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Abstract

Darknets, or network telescopes, are network monitoring tools composed by sets of IP
addresses announced in routing protocols, but without hosting any services. They con-
stantly listen to incoming traffic and record it. The received packets are thus unsolicited
and represent a privileged source of information to network security and debugging ac-
tivities. Indeed, the lack of any production traffic in darknet makes it easier to detect
possible threats like internal scans, brute-force attempts against services, etc.

Darknets however still receive a lot of traffic from thousands of sources. Large
botnets in particular are massively used to scan for vulnerable services online. Such
large-scale events follow diverse patterns, with multiple hosts belonging to a single bot-
net eventually contacting addresses of the darknet in the search for vulnerable services.
Detecting and evaluating such coordinated events in darknet traffic is an important step
to fully exploit the darknet monitoring potential. Indeed it could reduce the amount
of data to be evaluated by security analysts as well as provide a richer picture about
ongoing attacks on the Internet.

Given the huge amount of source IP addresses constantly targeting darknets, a man-
ual analysis on the received traffic is impractical. Moreover, there is a lack of compre-
hensive ground truth that could be used to learn patterns on darknet traffic. In this thesis
I evaluate the use of different methodologies based on unsupervised data mining for
automatically detecting coordination among groups of source IPs contacting darknets.
In particular, I investigate two hypotheses that could characterize the coordination: i)
as sources sending traffic are usually controlled by a single entity (e.g., a bot master),
the level of traffic activity reaching a darknet from coordinated hosts should be simi-
lar. Therefore, I study whether traffic intensity could indicate coordination; ii) traffic
from different but coordinated sources should reach the darknet with some temporal
correlation. I hence study whether coordinated sources are observed in the darknet
simultaneously.

I develop a complete machine learning pipeline to test these hypotheses. Con-
sidering the traffic intensity case, I design and evaluate a set of features that could
represent traffic intensity and study several non-supervised algorithms to group IP
addresses based on the engineered features. For studying the temporal relationship
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among sources, I employ the word2vec algorithm, an approach used in text processing
to find words that frequently occur nearby in sentences and documents.

To overcome the lack of general ground truth and provide a sound validation of
results, I rely on domain knowledge to build a dataset of coordinated IP addresses
belonging to well-known Internet scanners, such as security search engines. While
these IP addresses are not malicious, they present a coordinated behavior that is clearly
visible on the darknet.

My results suggest that the generated features allow to highlight both the traffic
intensity and temporal coordination. Indeed, since the used features sets represent
the source IPs in a N-dimensional space, when evaluating the neighborhood, or the
points closest to ones of the ground truth classes, it results that that points belonging
to the same class fall in the same neighborhood with an average accuracy of 98%.
The achieved accuracy is maintained over time when temporal relationship features
are used, but when considering the traffic intensity ones, the accuracy rapidly decrease
below 30%. Furthermore, the unsupervised algorithms are able to group together IP
addresses exhibiting similar behaviors within a day of darknet traffic, but the cluster
membership is not maintained over time. I observe for example that clusters built
over different days of traffic are significantly dissimilar (0.5 of adjusted mutual in-
formation), which seems to be explained by changes in behavior of the whole set of
coordinated IP addresses.

The approach exploiting the temporal relationships slightly overcomes the intensity-
based method, especially in the long run. Indeed, even if the similarity between clusters
membership over different days decrease, the trend is smoother resulting in the same
adjusted mutual information value of the traffic intensity case by taking one day more.

All in all, my results show that the approaches can reduce the amount of data points
to be analyzed by security analysts, putting together IP addresses that share a common
behavior. Yet, algorithms must be applied to short time ranges to maximize the chances
that real coordination is identified.
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Chapter 1

Introduction and Problem Definition

1.1 Overview

Darknets, or network telescopes are sets of passive IP addresses which do not host
any services and just listen for incoming traffic. Because of this lack in hosted ser-
vices, all the received traffic is unsolicited, thus anomalous by definition. Furthermore,
darknets achieve a privileged point of view in traffic analysis thanks to the absence of
production traffic. In this way they can be used as support tool for network analysts
in detecting services misconfigurations, benign Internet scans from research projects,
crawlers, etc., Distributed Denial of Service (DDoS) attacks with spoofed IP address,
malicious probing, etc. Several examples can be found in literature like authors of [1]

X.X.0.1/24

X.X.0.2/24

X.X.0.3/24

X.X.0.4/24

Monitor

Darknet

Figure 1.1: Darknet overview
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applying comparative analysis on two darknet sensors characterizing the received TCP
and UDP traffic or authors of [2] confirming the prevalence of benign and malicious
scans in darknet traffic.

Darknets receive a lot of traffic from thousands of sources. Many of them con-
sist of large botnets. They are made of a set of machines infected by malwares acting
under the control of a master node. Because of this paradigm called Command and
Control (C&C), it is highly likely that nodes belonging to a botnet exhibit a certain de-
gree of coordination performing distributed tasks, like search for vulnerable services,
or attacks, like the one run by the botnet Mirai [3], responsible of the 2016 Dyn cy-
berattack, a series of DDoS attack performed by more than 300000 infected devices
spread in 164 countries [4].

The detection of large-scale coordinated events in darknet traffic is fundamental to
reduce the amount of data evaluated by security analysts and to deepen the knowledge
of the dynamics behind attacks on the Internet.

Given the huge amount of source IP addresses constantly targeting darknets, a man-
ual analysis on the received traffic is impractical. Thus, according to the diffusion
and improvement of data science and machine learning techniques, in recent years re-
searchers have been focused on applying such techniques to darknet traffic analysis,
like works reported in [5, 6].

1.2 Research Questions

In light of the described context, in this thesis I propose and investigate a methodology
based on unsupervised clustering algorithms and data mining techniques applied to
darknet traffic in order to identify groups of source IPs acting in a coordinated way.
The main Research Question (RQ) driving the project can be formalized as:

RQ1. Is it possible to automatically detect coordination among source IPs through
darknet traffic analysis? According to the importance of detecting coordination
among source IP addresses, I exploit the darknets monitoring potential investigating if
unsupervised data mining techniques are able to spot groups of source IP addresses act-
ing in coordination within an active darknet of Politecnico di Torino (3 non-contiguous
/24 IP addresses)
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The methodology relies on a full machine learning pipeline involving unsupervised
clustering and community detection algorithms (more specifically DBSCAN, Hierar-
chical Agglomerative Clustering, k-Means and Greedy Modularity Algorithm). Being
unsupervised techniques I overcome the problem of the lack of comprehensive ground
truth building a list of IPs belonging to known research projects performing benign
scans whose coordination is known a-priori.

Regarding the coordination, I provide two definitions relying on two hypotheses.
The first is based on traffic volumes, the second based on temporal correlation. They
can be formalized in the following RQs derived from the main RQ1:

RQ1.2. Is it possible to exploit the amount and type of traffic generated toward
darknets to detect coordination among source IPs? The first hypothesis is that in
botnet scenarios, source IPs controlled by a single host like the bot master are expected
to follow some pattern in the traffic volume (e.g., sending the same amount of traffic)
or traffic type (e.g., common targeted destination ports).

For studying such coordination I design and evaluate a set of features representing
traffic intensity, then I investigate the coordination of clusters found by the algorithms
applied to the engineered features.

RQ1.3. Is it possible to exploit the temporal relationships among source IPs ac-
tive in darknets to detect coordination? The second hypothesis is that source IP
addresses acting coordinately are expected to exhibit a certain temporal correlation in
their activeness within the darknet (e.g., groups of IPs active in the same temporal
windows with a certain periodicity).

For studying nodes temporal relationships I adopt the word2vec algorithm used for
frequency analysis in Natural Language Processing. It allows to generate real-valued
embedding for each source IP whose values are related to the IP activeness within the
darknet. By applying the unsupervised algorithms on the embeddings I evaluate if
found clusters exhibit any coordination.

RQ1.4. If the developed model is able to identify coordination, is it maintained
over time? After the model development and outcomes analysis, I investigate the
consistency of results repeating the experiments over time and studying the evolution
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of the IPs membership to found clusters. Such analysis allows not only to provide a
richer picture of the methodology, but also to investigate the dynamics behind detected
coordinated groups.

1.3 Thesis Organization

The thesis is organized as follows:
Chapter 2 provides an overview on the state of the art.
Chapter 3 describes in detail the adopted methodology from the ground truth construc-
tion and features engineering stages, up to the tested algorithms.
Chapter 4 provides a characterization of the collected darknet traffic used as dataset
and an overview of the built ground truth.
In Chapter 5 I answer to RQ1.2 reporting and discussing the results of the model devel-
opment and application when the traffic volume information is exploited. Furthermore,
in the last section I answer to RQ1.4 in the considered scenario.
Chapter 6 I answer to RQ1.3 from the reported outcomes of the methodology applied
to the temporal relationships case. Again, I answer to RQ1.4 in the considered sce-
nario.
Chapter 7 provides the final conclusions answering to the main question RQ1 and the
statement of the future works.
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Chapter 2

State of the Art

Many examples of darknets involvement in traffic analysis can be found in literature.
First of all, authors of [7] propose darknets as tools for profiling attacks strategies.

Authors of [8] exploit darknets traffic for observing worm attacks. They characterize
the traffic as generated mainly by few source IPs whose packets interarrival time exhibit
short-range dependence. Furthermore they note that during a DDoS attack the white
noise traffic signature changed to Brownian motion.

In [9], authors adopt darknets for cybersecurity analysis. They focus on the statis-
tical properties of the darknets data timeseries collected during attacks and highlight
the analysis limitation due to small darknets.

Authors of [10] use a darknet prototype to analyze the backscattering caused by
DDoS attacks with spoofed IP addresses. Through the network telescope they are
able to detect 12000 attacks against more than 5000 targets over three weeks of traffic
observation.

A similar example is provided in work [11] where authors investigate the capability
of five darknets of detecting malicious event. In their work they success in detecting
both an existing threat and two emerging ones.

To provide another example of the full darknet monitoring potential, authors of
[12] show how from darknet traffic it is possible to detect singularities not only during
Internet-related-events like attacks or scans, but also political and geophysical events
like earthquakes.

Complex networks analysis for modelling darknets collected traffic is widely used
in literature. For examples, authors of [13] adopt a bipartite graph approach for rep-
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resenting darknet traffic and apply community detection technique like the Louvain
algorithm for obtaining groups of autonomous systems characterized by similar be-
havior in terms of destination ports. A similar approach is adopted in [14, 15], where
authors model the darknet traffic as a graph in order to successfully detect Internet
ports co-targeted by scanners.

Another example of graph mining techniques applied to darknets is proposed in
[16], where authors use an undirected graph for tracking attacks among sets of hon-
eypots. The attack propagation is modelled as Markov Chain. Through the proposed
methodology, they analyze 167 million attacks and are able to spot the main honeypots
responsible of propagating the most of the attacks.

However, according to the huge computational requirements of graph mining tech-
niques and to the limited scalability of the models, I focus the research on clustering
algorithms. A first attempt of cluster analysis applied to darknet traffic is proposed
by authors of [17]. They extract 17 traffic features from 60 days of darknet traffic
collection. Then they model the points density in space as a Cauchy distribution and
apply evolving Cauchy possibilistic clustering (eCauchy) algorithm. In this way they
are able to detect with 98% accuracy TCP DDoS backscatter and wth 72.8% accuracy
UDP non-DDoS backscattering.

