 ) ] ;
5 xdot_desired = [ xd ( 2 , 1 ) ; yd ( 2 , 1 ) ; xd ( 2 , 1 ) ; yd ( 2 , 1 ) ; xd ( 2 , 1 ) ; yd ( 2 , 1 ) ] ;
6
7 Gamma=[1 0 0 0 0 0 ;0 1 0 0 0 0 ;0 0 0 0 0 0 ;0 0 0 0 0 0 ;0 0 0 0 0 0 ;0 0 0 0 0 0 ] ;
8
9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 % Convergence at CoG
11 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 x i _ t i l d e = x i − x_of f s e t ;
13
14 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 % Consensus term
16 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 xi_dot = − (Lm ∗ x i _ t i l d e ) − Gamma∗( x i − x_desired ) + Gamma∗ xdot_desired ;

In general, let’s define the desired trajectory as:

pd = [xd, yd] ṗd = [ẋd, ẏd] p̈d = [ẍd, ÿd]

And for the specific cases:
• Desired fixed position:

pd = [xd, yd] ṗd = [0, 0] p̈d = [0, 0]

• Desired time-varying position:
pd = [R · cos (2πf · t), R · sin (2πf · t)]

ṗd = [−R · 2πf sin (2πf · t), R · 2πf cos (2πf · t)]
p̈d = [−R · (2πf)2 cos (2πf · t), −R · (2πf)2 sin (2πf · t)]
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(a) (b)

(c) (d)

(e) (f)

Figure 3.16: a) Fixed trajectory - A1 is aware of the other agents, b) Fixed
trajectory - A1 isn’t aware of the other agents, c) Varying trajectory - A1 is aware
of the other agents, d) Varying trajectory - A1 isn’t aware of the other agents, e)
Fixed trajectory - only one leader (A1), f) Fixed trajectory - all the agents are
aware of the desired final position.
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Results:

• Fixed desired trajectory - A1 is aware of the slaves (Figure 3.16(a)): the
consensus is reached in a short time, corresponding to the desired position.
At first time, A1 gets closer to the other agents and later tries to follow the
desired trajectory;

• Fixed desired trajectory - A1 is not aware of the slaves (Figure 3.16(b)): the
consensus is reached but in a shorter time than the one needed in the case in
which the leader is aware of the slaves. In fact, A1 quickly tries to follow the
desired trajectory and the other agents follow it as a consequence;

• Time-varying desired trajectory - A1 is aware of the slaves (Figure 3.16(c)):
as in the case of a fixed final position, the leader, that can perceive the other
agents, firstly tries to get closer to them and later to follow the specified
trajectory;

• Time-varying desired trajectory - A1 is not aware of the slaves (Figure 3.16(d)):
the trajectory is followed with a better approximation since A1 directly follows
the desired trajectory.

Important assumptions have to be done: the topology is considered fixed and
the agents regulate their position and orientation basing on the knowledge of the
Laplacian matrix[11]. Until now it was considered a three-agents formation but the
same problem can be extended to a huge number of agents: the complexity could
be reduced by defining a neighbourhood of agents, in which the topology is fixed.
Notice that, when the desired trajectory is known by a single agent, the leader will
reach the desired final position and the other agents will settle based on the leader
position (Figure 3.16(e)), meaning that the final consensus term won’t correspond
to the desired position. Instead, in the case in which all the agents are aware of the
desired final position, this one will correspond to the final consensus term (Figure
3.16(f)).

3.4 Simulation of Dynamic Consensus Protocol
The Simulink model for the dynamic consensus algorithm was developed starting
from the model of the kinematic.
All the scripts are maintained: the main.c script defines the initial positions of the
three agents, the simulation parameters and the plotting indications,the Topology
script characterizes the topology and the dynamic consensus equation, the Desired
Trajectory script is dedicated to the definition of the trajectory to follow.
Before detailing the various steps, some important assumptions have to be made:
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• The algebraic connectivity, measure of the connectivity of the topologies, has
to be large enough[50];

• the velocity of the agents is a time-varying variable resulting in a non-linear
system;

• the communication between agents cannot be guaranteed all the whole time,
due to errors in physical devices and external disturbances.

Achievement of velocity consensus

In the first step, the easiest dynamic consensus algorithm is considered, described
by the following equation:

x̃ = x
˙̃x = ṽ

v̇ = −α · L · x̃− β · L · v
(3.11)

with α and β as weighting factors considered as equal to one, L the Laplacian
matrix describing the topology. The Topology script is modified as follow:

1 f u n c t i o n xi_dotdot = fcn ( xi_dot , x i )
2 i =0;
3
4 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 % Laplac ian matrix
6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 L = [ 2 −1 −1; −1 2 −1; −1 −1 2 ] ;
8
9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 % 1D to 2D
11 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 Im = [ 1 0 ; 0 1 ] ;
13 kp=1;
14 Kp=diag ( [ kp ; kp ; kp ] ) ;
15 Lm = kron (Kp∗L , Im) ;
16
17 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 % Convergence at CoG
19 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 gamma=[1 0 0 0 0 0 ;0 1 0 0 0 0 ;0 0 0 0 0 0 ;0 0 0 0 0 0 ;0 0 0 0 0 0 ;0 0 0 0 0 0 ] ;
21 x i _ t i l d e = x i ;
22 xi_dot_t i lde = xi_dot ;
23
24 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 % Consensus term
26 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27 xi_dotdot = − Lm∗ x i _ t i l d e − Lm∗ xi_dot_t i lde ;

In particular, from the function is outputting the acceleration ẍ.
From this model, the agreement value corresponds to the average velocity of the
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initial velocities of the three agents, as shown in the Figure 3.17(a). In Figure
3.17(b), instead, the y-position is plotted with respect to the x-position: the position
is changing in time as the agreement value corresponds to a constant velocity.

Definition of desired trajectory

As before, in the definition of kinetic consensus algorithm, the next step consists in
the specification of the desired trajectory.
The final equation, including the dynamic consensus term, the offsets between

agents and the desired trajectory, is:


x̃ = x− xoffset

˙̃x = ṽ

v̇ = −α · L · x̃−KP · Γ(x− xd)− β · L · v −KD · Γ (ẋ− ẋd) + Γ · ẋd

(3.12)

With, as before, α and β weighting factors equal to 1, L the Laplacian matrix
describing the topology, Γ a matrix defining the leader, KP and KD the gains of
the PD controller. The Topology script is modified as follow:

1 f u n c t i o n xi_dotdot = fcn ( xi_dot , xi , xd , yd )
2 i =0;
3
4 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 % Laplac ian matrix
6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 L = [ 2 −1 −1; −1 2 −1; −1 −1 2 ] ;
8
9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 % 1D to 2D
11 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 Im = [ 1 0 ; 0 1 ] ;
13 kp=1;
14 Kp=diag ( [ kp ; kp ; kp ] ) ;
15 Lm = kron (Kp∗L , Im) ;
16
17 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 % Desired c o o r d i n a t e s
19 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 p_desired =[xd ( 1 , 1 ) ; yd ( 1 , 1 ) ; xd ( 1 , 1 ) ; yd ( 1 , 1 ) ; xd ( 1 , 1 ) ; yd ( 1 , 1 ) ] ;
21 v_desired =[xd ( 2 , 1 ) ; yd ( 2 , 1 ) ; xd ( 2 , 1 ) ; yd ( 2 , 1 ) ; xd ( 2 , 1 ) ; yd ( 2 , 1 ) ] ;
22 a_desired =[xd ( 3 , 1 ) ; yd ( 3 , 1 ) ; xd ( 3 , 1 ) ; yd ( 3 , 1 ) ; xd ( 3 , 1 ) ; yd ( 3 , 1 ) ] ;
23
24 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 % Convergence at CoG
26 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27 gamma=[1 0 0 0 0 0 ;0 1 0 0 0 0 ;0 0 0 0 0 0 ;0 0 0 0 0 0 ;0 0 0 0 0 0 ;0 0 0 0 0 0 ] ;
28 x i _ t i l d e = x i ;
29 xi_dot_t i lde = xi_dot ;
30
31 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 % Consensus term
33 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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(a)

(b)

Figure 3.17: Dynamic consensus protocol: a) x and y-velocities with respect to
time, b) y-position with respect to x-position

34 xi_dotdot = − Lm∗ x i _ t i l d e − Lm∗ xi_dot_t i lde −gamma∗( x i_t i lde −p_desired ) − gamma∗(
xi_dot_ti lde−v_desired ) + gamma∗ a_desired ;

The final Simulink model and the related results are displayed in the Figure 3.18(a).
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(a)

(b)

(c)

Figure 3.18: (a) Simulink model implementing the dynamic consensus protocol
when the desired trajectory is specified, (b) x and y-velocities with respect to time
in the case of fixed desired trajectory, (c) x and y-velocities with respect to time in
the case of time-varying desired trajectory
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3.5 Observer
Before the observer’s design, the theory of State-Feedback is recalled: this technique
allows to place the closed-loop poles of the plant in already-determined locations
in the s-plane, in order to obtain the desired system response.
Consider the first-order system ẋ = Ax +Bu

y = Cx

and impose the input vector as u = −Kx, the new state-space representation is:ẋ = (A−B ·K) x

y = Cx

By solving det [sI − (A−BK)] = 0, the new poles, characterizing the state-
feedback system, can be found.
At this point, the observer can started to be constructed, as crucial in the model,
in the case of missing states. The design starts from the first order state-space
representation and it is later expanded to the second order one, as the latter is
implemented in the model.

