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Summary

Every camera leaves stable and deterministic invisible traces on each captured
photo which are due to small sensor imperfections. These traces, or fingerprints,
can be used to solve various problems, for example deciding whether two (or more)
images comes from the same sensor, or which sensor, from a given list, took a
picture under exam.
In this thesis we consider the problem of common image source detection. We
experiment with low complexity image clustering algorithms to regroup pictures
based on the similarities of their camera fingerprints. The proposed improvements
in the clustering and attraction phases are designed to work on top FICFO [1] and
RCIC [2] algorithms. Namely we consider the following reference algorithms:
• Bloy algorithm [3] randomly searches for a pair with correlation value greater
than a threshold. Bloy generates hierarchical clustering using a sequence of merge
operations. Iteratively, it compares the references and the remaining fingerprints.
• FICFO computes a ranking index RI as a metric of the quality of each esti-
mated fingerprint and it stores all the fingerprints sorted in descending order of
RI. FICFO produces a partition that is usually an overclustering of little pure (or
quite pure) groups, following a fast and efficient procedure.
• RCIC instead, saves the fingerprints in a random order and it has to regroup
without any knowledge of the goodness of the attractors, producing stochastic
outputs usually in a slightly less efficient way.
• Khan attraction [1] conducts a merge of pairs clusters having maximum correla-
tion between their centroids, until they are greater than the threshold.
We always work in a supervised blind scenario, where the information about the
cameras is not available, but we can still set some parameters to tune the algo-
rithms. Our thesis presents an ablation study of the best methods proposed, where
some parameters are tested and removed one by one, in order to understand their
contribution to the performances.

For the clustering phase we compare the following methods:
• Full Matrix [4]: this is based on computing a matrix of distances between every
possible couple of fingerprints, for a complete knowledge of the problem, followed
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by a hierarchical clustering.
• First reference: chooses the first fingerprint in the list of currently unclustered
fingerprints as reference for attracting other fingerprints, without updating it.
• Fair: updates the reference fingerprint in the above scheme by computing a fair
average of the currently attracted fingerprint.
• Weighted: updates the reference fingerprint by computing a weighted average
of the currently attracted fingerprint, where the weights are proportionally to the
ordering factor RI.

After this first step, we are free to consider the obtained partition already as the
final image clustering we were searching for, or we can apply an optional attraction
phase, aiming for a better clustering effectiveness, chosen between the following
methods:
• Full Matrix attraction: the Full Matrix method is applied to a preexisting
partition.
• Hierarchical Agglomerative [4]: builds the binary tree of distances between all
the centroids. At a pre-computed height, it splits the tree into a cluster partition.
• Static/Dynamic Pure attraction: refines the clusters internally, moving some
fingerprints to the correct cluster they should lie in, according to a k-means clus-
tering strategy.

In the thesis we compare the reference methods with the proposed technique,
considering four datasets with different number of source cameras and different
numbers of images per camera. For each dataset, several choices parameters were
tested. The results show that even fast low complexity approaches can achieve very
good results, maintaining a high level of precision and scaling the computations
needed for the Full Matrix technique.
Our experiments reveal that some instances of FICFO-A Fair and RCIC-A Fair
may be used as fast, low complexity codes for image clustering. This is particularly
true in a scenario in which we have access to a huge number of big sized, bright
and not saturated fingerprints.

More in details, both RCIC and FICFO Fixed Reference clustering perform
always worse compared to the other clustering algorithms. Even in the FICFO
scenario, where the first fingerprint has the highest value of reliability, it is not wise
to fix the first attractor as the centroid of the cluster. The Fair approach instead,
computing a mean of all the fingerprints we merged in the cluster and obtaining
the centroid from all of them, permits to average the errors and possibly remove
the noise components, obtaining better performances.
The Weighted version gives quite the same performances of the average, but it is
based on the assumption of some very high-quality image present in the dataset,
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therefore we prefer not to use it as a base for attraction, also because it is not
compatible with the RCIC algorithm.

If we relax the problem and we do not account for the computational complexity,
Full Matrix offers an extremely accurate solution for easy datasets, while Bloy
seems even a bit better in facing the challenge of clustering on hard datasets. The
scarcity of information about the cameras has a strong impact on the Full matrix,
indeed very dependent on the correlation values it pre-computes.

RCIC appears to be a good fast clustering algorithm, but because of its worse
initial performances respect to FICFO, it is not very suitable for an attraction
phase. Indeed, the number of computations increases a lot and overall, we have a
noticeable degradation of performances. For the same dataset and input parameters,
RCIC-A performs always worse respect to the simpler FICFO Fair, plus we must
take into account the stochastic behavior of RCIC. If we need to execute each
RCIC code many times to obtain a stable average of the clusters, we must multiply
the computational complexity times the number of runs we tested, receiving a big
disadvantage respect to the deterministic algorithm.

The purification step, in both its forms, static or dynamic, introduces a non-
negligible complexity to the attraction phase. The inputs are already precise as they
are computed by FICFO and RCIC, especially in their Fair version. In conclusion,
the pure algorithms perform bad both as an attraction phase and as a pre-attraction
step. They have to check the full set of fingerprints and they re-assign too many
items, usually to wrong clusters or they split the partition to a huge amount of
groups, very hard to work with.

As a future work, we may work with a sparse representation [5] of the fingerprints.
Each proposed algorithm can be also extended to the case of large-scale databases
[1] in a divide-and-conquer strategy, loading in memory only parts of the dataset.
We can formulate a better metric for Weighted clustering, to distinguish few very
good images, about one for each camera, and work by regrouping around them.
An efficient low-complexity check phase should be able to precisely locate the errors
(without checking every fingerprint) and to move them to the right cluster.
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Chapter 1

Introduction

1.1 Problem Statement

Communication through images has a greater immediacy and emotional value rather
than the written text. The problem of deep fakes, images and videos generated by
artificial intelligence, arises more and more often.
The Digital Forensic analysis of images is an important field of investigation. It
branches in Computer Forensics and Multimedia Forensics. Nowadays, Multimedia
Forensics is largely used in companies, industries, medias, and so on to support
or refute an hypothesis in criminal or civil courts, to fight against cybercrime, to
solve insurance claims and scientific frauds. The main tasks regarding Multimedia
Forensics are:
• common source device clustering: given a set of images, we would like to find
out which images were obtained using the same camera.
• device identification: prove that a given image was obtained by a specific device.
• integrity verification or forgery detection: discover malicious processing, detecting
local inconsistencies, odd items added to or removed from the image during digital
processing.
• recovery of processing history: lossy compression, multiple compressions (double
JPEG problem), manipulations, filtering, cropping, resizing, contrast and brightness
adjustment.

An active approach to the problems of source identification and integrity ver-
ification is the use of authentication: some features are extracted for generating
authentication signature at the source side. The image integrity is verified by sig-
nature comparison at the receiver side. Even those watermarks, visible or invisible,
embedded in the firmware, can be removed with different attacks.
The signal processing chain in digital cameras is complex and vary for different
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camera types and models. It typically includes signal quantization, white balance,
demosaicking (color interpolation), color correction, gamma correction, filtering,
and JPEG compression [6].
Because details about the processing are usually hard-wired or proprietary, it is
crucial to be able to reconstruct part of those data from the unique features of the
pictures themselves, in a passive and blind approach. The advantages of a passive
approach are that we don not need dedicated devices, a trusted infrastructure and
a standard to make them inter-operable.

Common source device clustering estimates the origin of the pictures, the camera
type and the conditions under which the image has been taken. These statistics
may be already present in the header file and in the metadata. However, the
metadata can be easily altered, so the information of their origin may be lost or
corrupted.
We can therefore perform a "calligraphic expertise" on the matrix of pixels that
constitute the image and extract an estimate of its fingerprint. A fingerprint is a
unique deterministic trace left by each sensor on every photo produced by that
specific camera.
Respect to source identification, common source clustering is much more computa-
tionally intensive, as O(N2) comparisons have to be made for N images, whereas
source identification only needs N comparisons.

Image clustering faces the challenge of grouping big datasets of images into
as few clusters as possible while maintaining high precision. In our case, each
group has to contain only photos acquired from the same camera. Image clustering
relying on camera fingerprints is a blind problem, where clustering is performed in
the absence of any prior information, using passive authentication techniques that
exploit camera fingerprints to regroup images taken by the same device.
Many approaches are referred to as supervised. They require a similarity threshold
parameter inserted as input, in order to tune the algorithm on a benchmark dataset,
during the hierarchical clustering step. This drawback is present in Bloy2008 [3],
which contains a parameter that varies for different camera models, limiting its
scalability and applicability in new environments [7].
In a unsupervised scenario, as the algorithm proposed by Li [8], image classification
is considered with unknown number of cameras of unknown types. The classifier
can perform at very accurate quality level and a contained error rate, without the
user providing extra information about the dataset. The problem is that the images
have to be analyzed in full-sized to compensate for the influence from the scene
details. This task raises a lot the complexity and is not feasible in large image
dataset classification. Because of that, the development of unsupervised methods
has suffered for delays [8].
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1.2 Contributions and organization of the thesis
In this thesis we consider the problem of common source device clustering. We
experiment with low complexity image clustering algorithms to regroup pictures
based on the similarities of their camera fingerprints. The proposed improvements
in the clustering and attraction phases are designed to work on top of FICFO [1]
and RCIC [2] algorithms.

� Chapter 2 presents a background on PRNU and clustering literature. In
particular, it introduces the reader to the camera sensor output model, the
PRNU camera fingerprints estimation and the matching procedure. It contains
also theoretical notions and different strategies for image clustering based on
camera fingerprints.

� Chapter 3 review the most important approaches in the literature of image
clustering algorithms based on camera fingerprint:
• Bloy algorithm [3] randomly searches for a pair with correlation value greater
than a threshold. Bloy generates hierarchical clustering using a sequence of
merge operations. Iteratively, it compares the references and the remaining
fingerprints.
• FICFO [1] computes a ranking index RI as a metric of the quality of each
estimated fingerprint and it stores all the fingerprints sorted in descending
order of RI. FICFO produces a partition that is usually an overclustering of
little pure (or quite pure) groups, following a fast and efficient procedure.
• RCIC [2] instead, saves the fingerprints in a random order and it has to
regroup without any knowledge of the goodness of the attractors, producing
stochastic outputs usually in a slightly less efficient way.
• Khan attraction [1] conducts a merge of pairs clusters having maximum
correlation between their centroids, until they are greater than the threshold.
Here we discuss the advantages and the problems of these algorithms, espe-
cially their suitability for a blind supervised scenario, their computational
complexity and their robustness when the number of clusters is much larger
than the average number of images per camera.

� Chapter 4 describes the different image clustering algorithms that are pro-
posed in the thesis, the steps involved and the detailed implementation of
their pseudo-codes. For the clustering phase we compare:
• Full Matrix [4]: this is based on computing a matrix of distances between
every possible couple of fingerprints, for a complete knowledge of the problem,
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followed by a hierarchical clustering.
• First reference: chooses the first fingerprint in the list of currently un-
clustered fingerprints as reference for attracting other fingerprints, without
updating it.
• Fair: updates the reference fingerprint in the above scheme by computing a
fair average of the currently attracted fingerprint.
• Weighted: updates the reference fingerprint by computing a weighted aver-
age of the currently attracted fingerprint, where the weights are proportionally
to the ordering factor RI.

After this first step, we are free to consider the obtained partition already as
the final image clustering we were searching for, or we can apply an optional
attraction phase, aiming for a better clustering effectiveness, chosen between
the following methods:
• Full Matrix attraction: the Full Matrix method is applied to a preexisting
partition.
• Hierarchical Agglomerative [4]: builds the binary tree of distances between
all the centroids. At a pre-computed height, it splits the tree into a cluster
partition.
• Static/Dynamic Pure attraction: refines the clusters internally, moving
some fingerprints to the correct cluster they should lie in, according to a
k-means clustering strategy.

� Chapter 5 contains a discussion about the experimental setup and the evalu-
ation metrics.
Our thesis presents an ablation study of the best methods proposed, where
some parameters are tested and removed one by one, in order to understand
their contribution to the performances. In this chapter we analyze the results
in tables of performances. The final section compares the proposed algorithms
among themselves and with the State of the art techniques.

� Chapter 6 concludes the work with a comment about the results obtained
and some possible future refinement work, such as a sparse representation for
the fingerprints, to be implemented over our proposed algorithms.
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Chapter 2

Background on PRNU and
clustering

In this chapter we define the technical terms we adopt in the thesis, as PRNU
noise, cosine similarity and clustering. We introduce the reader to the camera
sensor output model, the camera fingerprints estimation and the PRNU matching.
We also present an overview of the procedures adopted in the literature for image
clustering, such as sparse representation, k-means and Gaussian mixture.

2.1 PRNU noise
The fingerprint is related to the sensor pattern noise (SPN) of the camera and is
unique for each brand, model and every instance of a device. The pattern noise is
a combination of fixed pattern noise (FPN) and the photo response non uniformity
(PRNU) [9]. The PRNU is the main component of the pattern noise and it is
present in every image taken from a camera, due to the pixel non uniformity.
Due to intrinsic disconformities during the manufacturing process, each pixel has
a slightly different sensitivity to light, that is why the PRNU is a unique sensor
feature, like an intrinsic authentication watermark and it is related to a specific
device.
When the pixel is hit by a fixed number of photons, it responds with a quantity
of electrons which is proportional to a factor modelled by one plus a zero-mean
noise-like signal K. This factor has slight variations for each pixel in the camera,
hence leading to a Multiplicative Noise Pattern proper of each sensor.
The pattern noise is deterministic and remains a stable noise component, unaffected
by exposure time, temperature or humidity [10].
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The first easy approach to sensor biometrics is the investigation of defective
pixels, hot and dead pixels, that scatter the sensor. Nowadays, we rely on PRNU
noise that contain more information regarding all the array of pixels. PRNU can
also be used in parallel with machine learning for reliable device identification.

2.1.1 PRNU Sensor Output Model
The quantized signal I is computed starting from the incident light intensity Y ,
the quantization noise Q, the PRNU factor K and considering some additive,
zero-mean independent random noise L (including the shot noise, the dark current
and the photon noise effects):

I = gγ[(1 +K)Y + L]γ +Q (2.1)

where g is the color channel gain factor that adjusts the pixel intensity level ac-
cording to the sensitivity to spectral bands in order to obtain the correct white
balance. γ is the gamma correction factor, typically set to γ= 0.45.

By applying the Taylor expansion to equation 2.1 and keeping the first two terms,
each photo can be approximately described by a sum between a noise free term I0,
the signal I0K0 that introduces to the flat-field image a unique multiplicative noise
pattern K0= γK and an independent random noise component R.

I ≈ (gY )γ (1 + γK + γ
L

Y
) +Q (2.2)

I ≈ I0 + I0K0 +R (2.3)

The equivalent additive noise R comes by regrouping many noise terms considered
as undesired disturbances to simplify the notation and it can be obtained as:

R = γ I0
L

Y
+Q (2.4)

2.2 PRNU detection
The PRNU detection, is obtained by comparing the noise residual W to a reference
fingerprint K, according to a predefined threshold in a Neyman-Pearson approach,
distinguishing between two hypotheses in a binary test:

• H0: W = IK0 + RD where K0 /= K (image not acquired by that sensor)
• H1: W = IK + RD where K0 = K (image acquired by the same sensor)
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H1 hypothesis represents the Inter-class correlation, distributed in a sparse area
with a big variance and positive mean, as in figure 2.1.
In the H1 hypothesis the cross-correlation value is greater than the threshold.

C = 〈I K, I K0 +RD〉
‖I K‖ ‖I K +RD‖

> Th (2.5)

Applying the Central Limit Theorem we obtain:

E〈I K, I K +RD〉 = ‖I K‖2 (2.6)
V ar〈I K, I K +RD〉 = ‖I K‖2 σ2(RD) (2.7)

H0 hypothesis instead, is the Intra-class correlation, among different cameras
(cross-camera). All the same camera fingerprints take place in a zero mean Gaussian
shape, with variance equal to the inverse of the crop size of the image I the fingerprint
is estimated from.
In the H0 hypothesis the cross-correlation value is lower than the threshold.

C = 〈I K, I K0 +RD〉
‖I K‖ ‖I K0 RD‖

< Th (2.8)

Applying the Central Limit Theorem we obtain:

E〈I K, I K0 +RD〉 = 0 (2.9)
V ar〈I K, I K0 +RD〉 = ‖I K‖2 (σ2(RD) + σ2(K)) (2.10)

2.2.1 Correlation detector
False alarm threshold

Our clustering problem is based on the decision rule, the algorithm that takes as
input C, the cross-correlation between a fingerprint and a group, and has to choose
either H0 or H1 hypothesis.
If C < Th we expect as output H0, the correct rejection of the fingerprint. The
likelihood instead of accepting C is PFA, the probability of false alarm (prob. of
deciding H1 when H0 is true).

Neyman-Pearson criterion maximize the probability of detection PD (prob. of
deciding H1 when H1 is true) and compute the similarity threshold Th starting
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Figure 2.1: same-camera and cross-camera distribution

from PFA as:

Th =
√

2σ(C) erfc−1(2PFA) (2.11)

‖I K0 +RD‖ =
√
Lσ2(RD) + Lσ2(K) (2.12)

E(C) = 0 (2.13)

V ar(C) = 1
L

(2.14)

therefore, we can approximate the variance of the cross-correlation σ(C) in the H0
hypothesis, from equation 2.7, simply as the inverse of the crop size L.

Lin threshold

An alternative similarity threshold is the one proposed by Lin and Li in their article
[11]. The adaptive thresholding significantly reduces the computational complexity
and allows the clustering results of the smaller databases to be combined to give
the solution to the NC � SC problem, because it is capable of adaptively finding
a suitable breaking point between the inter-class distribution and the Intra-class
distribution. The threshold adjust itself by following distribution shifting, so it
considers also the non-zero means null hypothesis.
Nevertheless, it tends to be unnecessarily confident when two distributions are
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close. It is either too conservative for large datasets or overly aggressive for the
small ones, making some of the Intra-class correlations misclassified as inter-class
correlations. The following figure 2.3 shows in green Lin’s threshold and in red a
more ideal one proposed in the article [12].

Gaussian mixture threshold

We can adjust the threshold to follow the distribution shifting, by considering also
the non-zero means inter-correlation hypothesis.
Once we have a first estimation of the clusters, we can have a successive attraction
phase, in which we must also refine our threshold to work with centroids instead of
fingerprints.
We can process our data to retrieve a split into a two-components Gaussian
distribution, one component for the inter and the other for the Intra fingerprints. It
makes use of the k-means++ algorithm (subsection 2.5.1). The average Intra-class
similarity represents the density of the PRNU clusters.

σ0 = variance(Gauss_mix0), (2.15)
µ0 = mean(Gauss_mix0), (2.16)

Th = µ0 +
√

2 ∗ σ0 ∗ erfc−1(2 ∗ PFA) (2.17)

We expect the H0 hypothesis Gaussian distribution to behave very similarly to
the approximations computed in formulas 2.13 and 2.14. We can also retrieve an

Figure 2.2: Neyman-Pearson Threshold and PFA
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Figure 2.3: Lin’s threshold in black, Inter-class distribution in green, Intra-class
distribution in red

estimate for the H1 hypothesis if we approximate the formulas 2.6 and 2.7 as:

‖I K +RD‖ =
√
‖I K‖2 + Lσ2(RD) (2.18)

E(C) = ‖I K‖
‖I K +RD‖

(2.19)

V ar(C) = σ2(RD)
‖I K +RD‖2 (2.20)

So, the Gaussian mixture must output:

H0 : C = G(µ0, σ0) ∼ G(0, 1
L

) (2.21)

H1 : C = G(µ1, σ1) ∼ G
( ‖I K‖
‖I K +RD‖

,
σ2(RD)

‖I K +RD‖2

)
(2.22)

The Gaussian mixture threshold is a likelihood-based measures of model fit that
include a penalty for complexity.
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2.2.2 Peak to Correlation Energy
Another detector, instead of the similarity threshold, is the comparison of the Peak
to Correlation Energy. In the PCE formula, |C(0,0)| denotes the peak amplitude,
the the height of the maximum in the cross-correlation between the extracted
PRNU noise for a given image and that same image multiplied by the PRNU
pattern of the camera to be verified.

PCE = |C(0,0)|2
1

MN − |∆|
∑
ii

∑
jj C(ii, jj)2 (2.23)

The denominator of PCE is the energy of the cross-correlation between the two
PRNU patterns, multiplied by a factor, where MN represents the dimension of the
normalized cross-correlation matrix C [13], ∆ is a small square area around zero
where a peak correlation is expected for correlated vectors and |∆| is its cardinality.
PCE shows good performance in PRNU comparison [14] because it is more ro-
bust to fluctuations in simple correlation and it can be used to manage PRNU
synchronization like cropped images [15].

Figure 2.4: Peak to Correlation Energy
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2.2.3 Sparse representation
A good strategy for decreasing the complexity is to work with reduced fingerprints.
For clustering digital images, we can suppose only a subset of pixels is relevant
in our analysis. The goal of sub-space clustering is to identify the number of
sub-spaces, their dimensions, a basis for each sub-space, and the membership of
each data point to its correct subspace. Each data point y can be expressed as the
linear combination of a proper reduced basis of its data matrix X.

y = z1X1 + z2X2 + ...+ ziXi + ...znXn (2.24)

The basis captures asymmetric relationships among data points and it must still
contain information about the subspace where fingerprints of a camera lie in.
If the columns of X are contaminated by noise, as in every real scenario, or they
are not well distributed, the formula:

minimize
z

‖Z‖1

subject to XZ = y
(2.25)

might never output an analytic solution. The problem is NP-hard, and hence,
for large graphs, finding the exact solution may become exceedingly complex and
require an Integer Linear Programming (ILP) algorithm (by soft thresholding and
computing analytical solutions) or some greedy approximations.

The sparse combination problem is efficiently solved in many articles as a
LASSO (Least Absolute Shrinkage and Selection Operator) with constraints, by
the Alternating Direction Method of Multipliers [12], when is reformulated as:

minimize
z

1
2‖XZ −X‖

2
F + γ‖Z‖1

subject to γ ≥ 0,
Z = 0,
diag(Z) = 0

(2.26)

The new representation is obtained by the l1-regularized least squares. The reg-
ularization hyperparameter γ controls the trade-off between the sparsity of the
solution we try to achieve and the reconstruction error. A too dense solution merges
unrelated clusters, a too sparse results in many small clusters [5].
It is possible to compute the spectrum, or eigenvalues, of the similarity matrix of
the data (performing dimensionality reduction) to apply after spectral clustering
on it.

Experiments already done by other researchers, prove the advantage of sparse
representation over normalized correlation. In our experiments, we always rely on
the full fingerprint reference, hence we ensure more precise outputs.
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2.3 PRNU Fingerprint matching

The main forensic tasks [16] performed using the camera sensor output model from
the previous section are:
• Device identification: corr(W,K) tests whether a given picture I was taken by a
specific device. An estimate of the reference fingerprint K of the device is extracted
from a dataset of training pictures. The noise residual W comes from the image
and is correlated with the reference K of the selected device, modulated by the
image intensity.
• Device linking: given two images I1 and I2, corr(W1,W2) compares their noise
residuals and determines whether the two pictures have been acquired by the same
device.
• Fingerprint matching: from a set of pictures I acquired by the same camera, it
estimates the reference fingerprint K of the group of pictures and it compare K
with each entry of a given list of fingerprints Ref_list. corr(Ref_listii, K) for
each entry in the list, determines which device in the database has acquired the
given pictures. If no device provides a correlation higher than a given threshold,
the device is declared absent from the list.