Similar performance is obtained in [18] where authors obtain an error rate < 1%
when investigating the possibility of forecasting the trend of ongoing DDoS attack.
More specifically they exploit known attacks information like traffic intensity, rate,
number of infected machines executing the attack.

Another clustering example can be found in [19], where authors adopted an ap-
proach based on i) anomaly detection techniques applied to darknet scanning targets
and on ii) Detrended Fluctuation Analysis (DFA) applied to timeseries in order to
detect temporal correlation among machines performing scans through the same tech-
nique. In this way they claim to successfully detect 4215 scans without zero negatives
requiring 1 second of training for the algorithm stabilization. The same authors adopt
the timeseries approach for analyzing 330GB of darknet traffic in work [20]. More
precisely they try to infer scanning campaigns by defining the problem as timeseries
forecasting through trigonometric interpolation when missing values occur.

Finally, one of the most interesting work proposed in literature is [21]. Authors
proposed a framework for mining darknet traffic through the Natural Language Pro-
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cessing algorithm Word2Vec. In this way they exploit the temporal sequence of dark-
net ports contacted by source IPs and generate embeddings accordingly. Thus each
IP is identified by the average embeddings of the contacted ports. With the proposed
methodology, they are able to discover 1177 new threats together with tracing the ex-
isting ones over time.
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Chapter 3

Methodology

Recalling that the aim of the thesis is to detect coordination among groups of source
IP addresses reaching the darknet, my work relies on two definitions of coordination:

1. Intensity-based coordination. By considering a general botnet scenario, the
first definition of coordination is based on the assumption that groups of coor-
dinated hosts acting under the control of a bot master should generate similar
amount of traffic intensity;

2. Time-based coordination. Darknet traffic generated by coordinated nodes
should follow temporal patterns exhibiting a certain level of temporal correla-
tion.

Under these hypotheses I develop a machine learning pipeline to investigate if the
two types of coordination can be spotted in daily darknet traffic. Figure 3.1 provides an
overview of the methodology stages: the first stages consist of a preliminary collection
and characterization of the received traffic and the construction of the ground truth.
This latter step is fundamental to overcome the lack of a set of source IP addresses
whose coordination is known a priori. Afterwards a features engineering stage allows
to generate and extract nodes attributes identifying the IPs uniquely. All the generated
features are evaluated and the most informative ones are selected through the features
selection stage. The selected ones will be used in the proposed models. Since the in-
vestigated approach relies on nodes spatial projection, I define a distance metric able
to express the degree of coordination among the IPs and evaluate the consistency of
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the projection through a k-Nearest Neighbors (kNN) classifier. Regarding the unsu-
pervised model, I implement several clustering algorithms and evaluate the temporal
evolution of the found clusters membership.

Darknet data
collection

Features 
engineering

Distance metric
definition

Temporal 
evaluation

Ground TruthEvaluation of Nodes
Representation

Unsupervised
clustering

Figure 3.1: Adopted methodology flowchart

3.1 Ground Truth Construction

To evaluate the proposed methodology, obtaining groups of source IPs whose coordi-
nation is known a priori is fundamental. Indeed, after the development of each stage,
by applying it to the aforementioned group, it is possible to verify if the coordination is
detected at least for them. One of the simplest example of such groups is represented
by research projects. Indeed several organizations and universities exploit sets of IP
addresses to periodically scan the Internet for research purposes like searching for vul-
nerable services. Most of these projects make the list of used IP addresses public, thus,
by collecting this information, a preliminary ground truth can be constructed. I further
enrich the Ground Truth (GT) by means of the Reverse DNS Lookup (rDNS).
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3.1.1 Reverse DNS Lookup (rDNS)

Reverse DNS Lookup is a querying technique of the Domain Name Service for re-
trieving a domain name from the associated IP address. Linux provides rDNS queries
through the dig command. I report a sample output in Listing 3.1.

$ dig -x 8.8.8.8

; <<>> DiG 9.16.1-Ubuntu <<>> -x 8.8.8.8

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 33202

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 65494

;; QUESTION SECTION:

;8.8.8.8.in-addr.arpa. IN PTR

;; ANSWER SECTION:

8.8.8.8.in-addr.arpa. 84974 IN PTR dns.google.

;; Query time: 36 msec

;; SERVER: 127.0.0.53#53(127.0.0.53)

;; WHEN: Thu Feb 18 15:56:09 CET 2021

;; MSG SIZE rcvd: 73

Listing 3.1: Sample rDNS query through the dig command

By providing the source IP address 8.8.8.8, the dig command returns a set of infor-
mation including the domain name dns.google.. To build the ground truth through
rDNS I select a set of darknet traffic traces, then sort the source IPs according to the
total number of generated flows. I then run the dig command with the top-N IPs to get
their domain name. After that, by manually analyzing the obtained information I build
a list of IPs associated to the respective domain name.
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3.2 Features Engineering

Features engineering is the process of generating, extracting and selecting data at-
tributes uniquely describing each of the data samples. Thus in Section 3.2.1 I describe
the preprocessing stage, in Section 3.2.2 I provide an overview of the data mining tech-
niques adopted to generate features starting from the preprocessing data and in Section
3.2.3 I describe the algorithm used for selecting the best set of generated features.

3.2.1 Preprocessing

Data preprocessing is the first phase of features engineering, since it allows to filter,
aggregate and rearrange raw data in a way useful to highlight data properties involved
in the features generation process.

The hourly traces collected by the darknet in the .pcap format are processed by the
libpcap1 tool able to generate a human-readable log file. Every instance is character-
ized by the raw features reported in Table 3.1.

Field Type Description

ts float Timestamp of the flow arrival
ethtype str Specifies the data link layer protocol encapsulated in the payload
src ip str Source IP address reaching the darknet
src port str Internet port from which the flow is generated
dst ip str Destination IP address of the darknet reached by the flow
dst port str Internet port at which the flow is reached
proto int Specifies the transport layer protocol through which the flow is sent
pck len int Bytes length of the received flow
tcp flags int Specifies the TCP flags set in the TCP header, if any

Table 3.1: Raw data structures after the libpcap processing of the traces

1http://www.pluto.it/sites/default/files/ildp/lfs/blfs/6.0/general/libpcap.html
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Field Identifier Description Decimal

Protocol

TCP Transmission Control Protocol 6
UDP User Datagram Protocol 17
ICMP Internet Control Message Protocol 1
GRE Generic Routing Encapsulation protocol 47

Flag

SYN SYN TCP flag 2
SYN-ACK SYN and ACK TCP flags 18
SYN-ACK-RST SYN, ACK and RST TCP flags 22
SYN-ACK-FIN SYN, ACK and FIN TCP flags 19
OTH All the other TCP flags *

Table 3.2: Protocols and TCP flags classification

The raw features must be rearranged not only to reduce the amount of data, but also
to make the features generation process manageable. The first step consists of making
the transmission layer protocols (proto field in Table 3.1) and the TCP flags (tcp flags
field) readable, converting the decimal representation of bytes in the packet headers
into string as shown in Table 3.2. After that, I grouped the destination port (dst port
field) and used protocol (proto field) by classes of service. For example, the Telnet
application protocol accepts connections from the internet port number 23 through the
TCP protocol, thus the 23/tcp pair is classified as Telnet. In this way, instead of consid-
ering 131072 categorical variables, one for each internet port when using TCP (65536)
and other 65536 for UDP protocol, I limit them choosing only the most commonly
used. Furthermore, for the sake of simplicity, not all the classified services are referred
to a single port/protocol pair like the Telnet case (e.g. The MongoDB server listening
to port 27017/tcp and the Microsoft SQL server listening to ports 1433/tcp, 1433/udp,
1434/tcp and 1434/udp are classified as ’Database’). The full overview of the service
classification is provided in Table 3.3.
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Service Internet Port/Protocol

Telnet 22/tcp, 992/tcp

SSH 23/tcp

Kerberos
88/tcp, 88/udp, 543/tcp, 544/tcp, 749/tcp, 7004/tcp, 750/udp,
750/tcp, 751/tcp, 752/udp, 754/tcp, 464/udp, 464/tcp

HTTP 80/tcp, 443/tcp, 8080/tcp

Proxy 1080/tcp, 6446/tcp, 2121/tcp, 8081/tcp, 57000/tcp

Mail
25/tcp, 143/tcp, 174/tcp, 209/tcp, 465/tcp, 587/tcp, 110/tcp,
995/tcp, 993/tcp

Database
210/tcp, 5432/tcp, 775/tcp, 1433/tcp, 1433/udp, 1434/tcp,
1434/udp, 3306/tcp, 27017/tcp, 27018/tcp, 27019/tcp, 3050/tcp,
3351/tcp, 1583/tcp

DNS 853/tcp, 853/udp , 5353/udp , 53/tcp, 53/udp

Netbios 137/tcp, 137/udp, 138/tcp, 138/udp, 139/tcp, 139/udp

Netbios-SMB 445/tcp

P2P

119/tcp, 375/tcp, 425/tcp, 1214/tcp, 412/tcp, 1412/tcp, 2412/tcp,
4662/tcp, 12155/udp, 6771/udp, 6881/udp, 6882/udp, 6883/udp,
6884/udp, 6885/udp, 6886/udp, 6887/udp, 6881/tcp, 6882/tcp,
6883/tcp, 6884/tcp, 6885/tcp, 6886/tcp, 6887/tcp, 6969/tcp,
7000/tcp, 9000/tcp, 9091/tcp, 6346/tcp, 6346/udp, 6347/tcp,
6347/udp

FTP
20/tcp, 21/tcp, 69/udp, 989/tcp, 990/tcp, 2431/udp, 2433/udp,
2811/tcp, 8021/tcp

Unknown System All ports in the [0, 1023] range not classified as before

Unknown User All ports in the [1024, 49151] range not classified as before

Unknown Ephemeral All ports in the [49152, 65535] range not classified as before

Table 3.3: Class of service classification
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3.2.2 Features Generation

In the features generation stage all the preprocessed data are used to obtain information
expressing certain nodes properties. According to the provided problem definition, it
is necessary to rearrange and organize the traffic volume and temporal relationships
information in a way that uniquely describe the behavior of each source IP address
in the darknet. Since the network telescope is a passive tool not responding to the
received flows, the nodes characterization can be based on three main aspects:

1. Packet frame information such as the used protocol, the reached darknet port,
the set of TCP flags, etc.

2. Amount of traffic generated by each source IP per type of flow;

3. Temporal relationships among nodes like the temporal sequence of source IPs as
they reach the darknet.

The generated features can be grouped in two macro-categories: traffic intensity ones
covering aspects 1 and 2; and temporal ones covering aspect 3. To generate features of
the first category I exploit the domain knowledge, setting an observation window of 24
hours and considering for each IP address the sum of daily flows sent with each pro-
tocol and TCP flag of Table 3.2 set and classes of service of Table 3.3 set. Moreover,
two general information features expressing the total amount of daily flow per IP and
the number of hours of activity within the observation window are obtained. Further-
more two features extraction techniques are applied to the classes of service features to
reduce the dimensionality: Principal Component Analysis (PCA) and Self-Organizing
Maps (SOM).

Regarding temporal features, they are assumed to express temporal relationships
among source IP addresses highlighting coordination (e.g., nodes always active to-
gether within an observation window should have similar features values). To extract
such features I use the word2vec algorithm, a Natural Language Processing approach
to find words belonging to the same context in a text document.

