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Abstract

In the smart manufacturing era, the dynamics of monitoring and maintenance of the

machines are changed. After the 4th industrial revolution, artificial intelligence and

machine learning techniques are proven to be beneficial for carrying out predictive

maintenance of machines. Internet of Things (IoT) along with the Cyber-Physical

Systems (CPS) has made it possible to conduct a data-driven prognosis of a system.

Predictive maintenance techniques have been developed in order to monitor an in-

service machine for estimating when maintenance should be performed. Big data

analysis and machine learning techniques enable the detection of the current health

state and the remaining useful life of the equipment.

Above mentioned developments have played an efficient role in increasing produc-

tion efficiency by minimizing downtime during the manufacturing processes. This

study describes the application of a tool condition monitoring (TCM) framework to

a real-time milling data-set, with the aim of classifying the tool condition (worn, un-

worn) of the milling tool during a running process. The application of the framework

can help in optimizing the maintenance operations and preventing the breakdown of

the equipment.
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Chapter 1

Introduction

Manufacturing processes these days are becoming more complex, dynamic, and con-

nected. Industry operations face difficulties with strongly non-linear and stochastic

action due to the numerous complexities and inter-dependencies that occur. The

manufacturing industry is entering a time of incredible progress and transition led by

increased integration of sensors and the Internet of Things ( IoT), improved availabil-

ity of data, and developments in robotics and automation. This leads to extensive

digitization of the factories and challenges industrial firms to analyze, evaluate, and

reassess their existing activities and potential strategic directions in the modern age

[1].

Predictive Maintenance systems are developed to track, diagnose and forecast de-

fects and degradation of system components before criticality. The ultimate aim is

to avoid disruption, recognize root causes for follow-up operation, and allow effective

evidence-based maintenance preparation and optimization [3]. In this regard machine

learning techniques can inductively learn useful data patterns and refer to the pro-

cessing state and outcome reinforcing them. The idea that data is a representation of

the features of the physical machine [4]. The purpose of the prognosis is to estimate

the time variation of system output degradation from its current state to its final

malfunction [5].
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1.1 Background

The background of manufacturing is closely related to the history of increasing the

efficiency of industrial machinery to remove unnecessary downtime. Research on con-

dition monitoring, root cause analysis and remaining useful life (RUL) prognosis lays

out the fundamental expertise for maintenance and Prognostics Health Management

(PHM) [7].A discipline that measures a health condition and remains a useful life de-

pendent on past and present operational conditions is also referred to as PHM [6]. The

idea is to allow timely detection and isolation of precursors or emerging faults of the

components, forecast their advancement, and promote responsible decision-making

[2].

Classical prognostic approaches fall into two categories: model-based and data-

driven prognostics. Model-based prognosis refers to theories based on statistical mod-

els of system actions resulting from physical laws or the distribution of probabilities.

For example,traditional model-based prognostics include methods based on Wiener

and Gamma processes[8], hidden Markov models[9], Kalman filters[10] and particle

filters[11]. One of the drawbacks of model-based prognosis is that an in-depth analysis

of the underlying physical mechanisms contributing to device failures is needed.

Compared to model-based prognostics, Data-driven prognostics refers to methods

that construct a predictive model using a learning algorithm and a huge volume of

historical data. The specific advantage of data-driven approaches is that an in-depth

interpretation of the physical actions of the device is not necessary. In comparison,

data-driven approaches do not consider any fundamental distributions of probability

[12].

Data-driven prognostics is based on several machine learning algorithms which is

used for the tool condition monitoring. These machine learning algorithms predict

tool wear and the estimate remaining useful life (RUL) of a tool. In this regard

Kothuru [12] did audio-based tool condition monitoring in milling of the work-piece

material With the Hardness Variation Using Support Vector Machines(SVM) and

Convolutional Neural Network CNNs. The proposed SVM and CNN models have

14



shown a significant overall prediction accuracy of 98% and 96.3% in tool wear moni-

toring and 68% of overall prediction accuracy in work-piece hardness variation mon-

itoring [12]. Sohyung Cho [14] did tool breakage detection using a support vector

machine for an end milling operation, and used cutting force and spindle power as

input parameters. The algorithm is computationally efficient and robust in higher

dimensions [14]. Clayton Cooper [15] used convolutional neural network-based tool

condition monitoring in vertical dry milling operations using acoustic signals. They

achieved a reduction in tool wear detection time and demonstrated the untapped

potential of acoustic signal monitoring [15].

A. G, Mebrahitom Yuan [16] did remaining tool life prediction of an end milling

operation based on the force sensor signal, they used Support Vector Regression

(SVR) and neural network for tool wear estimation by using cutting force, acoustic

emissions and vibrations as input parameters. It is found that the upper/lower limits

of predicted tool wear width are closely following the trend of actual wear width of

all the three cutting tools. The maximum error between the median of predicted tool

wear width and the actual wear width is around 5%, which confirms the effectiveness

of proposed method for long-term tool life prediction [16]. X.Li [17] also used a Fuzzy

Neural Network (FNN) model to monitor the tool degradation through tool wear

and it was compared with the conventional Multi Regression Models (MRM) [17].

Dazhong Wu [18] used cloud-based machine learning for tool wear prediction in the

milling process. The prediction of tool wear in milling operations was performed with

the random forest and PRF algorithms with the input parameters of cutting forces,

vibrations, acoustic emissions. The performance of the random forest algorithm was

evaluated using mean squared error, R-square, and training time. The experimental

results have shown that random forests can generate very accurate predictions.[18]
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1.2 Thesis Objective

The objective of this thesis is to classify the tool condition (worn,unworn) during a

milling process, for predictive maintenance by using a data driven prognosis approach

based on several machine learning algorithms.

Predictive maintenance is a process in which the service life of essential compo-

nents is estimated based on examination or evaluation in order to maintain the quality

of components during the span of their service life. The conventional maintenance

approach is following run-to-failure management based on the philosophy: "if ain’t

broken, then don’t fix it", this approach leads to the time losses in manufacturing

and costly repairs. One of the drawbacks of reactive maintenance is that maintenance

resources (e.g. personnel, equipment and spare parts) are hard to forecast for repairs.

Hence predictive maintenance is an effective methodology which can optimize the

usage of the components by estimating their useful life and predicting the schedule

for repairs.

Tool Condition Monitoring (TCM) is one of the essential steps of predictive main-

tenance. TCM is to monitor pattern values, analyze data on degradation, and using

a monitoring system designed to track condition of a component during the process.

Mostly tool condition monitoring is done by incorporating sensors with the com-

ponents and monitoring the activity continuously. These observations are feed into

machine learning algorithms which in-turn classify the tool condition (worn, unworn),

and predicts the remaining useful life of the components based on historical data.

In today’s manufacturing industry, the end milling process is a widely used process

of machining, monitoring the quality of the tool is very important since it reflects the

quality of the product being produced. This technique can efficiently reduce the cost

of the process by reducing the rejections and wastage occurring due to the use of

the worn tool. Predictive maintenance can be a great breakthrough to achieve an

optimal downtime and finish product quality in a milling process. It can provide the

economies of machines and the dimensional accuracy in the machining process which

is of the foremost importance in the manufacturing industry.
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1.3 Thesis Structure

∙ Chapter one contains the background as well as the objective of the research.

Moreover it gathers the past study and explained why a data-driven approach

for monitoring of machines could provide better results.

∙ Chapter two contains a detailed discussion about industrial evolution and emerg-

ing smart manufacturing industries. A detailed guide about the maintenance

techniques which are being used in the industry.

∙ Chapter three reviews the literature regarding Machine Learning and Artificial

intelligence. Also it contains a discussion about Prognosis Health Management

(PHM), the detailed description of Tool Condition Monitoring (TCM). More-

over this chapter includes a discussion on cloud-based predictive maintenance.

∙ Chapter five includes a review of Machine Learning algorithms that can be used

for data-driven prognostics for predictive maintenance.