The extracted fingerprint from an image can be severely contaminated by
interferences. In order to guarantee the reliability and the accuracy of clustering,
the dimension of camera fingerprint has to be very large, for example, 511 × 511
pixels or above [11], in order to fully exploit the curse of dimensionality property,
in figure 2.9.

Figure 2.5: Sparse representation basis
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2.3.1 PRNU fingerprint estimation

Figure 2.6: PRNU fingerprint estimation

We estimate the fingerprints of each sensor from a set of images taken by the
camera. We suppress the noiseless image I0 by subtracting from both sides of the
equation 2.3 the denoised image Î0 = F (I), obtained using a denoising filter F .
In our experiments, each image is denoised using Mihcak filtering operation [17]
and subtracted from the original image to get the noise residual W, as in figure 2.6.

W = I − Î0 = I K0 +RD (2.27)

The Mihcak filter denoising step apply a Wiener filter to the wavelet coefficients,
where the parameters of the Wiener filter are estimated locally.
The Wavelet Transform exploits the sparsifying property. It concentrates the
details, edges and structure of an image on some few large coefficients making the
noise appear only as many small coefficients. Its core functioning iteratively applies
low/high pass filtering and down-sampling to the image. The purpose is to obtain
a multi-resolution version of the image since at each iteration it halves the spatial
resolution while doubling the frequency resolution.
The output is the noiseless image I0, from which the residual noise W is evaluated.
The formula for optimal denoising is based on the principle of the MSE(minimum
square error) estimator, hence, we expect to suppress many periodic and non-
periodic artifacts.
In the demodulation step the noise residual W is processed to estimate the PRNU
K̂.
If we filter the coefficients of the Wavelet Transform with a threshold cutoff value
to vary depending on the image statistics, we can take out most of the noise
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zeroing low coefficients, that contain the noise components, and leaving only the
one representing the image details [18].

Figure 2.7: Wavelet decomposition

The Mihcak denoising filter is implemented with a 4 level Wavelet decomposition
using the Daubechies 8 tap Wavelet filter [2]. Each wavelet coefficient is modeled as
a random variable with a Generalized Gaussian (GG) distribution having unknown
parameters. Parameter estimation, as the variance of the white additive Gaussian
noise to remove, is usually carried out by context modeling [19]. It starts by
estimating the underlying variance field using a Maximum Likelihood (ML) rule
and then applying the Minimum Mean Squared error (MMSE) estimation procedure.
The effect of edges is captured with use an adaptive window-based estimation
procedure.

The image content is quite cancelled in the noise residual, therefore we can
better estimate the PRNU from W respect than from I. This procedure improves
the signal-to-noise ratio SNR between the signal of interest I0K0 and the observed
data I. The energy of the PRNU signal I K is small compared to the noise term
R, this is the reason why we can assume RD= R plus the terms introduced by the
denoising filter, is unrelated to I K. RD is non-stationary and has variance way
bigger in textured areas.

The maximum likelihood estimator is used to compute an estimation of the
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fingerprint K̂, considering the dimension |Intra| of the images taken from the same
camera, namely the Intra-class, as in the equation 2.28:

K̂ =
∑|Intra|
k=1 IkWk∑|Intra|
k=1 I2

k

(2.28)

The estimated factor K̂ contains components that are systematically present
in every image, such as some weak artifacts of color interpolation, onsensor signal
transfer and sensor design [17].
Since we work with a linear model, the ML estimator is minimum variance unbiased
(MVU). Given N the number of images, the Cramer–Rao lower bound (CRLB)
determines the variance of the estimation K̂ as:

var(K̂) ∼ 1
N

+Q (2.29)

For smooth (low var(K̂),), bright and not saturated images, should approximate
very well the variance of the sum of image-acquisition noise sources R and the
terms I0 − Î0 introduced by denoising.
The estimated factor contains weak artifacts of color interpolation and blockiness
artifacts (depending on the strength of the JPEG compression) that are shared
among cameras using the same imaging sensor design.
The PRNU of two different cameras is usually slightly correlated. Thus, the hypoth-
esis of inter-correlation= 0 between groups is not verified, we expect an increase of
the false positives rate and a decrease of the reliability of camera identification.

In the case of color images, the estimation must be performed separately on
each matrix: the green, red and blue planes. Green noise residual components
WG is the most robust color to JPEG compression[3]. The green and red colors
contribute for only half of the surface of the image, in a typical Bayer pattern.
A global grayscale PRNU fingerprint is obtained applying the RGB–to–gray con-
version, giving different weights to each color matrix.

K̂ = 0.2989K̂R + 0.5870K̂G + 0.1140K̂B (2.30)

In the notation up to now, K̂ refers to any one of the tree colors considered. From
this step on, K̂ represents the gray-like PRNU fingerprint.

The estimated PRNU factor has to be further refined in the final step in pre-
processing by converting it into the Fourier domain. The noise components are
extracted using a zero-mean filter and Wiener filter operatorWf in the DFT domain
to suppress the periodic and non-periodic artifacts not unique to the camera sensor
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[1], caused by color interpolation of demosaicing algorithms and standard JPEG
compression. Visually identifiable patterns are removed and the resulting PRNU
has a flatter frequency spectrum [17].

For real images, with a complex non smooth content, we should make use of a
more refined formula for the noise residual W. Equation 2.27 has to be re-written
as:

W = TIK̂ + CG (2.31)

where T is a pixel-wise multiplicative attenuation factor and CG is a colored Gaus-
sian noise, a sequence of independent Gaussian variables with unequal variances.
Though for simplicity, we rely on the formula 2.27 for computing the noise residual
of the images in our dataset.

2.4 Clustering
The camera fingerprint is estimated from an image by subtracting the denoised
image from the original image. With this technique, we can reliably recover cluster
memberships even if the level of noise is higher than level of the signal. By averaging
multiple images of the same camera, random noise components can be reduced,
improving the readability of its pattern noise. Adding new images, the cluster
becomes more and more united and defined around its own center, the centroid of
the group.
A cluster SET is defined as the set of N data vectors X=x1, x2, xN , divided in a
partition P={p1, p2, pN}, such that they belong to the same partition p′:

SET = {xii|pii = p′}. (2.32)

Usually the output of a clustering phase is the list of clusters CG and the number
of groups G = |CG|.

The clustering procedure can be done in many ways. In our work we have
always to consider the trade-off between computational cost and performances of
our algorithms. In our work, we propose blind techniques that does not require
any reference information, parameter or bound imposed by humans. Every detail,
like the number of final clusters we get in the output, is computed by the program
itself.

Clustering can be treated as a graph partitioning challenge, an NP-complete
combinatorial optimization problem [20]. It is based just on the linear dependencies
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Figure 2.8: example of a 3-dimensional clustering

among Sensor Pattern Noises. [10]. For this computation we can store the full
cross-correlation between every image of the dataset (section 2.4.2). This is the
main phase of the Full matrix approach, in figure 4.1, but it requires a huge cost of
computation.
Instead, we want to adopt greedy techniques, which provide slightly sub-optimal
solutions but in a much shorter time. The implementation of those alternatives is
the focus of this thesis, as shown in figure 4.1.

A big challenge we encountered is referred to as the NC � SC problem. It
comes from the scenarios in which the dataset presents a number of cameras (Num-
ber of Classes NC) larger than the average dimension of the set per each camera
(Size of Class SC). The entire dataset might be underrepresented by the training
set, so that means limiting the scalability of our approach.

2.4.1 Curse of dimensionality
The downside of non-parametric methods is that their flexibility can increase
computational complexity. They often depend on some definition of distance in the
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data space that can impact on the results. This phenomenon is known as "curse of
dimensionality". If we have a collection of stochastic variables, the differences in
each dimension will be random, because squared Euclidean distances are just sums
over dimensions. The central limit theorem ensure we will observe a distribution
converging into a Gaussian. This leads to the distances becoming a way less distinct
and meaningful metric in higher dimensions.[21] In our experiments the problem of
the curse of dimensionality does not arise: we work with full fingerprint extracted
from big crops. A crop of 1023 pixels means that we have to deal with 10232

dimensions. However, we exploit the curse of dimensionality at our advantage.
we do not have to learn from a dataset how to distinguish the fingerprints (for
which we would need thousands of examples), but we already have a reasonable
supervised model that explains how the correlation between fingerprints behaves.
Increasing the crop dimension, the distance between matching and non-matching
increases; we are more and more sure that two items are really related to each
other and they are not simply stochastic variables with similar values.

Figure 2.9: curse of dimensionality. Histograms of correlation for bright and dark
blocks (crops) of images.

Our aim is to design an algorithm able to improve the metrics of the groups,
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respect to a given ground truth of the data. The algorithm must also keep the
precision P very stable and ideally always at 100%, without introducing false
positives, even in presence of the NC � SC problem.

2.4.2 Cross-correlation matrix
The additive noise N limits the reliability of traditional similarity measures used in
conventional clustering algorithms. To overcome this problem, we applied the cosine
similarity to measure the correlation between two normalized flattened fingerprints,
as in the formula 2.33.
We compute the cosine of the angle between two vectors as the inner product
between them over their magnitude; in other words it is the dot product of the
vectors once they are both normalized. In particular, in the field of data mining,
this formula is used to measure cohesion within clusters, where each term we are
comparing is assigned to a different dimension and the cosine similarity returns how
similar two items are likely to be, in terms of their content. The value is bound
between -1 (complete opposite correlation) and +1 (fully identical content), where
low module values indicate large angles and uncertainty to classify the vectors as
related.
Given two vectors V1 and V2 the cross-correlation is expressed by:

C(V1, V2) =
(

V1 · V2

||V1|| ||V2||

)
=

∑
V1(ii)V2(ii)√∑

V1(ii)2
√∑

V2(ii)2 (2.33)

Pairs of fingerprints with cosine similarity, above a predefined threshold value
Th are grouped together and they are considered taken from the same sensor; the
corresponding images are seen as captured with the same camera, as in formula
2.33. By definition, the diagonal of the matrix represents the auto-correlation. It
has all entries equal to one, so it is not considered by the clustering algorithms.
The cosine similarity between every couple of camera fingerprint is computationally
very expensive, especially when the number and size of images become very large
[12],

O
(
n ∗ (n− 1)

2

)
correlations (2.34)

where n= number of fingerprints examinated.
This step serves as a preliminary phase for many of the proposed algorithms.

After the preliminary step, the clustering phase aims at obtaining a first con-
servative grouping of residuals, where the merging of unrelated residuals has very
low probability and would alter a lot our results. Each cluster is represented by its
centroid, computed by averaging all the fingerprints in that group. Larger clusters
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are constructed by merging the groups that satisfy the threshold criteria.

As we discussed in section 2.2, the main idea of the clustering phase is the
estimation of a sensor K, in order to distinguish between two hypotheses:

• H0: W = IK0 + RD where K0 /= K (image not acquired by that sensor)
• H1: W = IK + RD where K0 = K (image acquired by the same sensor)

Pure clusters are obtained by localizing common neighborhood of points. Large
values of correlation indicate dense region of the closest fingerprints, that we can
consider as part of the same cluster. This step is not very expensive because we
consider only one group at time, comparing its correlation with the unclustered
fingerprints, all the groups already done are no more considered by the algorithm;
moreover, it works without applying spectral clustering to the data.

2.4.3 Divide and conquer split
Algorithms can be generalized to the case of large-scale databases[1]. Therefore, we
need to work in a divide-and-conquer strategy. We can load in memory only part of
the dataset and proceed by grouping sub-clusters based on the binary correlation
matrix. Each sub-cluster can be represented by its centroid, computed by averaging
all the fingerprints in that sub-cluster and successively merged with the others.

2.5 Image clustering algorithms

2.5.1 k-means algorithm
Lloyd’s k-means algorithm impose the centroid of the cluster as its center, by
considering the first k neighbors of each group and computing a hierarchical binary
tree (as in figure 2.10) to subdivide the points. Given any set of centers Z, and
z=|Z|, for each center z ∈ Z, let V(z) denote its neighborhood, that is, the set of
data points for which z is the nearest neighbor. Those points are distributed in the
Voronoi cell of z, as we can check from any graphical representation.
Each cycle of Lloyd’s algorithm shifts every center point z to the centroid of V(z)
and then updates the distance from each point to its nearest center and the position
of V(z). These steps are repeated until some convergence condition is met.[22]
the algorithm will eventually converge to a point that is a local minimum for the
distortion, but it is not guarantee it will also be a global minimum. A simple
implementation of Lloyd’s algorithm can be quite slow because it is very influenced
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by the cost of computing the nearest neighbors. This is why it is useful to scale k-
means clustering for large data sets through sampling and pruning. Given N points,
the algorithm produces a tree with O (N) nodes and O (logN) depth. The overall
running time is O (kN), which lay in the same order of a brute-force algorithm.
k-means clustering algorithms requires the number of clusters in input, which is
very hard to achieve in practical scenarios.

2.5.2 Full Matrix algorithm

Full Matrix [4] is a deterministic algorithm able to merge together the best couple
of fingerprints in the dataset at each step.
We can apply an exhaustive hierarchical clustering in which we compute the cross
correlations of all the fingerprints, as in the formula equation 2.33.
After this pre-clustering step, we treat the fingerprints as references of their un-
clustered groups. Therefore, the algorithm starts by considering G groups, where
G is the number of fingerprints in the dataset and it computes the full G × G
cross-correlation matrix. In this way, we exploit an exhaustive knowledge of the
whole set, therefore the method is very precise but extremely expensive in terms of
computational complexity in its pre-clustering step.

The cluster membership is obtained iteratively by finding at each step of a while
loop the pair of nearest fingerprints Fii and Fjj that has, by definition, the same
indices of the maximum cross correlation. This step is explained in detail in the
algorithm 1.
We merge the union of those groups and we store the reference fingerprint in the
matrix instead of their previous versions Fii and Fjj. In practice, we update the
cluster Cii, while we get rid of Cjj and we decrease G by one, until we exhaust all
what we can attract.
The first cycles represent a very delicate and critical phase. From a forest of
unclustered fingerprints we have to store the union of the best ones and keep on
merging the little groups between them and with new items. When we deal with
little groups, we have few information about their central reference and we find
harder to get a precise esteem of their centroids.
The computational complexity of the clustering stage is upper bounded by O (G),
where G= dimension of the matrix before clustering. We can assign to the overall
method the complexity of creating the full matrix in its first step, in equation
2.33, because the clustering procedure alone introduces a negligible amount of
computations.
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Algorithm 1 Full matrix algorithm
Input: Th: threshold, corr: normalized correlation matrix, CG: unclustered
fingerprints.
Output: G: number of groups, CG: updated clusters.

1: procedure FM_base(Th, corr, CG)
2: [C, ii, jj] = max(corr) . max in the matrix and its indices
3: len_Gr = |CG|
4: while C > Th do . there still exist a corr value greater than Th
5: CG(ii)← CG(jj) . Groupjj absorbed by Groupii
6: CG(jj) = ∅
7: len_Gr(ii) = len_Gr(ii) + len_Gr(jj)
8: corr(ii, :) = corr(:, ii) . corr matrix is symmetrical
9: corr(ii, ii) = Null . value out of bounds, never considered again

10: corr(jj, :) = corr(:, jj) = Null
11: G = G− 1 . groups and matrix dimension reduced by one
12: [C, ii, jj] = max(corr) . max in the matrix and its indices
13: end while
14: list← CG
15: end procedure

2.5.3 Hierarchical Agglomerative clustering

Agglomerate clustering [4] builds the binary tree of distances between all the
centroids. It output a diagram, the dendrogram, that regroups our data in a
deterministic tree graph, where the leaves represent the original fingerprints and
the y-axis shows the height at which a couple is regrouped into one set, as in the
example shown in figure 2.10. The tree starts at the bottom, considering every
fingerprint as its own singleton cluster, and merges groups together computing the
pairwise similarity matrix, until we are left at the root with is a single cluster that
contains all the data.
The algorithm maintains an active set of clusters and at each loop decides which
two clusters should merge. When two clusters are merged, the similarity matrix is
updated by replacing the corresponding two rows with their union and the new
group is added to the tree, with a label to the height they were regrouped. After
the update, a silhouette coefficient is calculated for each fingerprint. The silhouette
coefficients measure the cohesion within each cluster and the separation among
clusters. An average of silhouette coefficients gives an esteem of the global aptness
of the current partition. When all fingerprints have been merged into one cluster,
the partition corresponding to the highest suitability is interpreted as the optimal
partition.
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A feasible clustering comes from a legit dendrogram, where the group distance
vector is monotonically increasing by construction.

Figure 2.10: Dendogram example

2.5.4 Graclus graph
The Graclus graph partitioning algorithm [23] is able create coarse clusters. Graclus
is a fast graph clustering software that computes normalized cut and ratio associ-
ation from an undirected graph, already implemented as a Matlab extension in:
https://www.cs.utexas.edu/users/dml/Software/graclus.html It can run a
kernel k-means type of iterative algorithm to minimize general cut or association
objectives and it does not require any eigenvector computation.
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Chapter 3

State of the art methods for
PRNU clustering

In this chapter we review the most important approaches in the literature of image
clustering algorithms, based on camera fingerprints. The algorithms need to work
in a blind supervised scenario, without references to the source cameras present in
the datasets but with the possibility to tune some parameters from a testbench
dataset.
Here we discuss the advantages and the problems of these algorithms, particularly
their computational complexity and their robustness against the NC � SC prob-
lem.

For all the method presented in this chapter, we assume that the input is a set
of camera fingerprints having the same size, each normalized to have zero mean and
unit variance. In the following algorithm pseudo-codes, the variable Set represents
the group of each standardized fingerprint F, for every image in the dataset under
exam. We obtain the initial set of fingerprints Set from the dataset of images I as
given in the equation 3.1.
Given an image I in the dataset, we can compute F , the relative camera fingerprint,
as the standardization (Z_score) of the Wiener filter operator Wf applied on the
PRNU of the image [2].

F = Z_score
(
Wf

(I W
I2

))
(3.1)

Normalization is an optional preliminary step that can be helpful to compare
different values on the same scale and to return correlation values in the [-1,1]
range.

25



State of the art methods for PRNU clustering

3.1 Bloy algorithm

The pairwise nearest neighbor (PNN) method, also known as Ward’s method
belongs to the class of algorithms known as Agglomerative clustering [20]. PNN
generates hierarchical clustering using a sequence of merge operations until the
desired number of clusters is obtained. This method selects the cluster pair to be
merged if the objective function value will benefit by this operation. The main
drawback of the PNN method is its slowness, the complexity of the fastest known
exact implementation of the PNN method is lower bounded by O (N2), where N is
the number of data objects.

G.J.Bloy in 2008 implemented the pairwise nearest neighbor (PNN) technique
in a reduce complexity version [3]. Bloy algorithm is a very expensive well-known
solution that we used mainly as a performance reference.

The process of Bloy algorithm, in PHASE1 randomly searches for a pair with
correlation value greater than a pre-calculated threshold, or it stops if it reaches
a bound number of attempts NattMAX , declaring the fingerprints as unclustered.
The pairs of fingerprints are merged form a fingerprint. They became part of the
same group and the centroid is computed by averaging them.
Then in PHASE2, Bloy performs the first pass on the dataset. It compares the
reference fingerprints and the remaining fingerprints, working with the new groups
instead of the full dataset as it proceed, until all images have been tried or it
reaches an average of n= 50 images for computing each reference.
This fixed value n is clearly non robustness against the NC � SC problem.
The PHASE3 loops over all the unclustered images a second time, but allow more
than n= 50 images to be associated with the fingerprint without updating the
centroid.
The groups and the unclustered fingerprints undergo the clustering process again
and the three phases are repeated in a loop until PHASE1 has tried enough
pairs without success, reaching a bound number of groups GMAX , or until every
fingerprint is regrouped. The algorithm has to be supervised by inputting the
parameters NattMAX , GMAX , n and a value for the threshold Th.
A pseudo-code for Bloy algorithm is presented in algorithm 2.

The time complexity can be optimized by checking the value of a stop_flag at
every cycle, in order to "prune" useless loops, but the computational complexity
remains bound by O (N2)
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Algorithm 2 Bloy Algorithm
Input: Set: fingerprints, Th: threshold, d: dimension of the cropped fingerprints,
NattMAX : max number of attempts, GMAX : max number of groups, n: max size
for thresholds. Output: G: number of groups, CG: clusters, KG: References.

1: procedure Bloy(Set, Th, d, n)
2: G = 1, Natt = 0, stop_flag = 0
3: CG = ∅
4: while (N /= 0) do . we still have items to assign to groups
5: runPHASE1 . creates the first couples from the attractors
6: runPHASE2 . attracts new Fii in group CG, compute Kii

7: runPHASE3 . scrolls Uncl for others Fii ∈ CG, with a fixed Kii

8: Set = Uncl . fingerprints still in exam
9: N = |Set| . N= number of fingerprints

10: G = G+ 1
11: if G ≥ GMAX or Natt ≥ NattMAX then . returns if it procured
12: stop_flag = 1 . too many groups or if is looping too many times
13: end if
14: end while
15: end procedure

Bloy Algorithm- PHASE 1
1: procedure Phase1
2: N = |Set| . N= number of fingerprints
3: for ii = 1 to N − 1 and stop_flag== 0 do
4: Fii = load(Set(ii)) . Read zero mean full camera fingerprint
5: CG ← Fii
6: for jj = ii+ 1 to N and stop_flag== 0 do
7: Fjj = load(Set(jj)) . Read zero mean full camera fingerprint
8: C(jj) = 1

d

∑d
x=1 Fii[x]Fjj[x] . cross correlation

9: if C(jj) ≥ Th then
10: CG ← Fjj . new item included in the group
11: KG = Fii+Fjj

2

12: norm_K =
∑

KG

|KG|
13: KG = KG

norm_K
14: stop_flag = 1
15: end if
16: end for
17: end for
18: end procedure

27



State of the art methods for PRNU clustering

Bloy Algorithm- PHASE 2
1: procedure Phase2
2: if KG /= 0, |KG| ≤ n then . n is set to 50 images
3: Uncl = ∅
4: for ii = 1 to N do
5: Fii = load(Set(ii)) . Read zero mean full camera fingerprint
6: C(ii) = 1

d

∑d
x=1 Fii[x]KG[x] . cross correlation

7: if C(ii) ≥ Th then
8: |KG| = |KG|+ 1
9: KG = KG+Fii

|KG|
10: else
11: Uncl ← Fii
12: end if
13: end for
14: end if
15: end procedure

Bloy Algorithm- PHASE 3
1: procedure Phase3
2: for ii = 1 to |Uncl| do
3: Fii = load(Set(ii)) . Read zero mean full camera fingerprint
4: C(ii) = 1

d

∑d
x=1 Fii[x]KG[x] . cross correlation

5: if C(ii) ≥ Th then
6: |KG| = |KG|+ 1
7: KG = KG+Fii

|KG|
8: Uncl = remove Fii
9: end if

10: end for
11: end procedure

3.2 RCIC algorithm
We focused on Low Complexity Clustering Algorithms such as RCIC (Reduced
Complexity Image Clustering) and FICFO (Fast Image Clustering based on Fin-
gerprints Ordering) and we used them as a base for our methods.
FICFO[1] and RCIC[1] work in a blind scenario, facing the NC � SC problem
without any information or bound regarding the candidate images, the source
cameras, the number of cameras and the number of images per camera.
The total complexity of the regrouping phase is measured in terms of the number
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of NCC operations performed during the clustering, as in the equation 2.33. Both
FICFO and RCIC are able to exploit low complexity and fast computation cost.
Because of the few comparisons they need to do, they load in RAM memory a
single reference fingerprint (cluster centroid) and a full fingerprint (from the image)
at a time.
The I/O cost is quite high because for each group, all the images still unclustered
have to be read again in order to be tested for the current group.