Principal Component Analysis (PCA) PCA [22] is an exploratory data analysis
technique which allows to project data points to a low-dimensional space. By consid-
ering a dataset X ∈ RN×F where N is the number of samples and F is the number of
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Figure 3.2: SOM layout example

features, then the decomposition of X in L ≤ F principal components is given by the
matrix T ∈ RN×L defined as

T = XWL (3.1)

where WL ∈ R
N×L is a weights matrix whose columns are the first L eigenvectors of

XT X. In this way PCA can be used as a dimensionality reduction tool generating a
compressed (L ≤ F) representation T of the original dataset X. Furthermore, PCA is
often used in factor analysis thanks to the loadings. They are defined as the product
between the columns of WL and the square root of the corresponding eigenvalues.
Thus, the loadings of a principal component provide a quantitative measure of how
much each feature is related with the considered component. In the considered case
I extract the first nPC principal components explaining ≥ 80% of the original data
cumulative variance.

Self-Organizing Maps (SOM) A SOM [23] is an artificial neural network trained
through unsupervised learning techniques for dimensionality reduction. As shown in
Figure 3.2, it is characterized by a minimal design: one input layer is densely con-
nected to an output one where the M output neurons, or units, are arranged in a square
grid. Instead of relying on error-correction learning (e.g., applying the backpropa-
gation algorithm), SOMs are based on competitive learning. This means that each
input sample is mapped onto only one unit, or Best Matching Unit (BMU), among all
the output ones. The BMU choice criterion is the minimization of the Euclidean dis-
tance between the input sample and the weight vectors of the SOM. Once the BMU is
elected, the weights of the BMU and its neighborhood (i.e., the neurons close to the
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BMU) are updated through the formula:

Wv(s + 1) = Wv(s) + θ(u, v, s) · α(s) · (D −Wu(s)) (3.2)

where D is the input sample, s is the iteration step index, Wv and Wu are the weight
vectors of units u and v, θ is the neighborhood function and α is the decreasing learn-
ing coefficient. After the training, the (x, y) coordinates of the BMUs elected for all
the samples can be treated as two additional features bringing topological information
from the neurons grid. In the considered problem I set M = 10 · N, where N is the
number of samples.

Word2vec Embeddings Word2vec [24] is an algorithm relying on an artificial neu-
ral network to produce word embedding. It requires a collection of documents, or
corpus and returns a set of vectors representing the semantic distribution of words, or
tokens, in the corpus. In this way a single word is embedded in a R1×E array, where E
is the embedding size.

One of the core elements of word2vec is the context. It is composed of a group
of subsequent words appearing in a text document. The number of words to consider
is specified by the context window C. The rationale behind the algorithm is to train
the neural network by providing as targets the C words before and after the target one.
After the training, the embedding is represented by the weight matrix W ∈ RV×E of the
output layer, where V is the number of tokens (or the vocabulary size).

In the considered case, a token is a distinct source IP and the vocabulary is the
collection of the source IPs seen during 30 days of collected data. The corpus is defined
as the sequence of source IPs as they reached the darknet splitted into a 1001 sentences
containing the same number of tokens. In this way the resulting embedding should be
generated according to the temporal relationship among IPs (e.g., addresses occurring
always one after the other may be similar).

To choose the best hyper-parameters I perform a grid search training several models
with different combinations of E and C. For each combination I run a Euclidean-
distance-based k-Nearest Neighbors (kNN) classifier on the top-5 ground truth classes
and compute the resulting accuracy. Since the word2vec represents each source IP in
a E-dimensional space, the main idea consists on finding the best parameters such that
nodes belonging to known groups are represented by points close to each other in the
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space. The higher the accuracy, the closest are the points belonging to the same class,
thus the best hyper-parameters are the one achieving the highest accuracy.

A complete overview of the generated features is reported in Table 3.4.

Macro Type Subset ID Description # Features

Traffic
intensity

General S0
Number of active time interval 1
Amount of daily flow 1

Protocol S1
Amount of daily flow sent by each IP
through each protocol of Table 3.2

4

TCP flags S2
Amount of daily flow sent by each IP
with each TCP flag of Table 3.2 set

5

Services S3
Amount of daily flow sent by each IP
to the ports used by each class of
service of Table 3.3

15

PCA S4
n principal components extracted
from Services features

nPC

SOM S5
(x, y) coordinates of the SOM BMUs
trained on Services features

2

Temporal
information

Word2Vec
embeddings

S6 IPs embeddings of the daily trace nw2v

Table 3.4: Generated features summary

The features informative content must be evaluated during the features selection
stage. To speed up the process, the generated features are grouped into six subsets
according to the type of features.

Nevertheless it is necessary to consider that the features express only nodes at-
tributes, without explicitly defining a degree of similarity/dissimilarity between each
source IP address. To obtain this information, a distance metric is defined in Section
3.3. Since during the thesis development different approaches have been tested, in
Appendix A.1 a description of additional not considered features.
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3.2.3 Features Selection

Features selection processes are mainly used to solve the so-called curse of dimension-
ality problem and reduce the computational requirements of the ML model execution.
Considering that in most cases the features generation process introduces redundant or
noisy information, performing features selection allows to increase the model capabil-
ities by removing uninformative data.

Several features selection techniques are proposed in literature [25, 26, 27]. For
the sake of simplicity it is possible to classify them in three main categories:

• Wrappers. Wrapper algorithms require a model to score the feature subsets.
Different subsets are iteratively used to train and test a model, thus from the
prediction it is possible to obtain a model error measure which can be used as
feature rank;

• Filters. This algorithms class is independent of any ML model, indeed it al-
lows to select and discard features on the basis of their statistical properties (e.g.
Pearson’s correlation) or the outcome of statistical tests (e.g. Chi-Square);

• Embedded methods. They combine the characteristics of both wrappers and
filters and their implementation is part of the model construction process (e.g.
LASSO).

Before describing the features selection process, it is necessary to specify the con-
cept of feature goodness: a feature is required to embed a satisfactory informative
contribution about the nodes behavior, avoiding information redundancy and prevent-
ing the overlap of the nodes spatial projection. Such feature should be able to provide
a spatial separation of the points exhibiting different behaviors which can be exploited
by clustering algorithms. To validate the features selection algorithm I use the 5 most
active classes of ground truth (Section 3.1) and for preventing the selection to be bi-
ased, I add 1000 unlabelled points (200% of the top-5 GT addresses). Furthermore, to
reduce the bias by the GT classes, the features are grouped in 6 subsets as reported in
Table 3.4 (see Subset ID column). In this way I avoid to select features which may be
discriminant for the considered classes, but irrelevant for unknown IP addresses. As
features selection technique I propose a wrapper algorithm relying on a simple kNN
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classifier2. The approach can be summarized as:

1. For the considered dataset generate all the possible combinations of features
subsets (e.g., {S0, S2} or {S5, S6, S7}, etc.);

2. For each combination perform a Leave-One-Out kNN classifier [28, 29] on the
considered dataset;

3. Rank the features combination computing the accuracy resulting from the clas-
sifier;

4. Get the features subsets combination yielding the highest rank.

3.3 Distance Metric Definition

Since the coordination is referred between source IPs, choosing the best distance met-
ric is necessary to represent the degree of similarity in their behavior. The generated
features are variables ∈ R, thus I chose the distance metric accordingly. Among the
wide set of known metrics, I test four of them, the Canberra distance [30, 31], the
Cosine distance, the Bray-Curtis distance [32] and the Euclidean distance [33]. Each
metric is used to generate a matrix distance D ∈ RN×N such that the entry Di, j is the
distance applied to the (i, j) nodes pair. D will be the input of the clustering algorithms.
Given two vectors of F nodes features n1 = [n1,1, n1,2, . . . , n1,F], n2 = [n2,1, n2,2, . . . , n2,F],
I define the following distance metrics as:

• Canberra distance:

dCa(n1,n2) =

F∑
i=1

|n1,i − n2,i|

|n1,i| + |n2,i|
(3.3)

• Cosine distance:

dCo(n1,n2) =
n1n2

T

||n1|| ||n2||
(3.4)

2https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.

KNeighborsClassifier.html
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• Bray-Curtis distance:

dBC(n1,n2) =

F∑
i=1
|n1,i − n2,i|

F∑
i=1
|n1,i + n2,i|

(3.5)

• Euclidean distance:

dE(n1,n2) =

√√
F∑

i=1

|n1,i − n2,i| (3.6)

After having defined the distance metrics, it is necessary to explain the best metric
choice criterion. An adequate distance metric for clustering algorithms must satisfy
the following three properties:

1. Clusters separation. The nodes coordination characterizing a found cluster
must be unique, thus the distance metric must be able to express a certain de-
gree of dissimilarity between samples in order to provide a satisfactory spatial
separation between different behaviors;

2. Robustness against noisy features. As already reported in Section 3.2.3, group-
ing the features into subsets allows to prevent the feature selection process to be
biased on the ground truth. Nevertheless, depending on the considered dataset,
some uninformative features can still be retained (e.g. services which are never
reached in a certain time range). A robust distance metric must be able to reduce
the contribution of such features to the overall pairwise distance;

3. Robustness against unknown instances. Despite the fact that the GT described
in Section 3.1 can be used during the model development, the previously two
properties must be still satisfied even when considering a more realistic scenario
in which nodes coordination is not known a priori.

To evaluate the metrics I use a Leave-One-Out (LOO) kNN classifier on the ground
truth dataset. The metric resulting in the highest accuracy is the one that will be used
for testing the chosen models. The first property is evaluated using only the ground
truth dataset, then the second property satisfaction is investigated by considering both
the features passed the selection and the complete set. Finally the third property is
evaluated by adding unknown points to the used ground truth.
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3.4 Evaluation of Nodes Representation

Once the features have been selected and the best distance metric has been identified,
I investigate the spatial representation of nodes. The goal of this stage is to understand
if the IP addresses whose coordination is known a priori are placed close to each other
with respect to the unknown points in the features space. Indeed, if coordination exists
between pairs of nodes, they are supposed to have similar features value ending up
in the same neighborhood. In this stage I apply a LOO kNN classifier estimating the
classes of the full ground truth set of a given day with respect to the complete dataset of
the same day. The resulting accuracy expresses the goodness of the nodes proximity.
Nevertheless, if the proximity of nodes belonging to the same ground truth class is
achieved only for a single day, the performance is not satisfactory since the nodes
placement should be consistent with time. Thus I extend the temporal horizon up to 10
days and perform a twofold analysis according to the features macro-categories. First
of all, I introduce the notation t0 indicating the reference day and ti with i ∈ [1, . . . , 9]
indicating the days in the extended 10-days horizon. Then for the two features macro-
types:

• Traffic intensity features. For each day I run the kNN classifier on the full ground
truth of ti on the basis of the classes of t0 as shown in Figure 3.3.

t0 t1 t2 t9...

Figure 3.3: Days comparison in temporal evolution analysis of nodes placement. Traffic inten-
sity features

• Temporal relationship features. Since the embeddings generation for an IP never
seen before requires a new word2vec model training, the approach used for traffic
intensity features is no longer applicable. Indeed, after the each model update,
the embedding of an IP active in t0 is different from the one of the same IP active
in ti. Thus different days embeddings are not directly comparable. To solve this
problem I iteratively update the model training it with traffic collected during a
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30-days sliding observation window and generate the embedding for the last day
like shown in Figure 3.4a, then I run a LOO-kNN classifier on the full ground
truth evaluating the accuracy achieved for each day. The day comparison is
summarized in Figure 3.4b. In this way, it is possible to evaluate if, even with
different embeddings values, the IPs belonging to the same GT class fall in the
same neighborhood each day.

t0
t1

t9

29 days

29 days

29 days

t0
t1

t9

Training Test

... ...