First order linear system

Starting from the time-invariant continuous-time system:ẋ = Ax +Bu

y = Cx

The observed time-invariant physical continuous-time system is described as: ˙̂x = Ax̂ +Bu + L(y − ŷ)
ŷ = Cx̂

The observer is called symptotically stable if the observer error e = x− x̂ converges
to 0 when going to infinity. Substituting the equations of the observer model in the
equations of the original system, the following equation describing the derivative
error is obtained:

ė = ˙̂x− ẋ = [Ax̂ + L (y − ŷ) +Bu]− [Ax +Bu] =
Ax̂ + LC (x− x̂) +Bu− Ax−Bu = A (x̂− x)− LC (x̂− x) = [A− LC] e
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resuming:
ė = [A− LC] e (3.13)

The eigenvalues of the matrix A−LC can be chosen by tuning the observer gain L.
In general, x ∈ Rn, u ∈ Rnu y ∈ Rny .
The matrices are: A ∈ Rn×n,B ∈ Rn×nu , C ∈ Rny×n, L ∈ Rn×ny .

Second order linear system

An observer model in a second-order linear system can be described as:
v = ẋ

v̇ = A1x + A2ẋ +Bu

y = Cx

and, in matrix-representation:

 ẋ

ẍ

 =
 0n×n In×n

A1 A2

 x

ẋ

+
 0n×1

B

u

y =
è
C 01×n

é  x

ẋ


As before, the observed time-invariant system is found as:

 ˙̂x
¨̂x

 =
 0n×n In×n

A1 A2

 x̂
˙̂x

+
 0n×1

B

u +
 L1

L2

 è C 01×n

é
(y − ŷ)

ŷ =
è
C 01×n

é  x̂
˙̂x


resulting in the follow final equation:C

ė1
ė2

D
=
AC

0n×n In×n
A1 A2

D
−
C
L1
L2

D è
C 01×n

éB C e1
e2

D
=AC

0n×n In×n
A1 A2

D
−
C
L1C 0n×n
L2C 0n×n

DB C
e1
e2

D
=
C
−L1C In×n

A1 − L2C A2

D C
e1
e2

D

Then, the eigenvalues can be calculated by solving the following equation:

det

-----
C
−L1C In×n

A1 − L2C A2

D
−
C

Λn×n 0n×n
0n×n Λn×n

D----- =

Λ2 + Λ (L1C − A2) + (L2C − L1CA2 − L2C)

By imposing the desired λ eigenvalues, L1 and L2 can be calculated.
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Consensus algorithm

At this stage, the state-space representation can be modified by including the
dynamic consensus algorithm in it:

v = ẋ

v̇ = −Lx− Lẋ− Γ (x− xd)− Γ (ẋ− ẋd) + Γẍd

y = Cx

In the specific, the first two equations, in matrix-representation, are:C
ẋ
ẍ

D
=
C

0n×n In×n
−L −L

D C
x
ẋ

D
−
C

0n×n 0n×n
Γ Γ

D C
x− xd

ẋ− ẋd

D
+
C

0n×n 0n×n
0n×n Γ

D C
ẋd

ẍd

D

and, then,C
In×n 0n×n
0n×n In×n

D C
ẋ
ẍ

D
−
C

0n×n 0n×n
0n×n Γ

D C
ẋd

ẍd

D
=C

0n×n In×n
−L− Γ −L− Γ

D C
x
ẋ

D
−
C

0n×n 0n×n
−Γ −Γ

D C
xd

ẋd

D

Resulting in a Simulink model like the one displayed in the Figure 3.19.
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ẍ

D
=
C

0n×n In×n
−L− Γ −L− Γ

D C
x̂
˙̂x

D

+
C

0n×n 0n×n
Γ Γ

D C
xd

ẋd
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Figure 3.19: Simulink model implementing the dynamic consensus protocol

As before, from the desired eigenvalues is it possible to calculate the two L1 and
L2 observer gains, starting form the calculation of the eigenvalues
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and imposing the equation above to be equal to
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With ξ = 1 and ω0 = 5
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2 = 2.5, the two gains result:

L1CL+ L1CΓ + L+ Γ + L2C = 25
2.52

L1C + L+ Γ = 10
2.5L1 =

1
10
2.5 − L− Γ

2
· 1
C

L2 =
è

25
2.52 − L1C (L+ Γ)− L− Γ

é
For example, consider the VL formation is taken into account as it can be demon-
strated to make the system both observable and controllable. The matrices charac-
terizing the system are:

L =

 1 −1 0
−1 2 −1
0 −1 1

 , B =

 1
0
0

 C =
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1 0 0
é
, Γ =

 1 0 0
0 0 0
0 0 0
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(a)

(b)

Figure 3.20: (a) Simulink model implementing the dynamic consensus protocol
provided by an observer and (b) internal structure of the observer

The observer gain L results:

L =
C
L1
L2

D
=
è

3 1 0 −1.75 −1 0
éÍ

In the research several observer models (e.g. Figure 3.20(a),3.20(b)) were simulated
but none of them with satisfying results. So, next step will be to ultimate the
model of an observer and to expand it by the addition of a PID controller.
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Chapter 4

Experimental Stage

The experimental part was conducted on real quadrotors (Crazyflie 2.1x, manu-
factured by Bircraze) with fascinating properties, as the small frame, the light
structure, the easiness of the assembly, the reusability and the good performances,
given by the two on-board MCUs (accountable for handling the communication, the
state estimation and the control) and even to the spiking of expansion decks (e.g.
Flow Deck and Z-Ranger Deck) and an external motion capture (e.g. Optitrack).
Despite the manufacturing ensures the download of Crazyflie Client application
through which a single quadrotor can be piloted in a preliminary approach,. the real
potentiality of this quadrotor lies, in an advanced development, in a open-source
and fully programmable project, by using ROS (see Appendix C), that allows the
customization of functionalities regarding our needs.
Crazyflie is, then, the ideal platform when dealing with research and education
environment, especially about indoor flight in dense formations.
This chapter aims to retrace the steps followed to configure the quadrotor and its
environment and to report the results obtained during the tests, taking inspiration
from the work of Hönig [58],[59]. The chapter is outlined as it follows:

• Datasheet;

• Unpacking and Assembly;

• Crazyflie PC Client Interface Setup;

• Client Interface;

• Crazyflie Workspace Configuration;

• Expansion Decks;

• Experimental Tests.
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4.1 Datasheet
The features and some specifications of Crazyflie 2.1 follows, as they are presented
by the manufacturing in the datasheet.

Mechanical specifications:

• Takeoff weight: 27g;

• Size (WxHxD): 92x92x29mm (motor-to-motor and including motor mount
feet).

Radio specifications:

• 2.4GHz ISM band radio;

• Increased range with 20 dBm radio amplifier, tested to > 1 km range LOS
with Crazyradio PA (environmentally dependent);

• Bluetooth Low Energy support with iOS and Android clients available;

• Dual antenna support with both on board chip antenna and U.FL connector.

Microcontrollers:
Crazyflie 2.1 relies on two microcontrollers, STM32 (the master) and NRF51 (the
slave), that communicate thanks the syslink protocol,

• STM32F405 main application MCU (Cortex-M4, 168MHz, 192kb SRAM, 1Mb
flash), it is used for state-estimation, control and handling of extensions:

– Sensor reading and motor control;
– Flight control;
– Telemetry (including the battery voltage);
– Additional user development.

• nRF51822 radio and power management MCU (Cortex-M0, 32Mhz, 16kb
SRAM, 128kb flash), that manages the flight control and everything else:

– ON/OFF logic, supporting also the bootloading when the ON/OFF button
is hold pressed for few seconds;

– Enabling power to the rest of the system (STM32, sensors and expansion
board);

– Battery charging management and voltage measurement;
– Master radio bootloader;
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Figure 4.1: Expansion connector multiplexing

– Radio and BLE communication;
– Detect and check installed expansion boards.

IMU:

• 3 axis accelerometer / gyroscope (BMI088);

• high precision pressure sensor (BMP388).

Flight specifications:

• Flight time with stock battery: 7 minutes;

• Charging time with stock battery: 40 minutes;

• Max recommended payload weight: 15 g.

Supported clients/controllers:

• Win/Linux/OSX python client;

• The gamepads used by the Xbox 360 and the Playstation 3 are used as
reference controllers, but any gamepad/controller with at least 4 analog axes
can be used;

• Android mobile device;

• iOS mobile device.
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4.2 Unpacking and assembly
The main advantage of Crazyflie corresponds to the easiness of assembly, as no
soldering is required.
The following components are included in the package:

• 1 x Crazyflie 2.1 control board (Figure 4.2(a));

• 2 x CCW propellers (B) (Figure 4.2(b), above);

• 2 x CW propellers (A) (Figure 4.2(b), below);

• 4 x Coreless DC motors (Figure 4.2(c), above);

• 4 x Motor mounts (Figure 4.2(c), below);

• 1 x Foam battery pad;

• 1 x LiPo battery (240mAh) (Figure 4.2(d));

• 1 x Battery holder expansion board (Figure 4.2(e), above);

• 2 x Short/long expansion connector pins (2mm spacing, 8/14 mm long) (see
Figure 4.2(e), below);

• 1 x USB cable;

• 1 x Crazyradio PA with USB dongle (Figure 4.2(f)).