In RCIC algorithm, a normalized fingerprint Imi is randomly selected from the
dataset as the reference fingerprint of a new group and it is moved to the cluster G.
The clustering is done iteratively by calculating the normalized cross-correlation C
between the reference fingerprint and the items still present in the dataset.
If the generic fingerprint Imi shows a correlation value greater than a threshold
Th, it is assigned to the cluster G; otherwise, it is left unclustered. The probability
of regrouping into the wrong cluster G a fingerprint from a different camera is
bounded by PFA, that impose the value of Th as in the formula 2.11.
A pseudo-code for RCIC algorithm is presented in algorithm 3.

After processing all fingerprints a total of NCC − 1 correlation operations
are performed to construct cluster G. The fingerprints grouped in cluster G are
removed from the dataset and we are left with NCC −G unclustered fingerprints.
A new cluster G+ 1 is initiated and a fingerprint Imi is randomly selected from
the dataset a reference fingerprint. The unclustered fingerprints are processed
by repeating the same procedure used for constructing the first cluster G. The
algorithm stops when all fingerprints are assigned to a cluster or they constitute a
cluster by themselves.
Each time a new fingerprint is included in a cluster, the corresponding reference is
updated by adding to itself the fingerprint and dividing the result by two.

KG = KG + Fjj
2

(3.2)

This simple formula does not take into account the length of the groups, so it gives
the new attracted fingerprint half of the importance of the total. This procedure
is usually dangerous in presence of false positives that drag the centroid very
far from its real position. Moreover, it divides by two the weight of the already
present fingerprints. In particular, the first fingerprint is an attractor and a good
approximation of the centroid. For a group containing G items, the first fingerprint
only contributes as 1

2G to the solution.

The algorithm never checks again the clusters already formed, this is the task
performed by an optional attraction step that may further merge the groups.
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The attraction always suffers the same problem of RCIC in its base form, the
randomness of the data, that impose us to consider the variance in which our
results lay in. Every output is a stochastic instance of a run of the algorithm,
instead of a deterministic representation of the clusters.

Algorithm 3 RCIC Algorithm
Input: Set: Fingerprints, Th: Threshold, d: dimension of cropped fingerprints.
Output: G: number of groups, CG: Clusters, KG: Reference fingerprints.

1: procedure RCIC(Set, Th, d)
2: G = 1
3: Uncl = randomize(Set) . unclustered set, full of randomized fingerprints
4: N = |Uncl| . N= number of fingerprints
5: while (N /= 0) do . we still have items to assign to groups
6: Unck+1 = ∅
7: CG = ∅
8: F1 = load(Set(1)) . Read zero mean full camera fingerprint
9: KG = F1

10: CG ← F1 . attractor included in the group
11: for ii = 2 to N do
12: Fii = load(Set(ii)) . Read zero mean full camera fingerprint
13: C(ii) = 1

d

∑d
x=1 KG[x]Fii[x] . cross correlation

14: if C(ii) ≥ Th then
15: CG ← Fii . new item included in the group
16: KG = KG+Fii

2

17: norm_K =
∑

KG

|KG|
18: KG = KG

norm_K
19: else
20: Uncl ← Fii . item included in Uncl for the next cycle
21: end if
22: end for
23: Uncl = randomize(Uncl)
24: G = G+ 1
25: N = |Uncl|
26: end while
27: end procedure
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3.3 FICFO algorithm
The fast image clustering based on the fingerprint ordering (FICFO) algorithm
select the best fingerprints with lower estimation error as reference fingerprints.
Those fingerprints are the closest to the respective centroids, so we can already
assign them as the first reference of each group.
The ordering factor depends on the quality of the fingerprints and it can be referred
as the ranking index RI, as expressed in the equation 3.3. As a first step of FICFO,
we compute a ranking index RI depending on the image content, which tells how
reliably a fingerprint can be estimated from that image. One of the best example
we can provide of real image with very high RI are flat image uniformly bright and
not saturated, such as out of focus cloudy skies [17].
The RI parameter reduces computational complexity, because the good images are
already regrouped in the first positions of their groups, based on the assumption
that fingerprints with lower estimation errors are the closest to their centroids.
The FICFO algorithm proceeds by checking the other images in the dataset. It
correctly clusters them and, if possible, it merges some groups that have very high
correlation.[2]
FICFO instead of randomly appending images to the existing groups, as RCIC
does, it sorts them in descending order, using as sorting key the computation of
the Rand Index RI of each fingerprint.

RIii = Gl
1/α
ii + (1− Sii)1/β + (1− Tii)1/γ (3.3)

with Gl as the average gray level, S as the saturation level, T as the texture; α > 1,
β > 0 and γ > 0 are the factors defining the contribution of Gl, S and T respectively.
RI increases with an increase of α and γ, while it is inversely proportional to β.
FICFO works in a supervised way, where α, β and γ have to be carefully chosen
for the images we want to process.

The cluster reference is computed with the formula 3.2, as in the RCIC code.
RI is used by the clustering phase as an index of purity of the picture, the ordering
factor that shows the reliability of using the reference as an attractor for other
images.
Therefore, the main difference between FICFO and RCIC is the introduction of the
parameter RI. It adds an initial computation cost in the fingerprint pre-processing
phase with a negligible complexity, but it guarantees deterministic and reproducible
results in the output. The data are easier to compare with other methods and we
never have to run again the algorithm to provide new estimates of the final clusters.

FICFO, as RCIC, never backtrack over the clusters already computed, this task
can be performed by an optional attraction step that may further merge the groups.
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A pseudo-code for FICFO algorithm is presented in algorithm 4.

Algorithm 4 FICFO Algorithm
Input: Set: Fingerprints, RI: Ranking Indexes, Th: Threshold, d: dimension of
cropped fingerprints.
Output: G: number of groups, CG: Clusters, KG: Reference fingerprints.

1: procedure FICFO(Set, RI, Th, d)
2: G = 1
3: Uncl = sort(Set, RI) . unclustered set, full of sorted fingerprints
4: N = |Uncl| . N= number of fingerprints
5: while (N /= 0) do . we still have items to assign to groups
6: Unck+1 = ∅
7: CG = ∅
8: F1 = load(Set(1)) . Read zero mean full camera fingerprint
9: KG = F1

10: CG ← F1 . attractor included in the group
11: for ii = 2 to N do
12: Fii = load(Set(ii)) . Read zero mean full camera fingerprint
13: C(ii) = 1

d

∑d
x=1 KG[x]Fii[x] . cross correlation

14: if C(ii) ≥ Th then
15: CG ← Fii . new item included in the group
16: KG = KG+Fii

2

17: norm_K =
∑

KG

|KG|
18: KG = KG

norm_K
19: else
20: Uncl ← Fii . item included in Uncl for the next cycle
21: end if
22: end for
23: G = G+ 1
24: N = |Uncl|
25: end while
26: end procedure

3.4 Khan attraction
The merging phase of Khan clustering [1] is conducted as an iterative procedure,
as in the pseudo-code of algorithm 5, which respectively selects pairs of groups
having maximum correlation between their centroids and compares them with the
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threshold Th. The algorithm stops when no more pairs of groups exist that satisfy
the merging condition.

The centroid KG for every group is computed as

KG =
∑
Fii ∈ CG
|Fii|

(3.4)

Algorithm 5 Khan Attraction Algorithm
Input: KG: Reference fingerprints, K: previous number of groups, Th: Threshold,
d: dimension of cropped fingerprints.
Output: G: number of groups, CG: Clusters.

1: procedure Khan_attraction(KG, K, Th, d)
2: G = 0
3: for ii = 1 to K do
4: G = G+ 1
5: for jj = 1 to k and ii /= jj do
6: C(j) = 1

d

∑d
x=1 Kii[x]Kjj[x] . cross correlation

7: if C(j) ≥ Th then
8: Cii ← Cjj . Groupjj absorbed by Groupii
9: end if

10: ncc = ncc+ 1
11: end for
12: end for
13: end procedure

The computational complexity is: O (K2) where K is the number of groups in
the first attraction.
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Chapter 4

Proposed methods

We implemented different clustering techniques and attraction phases in order to
increase as much as we could the performances of the State of the art algorithms
mentioned above. Our thesis presents an ablation study of the best methods
proposed, where some parameters are tested and removed one by one, in order to
understand their contribution to the performances. In the final results we will show
the best attraction steps applied to the best clustering technique, in accordance
with the metric we used.

The clusters produced by FICFO and RCIC, indeed, can be further refined by
using an attraction stage. The main idea is to consider each group as a single
fingerprint, its reference, and to proceed with a second clustering phase that
conglomerate groups of groups. Usually, FICFO and RCIC output many little
clusters and some unclustered outliers.
The attraction phase should be able to reduce the number of groups, merging items
that the previous step considered different. In the attraction phase, we work with
the mean of the groups, so many noise components ideally average to zero. These
versions of the codes that make use of the base algorithm plus the attraction are
called FICFO-A and RCIC-A.
We propose multiple methods of attraction and all of them are compatible with
both of our algorithm RCIC and FICFO. Because of their dependence on the base
version we start from, the final clusters will be stochastic or deterministic as the
respective input data.

It is very important to notice that groups are not checked internally. Whichever
error occurred in the first phase, whatever false positive they contain, it remains
inside of them, and may lead to an incorrect assumption of combining it with
another group. The distance between groups is an optimum merging parameter
only for pure groups, while for corrupted clusters, which compute wrong centroids,
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it makes us to combine unrelated groups, dropping the precision of our results.
Therefore, we can introduce an attraction method able to check the groups, by
re-assigning the fingerprints to the clusters, or we rely on the strong assumption
that the groups are already very pure as they are, when computed by FICFO and
RCIC.

For the clustering phase we compare the following methods:
• Full Matrix [4]: this is based on computing a matrix of distances between every
possible couple of fingerprints, for a complete knowledge of the problem, followed
by a hierarchical clustering.
• First reference: chooses the first fingerprint in the list of currently unclustered
fingerprints as reference for attracting other fingerprints, without updating it.
• Fair: updates the reference fingerprint in the above scheme by computing a fair
average of the currently attracted fingerprint.
• Weighted: updates the reference fingerprint by computing a weighted average
of the currently attracted fingerprint, where the weights are proportionally to the
ordering factor RI.

After this first step, we are free to consider the obtained partition already as the
final image clustering we were searching for, or we can apply an optional attraction
phase, aiming for a better clustering effectiveness, chosen between the following
methods:
• Full Matrix attraction: the Full Matrix method is applied to a preexisting

Figure 4.1: Procedure steps
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partition.
• Hierarchical Agglomerative [4]: builds the binary tree of distances between all
the centroids. At a pre-computed height, it splits the tree into a cluster partition.
• Static/Dynamic Pure attraction: refines the clusters internally, moving some
fingerprints to the correct cluster they should lie in, according to a k-means clus-
tering strategy.

4.1 Clustering phase
4.1.1 Full Matrix clustering with normalized threshold
This clustering technique has been obtained from the Full Matrix algorithm, pre-
sented in the literature review in section 2.5.2. The key of this modification is
the loop while C > Th. The merge of fingerprint could end too soon because, as
we proceed, we find ourselves in front of bigger and bigger groups. If the best
of them has correlation lower than the threshold we exit the loop, but this does
not automatically mean we could not attract other little groups. Here comes the
importance to normalize the threshold to the length and the statistics of each
possible merge.

The vector w_corr stores the squared norm of the fingerprints at each step of
the algorithm. When we start from the initial fingerprints, wcorr is set equal to 1
for every unclustered fingerprint. As the merging process proceeds, it is updated
according to the groups dimension weighted by their correlation goodness, namely
the correlation with the new fingerprint that is joining the cluster.
Thanks to this factor, we can store the degree of proximity of the items in the
groups. Given for instance only two fingerprints Fii and Fjj, their cross-correlation
is:

corr(ii, jj) = 〈Fii, Fjj〉 (4.1)

The parameter w_corr, corresponding to the sum of the two fingerprints, can be
obtained as:

w_corr = ‖Fii + Fjj‖2 = ‖Fii‖2 + ‖Fjj‖2 + 2 corr(ii, jj) (4.2)

and it varies from
√

2 to 2! =2 ; where
√

2 is the weight factor for extremely far
groups (with cross-correlation =0). and 2 represent identical items (with cross-
correlation =1) The parameter wcorr tunes the values of the cross correlation matrix
and influences the successive choices of the maximum(corr).
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The parameter γ represents a correction factor that highlight the length of the
groups, raising the threshold Th accordingly the the sum of the items in the groups
we want to join, so that it is harder to merge bigger groups together. The cross
correlation between the two references, normalized by the length matrix (elevated
to the γ power), has to be bigger than the normalized threshold. The parameter γ
can easily turned off if it is set to zero, therefore we can consider every version of
the algorithm (algorithm 6) as a generalization of the γ =0 case. In the attraction
phase is not valid anymore the hypothesis of w_corr= 1, for every fingerprint. We
are working with clusters CG, each of them with its own statistics.

Algorithm 6 Full matrix clustering with normalized threshold
Th: threshold, corr: normalized correlation matrix, γ: gamma parameter, CG:
unclustered fingerprints.
Output: G: number of groups, CG: updated clusters.

1: procedure FM_norm(Th, corr, γ, CG)
2: [C, ii, jj] = max(corr) . max in the matrix and its indices
3: len_Gr = |CG|
4: w_corr = 1
5: while C > Th do . there still exist a norm(C) value greater than Th
6: corr_coeff = C ∗

√
w_corr(ii) ∗

√
w_corr(jj)

7: corr(:, ii) =

√
w_corr(ii) ∗ corr(:, ii) +

√
w_corr(jj) ∗ corr(:, jj)√

w_corr(ii) + w_corr(jj) + 2 ∗ corr_coeff
8: w_corr(ii) = w_corr(ii) + w_corr(jj) + 2 ∗ corr_coeff
9: CG(ii)← CG(jj)

10: CG(jj) = ∅
11: len_Gr(ii) = len_Gr(ii) + len_Gr(jj) . Groupjj absorbed by Groupii
12: corr(ii, :) = corr(:, ii) . corr matrix is symmetrical
13: corr(ii, ii) = Null . value out of bounds, never considered again
14: corr(jj, :) = corr(:, jj) = Null
15: G = G− 1 . groups and matrix dimension reduced by one
16: len_matrix = |len_Gr × len_Gr|γ

17: [C, ii, jj] = max( corr

len_matrix) . max in norm matrix and its indices
18: end while
19: end procedure

37



Proposed methods

4.1.2 Full Matrix clustering with merge singleton
This other version of the Full Matrix algorithm, presented in algorithm 7, introduces
another important parameter to the algorithm variant presented in section 4.1.1.
It makes use of a binary vector that, thanks to its mask, splits the groups into the
unclustered images with length= 1 and the bigger clusters. The vector forces the
normalization introduced by len_matrix to be reset to 1, in case one of the two
merged groups (or both) has length |CG| = 1.

The matrix bin_matrix is computed as the external product between bin_vect
and itself, where bin_vect is a binary mask of length. It appears to have benefits over
all the datasets in the base version because if forces the normalization introduced
by len_matrix to be reset to 1, in case one of the two merged groups (or both) has
length |CG| = 1. This solution introduces an important alteration in the way the
algorithm deals with unclustered and little groups, improving the quantity and the
correctness of the attractions done.

4.1.3 First reference clustering
The easiest implementation of a clustering algorithm relies on fixing the first
fingerprint attracted by each group as the centroid. With this method, we give
extreme importance to the attractor and we are not able to update the centroid to
shift toward the real center of the final cluster.
In each step of the pseudo-code in algorithm 8, we consider every cluster we obtained
up to now as an overclustering of little pure groups. We attract them as if they
were single items, considering only the unclustered fingerprints and the centroids of
each group, without having to access each single fingerprint of the dataset again.
The result is a merge of only the fingerprints that have very low distance from the
first one, so in the best scenario it creates a huge number of pure groups, while in
many other realistic cases it also introduces some false positives.

4.1.4 Fair clustering
The centroid of each cluster can be iteratively computed as a fair mean of all the
items in our clusters, increasing the number of items Av_fact by one each time
we merge an unclustered fingerprint. With this strategy, we give the same weight
to each fingerprint, moving the centroid toward the real center of the final cluster
with a weight proportional to the number of fingerprint present in the cluster. In
a huge group, the presence of an outlier produces a little variation and deviation
of the centroid, corrected by all the true positives included in the cluster. Since
PRNU estimation improves steadily with the dimension of the cluster, the biggest
the group is, the strongest it is in producing an effective representation similar to
the ground truth.
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Algorithm 7 Full Matrix clustering with merge singleton
Input: Th: threshold, corr: cross correlation matrix, γ: gamma parameter, CG:
unclustered fingerprints.
Output: CG: clusters.

1: procedure FM_singletone(Th, corr, γ, CG)
2: [C, ii, jj] = max(corr) . max in the matrix and its indices
3: len_Gr = |CG|
4: w_corr = 1
5: while C > Th do . there still exist a norm(C) value greater than Th
6: corr_coeff = C ∗

√
w_corr(ii) ∗

√
w_corr(jj)

7: corr(:, ii) =

√
w_corr(ii) ∗ corr(:, ii) +

√
w_corr(jj) ∗ corr(:, jj)√

w_corr(ii) + w_corr(jj) + 2 ∗ corr_coeff
8: w_corr(ii) = w_corr(ii) + w_corr(jj) + 2 ∗ corr_coeff
9: Cii ← Cjj

10: CG(jj) = ∅
11: len_Gr(ii) = len_Gr(ii) + len_Gr(jj) . Groupjj absorbed by Groupii
12: corr(ii, :) = corr(:, ii) . corr matrix is symmetrical
13: corr(ii, ii) = Null . value never considered again
14: corr(jj, :) = corr(:, jj) = Null
15: G = G− 1 . groups and matrix dimension reduced by one
16: len_matrix = |len_Gr × len_Gr|γ
17: bin_vect = len_Gr > 1 . binary mask of length
18: bin_matrix = bin_vect× bin_vect′ . compute the mask
19: len_matrix(not(bin_matrix)) = 1 . force some lengths to 1
20: [C, ii, jj] = max

corr

len_matrix . max in norm matrix and its indices
21: end while
22: end procedure

The problem of this technique is the importance that false positive may have in
attracting other wrong items in the cluster, especially when they are included in
little groups. False positives may lead to the attraction of more and more outliers,
adding random noise to the reference vector and destroying the performances of
our algorithm.
By definition, the first fingerprint of our cluster is never a false positive and it is
rare to encounter a wrong fingerprint in the first positions of a group, because it
has to have a very high correlation and it has to lay in the very proximity of the
centroid of a wrong group to be attracted before of the true positives.
A pseudo-code for FICFO Fair clustering is presented in algorithm 9.
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Algorithm 8 First reference clustering
Input: d: dimension of cropped fingerprints, Th: threshold, Set: fingerprints.
Output: G: number of groups, CG: Clusters, KG: Reference fingerprints.

1: procedure First_ref_clust(d, Th, Set)
2: G = 1
3: while (N /= 0) do . we still have items to assign to groups
4: F1 = load(Set(1)) . Read zero mean full camera fingerprint
5: CG(G)← F1
6: KG = F1 . reference equal to the first image
7: for jj = 2 to |Set| do
8: Fjj = load(Set(jj)) . Read zero mean full camera fingerprint
9: C = 1

d

∑d
x=1 KG[x]Fjj[x] . cross correlation

10: if C ≥ Th then
11: CG(G)← Fjj . new item included in the group
12: Set remove Fjj
13: end if
14: end for
15: N = N − 1
16: end while
17: end procedure

4.1.5 Weighted clustering

The Fair clustering main strength is the mean of fingerprints that gradually gives
less importance to the new items, without fully excluding the new entries as in the
First reference technique. However, the algorithm has no way to customize the
shift of the centroid, depending on the importance of the new attracted fingerprint
and the confidence that we are in presence of a true positive.
Another proposed solution is to consider a weighted average that considers more
reliable the fingerprints of flat image uniformly bright and not saturated, the ones
easier to cluster in the right group. Those images can give us a better estimation of
the correct position of the centroid but, because we work in a NC � SC scenario,
we do not have enough images to settle for only the best of them, so we need
to retrieve useful information also from the other images attracted in the group,
with a lower degree of participation. The proposed algorithm 10 makes use of
the ordering factor RI already computed for each fingerprint of FICFO, therefore
this technique is not compatible with the RCIC scenario. Weighted clustering is a
generalized Fair clustering. Fair clustering, indeed, can be seen as a version of this
algorithm that simply impose the fingerprint weight RI= 1 for each item.
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Algorithm 9 Fair clustering
Input: d: dimension of cropped fingerprints, Th: threshold, Set: fingerprints.
Output: G: number of groups, CG: Clusters, KG: Reference fingerprints.

1: procedure Fair_clust(d, Th, Set)
2: Av_fact = 1 . length of the current group
3: while (N /= 0) do . we still have items to assign to groups
4: F1 = load(Set(1)) . Read zero mean full camera fingerprint
5: CG(G)← F1
6: KG = F1 . reference equal to the first image
7: for jj = 2 to |Set| do
8: Fjj = load(Set(jj)) . Read zero mean full camera fingerprint
9: C = 1

d

∑d
x=1 KG[x]Fjj[x] . cross correlation

10: if C ≥ Th then
11: CG(G)← Fjj . new item included in the group
12: KG = (KG∗Av_fact)+Fjj

Av_fact+1 . KG= updated reference
13: norm_Ref =

∑
KG

|KG|
14: KG = KG

norm_Ref . normalized Ref
15: Av_fact = Av_fact+ 1 . updates number of items in CG(G)
16: end if
17: end for
18: N = N − 1
19: end while
20: end procedure

4.2 Attraction phase, clustering refinement
Lastly, we may need an attraction phase, in which all the centroids are considered as
single fingerprints and we proceed on clustering them again in fewer groups. In an
attraction phase, when we have way less components respect to the beginning, we
can treat our clusters as single items and we can try to attract them by computing a
new threshold that takes into account the common noise [24]. The cross correlation
between groups indeed suffers for a non-negligible inter-class noise, therefore in
this phase, we have to tune the previous clustering threshold to work with groups.
The fingerprints with correlation smaller than a threshold value, respect to all
the others, are assigned to the unclustered set of fingerprints, and the remaining
clusters are declared as final clusters configuration.