∙ Chapter four includes the topologies of manufacturing processes, a detailed dis-

cussion on milling operation and the possible maintenance operations required

in a milling process.

∙ Chapter six contains the details of data preparation.

∙ Chapter seven contains the methodology which is being proposed to train and

test the data-set. Moreover, it will provide the significance of algorithm selected

to conduct prognosis.

∙ Chapter eight contains detailed discussion of all obtained results of the analysis.

∙ Chapter nine includes the conclusion of the thesis with the the limitations we

faced during the research work, and the recommendations for the future re-

search.
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Chapter 2

Industry 4.0 and Smart

Manufacturing

2.1 Industrial Revolution

2.1.1 Industry 4.0

Manufacturing technologies have rapidly become widespread in the manufacturing

sector. The transition towards intelligent and interconnected manufacturing pro-

cesses, widely recognized as the 4th industrial revolution and referred to as industry

4.0, is the manifestation of three previous revolutions based on mechanization, large-

scale production, and automation, respectively. While the ability to access these

technologies is a significant step towards improving the manufacturing sector, the

transformation from the general capabilities of digital manufacturing to actionable

implementation decisions for manufacturing companies is yet another obstacle.The

automation of manufacturing processes in third industrial revolution acted as a break-

through by offering the infrastructure for gathering useful information and providing

utilization mechanisms [19].

In addition , the ability of hardware and manufacturing devices to communicate

with software systems has led to a new classification of equipment, Cyber-Physical

Systems (CPS) or systems that are designed from and based on the synergy of soft-
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ware and physical components [20]. Cyber-Physical Systems includes components like

multiple sensory input/output devices, touch screens, cameras, GPS chips, speakers,

microphone, light sensors, proximity sensors, which enhance the man-machine com-

munication. Such systems have become an important part of lean manufacturing

by offering deep insights into the production process. Established closed-loop man-

agement, process optimization and quality control mechanisms are among the most

common applications for CPS [19].

2.1.2 Industrial IoTs

Industrial IoT (IIoT) is the network of intelligent and highly connected industrial

components that are deployed to achieve high production rate with reduced oper-

ational costs through real-time monitoring, efficient management and controlling of

industrial processes,assets and operational time [22].

Internet of Things (IoT) is a growing paradigm which interconnects humans and

objects via internet. Thus, these objects can be identified and communicate over

the internet. With IoT in manufacturing, devices on the factory floor, manufactur-

ing processes, production systems and people are connected through the internet.

IoT capable devices used in the manufacturing process to improve the efficiency and

productivity, which is usually called as smart manufacturing. IoT devices installed

in the smart manufacturing systems keep on gathering information. IoT also has

diverse applications ranging from the integration of control rooms, asset monitor-

ing, problem-proof maintenance and process planning, additive manufacturing and

augmented reality [21].Industrial Internet Consortium (IIC) is an open membership

organization founded by several US-based companies with an idea to catalyze the

concept of industrial internet which has further potential to transform to business in

the industrial sector.

With IIoT, anything from major machines to transformers can be linked to the

Internet, providing status alerts and performance data. In this way, operators will

take preventive action on a possible issue until it costs the company and consumers

billions of dollars.In health care, IIoT and Big Data analytics can drive a variety of
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positive aspects. Results such as enhancing patient flow, tracking and controlling

the usage of health care equipment, monitoring clinical, financial, and operational

steps, and managing efficiency of the workforce. GE Healthcare reports that these

advancements will reduce the cost of hospital equipment by 15 to 30 percent by an

additional hour of efficiency per shift [23].

2.2 Smart Manufacturing

The Industry 4.0 framework in the manufacturing sector covers a wide range of ap-

plications ranging from product design to logistics. The function of mechatronics, a

basic concept in the design of the manufacturing system, has been modified to make it

compatible with cyber physical systems. Smart product design based on personalized

specifications targeting individualized goods has been proposed. Figure 1 presents,

industry 4.0 framework for smart manufacturing systems. The horizontal axis shows

the typical issues in industry 4.0, including smart design, smart machining, smart

monitoring, smart control smart scheduling, and industrial applications. The verti-

cal axis shows challenges in another dimension of Industry, ranging from sensor and

actuator deployment to data collection, data analysis, and decision-making.

CPS and IoT-based manufacturing systems require the generation of large quan-

tities of data in industry 4.0, and big data processing is essential for the design and

operation of smart manufacturing systems. For example, using the big data ana-

lytics methodology, a comprehensive framework for data-driven risk assessment for

industrial manufacturing systems has been performed based on real-time data. Such

a subject has been widely documented in support of production optimization and

production of cyber-physical systems [24].

Increased manufacturing complexity, dynamic economics, and dramatically dif-

ferent performance goals would require the widespread use of networked, real-time

information-based technologies that turn facilities into knowledge-based facilities, a

reactive, predictive approach to function, threat detection to incident prevention, and

vertical decision-making to distributed intelligence and local decision-making with
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Figure 2-1: Smart Manufacturing Framework
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Smart Machining In Industry 4.0, smart machining can be done with the help of
smart robots and other forms of smart objects that can sense and
communicate with each other in real-time.

Smart Monitoring Monitoring is an important part of the operation, maintenance,
and optimal scheduling for Industry 4.0 manufacturing systems.
The generalized deployment of different sensors has made smart
monitoring possible.

Smart Control High-resolution adaptive production control (i.e. smart control)
can be accomplished in Industry 4.0 by creating cyber-physical pro-
duction control systems. Smart control is primarily performed to
handle various smart machines or resources physically through a
cloud-enabled platform.

Smart Scheduling Smart scheduling primarily uses advanced models and algorithms
to derive information from data captured by sensors. Data-driven
techniques and an advanced decision architecture can be used for
smart scheduling.

Smart Design and
Manufacturing

Research at the stage of smart design and manufacturing includes
smart architecture, smart prototyping, smart controllers, and smart
sensors. Real-time control and monitoring help the introduction
of smart manufacturing. Supporting technologies include IoT,
STEPNC, 3D printing, industrial robotics, and wireless communi-
cations. Big data analysis plays a key role in smart manufacturing.

Smart Decission-
Making

Smart decision-making is at the core of Industry 4.0. The ultimate
aim of deploying large-scale sensors is to achieve smart decision
making via a detailed set of data. Realizing smart decision-making
needs exchanging knowledge and communication in real-time.

Table 2.1: Smart Manufacturing Framework [24]

global impact.Smart Manufacturing is an organization that combines the knowledge of

the consumer, its partners, and the public. It responds as an organized,performance-

oriented organization, minimizing energy and material use while optimizing environ-

mental sustainability, health and safety, and economic competitiveness. The company,

operations management, labor, and manufacturing innovations lead to new ways of

thinking about the manufacturing process [25].
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Figure 2-2: Evolution of Maintenance Paradigm

2.3 Smart Maintenance

Modern manufacturing systems typically consist of several machines to satisfy the de-

mand for good quality and high functional complexity goods. The probability of ma-

chine failure is aggregated as the number of machines increases in the system. In any

industry, sudden failure can lead to huge economic losses due to machine/production

downtime. For example, a standard car assembly line experiences a $20,000 loss for

every minute of downtime.Therefore it is necessary for large and complex manufac-

turing systems to have successful maintenance operations that improve the status of

machines.During the technological revolutions, maintenance techniques have under-

gone a radical progression and are currently underway Fig[2].

Usually, the maintenance management is categorized into different policies [26]:

∙ Corrective maintenance is an unscheduled repair, where the equipment is al-

lowed to operate until it fails unless a maintenance operation is carried out.
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∙ Preventive maintenance, perhaps the most common maintenance policy, A pe-

riodic collection of operations on the equipment shall be carried out to minimize

the risk of failure. This form of maintenance is carried out while the equipment

is still in operation.

∙ Predictive maintenance includes the use of sensor technology and analytical

tools to predict when equipment failures can occur and to prevent failures from

occurring through maintenance.

