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Summary

Nowadays, the concept of "Industry 4.0 " is becoming more relevant, and one of
its innovations is the shift from periodic maintenance to predicted one. In this
context, manufacturing companies extensively use Artificial Intelligence and Ma-
chine Learning to predict when any of their machines require maintenance [1].
A machine’s failure could translate into producing waste or into time losses to
recover the machines; predictive maintenance forecasts eventual needs of technical
assistance and allows scheduling maintenance before a failure occurs.
This thesis project evaluates predictive maintenance (PdM) feasibility in laser
welding processes, focusing on applying it to car components manufactured by
Fiat Chrysler Automobiles (FCA) using machine learning algorithms. Here, the
assessment to implement PdM is evaluated with the analysis of power signals
and their relative metadata recorded in one of FCA’s factories during production.
Correctly detecting when a machine is about to output an inadequate weld would
consent to predict and schedule maintenance.
The methodology used is the data-driven one. Power signals and their metadata
such as mean, standard deviation, the signal’s energy, and the signals’ outcome
(defined with a label of good or bad), are examined to determine if a weld is more
likely to have an unsuccessful output. In the first half of the project, the focus is
on the metadata: our goal is to evaluate if they are meaningful enough to classify
good and bad signals correctly. The most relevant metadata are selected to test
labeling signals with supervised analysis using linear classification (Decision-Tree)
and non-linear classification (Support Vector Machine). Additional features are
extracted from the raw power signals by comparing a signal’s subsets’ statistics with
its reference of the same production day. Afterward, to compare these statistics
and determine if they are proper of a particular label or another, a specifically
tailored heatmap visualization is developed.
The metadata analysis showed no correlation between features and labels: it is
impossible to precisely identify faulty welds given how much good and bad signals’
features are similar. The analysis of power signals shows similar statistics both at
the beginning and end of the time series, but no difference is found between good
and bad signals.
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The analysis of the metadata and the comparison methodology developed for the
power signals contribute to exploratory analysis of the given dataset and evaluation
of PdM’s feasibility in the context of laser weldings.
FCA positively evaluated this thesis’s results, finding it interesting how the mul-
tiple time-series statistics were represented and how they proved the presence of
commonalities between the same production day signals.
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Chapter 1

Introduction

1.1 Background of the project

Throughout history, the world of industry went through four revolutions and intro-
duced groundbreaking technologies and innovations, from steam machines enabling
mechanized processes to informatics and electronics for automatizing operations.
In the last decade, the rapid advances in digitalization and automation methods
radically evolved industrial working pipelines, bringing a fourth revolution: the
"Industry 4.0". The term "Industry 4.0" was introduced in 2011 at the "Hannover-
messe" (Hannover’s fair) by Henning Kagermann, Wolf-Dieter Lukas and Wolfgang
Wahlster [2] who publicly used it in their publication called: "Industrie 4.0: Mit
dem Internet der Dinge auf dem Weg zur 4 industriellen Revolution" (Industry 4.0:
With the Internet of Things on the way to the 4th industrial revolution)[2][3]. In-
dustry 4.0, including a technological mix of sensors, robotics, connection protocols,
and programming, represents a new revolution in manufacturing products and orga-
nizing work. By exploiting new production models based on cloud-interconnected
systems and big data management, mass production is destined to become more
efficient and customizable. The continuous evolution of technologies diversifies
the dissemination of 4.0 across multiple levels and operational areas associated
with Artificial Intelligence and all digital derivatives. One of the main concepts of
Industry 4.0 is the shift from the periodic maintenance of industrial machines to a
predicted one. Predicting when a machine will require maintenance in the future
is still a relevant challenge. However, the benefits are multiple: the enhancement
of machine downtime, costs, control, and quality of production [4]. Fiat Chrysler
Automobiles, one of Italy’s most important car manufacturers, employs industry
4.0’s ’ innovations, including predictive maintenance. In collaboration with FCA’s
research center (Centro Ricerche Fiat), this project evaluated PdM’s feasibility
in laser welding operations based on data-driven analyses and classifications with
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Introduction

Artificial Intelligence tools.

1.2 Objective of the project
This thesis project aims at developing a methodology that would correctly identify
erroneous weld outputs; detecting when a weld is not proper is an essential indicator
of a need for maintenance for the welding machine. Therefore, to comprehend
the specifics under which a weld is considered to be not sufficiently good, the
analysis focused on a dataset of power signals (time-series) and their relative
metadata. This dataset was built by Centro Ricerche Fiat (CRF) and contains
signals recorded during laser welding of components for heavy vehicles’ gearboxes
such as Fiat Professional, Fiat Ducato, or IVECO. For this project’s end, it is
crucial to organize and select the data that could be the most informative and
beneficial to extract knowledge. The "Knowledge Discovery in Databases" is a
methodology extensively adopted in the Data Science field for the objectives
reported previously. The KDD incorporates operations for data arrangement and
selection, data cleaning, and finally, Data Mining. Wikipedia defines Data Mining
as "the process of discovering patterns in large data sets involving methods at the
intersection of machine learning, statistics, and database systems"[5]. Data mining
is fundamental to extract implicit information with machine learning algorithms
and represent those in organized patterns to analyze and retrieve latent knowledge.
In the first place, the analyses focused on classifying the metadata linked to the
power signals, looking for meaningful information that could help label the outcome
of a weld. Given the availability of the validated labels, a supervised approach has
been utilized. A second methodology consisted on performing data analytic on
power signals, plotting them with different modalities, and analyzing those plots,
searching for common trends and range values for each output label.

1.3 State of the Art
PdM is becoming a concept of primary importance in factory plants to improve
their efficiency and maintenance cost due to its constant rise over the decades
[6]. As reported by the analyses of this article written by Maurizio Bevilacqua [7],
15 - 70% of production costs are linked to maintenance, considering several types
of industrial settings. Given the economic impact of maintenance, this topic has
become more relevant in many industrial environments, motivating research growth
towards new and better ways to perform maintenance [8]. The main evolutional
phases of maintenance are the following [9]:

1. Corrective maintenance (CM);
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2. Time-based preventive maintenance (PM);

3. Advanced condition-based maintenance (CBM);

4. Predictive maintenance (PdM).

The last step of the maintenance’s evolution is drastically improving industrial
workflows. As it is reported in [10]: "PdM has the capability of improving system
reliability and reduce the quantity and severity of in-service system failures".
PdM stepped into the industrial sector mainly after 2011 with the start of the
revolution "Industry 4.0", which increased the adoption of innovative technologies,
such as Artificial Intelligence (AI) and Cloud Computing. Industrial companies
used to perform maintenance operations mostly in emergency conditions as a
corrective function. However, today there are new demands, such as sustaining
larger productions with a better output quality maintaining plant’s safety, efficiency,
and reliability. PdM is a possible solution to all of these new demands and some of
its applications are reported in the following.

The project work presented by Hongfei Li [11] is an example of how machine
learning is applied to predictive maintenance. This study uses a data-driven analysis
with ML to include PdM in rail network monitoring systems. The inspiration
comes from preexisting PdM applications in railroads where networks of wayside
mechanical condition detectors are used to monitor the rolling-stock as it passes
by and alerts in case of deterioration. This considered project analyzes historical
detector data, failure data, maintenance action data, inspection schedule data,
train type data, and weather data. The different analytical approaches consist of
correlation analysis, causal analysis, time series analysis, and machine learning
techniques to learn rules and build failure prediction models automatically. Those
models will subsequently be applied against historical and real-time data to predict
conditions leading to failure in the future, thus avoiding service interruptions and
increasing network velocity.

Another noteworthy project is the one introduced by Mikel Canizo [12] which
implements predictive maintenance strategies using a Big Data approach in the
field of wind turbines, relying on a Cloud Computing infrastructure. The Energy
Roadmap 2050, as reported in the just-mentioned article, projects that Europe’s
electricity supplies, around 31.6% to 48.7%, will be provided by wind turbines.
Therefore it is crucial to adopt PdM methods to reduce the economic impact of
maintenance due to the extensive adoption of wind turbines. With the rapid growth
of the wind turbines’ market, there’s a proportional growth in terms of the systems’
produced monitoring data. Nowadays, the daily data volumes generated by wind
turbines are too large to be processed with traditional technologies. This project
opted for Big Data frameworks to analyze data more efficiently, therefore improving
decision-making processes. It is shown that there’s a 3% increment in a company’s
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productivity if Big Data Frameworks are deployed. The PdM method proposed
by this project is executed on a cloud computing environment such as Amazon
EMR 1 or Microsoft HDInsight 2, which can be scaled horizontally as the data
to be processed increases in volume. The final results of this project showed that,
besides achieving a more rapid and scalable methodology, PdM’s results improved
thanks to a more accurate and sensitive rate of the systems.