(a) Sliding window for word2vec training

t0 t1 t2 t9...

(b) Days comparison in temporal evolution analysis of nodes placement.
Temporal relationship features

Figure 3.4: Adopted approach for evaluating the word2vec nodes representation

3.5 Clustering Algorithms

Clustering is the process of grouping a set of objects in subsets such that objects be-
longing to the same group, i.e., a cluster, are more similar between each other than to
objects belonging to other clusters. In this phase, the aim is to cluster the source IP
addresses reaching the darknet. Each observation is described by the set of attributes
defined in Section 3.2.2, thus the complete dataset is X ∈ RN×F where N is the number
of objects and F is the number of features. Each cluster includes a set of IPs exhibit-
ing a possible coordinated behavior. Such behavior must be unique and different from
the one characterizing other clusters. The choice of the algorithm is a crucial issue in
clustering problems, since according to the data structure the performance and the de-
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tected clusters may drastically change. I test four different algorithms with the relative
heuristics for determining the hyper-parameters:

1. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)3 based
on spatial points density which does not require the desired number of clusters
in input;

2. Hierarchical Agglomerative Clustering (HAC)4 which builds a clusters hierarchy
requiring the desired number of clusters in input;

3. k-Means5 which clusters data according to the distance between the observation
and the cluster centers (or centroids). It requires the desired number of clusters
k in input;

4. Greedy Modularity Algorithm (GMA)6 well suited for directed and undirected
graph structured data.

3.5.1 Density-Based Spatial Clustering of Applications with Noise
(DBSCAN)

DBSCAN [34, 35] is a density-based clustering algorithm. Clusters are defined as
areas of high point density, whereas observations in sparse areas are treated as noise.
Being a clustering algorithm, a distance metric is required.

Before providing an overview of DBSCAN functioning it is necessary to define the
two core parameters:

• ε. It is called the neighborhood radius and states the maximum distance between
two samples to be considered as neighbors.

• minPts. It specifies the minimum number of points required to have a cluster

Basically a point i is called a core point if there are at least minPts points within a
ε distance range. All the points j , i satisfying this condition are called directly

3https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
4https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
5https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
6https://python-louvain.readthedocs.io/en/latest/api.html

25



reachable from i and they belong to the same cluster Ci. However, a point j , i can
belong to Ci if it exists a path of core points between i and j. In this case, j is reachable
from i. A point which does not satisfy none of the above conditions is treated as noise.

The main functioning of DBSCAN can be summarized in three phases. First of all
for each point it is identified its ε neighborhood and the core points are defined. Then
all the core points paths are found and finally each non-core point is assigned to the
nearest cluster if it is an ε neighbor of it, otherwise the point is considered as noise.

See Appendix A.3 for the hyper-parameters heuristics.

3.5.2 Hierarchical Agglomerative Clustering (HAC)

HAC is a cluster analysis technique aiming at building a hierarchy of clusters in a
greedy manner. The rationale behind the algorithm consists on starting by treating each
observation as a separate cluster, then, according to a distance metric and a linkage
criterion, it iteratively merges the nearest or most similar clusters in a new one until a
unique cluster containing all the samples is not obtained.

The core of the algorithms consists on the distance metric, which expresses a sim-
ilarity degree among the observations, and the linkage, which determines the distance
between set of samples as a function of the pairwise distances between points. One
of the most used linkage is the complete one, in which the distance between a pair of
newly formed clusters Ci and C j is defined as:

dist(Ci,C j) = max(d(i, j) : i ∈ Ci. j ∈ C j) (3.7)

where d(·, ·) is the distance metric between samples (e.g. one of those described in
Section 3.3).

See Appendix A.3 for the hyper-parameters heuristics.

3.5.3 k-Means

Given a dataset X ∈ RN×F , where N is the number of samples and F is the number
of features, k-Means [36] groups the N samples into k ≤ N clusters C = C0, ...,Ck in
order to minimize the within-cluster sum of squares, or inertia, through the objective
function:

arg min
C

k∑
i=0

∑
x∈Ci

||x − µi||
2 (3.8)
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where µi is the centroid of the cluster Ci and x is one of the samples ∈ X.
See Appendix A.3 for the hyper-parameters heuristics.

3.5.4 Greedy Modularity Algorithm (GMA)

Greedy Modularity Algorithm [37] is not properly a clustering algorithm, indeed, be-
ing applied to directed or undirected graphs, it is defined as a community detection
method based on the modularity optimization. Before investigating its functioning it is
necessary to define the modularity Q. By considering an undirected graph G = (V, E),
where V is the set of nodes, or vertices, and E is the set of edges, or links, a community
is a group of nodes densely connected internally, whereas the modularity is a quantita-
tive measure of the edges density inside a community with respect to the one outside
it. The formal definition of modularity is

Q =
1

2m

∑
i, j

[
Ei, j −

kik j

2m

]
δ(Ci,C j) (3.9)

where Ei, j is the edge between nodes i and j, ki is the sum of the edges linked to node
i, m is the sum of all the graph edges, Ci is the community the node i belongs to and δ
is the Kronecker delta function equal to 1 if Ci = C j, 0 otherwise. The GMA is based
on two phases iteratively repeated. In the first stage it starts by considering each node
as a unique member of a different community, then each node i is removed from its
current community and it is moved into the one of each neighbor j of i. This will cause
a change in the overall modularity which is determined as

∆Q =

∑in +2ki,in

2m
−

(∑
tot +ki

2m

)2 − ∑in

2m
−

(∑
tot

2m

)2

−

(
ki

2m

)2 (3.10)

where, by assuming that node i is moving in the community C j, then
∑

in is the sum
of the weight of the links inside C j,

∑
tot is the sum of the weight of the links to nodes

of C j, ki is the weighted degree of node i, ki,in is the sum of the weights of the links
between node i and other nodes belonging to Ci and m is the sum of all the graph edges.
In the second phase, it is generated a new graph whose nodes are the communities
found in the first phase. The intra-community edges are now represented by self-loops
on the community node with the relative weights set accordingly.
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Being a graph-based algorithm, the GMA application to the considered dataset
requires the distance matrix D. The used distance metric is the one resulting from the
analysis of Section 3.3. The matrix is converted into a similarity one S according to
practical implementation constraints, thanks to the following transformation:

S = max(D) − D (3.11)

This new matrix ∈ RN×N , where N is the number of samples, embeds the similarity
degree between each pair of nodes and can be used to build an undirected graph G =

(V, E), where V is the set of nodes and E is the set of edges.
At this point the GMA is applied to G and the outcome is the set of nodes labelled
according to the found communities.

3.5.5 Algorithms Comparison

Similarly to the optimal distance metric definition, it is necessary to test the different
clustering algorithms under certain conditions. After performing the features selection
process apply the four algorithms on the considered dataset obtaining the detected
clusters/communities. To evaluate the chosen algorithms and to select the best one I
focus on two quality metrics:

1. Average silhouette sh (Appendix A.2.1). The more sh is close to 1, the better
the clustering;

2. Number of clusters. Exploiting the domain knowledge, a reasonable number of
clusters must be found (e.g., algorithms grouping N points belonging to 5 ground
truth classes and some unknown points into ≤ 5 clusters are not acceptable.
Indeed, because of the ground truth whose coordination is known a-priori, at
least 5 different clusters characterizing one ground truth class each should be
found);

Even if the silhouette is one of the most common quality metrics for clustering, I
introduce the other metrics because of the type of data. Indeed the silhouette is a metric
well suited for convex clusters, but this hypotheses is rarely verified when treating data
collected from real scenarios. Furthermore, because of the definition of silhouette, by
considering a scenario in which only two clusters are found, the first with the 99% of
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data, the latter with the remaining 1%, will probably result in a high accuracy, but,
in this case, the clustering performance is not satisfying. For this reason, the chosen
clustering algorithm is the one resulting in the best trade off between the two metrics.

3.6 Temporal Consistency of Clusters Membership

The approach described so far is useful for developing and testing the adopted method-
ology. On a single-day case study the results allow to verify if the approach is promis-
ing and improve the knowledge about the dynamics of the identified coordinated be-
havior. The consistency of the model should be further verified over time. For example,
it is reasonable to assume that the ground truth IPs whose coordination is known a pri-
ori exhibit coordinated behaviors independently from the considered day. From the
model point of view, this means that source IPs belonging to cluster Ci in a certain day
t0 should fall in an analogous cluster even in day t j with j > 0.

To evaluate the temporal consistency I consider a w-days time window of darknet
traffic. Then:

1. The first day t0 is considered as reference. I generate the dataset X0 ∈ R
N0×F ,

where N0 is the number of distinct source IPs active in t0 and F is the number of
selected features.

2. Clustering algorithm is applied and the resulting clusters C0,X0 are stored.

3. The process is repeated for each day i ∈ 1, ...,w, obtaining the dataset Xi ∈ R
Ni×F ,

where Ni is the number of distinct source IPs active in ti, and the relative clusters
Ci,Xi .

4. For each day, only the source IPs active in both t0 and t1 are kept obtaining the
intersection dataset X̂.

5. To evaluate the consistency of the groups membership, I compute the Adjusted
Mutual Information (AMI) (see Appendix A.2.2) between C0,X̂ and Ci,X̂, where
C0,X̂ are the clusters of t0 the source IPs of X̂ belongs to, whereas Ci,X̂ are the
clusters of ti the source IPs of X̂ belongs to.
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The process is repeated for each day in the time window. The adopted methodology is
summarized in Algorithm 1.

Algorithm 1: Temporal consistency of clusters membership
Input: w-days time window W = t0, t1, ..., tw

Output: set of daily AMI A

A← [];
train w2v model on 30 days;
train SOM on the first day t0;

X0 ← selected features of day t0;
run clustering algorithm on the first day X0;
C0,X0 ← found clusters;
for i← 1 to w do

Xi ← selected features of day ti;
run clustering algorithm on ti;
Ci,Xi ← found clusters;
X̂← X0 ∩ Xi;
A← A + AMI(C0,X̂,Ci,X̂)

end
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Chapter 4

Dataset

In this chapter I report an overview on the raw data. First of all I randomly choose 4
days of traffic and get some general information reported in Table 4.1.

Sample day Distinct source IPs Received flows Log files size [MB]

2020/04/05 101008 1920058 27.52
2020/04/06 104887 2050633 28.68
2020/05/05 97589 3350378 45.45
2020/05/06 97913 3325177 44.90

Table 4.1: Preliminary information of randomly sampled data

The number of distinct source IP addresses is very similar within the considered
day, along with the number of received flows. The file size changes accordingly to
the received packets. According to this preliminary information I consider the first
sampled day 2020/04/05 as representative of a general day of darknet traffic.

4.1 Data Characterization

As a first attempt of understanding the general behavior of the source IPs active in the
darknet, I investigate the distributions of the number of daily flows and contacted ports
per source IP address. Assuming that for exhibiting coordinated behavior an IP should
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send at least a number of daily flows > 1, I filter out all the nodes sending only one
flow. I report the distributions for both the filtered and unfiltered cases.

In Appendix A.4 I report a filtering approach applied on the features generated
when testing the multigraph-based approach of Appendix A.1
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Figure 4.1: Per-source IP distributions

Figure 4.1a shows that 62.95% sent at least 2 flows. Through the filter it is possible
to achieve a source IPs reduction of 48% decreasing the number of IPs from 101008 to
52178. When considering the distribution tail, the Empirical Cumulative Distribution
Function (ECDF) shows that only 1% of the source IPs generate more than 700 flows.
A similar trend is obtained when considering the number of contacted darknet ports per
source IP address shown in Figure 4.1b. Indeed, the 83% of the unfiltered source IPs
contact only one port, whereas after the filtering a ≈ 15% gap between distributions is
achieved. In both the unfiltered and filtered cases, the ≈ 1% of IPs reach more than 40
destination ports.