Corrective maintenance is the most straightforward technique, among others,

where activities are carried out due to failure to restore the machine to a partic-

ular state. Corrective maintenance can be very expensive, as it is often combined

with unnecessary downtime, which often costs three or four times as much as planned

downtime.Alternatively, preventive maintenance requires steps taken to sustain an

object in a particular condition by providing systematic inspection, assessment, and

prevention of incipient failures. The simple implementation of preventive mainte-

nance is to perform periodic acts based on assumed behavior, such as the mean time

between failures.To prevent unnecessary downtime, a preventive maintenance interval

is needed. It is also conservatively set to be much shorter than the average to allow for

differences between machines. Besides, the deterioration process of machines can be

strongly linked to operations and external influences, making it difficult to calibrate

the actions of machines.

Nowadays, industrial maintenance is primarily reactive and preventive, the pre-

dictive approach is applied only to severe circumstances. Traditionally, these main-

tenance techniques do not take into account the vast amount of data generated on

the shop floor and the evolving Information and Communication Technology (ICT)

available, e.g. Internet of Things (IoT), Big Data, Advanced Data Analytics, Cloud

Computing, and Augmented Reality.However, the maintenance paradigm is shifting

and industrial maintenance is now seen as a strategic factor and a profit-making factor

to ensure efficiency in industrial systems.
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Chapter 3

Artificial Intelligence Based Prognosis

for Predictive Maintenance

3.1 Artificial Intelligence

Nowadays, manufacturing objectives are becoming extremely challenging, with a mul-

titude of demands arising from a growing product and process complexity, increased

uncertainty in consumer demand and expectations, and steadfast competitive pres-

sures from competitors in the market to remain profitable. Seen from a positive

perspective these extreme conditions provides an opportunity for the unique capa-

bilities of Artificial Intelligence (AI) over the daily used conventional tools. AI tools

capable of defining and classifying multivariate, non-linear trends in operating and

output data that are hidden from the plant engineer.AI provides the opportunity to

turn large volumes of complex manufacturing data, which have become commonplace

in today’s factory, into actionable and insightful knowledge. AI tools which estab-

lishing core competencies in maintenance are Prognostic and Health Management

(PHM) and Condition Based Monitoring (CBM). The objective is to allow timely

identification and isolation of precursors or incipient faults of components, predict

their development, and promote reasonable decision-making [1].
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3.2 Predictive Maintenance

Predictive Maintenance in its broad sense is an application of AI in the maintenance

which apply data analysis techniques to information generated in shop floor processes

for the identification of anomalies in the behavior of properties. This approach ex-

tends PHM and CBM maintenance approaches by considering machine learning and

augmented reality technology to assist maintenance technicians during maintenance

interventions by offering guided intelligent decision-making support articulated by

the use of human-machine interaction technologies [26]. While the main objective of

PHM is to provide the health status and predict the Remaining Useful Life (RUL) of

components or facilities, financial benefits such as operating and repair cost savings

and increased lifespans are also achieved [26].

3.2.1 Condition Based Maintenance

Condition-based maintenance (CBM) makes maintenance decisions based on informa-

tion about the current deterioration of the machine and its evolution. It uses system

degradation information derived from online monitoring systems to optimize CBM

decisions by balancing the probability of failure and achievable profits.It is impor-

tant to understand how the dynamics of production shift under the CBM stop events

and build an optimal CBM control system to minimize the negative effect of CBM

stoppage on output [27].The idea of an AI-based diagnosis is to formulate a task as

a classification and to relate the details contained in the data to the types of fault

and the degree of severity. The framework of CBM is shown in the Fig [3-1] which

describes that CBM is further categorized into three types 1) Physics based 2) Model

based 3) Data-driven/AI.

∙ Physics-based

∙ Model-based

∙ Data-driven/AI
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Figure 3-1: Framework of Condition Based Maintenance

3.2.2 Cloud-based Predictive Maintenance

Cloud-based prognosis, which reflects a new form of service-oriented technology to

help several organizations to deploy and operate prognosis services over the internet

can be imagined, powered by the ability of cloud computing and cloud development.

First, the data is collected by monitoring the system state of the machine. Sensors

are connected on the shop floor, remotely and dynamically. Based on in-situ measure-

ments, remote data analysis, and root cause failure diagnosis and prognosis are then

performed.Secondly, collaborative technical teams can have expert knowledge in the

cloud, which is known as a knowledge base that can be accessed across the internet.

The results of the forecasting service and the calculation of time-to-failure would lead

to predictive maintenance planning, which can be used remotely and dynamically on

the factory floor.

Cloud-based prognosis have following characteristics [28]:

∙ Service Oriented ability: All prognostic system functions are provided as

cloud-based services that are accessible through web browsers or the internet.

Local installation and servicing do not require costly software packages.

∙ Accessibility and promotion of robustness: Cloud-based framework as a
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flexible and integrated solution, Configurable prognosis services can increase the

robustness of existing manufacturing processes. If required or applicable, the

cloud can choose alternative and pay-as-you-go prognostic services and various

maintenance options.

∙ Resource-aware ability: Cloud-based prognosis allows for tracking and fore-

casting system usage and conditions, locally or remotely, so that maintenance

decisions can become resource-conscious and well-informed.

∙ Collaboration and distribution: Cloud-based prognosis facilitates seamless

and collaborative sharing of process and system data between different applica-

tions at different locations.

3.3 Tool Condition Monitoring

Tool failure is a dynamic phenomenon involving one or more failure modes, including

excessive wear, brittle fracture (chipping), and breakage.In high-speed cutting pro-

cesses, late replacement of damaged tools can lead to machine breakdowns and have

a negative effect on the quality of the product, which will lead to scrapping and high

process costs. Accurate tool condition detection is important to achieve a high level of

competitiveness by increasing process efficiency and standardizing the quality of the

parts made. Tool Condition Monitoring (TCM) systems have therefore been widely

emphasized as an important concept for achieving these industrial requirements. Due

to the difficulties of implementing direct methods online in harsh cutting environ-

ments, more intensive efforts have been made towards indirect methods that define

the tool fault by detecting indicative process-borne features derived from different

signal measurements [29].

TCM techniques include direct measurement and indirect measurement of tool

wear. In direct measurement methods, the tool’s wear parameters are measured by a

microscope surface profiler, etc. These direct methods have the benefit of acquiring

high accuracy Dimension shifts due to tool wear, but they are not technically and
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economically desirable. The direct methods are inappropriate to field conditions due

to the continues flow of the cutting fluid and disturbance due to offline operations,

which severely limits the application of direct measurement.

Indirect methods are designed on the basis of specific parameters which are directly

correlated with tool wear. These parameters includes machining process data such

as operational parameters and sensor signals (force signal, vibration signal, acoustic

signal, current/power signals, etc) are acquired and the relevant features are ex-

tracted from the data. Moreover, Artificial intelligence techniques are applied on

these extracted features to predict the tool condition. Generally, the indirect TCM

system consists of hardware and software components for signal acquisition, signal

pre-processing, features extraction, features selection and decision making.
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Chapter 4

Machine Learning Algorithms for

Predictive Maintenance

4.1 Introduction

Machine learning is a branch of artificial intelligence that tends to allow machines

to perform their jobs skillfully through the use of intelligent software. Statistical

learning approaches are the foundation of intelligent software used to create machine

intelligence. Since machine learning algorithms need data to be trained, the disci-

pline must be related to the discipline of the database. Similarly, there are familiar

concepts such as Information Discovery from Data (KDD), data mining, and pattern

recognition.