The project MINICON [13] aims at developing a cost-effective integrated sensor
processing units (SPUs) for inclusion of on-line condition monitoring systems on
all range of industrial and civil machinery. This includes two objectives: the
consecution of a cost-effective hardware monitoring unit (or sensor processing
unit-SPU) and the availability of automated systems to perform decision support
on fault diagnosis and troubleshooting. This project applies predictive maintenance
to reduce the relevant maintenance costs by performing cost-effective monitoring
operations and maintenance to small elements of industrial facilities (i.e. machine
tools) and civil infrastructure (i.e. elevators and escalators).

The main parts of this project have been the analysis of metadata and power sig-
nals. For the latter are available multiple methodologies in literature that show how
timeseries’ analysis is fundamental for predictive maintenance’s implementation. In
this paper by Georgios Makridis [14], it is evaluated how to implement predictive
maintenance in the enivornment of maritime industry, to minimize vessels’ main-
tenance’s downtime and reduce the costs of this operation. PdM is a solution to
provide an optimized scheduling of maintenance processes, while extending vessels’
at reduced costs. This work focuses on anomaly detection by analyzing timeseries
data with machine learning, and then forecasting the condition of vessels’s main
engine components. The machine learning models used in this project are:

• Gradient Boosting Classification;

• Multivariate LSTM Model;

• One Class Support Vector Machine;

• Weighted Permutation Entropy.
These models have been employed all together, reveling to be an efficient tool for
forecastig anomalies with timeseries analysis.

In this work [15] is evaluated the use of PdM to find out when a target device
(TD) is about to die and to proceed with maintenance to avoid unexpected down
times. In this case the Time Series Prediction (TSP) algorithm is used to predict
the TD’s remaining useful life (RUL) TSP uses historical data to forecast future
trends, thus predicting when the TD is about to turn-off. The used algorithm
turned out to be the best solution for prediction, since exponential models could
not handle timeseries’ steep rises or steep drops, making the model not useful.
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Chapter 2

Dataset overview and
management

This chapter presents an overview of the dataset, of the inner folders and files,
along with a description of the approaches used for data management.

In the first section I describe the two file typologies contained in the Dataset:

1. Signal Files: Time series of power signals recorded during the laser welding
process;

2. Metadata Files: Table containing features extracted from the signal files right
after their creation.

Moreover, in the second section will be presented the adopted methodology for
re-organizing, cleaning, and selecting the meaningful portions of the Dataset.

2.1 Files and Folders overview

2.1.1 Signal Files
As mentioned in the introduction of this chapter, signal files are recorded during
the welding of mechanical components, which can belong to 3 categories (also
known with the name of velocities or geometries):

• Velocity A - Geometry 1;

• Velocity B - Geometry 2;

• Velocity C - Geometry 3.

5



Dataset overview and management

It is also available a D Velocity (Geometry 4), but it was not considered in the
analyses for this project’s purpose.

Figure 2.1 depicts the time-series for each type of geometry/velocity. One
commonality they share is the presence of low power values at the first ∼ 4500
samples because the welding machine is set on a "low penetration mode" to avoid
thermal excursions. Moreover, at the last ∼ 500 samples in the time-series, there
are again low power values given the power reduction at the end of the welding.
This is due to the laser beam being turned off to prevent cracks on the welded
material with an excessive overheating.

If we look instead at the intermediate part of Velocity A 2.1a and Velocity
B 2.1b signals, we can notice that they have a similar trend with the presence of
multiple gores, which is not a characteristic of Velocity C. For all of our analyses
and each type of geometry, only the intermediate part will be considered (eventual
gores are included). The initial and final sections of a signal are not descriptive of
its characteristics.
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(a) Geometry 1 Signal (Velocity A)
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(b) Geometry 2 Signal (Velocity B)
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(c) Geometry 3 Signal (Velocity C)

Figure 2.1: All the typologies of signals included in the Dataset

Besides belonging to one of the already mentioned three geometries/velocities,
signal files are labeled according to the welding output they represent. If a signal
represents a good or bad weld output, then its name file will report that information
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accordingly. These are the type of output a signal can have:

• Good: the signal is representative of a good weld output;

• Good with over penetration: signal of a good weld with excessive over
penetration;

• Bad: the signal is representative of a bad weld output;

• Bad with over penetration: signal of a bad weld with excessive over
penetration;

• Warning: the signal is representative of a degraded weld output;

• Warning with over penetration: signal of a degraded weld with excessive
over penetration.

If a signal is labeled with the additional information of "over penetration",
it means that during the welding process, the component’s material was overly
penetrated by the laser. This will increase the probability of having induced thermal
deformation onto the material.

The Velocity C

Most of this project’s analyses were performed on the Velocity C category. This
is linked mostly to two reasons:

1. Looking at 2.1c, the intermediate part of the signal is not affected by gores,
which instead are present in the time-series of Velocity A 2.1a and Velocity
B 2.1b. Not having gores in a time-series makes signals’ analysis easier because
of the reduced dynamic.

2. It includes more of all the available labels. Having a larger number of signals
representing each label, is fundamental to improve the model to classify signals
(this will be explained in this chapter 3).

Figure 2.2 shows an example of a Velocity C signal. X-axis reports the acquired
samples while the Y-axis reports the energy value of each sample. The main sections
of the signal are highlighted with different colors. As we described previously, the
initial section (the one plotted in green) has lower power values than the intermediate
part (the one plotted in blue), the same is for the final section in red, which has
low power values. The intermediate section will be fundamental for the analyses of
signals, since it represents the actual welding process. The initial and final sections
are representative of the warming-up and cooling-down of the laser process, they
do not provide information about the outcome of the weld.

7
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Figure 2.2: Highlighting of the initial, intermediate and final section of a Velocity
C energy signal

Signal files recording

Signals are recorded during laser weld processes with a photo-diode in the proximity
of the point of weld, see figure 2.3. The optic radiation between the laser and
the material is converted into an electric signal while acquired at 2048 Hz. The
acquisition of the signal is achieved with LabView’s PCI 6115 capture card installed
on a computer. Once all the signals of a production day are recorded, they are
transferred to a CRF proprietary software. It analyzes the signals and from them
extracts features such as the mean, the standard deviation, the energy and many
more (see table 2.1.2 for the complete list). The new features are subsequently
saved in a metadata file, along with those of the same geometry and production day.
The metadata file, once completed, is named after the signals’ velocity category.

Figure 2.3: Welding Laser with the additional sensor to capture energy’s radiation

Signal files conversion

The PCI 6115 capture card is produced by LabView and converts an analogical
input into a proprietary digital binary format called LabView DTLG. This file format
is only readable with the LabView software tools. Therefore, signals are not usable
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right after being exported to digital; they need a conversion to a readable format
such as the .txt one.

Figure 2.4 depicts the main blocks of the LabView script to convert signal files.
The algorithm reads all the signal files’ names from a folder selected by the user,
creates a list with these names, and cycles over this list to convert one file at each
iteration. One iteration completes a set of operations:

• Reading the file’s name from the list;
• Determining the file’s path in the computer;
• Selecting the file;
• Converting the file to text format;
• Appending the ".txt" string to the file’s name;
• Exporting the file to the same path determined in step 2.

Figure 2.4: Workflow for converting a trial file in LabView

For better usage after being converted into text format, signals have been
converted into CSV with a Python script. LabView cannot perform conversions into
CSV directly, therefore it was mandatory to convert them first into txt.

2.1.2 Metadata Files
Metadata files are created once a welding session for a specific geometry is completed.
All the signals recorded during a session are analyzed by Centro Ricerche Fiat
(CRF) software, and multiple features for each signal are derived. A metadata file
is a table of 10 columns with many rows as the number of signal files recorded for
that specific welding session. All the Metadata files are exported with the .txt file
format. In Table 2.1 is shown a preview of what is contained inside of a metadata
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Dataset overview and management

file. Each column is referred to a specific feature of the signals. Every row is linked
to a specific signal file. One of the main tasks of this project, in terms of data
management, was to to correctly associate metadata with their relative signal files,
since no relation between the two is expressed explicitly.

Quality Constant Penetration Percentage Porosity Energy Signal Mean Signal Deviance Type Acquisition Length Acquired Signal Length Analyzed Signal Reference

0.000000 NaN NaN NaN NaN 0.000000 10.000000 0.000000 0.000000 1.000000
1.000000 100.000000 0.555421 2.927530 0.034158 0.006864 10.000000 16564.000000 16564.000000 1.000000
0.000000 NaN NaN NaN NaN 0.000000 10.000000 0.000000 0.000000 1.000000
0.000000 0.000000 0.000000 0.707289 0.141385 0.017861 10.000000 18075.000000 0.000000 0.000000
1.000000 93.521595 0.000000 0.691527 0.144608 0.015687 10.000000 18059.000000 18059.000000 1.000000
1.000000 86.356340 0.010696 0.694444 0.144000 0.019217 10.000000 18699.000000 18059.000000 0.000000

...