Preliminary test

Before the assembly, a self-test should be performed to be sure that the control
board correctly works: connect the Crazyflie board to a USB power source: if the
M4 LED blinks green five time fast, the test is passed, insted, if M1 LED blinks
red five time fast, the test is not passed.

Assembly

• Twist the wires of the four motors to better fit the motor’s mounts and to
reduce disturbances;

• Embed the motor and the wires in the motor’s mounts (Figure 4.3(a));

• Insert the motor’s mounts in the four branches of the control board and
connect the motor connectors to the Crazyflie(Figure 4.3(b));
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Components of Bitcraze Crazyflie 2.1

• Attach the propellers, taking account that two adjacent branches have not
the same rotation direction. In fact, a propeller marked with an A1 or A2 has
a clockwise (CW) sense of rotation, instead one marked with B1 or B2 has a
counter clockwise (CCW) sense of rotation. In Figure 4.3(c) are represented
the rotation directions for the propellers. To prevent the break of the propeller,
avoid to push it until the point of contact with the motor;

• Attach the rubber pad on the top of the Crazyflie to keep better the battery
in position (Figure 4.3(d));

• Complete the assembly by adding the headers in the expansion connectors and,
after positioning the battery on the rubber, positioning the battery holder
(Figure 4.3(e)).

• Power on: the Crazyflie is provided with a power-push button and it will
automatically power on when connecting the battery (Figure 4.3(f)). Firstly a
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(a) (b)

A B

A
B

(c)

(d) (e) (f)

Figure 4.3: Mounting steps

self-test will be run, to check if the hardware correctly works, and the sensor
will be calibrated.

4.3 Crazyflie PC Client Interface Setup
As mentioned before, the Crazyflie PC Client Interface permits the Crazyflie flight
through the utilization of a joystick. The steps required to install the application
and a introduction to the major functionalities of the interface follow.
Assuming that the application can be easily installed in mobile devices or in
Windows computers, the installation procedure is directed to the Linux operating
system (in this case Ubuntu 18.04).
The Crazyflie PC Client Interface can be downloaded from source. As very first
step is necessary download cflib, an API written in Python required for the
communication between the client software and the quadcopter.
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Install Python3, pip and pyqt5:

1 sudo apt−get i n s t a l l python3 python3−pip python3−pyqt5 python3−
pyqt5 . qtsvg

2 sudo pip3 i n s t a l l −−user −e

Creation of a directory divided in two parts, the first one refers to crazyflie −
client− python (cflib):

1 mkdir ~/ c r a z y f l i e
2 cd ~/ c r a z y f l i e
3 g i t c l one https : // github . com/ b i t c r a z e / c r a z y f l i e −l i b −python . g i t
4 cd c r a z y f l i e −l i b −python
5 pip3 i n s t a l l −−user −e

The second part consists in the crazyflie − client − python, that uses cflib to
generate the graphical user interface:

1 cd ~/ c r a z y f l i e
2 g i t c l one https : // github . com/ b i t c r a z e / c r a z y f l i e −c l i e n t s −python .

g i t
3 cd c r a z y f l i e −c l i e n t s −python
4 pip3 i n s t a l l −−user −e .

On Linux, to use the Crazyradio, it is necessary to set udev permissions as follows:

1 sudo groupadd plugdev
2 sudo usermod −a −G plugdev $USER
3 sudo touch / e tc /udev/ r u l e s . d/99− c razy rad io . r u l e s
4 sudo nano / e tc /udev/ r u l e s . d/99− c razy rad io . r u l e s

with the last command line (sudonano/etc/udev/rules.d/99− crazyradio.rules)
it is possible to open the newly created 99− crazyradio.rules and there write:

1 SUBSYSTEM==" usb " , ATTRS{ idVendor}==" 1915 " , ATTRS{ idProduct}=="
7777 " , MODE=" 0664 " , GROUP=" plugdev "

and load the new rules, by writing in the command tab:
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Figure 4.4: Firmware Upgrading

1 sudo udevadm c o n t r o l −−re load −r u l e s
2 sudo udevadm t r i g g e r

Now it is finally possible to start the Crazyflie PC Client with the following
command lines:

1 cd ~/ c r a z y f l i e / c r a z y f l i e −c l i e n t s −python
2 sudo python3 bin / c f c l i e n t

4.3.1 Firmware upgrade
At the first use is crucial to update the firmware to the latest version (it can be
downloaded going to: releases.
The update of the firmware can be done by following the listed instructions below:

• Select in the menu the voices Connect→Bootloader : a new window, Crazyflie
Service, will be opened;

• Turn off the Crazyflie and maintain the power-on button pressed for few
seconds, the M2 and M3 blue LEDs will start to blink, meaning that the
quadrotor is in bootloader mode. If not already done, insert the CrazyRadio;

• Click on the button Initiate bootloader cold boot;
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Figure 4.5: 3D coordinated system of Crazyflie

• Select the newest version between the Available downloads and, after assuring
that Both option is selected, click on Program. In this case, both the MCUs,
STM32F405 and nRF51822 will be upgraded;

• When the Status is completed (Figure 4.4), click on Restart in firmware mode.

The firmware version can be checked when the Crazyflie is connected, by looking
at the output in the Console tab.

4.4 Crazyflie PC Client
Crazyflie PC Client is the client interface provided by the manufacturing, needed
to control the Crazyflie, update the firmware, set parameters and log data.
To begin started to the Crazyflie’s flight, it is crucial to introduce the concept of
Thrust, the force that is applied to adjusts the altitude, and to define the quadrotor
principal axes in a three-dimensional (3D) (Figure 4.5). Once the three axes are
defined, the rotations around them are:

• Roll: rotation around x-axis. This permits the Crazyflie to move to its left or
to its right.

• Pitch: the rotation around y-axis. This moves the Crazyflie forwards or
backwards.

• Yaw: rotation around z-axis. Yaw is used to change flying direction.
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Figure 4.6: Crazyflie PC Client Interface

These four data will be used in the control of the Crazyflie flight.
Thanks to the PC Client Interface (Figure 4.6), it is possible to connect the Crazyflie
and display Roll, Pitch, Yaw and Thrust, in the Flight Control tab.

Connection and input-device selection

At the first use, the Crazyflie have, by default, the address 0xE7E7E7E7E7E7,
and, by clicking on the button Scan, it will be possible to Connect when it will be
detected by the radio. The connection status can be seen above in the interface,
and, so, the battery status.
In the menu, Input device allows to choose between different operating modes:

• Normal: normal mode, in which one single controller manages a quadrotor;

• Teacher (RP): two joysticks, one (teacher) that manages roll and pitch, the
second (student) controls all the others functionalities (but roll and pitch as
well, thanks to the Mux-switch option);

• Teacher (RPYT): two joysticks, one (teacher) controls roll, pitch, yaw and
thrust, the other (student) is aimed at managing the other functionalities (but
also roll, pitch, yaw and thrust thanks to Mux-switch option).

In easiest case, the Normal mode is used and the joystick is selecting, by clicking
on Input device→Device→Input map→"your-device" (see in Figure 4.7).
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Figure 4.7: Selection of the Input Device

Configuration of Crazyflie

Once the Crazyflie is connected, the address can be easily changed: in the menu
select Connect→Configure 2.X, it will be possible to set a new address, to select
the radio bandwidth (250k, 1M or 2M) or the radio channel (from 0 to 125), pitch
and roll trims. To save the modifications, click on the Write button and restart
the quadrotor.

Configuration of joystick

Any type of input device, with four analog axis (roll, pitch, yaw and thrust), can
be used, but it will referred to a joystick since it was used in the experiments.
The default configuration in the client interface can be changed, by going to Input
device → Configure device mapping in the menu. By selecting the input device to
be configured, the axis can be configured through the Detect button. Only for roll,
pitch, yaw and thrust detections, it will compare a window in which it is possible
to choose the Combined Axis Detection that permits to map the functionality to
two axis.

Tabs

The principal interface displays many tabs that can be shown or hidden going to
View → Tabs. An overview on the tabs function follows:
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• Flight Control: thrust, pitch, roll and yaw joystick inputs control, estimation
of the actual inputs, actual motors’ output, basic and advanced flight controls;

• Log TOC: real-time log variables list. A log configuration can be created
and saved in the Log configuration window, by clicking on Settings→Logging
configurations;

• Parameters: detailed list of parameters, that are real-time variables stored in
the Crazyflie. The variables are aggregated in groups and the name, the type
and the accessability are specified for each variable (RW: data can be read
and written from the client, RO: data can be only read);

• Log Blocks: list of all log configurations saved, start/stop tracking and write
to file choices;

• Plotter: plot of the selected log configuration, it is possible to specify the
number of samples (x-axis) and to settle the scale of the y-axis;

• Console: Firmware’s output while the Crazyflie is in operation;

• LED tab: LED Ring expansion deck screening and control;

• Loco Positioning Tab: information from Loco Positioning System, see details
in Sec. 4.6.2;

• Qualisys Tab: information from Qualisys motion capture system, based on high-
resolution cameras that are able to detect markers positioned on Crazyflie’s
body.