Machine learning algorithms are helpful in bridging this gap of understanding. We

are not aiming to grasp the fundamental mechanisms that help us learn. We write

computer programs that will make machines learn and allow them to perform tasks

such as prediction. The purpose of learning is to create a model that takes feedback

and generates the desired outcome. Often we can grasp the model, but at other times

it can also be like a black box for us the work of which cannot be completed. The

model can be seen as an approximation of the mechanism that we want machines to

imitate. In such a case, we will get errors for some input, but most of the time, the

model is right. The accuracy of the results would therefore be another indicator of
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the efficiency of the machine learning algorithm.

4.1.1 Learning Strategies

Machine learning is divided into two major learning strategies:

Unsupervised Learning

Unsupervised learning methods are used against data that have no labels.The main

objective of the unsupervised learning method is to explore the data and find some

hidden structure among them.The target of such unsupervised learning problems may

be to discover groups of similar examples within data called clustering, or to deter-

mine the distribution of data within input space, known as density estimation, or to

project data from high-dimensional space to low-dimensional space for the purpose

of dimensional reduction and data visualization. Conventional unsupervised learning

methods in the process industry include main component analysis, independent com-

ponent analysis, k-means clustering, kernel density estimation, self-organizing map,

Gaussian mixture models, manifold learning, vector data description support, and so

on [31].

Supervised Learning

Supervised learning deals with the cases where the data is labeled, discrete and con-

tinuous. The main applications of the supervised machine learning method include

process monitoring, fault classification and identification, online operating mode lo-

calization, soft sensor modeling and online applications, quality prediction and online

estimation, key performance index prediction and diagnostics, etc. Supervised learn-

ing is majorly categories into following:

∙ Regression If the desired output consists of one or more continuous variables,

then the task of supervised learning is called regression. A typical example of

the problem of data regression is the prediction of key performance in a process
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in which inputs contain routinely recorded process variables such as temperature

and pressure.

∙ Classification Classification is a type of supervised learning. It specifies the

class to which data elements belong to and is best used when the output has

finite and discrete values. It predicts a class for an input variable as well.e.g.

fault classification, or operating mode classification

In our case we are going to train classification models to predict the state of

milling tool i-e (a) worn or (b) unworn. Moreover in the following sections several

classification models are explained which will be further applied on our data.

4.2 Logistic Regression

Logistic Regression is a Machine Learning technique used for classification problems, a

predictive analysis algorithm centered on the idea of probability. In logistic regression

instead of predicting the exact value for the variable, the probability of happening of

that event is predicted.

The logistic function, also known as the sigmoid function, was developed by statis-

ticians to explain the characteristics of population growth in ecology, gradually grow-

ing and optimizing environmental efficiency. It’s a shaped curve that can take any

real-valued number and map it to a value between 0 and 1, but never precisely within

those limits.

𝑓(𝑣𝑎𝑙𝑢𝑒) = 1/(1 + 𝑒−𝑣𝑎𝑙𝑢𝑒) (4.1)

Where e is the origin of the natural logarithms (Euler number or EXP() feature in your

spreadsheet) and the value is the real numerical value that you want to transform.

Logistic regression is a classification algorithm used to allocate observations to a

discreet collection of classes. Examples of labeling issues include e-mail spam or not

spam, internet transactions fraud or not fraud, tumor malignant or benign. Logistic
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Figure 4-1: K-Nearest Neighbour

regression transforms the output by using the logistic sigmoid function to return the

likelihood value.

4.3 K-Nearest Neighbors (K-NN)

KNN can be used for both classification and regression predictive problems. However,

it is most commonly used for classification issues in the industry. In order to assess

any methodology, we usually look at three critical aspects:

1. Simple to understand performance

2. Calculation of time

3. Predicting Strength

The KNN algorithm assumes that identical objects occur in close proximity to

each other. In other terms, related objects are close to each other. Note in the

picture above that, much of the time, identical data points are close to each other.

The KNN algorithm believes that this assumption is valid enough for the algorithm

to be useful. . KNN captures the concept of similarity (sometimes called distance,
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similarity, or proximity).There are several methods to measure the distance, and one

way may be preferable based on the problem we solve. The straight-line distance

(also called the Euclidean distance) is, however, a common and familiar choice.

k is therefore just the number of neighbors "voting" on the proximity of test

example’s class.To choose the K that is appropriate for your results, we run the KNN

algorithm multiple times for various values of K and choose the K that decreases the

amount of errors we find while retaining the algorithm’s ability to correctly make

predictions when it’s given data that it hasn’t seen before.

4.4 Support Vector Machine (SVM)

Support vector machine algorithm finds out a hyperplane in n-dimensional plane that

clearly classifies the data points. There are several potential hyperplanes that could

be chosen to differentiate the two types of data points. Our goal is to locate a plane

with the highest margin, i.e. the maximum difference between the data points in both

groups. Maximizing the margin gap gives some reinforcement such that potential data

points can be classified more confidently.

Hyperplanes are judgment boundaries that help to distinguish data points. Data

points falling on either side of the hyperplane can be assigned to various groups. Also,

the scale of the hyperplane depends on the number of functions. If the number of

input features is 2, the hyperplane is just a line. If the number of input features

is 3, the hyperplane can become a two-dimensional plane. It’s hard to think when

the number of features reaches 3. Support vectors are data points that are closer to

the hyperplane and change the direction and orientation of the hyperplane. Using

these support vectors, we optimize the range of the classifier. Removing the support

vectors would shift the direction of the hyperplane. These are the things that enable

us to develop our SVM.
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Figure 4-2: Support Vector Machine

4.5 Decision Tree Classification

The Decision Tree algorithm is a family of supervised learning algorithms. Unlike

other supervised learning algorithms, the decision tree algorithm can also be used

to solve problems of regression and classification. It breaks down the data set into

smaller and smaller subsets as, at the same time, the related decision tree is gradually

created. The end product of this is a tree with decision nodes and leaf nodes. The

decision node (for example, Outlook) has two or three branches (e.g., Sunny, Overcast

and Rainy). Leaf node (e.g. Play) is a classification or a decision. The largest decision

node in the tree that corresponds to the greatest indicator known as the root node.

Decision trees can handle both categorical and numeric results. Fig [5-3] shows an

example of decision tree classification.

Compared to other algorithms, decision trees require less time to prepare data

during pre-processing. The decision tree does not require data normalization. The

decision tree does not even include the scaling of results. Missing values in the

data often do NOT greatly impact the method of creating a decision tree. The

decision tree model is very intuitive and easy to communicate to professional teams

and stakeholders.
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Figure 4-3: Decision Tree Classification

4.6 Random Forest Classification

The Random Forest is a supervised learning algorithm. The "forest" that it creates

is a series of decision trees, usually trained by the "bagging" process. The general

principle of the baggage approach is that a mixture of learning models would maximize

the total result.

A benefit of the random forest is that it can be used for both classification and

regression problems, which make up the majority of modern machine learning models.

Let’s look at random forest classification, as classification is often used as the building

block of machine learning. In Fig[5-4] you can see how a random forest with two trees

would look like.

Random forest has almost the same hyperparameters as a decision tree or a bag-

gage classifier. The Random Forest adds additional randomness to the model as the

trees expand. Instead of looking for the most important feature when splitting a

node, it looks for the strongest feature in a random subset of features. This results

in a large range that usually results in a stronger model.

Another high benefit of the random forest algorithm is that it is very straight-

forward to calculate the relative value of each function to the forecast. Sklearn is a

fantastic way to calculate the value of a feature by looking at how often the tree nodes

that use the feature decrease impurity among all trees in the forest. It dynamically
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Figure 4-4: Random Forest

measures this score for each training element and averages the scores such that the

sum of all value is equal to one.

4.7 Artificial Neural Network

ANN is a human nervous system-inspired simulation technique that enables learning,

for example from representative data representing a physical event or decision-making

mechanism. The special characteristic of ANN is that it is capable of defining ob-

servational associations between independent and dependent variables and extracting

hidden details and detailed insights from representative data sets.