Table 2.1: Example of what is contained inside a Metadata file

In the list below are reported the definitions of the metadata’s columns. The
entry "quality" reports the goodness of a weld, which is what we want to estimate
with machine learning. In this scenario, the feature "quality" is indeed extracted
from the signal, but only when the entire welding session is over. There’s no
quality-evaluation in real-time, which is what this project aims to achieve. The
earlier the systems detects from the signal a sign of a potential "bad quality", the
faster maintenance can be achieved by re-calibrating the machine or cleaning up
the optics of the laser.

• Quality: it is a flag which could be either 1.0, if it refers to a signal labelled
as good/good w. over penetration/warning/warning w. over penetration, or
0.0 if the label of the signal is set to bad/bad w. over penetration;

• Constant penetration: percentage of correct penetration over the whole
weld;

• Percentage porosity: indicates the percentage of porosity, which takes place
when 2 consecutive samples have a value greater than the 20% of the signal’s
average;

• Energy signal: total amount of energy required during the welding process;

• Mean signal: it is the average of all the values reported in a single signal
file;

• Deviance: it is the standard deviation of all the values reported in a single
signal file;

• Type acquisition: flag set automatically to value "10" when the welding
process starts;

• Length acquired signal: it reports the total length of the signal, which
consist of the whole number of samples inside a signal file;
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• Length analyzed signal: it reports the length of the signal without con-
sidering the initial state and final state which have a magnitude around
zero;

• Reference: it is a flag which could be either 1.0, if the trial is used as a
reference for its parameters to label accordingly the following signals, or 0.0 if
the signal is not considered as a reference.

Reference

One of the essential features of a metadata file is the reference entry. In case a
signal is flagged as reference, it will be used as a judgment parameter to label
signals that refer to it. According to CRF, any signal that stands out from its
reference’s parameters, it is labeled bad. A signal designated as a reference, which
can be labeled either good or "good over penetration", will indicate the standard
requirements its later referred signals should have to be labeled good. The reference’s
standards are not explicit or defined; it will be investigated on what they are based
on and if they are a proper parameter to recognize bad signals. Signals flagged as
reference can be more than one during a production day. Those labeled as good or
"good over penetration", and produced in one of the following two scenarios, are
always flagged as reference:

• SCENARIO 1: When manual maintenance is performed, the signal recorded
right after is flagged as reference and maintains this role for all the following
signals of that welding session, until a new one is set;

• SCENARIO 2: When a new production session is started, the first signal is
always a reference.

2.1.3 Dataset’s directories

In Figure 2.5 it is shown the first level of the directories. The first folders are those
whose names report the day their content was archived and included in the dataset.
Each of these contain two sub-folders, one for the signals and one for the metadata
(the inside is shown in figure 2.6). As it can be seen from the figure, supposedly
correlated signals and metadata are grouped in the same backup folder. In the next
section (2.2), it will be explained that this is not always straightforward. Some
signal folders will have to be moved inside the dataset to maintain consistency in
the relation between signals and metadata.
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Data-set

04_11_2019 Signals (Oct 23 - Nov 1) Metadata (Oct 23 - Oct 30)

29_01_2020

27_05_2020

24_01_2020

17_12_2019

17_01_2020

15_11_2020

14_02_2020

06_12_2019

Signals (Nov 04 - Nov 15)

Signals (Nov 15 - Dec 06)

Signals (Dec 06 - Jan 17)

Signals (Dec 17 - Jan 17)

Signals (Dec 17 - Jan 24)

Signals (Jan 24 - Jan 29)

Signals (Jan 29 - Feb 14)

Signals (Feb 14 - May 27)

Metadata (Nov 4 - Nov 15)

Metadata (Dec 02)

Metadata (Nov 15 - Jan 17)

Metadata (Dec 17 - Jan 17)

Metadata (Dec 17 - Jan 24)

Metadata (Jan 24 - Jan 29)

Metadata (Jan 29 - Feb 10)

Metadata (Feb 14 - May 25)

Figure 2.5: First level of folders’ hierarchy

In figure 2.6 it is shown the second level of directories. On this level are located
signal and metadata folders. Signal folders contain sub-folders named after their
date of creation, their geometry code, and the velocity label. Inside of these are
located signal files that need to be converted, as mentioned in the subsection [2.1.1].
All signal files have a defined pattern for their nomenclature: number + label of
the weld quality output. Metadata folders contain sub-folders named after their
creation date. These contain metadata files in the .txt format and are named
with the geometry code and type of velocity of the signals they refer to. As it can
be seen, there could be different metadata files with different geometry codes, and
this is because on that same production day were welded different geometries.

Data-set 04_11_2019 Signals (Oct 23 - Nov 1) Metadata (Oct 23 - Oct 30)

Wed, Oct 23, 2019 Geometry 1 - Velocity A

Fri, Nov 01, 2019 Geometry 2 - Velocity B

Mon, Oct 28, 2019 Geometry 3 - Velocity C

Sat, Oct 26, 2019 Geometry 3 - Velocity C

Thu, Oct 31, 2019 Geometry 2 - Velocity B

Tue, Oct 29, 2019 Geometry 3 - Velocity C

Wed, Oct 23, 2019 Geometry 4 - Velocity D

Wed, Oct 30, 2019 Geometry 2 - Velocity B29_01_2020

27_05_2020

24_01_2020

17_12_2019

17_01_2020

15_11_2020

14_02_2020

06_12_2019

Mon, Oct 28, 2019

Sat, Oct 26, 2019

Wed, Oct 23, 2019

Wed, Oct 30, 2019

Geometry 3 - Velocity C

Geometry 2 - Velocity B

Geometry 3 - Velocity C

Geometry 1 - Velocity A
Geometry 4 - Velocity D

1_good

2_good

…

Figure 2.6: Second level of folders’ hierarchy
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2.2 Dataset Management
One of the most critical steps of the project was reorganizing the dataset to
index signals with their relative metadata more easily. As explained in section
2.1.2, metadata tables contain pre-computed signals’ features, and each table’s
row contains all the information referred to a specific signal file. To simplify
the management of all the shared information between signals and metadata, a
relational database was built with the intent of having a complete overview of files’
associations.

2.2.1 Re-Organization
The methodology adopted for the reorganization consisted of moving the metadata
files into the directories where their relative signals are located. This methodology’s
approach was purely manual and consisted of selecting the metadata files and
moving them in their related signal files’ directories. This moving operation of
metadata files, has to be done with these three criteria in mind:

1. Geomerty Code - Velocity: metadata and the signals have to share the
same geometry code - type of velocity;

2. Metadata rows’ length - Number of signals: the metadata’s table needs
to have a number of rows perfectly equal to the number of signal files present
in the folder where it is moved to;

3. Metadata’ creation date: the creation date of the metadata file has to be
subsequent to all the signal files’ creation date.

The 2ND criteria is essential to alert when a match between signals and metadata
is not available. We could have three scenarios while comparing metadata’s number
of rows with the number of related signals:

1. Number of Metadata’s rows > number of signals: signal files are
missing, and it is necessary to find them in other directories that still satisfy
the 3 previous criteria. Sometimes, an entire signal folder or folders need to
be retrieved or just a portion.

2. Number of Metadata’s rows < number of signals: signal files are in
excess, and in cases like this, only a portion of a signal folder is linked to a
specific metadata file. The signal files which are not included, will certainly
be required somewhere else.

3. No signals available: no signals are available in the entire dataset, most
likely due to a backup problem.
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In Figure 2.7 is represented how the directories’ hierarchy changed from what is
shown in figure 2.6. Now the metadata are located in the same folder of the signals.

Signals (Oct 23 - Nov 1)

Wed, Oct 23, 2019 Geometry 1 - Velocity A

Fri, Nov 01, 2019 Geometry 2 - Second Velocity 

Mon, Oct 28, 2019 Geometry 3 - Third Velocity

Sat, Oct 26, 2019 Geometry 3 - Velocity C

Thu, Oct 31, 2019 Geometry 2 - Second Velocity 

Tue, Oct 29, 2019 Geometry 3 - Third Velocity

Wed, Oct 30, 2019 Geometry 2 - Second Velocity

Geometry 3 - Velocity  C

Geometry 2 - Velocity  B

Geometry 1 - Velocity  A

Geometry 4 - Reverse Velocity

1_good

2_good

…

Wed, Oct 23, 2019 Geometry 4 - Velocity D

Geometry 3 - Velocity C

Data-set 04_11_2019

29_01_2020

27_05_2020

24_01_2020

17_12_2019

17_01_2020

15_11_2020

14_02_2020

06_12_2019

Figure 2.7: Folders structure after reorganization

2.2.2 Data-selection
Once the dataset had been re-organized, it came out that many signal files were
missing, and the metadata-signal association was not possible. Most of the signals
were missing in the backups from 04/11/2019 to 17/01/2020 (see figure 2.5 for
reference). No signals were missing in the backups from 24/01/2020 to 27/05/2020.
Therefore these folders were selected for the analyses. This selected portion of the
dataset consists of 17973 signals and 39 metadata files with 17973 rows.