The imperfections in the PRNU fingerprint depend on artifacts which may be
common to multiple cameras. For instance, the color filter array produces artifacts

41



Proposed methods

Algorithm 10 Weighted clustering
Input: d: dimension of cropped fingerprints, Th: threshold, Set: fingerprints.
Output: G: number of groups, CG: Clusters, KG: Reference fingerprints.

1: procedure Weighted_clust(d, Th, Set)
2: Av_fact = 0 . length of the current group
3: while (N /= 0) do . we still have items to assign to groups
4: F1 = load(Set(1)) . Read zero mean full camera fingerprint
5: CG(G)← F1
6: KG = F1 . reference equal to the first image
7: for jj = 2 to |Set| do
8: Fjj = load(Set(jj)) . Read zero mean full camera fingerprint
9: C = 1

d

∑d
x=1 KG[x]Fjj[x] . cross correlation

10: if C ≥ Th then
11: CG(G)← Fjj . new item included in the group
12: RI = Set(j).ordering_factor . fingerprint weight
13: KG = (KG∗Av_fact)+Fjj∗RI

Av_fact+RI . KG= updated reference
14: norm_Ref =

∑
KG

|KG|
15: KG = KG

norm_Ref . normalized Ref
16: Av_fact = Av_fact+RI . updates number of items in CG(G)
17: end if
18: end for
19: N = N − 1
20: end while
21: end procedure

in the interpolation and the 8x8 pattern of the JPEG compression matrix generates
block artifacts, common to all the cameras.
We set the random components almost to zero, while computing the mean of the
fingerprints, the centroid of the group, but we may also enhance the noises due to
artifacts. The hypothesis of inter-correlation= 0, true for single fingerprints, is no
longer verified for groups. It is increased by the positive value of the noise due to
artifacts, as discussed in section 2.2.
Therefore, during the attraction step, the threshold needs to be enhanced, not to
obtain false positives. In this phase, we can apply the Gaussian mixture threshold,
as in equation 2.17, making use of the information we got from the clustering (the
mean µ and the variance σ of the Gaussian distribution), or we can empirically
increase the threshold by a multiplicative factor ρ.

Thattr = ρ Th (4.3)
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This easy static approach does not rely on the output of the clustering phase, but
because of this very reason, we are sure the threshold will not lead to unnecessarily
confident conclusions.

The Gaussian mixture model with 2 components consistently splits the data
into the mixture of two distributions, the cross camera Inter-class correlation and
the same camera Intra-class correlation, as in figure 2.1.
For the attraction phase we may update the threshold to better exclude null
hypothesis in the merging phase with a refined formula:

Th = µ(Inter) +
√

2σ(Inter) erfc−1(2PFA). (4.4)

4.2.1 Full Matrix attraction with merge singleton
The algorithm described in 4.1.1 can be also applied as an attraction phase, if we
input the cross correlation between the centroids of the groups, instead of the full
cross correlation of fingerprints, obtained after a previous clustering step.
The complexity is again heavily dependent on the size of cross-correlation; the
upper bound is O (G2), where the clustering phase should have already greatly
reduced the number of groups G respect to the number of fingerprints in the dataset.

The full clustering technique can be refined by making use of vectors and matri-
ces that exploit better the statistics in our possession about the data, such as the
knowledge of the clusters dimension. Taking into account those considerations, we
can prefer to merge together unclustered fingerprints or little groups, and we can
normalize the threshold by different factors to be customized for specific cases.
Full Matrix, in algorithm 11, at each step of the iterative algorithm, computes the
maximum value from the matrix and it tries to form a new pair of groups, until
there are no normalized correlations values still over the threshold.

The parameter w_corr asks the clustering phase to save a metric in the normal-
ization step of each group. It retrieves σG, the standard deviation of the group.
w_corr is initialized to σ2

G that is a value greater or equal to the cluster size |CG|
but lower than |CG|2. Then, as for the Full matrix clustering, w_corr is updated
each time the group undergo a merging operation.

4.2.2 Hierarchical Agglomerative clustering
Referring to the presented Hierarchical Agglomerative clustering in section2.5.3 in
the literature, we tried different distances criterion in order to find the partition
that best represents the clustering attraction we want to obtain and grant a legit
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Algorithm 11 Full Matrix attraction Input: Th: threshold, corr: normalized
correlation matrix, γ: gamma parameter, CG: clusters, σG: clusters standard
deviation.
Output: G: number of groups, CG: updated clusters.

1: procedure CC_bin_vect(Th, corr, γ, CG, σG)
2: [C, ii, jj] = max(corr) . max in the matrix and its indices
3: len_Gr = |CG|
4: w_corr = σ2

G

5: while C > Th do . there still exist a norm(C) value greater than Th
6: corr_coeff = C ∗

√
w_corr(ii) ∗

√
w_corr(jj)

7: corr(:, ii) =

√
w_corr(ii) ∗ corr(:, ii) +

√
w_corr(jj) ∗ corr(:, jj)√

w_corr(ii) + w_corr(jj) + 2 ∗ corr_coeff
8: w_corr(ii) = w_corr(ii) + w_corr(jj) + 2 ∗ corr_coeff
9: CG(ii)← CG(jj)

10: CG(jj) = ∅
11: len_Gr(ii) = len_Gr(ii) + len_Gr(jj) . Groupjj absorbed by Groupii
12: corr(ii, :) = corr(:, ii) . corr matrix is symmetrical
13: corr(ii, ii) = Null . value out of bounds, never considered again
14: corr(jj, :) = corr(:, jj) = Null
15: bin_vect = len_Gr > 1 . binary mask of length
16: bin_matrix = bin_vect× bin_vect′ . compute the mask
17: len_matrix(not(bin_matrix)) = 1 . force the length to 1
18: G = G− 1 . groups and matrix dimension reduced by one
19: len_matrix = |len_Gr × len_Gr|γ
20: bin_vect = len_Gr > 1 . binary mask of length
21: bin_matrix = bin_vect× bin_vect′ . compute the mask
22: len_matrix(not(bin_matrix)) = 1 . force some lengths to 1
23: [C, ii, jj] = max

corr

len_matrix . max in the norm matrix and its indices
24: end while
25: end procedure

dendrogram, where the group distance vector is monotonically increasing, as in
figure 2.10.
The Average-Linkage Criterion, rather than computing the distance between cen-
troids, averages over all possible pairs of items between the two groups:

av_dist(C_G1, C_G2) =
∑∑ ||C_G1 − C_G2||
|C_G1||C_G2|

correlations (4.5)
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It produces compact clusters that may have some elongated shape.
As we experienced in Matlab, the centroid linkage criterion breaks the assumption
of monotonicity of merges and can result in an inversion in the dendrogram [21], so
we never use it in our experiments.
For retrieving our updated groups, we have to compare the dendogram with a
threshold that imposes a specific height limit, as it is expressed in algorithm 12.
Everything lays under the bound is considered as the partition of our data, the
clustering representation we were searching for.

The computational complexity is:

O
(
G2log(G)

)
correlations (4.6)

where G is the number of groups in the first attraction.

Algorithm 12 Hierarchical Agglomerative clustering
Input: Th: threshold, corr: normalized correlation matrix, CG: clusters.
Output: G: number of groups, CG: updated clusters.

1: procedure Aggl_clust(Th, corr, CG)
2: ThAC = 1− Th . it requires a ThAC in the form of 1-distance
3: T = ∅ . tree initialization
4: A = CG . active set initialization
5: while |A| ≥ 1 do . Choose the pair in A with best average distance
6: [C,C_G1, C_G2] = min(av_dist(corr)) . best pair and its indices
7: C_G1 ← C_G2
8: C_G2 = ∅
9: T ← C_G1

10: T.height← C . stores all the attraction heights
11: end while
12: plot(dendogram) . output a plot as in figure 2.10
13: G = max(T (ThAC)) . update number of groups for height ≤ T (ThAC)
14: end procedure

4.2.3 Pure attraction
The purification check is an optional step that aims to increase the precision of the
clusters by questioning the previous results.
Each fingerprint is compared with the list of centroids to find the best groups they
should have been clustered in. The purification check, or Pure attraction, can be
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considered as an attraction step, but it aims to refine the clusters internally, not to
regroup them in better representations, at maximum it merges some unclustered
images in other groups.
Another solution is to deem the purification check just as a pre-processing of the
attraction phase. We usually skip this phase because is computationally very
expensive and in our experiments, it always leaves some false positives in the
groups.
In its Dynamic version, the check may also lead to many splits of the previous
groups. The clusters dimension drops quite to simply unclustered fingerprints and
number of groups G tends to explode, this increases a lot the complexity of a
successive attraction phase in which all those items are very hard to merge again.
This is the reason why in our results we present the purification check just as an
attraction step.
In the following sections we propose two different approaches to this phase. They
propose two unsupervised solution, because they do not require any threshold to
be set when comparing the groups.

Static Pure attraction

Following the example of the k-mean algorithm, each fingerprint is extracted from
its own group and inserted again in the cluster with the lowest distance from itself.
Once it is finished, we update all the centroids of the groups.
The main issue of this method is the lack of regrouping. As we said, FICFO and
RCIC may have left many unclustered images, that form groups by their own.
When we compute which group fits them best, we always end up with the group
they were already in, where the centroid was the fingerprint itself and so it has
auto-correlation= 1. Therefore, the algorithm considers the unclustered groups as
the best solution again.
A pseudo-code for the Static Pure attraction is presented in algorithm 13.

Dynamic Pure attraction

Each fingerprint Fkk in algorithm 14 is iteratively extracted from its own cluster.
We compute the reference K ′ii the group would have been excluding Fkk:

K ′ii = (Kii ∗ len_i)− Fkk
len_i− 1

(4.7)

as if we have already clustered all the other fingerprints but we still need to decide
where to attract the current one. We compare the cross correlation between Fkk
and K ′ii with the correlation obtained respect to each other cluster Kjj. In this
way, we always work with big groups, that should contain a good estimation of
their reference.
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We impose the index of the best group equal to ii. In case the new correlation
with group Cjj is higher, we update the index to jj and we proceed to consider all
the remaining groups.
Once the cycle is over, we may find a better cluster Cjj in which the fingerprint
should lay, the best of the list, or we still have index= ii.
For index /= ii, we update the reference centroids of the old and new clusters,
while moving the fingerprint Fkk, in the method 15. This solution forces every
unclustered to find the best group excluding itself, that now contains zero elements.
Those empty groups always give as correlation corr_old= 0, so every positive cross
correlation with other groups or unclustered image updates the index.

Algorithm 13 Static Pure clustering
Input: Set: dataset source files, d: dimension of cropped fingerprints, CG: clusters,
KG: Reference fingerprints.
Output: G: number of groups, CG: updated clusters.

1: procedure static_attraction(Set, d, CG, KG)
2: CG = ∅ . empty every group
3: for kk = 1 to |Set| do
4: Fkk = Set(kk) . consider fingerprint Fkk from the dataset
5: corr_best = 0 . initialize the best corr to 0
6: for jj = 1 to |CG| do
7: corr_new = Fkk ×Kjj

d ∗ d
8: if corr_new > corr_best then
9: corr_best = corr_new

10: index = jj . better group found
11: end if
12: end for
13: CG(index)← Fkk . add fingerprint(kk) to the group
14: end for
15: end procedure
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Algorithm 14 Dynamic Pure clustering
Input: Set: dataset source files, d: dimension of cropped fingerprints, CG: clusters,
KG: Reference fingerprints. Output: G: number of groups, CG: updated clusters.

1: procedure dynamic_attraction(Set, d, CG, KG)
2: for ii = 1 to |CG| do
3: kk = 1 . fingerprint index
4: while kk < leni and leni > 0 do
5: Fkk = Set(kk)
6: K ′ii = (Kii∗|CG(ii)|)−Fkk

|CG(ii)|−1 . K ′ii = reference of 〈CG(ii)− Fkk〉
7: norm_K ′ii =

∑
K′

ii

|K′
ii|

8: K ′ii = K′
ii

norm_K′
ii

9: corr_old = Fkk ×K ′ii
d ∗ d

10: for jj = 1 to |CG|, jj /= ii do . search for a better group

11: corr_new = Fkk ×K(jj)
d ∗ d

12: if corr_new > corr_old then
13: corr_old = corr_new
14: index = jj . better group found
15: len_index = |CG(jj)| . stores the length of CG(jj)
16: end if
17: run shift_fingerprints . moves Fkk to CG(index) in script 15
18: end for
19: kk = kk + 1
20: end while
21: end for
22: end procedure
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Algorithm 15 Shift fingerprints script
1: procedure shift_fingerprints
2: if index /= ii then . only if the group has changed
3: CG(index)← Fkk . add Set(kk) in the group
4: if leni > 1 then . remove 1 fingerprint from a big group
5: CG(ii) remove Fkk
6: Kii = K ′ii . overwrite K(ii)
7: else . remove 1 fingerprint from an unclustered group
8: CG(ii) = ∅
9: end if

10: Kindex
(Kindex∗|CG(ii)|)+Fkk

|CG(ii)|+1 . updates K(jj)|jj=index
11: norm_Kindex =

∑
Kindex

|Kindex|
12: Kindex = Kindex

norm_Kindex

13: end if
14: end procedure
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Chapter 5

Experimental results

This chapter contains a discussion about the experimental setup and the evaluation
metrics we applied to our work. It also analyzes the results in tables of performances.
The final section compares the best proposed algorithms among themselves and
with State of the art techniques.

5.1 Datasets
We considered 4 well known datasets, each consisting of 1000 non-overlapping
images taken from the Dresden datasets [25], as well as a small dataset of 80 images
used for initial tests.
The datasets include also their the ground truth, the list of corrected assignment
of fingerprints for each camera. All images are center-cropped to 1023x1023 pixels,
allowing us to compare all the fingerprints.
In symmetric datasets, each camera contributes equally to the dataset, while the
distribution of pictures is not constant in the asymmetric ones. Thus, there are
folders containing very few images that are harder to cluster. Our proposed al-
gorithms can be analyzed in the NC � SC scenario, by modifying the average
number of images per camera SC:

• D0: It is an easy small dataset. It consists of 80 images taken by 4 cameras,
each equally contributing 20 images. The 4 cameras belong to different models and
brands. D0 dataset is just useful as a testbench, to investigate the parameters of
the algorithms and for debugging purposes. It it not a very challenging dataset
because of the very distinct pictures it is made of.

• D1: It is an easy symmetric dataset, it comprises a folder with 40 images for
each of the 25 cameras, 1000 images in total. The 25 cameras are originated by
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different models and cover the most popular brands: Agfa, Canon, Casio, FujiFilm,
Kodak, Nikon, Olympus, Panasonic, Pentax, Praktica, Ricoh, Rollei, Samsung and
Sony.

• D2: It is an easy asymmetric dataset, consisting of folders of images taken
from 25 cameras, 1000 images in total. The contribution of each camera varies
from 20 to 60 images.

• D3: It is a hard symmetric dataset, consisting of a folder of 20 images times
50 cameras, 1000 images in total. The 50 camera models cover 8 brands, so we have
some brands contributing with many models. This complicates the work of our
algorithms because we expect intra-brand correlation quite high, a strong presence
of some false positives in our clusters or many more groups than what the ground
truth suggests.

• D4: It is a hard asymmetric dataset. The same 50 cameras as in D3 constitute
the dataset, but with a contribution varying from 10 to 30 images. We expect this
last dataset to output the worst performances of our experiments.

5.2 Our metrics
We base our metrics on clustering theory: Precision P , Recall R, F-measure F ,
Rand Index RI and Adjusted Rand Index ARI. In order to evaluate P,R, F,RI
and ARI, we load in memory the ground truth GT .
Moreover, we compute the number of cross-correlations NCC as evaluation of
complexity and the number of groups G. These two metrics can be obtained
in absence of the ground truth, but they do not inform us enough about the
performances of our codes. We can also obtain the complexity reduction as

Cr = N ∗ (N − 1)
2NCC

(5.1)

Cr offers a normalization of NCC over the number of images N in our dataset,
but as in our experiments N is fixed to 1000 images, we omit to compute it.

P =
∑G
ii=1 max|GT |

jj=1 |Cii ∩GT (jj)|∑G
ii=1 |Cii|

(5.2)

P is computed as the sum of each largest number of fingerprints in cluster Cii
that comes from a ground truth class GT (jj), namely their intersection, over the
total number of items in the ground truth class. P represents the ratio of the true
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positives over the positives (true and false).

R =
∑|GT |
jj=1 maxGii=1 |Cii ∩GT (jj)|∑|GT |

jj=1 |GT (jj)|
(5.3)

R is computed as the total intersection of the fingerprints in cluster Cii and the
best equivalent ground truth class GT (jj), over the the size of the cluster Cii. R
represents the ratio of the true positives over the cluster (true positives plus false
negatives). Notice that because the dimension of the cluster and the ground truth
partitions is the same and is equal to the total number of fingerprints N in the
dataset,

G∑
ii=1
|Cii| =

|GT |∑
jj=1
|GT (jj)| = N

The F-measure is the arithmetic mean of P and R, so

F = 2 P R

P +R
(5.4)

F is useful to express in one parameter the trend of both P and R.
R increases as the inverse of the threshold Th and so proportionally to the PFA
that we apply. Dealing with more groups usually means a better precision in the
clusters, because there are less outlier and fewer errors we may make, but at the
same time it shows a worse recall and ARI, because all those little groups are quite
far from matching the ground truth.

The Rand Index RI, in algorithm 16, between our result CG and the ground
truth GT , can be computed as the number A of the couples falling in the same
cluster in both partitions, minus the value B of the couples falling in the same
cluster in CG and in different clusters in GT . Vice versa, C represents the couples
falling in different clusters in CG and in the same cluster in GT . This computation
has to be divided by the binomial coefficient of N fingerprints choose a couple
(k = 2), representing all the couple points CP .

The Adjusted Rand Index represents the normalized agreement between two
partitions.

ARI = RI − E[RI]
1− E[RI] (5.5)

where E[RI] is the expected value of RI, obtained from the probability P(RI).

E[RI] =
∑
ii

RIii × P (RIii) (5.6)
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Algorithm 16 RI computation
Input:CG: clusters, GT : Ground truth, N: number of fingerprints.
Output: RI parameter

1: procedure RI_computation(CG, GT , N)
2: Matrix = CG(ii) ∩GT (jj) . total intersection of CG and GT

3: CP =
(
N
2

)
. number of couple points

4: A = ∑
ii

∑
jj (Matrix2) . couples in the same partition in both

5: B =
∑
iiMatrix2(ii, :)

2 . couples in the same partition just in CG

6: C =
∑
iiMatrix2(:, ii)

2 . couples in the same partition just in GT

7: RI = CP + A−B − C
CP

8: end procedure

Our aim is to design an algorithm able to improve the F-measure of the groups
and the Adjust Random Index ARI, while keeping the precision P ideally always
at 100%, without introducing false positives, even in presence of the NC � SC
problem.

5.3 Randomness variation
In the RCIC codes the clustering algorithm randomly permutes the fingerprint
source file and it selects different reference fingerprints as cluster attractors for
each run. Therefore, every experiment has to be repeated a number of times τ to
obtain an average performance metric.
We executed τ = 10 runs of the codes, for each experiment, and we tested the
stability of RCIC by computing the first quartile Q1(data) and third quartile
Q3(data). The first quartile is able to split the first 25% of the sorted data from
the rest of the measurements, the third quartile similarly splits the first 75% of
data. The second quartile Q2(data), also known as median, points to the central
data and it represents a good alternative to the average for deriving the mean run
of the code, one of the most probable output in a Gaussian distributed vector of data.

The following table 5.1, shows the difference ∆ between the third quartile and
the first quartile, that represents the central 50% of data.

∆(data) = Q3(data)−Q1(data) (5.7)
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Generally, the ∆ values are quite near to zero, so the randomness does not have
a big impact, especially for the easy datasets. RCIC is a very stable algorithm in
base version but it generally shows a bigger variance of the data ( up to ≈ 0.11) in
the codes with the attraction phase.
The next subsections, regarding RCIC or RCIC-A, contain the median value, the
mean and the ∆ values of the performance metrics, computed on τ = 10 runs of
the code, for each case in exam.

RCIC Fair
dataset ∆(P ) ∆(R) ∆(F ) ∆(RI) ∆(ARI)
D1 0.0010 0.0335 0.0209 0.0014 0.0246
D2 0.0042 0.0265 0.0149 0.0019 0.0295
D3 0.0018 0.0135 0.0097 0.0004 0.0146
D4 0.0025 0.0113 0.0071 0.0001 0.0055

RCIC-A Fair Complete
dataset ∆(P ) ∆(R) ∆(F ) ∆(RI) ∆(ARI)
D1 0.0488 0.0434 0.0269 0.0092 0.0953
D2 0.0358 0.0300 0.0244 0.0135 0.1150
D3 0.0309 0.0263 0.0162 0.0021 0.0363
D4 0.0447 0.0092 0.0255 0.0030 0.0440

Table 5.1: Example of ∆ values for RCIC Fair and RCIC-A Fair Complete

5.4 Our experiments
We compare each code in a strict, average and relaxed scenario. We set the
threshold to Th=0.0050, Th=0.0040 or Th=0.0030 and consequently we fix the
value of PFA, for a square crop of 1

σ2 = 10232 pixels, as we can compute from the
inverse threshold formula:

PFA = 1
2 erfc(

Th√
2σ

) (5.8)

Our big concern is the value of PFA. If it is too big it may fill the clusters with
false positives. This situation can bring us to a wrong computation of the centroids
of our groups and the consequential attraction of more and more false positives in
the groups. A very low PFA instead, may not attract enough and would output
too many little clusters.
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The attraction phase make use of the static empirically increase threshold
described in the formula 4.3, with ρ = 1.25. The threshold becomes Th=0.0063,
Th=0.0050 or Th=0.0037. All the corresponding values of PFA have been reported
in the equivalence table 5.2.

Th 0.0063 0.0050 0.0040 0.0037 0.0030
PFA 8.0933 10−11 1.5687 10−07 2.1383 10−05 6.2464 10−05 1.0739 10−03

Table 5.2: Threshold values and PFA equivalents

For the Full Matrix algorithms, we experimented with many values of the index
γ, even in absence of it, for γ= 0, We found a compromise between high γ values,
that has a big impact on our data and avoids introducing many false positives,
and low γ values that does not force the algorithms to stop too early. In all the
following tables present from table 5.3 to table 5.47 we fix γ= 0.1 when needed.

5.4.1 Full Matrix

We conduct an ablation study by removing one by one certain parameters, in order
to understand their contribution to the performances. The groups form in a slightly
different way, considering their dimension and avoiding unsure merging.
We check the usefulness of out parameters: corr_coeff, len_matrix and bin_vect
for different values of Th and γ. In order not to introduce too many tables, we
show only the difference between not considering the bin_vect (table 5.3) and using
it (table 5.4), in the next section.