ANNs consist of a layer of input nodes and a layer of output nodes attached to

one or more layers of hidden nodes. Input layer nodes transfer information to hidden

layer nodes by firing activation functions, and hidden layer nodes fire or stay dormant

based on the proof given. Hidden layers attach weighting functions to the proof, and

when the value of a single node or group of nodes in the hidden layer exceeds a
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Figure 4-5: Structure of ANNs

threshold, the value is transferred to one or more nodes in the output layer. ANNs

must be qualified in a significant number of instances (data) [32].

Fig [5-5] shows how a normal neural network feels like. After training the model,

you need to look at two things: bias and variance. The bias-variance tradeoff is a

kind of problem that implies that low bias models would have high variance and vice

versa.High bias leads the model to ignore the relevant correlation between essential

features that can contribute to under-fitting. High variance may cause the model

to be susceptible to random noise in the data set contributing to over-fitting. Our

mission is to eliminate bias and variance and to find an optimum fit line as shown in

the Fig [5-6]
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Figure 4-6: Tuning of ANNs
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Chapter 5

Manufacturing Processes and control

5.1 Use-Case Definition

The use-case selected for the thesis is a "Milling Data Set",A series of machining

experiments were run on 2" x 2" x 1.5" wax blocks in a CNC milling machine in

the System-level Manufacturing and Automation Research Testbed (SMART) at the

University of Michigan. Machining data was collected from a CNC machine for varia-

tions of tool condition, feed rate, and clamping pressure. Each experiment produced

a finished wax part with an "S" shape - S for smart manufacturing - carved into the

top face.

5.2 Milling Processes

Among all the manufacturing processes the largely used is milling operation. The

milling process is a type of manufacturing process that allows the production of

complex parts and trimming of several materials such as metal,wood,plastics and

composites. Unlike the other manufacturing processes milling process is performed

on a dedicated milling machined equipped with a multi-sharp tool, mounted on a

spindle, and the process is carried out by the simultaneous movements of motorized

axes. The cutting head of the tool removes the material from the work piece when

comes in contact with the cutter.
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5.2.1 Types of Milling

There are two major types of milling processes:

∙ Face Milling, in general, is defined as the process of cutting surfaces that are

perpendicular to the cutter axis, or the faces of a part.Face milling generates

a surface normal to the axis of rotation. It is used for wide flat surfaces. The

peripheral portions of the teeth do most of the metal cutting. There are several

forms of face milling:(a) conventional face milling, in which the cutter width

extends beyond the work piece on both sides,so the cutter overhangs the work

on the both sides;(b) partial face milling , where the cutter overhangs the work

on one side only; (c) End milling, In which the cutter diameter is less than the

working distance, the slot is cut into the part;(d) Profile milling, it is a type

of end milling which is used to create a profile if the end of a work piece;(e)

Pocket milling, it is a type of end milling in which tool needs to cut shallow

into the work piece;(f) Surface contouring, which uses a ball-nose cutter along

a curvilinear trajectory to create a three-dimensional surface.

∙ Peripheral milling Peripheral milling generates a surface parallel to the ro-

tation axis. Both flat and formed surfaces can be produced by this method,

with a cross-section of the resulting surface corresponding to the axial contour

of the cutter. The process is sometimes referred to as ’slab’ milling. There are

various forms of peripheral milling: (a) slab milling, the basic form of peripheral

milling in which the diameter of the cutter is greater than the work part width;

(b) slot milling, in which the diameter of the cutter is less than the workpiece

width, creating a slot in the work when the cutter is very thin; (c) side milling,

in which the cutter machines the side of the workpiece; (d) straddle milling,

similar to side milling but the cutting action occurs on both sides of the item;

(e) form milling, in which the teeth of the milling cutter have a shape which

corresponds to the profile of the surface to be produced [25].
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5.2.2 CNC milling machine

All the milling operations described above are used in conjunction with milling ma-

chines, which provide rotary movement to the cutters, and feed to the workpiece and

arrangement for clamping, automatic feed etc. Milling machines come in three basic

models:

∙ Horizontal Milling Machine

∙ Vertical Milling Machine

∙ Universal Milling Machine

CNC stands for computer numeric controlled. It refers to any machine tool (i.e.

mill, lathe, drill press, etc) that uses a device to electronically regulate the motion

of one or more axes on the machine.CNC Milling Machinery is an incredibly use-

ful milling machine for both commercial and industrial production. The aerospace

industry, the medical industry and the electronics industry can all benefit from the

products of CNC Milling.

Components of CNC milling machine

∙ Frame The frame protects the unit and provides stiffness to withstand cutting

forces. Usually, the base has a detachable column. CNC Milling Machine

Frames are most commonly made from cast iron. Other options include epoxy

granite filling and aluminum welding.

∙ Table The table is where some kind of workholding solution retains the work-

piece for machining. Most of the milling machine tables use T-Slots to connect

the workholder to the bench. By mounting a Fixture Plate on it you can make

the T-Slot table much more convenient and flexible.

∙ Spindle The spindle is the foundation of every milling machine. It consists of

a revolving taper assembly where the holders of the tool can be mounted.
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∙ Axes The axes of the CNC Milling Machine make motion with Cartesian coor-

dinates programmed through g-code and manual jogging from the control panel.

Generally there are three axes corresponding to X, Y, and Z. The optional 4th

Dimension is a CNC Milling Machine accessory. Five axis milling machines are

feasible but not very popular in the DIY CNC world. The spindle rotates a

motor with an optional transmission of some kind.

∙ CNC Controller The CNC Controller is the brain of the system. It includes

the electronics that drive the axle motors to shift the axes. CNC Controllers

are responsible for receiving G-Code and manual inputs from the CNC Control

Panel and translating them to the correct signals to control the Axis Stepper

or Servo Motors.

Accessories of CNC milling machine

∙ Coolant CNC Coolant plays many roles in cutting and comes in various vari-

eties. There are many forms of coolant device typical to DIY CNC including:

– Mist Coolant – Flood Coolant – Air Blast or Cool Air Gun – Dust Collector

Although the Dust Collector does not "cool," it satisfies the primary coolant

that is the chip evacuation.

∙ Lubricating Mechanism CNC Milling Machines require lubrication for their

conductors and in particular, for their pathways. Ways are any device used to

cause axes to slip. Way Oilers can be either manual or automatic. Automatic

electric way oiler contributes dramatically to reliability by maintaining smooth

friction and less road wear.

∙ Powered Draw-bar Powered or Power Drawbars are a great comfort for CNC

Milling Machines and an absolute necessity if the Automatic Tool Changer is to

be used. They effectively allow the button to capture and release tool holders

from the spindle. There are three different styles, including Impact Wrench,

Tormach TTS Style and Pull Stud. Machines without a Power Drawing bar
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enable the operator to loosen the drawbar (or spindle-dependent collet) with a

key that is much longer than the push-button type.

∙ Enclosure CNC Milling Machines are fundamentally a messy beast. They’re

going to chuck chips away long ways. If they are fitted with a flood coolant, the

mess is much worse. With the Enclosure, the mess is contained inside, where it

doesn’t get all over the workshop.

Operational Parameters of CNC milling machine

∙ Spindle Speed of Revolution Spindle revolution speed determines the cut-

ting edge velocity relative to the workpiece, i.e. the cutting speed. Since cutting

speed has a significant influence on tool life, the selection of cutting speed is

closely related to the reliability of the tool. Too low or too high cutting speed

can lead to a drastic reduction in tool life. In the meanwhile, the speed of the

spindle revolution in the milling of thin-walled workpieces has a direct influence

on the stability of the cutting process. The spindle speed of the revolution

should therefore be chosen discreetly in the milling process.

∙ Cutting depth and Cutting width The cutting depth and the cutting width

are constrained by the spindle strength, the transmitting power of the machine

tool, the material type, the tool specifications, the coolant, the machining pro-

cess, and the rigidity of the machine tool-tool-workpiece device. And they’re

having a huge influence on tool life. They should then be chosen fairly ac-

cording to the machining standard, the machining efficiency, and the machining

process. Generally, machining performance is the first objective of roughing

machining, such that a greater cutting depth and a larger cutting width are

chosen. The consistency of the workpiece surface is the main objective of the

finishing process so that the depth of cutting and the width of cutting can be

minimized.