This preliminary data characterization indicates that, in a day of darknet traffic, the
most of the IPs reaches few ports sending small amount of traffic, whereas few IPs
generate more than 700 flows and reach more than 40 ports.
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Figure 4.2: Top-10 contacted ports. Port 0 means ICMP protocol.

Figure 4.2 shows the top-10 destination ports contacted in terms of percentage
of total received flow. The top-5 ports are quite predictable, indeed port 23 is used
by the Telnet service whose security breaches are well known and often exploited by
hackers. Port 1433 and 445 are used by the very common services Microsoft SQL
server and Server Message Block (SMB) over NetBIOS. Port 5555 is widely used
as a backdoor by Trojan like NoXcape and DaoDan. Finally, port 80 is used by the
Hypertext Transfer Protocol daemon (HTTP protocol), thus it is usually exploited for
attempting attacks against Web servers. This preliminary analysis is coherent with
the darknet definition, indeed the considered top-5 ports are commonly targeted by
attackers to force widespread services whose vulnerabilities are known. Thus the most
of the received traffic may represent a threat.
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Figure 4.3: Top-10 classes of service
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When investigating the classes of service (Figure 4.3), it is possible to make con-
siderations similar to the ones of Figure 4.2. The main difference is the strong presence
of unknown user ports. This can be easily explained by considering that, according to
Table 3.3, the most of the ports belonging to the [1024, 49151] range are not classified
and they are quite likely to be contacted by source IPs according to the wide range.

4.2 Identification of Ground Truth

In this section, I restrict the characterization to the IPs beloning to the Ground Truth,
obtained according to the procedure discussed in Section 3.1. The analysis of these IPs
is particularly useful for tuning and validating the methodology. Among the detected
ground truth classes, 8 of them reached the darknet in the considered day t0.

Label # Flows # Src IPs # Dst Ports Top-5 Ports

Sonar [38] 16661 359 23 10443, 4567, 9000, 8984, 8899
Ipip [39] 15309 49 42 -, 53, 8000, 8888, 3128
Shodan [40] 9366 12 337 2222, 80, 6666, 88, 8888
Antlab [41] 8651 5 1 -
Engin-umich [42] 760 10 1 53
Cybercrime
Cambridge [43]

693 1 2 19, 1434

Google 36 4 1 80
Heodo [44] 11 4 2 23, 445

Table 4.2: Ground Truth classes active during t0: 05/04/2020 sorted by daily flows

Table 4.2 reports the active ground truth classes and sorted by daily flows. The
reported information is not filtered. When dropping the source IPs sending only one
flow, the nodes remains unchanged, apart from 2 Shodan IPs. Since the IPs reported
in table belong to research project performing Internet scans, already from this first
analysis two different types of coordination emerge:

• Vertical scans: a group of IP addresses targeting the same darknet ports.
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• Horizontal scans: a group of IP addresses targeting a wider set of ports with
possible specific temporal patterns detected through a manual analysis.

According to the two provided definitions, it is reasonable to assume that IPs sets like
Sonar, Ipip and Shodan are performing horizontal scans, since they reach a wide set of
destination ports. On the other hand, the Antlab and Engin-umich behaviors are more
similar to a vertical scan targeting a unique port.
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Figure 4.4: Ground truth classes characterization

The heatmaps in Figure 4.4 provides some more details on the activity of each
class. 100% of the Antlab IPs generates ICMP traffic. The Engin-umich set direct the
100% of the flows the port 53/UDP used by the DNS class of service. The addresses
belonging to the Ipip class contact a wider set of heterogeneous services, confirming
that they are more prone to horizontal scans, as it is visible in , Figure 4.4b. The same
assumption holds for Shodan and Sonar.

4.3 Datasets Organization

For developing the models and run the described experiments I use three different
categories of datasets:
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• Model development dataset: referred to the 2020/04/05. It is used for analyzing
the generated features, tuning the model parameters, and comparing the different
algorithms. To speed up the processes I downsample data by selecting the top-
5 GT classes in terms of generated flows (433 distinct source IPs). To make
the methodology unbiased on the considered dataset, 1000 unknown sources are
added achieving a dataset with 1433 samples;

• Single day dataset: daily darknet traffic of 2020/04/05. I use it to evaluate the
performance of the developed model deepening the knowledge about the possi-
ble coordination exhibited in a single day;

• Subsequent day dataset: sequence of daily darknet traffic in the [2020/04/05,
2020/04/15] range. I use it to evaluate the temporal evolution of the found clus-
ters and the consistency of the nodes spatial representation.

All the described datasets are filtered dropping nodes generating only 1 flow.
According to the generated features described in Section 3.2.2, all the experiments

are performed considering three different scenarios:

1. Traffic intensity features: I consider only the features related to the traffic inten-
sity (S0, S1, S2, S3, S4, S5);

2. Temporal features: I consider only the 30-days-trained word2vec embeddings
(S4);

3. Mixed features: I consider both the features related to traffic intensity and time.

In this way it is possible to deeper investigate the contribution of each features macro-
type identifying the best one.
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Chapter 5

Results: Traffic Intensity Features

5.1 Features Engineering

The first stage of the model development consists on selecting the best features subsets.
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(b) Traffic intensity features. Accuracy: 98.88%

Figure 5.1: Features selection results for the traffic intensity features. Model development
dataset

Figure 5.1a reports the trend of the subsets rank made of the accuracy of the kNN
classifier during the features selection stage. Since different subsets results in the same
higher accuracy, in order to limit the curse of dimensionality effect, under the same
accuracy I choose the subset with the lower cardinality.

When considering the traffic intensity features, the subset containing the amount of
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daily flow per TCP flag (S2) and the coordinate of the SOM (S5) is the chosen one and
7 single features are considered.

When evaluating the confusion matrix resulting from the kNN LOO classification
(Figure 5.1b), a high accuracy of 98.88% is achieved for the considered dataset. For
the most of the ground truth classes the most of the source IPs belongs to the same
neighborhood a part from 20% of the Ipip group that falls into the Sonar neighborhood.
This is reasonable when recalling the similar behavior of the two classes (Figure 4.4b)
for which the packets are spread among different services.

5.2 Distance Metric Definition

According to the described methodology I run three different experiments to identify
the best distance metric for the proposed problem. For the sake of simplicity I introduce
a new notation referred to the experiments:

• exp0: top-5 ground truth classes and 1000 unknown IP addresses. Only selected
features;

• exp1: only ground truth classes and selected features;

• exp2: only ground truth classes and all the traffic intensity features sets.

exp0 exp1 exp2

Euclidean 99.31 98.88 98.85
Bray Curtis 99.08 98.95 99.54
Cosine 99.08 98.88 99.08
Canberra 99.31 98.74 99.31

Table 5.1: kNN classifier accuracy [%] for different distances. Traffic intensity features

The bold results of Table 5.1 indicate the best outcome for each experiments. The
Bray Curtis distance (dBC) is the best one for exp1 and exp2, whereas the difference
between it and the Euclidean distance (dE) is quite small (0.07% and 0.69% respec-
tively). Furthermore the Euclidean distance is the best one for exp0. Thanks to the
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negligible accuracy difference between dBC and dE and by considering that the used
scikit-learn library implementing some of the tested clustering algorithms is sup-
ported only for the Euclidean distance, I decide to choose dE as the best distance metric
when running traffic intensity experiments.

5.3 Clustering Algorithms

After having identified both the distance metric and the best features subsets I proceed
with the clustering algorithm comparison.

# Clusters Avg. Sh

DBSCAN 57 0.28
GMA 2 0.31
HAC 2 0.94
k-Means 9 0.47

Table 5.2: Clustering quality metrics when comparing 4 different algorithms and testing the 3
features subsets combinations

Table 5.2 reports the clusters quality metrics obtained from the experiments. Re-
garding the number of clusters, the model development dataset is composed by 5
ground truth classes and an ’unknown’ one containing unlabelled source IP addresses,
thus the number of found clusters should be at least 6 meaning that the 6 classes have
been identified. However, since the coordination of the ’unknown’ class is not known
a priori, more clusters may be found.

DBSCAN results 57 number of clusters with an average silhouette of 0.28. This
means that the found clusters tends to overlap achieving bad performance. This is
mainly due to the limitation of the ε parameter of DBSCAN. Indeed, the tested algo-
rithm perform satisfactory when there is a clear boundary between clusters and this
generally happens for convex clusters. This condition is rarely satisfied in real sce-
narios like the considered case, thus the algorithm is not well suited for the proposed
problem.

Different results are obtained when applying Greedy Modularity Algorithm and
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Hierarchical Agglomerative Clustering. Indeed both of them detect only two clusters,
which is below the lower bound of 6 clusters. Furthermore, on one hand, GMA re-
sults in an average silhouette tending to 0 meaning overlapping clusters, on the other
hand, HAC achieves a silhouette close to 1, but from a manual investigation of the
points per clusters, one of the two groups contain only one point. According to these
considerations, neither the GMA or HAC can be used in the methodology.

The only algorithm suitable for the proposed problem is the k-Means. Regarding
the number of clusters, it satisfies the lower bound condition, regarding the average
silhouette, even if it is not acceptable (satisfactory values are general ≥ 0.8), it is
greater than the DBSCAN one.

In light of the above, I chose k-Means as clustering algorithm to embed in the
methodology.

5.4 Evaluation of Nodes Representation

After having identified the best parameters and algorithms to use in the proposed
methodology I proceed with the evaluation of nodes representation. The rationale
behind it is to verify if nodes belonging to the same ground truth class are in the same
neighborhood.

As a first visual evaluation I adopt the t-distributed Stochastic Neighbor Embedding
(tSNE) technique. It reduces data dimensionality by projecting each data point to a 2D
space. The relative position of the points is proportional to their similarity, thus similar
nodes are placed close to each others. Nevertheless, the obtained projection is an
approximation, thus it must not be considered as a final representation.1

Figure 5.2 shows the tSNE projection of the traffic intensity dataset. For the sake of
simplicity I randomly downsample all the unknown keeping only 3000 of them. From
this first evaluation it is possible to spot some cluster structures among the IPs not be-
longing to the ground truth. On the other hand, when evaluating the GT points, it is not
possible to draw a unique considerations among all the classes. Indeed, classes like
Heodo which perform mostly Telnet scans tends to be confused with the unlabelled

1During the intermediate developing stages I test an alternative method for visualizing the nodes
placement by exploiting the software Gephi. In Appendix A.5 I provide an overview of the proposed
approach and the reasons why I discard it.
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Figure 5.2: tSNE projection of traffic intensity features
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points. This is mainly due to the high Telnet traffic generated by general IP addresses.
When focusing on Sonar, the wide range of contacted classes of service makes them
spread among the space. However, even if all the points are not in the same neighbor-
hood, the most of them tend to overlap. Indeed, from Figure 5.2 it is possible to spot
≈ 9 different groups. This could mean that Sonar IPs tends to share the scan workload
assigning the same target to a subgroup of nodes. Same considerations can be drawn
for the Ipip class.