4.5 Crazyflie Workspace
Assuming that the operating system used is Ubuntu 18.04.5 LTS with ROS Melodic
Morenia already installed on it (if it is not, see the Appendix B and C for an
introduction to ROS), the installation of the official software packages of the
Crazyflie can begin.
The crazyflie_ros stack allows to publish ROS standard messages on on-board
sensors, to use multiple Crazyflie with a single Crazyradio or to implement an
external motion capture system.
The first step, to let the Crazyflie operate in the ROS environment, consists in the
creation of a new ROS workspace and to clone all the crazyflie’s packages:

1 mkdir −p ~/ c razy f l i e_ws / s r c
2 cd ~/ c razy f l i e_ws / s r c

71



Experimental Stage

3 catkin_init_workspace
4 g i t c l one https : // github . com/whoenig/ c r a z y f l i e _ r o s . g i t
5 cd ~/ c r a z y f l i e _ r o s
6 g i t submodule i n i t
7 g i t submodule update
8 cd ~/ c razy f l i e_ws
9 catkin_make

To use the new workspace, open your ∼/.bashrc with the following command:

1 sudo nano ~/. bashrc

and add at the end of the file the following line:

1 source ~/ c razy f l i e_ws / deve l / setup . bash

Instead, if you are already in the

1 source deve l / setup . bash

At this point, the Crazyflie’s workspace has been created with all its packages, that
are:

• crazyflie_controller: it contains the code of a PID controller to let the quadro-
tors fly in a space provided by an external location feedback (e.g. VICON);

• crazyflie_cpp: this package is made by a C++ library for the Crazyradio and
Crazyflie. It is used by crazyflie_ros and crazyflie_tools but it can be utilized
independently of ROS too;

• crazyflie_demo: it contains many examples of .launch files (teleoperation,
hovering, commanded position) and nodes in the Python format;

• crazyflie_description: it is composed by 3D-models of the Crazyflie in URDF
format, inteded to be used in Rviz representation;

• crazyflie_driver: the driver is constituted by crazyflie_server, that allows to
support multiple Crazyflies with a single Crazyradio, and by crazyflie_add,
needed to add the quadrotors and let them communicate with the server;

• crazyflie_tools: it contains advanced operation tools.
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(a) (b)

Figure 4.8: Expansion decks positioning

4.6 Expansion decks
Crazyflie quadrotor is provided by additional expansion decks that are useful to
implement a reliable and predictable flight. In particular, the expansion decks
actually available are:

• LED-ring expansion deck;

• Buzzer expansion deck;

• Qi inductive charging expansion deck;

• Qi 1.2 compatible wireless charging deck;

• Prototype expansion deck;

• Breakout expansion deck;

• BigQuad expansion deck;

• Micro SD expansion deck;

• Z-ranger expansion deck;

• Bosch Sensortec expansion deck;

• Lighthouse positioning deck;

• Motion capture marker deck.
Before entering in details of the expansions used in the experimental work, the
decks’ mechanical positioning will be introduced. Expansion boards can be installed
on top, bottom, or both top and bottom of the Crazyflie, thanks to the female
pass-through connectors that can be fitted with male pins.
Referring to Figure 4.8, the symbols indicate the bottom or the upper face and the
orientation with which the expansion board has to be mounted.
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4.6.1 FlowDeck v2
The Flow deck (Figure 4.9) makes possible to position the Crazyflie thanks to a
optical motion detection.
The joint action of V L35L1x and PMW3901 sensors allows the Crazyflie to detect
the horizontal motion and to accurately estimate distance ranging until a maximum
of 4 meters. Moreover, in the normal operation with the CF Client Interface, it’s
possible to let the quadrotor fly in assist mode: by selecting the Hover mode
between the Assist modes, in the Flight Control tab (see Figure 4.9(a)), configuring
the assisted control button on the joystick and holding the last mentioned during
the flight, the Crazyflie will take off and hover at a previously fixed height (40cm
by default).
In particular:

• VL53L1x ToF sensor, to measure distance from the ground with a precision
of few millimeters, basing on the time for emitted light to be reflected (Figure
4.9(d)). The precision depends on surface and light conditions.

• PMW3901 optical flow sensor (Figure 4.9(c)), it measures movements with
respect to the ground (works best on matt surfaces). Thanks to a camera, the
relative motion between the quadrotor and the scene is sensed, meaning that
a background full of details could improve the efficiency of the optical flow
sensor.

4.6.2 Loco Positioning system
The Crazyflie’s positioning in space given by the on board sensors (gyroscope
and accelerometers) is not enough to obtain an accurate positioning. The joint
utilization of Flow Deck v2 (Sec.4.6.1) and of an external positioning system could
increase the accuracy.
The Loco Positioning system (LPS) is similar to a GPS system, able to calculate the
current position of the quadrotor: a set of Anchors positioned in the room (reference
system) receives short high frequency radio signals from the Tags, positioned directly
on the Crazyflies. By measuring the latency between the moment in which the
message is sent and the moment in which the message is received, the system is
able to perform on-board calculation of the Crazyflies’ position.
The Loco Positioning system is composed, then, by:

• Loco Positioning Deck(Figure 4.10(a),4.10(c)): it is mounted on the Crazyflie
and it takes care of the calculation of the distance to the Anchors;

• Loco Position Node (Figure 4.10(b),4.10(d)): it can act either as an Anchor or
Tag: in the first case, it would be part of the reference system, in the second
case it is mounted on the quadrotor.
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(a) (b)
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Figure 4.9: a) Hover mode in Client Interface, b) Flow Deck v2, c) Crazyflie with
the Flow Deck graphic, d) ToF (Time of Flight) sensor behavior

The system’s ranging accuracy is around ±10cm and the maximum tested range
corresponds to 10m.
The Loco Positioning system can operate in three different modes:

• Two Way Ranging (TWR): the tags send messages to the anchors in sequence.
TWR corresponds to the most accurate mode but only on tag can be utilized,
with a maximum of 8 anchors, and it works also when the tag exit the space
delimited by the anchors;

• Time Difference of Arrival 2 (TDoA2): the anchors send messages continuously,
the tag calculate the relative distance between the anchors from the delay
between the messages. In this mode a lot of Crazyflies can be used, since
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(a) (b)

(c) (d)

Figure 4.10: a) LPS deck, b) LPS node, c) Crazyflie with LPS deck, d) LPS node
positioning on the room

the tag is listening to the messages and, so, the system doesn’t risk to be
overloaded. In TDoA2 it is recommended that the Crazyflie doesn’t leave the
space sorrounded by the anchors (maximum 8) to avoid information lost;

• Time Difference of Arrival 3 (TDoA3):the anchors send messages in a ran-
domized fashion, supporting the addition of more anchors, such that a larger
operating space can be considered.

Loco Positioning system setting

Assuming that the Crazyflie is updated to the latest firmware and by updating the
firmware and configuring each node, it’s possible to start with the set up of Loco
Positioning system.
Firstly, to update nodes, download the LPS configuration tool, in a new terminal:
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1 cd ~/ c razy f l i e_ws / s r c
2 g i t c l one https : // github . com/ b i t c r a z e / lps−t o o l s . g i t
3 cd ~/ c razy f l i e_ws
4 catkin_make

To flash the node, it’s required to set the udev permissions as follows:

1 sudo touch / e tc /udev/ r u l e s . d/99− l p s . r u l e s
2 sudo nano / e tc /udev/ r u l e s . d/99− l p s . r u l e s

Once the the 99− lps.rules is open, write:

1 # cat > / etc /udev/ r u l e s . d/99− l p s . r u l e s << EOF
2 SUBSYSTEM==" usb " , ATTRS{ idVendor}==" 0483 " , ATTRS{ idProduct}=="

df11 " , MODE=" 0664 " , GROUP=" plugdev "
3 EOF

and load the new rules, by writing in the command tab:

1 sudo udevadm c o n t r o l −−re load −r u l e s %re l oad
2 sudo udevadm t r i g g e r

Now it’s possible to open the LPS configuration tool, starting from home, as:

1 cd c razy f l i e_ws / s r c / lps −t o o l s /
2 python3 −m l p s t o o l s

Once the LPS configuration tool is opened, keep the node’s DFU button hold
while connecting the node to the computer via USB (in zFigure 4.11(a) the LPS
configuration tool interface and the instruction to enter in DFU mode), and execute
the following instructions (in TWR mode, the one used during the experimental
work):

• Browse the last firmware, previously downloaded here: firmware;

• Update the node;

• disconnect the node, press the reset button (the other button on the node)
and reconnect it;

• Select the ID (all the nodes have to be numbered with a different ID, it will
be applied to correctly position the nodes in the room);
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(a) (b)

Figure 4.11: a) LPS configuration tool interface, b) Loco Position Nodes arrange-
ment in a room

(a) (b)

Figure 4.12: a) Loco Positioning Tab b) Anchors’ actual positioning

• make sure that the Anchor (TWR) mode is selected;

• click on Apply button.