∙ Feed Rate The feed rate is the speed at which the cutting tool travels relative

to the workpiece in the milling process. In general, the linear feed rate is used in
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practical processing and is defined as feed per minute. The feed rate of milling

can directly impact machining precision, surface quality, workpiece deforma-

tion, and tool life. It is also limited by tool parameters, workpiece material,

tool direction, machine tool stiffness, and feed device efficiency.In the machin-

ing process, the feed rate of milling is selected based on component material,

geometry characteristics, quality specifications, and machine tool capacity.

∙ Tool material In milling operation cutting tools should have following char-

acteristics:

– Hardness is the ability of a material to resist deformation. Cutting tool

material must be harder than the material of workpiece. For this reason

hardness and stength of the cutting tool is maintained at relatively high

temperatures.

– Toughness is the ability of a material to absorb energy and plastically

deform without fracturing. Toughness is necessary in order for the cutting

tool not to chip or fracture, especially during the cutting operation.

– Wear Resistancemeans the attainment of acceptable tool life before tools

need to be replaced. Hardness is the most important property that resist

abrasive wear.

∙ Workpiece Material Mechanical properties of the workpiece material are im-

portant requirements influencing the working conditions. In the case of low

cutting forces, low hardness and tensile strength usually provide better machin-

ability.Common materials that are used in milling involve steel, cast iron, alu-

minium, nickel, zinc, magnesium, titanium and thermoset plastics. Properties of

the work material have a significant influence on the success of milling operation

and the selection of the workpiece material must take into consideration several

factors as cost, strength, resistance to wear and especially its machinability.
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Figure 5-1: CNC Milling Machine

5.3 Tool Wear Monitoring

During a milling operation the replacement of a worn tool is a major maintenance

required. Tool wear monitoring in very important and a delicate task to insure the on-

time tool replacement and moreover the quality of the finish product. Sensor-based

approaches, which are considered here, can be divided into mainly two methods in

which we classify tool wear monitoring: (a) Direct method;(b) Indirect Methods.

Direct methods calculate the individual values of such wear parameters (e.g. the

size of the wear area), whereas indirect methods measure relevant process parameters

that are associated with tool wear (e.g. cutting forces or vibrations). It is possible

to conclude the values of these method parameters on the current tool state using an

effective analytical or empirical model. Direct method measuring equipment is very

costly and these systems are vulnerable to errors due to environmental factors in the

machine tool (e.g. chips, coolant, etc.)

Another relevant classification criteria for sensor-based methods depends on the
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monitoring period: significant parameters are measured in continuous or on-line meth-

ods during the cutting process, while significant parameters are measured in inter-

mittent or off-line methods only throughout the cutting process intervals.Altogether,

a trend towards indirect, continuous methods can be detected. These methods will

be investigated in the table.
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Wear or process parameters Examples for measurement procedures
and transducers

Shape or position of the cutting edge or
the wear area

Direct methods
Shape or position of the cutting edge or
the wear area Measurement with opti-
cal methods (e.g. CCD camera or fi-
bre optic sensor) or integration of thin
film sensors into the coating of a cut-
ting tool

Volumetric overall loss of the tool Measurement of size and concentration
of wear particles in the coolant (and
electrochemical analysis) or measure-
ment of radioactivity (for specifically
prepared tools)

Changes of the electrical resistance at
the junction of tool and workpiece

Voltage measurement at a specific, con-
ductive tool coating

Changes of workpiece dimensions Dimension measurement by means of
micrometers or optical, pneumatic, ul-
trasonic, or electromagnetic transduc-
ers

Change of distance between tool (or
toolholder) and workpiece

Distance measurement by means of mi-
crometers, pneumatic gauges, displace-
ment transducers (e.g. inductive or ca-
pacitive), or ultrasonic sensors

Cutting forces Indirect Method
Force measurement with strain gauges
or piezoelectric sensors at the tool or
at (or in) the toolholder, piezoelec-
tric force measuring plates or rings at
the turret, force-measuring bearings,
torque measurement at the main spin-
dle

Electrical current, power, or energy Measurement of current or power con-
sumption of spindle or feed motors (e.g.
ampere meter or dynamometer)

Cutting temperature Temperature measurement by means
of thermocouples or pyrometers, re-
flectance of chip surface or chip color

Roughness of the machined surface Measurement with a mechanical stylus
or optical methods (e.g. CCD camera
or fibre optic sensor)

Table 5.1: Examples for direct and indirect tool wear sensing methods
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Chapter 6

Data preparation

6.1 Data Description

Data is the essential component for training a machine learning algorithm. For the

purpose of tool condition monitoring data related to the operational features of CNC

milling machine is required. The data-set used here for the classification of the worn

and unworn tool taken from System-level Manufacturing and Automation Research

Testbed (SMART), University of Michigan. The data-set comprises of a series of

machining experiments were run on 2" x 2" x 1.5" wax blocks in a CNC milling

machine. There are total 18 experiments each experiment produced a finished wax

part with an "S" shape - S for smart manufacturing - carved into the top face, as

shown in Fig [6-1] Eight experiments were run with an unworn tool while ten were

run with a worn tool. Moreover experiments were run with pressures of 2.5, 3.0, and

Figure 6-1: ’S’ shaped test artifact
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4.0 bar. The data-set obtained from the CNC milling machine is consist of two files.

One data-set contain the general data from 18 different experiments which are given

in the "train.csv" and includes following features Table [6-1]

The other part of data-set is a time series data was collected from 18 experiments

with a sampling rate of 100 ms and are separately reported in files experiment_01.csv

to experiment_18.csv. Each file has measurements from the 4 motors in the CNC (X,

Y, Z axes and spindle). The features available in the machining data-sets are listed

in table [6-2].

Material Feedrate Clamp pressure Tool Condition MachiningFinalize

wax 6 4 unworn yes

wax 20 4 unworn yes

wax 6 3 unworn yes

wax 6 2.5 unworn no

wax 20 3 unworn no

wax 6 4 worn yes

wax 20 4 worn no

wax 20 4 worn yes

wax 15 4 worn yes

wax 12 4 worn yes

wax 3 4 unworn yes

wax 3 3 unworn yes

wax 3 4 worn yes

wax 3 3 worn yes

wax 6 3 worn yes

wax 20 3 worn no

wax 3 2.5 unworn yes

wax 3 2.5 worn yes

Table 6.1: Machining data-set of a CNC milling
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Figure 6-2: Python Code: Data Cleaning and Labeling

6.2 Data Pre-processing

Data pre-processing is a data mining strategy that involves transforming raw data into

an usable form. Real-world data is often unreliable, contradictory and/or deficient in

certain behaviors or patterns and is expected to include a variety of mistakes. Pre-

processing data is an established way of tackling these problems. Notice that excessive

data pre-procesing can reduce the quality of data, so a careful data pre-processing

procedure will be adopted.

6.2.1 Data Cleaning and Labeling

Data-cleaning is the method of identifying and fixing (or deleting) corrupt or faulty

information from a record set, table or archive and refers to the detection of missing,

incorrect, corrupted or irrelevant parts of the data and the substitution, alteration or

deletion of contaminated or gross data. Data cleaning can be done interactively with

data wrangling tools, or as batch processing by scripting.

Data labeling is an important part of data pre-processing for ML, particularly for

supervised learning, in which both input and output data are labeled for classification

to provide a learning basis for future data processing.
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6.2.2 Encoding Categorical Data

Feature encoding is one of the most important preprocessing steps in any machine

learning project. It is the method of converting categorical data into numerical data

in a data-set. We need to perform feature encoding since most models of machine

learning can only interpret numerical data in text form and not data. In our data-set

we have a "Machining Positioning" which is a categorical feature which is needed to be

converted into numerical values. OneHOTEncoder is used to convert the categorical

features into numerical one.