2.2.3 Relational Database
By moving the metadata into the directories of their referred signal, retrieving the
features of the n−th signal, is possible by reading its metadata n−th row. To make
the workflow more efficient, build a relational database for the signals. It consists
of all the metadata files concatenated chronologically. New columns-features were
added to this database, such as:
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• Name of the File: It reports the nomenclature of the file to which the
metadata’s row refers to;

• Path of the referred signal file: It reports where the signal file is located,
so that it is easier to retrieve it and read it;

• Index of the signal’s reference: It reports the index at which its reference
is located;

• other more specific fields.

The relational database is fundamental for all the analyses that will be shown
in the next chapter. The entire construction of the database, from concatenating
the metadata files to adding new feature-columns, was done with the Python tool
Pandas. Pandas is particularly useful to manage databases and to export them in
different formats such as .CSV. Before performing our analyses, it was necessary
to validate the relational database and make sure that the concatenation of the
metadata files and new columns’ addition did not invalidate the consistency of the
information.
File Name Type Date Creation Path Index Reference Quality const_penetration percentage_porosity energy_signal mean_signal deviance type_acquisition length_acquired_signal length_analyzed_signal reference

1_good good 2020-01-17 15:18:32 Files/24_01_2020/... 0 1.0 95.638629 0.025973000000000003 0.911094 0.109758 0.012864 10.0 19251.0 19251.0 1.0
2_good good 2020-01-17 15:19:08 Files/24_01_2020/... 0 1.0 98.119122 0.020898 0.8799620000000001 0.113641 0.013096 10.0 19141.0 19251.0 0.0
3_good good 2020-01-17 15:19:44 Files/24_01_2020/... 0 1.0 94.968553 0.015722999999999997 0.878403 0.113843 0.014537 10.0 19080.0 19251.0 0.0
4_good good 2020-01-17 15:20:20 Files/24_01_2020/... 0 1.0 97.955975 0.167776 0.8884040000000001 0.112561 0.013999 10.0 19073.0 19251.0 0.0
5_good good 2020-01-17 15:20:56 Files/24_01_2020/... 0 1.0 95.85327 0.010632 0.8917450000000001 0.11214 0.013806 10.0 18812.0 19251.0 0.0
6_good good 2020-01-17 15:22:12 Files/24_01_2020/... 0 1.0 97.464342 0.037000000000000005 0.875856 0.114174 0.013354 10.0 18919.0 19251.0 0.0
7_good good 2020-01-17 15:22:48 Files/24_01_2020/... 0 1.0 97.652582 0.031283 0.882653 0.113295 0.013431 10.0 19180.0 19251.0 0.0
8_good good 2020-01-17 15:23:26 Files/24_01_2020/... 0 1.0 95.084485 0.040984 0.8780110000000001 0.113894 0.014753 10.0 19520.0 19251.0 0.0
9_good good 2020-01-17 15:24:02 Files/24_01_2020/... 0 1.0 98.899371 0.015712 0.8830129999999999 0.113249 0.012522 10.0 19094.0 19251.0 0.0
10_good good 2020-01-17 15:24:38 Files/24_01_2020/... 0 1.0 96.012759 0.037202 0.8684860000000001 0.115143 0.013816 10.0 18816.0 19251.0 0.0
11_good good 2020-01-17 15:25:14 Files/24_01_2020/... 0 1.0 95.288754 0.045623 0.90501 0.110496 0.014772 10.0 19727.0 19251.0 0.0
12_good good 2020-01-17 15:25:54 Files/24_01_2020/... 0 1.0 94.242424 0.08086499999999999 0.910605 0.109817 0.015059 10.0 19786.0 19251.0 0.0
13_good good 2020-01-17 15:26:30 Files/24_01_2020/... 0 1.0 94.954128 51.0 0.8893399999999999 0.112443 0.014571 10.0 19608.0 19251.0 0.0
14_good good 2020-01-17 15:27:06 Files/24_01_2020/... 0 1.0 99.03537 0.021439 0.863243 0.115842 0.012538 10.0 18658.0 19251.0 0.0
15_good good 2020-01-17 15:27:42 Files/24_01_2020/... 0 1.0 94.054878 0.06604 0.8942700000000001 0.111823 0.015317 10.0 19685.0 19251.0 0.0
16_good good 2020-01-17 15:28:18 Files/24_01_2020/... 0 1.0 98.726115 0.031842 0.878258 0.113862 0.012332 10.0 18843.0 19251.0 0.0
17_good good 2020-01-17 15:28:54 Files/24_01_2020/... 0 1.0 98.548387 0.026882 0.887493 0.112677 0.01349 10.0 18600.0 19251.0 0.0

Table 2.2: Preview of the relational database

2.2.4 Validation: quality label
To validate the relational database it was compared the name of the files with the
information related to them, such as the quality label.

The workflow consisted in:

1. Reading the signal’s file name in the relational database and retrieving the
quality label (for example for the file 23_good, the quality label is good);

2. Reading the quality flag column in the relational database for that signal;
3. Checking if the label and the flag are coherent (i.e. if the signal is labeled as

good, the correct flag is has to be equal to "1.0");

In Figure 2.8 are shown the results of this validation with a "line-scatter" plot.
If the comparison between the signal’s label and its quality entry returns a match,
a value equal to 1 is plotted, otherwise 0. Among 17937 signal files, only 26 did not
match the entry in the relational database, and they can be seen at the bottom of
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the plot. The mismatches are present in only two folders, and in both folders, they
refer to signals produced on the same production day for the same welding session.
The mismatch is most likely due to an error in the original metadata file.

0 2500 5000 7500 10000 12500 15000 17500
Signals of the dataset

NO MATCH

MATCH

Figure 2.8: Result of the validation for the data organization

2.2.5 Data-cleaning
Once the validation of the relational database was completed, all the 26 errors were
discarded. The cleaning operation consisted in simply removing from the DB the
rows of the erroneous files, along with those rows containing "Not-a-Value" (NaN)
entries. The cleaning process was carried out by importing the DB in Python as a
Pandas Data-Frame, and then by applying a filter for discarding the just mentioned
unwanted entries. After the cleaning the DB was saved and exported as a .CSV file
for further utilization in the project.
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Chapter 3

Working Pipeline and
methodologies

This chapter will discuss the adopted methodologies to analyze the two file typologies
of the dataset described in the previous chapter.

3.1 Methodologies for Metadata Analysis

The database is compounded of metadata files concatenated in order of creation’s
date. It holds all signal file information in one place, making analyses much
more effortless. The relational database is a CSV file and is handled in a Python
environment as a Pandas data-frame, which significantly simplifies the management
and selection of data with required specifics. The following will describe how all
the signals’ features have been extracted from the DB and classified with Machine
Learning algorithms. The process of classifying data is a standard activity in the
field of machine learning, and it can be performed with the development of a model
that, once properly trained, can analyze and segregate data into discrete values
such as:

• True or False;

• pre-defined label classes.

A classifier to work correctly needs to be trained and tested; thus, selecting a portion
of data from the dataset for training and one for testing is required. Usually, as
shown in Figure 3.1, we reserve 80% of the dataset for training and the residual
20% for testing.
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Figure 3.1: Division of the dataset for machine learning [16]

Classification methodologies are supervised learning, meaning that the correct
data labels are handled to the model to verify its guesses and adjust parameters
accordingly during the training phase. Once the model has been trained, the
dataset for testing is employed to provide an unbiased evaluation of a final model
fit on the training dataset [17]. Using just two sets for model training and testing
makes the model not completely reliable, as training and test data do not always
have the same variation as the original dataset. The K-Fold Cross-Validation solves
this issue by dividing the input data into multiple groups, rather than just two (test
and training). The letter "K" refers to how many groups the dataset of training
and test will be split. In this way, the model will be trained and tested K times,
using one fold as test data and the rest as training data for each iteration. This
technique reduces over-fitting as most of the data are also used in the validation
set. Another advantage of K-Fold Cross-Validation is that "it helps to generalize
the machine learning model, resulting in better predictions on unknown data" [18].

Figure 3.2: Example of a 4-Fold Cross-Validation [16]

The concept of classification is extensively used nowadays and some of the main
applications are [19]:

• Spam detection: classification of e-mails with the goal of detecting spam
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e-mails;

• Speech recognition: classification of speech words.