Now the anchors are ready to be positioned in the room.

Anchor positioning and power-on

In the flying arena, 8 anchors were utilized, so only that setting case will be
considered.
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To get an acceptable result, the anchors should be distributed in the room at least
2m apart and placed 15cm far from the wall, ceiling, metal object, to avoid any
reflection interference (make use of the following 3D-stamped support: anchor-
stand).
Once the anchors were disposed as displayed in Figure 4.11(b), they can be powered
on in three different ways: through micro USB, barrel jack or screw terminal, with
5-12V and providing, at least, a current of 150mA.

LPS Tab

By connecting the Crazyflie through the CF client, it is possible to visualize the
Loco Positioning System operation in the LPS tab.
In the tab, firstly check the anchor status, by looking at the color of the boxes:
if one the boxes is red, the corresponding anchor is not communicating with the
quadrotor. It follows, if not already done, the configuration of the anchor positions.
A new window will be opened and the actual anchor positions will be stored (Figure
4.12(b)). In the Loco Positioning tab (Figure 4.12(a) are shown three 2D-graphs,
that are able to give a 3D idea of the positioning:

• Top view (X/Y);

• Front view (X/Z);

• Right view (Y/Z).

4.6.3 Optitrack
Optitrack is a motion capture system, capable to offer high-quality performances
and affordable prices. It is based on a set of cameras, positioned in the corners of
the flying-area and a set of markers that will be arranged on the rigid body to be
tracked.
Starting from the hardware setup, it is essential to guarantee a clean and free-
reflections area, in order to avoid to spoil the tracking. Therefore, it is suggested
to cover every sunlight source and to cover with rubber the reflective areas.
Optitrack uses the Motive software platform to control the motion capture system
and to track the bodies and process the recorded 3D data, together with the
live-stream of the data.
At the first usage of Motive, the client interface of Optitrack, it is asked to upload
a calibration layout, a file with the information to completely restore positions and
orientations of each camera, lens distortion parameters and the camera settings. It
is supposed that the calibration is already provided and it uploaded by clicking on
File→Open and browse the file.
After this passage, the interface will be as the one in Figure 4.13, in which the four
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Figure 4.13: Optitrack Interface

cameras are figured in the exact position in a 3D viewport but also the view from
each camera in a 2D viewport (bottom part in Figure 4.13). Now, it follows the
identification of the body, performed in few steps:

• place four or more markes on the body in a asymmetrical fashion (Figure
4.14(b));

• Position the mobile robot in the Optitrack’s observable area;

• the markes should be identified and figured in the Perspective view. At this
point, select the markers by clicking and dragging the mouse over all the
markers;

• right click on one of the markers and select Rigid Body→Create from selected
markers;

• modify the name of the newly created rigid body (Figure 4.14(a)) in the
Properties Pane (see Figure 4.14(c),4.14(d));

• verify the tracking of the rigid body by moving your body in the Optitrack’s
observable area and looking at the interface.
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(a)

(b) (c) (d)

Figure 4.14: (a) Perspective view, (b) markers placement on the Crazyflie and
(c),(d) Properties pane

After the definition of all the rigid bodies in the area, the capture can start, by
pressing the red record button. If the red button is pressed again, the capture will
be ended and a capture file (TAK extension) will saved, a file containing all the
data to reconstruct the capture.
In the case of Crazyflie controlled thanks to ROS, the Data should be streamed in
real-time: Motive offers several options, in this case the VRPN mode was deployed.
At the beginning connect the two laptops (one deployed for Motive, the second for
ROS) to the same network, used to stream the data, and follow the steps:

• click on View→Data Streaming Pane (Figure 4.15(a));

• set everything as shown in Figure 4.15(b):
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(a) (b)

Figure 4.15: Streaming of the tracking Data

– make sure that the Broadcast Frame Data and the VRPN Data are on
ON;

– Set the Local Interface to the correct IP address, corresponding to the
one used to broadcast the information;

– Set Up Axis to Z Up;
– select the VPRN Broadcast.

On the laptop on which ROS is running, it is necessary to install the vrpn-client-ros
package:

1 sudo apt i n s t a l l ros−melodic−vprn−c l i e n t −ro s

and import the vrpn.launch file in your Launch folder:

<?xml ve r s i on ="1.0" ?>
<launch>

<arg name=" s e r v e r " d e f a u l t ="192.168.0 .138"/ >

<node pkg="vrpn_cl ient_ros " type="vrpn_client_node " name="
vrpn_client_node " output=" sc r e en ">

<rosparam subst_value=" true ">
s e r v e r : $ ( arg s e r v e r ) $
port : 3883
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Figure 4.16: rqt graph representing the mod_position.launch file

update_frequency : 1 0 0 . 0
frame_id : world

# Use the VRPN server ’ s time , or the c l i e n t ’ s ROS time .
use_server_time : f a l s e
broadcast_tf : t rue

# Must e i t h e r s p e c i f y r e f r e s h f requency > 0 . 0 , or a l i s t
o f t r a c k e r s to c r e a t e

re f r e sh_trakcer_f requency : 1 . 0

t r a c k e r s :
− c f 1

</rosparam>
</node>

</launch>

In the script can be found the same parameters that were fixed on Motive: the
Local Interface, the VRPN Broadcast Port and the name of the trackers. When
the .launch file is launched, the connections between nodes as showed the Figure
4.16 are created. At this point everything is set to correctly track the motion of
the Crazyflie.

4.7 Experimental Tests

In the following section there are reported few examples of experimental tests
conducted on one or more Crazyflies, giving a general idea of the tasks carried out,
how to replicate them, and delineating the steps to follow in order to create a new
workspace and new nodes.
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4.7.1 Position holding - Hovering
In the first easiest tests, the scripts already provided in the Crazyflie Workspace
were modified and applied. First task was to perform, in order, the take off, the
hovering and the land of a Crazyflie. It follows the position.launch file, the related
node in Python code script and a brief explanation:

## p o s i t i o n . launch
<?xml ve r s i on ="1.0"? >
<launch>

<arg name=" u r i " d e f a u l t =" rad io ://0/80/2M/E7E7E7E703 " />

<inc lude f i l e ="$ ( f i n d c r a z y f l i e _ d r i v e r ) / launch / c r a z y f l i e _ s e r v e r .
launch">

</inc lude >

<group ns=" c r a z y f l i e ">
<inc lude f i l e ="$ ( f i n d c r a z y f l i e _ d r i v e r ) / launch / crazy f l i e_add .
launch">

<arg name=" u r i " va lue="$ ( arg u r i ) " />
<arg name=" t f _ p r e f i x " va lue=" c r a z y f l i e " />
<arg name="enable_logging_imu " value="True " />
<arg name="enable_logging_pose " va lue="True " />

</inc lude >

<node name="crazyf l ie_demo_hover " pkg="crazyf l i e_demo " type="
mod_Position . py " output=" sc r e en ">
</node>

<node name="plot jugg ler_with_layout2 "
pkg=" p l o t j u g g l e r "
type=" P lo tJugg l e r "
args="−−l ayout $ ( f i n d c r a z y f l i e _ c o n t r o l l e r ) / c o n f i g /

z_pos i t ion . xml "
/>
</group>

</launch>

The launch code is the one that will activate the nodes (the Python code, the
related graphic tool to plot the data), that creates the connections (Figure 4.16)
between the Crazyflie and the server by reading the appropriate URI, and enables
the logging of the data (in this case IMU and pose).
In detail the IMU comprises the angular velocity (φ̇, θ̇, ψ̇) coming from the gyroscope,
the angular velocity covariance, the linear acceleration (ẍ, ÿ, z̈), linear acceleration
covariance, orientation (w, x, y, z) and orientation covariance. Instead, the pose
includes: the orientation (φ, θ, ψ) and position (x, y, z).
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## mod_Position . py
#!/ usr / bin /env python

import rospy
import t f
from c r a z y f l i e _ d r i v e r . msg import Pos i t i on
from std_msgs . msg import Empty
from c r a z y f l i e _ d r i v e r . s rv import UpdateParams

i f __name__ == ’__main__ ’ :
rospy . in it_node ( ’ po s i t i on ’ , anonymous=True )
worldFrame = rospy . get_param ("~ worldFrame " , "/ world " )
r a t e = rospy . Rate (10) # 10 hz
name = " cmd_position "
msg = Pos i t i on ( )
msg . header . seq = 0
msg . header . stamp = rospy . Time . now ( )
msg . header . frame_id = worldFrame
msg . x = 0 .0
msg . y = 0 .0
msg . z = 0 .0
msg . yaw = 0 .0

pub = rospy . Pub l i sher (name , Pos i t ion , queue_size=1)
stop_pub = rospy . Pub l i she r ( " cmd_stop " , Empty , queue_size=1)
stop_msg = Empty ( )

rospy . wa i t_for_serv ice ( ’ update_params ’ )
rospy . l o g i n f o ( " found update_params s e r v i c e " )
update_params = rospy . Serv iceProxy ( ’ update_params ’ , UpdateParams )

rospy . set_param ( " kalman/ re s e tEs t imat i on " , 1)
update_params ( [ " kalman/ re s e tEs t imat i on " ] )
rospy . s l e e p ( 0 . 1 )
rospy . set_param ( " kalman/ re s e tEs t imat i on " , 0)
update_params ( [ " kalman/ re s e tEs t imat i on " ] )
rospy . s l e e p ( 0 . 5 )