The first version of the code in table 5.3 is obtained by including all of the
proposed solutions except for bin_vect. The Full Matrix already performs very
good because it normalizes each correlation by the length of the groups it tries to
merge, raised to the power of γ.
The precision value for the first dataset is maximum, for the strict threshold and it
remains P = 1 even for the average threshold Th =0.0040. It means that there are
no false positives in any group. For the other datasets we obtain as output quite
pure clusters, with precision P always greater than 0.95 for high thresholds.
The recall shows two different behaviors for easy and hard datasets. As expected,
R grows as the opposite of the threshold, varying for example from 0.9280 to 0.9480
in the second dataset.
It remains very high (R > 0.91) for easy datasets, where the fingerprint distances
are more distinct. For D3 and D4 instead, the algorithm starts to merge less groups,
leaving the recall values between 0.82 < R > 0.89. The F-measure 0.87 < F > 0.96
confirms the trends that we notice in the first two metrics.
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The rand index, with its value always greater than 0.99, highlights a strong agree-
ment between the cluster partitions and the ground truth. In its normalized version,
ARI, it shows even more which versions perform better respect to the others. As
for the recall, it presents two different trends for easy and hard datasets. ARI ≈
0.90 to 0.94 confirms the strength of this algorithm over the easy datasets, while
ARI ≈ 0.79 to 0.85 shows the difficulty encountered in the hard datasets.

Because every modification of the code we introduce is irrelevant in front of
the O (G2) complexity, we ask ourselves if we can still improve the performances.
From our tests, the difference between enhancing the correlation with the weight
w_corr and not applying it, is minimal and irrelevant.

dataset Th NCC P R F RI ARI G
D1 0.005 499,500 1.0000 0.9160 0.9562 0.9950 0.9283 72
D1 0.004 499,500 1.0000 0.9270 0.9621 0.9957 0.9391 58
D1 0.003 499,500 0.9590 0.9340 0.9463 0.9930 0.9059 45
D2 0.005 499,500 0.9990 0.9280 0.9622 0.9953 0.9411 77
D2 0.004 499,500 0.9640 0.9410 0.9524 0.9935 0.9217 59
D2 0.003 499,500 0.9610 0.9480 0.9545 0.9940 0.9281 43
D3 0.005 499,500 0.9780 0.8260 0.8956 0.9948 0.8458 159
D3 0.004 499,500 0.9670 0.8380 0.8979 0.9947 0.8458 137
D3 0.003 499,500 0.9000 0.8600 0.8795 0.9923 0.7939 94
D4 0.005 499,500 0.9920 0.8200 0.8978 0.9947 0.8575 180
D4 0.005 499,500 0.9520 0.8530 0.8998 0.9940 0.8489 136
D4 0.005 499,500 0.9010 0.8820 0.8914 0.9920 0.8141 95

Table 5.3: Full matrix

5.4.2 Full Matrix merge singleton
The matrix bin_matrix is computed as the external product between bin_vect and
itself, where bin_vect is a binary mask of length. It appears to have benefits over
all the datasets in the base version because if forces the normalization introduced
by len_matrix to be reset to 1, in case one of the two merged groups (or both) has
length |CG| = 1. This solution introduces an important alteration in the way the
algorithm deals with unclustered and little groups, improving the quantity and the
correctness of the attractions done.
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From table 5.4 we can discuss the results obtained by including all of the pro-
posed parameters. The precision value for the first dataset is again maximum, for
the strict and the average thresholds. For the other datasets we obtain as output
quite pure clusters, with precision P always greater than 0.95 for high thresholds.
The recall has every value improved respect to the first proposal and it maintains
two different behaviors for easy and hard datasets.
R remains very high (R ≥ 0.93) for datasets D1 and D2, for D3 and D4 instead, the
algorithm merges less groups, leaving the recall values between 0.83 < R > 0.89.
We can notice that the number of groups is constantly bigger respect to the ground
truth, quite the double respect to the correct value of G = 25 for D1 and D2 and
G = 50 for the last datasets. As G is lower than the in first table, this algorithm
returns a solution more near to the ground truth. The F-measure 0.87 < F > 0.97
confirms the trends of P and R and it shows once again the slight improvements
respect to table 5.3.

The rand index is stably over the value of 0.99 and the adjusted rand index
ARI drops under 0.81 only for the relax threshold in the D4 scenario. As for the
recall, it presents two different trends for easy and hard datasets. ARI ≈ 0.90 to
0.94 confirms the strength of this algorithm over the easy datasets, while ARI ≈
0.79 to 0.85 shows the difficulty encountered in the hard datasets.
The trade-off between R and ARI in our solutions seems always to suggest the strict
threshold as the best. Further computations not reported in the tables confirm the
ideal working point for every of our datasets as Th= 0.0050 and γ= 0.1.

5.4.3 Bloy base
Bloy2008 algorithm present one of the best outcomes in terms of metric values.
Bloy obtains a good overview about the dataset, thanks to the big amount of
checks and computations that it needs to do. The complexity is bound by O (N2)
and it reaches very high values, such as NCC= 305,894, more than half of the
complete knowledge about every correlation exploited in the Full Matrix, with a
fixed complexity of NCC= 499,500.
The presence of some stop_flag optimization avoids some useless loops, but it
maintains Bloy very far from being defined as a low complexity algorithm.
As the table 5.5 highlights, Bloy is not able to maintain very high precision values
for easy datasets; P=1 just in one case and P drops under 0.80 even for easy
datasets. Despite that, it works very well in the hard scenarios with a very strict
threshold.
As we can see from ARI< 0.60, the first two datasets are very far from the ground
truth if we apply a relaxed threshold of Th=0.0030 and the situation becomes
way worse in the last two datasets, with ARI values around and under 0.35. Our
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consideration about the best threshold as Th= 0.0050 is even more valid for this
algorithm, where we discourage the use of average and relaxed threshold.

dataset Th NCC P R F RI ARI G
D1 0.005 499,500 1,0000 0.9300 0.9637 0.9959 0.9421 58
D1 0.004 499,500 1,0000 0.9360 0.9669 0.9963 0.9487 47
D1 0.003 499,500 0.9580 0.9390 0.9484 0.9931 0.9084 39
D2 0.005 499,500 0.9990 0.9430 0.9702 0.9964 0.9555 62
D2 0.004 499,500 0.9620 0.9530 0.9575 0.9942 0.9310 49
D2 0.003 499,500 0.9580 0.9540 0.9560 0.9942 0.9307 37
D3 0.005 499,500 0.9790 0.8370 0.9024 0.9952 0.8567 149
D3 0.004 499,500 0.9690 0.8580 0.9101 0.9952 0.8610 121
D3 0.003 499,500 0.9140 0.8750 0.8941 0.9931 0.8161 84
D4 0.005 499,500 0.9920 0.8330 0.9056 0.9951 0.8696 169
D4 0.004 499,500 0.9510 0.8690 0.9082 0.9945 0.8618 121
D4 0.003 499,500 0.8650 0.8850 0.8749 0.9901 0.7810 81

Table 5.4: Full Matrix merge singleton

dataset Th NCC P R F RI ARI G
D1 0.005 72,671 1,0000 0.9050 0.9501 0.9975 0.9656 33
D1 0.004 51,722 0.9774 0.9000 0.9371 0.9938 0.9154 34
D1 0.003 22,579 0.7379 0.7620 0.7497 0.9649 0.5688 30
D2 0.005 41,790 0.9957 0.8910 0.9405 0.9978 0.9738 34
D2 0.004 30,889 0.9825 0.9070 0.9432 0.9951 0.9404 36
D2 0.003 22,514 0.7978 0.7800 0.7888 0.9693 0.6490 32
D3 0.005 232,105 0.9845 0.8150 0.8918 0.9970 0.9180 68
D3 0.004 180,278 0.9119 0.7700 0.8350 0.9927 0.7991 74
D3 0.003 46,818 0.5463 0.5500 0.5481 0.9695 0.3262 57
D4 0.005 305,894 0.9910 0.8180 0.8962 0.9980 0.9530 69
D4 0.004 131,696 0.9356 0.8070 0.8666 0.9939 0.8521 72
D4 0.003 50,767 0.5578 0.5470 0.5524 0.9683 0.3524 64

Table 5.5: Bloy base
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For Th= 0.0050, the F-measure suggests Bloy a bit worse than the Full Matrix,
while the ARI presents the opposite consideration. This behavior suggests that
the two methods are both very valid and not too far from each other in their best
form. Also in Bloy, every value of RI is greater than 0.99.
We may choose to work with Bloy on the hard datasets for its very low values of G
and its stable ARI>0.91.
We have to consider that the solutions presented up to now are usually too expensive
to be applied in a real scenario, that is why we should rely on good solutions that
are fast and efficient.

5.4.4 FICFO base

FICFO base is the version of the FICFO algorithm already proposed by Khan in his
thesis. It does not make use of any attraction stage and it works with a clustering
step that updates the centroids by adding the new reference and dividing the result
by two, as in formula 3.2. The attractor fingerprints have an important role in
determining the centroid. This approach tends to penalize the first fingerprints
respect to the last added, from which we can extract only a rough estimation of
the centroid, because of their lower RI ordering factor. The formula 3.2 moves the
centroid too much, following the new and worse items included.

The algorithm in table 5.6 shows a low complexity, always lower than 30,000 for
easy datasets and 62,000 for hard datasets.
The precision P for the strict threshold is strong and ≈ 0.99. This fact is simply
due to the huge amount to quite pure cluster that we see in the output; G keeps
values from 155 to 234, much higher than the ground truth dimension (G= 25 for
easy datasets and G= 50 for hard datasets). Consequently, R,F and ARI stay in
the range 0.80 to 0.90. RI maintains very high values ≈ 0.99, this is the sign that
RI is not a good metric by itself.
Lower thresholds drop every performance result. The precision reaches 0.55<P<0.70,
the recall ≈ 0.50 in three cases and ARI is a little higher than 0.30.
The algorithm starts to merge groups which it too confident in considering near to
each others. This misbehavior is surely dependent on the presence of some false
positives already in the early stages of the clustering. Moving to lower threshold,
we always increase the possibility for further fingerprints to be merged in a wrong
group and moreover we move the centroid to follow a wrong direction, opening the
possibility for many other errors to be merged in the same cluster.
The usual output is a partition with many little pure clusters and few very big and
very wrong ones.
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dataset Th NCC P R F RI ARI G
D1 0.005 28,818 0.9990 0.8220 0.9019 0.9891 0.8333 155
D1 0.004 24,204 0.9210 0.7730 0.8405 0.9822 0.7365 117
D1 0.003 16,789 0.6200 0.5000 0.5536 0.9538 0.3471 78
D2 0.005 29,951 0.9980 0.8320 0.9075 0.9890 0.8517 163
D2 0.004 23,454 0.9750 0.8230 0.8926 0.9875 0.8328 121
D2 0.003 15,113 0.6990 0.5830 0.6358 0.9563 0.4409 74
D3 0.005 53,121 0.9880 0.7730 0.8674 0.9935 0.7954 211
D3 0.004 43,314 0.9100 0.7390 0.8156 0.9898 0.6975 170
D3 0.003 29,015 0.5640 0.4980 0.5289 0.9748 0.3238 113
D4 0.005 61,676 0.9910 0.7560 0.8577 0.9924 0.7828 234
D4 0.004 47,921 0.9320 0.7320 0.8200 0.9900 0.7214 182
D4 0.003 29,437 0.6030 0.5030 0.5485 0.9720 0.3322 124

Table 5.6: FICFO base

5.4.5 RCIC base

RCIC base is the version of the RCIC algorithm introduced by Khan in his thesis.
It is very similar to FICFO base. It uses the same approach for computing the
reference mean of fingerprints as in formula 3.2 and it output the final partition
without any attraction step. The only differences are the introduction of a stochas-
tic behavior because of the randomization of fingerprints in the source list and the
suppression of the ordering factor RI.
This approach contains the same issues of FICFO, moving the centroid too much,
following the new and worse items included, and in addition it does not rely on
good attractors in each group, leading to similar or even worse performances.
In tables 5.7-5.10, ARI keeps each value under 0.80 and the recalls waves around
0.50 to 0.75.
Because of the random behavior of the algorithm, both a strict and a relaxed
threshold perform very bad, while an average threshold maintains better perfor-
mances in the average of its runs (the mean) and in its typical run (the median).
Even the best results on dataset D2: R= 0.7590 and ARI= 0.7717 are significantly
lower than their FICFO counterparts R= 0.8230 and ARI= 0.8328.
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value Th NCC P R F RI ARI G
E(data) 0.005 33,331 0.9897 0.7540 0.8559 0.9858 0.7732 168
Q2(data) 0.005 33,328 0.9850 0.7510 0.8523 0.9853 0.7651 168
∆(data) 0.005 2,898 0.0280 0.0180 0.0221 0.0031 0.0486 7
E(data) 0.004 23,780 0.9550 0.7910 0.8653 0.9860 0.7873 114
Q2(data) 0.004 23,780 0.9550 0.7910 0.8653 0.9860 0.7873 114
∆(data) 0.004 4,185 0.0180 0.0060 0.0038 0.0019 0.0253 4
E(data) 0.003 16,929 0.6765 0.5500 0.6063 0.9591 0.4122 86
Q2(data) 0.003 16,929 0.6765 0.5500 0.6063 0.9591 0.4122 86
∆(data) 0.003 2,178 0.0430 0.0260 0.0015 0.0021 0.0087 2

Table 5.7: RCIC base- D1

value Th NCC P R F RI ARI G
E(data) 0.005 27,931 0.9941 0.6012 0.7485 0.9770 0.6096 187
Q2(data) 0.005 27,893 0.9940 0.6000 0.7483 0.9756 0.6089 188
∆(data) 0.005 3,241 0.0318 0.0190 0.0211 0.0031 0.0489 8
E(data) 0.004 26,429 0.9700 0.7590 0.8516 0.9835 0.7717 131
Q2(data) 0.004 26,852 0.9720 0.7610 0.8553 0.9860 0.7733 128
∆(data) 0.004 3,185 0.0280 0.0090 0.0048 0.0029 0.0243 5
E(data) 0.003 16,498 0.7480 0.6020 0.6671 0.9611 0.4955 83
Q2(data) 0.003 16,629 0.7465 0.6004 0.6639 0.9591 0.4922 86
∆(data) 0.003 1,978 0.0330 0.0262 0.0015 0.0021 0.0080 2

Table 5.8: RCIC base- D2

61



Experimental results

value Th NCC P R F RI ARI G
E(data) 0,005 65,087 0.9906 0.7119 0.8284 0.9922 0.7395 243
Q2(data) 0,005 65,311 0.9900 0.7130 0.8290 0.9922 0.7409 242
∆(data) 0,005 2,303 0.0015 0.0048 0.0026 0.0001 0.0069 3
E(data) 0,004 47,703 0.9370 0.7128 0.8097 0.9910 0.7122 180
Q2(data) 0,004 47,859 0.9370 0.7200 0.8143 0.9911 0.7185 176
∆(data) 0,004 2,903 0.0300 0.0180 0.0228 0.0017 0.0529 11
E(data) 0,003 30,580 0.6325 0.5209 0.5712 0.9779 0.3716 126
Q2(data) 0,003 30,221 0.6220 0.5220 0.5639 0.9773 0.3613 123
∆(data) 0,003 956 0.0398 0.0133 0.0203 0.0018 0.0327 9

Table 5.9: RCIC base- D3

value Th NCC P R F RI ARI G
E(data) 0,005 70,499 0.9878 0.6800 0.8055 0.9905 0.7174 274
Q2(data) 0,005 71,316 0.9890 0.6810 0.8083 0.9905 0.7150 276
∆(data) 0,005 3,668 0.0050 0.0030 0.0004 0.0003 0.0096 27
E(data) 0,004 53,719 0.9138 0.6573 0.7643 0.9876 0.6423 203
Q2(data) 0,004 54,819 0.9150 0.6390 0.7470 0.9867 0.6137 209
∆(data) 0,004 7,181 0.0210 0.0622 0.0467 0.0025 0.0854 25
E(data) 0.003 31,874 0.6496 0.5227 0.5791 0.9762 0.3949 134
Q2(data) 0.003 31,341 0.6500 0.5290 0.5877 0.9759 0.4058 133
∆(data) 0.003 2,967 0.0143 0.0398 0.0292 0.0017 0.0425 4

Table 5.10: RCIC base- D4
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5.4.6 FICFO First reference clustering
The First reference approach in table 5.11 shows an impressive number of clusters,
G keeps values from 97 to 351, and consequently a very low value of recall.
The result of First reference clustering is a merge of only the fingerprints that
have very low distance from the first one, so in the best scenarios it creates a huge
amount of pure groups (with precision greater than 0.99), while in many other
realistic cases it also introduces some false positives (as the precision becomes
0.76<P<0.89).
NCC raises over 100,000 in the last dataset and in general it has high values
because of the big quantity of fingerprints that remain unclustered for many cycles.
This solution is very bad in terms of computational complexity and performances,
presenting 0.50<ARI<0.70, so we never adopt it as a base for the attraction step.

dataset Th NCC P R F RI ARI G
D1 0.005 61,772 0.9960 0.0097 0.0192 0.9783 0.6065 271
D1 0.004 40,851 0.9870 0.0172 0.0339 0.9819 0.6937 187
D1 0.003 23,332 0.8840 0.0321 0.0620 0.9789 0.6713 97
D2 0.005 58,358 0.9940 0.0110 0.0217 0.9776 0.6490 261
D2 0.004 39,920 0.9830 0.0180 0.0354 0.9809 0.7179 192
D2 0.003 22,544 0.8810 0.0328 0.0633 0.9770 0.6784 98
D3 0.005 86,359 0.9930 0.0070 0.0139 0.9896 0.6202 317
D3 0.004 61,297 0.9530 0.0111 0.0219 0.9907 0.6847 231
D3 0.003 37,680 0.8040 0.0178 0.0348 0.9861 0.5689 133
D4 0.005 100.698 0.9920 0.0056 0.0112 0.9874 0.5826 351
D4 0.004 68,247 0.9450 0.0093 0.0184 0.9885 0.6415 244
D4 0.003 40,704 0.7660 0.0150 0.0294 0.9828 0.5037 141

Table 5.11: FICFO First reference clustering

5.4.7 RCIC First reference clustering
The First reference approach has even worse performances when applied to RCIC,
as we notice in tables 5.12-5.15. The NCC value grows very much, especially for
the hard dataset, up to 191,264 and it quite reaches the complexity of Bloy, while
the algorithm remains very far in terms of goodness of results. ARI struggles to
reach 0.60 even on easy datasets. This solution contains the majority of the R
values under 0.0050. It is meaningless and it does not deserve to be applied.
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value Th NCC P R F RI ARI G
E(data) 0.005 74,302 0.9932 0.0489 0.0932 0.9742 0.4977 298
Q2(data) 0.005 74,122 0.9935 0.0488 0.0930 0.9743 0.5001 300
∆(data) 0.005 3,854 0.0025 0.0032 0.0028 0.0012 0.034 9
E(data) 0.004 48,311 0.9676 0.0574 0.1084 0.9771 0.5844 208
Q2(data) 0.004 48,824 0.9690 0.0572 0.1080 0.9771 0.581 210
∆(data) 0.004 3,490 0.0070 0.0039 0.0050 0.0020 0.0447 9
E(data) 0.003 25,604 0.8434 0.0615 0.1146 0.973 0.554 113
Q2(data) 0.003 25,739 0.8470 0.0614 0.1145 0.9734 0.5562 114
∆(data) 0.003 1,655 0.0253 0.0035 0.0061 0.0022 0.0426 5

Table 5.12: RCIC First reference clustering- D1

value Th NCC P R F RI ARI G
E(data) 0.005 70,429 0.9918 0.0531 0.1008 0.9725 0.5362 295
Q2(data) 0.005 70,250 0.9915 0.0524 0.0995 0.9723 0.5301 295
∆(data) 0.005 2,669 0.0038 0.0019 0.0025 0.0008 0.0174 10
E(data) 0.004 43,516 0.9711 0.0606 0.1141 0.9757 0.6152 199
Q2(data) 0.004 42,095 0.9715 0.0609 0.1146 0.9759 0.6179 199
∆(data) 0.004 2,466 0.0035 0.0041 0.0038 0.0019 0.0404 5
E(data) 0.003 24,076 0.8518 0.0631 0.1174 0.9718 0.5897 107
Q2(data) 0.003 23,998 0.8510 0.0635 0.1182 0.9720 0.5996 109
∆(data) 0.003 372 0.0060 0.0025 0.0035 0.0015 0.0306 5

Table 5.13: RCIC First reference clustering- D2
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value Th NCC P R F RI ARI G
E(data) 0.005 158,622 0.9880 0.0050 0.0100 0.9876 0.5145 346
Q2(data) 0.005 144,385 0.9823 0.0050 0.0100 0.9882 0.5140 356
∆(data) 0.005 5,003 0.0118 0.0001 0.0003 0.0137 0.0161 14
E(data) 0.004 106,044 0.9742 0.0051 0.0101 0.9896 0.5248 266
Q2(data) 0.004 105,338 0.9757 0.0051 0.0102 0.9899 0.5272 264
∆(data) 0.004 4,341 0.0200 0.0003 0.0006 0.0075 0.0192 17
E(data) 0.003 52,478 0.9240 0.0063 0.0125 0.9857 0.5381 180
Q2(data) 0.003 52,782 0.9294 0.0061 0.0122 0.9858 0.5383 178
∆(data) 0.003 1,736 0.0400 0.0458 0.0427 0.0016 0.0438 16

Table 5.14: RCIC First reference clustering- D3

value Th NCC P R F RI ARI G
E(data) 0.005 191,264 0.9870 0.0047 0.0094 0.9852 0.4729 376
Q2(data) 0.005 196,008 0.9850 0.0054 0.0107 0.9857 0.5141 374
∆(data) 0.005 63,222 0.0599 0.0040 0.0075 0.0198 0.0410 23
E(data) 0.004 83,754 0.9870 0.0047 0.0094 0.9852 0.4729 297
Q2(data) 0.004 83,301 0.9850 0.0053 0.0105 0.9857 0.5141 293
∆(data) 0.004 63,222 0.0099 0.0020 0.0033 0.0773 0.0241 15
E(data) 0.003 50,961 0.8650 0.0047 0.0093 0.9852 0.4729 200
Q2(data) 0.003 50,920 0.8740 0.0054 0.0107 0.9857 0.5141 198
∆(data) 0.003 63,222 0.0140 0.0030 0.0049 0.0037 0.0210 6

Table 5.15: RCIC First reference clustering- D4
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5.4.8 FICFO Fair clustering

FICFO Fair comes from a very simple idea: to evenly consider every fingerprint.
We always work in the assumption of few errors in the clusters, if any. The fair
mean fits surely very well in a blind scenario, it does not fix any reference as a
drastically more important attractor respect to the others. The more we merge
a group, the more we contribute to refine the centroid location. False positives
have an impact of introducing biased noise, that makes it harder to retrieve a good
esteem of the reference. This error often appears in big clusters, when the threshold
makes us also include some far fingerprints in the group by mistake.
Because of the rarity to have many errors in the first positions of our clusters, the
impact of false positives is quite cancelled out and the cluster precision remain very
high, avoiding attracting other wrong fingerprints.
Once we avoid the first errors, PRNU estimation improves steadily with the
dimension of the cluster. The biggest the pure (or quite pure) group is, better it
produces an effective representation similar to the ground truth.
Due to the simplicity and genericity of this algorithm, it can be applied to every
dataset with very high performances and low value of NCC < 55,000. In table
5.16, we observe G=48 to 195 clusters, R ≈ 0.90 ARI > 0.91 for D1 and D2 and
R ≈ 0.80 ARI >0.83 for D3 and D4.
As usual, the strict threshold has to be preferred to the others.