Figure 6-3: Python Code: OneHotEncoding

6.2.3 Feature Scaling

Feature scaling is essential for machine learning algorithm that tune all the features

in the data to a same scale. It refers to putting the values to the same scale so that

no feature is dominated by the other. There are two major scaling techniques which

are used for feature scaling.

Standardization

Standardization of a dataset is a common requirement for many machine learning

estimators: they might behave badly if the individual features do not more or less

look like standard normally distributed data (e.g. Gaussian with 0 mean and unit

variance). By computing the relevant statistics on the samples in the training set,

centering and scaling occur independently on each feature.

𝑧 = (𝑥− 𝜇)/𝜎 (6.1)
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For example, several elements used in a learning algorithm’s objective function (such

as the Support Vector Machines RBF kernel or linear model L1 and L2 regularizers)

assume that all features are centered around 0 and differ in the same order. If a

function has a variance that is greater than others in order of magnitude, it could

overpower the objective function and make the estimator unable to correctly learn

from other characteristics as expected.

Normalization

Database normalization is the structuring of the relational database, in order to reduce

the redundancy and improve data integrity. The aim of normalization is to adjust

the numeric column values in the dataset to use a common scale, without distorting

variations in the value ranges or losing information.

Min-max Normalization is one of the most common ways to normalize data.

For every feature, the minimum value of that feature gets transformed into a 0, the

maximum value gets transformed into a 1, and every other value gets transformed

into a decimal between 0 and 1.

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = (𝑥− 𝑥𝑚𝑖𝑛)/(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) (6.2)

There is one drawback of Min-max normalization that it does not handle outliers very

well.

6.2.4 Data Splitting

One of the first decision in developing a model is how to utilize the existing data. A

common technique to split the data is as training and test set. To build models and

feature sets, the training set is used; it is the substrate for estimating parameters,

comparing models, and all the other activities needed to achieve a final model. The

test set is used for estimating a final, unbiased evaluation of the model’s success only

at the end of these activities. It is critical that the test set not be used prior to this

point. Looking at the test sets results would bias the outcomes since the testing data
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will have become part of the model development process. There is no rule of thumb

that how much data should be in the training and test sets. The proportion of data

can be driven by many factors, including the size of the original pool of samples and

the total number of predictors.
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Wear or process parameters Examples for measurement procedures
and transducers

X1_ActualPosition actual x position of part (mm)

X1_ActualVelocity actual x velocity of part (mm/s)

X1_ActualAcceleration actual x acceleration of part (mm/s/s)

X1_CommandPosition reference x position of part (mm)

X1_CommandVelocity reference x velocity of part (mm/s)

X1_CommandAcceleration reference x acceleration of part
(mm/s/s)

X1_CurrentFeedback current (A)

X1_DCBusVoltage voltage (V)

X1_OutputCurrent current (A)

X1_OutputVoltage voltage (V)

X1_OutputPower power (kW)

Y1_ActualPosition actual y position of part (mm)

Y1_ActualVelocity actual y velocity of part (mm/s)

Y1_ActualAcceleration actual y acceleration of part (mm/s/s)

Y1_CommandPosition reference y position of part (mm)

Y1_CommandVelocity reference y velocity of part (mm/s)

Y1_CommandAcceleration reference y acceleration of part
(mm/s/s)

Y1_CurrentFeedback current (A)

Y1_DCBusVoltage voltage (V)

Y1_OutputCurrent current (A)

Y1_OutputVoltage voltage (V)

Y1_OutputPower power (kW)

Z1_ActualPosition actual z position of part (mm)

Z1_ActualVelocity actual z velocity of part (mm/s)

Z1_ActualAcceleration actual z acceleration of part (mm/s/s)

Table 6.2: Examples for direct and indirect tool wear sensing methods
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Wear or process parameters Examples for measurement procedures
and transducers

Z1_CommandPosition: reference z po-
sition of part (mm)

Z1_CommandVelocity reference z velocity of part (mm/s)

Z1_CommandAcceleration reference z acceleration of part
(mm/s/s)

Z1_CurrentFeedback current (A) Z1_DCBusVoltage

voltage (V )

Z1_OutputCurrent current (A )

Z1_OutputVoltage voltage (V )

S1_ActualPosition actual position of spindle (mm )

S1_ActualVelocity actual velocity of spindle (mm/s )

S1_ActualAcceleration actual acceleration of spindle (mm/s/s
)

S1_CommandPosition reference position of spindle (mm )

S1_CommandVelocity reference velocity of spindle (mm/s )

S1_CommandAcceleration reference acceleration of spindle
(mm/s/s )

S1_CurrentFeedback current (A )

S1_DCBusVoltage voltage (V )

S1_OutputCurrent current (A )

S1_OutputVoltage voltage (V )

S1_OutputPower current (A )

S1_SystemInertia torque inertia (kg*m2)

Table 6.3: Examples for direct and indirect tool wear sensing methods

60



Chapter 7

Methodology Proposed

The proposed approach is to classify the tool as worn and unworn as described in

figure 7-1

Figure 7-1: Python Code: Flow Chart
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7.1 Data Pre-Processing

As explained in the chapter 6, the raw Data collected from System-level Manufac-

turing and Automation Research Testbed (SMART), University of Michigan is pre-

processed for the analysis.

The whole data-set obtained from the CNC milling machine is exported to python

by using pandas library. Firstly the required data from both the files is gathered and

integrated in a single data-frame. Tool condition is assigned to all 18 experiments

correspondingly. In the data cleaning part only those experiments are picked from

the data-set in which machining is finalized.

In the data-set tool condition is given by the categorical labels, for the ease ap-

plying the machine learning models the data has given binary labels i-e

worn unworn

0 1

7.2 Data Splitting

Firstly, the data splitting is done by using the train_test_split function of the scikit

learn library. It splits the whole data-set, the size of test set is given as 0.3 which

means 30% of the data will be in the test set and remaining 70% data will be in train

set randomly.

Figure 7-2: Python Code: Flow Chart

Secondly, the data is split manually in such a way that test set will take all the

experiments one by one and all remaining will go in the train set. Similarly another

split is done by assigning 2 consecutive experiments to the test set and remaining in
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the train set. In this way accuracy of the models can be checked for several situations

instead of just one random split which was done firstly.

7.3 Feature Scaling

Feature scaling is done by standardization, using the StandardScaler function of scikit

learn library. Centering and scaling happen independently on each feature by com-

puting the relevant statistics on the samples in the training set. Mean and standard

deviation are then stored to be used on later data using transform.

Figure 7-3: Python Code: Feature Scaling by Standardization

While doing the standardization, the columns which are generated during the

OneHotEncoding are already in the binary form, so these columns are skipped from

the standardization.

7.4 Feature Extraction

Feature extraction is the process of transforming raw data into meaningful features

more suitable for a machine data mining task, which act as inputs for machine learning

algorithms and help in improving the overall predictive model performance. Gener-

ally, feature extraction starts from an initial set of measured data and builds derived

values (features) intended to be explanatory and essential, simplifying the subsequent

learning and modelling phases. A feature is simply an attribute on which the predic-

tion is done.
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7.5 Model Application

Machine Learning models are trained for the data-set containing containing the pre-

processed data. Machine Learning algorithms which are usually used to classify the

tool condition are decision tree, random forest and neural network. They are applied

and accuracy of the model is tested by comparing the predicted values from the test

set values. Results of the analysis are given in the following chapter.

7.6 Principal Component Analysis

Principal component analysis is the mathematical algorithm that reduces the dimen-

sionality of the data by keeping most of the variations in the data. It reduces the

features by identifying the distances, which are called principal components, along

which the variation of the data is maximal. By using a few components, each sample

can be represented by relatively few numbers instead of by values for thousands of

variables.