• Object recognition: classification of visual objects.

In our case study, the aim is to correctly label signals with two categories
(good and bad) by analyzing their metadata collected in the DB. The considered
features for classifying signals are their correct label and statistics (mean, standard
deviation, and more). Only C Velocity is considered for the classification with
metadata: given its larger number of signals labeled as bad, it allows to fit the
classifier more precisely.

3.1.1 Decision Tree classification (linear)
Decision Tree is a tool used to represent classification and regression. It is based on
conditional control statements, and on sequential decisions that will help assigning
a label/class to input data [20]. A sequence of decisions will lead to the tree’s
leafs which hold the label/class to assign. In Figure 3.3 is shown an example of a
Decision Tree.

Figure 3.3: Example of a Decision Tree [21]

For this classification solely the C Velocity signals were taken into account.
These are the considered features, taken from the relational database, to build the
classifier’s model:

19



Working Pipeline and methodologies

• Constant Penetration;
• Percentage Porosity;
• Energy of the signal;
• Mean of the signal;
• Deviance of the signal.

The model’s accuracy is evaluated by comparing the classifier’s output with the
correct signals’ label reported in the Quality entry of the relational database. For
the subgroup of the training data, the database of signals flagged as a reference
has been selected. On the other hand, for the subgroup of the test data, have
been selected all the C Velocity signals included in the relational database. As
mentioned in the introduction, using just two sub-sets affects the model’s accuracy,
thus K-Fold Cross-Validation was included in the process, considering K = 10.
Cross-Validation can be executed with different scoring techniques, meaning that
when assigning a label we can push to maximize the overall accuracy or the precision.
The main scoring techniques are:

• Recall Score: ratio of positive instances correctly detected by the classifier;
Recall = True Positives

True Positives+False Negatives

• F1 Score: is the harmonic mean of precision and recall;
F1 = 2 · Precision · Recall

Precision + Recall

This is how precision is calculated Precision = True Positives
True Positives+False Positives

• Accuracy Score: accuracy of the positive prediction
Accuracy = True Positives+True Negatives

True Positives+True Negatives+False Positives+False Negatives

True Positives and True Negatives are respectively the good and bad signals
correctly labeled by the classifier, while False Positives and False Negatives are the
good and bad signals classified incorrectly.

When classifying metadata, all three scoring techniques will be employed. More-
over, it will be evaluated the precision of each classifier employed during the tests.
Decision Tree is a linear classifier, which means that the features shown in 3.1.1
are combined linearly.

3.1.2 Support Vector Machine (SVM) classification (non
linear)

An additional methodology to classify data is Support-Vector-Machine (SVM). Like
Decision Tree, SVM is a supervised linear classifier with the difference that it can
also handle non-linear models with the aid of kernels.
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This classifier uses a hyper-plane or set of hyper-planes to separate data points
transferred on a N -dimensional plane. Hyper-planes are (N − 1)-dimensional sub
spaces deployed to separate data in a ND space. In Figure 3.4 it is shown an
example of how an hyper-plane depends on the dimension of the space; it is a line
in a 2D space or a plane in a 3D space.

Figure 3.4: Example of a different hyper-planes [22]

An important consideration to take into account is how an hyper-plane is chosen
among others. The criteria to chose the best hyper-plane, is to select the one that
divides groups of data with the maximum distance, or margin. An example is now
proposed to show what actually makes an hyper-plane better than another. In
Figure 3.5 are shown training data points which can be either black or white, and 3
hyper-planes (H1,H2 and H3). Data points that have the same color belong to the
same class and the classification/division with each hyper-plane is evaluated. H1
does not separate the points, while H2 and H3 succeed but with different results.
The best division is the one of hyper-plane H3, since it has "the largest separation,
or margin, between the two classes" [23]. A good separation is achieved when the
margin between the hyper-plane and the nearest training data points of any class
is the largest possible. "The bigger is the distance between the hyper-plane and
the data, the lower the generalization error of the classifier" [24].
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H1 H2 H3

X1

X2

Figure 3.5: Example of a linear SVM [23]

The just showed example considers the case of a linearly separable dataset. Data
points that are not separable with a line or a plane, require a transformation. The
idea is to map data into a higher-dimensional space to make separation easier (see
Figure [3.6] for an example).

Figure 3.6: Mapping of data to a higher-dimensional space [25]

Kernel functions are employed in SVM to take data as input and transform
it into the required form in a higher-dimensional space. The kernels commonly
adopted in the SVM for non-linear classifications are:

• Radial Basis Function (RBF) - kernel for non linear models

• Polynomial - kernel for non liner models

In Figure 3.7 are depicted examples of how kernels allow SVM to separate data:
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Figure 3.7: Example of SVM kernels [23]

For SVM’s classifications, it was only utilized the C Velocity. It was performed
a linear classification with the "linear" kernel, and a non-linear one with the RBF
and Polynomial kernel. These are the considered features, taken from the relational
database, to build the classifier’s model:

• Constant Penetration;

• Percentage Porosity;

• Energy of the signal;

The model’s accuracy is evaluated by comparing the classifier’s output with the
correct signals’ label reported in the Quality entry of the relational database. For
the subgroup of the training data, the database of signals flagged as a reference
has been selected. On the other hand, for the subgroup of the test data, have
been selected all the C Velocity signals included in the relational database. As
mentioned in the introduction, using just two sub-sets affects the model’s accuracy,
thus K-Fold Cross-Validation was included in the process, considering K = 10.

3.2 Methodologies for Signal Analysis

This section will present the methodologies adopted for signal file analysis. The
following working pipeline is changed from the one of the previous section since the
type of file is entirely different. Previously classification was based on the signal’s
features; now, the focus shifts to signals’ time trends and how they change from the
reference. The first analyses consisted of examining the time-series in the frequency
domain and later in the time domain, performing feature extraction based on the
technique of windowing.
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3.2.1 Frequency-domain analysis
In signal processing, frequency-domain analysis is a powerful tool, and it is ex-
tensively used in communications, image processing, and many other fields. The
time-based analysis examines how a signal transforms over time, while frequency-
domain analysis shows how a signal’s energy is disseminated across a range of
frequencies. The Fourier Transform (FT) is a mathematical tool that allows the
transformation of a signal from a time-based domain to the frequency one. The
vice versa is possible with the Inverse Fourier Transform (IFT). When the FT tool
is employed, the input signal is decomposed into the sum of N -sine wave frequency
components, each one with a certain magnitude (see Figure 3.8). Time-series,
once converted with the FT in the frequency domain, can be represented with the
spectrum of their frequency components.

Figure 3.8: Example of a transformation from time-domain to frequency-domain
[26]

The Fourier transform is used for continuous signals, for sampled ones it is used
the Discrete Fourier Transform (DTF) defined as follows:

Xk =
N−1Ø
n=0

xne
−i2πkn/N k = 0, . . . , N − 1 (3.1)

The DTF of a discrete signal is the the multiplication of the signal sample x[n]
with the Nth primitive root, which is e−i2πkn/N . N is the total number of the
signal’s samples. The final result is the sum of all multiplications for any n.

The DTF has a complexity equal to O(N2) because there are N(multiplications)
× N(additions). This operation would have a huge complexity if applied to signals
with many samples, therefore it is used the Fast Fourier Transform (FFT). FFT’s
algorithm determines DTF for an input greatly faster than computing it directly,
lowering the computation complexity for a problem of size N from O(N2) to
O (N log2 N) [27].
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For our analyses, signals were converted from the time-domain to the frequency-
domain with the FFT and finally visualized with a plot of their spectrum.

3.2.2 Time-domain analysis

After analyzing signals in the frequency domain, they have been examined in the
time-domain; they were not subject to any prior transformation since they were
already in time-format. As it was explained in the previous chapter, signals have
three sections, and only the intermediate one is interesting to be subject to analysis
(see Figure 2.2). The general idea applied to all following time-domain analyses
is feature extraction and signal comparison based on windows. The concept of
"windowing consists of dividing signal’s intermediate part into windows of a fixed
size (in Figure 3.9 the chosen dimension is 256 samples per window) and proceed
with the analysis focusing on single windows and not on the whole signal. The
following analyses evaluate how the features extracted from every window of a signal
diverge from those of their reference’s windows; different windows size, according
to the analysis’ requirements, will be tried.
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Figure 3.9: reference signal divided into windows of 256 samples each]

Looking at the plot in Figure 3.9, it is evident how the signal has a high dynamic
and a noticeable noise. These factors could affect the quality of the analyses,
especially when signals’ trends have to be compared with their references. In order
to diminish the signals’ dynamic and their noise, a low-pass filter was applied. A
low-pass filter (LPF) attenuates all signals’ frequencies above the cutoff frequency
and includes those that are below it [28]. Usually, the cutoff frequency for an LPF
is chosen as the frequency where the signal’s magnitude response is 3 dB lower than
the value at 0 Hz [27]. In our case, it was chosen manually, without evaluating the
3 dB drop, according to how much signal dynamic it was required for the analyses.
In Figure 3.10 is shown an example of a reference signal filtered and divided into
windows of 256 samples each.
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Figure 3.10: reference low-pass filtered signal divided into windows of 256 samples
each]

In the following are explained what type of features are extracted from each
signal’s window and how these were compared to references.