To investigate deeper the spatial projection I use a LOO-kNN classifier on the orig-
inal traffic intensity dataset as described in Section 3.4.
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Figure 5.3: LOO-kNN confusion matrix. Traffic intensity features. Accuracy: 98.88%

Figure 5.3 reports the confusion matrix resulting from the classification of the full
ground truth active in 2020/04/05. Since I set k = 1, the 98.88% of accuracy indi-
cates that the nodes representation allows to place in the same neighborhoods nodes
belonging to the same GT class. More specifically, the 100% of classes with a clear co-
ordinated behavior in terms of targeted classes of service like Antlab and Engin-umich
is correctly classified. By comparing this figure with Figure 5.2 in which the consid-
ered classes are not visible, it is possible to assume that the tSNE projection makes the
considered groups overlap.
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Despite the spread placement of Sonar nodes achieved through tSNE, the kNN
classifier results in a correct classification of ≈ 100% of the observations. Different
considerations can be drawn when considering Ipip and Shodan, for which only the
50% of the observations are correctly classified. This is in line with what has been said
about their spread placement in Figure 5.2. Furthermore, by considering the spread
behavior of Shodan and Ipip among the different classes of service, it is possible to as-
sume that the considered classes does not follow any recognizable pattern with respect
to the traffic intensity levels and types.

Finally, when considering the three least popular classes in terms of number of IP
sources and amount of generated flows (Google, Heodo and Cybercrime Cambridge),
the kNN classifier fails for the 100% of the observation. This means that with respect to
the traffic intensity, the nodes representation is not able to make the considered nodes
close to each other, making impossible the detection of any pattern.

The carried out analysis allows to state that for a single day of darknet traffic the
selected features are able to represent source IPs in a robust way, that is the most of
nodes belonging to the same ground truth class (whose coordination is known a pri-
ori) belongs also to the same neighborhood. In this way, a kNN classifier is able to
achieve the 98.88% of accuracy by evaluating the first nearest neighbor of the consid-
ered points.

Even if the approach seems promising for a single day, it is necessary to evaluate
if the proposed methodology is able to spot changes in traffic intensity over time.
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Figure 5.4: Temporal evolution of the kNN accuracy on full ground truth
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Figure 5.4 shows the trend of the LOO-kNN accuracy over time. As described in
Section 3.4, the day 2020/04/05 is used as reference and the classifier aims at labelling
the ground truth of the next days with respect to the ground truth of the reference day.

The high accuracy achieved for the reference day discussed above is not main-
tained over time, indeed, after only one day it drops from 98.88% down to < 30%.
However, after the day 2020/04/08, the trend tends to increase. This singular behavior
can be explained by considering the diverse traffic intensity and types generated by the
considered ground truth.

According to the provided analysis, it is possible to state that the traffic intensity
features are able to spot coordination among ground truth IPs with high accuracy as
long as the considered classes consist of a sufficient number of distinct IP addresses
generating a significant amount of flow. Furthermore, the satisfactory performance is
achieved only if the observation window is ≤ 24 hours because of the generated traffic
changes too fast over time.

5.5 Clustering on Single Day

The k-Means clustering algorithm is the chosen one according to the model develop-
ment analysis. To evaluate its performance I use the dataset related to the 2020/04/05.
However, according to the high data dimensionality, a visual evaluation of the found
clusters is unfeasible, even by exploiting the tSNE technique which approximates the
results. In light of this I report the characterization of the found clusters in terms of
percentage of cluster flows per class of service and used protocol (Figure 5.5) and the
distribution of the number of GT nodes per cluster (Table 5.3).

Firstly, by considering the Antlab GT class, all the IPs belongs to the same cluster
C6. The cluster membership is not unique, indeed 8 unknown points and 2 Ipip ones
are assigned to the same cluster. The characterization of Figure 5.5b indicates that the
100% of the C6 IPs generates ICMP traffic reflecting the Antlab class behavior.

When focusing on Engin-umich, even if all its IPs belong to the same cluster C7,
other 422 nodes are assigned to the same cluster. Furthermore, by recalling that the
100% of the Engin-unich traffic is directed to the DNS class of service, in Figure
5.5a only the ≈ 20% of the C7 traffic target the same class of service indicating poor
performance.
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Regarding the other GT classes, from Table 5.5 it is clear that most of them are
assigned to the same cluster C9 containing the 79.8% of the points. This means that
the clustering algorithm fails in detecting not only the possible coordination among the
unknown IPs, but also the known coordination of the ground truth classes, even though
they belong to the same neighborhood when evaluating their spatial representation.

C1 C2 C3 C4 C5 C6 C7 C8 C9

Unknown 21876 2 2 42 1 8 415 5084 24314
Ipip 8 - - 1 - 2 5 6 27
Sonar 6 - - - - - - - 353
Antlab - - - - - 5 - - -
Shodan - - - - - - 2 - 9
Engin-umich - - - - - - 10 - -

Total 21890 2 2 43 1 15 432 5090 24703

Table 5.3: Number of observations per found cluster. Traffic intensity dataset.
Average Silhouette: 0.446
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Figure 5.5: Found clusters characterization. Traffic intensity features

Furthermore, three clusters (C2, C3 and C5) contain < 3 points making uneven
the distribution of nodes per found cluster. Finally, the achieve average Silhouette is
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0.446, meaning that the found clusters are not well separated tending to overlap with
each other.

According to the proposed analysis it is possible to state that the adopted clustering
algorithm is able to spot coordination only among source IPs reaching a limited number
of destination ports generating a consistent amount of flows. Regarding the other IPs,
the chosen algorithm fails in detecting any kind of coordination.

5.6 Evolution of Clusters Membership

As final analysis on model performances I investigate how the membership of the
found clusters evolves over time. It is necessary to recall the provided definition of
X̂ containing all the IPs active both in the reference day t0 and in ti with i ∈ [1, . . . , 9].
The reference day is the 2020/04/05.
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Figure 5.6: Analysis of cluster membership evolution from t0 to t9. Traffic intensity features.
(a) Source IPs propagation from t0 to t9. (b) Number of found clusters containing at least one
node propagating from t0 to t9. (c) Temporal evolution of clusters membership

Figure 5.6 shows the outcome of the conducted analysis when the traffic intensity
features are used. Regarding the number of points propagating over time, in Figure
5.6a a rapid decrease from ≈ 50000 nodes down to ≈ 23000 points is shown. However,
by considering that in t0 contains all the active nodes, the initial decrease is perfectly
reasonable. On the other hand, a part from the reference day, the number of nodes
propagating over time oscillates between ≈ 23000 and ≈ 18000.

When evaluating the trend of the number of found clusters containing at least one
propagating node shown in Figure 5.6b, it is clear that probably k-Means is not a robust
algorithm to solve the proposed problem. Indeed, over 10 days of data, nodes ∈ X̂ are
assigned to a number of clusters oscillating between 11 and 6. In the first case, where
a 22% increase in the number of clusters is achieved, the propagating nodes are more
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spread among the found groups. In the second case, where a 33% decrease is obtained,
propagating nodes are more close between each other falling in less clusters compared
with the reference day.

Finally, when evaluating the obtained Adjusted Mutual Information between clus-
ters of t0 and ti shown in Figure 5.6c, an unsatisfactory almost constant 0.5 value is
obtained (acceptable values are > 0.8).
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Chapter 6

Results: Temporal Relationships
Features

6.1 Word2Vec Grid Search

When considering the temporal relationships, the first stage consists of evaluating the
hyper-parameters of the word2vec model. More precisely the size of the context win-
dow C and the size of the embeddings per token E.
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Figure 6.1: Grid search analysis of w2v models

Figure 6.1a shows the results of the grid search. The accuracy is obtained by apply-
ing a LOO-1NN classifier on the model development dataset. The 9 different models
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are trained on the same 30 days. The impact of the embeddings size is not so relevant
apart from E = 300. This can be explained by considering that I run the kNN classi-
fier based on the Euclidean distance. Indeed the used distance is known to be affected
from the curse of dimensionality, in which the statistical significance of data is reduced
according to the high data dimensionality and the consequent increase of data sparsity.
Therefore the best performance is obtained with E = 100 which is the value I choose
for the development of this thesis.

Regarding the context window size C, when increasing it from 5 to 10 the kNN
accuracy shows a decreasing trend. On one hand, when E = 300, the trend decrease
for C = 25, then it is subject to a slight increase for C = 50. On the other hand, when
setting E = 50 and E = 100, a context window size > 10 improve the performance.

By considering the interarrival time distribution of Figure 6.1b, the time between
the reception of a packet and the following one is ≤ 80ms for the 80% of the flows.
Thus, by considering this value as an arbitrary upper bound, a context window size C =

50 means that for each received flow, the model updates the neural network weights
observing what is reached 4s before and 4s after the considered packet, whereas with
C = 25, the current packet is centered in a 4s time window. By considering the huge
number of packets received and the short interarrival times, the first case may introduce
context errors, thus I choose C = 25.

6.2 Features Engineering

The features selection stage is not necessary in this case, since I generate only one
subset of temporal features. Thus, the kNN is applied to the dataset X ∈ R1433×100.
In this way, by exploiting the ground truth classes it is possible to investigate if the
considered features are able to place points belonging to the same class close to each
others.

Figure 6.2 reports the confusion matrix resulting from the classification. Temporal
features result in the lowest accuracy of 98.67%. To explain the obtained value, it is
possible to exploit the activeness timeseries of the ground truth classes. For example,
when considering Antlab, from Figure 6.3a a temporal pattern is clearly recognizable.
The word2vec model is able to detect it generating the embeddings accordingly, thus
from the confusion matrix it is clear that nearest neighbors of the Antlab IPs belong
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Figure 6.2: Temporal relationships features. LOO-kNN Accuracy: 98.67% traffic

to the same class. On the other hand, when considering the Ipip class of Figure 6.3b,
the IPs activeness seems randomly distributed among the 2020/04 and probably the
word2vec tends to confuse the ≈ 20% of the source IPs with other classes.

(a) Antlab (b) Ipip

Figure 6.3: Timeseries of the Antlab and Ipip activeness within 2020/04

6.3 Distance Metric Definition

When working with temporal features, the same experiments names proposed in Sec-
tion 5.2 are maintained. However, since I define only the subset S6 as temporal features
subset, the experiment involving all the subsets is omitted. Thus the notation is:

• exp0: top-5 ground truth classes and 1000 unknown IP addresses;
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• exp1: only ground truth classes.

exp0 exp1

Euclidean 98.85 98.68
Bray Curtis 99.31 96.37
Cosine 99.31 97.42
Canberra 99.31 95.47

Table 6.1: kNN classifier accuracy [%] for different distances and different features types

The bold results of Table 6.1 indicate the best outcome for each experiments. The
considerations about the reported outcomes are similar to the ones of Table 5.2. The
Euclidean distance results in the highest classification accuracy for exp1, whereas the
difference between it and the accuracy achieved with other distance metrics in exp0 is
negligible (0.46%). According to the reported considerations and the implementation
constraint, I choose the Euclidean distance for temporal relationships features as for
the traffic intensity case.

6.4 Clustering Algorithms

As for the traffic intensity case I proceed with the comparison between the four pro-
posed clustering algorithms to choose the best one for the considered problem.

# Clusters Avg. Sh

DBSCAN 1 -
GMA 3 0.18
HAC 2 0.80
k-Means 19 0.15

Table 6.2: Clustering quality metrics when comparing 4 different algorithms and testing the 3
features subsets combinations
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Table 6.2 reports the number of clusters and the average silhouette for the con-
ducted experiments. The number of clusters found by DBSCAN is 1, meaning that all
the nodes are treated by the algorithms as noise. Generally this happens when the in-
put dataset is sparse and characterized by high dimensionality. Since DBSCAN detects
only one cluster, it is not possible to obtain the average silhouette and the algorithm
can be discarded.