dataset Th NCC P R F RI ARI G
D1 0.005 19,381 0.9970 0.9050 0.9488 0.9941 0.9155 78
D1 0.004 18,172 0.9820 0.9030 0.9408 0.9929 0.8998 60
D1 0.003 11,907 0.7120 0.7720 0.7408 0.9609 0.5507 48
D2 0.005 21,832 0.9990 0.9140 0.9546 0.9941 0.9258 92
D2 0.004 15,882 0.9260 0.9060 0.9159 0.9846 0.8216 70
D2 0.003 12,478 0.7810 0.8200 0.8000 0.9703 0.6681 55
D3 0.005 47,966 0.9870 0.8070 0.8880 0.9946 0.8351 174
D3 0.004 41,781 0.9560 0.8120 0.8781 0.9937 0.8134 147
D3 0.003 27,225 0.7090 0.6550 0.6809 0.9813 0.4993 103
D4 0.005 54,478 0.9950 0.8020 0.8881 0.9943 0.8439 195
D4 0.004 45,241 0.9530 0.7820 0.8591 0.9918 0.7782 161
D4 0.003 27,821 0.7020 0.6320 0.6652 0.9794 0.4906 100

Table 5.16: FICFO Fair clustering
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5.4.9 RCIC Fair clustering
A great advantage of the arithmetic mean proposed by FICFO Fair is the invariance
property from the fingerprint order that makes Fair clustering suitable also for the
RCIC algorithm. Its applicability to every scenario is the main reason why we
chose the Fair clustering solution as the starting point of every attraction step we
tested. Further runs of other techniques in exam show that FICFO-A and RCIC-A
really exploit their full potential only in their Fair clustering form.
In tables 5.17-5.20, we observe in average G=67 to 270 clusters, R ≈ 0.80 ARI >
0.98 for D1 and D2 and R ≈ 0.70 ARI >0.99 for D3 and D4.
As usual, the strict threshold has to be preferred to the others.

value Th NCC P R F RI ARI G
E(data) 0.005 30,111 0.9949 0.8022 0.8880 0.9885 0.8222 141
Q2(data) 0.005 30,090 0.9980 0.8005 0.8888 0.9888 0.8266 140
∆(data) 0.005 3,148 0.0010 0.0335 0.0209 0.0014 0.0246 3
E(data) 0.004 22,644 0.9738 0.8308 0.8965 0.9887 0.8313 97
Q2(data) 0.004 22,474 0.9795 0.8445 0.9021 0.9894 0.8414 97
∆(data) 0.004 2,309 0.0235 0.0350 0.0255 0.0021 0.0341 4
E(data) 0.003 15,899 0.7652 0.7282 0.7458 0.9684 0.5825 67
Q2(data) 0.003 15,674 0.7705 0.7340 0.7407 0.9690 0.5773 68
∆(data) 0.003 1,569 0.0453 0.0453 0.0314 0.0032 0.0310 3

Table 5.17: RCIC Fair clustering- D1

5.4.10 FICFO Weighted clustering
FICFO Weighted tries to improve the esteem of the Fair mean by giving greater
importance to the high value of ordering factor RI. Although this strategy seems a
better solution, it heavily depends on the statistics of the images we are clustering.
The Dresden datasets [25] do not contain many flat images. Many photos are not
uniformly bright and they tend to be saturated, we do not have a perfect attractor
for each group. In a real scenario, working with average-quality images (RI ≈
0.50), the Fair mean establish a stronger partition of the groups, because it does
not rely too much on the single images.
The table 5.22 presents some information about our source file, the RI index of
each fingerprint. It shows that there are very good images in each dataset (as the
maximum is ≈ 1) and also some very bad. Given the value G of groups in the
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value Th NCC P R F RI ARI G
E(data) 0.005 30,331 0.9960 0.7961 0.8847 0.9874 0.8261 151
Q2(data) 0.005 29,681 0.9960 0.8025 0.8893 0.9877 0.8323 150
∆(data) 0.005 4,398 0.0042 0.0265 0.0149 0.0019 0.0295 5
E(data) 0.004 22,545 0.9728 0.8355 0.8988 0.9883 0.8462 106
Q2(data) 0.004 22,144 0.9740 0.8435 0.9029 0.9882 0.8463 104
∆(data) 0.004 1,777 0.0168 0.0318 0.0224 0.0022 0.0273 9
E(data) 0.003 14,752 0.7816 0.7295 0.7543 0.9671 0.6107 68
Q2(data) 0.003 14,373 0.7730 0.7290 0.7455 0.9662 0.5933 69
∆(data) 0.003 1,291 0.0145 0.0368 0.0217 0.0034 0.0506 10

Table 5.18: RCIC Fair clustering- D2

value Th NCC P R F RI ARI G
E(data) 0.005 63,031 0.9915 0.7170 0.8322 0.9924 0.7485 233
Q2(data) 0.005 63,024 0.9915 0.7140 0.8304 0.9924 0.7498 235
∆(data) 0.005 4,905 0.0018 0.0135 0.0097 0.0004 0.0146 14
E(data) 0.004 49,766 0.9463 0.7343 0.8269 0.9917 0.7381 177
Q2(data) 0.004 49,242 0.9465 0.7365 0.8275 0.9917 0.7371 176
∆(data) 0.004 2,894 0.0133 0.0200 0.0145 0.0005 0.0128 11
E(data) 0.003 28,449 0.6708 0.6236 0.6463 0.9790 0.4507 114
Q2(data) 0.003 28,876 0.6685 0.6195 0.6435 0.9790 0.4507 113
∆(data) 0.003 1,214 0.0280 0.0320 0.0320 0.0011 0.0306 11

Table 5.19: RCIC Fair clustering- D3
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value Th NCC P R F RI ARI G
E(data) 0.005 69,334 0.9909 0.7022 0.8219 0.9910 0.7349 268
Q2(data) 0.005 69,326 0.9910 0.7020 0.8226 0.9911 0.7353 270
∆(data) 0.005 5,395 0.0025 0.0113 0.0071 0.0001 0.0055 1
E(data) 0.004 54,742 0.9375 0.7075 0.8063 0.9875 0.6351 270
Q2(data) 0.004 54,166 0.9365 0.7155 0.8112 0.9874 0.6366 270
∆(data) 0.004 3,184 0.0172 0.0265 0.0238 0.0014 0.0451 0
E(data) 0.003 31,294 0.7175 0.6106 0.6595 0.9755 0.3588 270
Q2(data) 0.003 31,764 0.7199 0.6105 0.6613 0.9760 0.3589 270
∆(data) 0.003 1,335 0.0446 0.0243 0.0232 0.0019 0.0364 0

Table 5.20: RCIC Fair clustering- D4

dataset Th NCC P R F RI ARI G
D1 0.005 19,609 0.9970 0.9030 0.9477 0.9940 0.9138 80
D1 0.004 18,295 0.9880 0.9050 0.9447 0.9934 0.9065 61
D1 0.003 12,140 0.7280 0.7690 0.7479 0.9615 0.5554 50
D2 0.005 20,915 0.9990 0.9130 0.9541 0.9941 0.9250 93
D2 0.004 16,542 0.9600 0.9170 0.9380 0.9916 0.8972 69
D2 0.003 11,991 0.7640 0.7940 0.7787 0.9681 0.6425 53
D3 0.005 47,267 0.9890 0.8050 0.8876 0.9946 0.8355 176
D3 0.004 41,544 0.9660 0.8160 0.8847 0.9942 0.8264 145
D3 0.003 27,095 0.7170 0.6690 0.6922 0.9816 0.5131 102
D4 0.005 55,495 0.9940 0.7960 0.8840 0.9940 0.8371 200
D4 0.004 44,971 0.9550 0.7720 0.8538 0.9919 0.7786 161
D4 0.003 28,914 0.7110 0.6270 0.6664 0.9798 0.4936 107

Table 5.21: FICFO Weighted clustering
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ground truth, we expect at least to have the attractor fingerprints AFG (the best
one for each group) with RI(AFG) ≈ 1.
In table 5.21, we observe G= 50 to 200 clusters, R ≈ 0.90 ARI > 0.91 for D1 and
D2 and R ≈ 0.80 ARI >0.83 for D3 and D4.

dataset max min mean G mean(AFG) var(AFG)
D1 0.9903 0.2226 0.4730 25 0.6731 0.0157
D2 0.9936 0.1959 0.4762 25 0.7134 0.0188
D3 0.9996 0.1573 0.4777 50 0.6452 0.0148
D4 0.9996 0.1573 0.4777 50 0.6444 0.0147

Table 5.22: Ordering factor for our datasets

5.4.11 FICFO-A Fair Full Matrix (FM)
FICFO-A Fair FM works in the same way as the Full Matrix clustering, but it has
the big computational advantage to start from a first partition that reduces the
number correlation matrix we need to NCC from ≈ 0.4% to ≈ 3% of its clustering
version, depending on the dataset and the threshold in exam.
In table 5.23, we observe G= 32 to 155 clusters, R ≈ 0.91 ARI > 0.99 for D1 and

dataset Th NCC P R F RI ARI G
D1 0.005 22,384 0.9747 0.9130 0.9428 0.9921 0.8912 72
D1 0.004 19,942 0.9200 0.9220 0.9210 0.9862 0.8261 52
D1 0.003 13,035 0.5130 0.8970 0.6527 0.9127 0.3904 32
D2 0.005 26,018 0.9767 0.9280 0.9517 0.9926 0.9093 78
D2 0.004 18,297 0.8780 0.9360 0.9061 0.9725 0.7288 62
D2 0.003 13,963 0.5870 0.9080 0.7130 0.9354 0.5057 38
D3 0.005 63,017 0.9736 0.8320 0.8973 0.9943 0.8333 151
D3 0.004 52,512 0.4230 0.8170 0.5574 0.9510 0.3470 52
D3 0.003 32,478 0.5620 0.7460 0.6411 0.9682 0.4085 67
D4 0.005 69,529 0.9654 0.8350 0.8955 0.9912 0.7827 155
D4 0.004 58,121 0.9040 0.8350 0.8681 0.9907 0.7744 134
D4 0.003 32,771 0.5720 0.7240 0.6391 0.9666 0.4210 64

Table 5.23: FICFO-A Fair Full matrix
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D2 and R ≈ 0.83 ARI >0.78 for D3 and D4.
The values drop very much for lower thresholds.

5.4.12 RCIC-A Fair Full Matrix (FM)
RCIC-A Fair FM is very similar to the FICFO version. From their tables 5.24-5.27
we can notice a decrements in the performances respect to the complete Full Matrix
clustering, but at the same time a relaxation of the number NCC. The introduction
of the parameter w_corr seems to have a very little advantage and also bin_vect
shows to have a scarce impact on the results.
We observe in average G= 67 to 270 clusters, R ≈ 0.80 ARI > 0.98 for D1 and D2
and R ≈ 0.70 ARI >0.99 for D3 and D4.

value Th NCC P R F RI ARI G
E(data) 0.005 40,004 0.7341 0.7914 0.7606 0.9637 0.5786 55
Q2(data) 0.005 39,544 0.7405 0.7930 0.7677 0.9632 0.5698 55
∆(data) 0.005 3,250 0.0488 0.0434 0.0269 0.0092 0.0953 5
E(data) 0.004 27,312 0.7662 0.6036 0.6731 0.9527 0.5297 43
Q2(data) 0.004 27,287 0.7766 0.5828 0.6625 0.9516 0.5282 43
∆(data) 0.004 2,612 0.0285 0.0745 0.0540 0.0051 0.0246 4
E(data) 0.003 18,110 0.7387 0.5517 0.6311 0.9462 0.5178 32
Q2(data) 0.003 17,952 0.7397 0.5595 0.6395 0.9472 0.5126 33
∆(data) 0.003 1,569 0.0096 0.0323 0.0237 0.0072 0.0197 4

Table 5.24: RCIC-A Fair Full Matrix- D1

5.4.13 FICFO-A Fair Hierarchical Agglomerative
Agglomerate clustering is an efficient attraction stage. It requires a first knowledge
of pure clusters and it build the binary tree of distances between all the centroids,
to output a valid partition of groups of groups.
The algorithm suffers the same problems of the Full Matrix, its critical step is
the merging of unclustered fingerprints. The binary tree can easily group false
positives way before the good neighbors of each reference. The more the groups
grow, the more strong and trustable the algorithm becomes in its decisions. This
is the reason why it works way better as an attraction step.
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value Th NCC P R F RI ARI G
E(data) 0.005 41,650 0.6873 0.7967 0.7371 0.9517 0.5186 59
Q2(data) 0.005 40,858 0.6855 0.7959 0.7302 0.9522 0.5265 57
∆(data) 0.005 5,566 0.0358 0.0300 0.0244 0.0135 0.1150 6
E(data) 0.004 28,083 0.6658 0.7277 0.6947 0.9364 0.4591 42
Q2(data) 0.004 27,406 0.6750 0.7199 0.6853 0.9390 0.4629 43
∆(data) 0.004 2,162 0.0437 0.0609 0.0547 0.0097 0.0510 6
E(data) 0.003 17,051 0.6757 0.5570 0.6094 0.9336 0.5525 30
Q2(data) 0.003 16,479 0.6797 0.5578 0.6146 0.9315 0.5591 29
∆(data) 0.003 1,649 0.0367 0.0732 0.0326 0.0056 0.0189 4

Table 5.25: RCIC-A Fair Full Matrix- D2

value Th NCC P R F RI ARI G
E(data) 0.005 90,083 0.6730 0.6868 0.6791 0.9773 0.4882 109
Q2(data) 0.005 90,629 0.6682 0.7030 0.6844 0.9768 0.4856 108
∆(data) 0.005 8,704 0.0309 0.0263 0.0162 0.0021 0.0363 12
E(data) 0.004 65,346 0.6239 0.6430 0.6319 0.9706 0.4305 87
Q2(data) 0.004 64,801 0.6194 0.6410 0.6245 0.9710 0.4153 87
∆(data) 0.004 4,392 0.0458 0.0286 0.0306 0.0028 0.0397 3
E(data) 0.003 34,853 0.5392 0.4842 0.5098 0.9560 0.3551 54
Q2(data) 0.003 35,724 0.5457 0.4797 0.5051 0.9556 0.3573 53
∆(data) 0.003 1,506 0.0356 0.0337 0.0210 0.0028 0.0275 5

Table 5.26: RCIC-A Fair Full Matrix- D3
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value Th NCC P R F RI ARI G
E(data) 0.005 103,080 0.6661 0.7029 0.6835 0.9737 0.4643 118
Q2(data) 0.005 102,313 0.6550 0.7039 0.6780 0.9724 0.4416 118
∆(data) 0.005 2,092 0.0447 0.0092 0.0255 0.0030 0.0440 4
E(data) 0.004 73,842 0.5612 0.6462 0.5991 0.9641 0.3586 90
Q2(data) 0.004 74,504 0.5614 0.6640 0.5963 0.9640 0.3631 92
∆(data) 0.004 1,909 0.0374 0.0712 0.0261 0.0019 0.0247 6
E(data) 0.003 38,043 0.5347 0.4943 0.5114 0.9538 0.3559 56
Q2(data) 0.003 38,760 0.5247 0.4726 0.5040 0.9536 0.3517 56
∆(data) 0.003 1,947 0.0551 0.0740 0.0173 0.0051 0.0775 3

Table 5.27: RCIC-A Fair Full Matrix- D4

The presence of many unclustered left by the first step of FICFO and RCIC
have still a big impact on Fair Hierarchical Agglomerative. It works very well in
finding the last fingerprint left outside big groups, but at the same times, it usually
starts to merge middle and little groups from different cameras before finishing to
search for true positives to regroup. In table 5.28, we can extract the values of

dataset Th NCC P R F RI ARI G
D1 0.005 19,529 0.9650 0.9120 0.9378 0.9921 0.8910 72
D1 0.004 18,279 0.8920 0.9240 0.9077 0.9868 0.8331 48
D1 0.003 11,988 0.5790 0.8800 0.6985 0.9397 0.4823 34
D2 0.005 22,013 0.9990 0.9230 0.9595 0.9948 0.9347 83
D2 0.004 16,012 0.9160 0.9350 0.9254 0.9830 0.8148 64
D2 0.003 12,574 0.6110 0.9010 0.7282 0.9425 0.5351 38
D3 0.005 48,356 0.9690 0.8280 0.8930 0.9945 0.8373 155
D3 0.004 42,100 0.4220 0.8170 0.5565 0.9510 0.3470 51
D3 0.003 27,433 0.5540 0.7420 0.6344 0.9679 0.4054 71
D4 0.005 54,925 0.5840 0.8070 0.6776 0.9634 0.4495 86
D4 0.004 45,597 0.8991 0.8292 0.8626 0.9902 0.7629 83
D4 0.003 28,021 0.5750 0.7150 0.6374 0.9683 0.4313 62

Table 5.28: FICFO-A Fair Hierarchical Agglomerative
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precision for each dataset: 0.9650, 0.9990, 0.9690, 0.5840.
The big difference in the last two clusters depends by the fact that the algorithm is
more cautious over D3, producing a partition of 155 clusters, while in D4 it obtains
G= 86. For similar numbers of groups, as in case of the relaxed case, D3 and D4
perform very similar, as expected.
As the algorithm is implemented now, we cannot come up with any threshold able
to work at the perfect height, because of the wrong order of attractions it usually
follows.
As a check, we plot every diagram of our tables, computed with the Average-Linkage
Criterion, and we notice that all of them are legit dendrograms, where the group
distance vector is monotonically increasing with the height, as in the example figure
2.10. R > 0.91 ARI > 0.99 for D1 and D2 and R ≈ 0.83 ARI ≈ 0.84 for D3. The
values drop very much for lower thresholds and on the last dataset.

5.4.14 RCIC-A Fair Hierarchical Agglomerative

All the considerations about the equivalent FICFO version are valid as well for
RCIC. Starting from RCIC we obtain an efficient attraction stage in terms of
computational complexity: O (G2log(G)) originated from G groups. From their
tables 5.29-5.32 we can notice a decrements in the performances respect to the
complete Full Matrix clustering, but at the same time a relaxation of the number
NCC< 73,500. We observe in average G= 35 to 151 clusters, R ≈ 0.80 ARI >
0.64 for D1 and D2 and R > 0.70 ARI > 0.58 for D3 and D4.

value Th NCC P R F RI ARI G
E(data) 0.005 31,919 0.8074 0.8012 0.8035 0.9737 0.6674 76
Q2(data) 0.005 31,893 0.8145 0.7920 0.8078 0.9738 0.6749 76
∆(data) 0.005 3,442 0.0483 0.0317 0.0230 0.0061 0.0505 3
E(data) 0.004 24,968 0.7448 0.8336 0.7853 0.9663 0.6236 50
Q2(data) 0.004 24,786 0.7410 0.8465 0.7927 0.9684 0.6331 50
∆(data) 0.004 2,518 0.0760 0.0375 0.0412 0.0085 0.0617 4
E(data) 0.003 17,819 0.6053 0.7340 0.6625 0.9505 0.4679 36
Q2(data) 0.003 17,574 0.6115 0.7405 0.6593 0.9508 0.4614 36
∆(data) 0.003 1,719 0.0508 0.0415 0.0301 0.0087 0.0340 4

Table 5.29: RCIC-A Fair Hierarchical Agglomerative- D1
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value Th NCC P R F RI ARI G
E(data) 0.005 32,173 0.8024 0.7980 0.7997 0.9671 0.6468 81
Q2(data) 0.005 31,498 0.7948 0.7950 0.8038 0.9687 0.6563 81
∆(data) 0.005 4,769 0.0060 0.0270 0.0203 0.0078 0.0681 3
E(data) 0.004 23,885 0.7472 0.8308 0.7859 0.9628 0.6262 55
Q2(data) 0.004 23,464 0.7287 0.8380 0.7796 0.9645 0.6386 54
∆(data) 0.004 1,968 0.0783 0.0180 0.0343 0.0122 0.0689 8
E(data) 0.003 15,611 0.5806 0.7102 0.6382 0.9260 0.3824 35
Q2(data) 0.003 15,215 0.5916 0.7030 0.6554 0.9340 0.4298 36
∆(data) 0.003 1,422 0.0726 0.0330 0.0443 0.0298 0.1218 2

Table 5.30: RCIC-A Fair Hierarchical Agglomerative- D2

value Th NCC P R F RI ARI G
E(data) 0.005 66,735 0.7744 0.7116 0.7413 0.9841 0.5810 140
Q2(data) 0.005 66,727 0.7718 0.7140 0.7442 0.9847 0.5916 138
∆(data) 0.005 5,390 0.0110 0.0080 0.0049 0.0023 0.0294 12
E(data) 0.004 52,656 0.6994 0.7272 0.7125 0.9801 0.5334 95
Q2(data) 0.004 52,099 0.6937 0.7190 0.7180 0.9795 0.5331 93
∆(data) 0.004 3,210 0.0653 0.0295 0.0311 0.0031 0.0429 10
E(data) 0.003 30,103 0.5108 0.6126 0.5570 0.9679 0.3372 65
Q2(data) 0.003 30,555 0.5125 0.6100 0.5576 0.9675 0.3397 66
∆(data) 0.003 1,385 0.0058 0.0265 0.0140 0.0023 0.0172 3

Table 5.31: RCIC-A Fair Hierarchical Agglomerative- D3
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value Th NCC P R F RI ARI G
E(data) 0.005 73,452 0.7825 0.7074 0.7429 0.9828 0.5985 151
Q2(data) 0.005 73,449 0.7828 0.7060 0.7485 0.9835 0.6006 149
∆(data) 0.005 5,935 0.0540 0.0100 0.0200 0.0031 0.0490 4
E(data) 0.004 58,136 0.7233 0.7224 0.7223 0.9774 0.5352 107
Q2(data) 0.004 57,531 0.7528 0.7220 0.7364 0.9815 0.5796 109
∆(data) 0.004 3,613 0.0784 0.0070 0.0364 0.0106 0.1149 11
E(data) 0.003 33,515 0.5142 0.6149 0.5595 0.9641 0.3465 64
Q2(data) 0.003 34,008 0.5140 0.6195 0.5618 0.9637 0.3563 64
∆(data) 0.003 1,872 0.0455 0.0263 0.0370 0.0046 0.0541 4

Table 5.32: RCIC-A Fair Hierarchical Agglomerative- D4

5.4.15 FICFO-A Fair Static Pure

The purification step, in both its forms, static or dynamic, introduces a huge
complexity (up to 250,000) during the attraction phase, in the order the NCC
of Bloy. The groups in input are usually quite precise as they are computed by
FICFO and RCIC, especially in their Fair version.
With the values of cost and performances obtained in tables 5.33-5.42, we decided
not to consider those partitions as a pre-attraction step for a further attraction.
FICFO-A Fair Static Pure and RCIC-A Fair Static Pure have to check the full set
of fingerprints and they split the partition to a huge amount of groups, very hard
to work with. In table 5.33, we observe in average G= 48 to 195 clusters, R > 0.78
ARI > 0.81 for D1 and D2 and R ≈ 0.70 ARI > 0.73 for D3 and D4.
The values drop very much for lower thresholds.