Count of windows in band of quality

This first analysis on window feature extraction consisted of retrieving each signal’s
window’s mean, evaluating if that result stays inside a range called quality band,
and counting how many windows are out of that range. The quality band is a
concept used to effectively compare signal’s windows with its reference. Once we
select a signal and retrieve its reference, the quality band is obtained as follows:

µ =
qend
n=start x[n]

Nintermediate

(3.2)

QualityBand = µ± α(STD(Xintermediate)) (3.3)

The equation 3.2 shows how the mean for the intermediate section of the reference
signal was computed. The value x[n] represents the reference signal while start
and end symbolize where its intermediate part begins and finishes. Nintermediate is
the value that represents how many samples are inside the intermediate part. The
equation 3.3 is the one that represents how the quality band was finally obtained.
Once the mean of the reference signal is computed (equation 3.2) the result is used
to evaluate how large the band is going to be. Xintermediate is the middle part of the
reference signal and its standard deviation (STD) represents the upper and lower
bound of the quality band. The result of the STD is reduced of a value equal to α
(usually set equal to 50 - 60% of the signal’s STD). As you can see from Figure
3.11 a signal labeled as good is divided in windows of 128 samples each, and for
every window it was computed the mean of the signal inside of it. The idea is
to compute in how many windows the mean signal (the plot in black) lies in the
quality band (the blue bar). Whenever the mean is inside a window, it is green,
otherwise it is red.
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Figure 3.11: good signal divided into windows of 128 samples along with windows’
analysis

Distance computation from adaptive quality band

The previous analysis was limited to counting how many times the window’s mean
was inside or not the quality band. This methodology is different because instead
of counting how many times the mean is in the quality band, it computes how far
it is. Another difference from the previous methodology, is that now the quality
band is no more constant. The way the quality band is computed consists of:
1. Dividing the intermediate section of reference’s signal into windows (for

example each window contains 128 samples);

2. Selected the kth window, computing the mean that window:

µk =
128Ø
n=0

windowk[n]

3. For the given window, compute the upper and lower bound in this way:

UPk = µk + α(STD(windowk))

DOWNk = µk − α(STD(windowk))

The value α is a scalar number to fraction the amount of STD and windowk includes
all the values of the signal in a given window k. In Figure 3.12 is reported an
example of a reference signal and of the quality band linked to it.
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Figure 3.12: Visualization of reference’s adapted quality band in windows of 128
samples
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Figure 3.13 shows the final application of the adaptive band to a referred signal.
The signal is still divided into windows (in this example each window is of 128
samples) and the black plot is the mean for each signal’s window.
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Figure 3.13: Example of a reference’s mean adapted to windows of 128 samples

This methodology, once the adaptive quality band is created and the signal’s
windows’ mean is retrieved, calculates the distance between the mean of the signal
and the quality band, for each one of the signal’s windows. The distance, in order
to keep the values normalized between 1.5 and −1.5, is computed as follows:

• If the mean of the signal is over the adaptive quality band:

distanceWindowk = 1 +
A

µk − UPk
meansignalk

B

• If the mean of the signal is below the adaptive quality band:

distanceWindowk = 1 +
A
µk +DOWNk

meansignalk

B

Computing the distances for all the signals of a production day is a lot of
information, and their representation with a heat-map (see Figure 3.14) allows a
global overview of how signals behave and differ from their reference over time. In
the heat-map of Figure 3.14 is shown, on the X-axis, all the signals’ names from a
picked production day, while on the Y-axis, are shown all the windows in which
the signals are split. The heat-map’s color bar shows, distinguishing good and bad
signals with different colors, how distant is the kth signal’s window from the kth
quality band’s section. The gradient of the colors represents if the kth signal’s
window is above/under/near or in the quality band.
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Figure 3.14: Heatmap of the distances

Euclidean distance between statistics arrays

The windowing approach is employed again in this analysis. Here are computed
different statistics for all signals’ windows, then the euclidean distance from their
references is determined. By considering all the signals on a production day I
computed, per each signal’s window an array of these statistics:

1. 99 Percentile of the signal’s window;

2. 1 Percentile of the signal’s window;

3. Mean of the signal’s window;

4. Standard Deviation of the signal’s window;

5. Max Value of the signal’s window;

6. Min Value of the signal’s window.

As a preliminary evaluation, each statistic’s values were visualized to determine
if they needed any normalization. In figure 3.15 are shown all the values of a
signal’s windows. On the x-axis, there are the windows’ indexes, and on the y-axis
are present the results for each statistic. The standard deviation is close to zero for
all windows, and it was excluded. This choice is because its contribution would be
null in the distance’s computation, and including it would have added complexity
to the algorithm.
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Figure 3.15: Results of euclidean distance of statistics’ arrays for one signal

Below are reported two array of statistics, one for a reference (the one on the
left) and one for the signal referred (the one on the right).


99 Percentile
1 Percentile
Min value
Max value
Mean value


SignalsWinw

E.Distance=======⇒


99 Percentile
1 Percentile
Min value
Max value
Mean value


ReferencerWinw

s = 0,1 . . . S w = 0,1 . . .W r = 0,1 . . . R

These are the description of all the variables:

• The variable s is used to specify which signal of the production day we are
considering;

• The variable w is used to specify which signal’s window of the production day
we are considering;

• The variable r is used to specify which reference of the production day we are
considering;

When two arrays are obtained, one for the sTh signal and one for its rTh
reference and both for the wTh window, the euclidean distance is computed.
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Linear Regression

This methodology is no more based neither on reference signals or the windowing
technique. The idea is to compute a linear regression of each one of the signal’s
intermediate part and compare signals’ results with each other. Linear regression
returns three parameters (slope, intercept and R2 see next paragraph) which are
examined to evaluate if they are strong enough to distinguish a bad signal from
a good one. In Data Science, Linear Regression (LR) is one of the most used
techniques to generate a linear approach for modeling the relationship between a
scalar response and one or more explanatory variables [29]. Considering a dataset
made of scalar response variables (dependent variables y) and explanatory variables
(independent variables x), the aim is to find a linear function (a non-vertical straight
line) that, as accurately as possible, predicts the dependent variable values as a
function of the independent variable[30]. In Figure 3.16 is pictured an example
of Linear Regression. The linear model (the blue line) fits two-dimensional data
points scattered onto the Cartesian plane.

Figure 3.16: Example of Regression [31]
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When performing LR, two parameters are weighed to fit the model to the
observed data (green points in Figure 3.17): Given a line equation f(x) = b0 + b1x
(black line in Figure 3.17) the objective is to find optimal values of b0 and b1 to
minimize the the residual distances and obtain the optimal regression line. These
are the line’s coefficients:

• b0 - intercept: represents the point where the line intersects the y axis, it;

• b1 - slope: represents the inclination of the regression line.

Residual distance between observed data (yi) and the prediction of the linear
model (f(xi)) is represented in the figure below as the gray dashed lines and
mathematically defined as:

yi − f (x1) = yi − b0 − b1x1 for i = 1, . . . , N

An optimal linear regression implies minimizing the overall gap between the
green points and the red squares, and it is denoted as Sum of Squared Residuals
(SSR):

SSR =
NØ
i=1

(yi − f(xi))2

The smaller is the SSR result, the better is the model’s fitting.

Figure 3.17: Example of Regression [32]

The performance of a linear model is explained by the indicator R2, called
the coefficient of determination. It is the square of the correlation between
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predicted values of the linear model f(xi) and observed data (yi); it ranges from
0 to 1. R2 = 0 means that the dependent variable cannot be predicted from the
independent variable, while R2 = 1 means that the dependent variable can be
predicted without error from the independent variable [33].

R2 =
C3 1
N

4 NØ
i=1

(xi − x̂)(yi − ŷ)
σx ∗ σy

D2

(3.4)

N is the number of observations used to fit the model, xi is the x value for the
i-th observation, x̂ is the mean x value, yi is the y value for the i-th observation,
ŷ is the mean y value, σx is the standard deviation of x, and σy is the standard
deviation of y [33].
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Chapter 4

Results

4.1 Metadata analysis results
Here I show the results of the analyses performed on metadata, more precisely the
outcomes of linear and non-linear classification using only signals’ features. For
both classification methodologies, only Velocity C signals have been employed.