As in the traffic intensity case, neither the Greedy Modularity Algorithm, nor the
Hierarchical Agglomerative Clustering one achieve satisfactory performances. Indeed
the GMA founds three clusters almost completely overlapping (0.18 of average Silhou-
ette), whereas the HAC results in a high average Silhouette of 0.8, but it detects only
two clusters. Furthermore, from a manual investigation of the outcomes, the second
cluster of HAC contains only one point.

Even in this case the k-Means algorithm seems to be the best one spotting 19 clus-
ters, but with the lowest average Silhouette (0.15) of the four experiments. In light of
the above, I chose k-Means as clustering algorithm used in the proposed methodology.

6.5 Evaluation of Nodes Representation

To visually evaluate the nodes representation I use the same tSNE technique used for
the traffic intensity case by downsampling the unknown points (I keep only 3000 of
them). The projection is reported in Figure 6.4.

Regarding the ground truth classes, the outcomes seems more promising with re-
spect to the traffic intensity case. Indeed, by considering, for example, the Sonar points,
they form an evident cluster in the bottom left corner. A part from few exception, it
is possible to state the same for the Ipip and Shodan classes. Indeed, in the right of
the figure, two small clusters containing the points of the considered classes can be
spotted. However there are some single observations falling in the central cloud of
unknown points.

When considering the critical classes of the traffic intensity case (Heodo, Cyber-
crime Cambridge and Google), it is reasonable to assume that the LOO-kNN classifier
will fail the classification. Indeed the points spatial projection results in points spread
all over the dimensionality-reduced space.
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Figure 6.4: tSNE projection of temporal relationships features
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Figure 6.5: Temporal features. Accuracy: 98.67%

The above considerations are confirmed by Figure 6.5 which reports the confusion
matrix resulting from the LOO-kNN classifier applied on ground truth. All the points
of both Sonar and Engin-umich are correctly classified. Regarding the Antlab class,
the performance is slightly worse than the traffic intensity case (≈ 80% of correctly
classified points compared to the 100% of the traffic intensity case). Even if it is pos-
sible to identify a temporal pattern from Figure 6.3a, there are still some IP addresses
active only in the last days of the month used for word2vec training, thus probably the
misclassified points fall into that case.

If the considerations about the Ipip points projection are confirmed by the ≈ 60%
of correctly classified points, the outcomes of the Shodan class is not coherent with
what has been said).

Finally, as in the traffic intensity case, the 100% of the Heodo, Google and Cyber-
crime Cambridge points fall in the neighborhood of the unknown points because of the
small number of time units during which the IPs were active in the darknet generating
traffic.

The average accuracy among all the ground truth classes active during 2020/04/05
is 98.67% indicating that the most of the a-priori-coordinated points belongs to the
same neighborhood according to the GT class membership.
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When evaluating the robustness of the nodes representation over time, it is neces-
sary to recall the slightly different approach used for the temporal relationships features
with respect to the traffic intensity ones. Indeed, since the word2vec model needs to
be retrained any time new IPs are seen for the first time in the darknet, the embeddings
generated for nodes active in more than one day are different after each re-training.
Thus it is not possible to adopt the approach of Figure 3.4.
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Figure 6.6: Temporal evolution of the kNN accuracy on full ground truth

Figure 6.6 shows the trend of the LOO-kNN accuracy over time applied to the full
ground truth active in the day ti, i ∈ [0, 9].

Even the considered figure and Figure 5.4 are not directly comparable according to
the different approach, it is possible to state that the temporal relationship features ex-
hibit a satisfactory robustness. Indeed the accuracy trend tends to smoothly decay over
time, but according to the different IPs activeness among different days, it increases
during t3 and t4 reaching a minimum of ≈ 85% after 10 day of traffic.

Undoubtedly the daily re-training of the word2vec model allows to generate new
embeddings with fresher information keeping track of the temporal changes in source
IPs temporal behavior, but the robustness of the approach is also provided by the more
regular time patterns characterizing the ground truth classes under analysis.
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6.6 Clustering on Single Day

To investigate if the chosen model and parameters are able to spot coordination among
source IPs on the basis of their temporal relationships I run k-Means on the 2020/05/04
day.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Unknown 75 4130 10805 3111 12111 3969 313 4291 10444 2495
Ipip - - - 47 - - 2 - - -
Sonar - - - - - 1 - - - 358
Antlab - - - 5 - - - - - -
Shodan - - - 10 - - - - 1 -
Engin-umich - 10 - - - - - - - -

Total 75 4140 10805 3173 12111 3970 315 4291 10445 2853

Table 6.3: Number of observations per found cluster. Temporal features dataset.
Average Silhouette: 0.160
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(b) Protocols

Figure 6.7: Found clusters characterization. Traffic intensity features

Table 6.3 and Figure 6.7 report the outcome of the clustering algorithm application.
Regarding the ground truth classes, Engin-umich and Sonar are well separated falling
into two different clusters (C2 and C10 respectively). On the other hand, the remaining
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GT classes are assigned to the same cluster C4 a part from some exceptions like C6,
C7 and C9 containing mostly unknown points and < 3 ground truth ones.

When investigating the allocation of the clusters total flow per class of service and
protocols it is clear that the algorithm is not able to spot any coordination related to type
of traffic. From Figure 6.7a the maximum percentage of flow directed to a particular
class of service is < 60% meaning that none of the found clusters is characterized by
a unique behavior. For example, C2 containing all the Engin-umich IPs is expected to
direct all the traffic to the DNS class of service, but since the considered class is the
0.24% of the total C2 IPs, it results that the 40% of the cluster traffic reaches the Telnet
service, whereas the DNS packets are < 5% of the total. Furthermore, when evaluating
the percentage of cluster flow per protocol, the outcomes of Figure 6.7b is substantially
different from the ones of Figure 5.5b. Indeed, when using the w2v embeddings, the
clustering algorithm is not able to separate nodes sending packets through different
protocols and, a part from C1, all the others Ci i ∈ [2, 10] send the ≈ 80% of the traffic
through TCP.

Though lower obtained performance with respect to the traffic intensity case is
reasonable since the used features are generated according to the temporal relationship
and there is no contribution of the traffic types features.

Finally, by considering that the achieved average silhouette value is 0.160 meaning
that the found clusters are almost completely overlapping, it is possible to draw the
consideration similar to the traffic intensity case: the clustering algorithm is not able
to spot temporal coordination among source IPs although the generated features place
in the same neighborhood nodes belonging to the same ground truth class.
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6.7 Evolution of Clusters Membership

Like in the traffic intensity features I investigate the temporal evolution of clusters
membership. The reference day t0 is the 2020/05/01.
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Figure 6.8: Analysis of cluster membership evolution from t0 to t9. Temporal relationship
features. (a) Source IPs propagation from t0 to t9. (b) Number of found clusters containing at
least one node propagating from t0 to t9. (c) Temporal evolution of clusters membership

When evaluating the trend of the number of nodes active both in the reference day
and in ti with i ∈ [1, . . . 9] shown in Figure 6.8a, again the expected drastic reduction
between t0 and t1 is obtained. Furthermore, for ti > t1 the number of propagating points
progressively decreases from ≈ 22000 to ≈ 17000. The shown decreasing trend of |X̂|
should result in more compact clusters and an increased AMI.

Despite what it would expect, the propagating points are assigned to a number
of clusters (Figure 6.8b) oscillating between 14 (+27% of the reference day) and 9
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(-18% of the reference day) and the obtained AMI oscillates between 0.3 and 0.24
(Figure 6.8c). By recalling the high accuracy obtained when evaluating the nodes
representation, the obtained results suggest that, again, probably the chosen clustering
algorithm is not well suited for the proposed problem failing in detecting coordination
over time.
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Chapter 7

Conclusion and Future Works

In the proposed work I define and investigate a methodology for automatically de-
tecting coordinated source IPs among darknet traffic. The methodology relies on two
hypotheses that define the concept of coordination: (i) coordinated IP addresses (e.g.,
belonging to a Botnet) should target both complementary and same Internet ports. (i)
coordinated IP addresses should follow similar time patterns during Internet scans or
attacks exhibiting strong temporal correlation between each others. From the first hy-
pothesis the coordination is defined in terms of reached classes of services (Internet
port and used protocol pairs) and generated traffic intensity.

According to the proposed methodology relying on clustering algorithm, my results
highlight that the generated features are able to highlight similarity between IPs whose
coordination is known a-priori. This is achieved by applying a Leave-One-Out kNN
classifier to the generated ground truth dataset with both the traffic intensity and tem-
poral relationships features obtaining an accuracy of 98.8% for both the cases. This
means that, according to the source IPs representation, nodes belonging to the same
ground truth class belongs also to the same neighborhood.

However the satisfactory achieved behavior is not consistent over time when using
traffic intensity features. Indeed the 98.8% of accuracy achieved in the reference day,
drop drastically down to ≈ 20% when evaluating the second day. The reason behind
the described behavior is probably due to rapid changes in traffic volume and types of
the IP addresses.

On the other hand, when using the embedding generated by the Word2Vec algo-
rithm trained on 30 days of darknet traffic, a more robustness of the nodes representa-
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tion is achieved with an accuracy that never goes below ≈ 75% after 10 days of traffic
analysis.

Even though the generated features seem promising, when applying unsupervised
clustering algorithms with the relative proposed heuristics, it results that none of them
is able to spot the highlighted coordination. Indeed, for both the features macro-types,
values of silhouette close to 0 are achieved, meaning that the found clusters overlap
between each others, or too few clusters are detected by the algorithms.

Furthermore, to evaluate if at least the nodes membership of the found clusters is
maintained over time, I repeat the analysis for 10 days of darknet traffic. The obtained
results are expressed in terms of AMI between the clusters found in the reference day
and the ones found in the subsequent days. The outcomes reveal that when using traffic
intensity features, the AMI is approximately constant around 50% with a number of
found clusters floating in the [6, 11] range. On the other hand, when exploiting the tem-
poral relationships among source IPs, the obtained AMI never reaches the 40% with
a number of found clusters oscillating between 9 and 14 depending on the considered
day.

The obtained results are perfectly reasonable when comparing the AMI trend with
the one of the number of found clusters. Indeed, the higher AMI achieved with traffic
intensity features is not an indication of good performance, since at most 11 clusters are
detected among 18000 nodes. This means that if the nodes distribution among clusters
was homogeneous, each cluster would be made of ≈ 1636 nodes on average. By
considering that in the case under analysis the number of points per cluster is uneven,
it is clear that biggest groups are spotted, thus it is highly likely that nodes fall in the
same group.

What has been said is coherent even with temporal relationship features. Indeed
the number of found clusters is greater than the the one of the traffic intensity case and,
consequently, the obtained AMI decreases.

In light of the above it is possible to answer to the work RQs in the following way:

RQ1.2. Is it possible to exploit the amount and type of traffic generated toward
darknets to detect coordination among source IPs? According to the obtained
results it is possible to state that the amount and type of traffic characterizing the source
IPs and the found group allows only to highlight strongly different behaviors constant
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over time like ICMP routine scans with respect to GRE one. On the other hand, when
nodes generate TCP and UDP traffic reaching multiple destination ports, the traffic
volume cannot be used to detect coordination among IPs because of the rapid changes
which make the proposed algorithm fail.