5.4.16 RCIC-A Fair Static Pure

RCIC-A Fair Static Pure suffers from the same problems of the method applied
to FICFO. RCIC generates more errors due to the random order of regrouping.
Indeed, in tables 5.34-5.37, we observe G= 66 to 260 clusters, R ≈ 0.90 ARI >
0.91 for D1 and D2 and R ≈ 0.80 ARI > 0.83 for D3 and D4.
The values drop very much for lower thresholds.
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dataset Th NCC P R F RI ARI G
D1 0.005 84,084 0.9970 0.9050 0.9488 0.9941 0.9155 78
D1 0.004 78,172 0.9890 0.9100 0.9479 0.9938 0.9115 60
D1 0.003 71,907 0.7510 0.7800 0.7652 0.9680 0.6078 48
D2 0.005 112,832 0.9990 0.9130 0.9541 0.9941 0.9252 92
D2 0.004 85,882 0.9260 0.9060 0.9159 0.9846 0.8216 70
D2 0.003 67,478 0.7810 0.8200 0.8000 0.9703 0.6681 55
D3 0.005 220,966 0.9870 0.8070 0.8880 0.9946 0.8351 174
D3 0.004 188,781 0.9560 0.8120 0.8781 0.9937 0.8134 147
D3 0.003 130,225 0.7090 0.6550 0.6809 0.9813 0.4993 103
D4 0.005 249,478 0.9950 0.8020 0.8881 0.9943 0.8439 195
D4 0.004 205,241 0.9530 0.7820 0.8591 0.9918 0.7782 161
D4 0.003 127,821 0.7030 0.6320 0.6656 0.9795 0.4916 100

Table 5.33: FICFO-A Fair Static pure

value Th NCC P R F RI ARI G
E(data) 0.005 139,200 0.9982 0.8040 0.8906 0.9886 0.8247 139
Q2(data) 0.005 140,000 0.9980 0.8090 0.8944 0.9889 0.8290 140
∆(data) 0.005 4,159 0.0012 0.0210 0.0129 0.0006 0.0111 4
E(data) 0.004 93,333 0.9880 0.8540 0.9161 0.9906 0.8607 93
Q2(data) 0.004 92,000 0.9890 0.8520 0.9154 0.9904 0.8575 92
∆(data) 0.004 4,200 0.0063 0.0112 0.0092 0.0008 0.0121 4
E(data) 0.003 66,333 0.7660 0.7290 0.7469 0.9685 0.5851 66
Q2(data) 0.003 67,000 0.7850 0.7280 0.7554 0.9688 0.5859 67
∆(data) 0.003 4,200 0.0399 0.0077 0.0232 0.0032 0.0286 4

Table 5.34: RCIC-A Fair Static pure- D1
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value Th NCC P R F RI ARI G
E(data) 0.005 152,600 0.9926 0.7874 0.8781 0.9867 0.8166 153
Q2(data) 0.005 154,000 0.9960 0.7950 0.8846 0.9868 0.8172 154
∆(data) 0.005 5,914 0.0020 0.0240 0.0146 0.0008 0.0135 6
E(data) 0.004 104,667 0.9810 0.8260 0.8968 0.9883 0.8438 105
Q2(data) 0.004 102,000 0.9790 0.8320 0.8995 0.9883 0.8463 102
∆(data) 0.004 9,800 0.0056 0.0140 0.0060 0.0011 0.0185 10
E(data) 0.003 66,333 0.7957 0.7120 0.7514 0.9671 0.5970 66
Q2(data) 0.003 67,000 0.8000 0.7130 0.7514 0.9683 0.6074 67
∆(data) 0.003 4,200 0.0245 0.0161 0.0115 0.0036 0.0389 4

Table 5.35: RCIC-A Fair Static pure- D2

value Th NCC P R F RI ARI G
E(data) 0.005 240,200 0.9920 0.7092 0.8271 0.9922 0.7390 240
Q2(data) 0.005 240,000 0.9910 0.7110 0.8283 0.9923 0.7417 240
∆(data) 0.005 6,154 0.0010 0.0100 0.0065 0.0003 0.0127 6
E(data) 0.004 176,000 0.9263 0.7213 0.8110 0.9908 0.7119 176
Q2(data) 0.004 174,000 0.9310 0.7160 0.8095 0.9911 0.7164 174
∆(data) 0.004 4,200 0.0196 0.0168 0.0145 0.0008 0.0227 4
E(data) 0.003 115,000 0.6610 0.6057 0.6319 0.9788 0.4363 115
Q2(data) 0.003 117,000 0.6500 0.5980 0.6343 0.9787 0.4318 117
∆(data) 0.003 5,600 0.0273 0.0175 0.0116 0.0004 0.0099 6

Table 5.36: RCIC-A Fair Static pure- D3
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value Th NCC P R F RI ARI G
E(data) 0.005 260,400 0.9924 0.7022 0.8224 0.9915 0.7520 260
Q2(data) 0.005 261,000 0.9930 0.6980 0.8198 0.9916 0.7551 261
∆(data) 0.005 4,102 0.0050 0.0130 0.0089 0.0003 0.0128 4
E(data) 0.004 195,333 0.9357 0.7197 0.8135 0.9900 0.7201 195
Q2(data) 0.004 197,000 0.9420 0.7200 0.8162 0.9904 0.7309 197
∆(data) 0.004 10,500 0.0315 0.0049 0.0151 0.0013 0.0295 11
E(data) 0.003 118,000 0.6850 0.6073 0.6438 0.9781 0.4636 118
Q2(data) 0.003 121,000 0.6850 0.5950 0.6368 0.9780 0.4523 121
∆(data) 0.003 9,100 0.0476 0.0511 0.0497 0.0019 0.0522 9

Table 5.37: RCIC-A Fair Static pure- D4

5.4.17 FICFO-A Fair Dynamic Pure
FICFO-A Fair Dynamic Pure was created with the aim of updating the centroid
while moving the fingerprint, for a more robust comparison and a correct re-
clustering. It also avoids splitting any group. On the contrary, it should clean the
error from the current group and trash the empty clusters (after relocating all the
item previously present in).

This algorithm has the power to merge little groups and unclustered images,
while finding errors and correcting them. The more the algorithm runs, the more
it is sure about the decisions it takes. We can even think of running the code more
than once, taking the first output as a partition still to further check, because after
the first run we should have a better understanding of the position of the centroids.
The complexity is very similar to the Static approach, due to the need of checking
every fingerprint and comparing to every other group.

In our experiments, we changed the sequence in which groups are considered
from the same ordering as the FICFO Fair output to the list sorted by decreasing
order of cluster dimension.
It is logical to think that if we clear the errors from the big groups at the beginning,
we are in presence of a great solid starting point to merge other images in those
big pure groups and to reject false positives.
Experiments shows that this consideration is not true on our datasets, conversely,
the performances get worse. We tried also to sort groups in increasing order of
dimensions. Of the three options, this performs way worse, as expected.
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The problem is the imprecision of the algorithm to re-assign items. Too many
fingerprints are moved, usually to wrong clusters. This makes us often retrieve
a worse cluster partition respect to the one we started from. Again, the huge
complexity (up to NCC= 255,617) of one or more runs of this procedure make it
unfeasible for a pre-attraction step. In table 5.38, we observe G= 17 to 63 clusters,
way less than the static approach, we notice some performances drops, as R ≈ 0.61
and ARI ≈ 0.44 in D2.

dataset Th NCC P R F RI ARI G
D1 0.005 79,682 0.9430 0.8840 0.9125 0.9912 0.8760 32
D1 0.004 59,324 0.9440 0.8980 0.9204 0.9910 0.8756 30
D1 0.003 67,799 0.4140 0.5590 0.4757 0.9303 0.2916 17
D2 0.005 129,775 0.5680 0.6110 0.5887 0.9513 0.4361 23
D2 0.004 93,912 0.5720 0.6440 0.6059 0.9516 0.4694 23
D2 0.003 79,421 0.4580 0.4990 0.4776 0.9432 0.3234 24
D3 0.005 189,094 0.8060 0.7730 0.7892 0.9899 0.7179 60
D3 0.004 154,996 0.8210 0.7690 0.7941 0.9903 0.7261 63
D3 0.003 133,291 0.3860 0.5440 0.4516 0.9625 0.2762 30
D4 0.005 255,617 0.8300 0.7850 0.8069 0.9907 0.7646 62
D4 0.004 201,201 0.5940 0.6080 0.6009 0.9778 0.4644 49
D4 0.003 129,595 0.4000 0.5070 0.4472 0.9628 0.2648 33

Table 5.38: FICFO-A Fair Dynamic pure

5.4.18 RCIC-A Fair Dynamic Pure

As for many other codes, also in RCIC-A Fair Dynamic Pure we can clearly see the
parallelism with its FICFO version. The algorithm performs the same operations
and output similar wrong conclusions. Indeed, in tables 5.39-5.42, we observe in
average G= 29 to 160 clusters, R ≈ 0.81 ARI > 0.81 for D1 and D2 and R > 0.71
ARI < 0.75 for D3 and D4.
The values drop very much for lower thresholds.
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value Th NCC P R F RI ARI G
E(data) 0.005 141,984 0.9158 0.8162 0.8631 0.9877 0.8181 39
Q2(data) 0.005 142,800 0.9156 0.8213 0.8667 0.9879 0.8224 40
∆(data) 0.005 4,080 0.0022 0.0213 0.0120 0.0006 0.0110 4
E(data) 0.004 95,200 0.9064 0.8670 0.8863 0.9896 0.8538 41
Q2(data) 0.004 93,840 0.9073 0.8650 0.8857 0.9894 0.8506 40
∆(data) 0.004 4,284 0.0058 0.0114 0.0087 0.0008 0.0120 2
E(data) 0.003 67,660 0.7028 0.7401 0.7208 0.9675 0.5804 29
Q2(data) 0.003 68,340 0.7202 0.7391 0.7295 0.9678 0.5812 29
∆(data) 0.003 4,284 0.0366 0.0078 0.0232 0.0032 0.0283 2

Table 5.39: RCIC-A Fair Dynamic pure- D1

value Th NCC P R F RI ARI G
E(data) 0.005 152,796 0.9145 0.8047 0.8560 0.9863 0.8145 50
Q2(data) 0.005 151,980 0.9147 0.8071 0.8575 0.9862 0.8142 49
∆(data) 0.005 6,120 0.0018 0.0091 0.0039 0.0010 0.0065 6
E(data) 0.004 119,340 0.8991 0.8228 0.8590 0.9866 0.8258 48
Q2(data) 0.004 109,650 0.8977 0.8350 0.8669 0.9869 0.8311 47
∆(data) 0.004 7,854 0.0045 0.0135 0.0052 0.0011 0.0183 3
E(data) 0.003 75,990 0.7718 0.7536 0.7624 0.9715 0.6541 32
Q2(data) 0.003 69,360 0.7390 0.7289 0.7305 0.9677 0.6086 30
∆(data) 0.003 4,284 0.0225 0.0092 0.0064 0.0036 0.0301 2

Table 5.40: RCIC-A Fair Dynamic pure- D2
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value Th NCC P R F RI ARI G
E(data) 0.005 245,004 0.9101 0.7200 0.8039 0.9912 0.7330 140
Q2(data) 0.005 244,800 0.9092 0.7218 0.8051 0.9913 0.7358 140
∆(data) 0.005 6,120 0.0009 0.0102 0.0059 0.0003 0.0126 6
E(data) 0.004 179,520 0.8498 0.7323 0.7867 0.9898 0.7062 77
Q2(data) 0.004 177,480 0.8541 0.7269 0.7857 0.9901 0.7107 76
∆(data) 0.004 4,284 0.0180 0.0171 0.0140 0.0008 0.0225 2
E(data) 0.003 117,300 0.6064 0.6149 0.6104 0.9778 0.4328 50
Q2(data) 0.003 119,340 0.5963 0.6071 0.6119 0.9777 0.4283 51
∆(data) 0.003 5,712 0.0250 0.0178 0.0118 0.0004 0.0099 2

Table 5.41: RCIC-A Fair Dynamic pure- D3

value Th NCC P R F RI ARI G
E(data) 0.005 265,608 0.9105 0.7129 0.7996 0.9905 0.7459 160
Q2(data) 0.005 266,220 0.9110 0.7086 0.7972 0.9906 0.7491 161
∆(data) 0.005 4,080 0.0046 0.0132 0.0082 0.0003 0.0127 4
E(data) 0.004 199,240 0.8584 0.7306 0.7893 0.9890 0.7143 85
Q2(data) 0.004 200,940 0.8642 0.7310 0.7920 0.9894 0.7251 86
∆(data) 0.004 10,710 0.0289 0.0050 0.0152 0.0013 0.0293 5
E(data) 0.003 120,360 0.6284 0.6166 0.6224 0.9771 0.4599 51
Q2(data) 0.003 123,420 0.6284 0.6041 0.6160 0.9770 0.4487 53
∆(data) 0.003 9,282 0.0437 0.0519 0.0478 0.0019 0.0518 4

Table 5.42: RCIC-A Fair Dynamic pure- D4
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5.4.19 FICFO-A Fair Khan attraction
We tested the Khan attraction on our FICFO Fair cluster partition. We see in
table 5.43 that Khan attraction tries to re-order the groups, merging some of them
and splitting others.

In our experiments, we always obtained the same number of groups G (between
48 and 195) that we started from, by chance. On every occasion, Khan attraction
is able to enhance the recall value, R> 0.91 in the easy datasets and R> 0.82 in
D3 and D4, but it drops all the other metrics. In particular, P and ARI suffer a
lot (D2 presents ARI= 0.4846 for Th= 0.0050) for the big new groups present in
the output (even two times bigger than what expected in the ground truth).
We can conclude that FICFO-A Fair Khan produces quite low values of NCC for
the easy datasets but, for sure, it does not represent a suitable alternative.

dataset Th NCC P R F RI ARI G
D1 0.005 25,387 0.8981 0.9190 0.9084 0.9658 0.5618 78
D1 0.004 21,712 0.7871 0.9300 0.8526 0.9566 0.4479 60
D1 0.003 14,163 0.3487 0.9130 0.5047 0.9218 0.1452 48
D2 0.005 30,204 0.9589 0.9310 0.9447 0.9535 0.4846 92
D2 0.004 20,712 0.7446 0.9380 0.8302 0.9314 0.3703 70
D2 0.003 15,448 0.4541 0.9190 0.6078 0.9223 0.1889 55
D3 0.005 78,068 0.9241 0.8350 0.8773 0.9850 0.5693 174
D3 0.004 63,243 0.7662 0.8370 0.8000 0.9797 0.4703 147
D3 0.003 37,731 0.3660 0.7820 0.4986 0.9649 0.1441 103
D4 0.005 147,786 0.9543 0.8290 0.8873 0.9875 0.6564 195
D4 0.004 71,001 0.7914 0.8450 0.8173 0.9724 0.3900 161
D4 0.003 37,721 0.4073 0.7620 0.5309 0.9642 0.1614 100

Table 5.43: FICFO-A Fair Khan attraction

5.4.20 RCIC-A Fair Khan attraction
RCIC-A Fair Khan has the same attitude of the FICFO version for cleaning the
groups, joining some of them and splitting other clusters.
As the tables 5.44-5.47 present, this time Khan is able to increase every metrics,
at least for the strict threshold of Th = 0.005, because of the higher number of
groups it starts from. It merges little pure clusters, without correcting the errors
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but at least without introducing new false positives. P and ARI receive a strong
boost from the good work done in reducing the number of groups. In D4 P reaches
0.9762 and ARI= 0.8253.
Khan attraction is a very cheap algorithm, in terms of NCC computations. It
introduces no more than 6,000 new cross-correlations in easy datasets and less than
21,000 in hard datasets. Therefore, on RCIC-A Fair it deserves to be compared
with the best algorithms.

value Th NCC P R F RI ARI G
E(data) 0.005 35,147 0.9980 0.9020 0.9476 0.9926 0.9039 92
Q2(data) 0.005 35,275 0.9965 0.9160 0.9546 0.9931 0.9008 92
∆(data) 0.005 4,770 0.0253 0.0095 0.0138 0.0014 0.0187 9
E(data) 0.004 23,739 0.9210 0.9103 0.9153 0.9882 0.8458 58
Q2(data) 0.004 22,925 0.9320 0.9130 0.9173 0.9889 0.8515 58
∆(data) 0.004 3,265 0.0790 0.0120 0.0405 0.0066 0.0744 2
E(data) 0.003 16,142 0.6060 0.8063 0.6906 0.9422 0.4615 38
Q2(data) 0.003 15,912 0.6120 0.8090 0.6968 0.9404 0.4525 39
∆(data) 0.003 1,701 0.1360 0.0080 0.0921 0.0133 0.0631 4

Table 5.44: RCIC-A Fair Khan attraction- D1

value Th NCC P R F RI ARI G
E(data) 0.005 35,672 0.9990 0.9000 0.9469 0.9922 0.9189 99
Q2(data) 0.005 35,275 0.9955 0.8980 0.9442 0.9924 0.9135 101
∆(data) 0.005 4,770 0.0253 0.0095 0.0119 0.0024 0.0270 6
E(data) 0.004 25,957 0.9300 0.8980 0.9137 0.9867 0.8434 69
Q2(data) 0.004 25,957 0.9240 0.9030 0.9134 0.9858 0.8354 72
∆(data) 0.004 5,967 0.0380 0.0310 0.0343 0.0070 0.0752 15
E(data) 0.003 16,031 0.5553 0.8010 0.6555 0.9251 0.4198 35
Q2(data) 0.003 15,653 0.5380 0.8020 0.6541 0.9269 0.4195 36
∆(data) 0.003 2,810 0.0520 0.0670 0.0475 0.0109 0.0051 3

Table 5.45: RCIC-A Fair Khan attraction- D2
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value Th NCC P R F RI ARI G
E(data) 0.005 79,554 0.9810 0.8060 0.8849 0.9940 0.8260 173
Q2(data) 0.005 79,832 0.9825 0.8020 0.8831 0.9941 0.8231 175
∆(data) 0.005 4,475 0.0193 0.0143 0.0106 0.0005 0.0156 10
E(data) 0.004 57,848 0.8353 0.7977 0.8160 0.9878 0.6826 131
Q2(data) 0.004 58,599 0.8430 0.7990 0.8225 0.9879 0.6864 130
∆(data) 0.004 4,284 0.0430 0.0120 0.0247 0.0020 0.0387 10
E(data) 0.003 31,984 0.4423 0.6913 0.5384 0.9511 0.2848 67
Q2(data) 0.003 33,019 0.4630 0.6830 0.5493 0.9536 0.2873 67
∆(data) 0.003 3,819 0.0620 0.0410 0.0378 0.0142 0.0474 8

Table 5.46: RCIC-A Fair Khan attraction- D3

value Th NCC P R F RI ARI G
E(data) 0.005 90,374 0.9762 0.7972 0.8776 0.9935 0.8253 191
Q2(data) 0.005 89,990 0.9770 0.7920 0.8742 0.9936 0.8256 192
∆(data) 0.005 4,541 0.0090 0.0130 0.0133 0.0005 0.0184 5
E(data) 0.004 63,315 0.8163 0.8013 0.8087 0.9851 0.6683 134
Q2(data) 0.004 63,469 0.8210 0.8000 0.8104 0.9858 0.6765 132
∆(data) 0.004 9,143 0.0480 0.0080 0.0277 0.0056 0.0904 6
E(data) 0.003 32,369 0.5163 0.7017 0.5940 0.9521 0.3267 67
Q2(data) 0.003 32,145 0.4870 0.7010 0.5747 0.9473 0.2842 68
∆(data) 0.003 1,505 0.1360 0.0600 0.1106 0.0197 0.1302 4

Table 5.47: RCIC-A Fair Khan attraction- D4
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5.5 Comparison with State of the art
The best versions of the algorithms, with and without attraction (Full Matrix,
FICFO Fair, RCIC Fair, FICFO-A Fair Full Matrix and RCIC-A Fair Khan), are
compared with the State of the art methods described in chapter 3.
All results in tables 5.48-5.51 are obtained for Th = 0.0050, the strict threshold
that often provides good clustering performances. The attraction phase raises the
threshold to Th_att = 0.0063, with a static empirically increase of ρ= 1.25. The
parameter γ is set to 0.10 when needed.

Our experiments reveal (also in images 5.1-5.4) that some instances of FICFO-
A Fair and RCIC-A Fair may be used as fast, low complexity codes for image
clustering. This is particularly true in a scenario in which we have access to a
huge number of big sized fingerprints with a good ordering factor RI. Once we
decrease the crop size or we reach a hard NC � SC problem, it starts to appear a
non-negligible presence of false positives in our groups. Errors are always likely to
drag many others with them and to drop the algorithm performances.
Working with many cameras of the same brand and model, it usually happens a
small portion of their fingerprints is attracted by a wrong cluster, so little pure
clusters hypothesis is not always true. This fact decreases the recall and affect a
bit also the precision of the first phase. Therefore, it increases the presence of some
false positives in our clusters (leading to low precision) or it creates many more
groups than what the ground truth suggests (decreasing the recall).

Comparing different clustering algorithms, we can show that both working with
RCIC and FICFO, the Fixed Reference clustering performs always worse respect to
the other codes for the clustering phase. Even in FICFO, where the first fingerprint
has the highest value of reliability, it is not wise to fix the first attractor as the
centroid of the cluster. Instead, it works better to compute a mean of all the
fingerprints we merged in the cluster and obtain the centroid from all of them, to
average the error and possibly remove the noise components.

The Weighted version gives quite the same performances of the average, but it
is based on the assumption of some very high-quality image present in the dataset,
therefore we prefer not to use it as a base for attraction, also because it is not
compatible with the RCIC algorithm.
Further investigations on FICFO-A Weighted shows that we never reach better
performances than the corresponding FICFO-A Fair alternative.