4.1.1 Classification with Decision Tree

Decision Tree is utilized as a linear classifier for metadata, which include the
following entries:

• Constant Penetration;

• Percentage Porosity;

• Energy of the signal;

• Mean of the signal;

• Standard deviation of the signal.

The model’s training has been done using only bad and reference’s metadata, while
the testing phase was performed on the whole dataset of Velocity C signals. As
anticipated in the previous chapter 3.1.1, I opted for a 10-Fold Cross Validation, to
reduce over-fitting, and different scoring techniques. In the following I present the
confusion matrices and results of accuracy and precision for each type of scoring
technique.
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DT classification - recall score - bad label

Table 4.1 shows that 85% of bad signals have been correctly identified by the trained
DT model, while 40% of good signals have been incorrectly classified as belonging
to the counterpart label. The reason why the result is better for the bad label is
due to the recall scoring technique that tries to classify as much as possible to
a pre-defined class, which in this case is the bad one. The model’s accuracy is
0.6, which is a good result (it can range between 0 and 1). This is due to how
unbalanced data quantities are (73 bad signals versus 5770 good signals versus).
Obtaining a high accuracy with an unbalanced dataset is a phenomenon, in the
field of data science, known as "Accuracy paradox". The majority label represents
“usual” and the minority label represents “unusual,” such as a fault or a fraud.
Having a good performance on the minority class will be preferred over a good
performance on both classes, leading to an increased accuracy [34]. Precision for
the bad label is very low, meaning that the model is unable to classify bad signals.

ASSIGNED LABEL
Bad Good

Bad 61 12TRUE LABEL Good 2292 3408
ACCURACY 0.60 (Model)

Bad 0.03PRECISION Good 1.00

Table 4.1: Confusion matrix with maximization of the recall score on bad class

DT classification - F1 score - bad label

By using the F1 scoring technique on the bad label, results do not improve since the
accuracy drops below 0.5 and the bad label’s precision remains low, which means
that this classifier is not able to correctly distinguish bad signals when tested.
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ASSIGNED LABEL
Bad Good

Bad 68 5TRUE LABEL Good 3013 2687
ACCURACY 0.48 (Model)

Bad 0.02PRECISION Good 1.00

Table 4.2: Confusion matrix with maximization of the F1 scoring bad class

DT classification - accuracy score - both labels

When using the accuracy scoring technique to increase both labels’ accuracy, the
results are exactly the same of the previous classifier with F1 scoring technique.

ASSIGNED LABEL
Bad Good

Bad 68 5TRUE LABEL Good 3013 2687
ACCURACY 0.48 (Model)

Bad 0.02PRECISION Good 1.00

Table 4.3: Confusion matrix with maximization accuracy of both classes

4.1.2 Classification with Support Vector Machine
SVM is a non-linear classifier employed to classify signals considering the following
metadata entries:

• Constant Penetration;

• Percentage Porosity;

• Energy of the signal;

• Mean of the signal;

The model’s training has been done using only bad and reference’s metadata, while
the testing phase was performed on the whole dataset of Velocity C signals. For
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building this classifier a mapping function is chosen among those listed in the
previous chpater 3.1.2 and, moreover, I still opted for a 10-Fold Cross Validation,
to reduce over-fitting. The choice of ideal parameters, including the selection of the
best kernel, has been performed with an additional tool to manage such demanding
operation: Apache Spark. As described in [35], Spark is an open source platform
for large-scale data analysis processing, needed to speed up operations. It does
not include a data management system and is therefore usually deployed on other
storage platforms.Its most prominent feature is its in-memory cluster computing
which is responsible for increasing the data processing speed. A cluster simply
represents a group of computers connected (called nodes) and coordinated with
each other to process and analyze data. Utilizing Spark allowed to retrieve faster
the parameters of the SVM model, which turned out to be:

• Kernel: RBF

• C: 26.366508987303554 (Regularization parameter for the chosen kernel)

• Random State: 2 (Pseudo random number to shuffle data during probability
estimates)

• Gamma: 1.0 (Kernel coefficient)

• Class Weight: None (Both labels have the same importance) [36]

The model, using these parameters in the training phase, returned a precision equal
to 0.88. This means that the model is able to precisely distinguish bad signals from
references. Now is time to test this this model with all the other Velocity C signals
and see if the classifier’s performance are the same.

In table 4.4 there are the results of the testing phase. The accuracy of the model
is very high (due to Accuracy Paradox) while the precision for the bad label is
low. This means that is impossible to precisely distinguish and classify bad signals
among those of Velocity C.

ASSIGNED LABEL
Bad Good

Bad 49 24TRUE LABEL Good 1403 4297
ACCURACY 0.75 (Model)

Bad 0.03PRECISION Good 0.99

Table 4.4: Confusion matrix of the test results with SVM model
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These classification results show that using both linear and non-linear classifier
with the chosen metadata, is not enough to label signals with precision.
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4.2 Signal analysis results
In this section I present all the results obtained from the analyses of the signals’
timeseries. In section 4.1 the focus was on testing classification using signal’s
features; now the study is on the time series’ trends and the relationship between
signals and their references. An initial test consisted of plotting the Empirical
Cumulative Distribution of signals and study if their distribution differed based on
the label assigned. Figure 4.1 depicts the ECDF of a reference signal, along with
the a good and bad signal referred to it. The first plot 4.1a shows that signals have
almost the same distribution with no substantial difference between the good signal
and the bad signal. The second plot 4.1b represents the distributions of the same
signals but with a low-pass filtered applied. As mentioned in 3.2.2, the filtering
was applied to reduce the signal’s noise and dynamic. From what is shown in the
plot 4.1b, signals have similar distributions. In this case filtering doesn’t help in
deriving potential differences among signal classes.
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(b) ECDFs of filtered signals with low-pass filter with the cutoff frequency at 101Hz

Figure 4.1: ECDFs of test signals
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4.2.1 Frequency-Domain analysis
In figure 4.2 are depicted the analysis in the frequency domain for a signal labeled
as good. The first plot 4.2a shows the frequencies on the x-axis and their magnitude
on the y-axis. The frequencies that stand out from the others are 50[Hz] and
780[Hz]. The first one, rather than being descriptive of the signal, is more likely
linked to the recording machine’s electric current, which works at 50[Hz] frequency.

In the spectrogram of the same signal 4.2b is shown that over time these two
frequencies have a more considerable intensity to the others; in fact, on the y-axis
at 50 and 780 [Hz] is visible a yellow line that over time remains visible.
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(b) Spectrogram of a Good signal

Figure 4.2: Frequency analysis of a signal labeled as good
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The same analysis is performed on a signal labeled bad on the same production
session of the previous signal. In figure 4.3a is visible that the most intensive
frequencies are always 50[Hz] and 780[Hz]. The spectrogram 4.3b once again
confirms this result. From these analyses in the frequency domain, no apparent
correlation results between the signal’s frequencies and its labels. Good and bad
signals share the most prominent frequencies, which does not underline any potential
difference given the belonging class.
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Figure 4.3: Frequency analysis of a signal labeled as bad
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4.2.2 Time-Domain analysis
Count of windows in band of quality

One of the first analyses performed in the time domain, as explained in section 3.2.2,
was determining how different a signal is from its reference. For this examination,
I selected two production days of the Velocity C:

1. 2020/01/17: on this day, the average of the signals’ means was around 0.11.
According to CRF, this average value is low, and it is a potential sign that
the welding machine requires maintenance. Given this scenario, having a low
average would raise the chances that a signal will be labeled as bad.

2. 2020/02/24: on this day, the average of the signals’ means was around 0.15.
According to CRF, this average value is high, and the chances that a signal
will be labeled as bad are lower than the scenario at point 1.