RQ1.3. Is it possible to exploit the temporal relationships among source IPs active
in darknets to detect coordination? With respect to traffic volume features, the ap-
proach based on the Word2Vec algorithm is more promising. Indeed the performance
indicators are more robust not only in a single day, but also over time highlighting the
coordination among nodes belonging to the same research projects. However, even
if the obtained metrics have higher values than the traffic intensity case, probably the
tested clustering algorithms are not able to fully exploit the nodes distance embedded
in the dataset and a deeper investigation is required.

Q1.4. If the developed model is able to identify coordination, is it maintained over
time? The previous research questions partially answer to this last one. Indeed, the
developed model is not robust at all when analyzing the traffic evolution over time, de-
spite the good performance achieved from the LOO kNN classifier. Indeed, when con-
sidering the temporal relationships among nodes, the Word2Vec algorithm maintains
satisfactory performance > 70% over 10 days of traffic, even though the clustering al-
gorithm is not able to fully exploit the features potential failing in detecting consistent
clusters after one day of analysis.

According to the highlighted weakness of the proposed methodology, as future
works, the algorithm performance could be improved by investigating semi-supervised
or unsupervised clustering techniques relying on Deep Neural Networks, like the one
of [45, 46]. In this way it should be possible to overcome the limitation of the adopted
algorithms which are not able to spot the coordination that Word2Vec embeddings can
highlight.

Regarding the most promising technique, the Word2Vec algorithm, in this thesis
I performed a simple grid search for improving the standard off-the-shelf configura-
tions. However the embedding potential should be deeper investigated and optimized.
An example of the future methodology to follow is proposed in [47], where different
word embedding models are compared evaluating the consistency of the points neigh-
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borhood over different model configurations.
Finally, once the new algorithms will be tested and evaluated, an interesting fu-

ture development could be the implementation of a framework for constituting a self-
learning knowledge-base system to track all the past threat and highlight new suspi-
cious coordinated source IPs following the methodology proposed in [48], even though
the context of application is different with respect to the discussed problem and sce-
nario.
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Appendix A

Methodology Background

A.1 Features Generation for Multigraph

Even though the thesis is based on clustering algorithms, in the development phase
different approaches have been tested.

The original idea was to represent data through an undirected multigraph G =

(E,V), where E is the set of nodes and V is the set of edges. In this case an edge is
a link between each pair of nodes expressing a certain degree of behavior similarity.
Each node is represented by a set of attributes, or nodes features, which are the ones
described in Table 3.4. Each feature is embedded in a layer of the multigraph and a
weight is associated to each link embedding the nodes features.

Whereas in the clustering approach the nodes relationships are embedded in the
distance matrix D, in the multigraph one it is necessary to explicitly define them as
link features.
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Figure A.1: Link features generation example. Minimum common flow
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Figure A.1 provides an example of the minimum common flow feature generation.
Firstly the daily observation window is splitted in 24 hours time units. Then, the mini-
mum flow generated to the darknet between each pair of nodes active in the considered
t.u. is obtained. The final link weight is the sum of the calculated minima.

The same rationale is applied to each nodes feature and a full overview of the link
ones is provided by Table A.1.

Type Feature Description # of Features

General
time

Number of common hours of activity between
each nodes pair

1

min flows
Minimum common flow between each nodes
pair

1

Protocol * min flows
Minimum common flow between each nodes
pair through each protocol of Table 3.2

4

TCP flags * min flows
Minimum common flow between each nodes
pair with each TCP flag of Table 3.2 set

5

Serivices

* min flows
Minimum common flow between each nodes
pair sent to the ports used by each service of
Table 3.3

15

* max bytes
Maximum common bytes between each nodes
pair sent to the ports used by each service of
Table 3.3

15

Table A.1: Generated link features summary

According to the scalability limits of the multigraph approach and to the arbitrary
choice of the criterion used in the link features generation process (maxima or minima),
the clustering approach is found to be a more robust and promising one.
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A.2 Clustering Quality Metrics

A.2.1 Silhouette (Sh)

By assuming that nodes have been clustered in k clusters, for each node i in the cluster
Ci, the intra-cluster distance is defined as

ai =
1

|Ci| − 1

∑
j∈Ci,i, j

d(i, j) (A.1)

where d(i, j) is the distance between node i and node j ∈ Ci. Then the nearest-cluster
distance for each node i is defined as

bi = min
k,i

1
|Ck|

∑
j∈Ck

d(i, j) (A.2)

In this way, ai is a measure of how well node i is assigned to a cluster in terms of
distance with respect to all the other points belonging to the same cluster, whereas bi

expresses a dissimilarity of the node i with respect to all the points belonging to the
cluster Ck , Ci nearest to Ci.
Now the clustering validation metric Silhouette can be defined as

S h =
a − b

max(a, b)
(A.3)

where a is the mean intra-cluster distance among all the samples and b is the mean
nearest-cluster distance. In this way, −1 ≤ S h ≤ 1. The best Silhouette value is
1, meaning that all the clusters are separated; the worst value is -1 and Sh=0 means
overlapping clusters.

A.2.2 Adjusted Mutual Information (AMI)

Adjusted Mutual Information between two clusterings is an adjusted measure of their
mutual dependence, or Mutual Information, to account the MI unbalancing occurring
when two clustering are made of a large number of clusters.

Given a clustering U with R clusters and a clustering V with C clusters, the Ad-
justed Mutual Information between U and V is defined as:

AMI(U,V) =
MI(U,V) − E{MI(U,V)}

max{H(U),H(V)} − E{MI(U,V)}
(A.4)

67



where MI(U,V) is the mutual information between U and V , H(U) and H(V) are the
entropy values associated to U and V , and E{MI(U,V)} is the adjustment for chance.
The more the AMI tends to 1, the more identical the clusters

A.3 Heuristics for Hyper-parameters of Clustering

A.3.1 DBSCAN

Regarding the two DBSCAN parameters minPts and ε two different strategies have
been used. The methodology is guided by the original DBSCAN documentation [34,
35].

• minPts. In the case study proposed by the algorithm developers, minPts have
been set equal to a fix value. Nevertheless, since the dataset of the proposed
thesis is characterized by a high number of samples, a slightly flexible strategy
is adopted by setting

minPts = bln(N)c (A.5)

where N is the number of samples;

• ε. Regarding the neighborhood radius, the elbow method is used. It is based on
the bservation that by considering d as the distance of a node n to its k-th nearest
neighbor, then the d-neighborhood of n contains k + 1 distinct points. Thus, by
considering k = minPts, where minPts is determined through Equation A.5, the
function k-dist(n) is defined as the array of distances between n and its k nearest
neighbors sorted in ascending order. At this point, the so called sorted k-dist
graph is obtained in the following way:

1. Compute the k-dist function for all the points in the dataset;

2. For each obtained distance vector take the last entry corresponding to the
distance between n and its furthest k-th nearest neighbor;

3. Sort the considered distance for each point in descending order.

In this way the sorted k-dist graph provides information about the density of the
distances between each dataset points and their furthest k-th nearest neighbor.
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For a given k and a given node n, all the points that have d ≤ k-dist(n) are core
points for the cluster n belongs to.

Since the graph is sorted in descending order, it is possible to consider the point
of graph maximum curvature, or elbow, as a threshold indicating the maximum
k-dist value used in the sparsest cluster. Thus the distance corresponding to the
elbow point can be used as ε.
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Figure A.2: Results of the DBSCAN heuristic based on the k-dist plot. The results are referred
to the model development dataset

In Figure A.2 I report the results obtained through the DBSCAN heuristic based on
the elbow method on the k-dist plot.

A.3.2 HAC

To optimize the number of clusters that the Hierarchical Agglomerative Clustering al-
gorithm must recognize I use a heuristic based on the average silhouette (Appendix
A.2.1). It consists of iteratively applying the clustering algorithm providing an in-
creased number of cluster to be found. Then I compute the silhouette resulting from
each run and generate the Sh trend. The optimal number of clusters is the one resulting
in the greatest silhouette value.
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(b) Word2Vec embeddings

Figure A.3: Results of the HAC heuristic based on the average silhouette trend. The results are
referred to the model development dataset

In figure A.3 I report the HAC heuristic results obtained during the model develop-
ment stage.

A.3.3 k-Means

Like the algorithm, the k-Means heuristic for the optimal k is strictly related to the
inertia, or the within-cluster sum-of-squares. Basically the algorithm is iteratively
applied with an increasing number of clusters k. After each run the inertia is computed
and the relative plot is generated. The final k is the one at which the elbow of the inertia
plot occurs.

In figure A.4 I report the k-Means heuristic results obtained during the model de-
velopment stage through the elbow method on inertia.

A.4 Discarded Filtering Attempt

As a first attempt of data filtering I adopted a simulation-based approach. The result
reported here have not been included in the work since the methodology relies on
graph-based features described in Appendix A.1.

The filtering approach is based on a statistical hypothesis test. Basically, after hav-
ing generated the traffic features, even with the multigraph-based methodology, the
data characterization leads to considerations analogous to Figure 4.1a: the most of the
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Figure A.4: Results of the HAC heuristic based on the inertia trend over different k. The results
are referred to the model development dataset

traffic is generated by few IPs. Thus I extract the ECDF of the minimum common
flows between nodes and the one of the hours within the source IP pairs were contem-
poraneously active in the darknet. Then I formulate the hypothesis that is all the seen
source IPs act randomly with no coordination.

At this point I run the simulation by randomly assigning a number of common
flows per each source IP pairs on the basis of the empirical distribution function and
by calculating the new simulated distribution function. In this way, the portion of the
ECDF below or overlapping with the simulated one can be filtered out, since the nodes
are actually behaving randomly.

(a) Minimum common flows features (b) Common active hours

Figure A.5: Comparison between simulated and empirical ECDF for two multigraph-features
used during the discarded filtering approach
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Figure A.5 reports the simulated and empirical ECDFs comparison. From Figure
A.5a it is reasonable to discard node pairs whose minimum number of common flows
daily flows is ≤ 10, whereas the common active hours probably are not useful features,
since the ECDF overlaps with the simulated one, meaning that the nodes activeness in
darknet is completely random.

The proposed approach has been discarded according to the change in the method-
ology more oriented towards clustering. Even if a similar approach can be adopted in
the proposed methodology, I focus more on the model development and on the results
discussion by dropping only nodes generating less than two flows in a day.

A.5 Gephi Visualization Attempt

As an additional attempt of visualizing source IPs in the space before and after cluster-
ing I tried an approach based on Gephi [49]. It consists on starting from the distance
matrix used in clustering algorithms and to turn it into a similarity matrix. The ob-
tained matrix is then used to generate an undirected graph which is imported in Gephi.
At this point, I obtain the nodes spatial representation through the Force Atlas 2 algo-
rithm [50] which set the nodes relative position as proportional to their similarity (e.g.
similar nodes are placed close to each other). In Figure A.6 I report an example of the
proposed visualization method. The results are referred to intermediate development
stages with features that are no longer included in the dataset. However I decided to
discard the proposed approach adopting the aforementioned tSNE which is less time
consuming and more customizable in terms of hyperparameters.
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Figure A.6: Nodes visualization attempt through Gephi after clustering

73



Bibliography

[1] F. Gadhia, J. Choi, B. Cho, and J. Song. Comparative analysis of darknet traffic
characteristics between darknet sensors. In 2015 17th International Conference
on Advanced Communication Technology (ICACT), pages 59–64, July 2015.

[2] Francesca Soro, Idilio Drago, Martino Trevisan, Marco Mellia, João Ceron, and
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