# take o f f
whi l e not rospy . is_shutdown ( ) :

f o r y in range (10) :
msg . x = 0 .0
msg . y = 0 .0
msg . yaw = 0 .0
msg . z = y / 25 .0
now = rospy . get_time ( )
msg . header . seq += 1
msg . header . stamp = rospy . Time . now ( )
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rospy . l o g i n f o ( " sending . . . " )
rospy . l o g i n f o (msg . x )
rospy . l o g i n f o (msg . y )
rospy . l o g i n f o (msg . z )
rospy . l o g i n f o (msg . yaw)
# rospy . l o g i n f o (now)
pub . pub l i sh (msg)
ra t e . s l e e p ( )

f o r y in range (350) :
msg . x = 0 .0
msg . y = 0 .0
msg . yaw = 0 .0
msg . z = 0 .4
msg . header . seq += 1
msg . header . stamp = rospy . Time . now ( )
rospy . l o g i n f o ( " sending . . . " )
rospy . l o g i n f o (msg . x )
rospy . l o g i n f o (msg . y )
rospy . l o g i n f o (msg . z )
rospy . l o g i n f o (msg . yaw)
# rospy . l o g i n f o (now)
pub . pub l i sh (msg)
ra t e . s l e e p ( )

break

# land , spend 1 s e c s
s t a r t = rospy . get_time ( )
whi l e not rospy . is_shutdown ( ) :

msg . x = 0 .0
msg . y = 0 .0
msg . z = 0 .0
msg . yaw = 0 .0
now = rospy . get_time ( )
i f (now − s t a r t > 1 . 0 ) :

break
msg . header . seq += 1
msg . header . stamp = rospy . Time . now ( )
rospy . l o g i n f o ( " sending . . . " )
rospy . l o g i n f o (msg . x )
rospy . l o g i n f o (msg . y )
rospy . l o g i n f o (msg . z )
rospy . l o g i n f o (msg . yaw)
pub . pub l i sh (msg)
ra t e . s l e e p ( )

stop_pub . pub l i sh ( stop_msg )

In the mod_Position.py script is possible to find all the commands relative to the
take off and the land of the quadrotor.
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Figure 4.17: Plot of Data coming from IMU and pose while the quadrotor
performs Take Off and Land flight manoeuvres

This easy script permits the Crazyflie to take off to a fixed height of 0.4 meters and
to maintain it for several seconds (hovering). A video of the test can be found at the
following link: 1cf-hovering. In Figure 4.17 the data relative to the cmd_position
(only along the z-axis), the actual position (x, y, z), the orientation (only pitch and
roll angles) are displayed thanks to PlotJuggler.
The same manoeuvres can be commanded easily to more than one Crazyflie, by
modifying the position.launch file: more groups can be added, each one representing
one of the Crazyflies, each one with a specified URI (there is the possibility to
connect all the quadrotors to the same radio or to several radios). In the test of
three Crazyflies (link: 3cf-hovering), the cmd_position corresponds to a step
function: starting from an altitude of 0.6 meters, it is decreased by a step of 0.2
meters every 2.5 seconds, until the land. The resulting plots are shown in Figure
4.18.

4.7.2 Take off - Go To - Land
The same script was modified in order to include additional steps between the Take
Off and the Land: from the initial position, stored at the Crazyflie’s switching on,
relative displacements were defined in the xy-plane.
By considering the case of the single Crazyflie, the mod_position is modified by
adding the following general part of code:
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Figure 4.18: Plot of data coming from IMU and pose while three quadrotors
perform hovering manoeuvres

s t a r t = rospy . get_time ( )
whi l e not rospy . is_shutdown ( ) :

msg . x = x
msg . y = y
msg . yaw = yaw
msg . z = 0 .4
now = rospy . get_time ( )
i f (now − s t a r t > 2 . 0 ) :

break
msg . header . seq += 1
msg . header . stamp = rospy . Time . now ( )
rospy . l o g i n f o ( " sending . . . " )
rospy . l o g i n f o (msg . x )
rospy . l o g i n f o (msg . y )
rospy . l o g i n f o (msg . z )
rospy . l o g i n f o (msg . yaw)
pub . pub l i sh (msg)
ra t e . s l e e p ( )

and, step by step, by specifying the desired x, y and ψ.
In the tests, there were fixed different point in the trajectory, corresponding to
the angles of a poster, such that the Crazyflie, after the taking off, follows the
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Figure 4.19: Test of a Crazyflie following the perimeter of a poster

perimeter of the poster until it reaches the starting position and it lands (link: 1cf-
perimeter-following). The corresponding plots are displayed in the Figure 4.19.
The same test is expanded to two Crazyflies (link: 2cf-perimeter-following).

4.7.3 Creation of my workspace
Until now, a script already provided in the Crazyflie workspace was applied and
the quadrotor motion was performed by stages.
So, next step was the creation of a new workspace with a new Python code in which
specify the publishers and published variables and to which one to subscribe, define
a continuous trajectory. Starting from scratch, the following steps were followed to
create the new package crazyswarm:

• Create the package: in a new terminal write

1 cd c razy f l i e_ws / s r c
2 catkin_create_pkg mycrazyswarm rospy roscpp std_msgs

sensor_msgs geometry_msgs
3 cd . .
4 catkin_make
5
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• Create a new C++ script corresponding to the new node crazyswarm_node,
in crazyflie_ws/src/mycrazyswarm/src/:

– Include libraries and messages;
– Copy the main function from a basic example;
– Define the function to subscribe to the topic and publish it;
– define the global and the local variables and initialize them;
– define your trajectory.

• add in the workspace the folder containing the messages and .srv files, taken
from the Crazyflie workspace;

• modify the CMakeList:

– add message_generation and crazyflie_cpp in find_package();
– uncomment add_service_file and add all the .srv file in add_service_files()
function as well as all .msg files in the add_message_files();

– uncomment dependences std_msgs and geometry_msgs;
– uncomment:

catkin_package (
INCLUDE_DIRS inc lude
CATKIN_DEPENDS geometry_msgs roscpp rospy sensor_msgs

std_msgs
DEPENDS system_lib )

– uncomment:

add_executable ( ${PROJECT_NAME}_node s r c /
crazyswarm_node . cpp )

s e t_ta rge t_prope r t i e s ( ${PROJECT_NAME}_node PROPERTIES
OUTPUT_NAME node PREFIX " " )

add_dependencies ( ${PROJECT_NAME}_node ${${
PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS
})

t a r g e t _ l i n k _ l i b r a r i e s ( ${PROJECT_NAME}_node
${catkin_LIBRARIES}

)
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At this point, the crazyswarm_node will be fully created, it follows the complete
script:

1 #inc lude <ros / ros . h>
2 #inc lude <math . h>
3 #inc lude <time . h>
4 #inc lude " geometry_msgs/Twist . h "
5 #inc lude " geometry_msgs/PointStamped . h "
6 #inc lude " geometry_msgs/PoseStamped . h "
7 #inc lude " mycrazyswarm/ Pos i t i on . h "
8 #inc lude " sensor_msgs/Imu . h "
9 #inc lude " sensor_msgs/Temperature . h "

10 #inc lude " sensor_msgs/ Magnet icFie ld . h "
11 #inc lude " std_msgs/ Float32 . h "
12

13 // g l o b a l v a r i a b l e s
14 double rad2deg = 180.0/M_PI;
15 double start_time ;
16 double current_time ;
17 s t r u c t t imespec gettime_now ;
18

19 // c fx v a r i a b l e s
20 c l a s s C r a z y f l i e {
21 pub l i c :
22 double posit ion_x , posit ion_y , pos i t i on_z ;
23 double r o l l , p itch , yaw ;
24 double in i t_pos i t ion_x , in i t_pos i t ion_y , in i t_pos i t i on_z ;
25 i n t once = 0 ;
26 double rad iu s = 0 . 4 ;
27 double omega = 2 ;
28 mycrazyswarm : : Pos i t i on cmd_msg ;
29 } ;
30 C r a z y f l i e c f 1 ;
31