The results on Full Matrix and FICFO Fair, with and without attraction, are
very promising. In particular, FICFO Fair seems to be the winning choice. It
combines a very strong value of ARI while maintaining a very low complexity
approach for all the datasets.
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method NCC P R F RI ARI
Full Matrix (FM) 499,500 1,0000 0.9300 0.9637 0.9959 0.9421
Bloy 72,671 1,0000 0.9050 0.9501 0.9975 0.9656
FICFO base 28,818 0.9990 0.8220 0.9019 0.9891 0.8333
RCIC base 27,406 0.9910 0.5490 0.7066 0.9765 0.5610
FICFO Fair 19,381 0.9970 0.9050 0.9488 0.9941 0.9155
RCIC Fair 30,090 0.9980 0.8005 0.8888 0.9888 0.8266
FICFO-A Fair FM 22,384 0.9747 0.9130 0.9428 0.9921 0.8912
RCIC-A Fair Khan 35,147 0.9980 0.9020 0.9347 0.9934 0.9039

Table 5.48: Dataset D1: Comparison with State of the art

method NCC P R F RI ARI
Full Matrix (FM) 499,500 0.9990 0.9430 0.9702 0.9964 0.9555
Bloy 41,790 0.9957 0.8910 0.9405 0.9978 0.9738
FICFO base 29,951 0.9980 0.8320 0.9075 0.9890 0.8517
RCIC base 27,893 0.9940 0.6000 0.7483 0.9756 0.6089
FICFO Fair 21,832 0.9990 0.9140 0.9546 0.9941 0.9258
RCIC Fair 29,681 0.9960 0.8025 0.8893 0.9877 0.8323
FICFO-A Fair FM 26,018 0.9767 0.9280 0.9515 0.9926 0.9093
RCIC-A Fair Khan 35,672 0.9990 0.9000 0.9469 0.9936 0.9189

Table 5.49: Dataset D2: Comparison with State of the art

The output metric values of FICFO Fair are always a bit lower than the respective
Bloy or Full Matrix, but we must consider that a greedy algorithm as FICFO Fair
can handle just approximations of the ground truth. Without a full knowledge of
all the fingerprints at once, it is impossible to compute an optimal partition.

If we relax the problem and we do not account for the computational complexity,
Full Matrix offers an extremely accurate solution for easy datasets, while Bloy
seems even a bit better in facing the challenge of clustering on hard datasets. The
scarcity of information about the cameras has a strong impact on the Full matrix.
It should provide the theoretical optimal solution, but it is very dependent on the
correlation values it pre-computes. So, the less statistics it can extract from the
fingerprints, the less of a precise centroid it can assign for the groups.

The use of the bin_vect rule, as a binary mask of length, appears to have
benefits over all the datasets in the base version of the algorithms, while it does
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not seem to give a clear advantage as an attraction after FICFO.

method NCC P R F RI ARI
Full Matrix (FM) 499,500 0.9790 0.8370 0.9024 0.9952 0.8567
Bloy 232,105 0.9845 0.8150 0.8918 0.9970 0.9180
FICFO base 53,121 0.9880 0.7730 0.8674 0.9935 0.7954
RCIC base 55,535 0.9800 0.5720 0.7224 0.9890 0.5940
FICFO Fair 47,966 0.9870 0.8070 0.8880 0.9946 0.8351
RCIC Fair 63,024 0.9915 0.7140 0.8304 0.9924 0.7498
FICFO-A Fair FM 63,017 0.9736 0.8320 0.8973 0.9943 0.8333
RCIC-A Fair Khan 79,554 0.9810 0.8060 0.8849 0.9943 0.8260

Table 5.50: Dataset D3: Comparison with State of the art

method NCC P R F RI ARI
Full Matrix (FM) 499,500 0.9920 0.8330 0.9056 0.9951 0.8696
Bloy 305,894 0.9910 0.8180 0.8962 0.9980 0.9530
FICFO base 61,676 0.9910 0.7560 0.8577 0.9924 0.7828
RCIC base 61,934 0.9770 0.5430 0.6980 0.9869 0.5615
FICFO Fair 54,478 0.9950 0.8020 0.8881 0.9943 0.8439
RCIC Fair 69,326 0.9910 0.7020 0.8226 0.9911 0.7353
FICFO-A Fair FM 69,529 0.9654 0.8350 0.8955 0.9912 0.7827
RCIC-A Fair Khan 89,990 0.9770 0.7920 0.8742 0.9936 0.8256

Table 5.51: Dataset D4: Comparison with State of the art

RCIC appears to be a good fast alternative respect to the other algorithms,
nevertheless is has always worse initial performances respect to FICFO and it is
not very suitable for an attraction phase. Indeed, the number of computations
increases a lot and overall, we have a significant degradation of the performances.
We recommend working with RCIC Fair, as an improvement from RCIC Khan
algorithm, but not to rely on the attraction phase performed by the RCIC-A Fair
versions.
For the same dataset and imposed parameters, RCIC-A performs always worse
respect to the simpler FICFO Fair, plus we must take into account the stochastic
behavior of RCIC that make us always question about the real accuracy of our
results. If we need to execute each RCIC code many times to obtain a stable
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average of the clusters, we must multiply the computational complexity times the
number of runs we tested, receiving a big disadvantage respect to the deterministic
algorithm.
The purification step, in both its forms, static or dynamic, introduces a non-
negligible complexity to the attraction phase. The inputs are usually quite precise
as they are computed by FICFO and RCIC, especially in their Fair version. In
conclusion, the pure algorithms perform bad both as an attraction phase and as
a pre-attraction step. They have to check the full set of fingerprints and they
re-assign too many of them, usually to wrong clusters or they split the partition to
a huge amount of groups, very hard to work with.
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Experimental results

Figure 5.1: Comparison plot NCC

Figure 5.2: Comparison plot P
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Experimental results

Figure 5.3: Comparison plot R

Figure 5.4: Comparison plot ARI

91



Chapter 6

Conclusions

In this thesis we experimented with low complexity image clustering algorithms to
group images based on their camera fingerprints. The proposed improvements in
the clustering and attraction phases are designed to work on top of FICFO [1] and
RCIC [2] algorithms.
FICFO computes a ranking index RI as a metric of the quality of each estimated
fingerprint and it stores all the fingerprints sorted in descending order of RI. FICFO
produces a partition that is usually an overclustering of little pure (or quite pure)
groups, following a fast and efficient procedure.
RCIC instead, saves the fingerprints in a random order and it has to regroup
without any knowledge of the goodness of the attractors, producing stochastic
outputs usually in a slightly less efficient way.
The proposed algorithms are suitable for large datasets since computational com-
plexity per image decreases as the size of the image dataset increases. At the same
time, are also robust when the size of clusters is small compared to the number of
cameras, which is a typical problem in image clustering.

The results on different clustering techniques highlight FICFO Fair as the best
of our solutions. It combines a very strong value of ARI while maintaining a very
low complexity approach for all the datasets.
In a real scenario, we cannot expect an optimal partition computed by a greedy
algorithm as FICFO Fair but just an approximation of the ground truth.

If we relax the problem and we do not account for the computational complexity,
Full Matrix offers an extremely accurate solution for easy datasets; although, on
hard datasets, the scarcity of information about the cameras has a strong impact
on the Full matrix. It should provide the theoretical optimal solution, but it is
very dependent on the correlation values it pre-computes. So, the less statistics it
can extract from the fingerprints, the less of a precise centroid it can assign for the
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groups.
After the clustering step, we are free to consider the obtained partition already

as the final image clustering we were searching for, or we can apply an optional
attraction phase, in order to obtain less groups and better clustering effectiveness.

RCIC appear to be a good fast alternative respect to the other algorithms,
nevertheless is has always worse initial performances respect to FICFO and it is
not very suitable for an attraction phase. Indeed, the number of computations
increases a lot and overall, we have a significant degradation of the performances.
We recommend working with RCIC Fair, as an improvement from RCIC Khan
algorithm, but not to rely on the attraction phase performed by the RCIC-A Fair
versions.
For the same dataset and imposed parameters, RCIC-A performs always worse
respect to the simpler FICFO Fair, plus we must take into account the stochastic
behavior of RCIC that make us always question about the real accuracy of our
results. If we need to execute each RCIC code many times to obtain a stable
average of the clusters, we must multiply the computational complexity times the
number of runs we tested, receiving a big disadvantage respect to the deterministic
algorithm.

The purification step, in both its forms, static or dynamic, introduces a non-
negligible complexity to the attraction phase. The inputs are usually quite precise
as they are computed by FICFO and RCIC, especially in their Fair version. In
conclusion, the pure algorithms perform bad both as an attraction phase and as
a pre-attraction step. They have to check the full set of fingerprints and they
re-assign too many of them, usually to wrong clusters or they split the partition to
a huge amount of groups, very hard to work with.

6.1 Future work, ways of improving
A good strategy for decreasing the complexity may be working with reduced fin-
gerprints. For clustering digital images, we can suppose only a subset of pixels is
relevant in our analysis. In our experiments, we always rely on the full fingerprint
reference, hence we ensure more precise outputs, caused by the curse of dimension-
ality (Figure 2.9). This strategy has been already discussed in the literature and it
is presented in the section: Sparse representation 2.2.3

Each of the proposed algorithms can be also extended to the case of large-scale
databases in a divide-and-conquer strategy. We can load in memory only parts of
our dataset and proceed by grouping sub-clusters based on the correlation matrix.

93



Conclusions

Each sub-cluster can be represented by its centroid, computed by averaging all the
fingerprints in that sub-cluster and successively merged with the others. These
techniques would allow us also to parallel computing, to reduce the computational
time. For more information and for a fast overview we remind to the section:
Divide and conquer split 2.4.3

We can come up with a better Weighted clustering technique that treats the
ordering factor in a wiser way or it make use of another metric as weight. It would
be great to have a strong knowledge extracted by the images. The ideal would be
to distinguish few very good images (max weight parameter ∼ 1), more or less one
for each camera, and work by regrouping around them. The centroids should be
able to move around the original position but just for a little amount, in order not
to lose the optimal component they started from.
Such an algorithm would always require some flat image uniformly bright and not
saturated, to fully achieve its goals. If we are just in presence of average-quality
images, this trust makes us cluster too bound to our strong assumption.

A way of improving our code can be the introduction of an efficient low-
complexity check phase that, starting from the considerations we did about the
static and the dynamic purification step, is able to precisely locate the errors
(without checking every fingerprint) and it can move them to the right cluster.
This operation would surely improve the precision at the output and, in case an
attraction phase is used after, it can also improve the recall of the new groups,
because the quite absence of errors would make the centroids more precise, allowing
an easy join of groups under the threshold value.
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Appendix A

Matlab code

A.1 Normalized cross correlation matrix

1 %% f u l l c r o s s co r r matrix computations :
2 i f e x i s t ( ’ c o r r ’ ) % simply load the c r o s s c o r r e l a t i o n
3 e l s e %load the r e f e r e n c e s o f each f i n g e r p r i n t and c r e a t e the co r r

matrix
4 Ref=ze ro s (G, dim_sqr ) ;
5 f o r j j =1:G
6 pathno i se=s p r i n t f ( ’%s / ’ , s r c F i l e s ( j j ) . f o l d e r ) ;
7 f i l ename= s t r c a t ( pathnoise , s r c F i l e s ( j j ) . name) ;
8 Imm=load ( f i l ename ) ;
9 Ref ( j j , : )=z s co r e (Imm. f u l l ) ;

10 %Read f u l l camera f i n g e r p r i n t and s tandard i z e to zero mean
11 end
12

13 co r r=ze ro s (G) ;
14 f o r i i =1:G
15 f o r j j =1: i i −1 %cor r ( i i , i i )= 0 ; %don ’ t con s id e r i i − i i as a

good pa i r
16 co r r ( i i , j j )=(Ref ( i i , : ) ∗Ref ( j j , : ) ’ ) /dim_sqr ;
17 %normal ized c r o s s _ c o r r e l a t i o n= 1−pd i s t ( [ v1 ; v2 ] , ’ cos ine ’ )
18 co r r ( j j , i i )=co r r ( i i , j j ) ; % the matrix i s symmetric
19 end
20 end
21 end
22 ncc=n∗(n−1) /2 ; % NCC count ing to compute the computat ional complexity

A.2 Full Matrix without bin_vect
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1 n=G; % n= number o f f i n g e r p r i n t s ,G= i n i t i a l number o f groups
2 len_Gr=ones (G, 1 ) ;
3 % res ea r ch o f the max in the matrix and i t s i n d i c e s :
4 C=max(max( co r r ) ) ;
5 [ ind ,~]= f i n d ( co r r==C) ; i i=ind (1 ) ; j j=ind (2 ) ;
6

7 whi le (C>Th) % whi le the re s t i l l e x i s t a norm(C) value g r e a t e r than Th
8 co r r ( : , i i )=( sq r t ( len_Gr ( i i ) ) ∗ co r r ( : , i i ) + sq r t ( len_Gr ( j j ) ) ∗ co r r

( : , j j ) ) / sq r t ( len_Gr ( i i )+len_Gr ( j j ) ) ;
9 Group ( i i )= [ Group ( i i ) ; Group ( j j ) ] ;

10 len_Gr ( i i )=len_Gr ( i i )+len_Gr ( j j ) ;
11 co r r ( i i , : )=co r r ( : , i i ) ; c o r r ( i i , i i )=−2;
12 %value out o f bounds , never cons ide r ed again
13 co r r ( j j , : )= −2∗ones (n , 1 ) ; c o r r ( : , j j )=cor r ( j j , : ) ;
14 c l e a r Group ( j j ) ;
15 G=G−1;
16 len_matrix=(len_Gr∗ len_Gr ’ ) .^gamma;
17 C=max(max( co r r . / len_matrix ) ) ; % norma l i za t i on o f co r r
18 [ ind ,~]= f i n d ( co r r . / len_matrix==C) ; i i=ind (1 ) ; j j=ind (2 ) ;
19 end
20

21 l i s t= who ( ’ Group∗ ’ ) ;
22 f o r i i =1: l ength ( l i s t ) %s h i f t groups i n d i c e s :
23 FGroup( i i )=char ( l i s t ( i i ) )
24 end

A.3 Full Matrix with bin_vect

1 n=G; %n= number o f f i n g e r p r i n t s ,G= i n i t i a l number o f groups
2 len_Gr=ones (G, 1 ) ;
3 %res ea r ch o f the max in the matrix and i t s i n d i c e s :
4 C=max(max( co r r ) ) ;
5 [ ind ,~]= f i n d ( co r r==C) ; i i=ind (1 ) ; j j=ind (2 ) ;
6

7 whi le (C>Th) % whi le the re s t i l l e x i s t a norm(C) value g r e a t e r than Th
8 %c o r r e c t i o n c o e f f i c i e n t between the two f i n g e r p r i n t s :
9 co r r_coe f f=C∗ s q r t ( w_corr ( i i ) ) ∗ s q r t ( w_corr ( j j ) ) ;

10 co r r ( : , i i )=( sq r t ( w_corr ( i i ) ) ∗ co r r ( : , i i ) + sq r t ( w_corr ( j j ) ) ∗ co r r
( : , j j ) ) / sq r t ( w_corr ( i i )+w_corr ( j j )+2∗ co r r_coe f f ) ;

11 w_corr ( i i )=w_corr ( i i )+w_corr ( j j )+2∗ co r r_coe f f ;
12 Group ( i i )= [ Group ( i i ) ; Group ( j j ) ] ;
13 len_Gr ( i i )=len_Gr ( i i )+len_Gr ( j j ) ;
14

15 co r r ( i i , : )=co r r ( : , i i ) ; c o r r ( i i , i i )=−2;
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16 %value out o f bounds , never cons ide r ed again
17 co r r ( j j , : )= −2∗ones (n , 1 ) ; c o r r ( : , j j )=cor r ( j j , : ) ;
18 c l e a r Group ( j j ) ;
19 G=G−1;
20 len_matrix=(len_Gr∗ len_Gr ’ ) .^gamma;
21 C=max(max( co r r . / len_matrix ) ) ; % norma l i za t i on o f co r r
22 [ ind ,~]= f i n d ( co r r . / len_matrix==C) ; i i=ind (1 ) ; j j=ind (2 ) ;
23 end
24

25 l i s t= who ( ’ Group∗ ’ ) ;
26 f o r i i =1: l ength ( l i s t ) %s h i f t groups i n d i c e s :
27 FGroup( i i )=char ( l i s t ( i i ) )
28 end

A.4 First reference clustering

1 . . .
2 C=(Ref∗ Ix j ’ ) / l ength ( I x j ) ; %Computing NCC
3 i f (C>=Th)
4 v1=zs c o r e ( Imi . f u l l ) %v1 = r e f e r e n c e o f the f i r s t Imm
5 f o r j j =1: l e n _ f i l e
6 Group (G) =[Group (G) ; s r c _ f i l e ( j j ) ] ;
7 end
8 Ref (G)=v1 ; %Merging F inge rp r i n t s f o r the Att rac t i on s tage

A.5 Fair clustering

1 . . .
2 C=(Ref∗ Ix j ’ ) / l ength ( I x j ) ; %Computing NCC
3 i f (C>=Th)
4 v2=zs c o r e ( Imi . f u l l ) %v2 = r e f e r e n c e o f the f i r s t Imm
5 f o r j j =1: l e n _ f i l e
6 Group (G) =[Group (G) ; s r c _ f i l e ( j j ) ] ;
7 %v2 = re f e r enc e , updated with the new f i n g e r p r i n t Imm:
8 v2=zs co r e ( ( ( Ref∗Av_fact )+Imm) /( Av_fact+1) ) ;
9 Av_fact=Av_fact+1;

10 end
11 Ref (G)=v2 ; %Merging F inge rp r i n t s f o r the Att rac t i on s tage
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A.6 Weighted clustering

1 . . .
2 C=(Ref∗ Ix j ’ ) / l ength ( I x j ) ; %Computing NCC
3 i f (C>=Th)
4 v2=zs c o r e ( Imi . f u l l ) %v2 = r e f e r e n c e o f the f i r s t Imm
5 f o r j j =1: l e n _ f i l e
6 Group (G) =[Group (G) ; s r c _ f i l e ( j j ) ] ;
7 curr_w=1−s r c F i l e s ( j ) . Ord ; %current weight
8 %v2 = re f e r enc e , updated with the new f i n g e r p r i n t Imm:
9 v2=zs co r e ( ( ( Ref∗Av)+Imm∗curr_w ) /(Av+curr_w ) ) ;

10 Av=Av+curr_w ;
11 end
12 Ref (G)=v2 ; %Merging F inge rp r i n t s f o r the Att rac t i on s tage

A.7 Hierarchical Agglomerative clustering

1 th r e sho ld= 1−Th; %i t works with 1− the d i s t anc e
2 corr_vect=squareform ( co r r ) ; %v e c t o r i a l i z e d form o f co r r
3 Z = l inkage (1−corr_vect , ’ average ’ ) ; %average co s i n e d i s t ance .
4 T= c l u s t e r (Z , ’ c u t o f f ’ , thresho ld , ’ C r i t e r i o n ’ , ’ d i s t anc e ’ ) ;
5 f i g u r e (1 )
6 p lo t= dendrogram (Z ,G, ’ ColorThreshold ’ , th r e sho ld ) ;%G= # of l e a v e s
7 s e t ( plot , ’ LineWidth ’ , 2) , hold on % i n c r e a s e s the t h i c k n e s s
8 y l i n e ( thresho ld , ’ −. ’ , s p r i n t f ( ’ Threshold= %.2d ’ , th r e sho ld ) ) , hold o f f ;
9 %y l i n e shows the th re sho ld

10 t i t l e ( ’ C lus te r Assignments o f FICFO Fair C lu s t e r i ng data ’ , . . .
11 Th=%. 2 d , #G= %d ’ , thresho ld , max(T) ) ,
12 x l a b e l ( ’ data ’ ) , y l a b e l ( ’ he ight ’ ) ;
13

14 %% merge Ggroup with the l a b e l =T( i i ) in the same Fgroup
15 f o r i i =1:max(T)
16 FGroup( i i ) = [ ] ;
17 end
18 f o r i i =1:G
19 FGroup(T( i i ) ) =[FGroup(T( i i ) ) ; Group ( i i ) ] ;
20 end
21 G=max(T) ; %update # o f groups

A.8 Static pure clustering
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1 load ( s r c F i l e s ) ;
2 l e n _ f i l e= length ( s r c F i l e s ) ;
3

4 f o r i i =1: l e n _ f i l e % i i= old group index
5 v1=s r c F i l e s ( i i ) ;
6 corr_old=ze ro s (1 , dim_sqr ) ;
7 f o r j j =1:G %G=num of groups , j j= new group index
8 v2= Refav ( j j ) ;
9 corr_new= ( v1∗v2 ’ ) /dim_sqr ;

10

11 i f ( corr_new > corr_old )
12 corr_old=corr_new ;
13 index=j j ; %be t t e r group found
14 len_index=len_j ; %s t o r e the l ength o f Group_jj
15 end
16 end
17 %add r e f e r e n c e ( i i ) in the group :
18 Group ( index )= [ Group ( index ) ; s r c F i l e s ( i i ) ] ;
19 end

A.9 Dynamic pure clustering

1 f o r i i =1:G %G=num of groups , i i= old group index
2 kk=0; % f i n g e r p r i n t index
3 whi le ( kk<len_i &len_i >0)
4 kk=kk+1;
5 v1=load (Imm. f u l l ( kk ) )
6 v2= Refav ( i i ) ;
7 %compute the r e f e r e n c e o f the group ( i i )− v1 :
8 v2=zs co r e ( ( ( v2∗ l en_i )−v1 ) /( len_i −1) ) ;
9 corr_old= ( v1∗v2 ’ ) /dim_sqr ;

10 corr_old ( i snan ( corr_old ) ) =0; %i f i t comes from a div0 (Nan)
11

12 f o r j j =1:G %G=num of groups , j j= new group index
13 v3= Refav ( j j ) ;
14 corr_new= ( v1∗v3 ’ ) /dim_sqr ;
15

16 i f ( corr_new > corr_old )
17 corr_old=corr_new ;
18 index=j j ; %be t t e r group found
19 len_index=len_j ; %s t o r e the l ength o f Group ( j j )
20 end
21 run s h i f t _ f i n g e r p r i n t % v1 i s r e a s s i g n ed to Group ( index )
22 end
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23 end
24

25 %% s h i f t _ f i n g e r p r i n t :
26 i f ( index ~= i i ) %i n s i d e the whi l e loop
27 f p r i n t f ( ’ Group(%d) Ref_%d−>Group(%d) \n ’ , i i , kk , index ) ; %debug
28 i f ( len_i >1) %remove 1 f i n g e r p r i n t in a big group
29 %add kk in Group ( index ) :
30 Group ( index )= [ Group ( index ) ; Group ( i i , kk ) ] ;
31 %cut kk from Group ( i i ) :
32 Group ( i i ) =[Group ( i i , 1 : kk−1) ; Group ( i i , kk+1. len_i ) ] ;
33 Refav ( i i )= v2 ; %overwr i t e Refav_ii
34 kk=kk−1; %next f i n g e r p r i n t has the same index , removed one
35 l en_i=len_i −1;
36 e l s e %a t t r a c t 1 unc lu s t e r ed f i n g e r p r i n t in another group
37 Group ( index )= [ Group ( index ) ; Group ( i i ) ] ;%add kk in Group_jj
38 Group ( i i )= [ ] ; %empty Group ( i i )
39 l en_i =0;
40 end
41 %recompute Refav ( j j ) :
42 Refav ( j j )= z s co r e ( ( v1+(v3∗ len_index ) ) /( len_index+1) ) ;
43 end

A.10 RI computation

1 TT= nchoosek2 (sum(sum(Mtr ) ) ,2 ) ; %binomial c o e f f i c i e n t (N, 2 ) !
2 A= sum(sum(Mtr ( : , : ) . ^2 ) ) ;
3 B= sum(sum(Mtr ( : , : ) , 1 ) . ^2 ) ;
4 C= sum(sum(Mtr ( : , : ) , 2 ) . ^2 ) ;
5 RI= (TT + A − B/2 − C/2) /TT;
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