In figure 4.4 are shown the results of this experiment for the production day
2020/01/17 and the percentages of bad signals do not distinguish from the good
ones. The same situation happens in figure 4.5 where the bad signals have some
percentages of windows out of band even lower than good signals.
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Figure 4.4: Percentages of windows out of band of quality per each signal of
production day 2020/01/17 (low average)
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Figure 4.5: Percentages of windows out of band of quality per each signal of
production day 2020/02/24 (high average)

Distance from quality band

The previous analysis shows the percentage of signal windows that are not inside
the quality band, and now we compute how distant they are from an adaptive
quality band. This time are considered all velocities, a window size of 128 samples,
and a fraction equal to α = 0.2 (the methodology is explained in section 3.2.2). As
previously mentioned in the previous chapter 3.2.2, an adaptive quality band means
that instead of a monotone trend, it follows the mean values of the reference’s
windows. Figure 4.6 shows the result from computing the distance between the
signal’s windows and the quality band. The amount of information derived from this
analysis is large, so I opted for a heatmap to represent it. It reports the distances
for all the windows of all the Velocity A signals recorded on the 10Th February
2020. On the x-axis, there is the signal’s filename, and on the y-axis, there is the
window’s number. The color bar on the right reports the distances of bad signals’
windows with warm colors, while for good signals is used a cold color palette. The
gradient of colors expresses how distant a window is from the quality band. In the
case of null distances, when the signal’s mean is similar to the reference’s, the color
is white. Signal references are indicated with a pink mark on top of the heatmap,
but they are also noticeable for the straight white lines under each marker. The
straight white line in the heatmap represents the reference’s distance from itself,
which is obviously null. This plot can be studied vertically (bottom to top) or
horizontally (left to right). A vertical analysis shows how the distance varies from
the first window to the last one. The horizontal analysis describes how the distance
varies in all signals for the same window. By examining the plot 4.6 vertically, it is
easy to see that the colors’ pattern repeats almost periodically, and this is linked to
the periodicity of Velocity A signals shown in figure 2.1a. The horizontal analysis
underlines how signals differ from their reference almost identically, given how
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colors have the same shade for almost the same windows. In this analysis, there
are no bad signals, and in the selected portion of the dataset are absent Velocity
A signals with that label. It was interesting to visualize that the distance between
signals and references, for a specific window, is almost identical for all signals in a
production session.
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Figure 4.6: Heatmap of the distances for Velocity A on production day
2020/02/10

Figure 4.7a reports the results of the same methodology for Velocity B signals
produced on the 28Th January 2020. Similarly to what is shown in figure 4.6,
colors from bottom to top have a periodical trend due to Velocity B signals’
periodicity (see figure 2.1a). In this experiment there are only two bad signal
but their distance’s color seem to follow the patter of all the others, showing no
apparent correlation between a signal’s label and the distance from its reference.
Figure 4.7b shows the ECDF of the signals’ windows that are not inside the quality
band, divided per label. Since the number of out-of-band windows is larger for
the good signals, the distribution is longer and more defined than the other. Also
in this case was interesting to visualize how the signals’ periodicity is perceivable
when computing their distance from their references.
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(a) Heatmap of the distances for Velocity B on production day 2020/01/28
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(b) ECDF of windows out of quality band for production day 2020/01/28 of VelocityB

Figure 4.7: Distance Analysis of Velocity B

Figure 4.8a shows the distances per window of Velocity C signals’ from the
quality band. In this scenario we have no periodical color patterns since trends
do not repeat like for Velocity A and Velocity B. The production day under
analysis contains 5 bad signals which are all over the quality band, like most of
good signals. This means that a bad label is not correlated to the distance from
the quality band. An interesting result is that after reference 86_good has been
assigned, results improve: looking at the colors of the windows after that reference
the amount of color white increases, meaning that signals’ trend became more
similar to their reference. Another interesting evaluation is that signals produced
before reference 86_good are generally more distant from their references. The
first 60 windows of these signals are all in dark green/dark red, meaning that the
distance from the reference is high and that their values are on top the quality band.
Figure 4.8b shows the ECDFs of the windows out of the quality band, for all the
signals divided per label. As we can see the ECDF of bad signals is more defined
than the one in figure 4.7b because there more signals with that label. Even if the
two distribution are different and separated, is not possible to retrive a significant
information to motivate a correlation between the number of windows out of band
and the label assigned to a signal.
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(a) Heatmap of the distances for Velocity C on production day 2020/02/24
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(b) ECDF of windows out of quality band for production day 2020/02/24 of Velocity C

Figure 4.8: Distance Analysis of Velocity C

Euclidean distance between statistics arrays

In figure 4.9 are shown the results of statistical arrays’ euclidean distance. As
explained in the previous chapter 3.2.2, signals produced on a determined production
day are divided into windows (windows’ sizes 128, 256, and 512). In figure 4.9a are
shown the results of Velocity C signals, divided into windows of 128 samples. The
ECDFs in green represent the Euclidean distances of good signals, while the few
red ones represent the bad signals. Distributions do not show a distinct separation
between the two labels, proving that the extracted features are not correlated to
the assigned labels. In figure 4.9b and 4.9c are depicted the euclidean distances’
distribution of signals split into windows of 256 and 512 samples, respectively. The
results do not change but enlarging the windows’ sizes, as we can see from the
plots, reduces the resolutions of the ECDFs.
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(a) ECDF of the euclidean distances between array of statistics per window of 128 samples
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(b) ECDF of the euclidean distances between array of statistics per window of 256 samples
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(c) ECDF of the euclidean distances between array of statistics per window of 512 samples

Figure 4.9: ECDF’s of the distance of statistics’ arrays for Velocity C

Linear Regression

The following figures 4.10 4.11 4.12 show the results of linear regression. The
algorithm was performed on different versions of signals (raw, low-pass filtered and
mean) and for all velocities. Each Plot is dedicated to one of the three parameters
listed in section 3.2.2 and to one of the three velocities. All plots have on the
x-axis the signals’ names, and on the y-axis the magnitude of the parameter for all
signals’ versions. Given the different scales of parameters’ results for each version
of the signal, results have been normalized between 0 and 1 using the MinMax
methodology. Parameters are represented with a scatter plot that changes color
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according to the label: green for good and red for bad. References are marked with
straight pink lines.

Figure 4.10 illustrates the result of Velocity A signals. The first plot 4.10a rep-
resents the slope parameter for each signal of the production day (10/02/2020),figure
4.10b represents the values for the intercept parameter, and 4.10c represents the R2

parameter. After normalization, all results perfectly overlap, showing no difference
among signals’ versions. On this production day, no bad signals were created.
Therefore it is not possible to evaluate a potential difference in the results according
to the assigned label.

Figure 4.11 illustrates the results for Velocity B signals. On this production day
(28/01/2020), are present two bad signals. Also in this case when normalizing all
the values, the different signals’ plots overlap showing no difference. The analysis of
these parameters related to assigned labels, shows an anomaly with signal 207_bad
which actually differentiates from good signals. In figures 4.11a and 4.11c it has a
higher results than the average, while in 4.11b it is lower. Even if it seems that
this bad signal is different from the others, it cannot be considered as an evidence
of a potential difference correlating LR parameters to labels. This is due to the
fact that the other bad signal (288_bad) has similar results as the good label for
all the three parameters.

Lastly all the results for Velocity C signals are reported in figure 4.11. Equally
as in figure 4.11, bad signals do not distinguish from their counterpart for all of
three parameters and signals’ plots overlap in figure 4.12a and 4.12b. Unlike all
the other results for the R2 parameter for the other velocities, Velocity C signals
do not overlap for the R2 parameter, as shown in figure 4.12c.

To conclude, it can be said that LR parameters seem to not be correlated to
signals’ assigned label.
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(a) Slope parameter of Velocity A signals
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(b) Intercept parameter of Velocity A signals
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(c) R2 parameter of Velocity A signals

Figure 4.10: Parameters of Linear Regression for Velocity A on production day
2020/02/10
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(a) Slope parameter of Velocity B signals
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(b) Intercept parameter of Velocity B signals
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(c) R2 parameter of Velocity B signals

Figure 4.11: Parameters of Linear Regression for Velocity B on production day
2020/01/28
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Figure 4.12: Parameters of Linear Regression for Velocity C on production day
2020/02/24
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Chapter 5

Conclusion

To draw the conclusion of this work, let us review the previous chapters’ main
points.

The analyzed dataset comprises two complementary subsets: time-series signals
and their relative metadata containing pre-computed information such as the
signal’s label, mean, standard deviation, and energy.

The analyses on metadata showed that signal labels are not correlated to the pre-
computed features. Training both a linear and non-linear classifier demonstrated
that it is impossible to assign labels considering only the signal’s features precisely.
The learning model could be improved by including additional information in the
training set, such as environmental temperature, which could affect the weld’s
output. The analyses for the time series were carried out with two methodologies.
The first consisted of computing how distant the signals’ windows were from those
of their references and developing a tailored heat map to visualize the results
for all the windows of all the signals recorded on a specific production day. The
results showed no correlation between the signal’s labels and their distance with
the reference. However, the adopted visualization method resulted in being an
effective tool to describe signals’ behavior for a whole production day.

The approaches of this work could be developed in future projects, for example
metadata’s classification could be improved including descriptive measurements
of the laser machine’s environment. Another development could be to use the
already-developed methodologies with datasets produced in different years.

To conclude this work, it is important to underline that predictive maintenance
is the key to improve production processes and industrial machines’ reliability
over time. Nowadays industrial productions are more demanding both in terms
of output quantities and quality. PdM could help in reducing time and product
wastes by forecasting when machines could require assistance and subsequently
scheduling maintenance between production sessions.
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