32 void poseCal lback1 ( const geometry_msgs : : PoseStamped : : ConstPtr& msg)
33 {
34 c f 1 . pos i t ion_x= msg−>pose . p o s i t i o n . x ;
35 c f 1 . pos i t ion_y= msg−>pose . p o s i t i o n . y ;
36 c f 1 . pos i t ion_z= msg−>pose . p o s i t i o n . z ;
37 i f ( ! c f 1 . once ) {
38 c f 1 . in i t_pos i t i on_x = c f1 . pos i t ion_x ;
39 c f 1 . in i t_pos i t i on_y = c f1 . pos i t ion_y ;
40 c f 1 . i n i t_pos i t i on_z = c f1 . pos i t ion_z ;
41 c f 1 . once = 1 ;
42 }
43
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44 c f 1 . r o l l = rad2deg ∗ atan2 ( 2 . 0 ∗ ( msg−>pose . o r i e n t a t i o n . y∗msg−>pose .
o r i e n t a t i o n . z + msg−>pose . o r i e n t a t i o n .w∗msg−>pose . o r i e n t a t i o n . x ) ,
msg−>pose . o r i e n t a t i o n .w∗msg−>pose . o r i e n t a t i o n .w − msg−>pose .
o r i e n t a t i o n . x∗msg−>pose . o r i e n t a t i o n . x − msg−>pose . o r i e n t a t i o n . y∗
msg−>pose . o r i e n t a t i o n . y + msg−>pose . o r i e n t a t i o n . z∗msg−>pose .
o r i e n t a t i o n . z ) ;

45 c f 1 . p i t ch = rad2deg ∗ as in ( −2.0∗(msg−>pose . o r i e n t a t i o n . x∗msg−>pose .
o r i e n t a t i o n . z − msg−>pose . o r i e n t a t i o n .w∗msg−>pose . o r i e n t a t i o n . y ) ) ;

46 c f 1 . yaw = rad2deg ∗ atan2 ( 2 . 0 ∗ ( msg−>pose . o r i e n t a t i o n . x∗msg−>pose .
o r i e n t a t i o n . y + msg−>pose . o r i e n t a t i o n .w∗msg−>pose . o r i e n t a t i o n . z ) ,
msg−>pose . o r i e n t a t i o n .w∗msg−>pose . o r i e n t a t i o n .w + msg−>pose .
o r i e n t a t i o n . x∗msg−>pose . o r i e n t a t i o n . x − msg−>pose . o r i e n t a t i o n . y∗
msg−>pose . o r i e n t a t i o n . y − msg−>pose . o r i e n t a t i o n . z∗msg−>pose .
o r i e n t a t i o n . z ) ;

47

48 i n t main ( i n t argc , char ∗∗ argv )
49 {
50 ro s : : i n i t ( argc , argv , " mycrazyswarm " ) ;
51 ro s : : NodeHandle n ;
52

53 ro s : : Pub l i she r pos_pub1 = n . adve r t i s e <mycrazyswarm : : Pos i t ion >("/
c f 1 / cmd_position " , 10) ;

54 ro s : : Subsc r ibe r sub1 = n . sub s c r i b e ( "/ vrpn_client_node / c f 1 / pose " ,
1000 , poseCal lback1 ) ;

55

56 // i n i t i a l i s e every vrpn_cl ient_nodevar iab le
57 c f 1 . cmd_msg . header . seq = 0 ;
58 c f 1 . cmd_msg . header . stamp = ros : : Time : : now ( ) ;
59 c f 1 . cmd_msg . x = 0 ;
60 c f 1 . cmd_msg . y = 0 ;
61 c f 1 . cmd_msg . z = 0 ;
62 c f 1 . cmd_msg . yaw = 0 ;
63

64 ro s : : Rate loop_rate (10) ;
65 i n t count = 0 ;
66

67 // s t a r t time
68 c lock_gett ime (CLOCK_REALTIME, &gettime_now ) ;
69 start_time = gettime_now . tv_sec + 0.001∗ gettime_now . tv_nsec

/1000000 .0 ;
70 ROS_INFO( " Star t Pos i t i on C o nt r o l l e r " ) ;
71

72 whi le ( ro s : : ok ( ) )
73 {
74 c lock_gett ime (CLOCK_REALTIME, &gettime_now ) ;
75 current_time = gettime_now . tv_sec + 0.001∗ gettime_now . tv_nsec

/1000000.0 − start_time ;
76 i f ( c f 1 . once ) {
77 c f 1 . cmd_msg . header . seq = count ;
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78 c f 1 . cmd_msg . header . stamp = ros : : Time : : now ( ) ;
79 c f 1 . cmd_msg . x = c f1 . in i t_pos i t i on_x ;
80 c f 1 . cmd_msg . y = c f1 . in i t_pos i t i on_y ;
81 i f ( 0 . 05∗ current_time + c f1 . i n i t_pos i t i on_z +0.35 < 1) {
82 c f 1 . cmd_msg . z = 0.05∗ current_time + c f1 . i n i t_pos i t i on_z

+0.35 ;
83 }
84 e l s e {
85 c f 1 . cmd_msg . z = 1 ;
86 }
87 c f 1 . cmd_msg . yaw = 0 ;
88 pos_pub1 . pub l i sh ( c f 1 . cmd_msg) ;
89 }
90 ro s : : spinOnce ( ) ;
91 loop_rate . s l e e p ( ) ;
92 ++count ;
93 }
94 re turn 0 ;
95 }

In this script, the Data about the actual position and orientation are coming from
the Optitrack system. The launch file is similar to the ones already showed in
the previous subsections. The recorded test on Motive can be seen at the link:
optitrack-record.
As mentioned before, with this new node is possible to define a continuous trajectory
and, as before, several crazyflie can be activated at the same time. For example,
the code of crazyswarm_node was modify in order to let two Crazyflies perform
a spiral trajectory: starting from the addition of the second Crazyflie to the class,
defining the local variables, duplicate the function to subscribe to the topic and
initialize all the variables.
The aim was, positioning the two Crazyflies in the extremities of the diameter of
a circumference, to let them follow the perimeter always maintaining an angular
distance of 180° between them. The equations describing the trajectory are:x1 = −R sinωt+ xC ;

y1 = R cosωt+ yC .

x2 = R sinωt+ xC ;
y2 = −R cosωt+ yC .

with
C = (xC , yC) (x10, y10 −R) ≡ (x20, y20 +R)

and, on the crazyswarm_node as:

76 i f ( c f 1 . once && c f2 . once ) {
77 \\ c f 1 t r a j e c t o r y
78 c f 1 . cmd_msg . header . seq = count ;
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79 c f 1 . cmd_msg . header . stamp = ros : : Time : : now ( ) ;
80 c f 1 . cmd_msg . x = −c f 1 . r ad iu s ∗ s i n ( c f 1 . omega∗ current_time ) +

c f1 . in i t_pos i t i on_x ;
81 c f 1 . cmd_msg . y = c f1 . rad iu s ∗ cos ( c f 1 . omega∗ current_time ) +

c f1 . in i t_pos i t i on_y − c f 1 . r ad iu s ;
82 i f ( 0 . 05∗ current_time + c f1 . i n i t_pos i t i on_z +0.2 < 1 . 5 ) {
83 c f 1 . cmd_msg . z = 0.05∗ current_time + c f1 . i n i t_pos i t i on_z

+0.2 ;
84 }
85 e l s e {
86 c f 1 . cmd_msg . z = 1 . 5 ;
87 }
88 c f 1 . cmd_msg . yaw = 0 ;
89

90 // c f 2 t r a j e c t o r y
91 c f 2 . cmd_msg . header . seq = count ;
92 c f 2 . cmd_msg . header . stamp = ros : : Time : : now ( ) ;
93 c f 2 . cmd_msg . x = c f2 . rad iu s ∗ cos (M_PI/2 .0 − c f 2 . omega∗

current_time ) + c f 2 . in i t_pos i t i on_x ;
94 c f 2 . cmd_msg . y = −c f 2 . r ad iu s ∗ s i n (M_PI/2 .0 − c f 2 . omega∗

current_time ) + c f 2 . in i t_pos i t i on_y + c f2 . rad iu s ;
95 i f ( 0 . 05∗ current_time + c f2 . i n i t_pos i t i on_z + 0.2< 1 . 5 ) {
96 c f 2 . cmd_msg . z = 0.05∗ current_time + c f2 .

i n i t_pos i t i on_z + 0 . 2 ;
97 }
98 e l s e {
99 c f 2 . cmd_msg . z = 1 . 5 ;

100 }
101 c f 2 . cmd_msg . yaw = 0 ;

The resulting plots of the test are showed in the Figure 4.20: in detail, in Figure
4.20(a) can be found a comparison between desired and actual x-positions with
respect of the time, in Figure 4.20(b), instead, desired and actual y-positions with
respect of time are compared and, at the end, in Figure 4.20(c) the actual trajectory
overlapped to the desired one in the xy-plane. The test can be seen at the link:
2cf-spiral-trajectory.
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(a)

(b)

(c)

Figure 4.20: Plot of two Crazyflies following a spiral trajectory
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Chapter 5

Concluding Remarks and
Perspectives

For the sake of clarity, let’s recall the main goals of this thesis, (i) to identify
the best formation regarding consensus performance, (ii) to verify the position
and velocity matching consensus algorithms, (iii) to propose a control model of a
three-agent formation and (iv) to develop the test environment envisioning future
implementations.
Initially, the cross-linking relationship between agents spatial configuration and
sensory module perception profile is attested, regarding information flow and thus
the underlying consensus stability (formation). In the actual thesis, it is assumed a
constant topology implying a specific perception profile (radius of sensitivity area,
angular overture, ...) and considering constant inter-agent distance. Likewise, for
modeling and simulation purposes, it is considered static topologies and linear kine-
matics and dynamics as well. Moreover, as a result of the conducted controllability
and observability analysis, formations based on undirected topologies results to be
observable in most cases. The latter allowed us to shape the consensus algorithm
structure by considering the ideal Laplacian matrix (the topology that mirrors
the best communication flow) as the theoretical state-space model, whereas, the
specific cases (communication/perception anomalies) are considered in the output
equation of the state-space vector. Moreover, it is investigated whether obstacles
should be considered as agents, resulting in the extension of state-space vector,
might enhance observability condition. Conversely, a performance degradation is
faced, rather than an improvement. In fact, including states coming from obstacles
degrades the graph connectivity degree and, as demonstrated on prior chapters,
connectivity is strictly and directly related to the consensus convergence rate, i.e.
the more connected the graph is, the more faster consensus is reached. Within
the simulation study, only the formations considering circular-shaped perception
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Figure 5.1: Logic flow of the model simulation

sensors, since it stood out as the most suitable case meeting observability and
controllability properties.
For pedagogical purposes, these ideas are sketched on the flow chart depicted
by Figure 5.1. It starts from the topology, the immediate step is to verify the
controllability and, whether the system is controllable, the consensus algorithm
can be applied.
It is essential to verify if the sensors are correctly working, in the negative case an
observer has to be applied in order to recover the missing states. The final output
corresponds to the navigation.
The preliminary experimental stage is based on the Crazyflie with interesting

outcomes. The main advantages of this quadrotor are the mechanical simplicity
leading to high reliability and low maintenance cost, as well as the flexibility on the
implementation. In fact, the working environment based on the ROS framework is
defined and implemented with an operational Crazyflie controller.
In spite of the appealing features of the benchmark, it is worth to highlight experi-
mental issues/tips that should be revisited for further project stages:

• On-board sensor can be easily damaged

• Communication link between the workstation (master) and the quadrotors
(clients) can not be assured for long periods.
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• Even if the reduced size of the quadrotor is an advantage, it is, on the other
hand, quite sensitive to external forces. In our case, the Optitrack markers
disturbed significantly the stabilized-flight of the vehicle.

• Experimental area must be free of reflective surfaces that will degrade the
sensing of the quadrotor on-board Optitrack markers.

The actual thesis lies within the initial phase of an undergoing project of the
XLIM robotics department. The thesis provides a theoretical and experimental
basis regarding the next stage of the project addressed in this work. Forthcoming
research includes:

• Navigation consensus based on time-varying topology

• Robust obstacle avoidance based on formation morphing while preserving, via
the observer, undirected topology, e.g. navigating trough cluttered environ-
ments as corridors, windows.

• Distributed observer-based estimation of external disturbances, e.g. wind
gusts
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Appendix A

Matrix Theory

A brief introduction to matrix theory is given in this subsection: starting from the
definition, a matrix A ∈ Rn×m, is defined as a rectangular array ordered in rows, n,
and columns, m, such that the element aij corresponds to the matrix’s element in
the i-th row and in the j-th column.
The main operations that will be used in this research are:

• Addition/Subtraction: it is performed by adding or subtracting the elements
in the same ith row and j-th column.

A+B =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

+

 b11 b21 b31
b21 b22 b23
b31 b32 b33

 =

 a11 + b11 a12 + b12 a13 + b13
a21 + b21 a22 + b22 a23 + b23
a31 + b31 a32 + b32 a33 + b33


The addition/subtraction operation is commutative and associative:

A+B = B + A (A+B)− C = A+ (B − C)

• Scalar Multiplication/Division: It is performed by multiplicating/dividing
each matrix element by the scalar term:

c · A = c ·
C
a11 a21
a21 a22

D
=
C
c · a11 c · a12
c · a21 c · a22

D

• Matrix Multiplication: when executing the multiplication between matrices,
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the elements of the rows in the first matrix are multiplied with the correspond-
ing columns in the second matrix, as follow:

A ·B =
C
a11 a12
a21 a22

D
·
C
b11 b21
b21 b22

D
=
C
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

D

• Determinant: it can be calculated only in the case of a square matrix and it
is calculated with different ways depending on the dimension.
Firstly consider a square matrix of dimension n = 2, the determinant is
calculated as:

det

A
a b
c d

B
= (a · d)− (b · c)

The determinant of a square matrix A ∈ Rn×n with n > 2, it is more complex
and is calculated from the definition of determinant of a 2 × 2 matrix, as
follow:

det (A) =
nØ
j=1

è
aij (−1)i+j det (Aij)

é
and, so, for a matrix with n = 3:

det

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

a11 (a22a33 − a23a32)− a21 (a12a33 − a13a32) + a31 (a12a23 − a13a22)
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Installation of ROS Melodic
Morenia

In this section are recovered the steps to download and initialize ROS Melodic
Morenia on Ubuntu 18.04.

• Set permission to support software form packages.ros.org:

1 sudo sh −c ’ echo " deb http :// packages . ro s . org / ros /ubuntu $ (
l s b _ r e l e a s e −sc ) main " > / etc /apt/ sour c e s . l i s t . d/ ros−
l a t e s t . l i s t ’

• Set up keys:

1 sudo apt−key adv −−keyse rve r ’ hkp :// keyse rve r . ubuntu . com:80
’ −−recv−key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654

• Install Ros Melodic:

1 sudo apt i n s t a l l ros−melodic−desktop− f u l l
2

• Add ROS environment variables to bash:
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1 echo " source /opt/ ros / melodic / setup . bash " >> ~/. bashrc
2 source ~/ . bashrc
3

• Install and initialize additional tools useful to create and manage a ROS
workspace:

1 sudo apt i n s t a l l python−rosdep python−r o s i n s t a l l python−
r o s i n s t a l l −generato r python−wstoo l bui ld−e s s e n t i a l

2 sudo rosdep i n i t
3 rosdep update
4

• Create your catkin workspace:

1 mkdir −p ~/catkin_ws/ s r c
2 cd ~/catkin_ws/
3 catkin_make
4

• Add the new workspace to the bash:

1 sudo nano ~/. bashrc

and add at the end of the file the following line:

1 source ~/catkin_ws/ deve l / setup . bash

Now all the new ROS Melodic environment is set.
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ROS Basics

At this moment, some basic and essential concepts[60][61] are given to start using
correctly the ROS environment

Master

The ROS Master manages the communication between the node, by tracking
publishers and subscribers to topics as well as services. The following command
starts the master, without the need of configuration:

r o s c o r e

Once the master is activated, it should be remain active for the whole period of
operation, so the work has to continue in others terminals.

Nodes

The node is defined as a running instance on ROS. In fact, the software is designed
as a set of almost independents programs (nodes) that communicate and all run at
the same time.
The basic command to run a node is:

rosrun package−name executable −name

To obtain a list of the nodes running presently:

rosnode l i s t
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Note that \rosout node is always present and it is automatically started by roscore,
it corresponds to a standard output.
To get some information from a specific node (if the node is a publisher or a
subscriber, the services offered by the node, ...), use the following command:

rosnode i n f o node−name

In conclusion, to kill the node:

rosnode k i l l node−name

Packages

The packages are the main blocks composing the ROS software, consisting in a
collection of files, the nodes and the executable program.
The following command gives the list of all the installed ROS packages:

rospack l i s t

Instead, to visualize the files in the package directory, use:

r o s l s package−name

Subscriber and Publisher

A node that sends information to another is called Publisher, the node that receives
the information is the Subscriber.

Topics and Messages

The communication between nodes is based on an exchanging of messages, that
are grouped in topics.
It follows a list of useful commands:

r o s t o p i c l i s t %check the l i s t o f the a c t i v e
t o p i c s
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r o s t o p i c echo top ic −name %see the ac tua l messages that
are being publ i shed on a top i c

r o s t o p i c i n f o top ic −name %have more in fo rmat ion about a
top i c ( message type , pub l i s h e r and s u b s c r i b e r s )

rosmsg show message−type−name %d e t a i l s about a message type

Services

In ROS many publishers and many subscribers can share the same topic, so ROS
provides a mechanism (the services) to implement one-to-one communication be-
tween the nodes. Services are defined in srv files.

It is important to remark the difference between

rosrun package−name node−name

and

ros launch package_name f i l e . launch

The first one allows to execute directly a node, the second permits to execute many
nodes together. These two commands will be used often in the experimental work.

Example:
While running a ROS program, it’s possible to graphically screen the nodes and
the exchange of messages. If it isn’t already installed, open a new terminal and
write

sudo apt−get i n s t a l l ros−melodic−rqt

sudo apt−get i n s t a l l ros−melodic−rqt−common−p lug in s

To open the rqt_graph, use the command:

rosrun rqt_graph rqt_graph

and a new window will be opened, as the one in the Figure C.1. In this example,
it’s easy identify that /crazyflie/crazyflie_demo_hover is the publisher node,
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Figure C.1: Example of a rqt graph

/crazyflie_server subscribes to the /crazyflie/cmd_position and
/crazyflie/cmd_stop topics.
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