Principal component analysis (PCA) is a technique that is useful for the compres-

sion and classification of data. The purpose is to reduce the dimensionality of a data

set (sample) by finding a new set of variables, smaller than the original set of variables,

that nonetheless retains most of the sample’s information. By information we mean

the variation present in the sample, given by the correlations between the original

variables. The new variables, called principal components (PCs), are uncorrelated,

and are ordered by the fraction of the total information each retains.
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Chapter 8

Results

The criteria selected to evaluate the classification model is accuracy score and cross-

validation score.

∙ Accuracy Score: Accuracy is one metric for evaluating classification models.

Informally, accuracy is the fraction of predictions our model got right. Formally,

accuracy has the following definition:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑆𝑐𝑜𝑟𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

∙ Cross-validation score: Cross-validation is a resampling procedure used to

evaluate machine learning models on a limited data sample.

The procedure has a single parameter called k that refers to the number of

groups that a given data sample is to be split into. As such, the procedure is

often called k-fold cross-validation. When a specific value for k is chosen, it

may be used in place of k in the reference to the model, such as k=10 becoming

10-fold cross-validation. In our reseach we have used 5-fold cross validation to

validate the machine learning models.
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8.1 By using train-test split for 18 experiments

In the first analysis we have concatenated all eighteen machining experiments in a

single data-frame. After the concatenation of data data normalization, feature encod-

ing and data splitting is applied which is already explained in chapter 6. Dataframe

in this case includes 25286*49 of matrix. We are going to split this whole data frame,

firstly into dependant and independent variable, secondly we used the function of

train-test split from the model selection module of sklearn library.

After splitting the data-set into train-test sets, machine learning algorithms are

applied whose results are as under:

Machine Learning Algorithm Accuracy

Random Forest 99.193%

Decision Tree 98.956%

Neural Networks 88.755%

KNN 86.776%

kernel SVM 73.014%

Logistic Regression 53.732%

Table 8.1: By using train-test split

8.2 By using cross-validation approach

In the second analysis the data-set is distributed into training and test sets by creating

a loop. During this analysis CNC machine experiments are divided in such a way

that: 1) test set will get 1 experiment and the other 17 experiments will be in the

train set i-e when the loop starts experiment # 1 will go to test set and the remaining

other experiments will go to the training set. In the next loop experiment # 2 will

go to the test set and the other experiments will be in the training set. Moreover

this loop will go all over 18 times, providing us 18 accuracy values for the machine

learning model.
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2) test set will get 2 experiments and the other 16 experiments will be in train

set.i-e when the loop starts experiment # 1 and experiment # 2 will go to test set

and the remaining other experiments will go to the training set. In the next loop

experiment # 2 and experiment # 4 will go to the test set and the other experiments

will be in the training set. Moreover this loop will go all over 18 times, providing us

9 accuracy values for the machine learning model. Hence we will be getting 18 and 9

accuracies of one machine learning models at a time respectively.

In this method all possible classification accuracies in a model are extracted and

their mean value will be considered as the model accuracy.

This analysis is done by considering all 18 experiments. In those 18 experiments

8 experiments are with “unworn” tool and 10 experiments are with “worn” tool.

Machine Learning Algorithm Mean Accuracy Mean Cross Val-
idation Score

Random Forest
(segmentation 17,1)

78.35% 90.50 %

Random Forest (segmentation
16,2)

66.47% 89.46%

Decision Tree (segmentation
17,1)

85.40% 89.49 %

Decision Tree (segmentation
16,2)

76.78% 90.08%

Neural Networks (segmentation
17,1)

44.63% 61.21%

Neural Networks (segmentation
16,2)

51.57% 54.11%

Table 8.2: By using cross-validation approach
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8.3 Analysis with machining finalized data

In the third analysis strategy followed is the same as first and second analysis but

experiments are reduced on the basis of finalization of machining operation. In this

analysis only those experiments are considered for which the machining operation in

finalized. Experiments are excluded on the basis of feature "Machining Finalize".

The analysis is done by considering 14 experiments for which machining is final-

ized. In those 14 experiments 6 experiments have unworn tool and other 8 experiments

have worn tool.

Machine Learning Algorithm Mean Accuracy Mean Cross Val-
idation Score

Random Forest
(segmentation 13,1)

86.97% 95.74%

Random Forest (segmentation
12,2)

81.80% 95.49%

Decision Tree (segmentation
13,1)

89.89% 92.70%

Decision Tree (segmentation
12,2)

80.47% 93.60%

Neural Networks (segmentation
13,1)

49.07% 55.67%

Neural Networks (segmentation
12,2)

49.46% 56.71%

Table 8.3: Analysis with Machining Finalized experiments

8.4 Feature extraction

Firstly, feature extraction is done by considering 14 experiments for which machining

is finalized. In those 14 experiments 6 experiments have unworn tool and other 8

experiments have worn tool. Mean, median, kurtosis and skewness are selected at the
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same time. Iterations are done with a data-frame of 14×189.

Machine Learning Algorithm Mean Accuracy Mean Cross Val-
idation Score

Random Forest
(segmentation 13,1)

42.85% 73.33%

Random Forest (segmentation
12,2)

42.85% 46.66%

Decision Tree (segmentation
13,1)

42.5% 46.66%

Decision Tree (segmentation
12,2)

50% 56.66%

Neural Networks (segmentation
13,1)

42.85% 50%

Neural Networks (segmentation
12,2)

28.57% 36.66%

Table 8.4: Results after Feature Extraction

8.5 Feature Reduction

Feature reduction, also known as reduction of dimensionality, is the method of reduc-

ing the number of features in a heavy computing resource without losing essential de-

tails. Reducing the number of characteristics requires reducing the number of factors,

making it simpler and quicker for the machine to operate.There are several methods

by which feature reduction is done. Generalized discriminant analysis, auto-encoders,

non-negative matrix factorization, select-from-model, and principal component anal-

ysis are some of the most common. In our analysis we have used principal component

analysis and SelectfromModel techniques for applying feature reduction.
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8.5.1 Principal component analysis

Principal component analysis is applied to the machine learning model by setting the

component variability as 95%. Results of principal component analysis are shown in

the table below.

Figure 8-1: Python Code: Principal Component Analysis

Machine Learning Algorithm Mean Accuracy Mean Cross Val-
idation Score

Random Forest
(segmentation 13,1)

42.24% 62.25%

Random Forest (segmentation
12,2)

47% 57.12%

Decision Tree (segmentation
13,1)

50.3% 60.2%

Decision Tree (segmentation
12,2)

49.4% 57.2%

Neural Networks (segmentation
13,1)

46.8% 63.4%

Neural Networks (segmentation
12,2)

44.9% 55.8%

Table 8.5: Principal Component Analysis

8.5.2 Feature Reduction by using SelectFromModel

SelectFromModel is an effective tool of scikit learn library, which selects features on

the basis of importance wiegths. Decision Tree and Random Forest models have a
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built in method which generates the importance of the features according to their

weights in the data-set.

By applying SelectFromModel, features are reduced from 48 to 12. Results for

the analysis are given in the table below.

Machine Learning Algorithm Mean Accuracy Mean Cross Val-
idation Score

Random Forest
(segmentation 13,1)

86.94% 96.60%

Random Forest (segmentation
12,2)

82.77% 96.56%

Decision Tree (segmentation
13,1)

88.08% 92.47%

Decision Tree (segmentation
12,2)

84.10% 94.86%

Table 8.6: Feature Reduction by using SelectFromModel
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Chapter 9

Conclusion, Limitations and Future

Recomendations

In the light of the above-stated results, we can conclude, that we have achieved the

objective of this research which was to classify the tool condition (worn, unworn)

during a milling operation, by using machine learning models. We have mainly used

the following models to classify the tool condition:

∙ Random forest

∙ Decision tree

∙ NeuralNeural networks

∙ K-Nearest Neighbor

∙ Kernel SVM

∙ Logistic Regression

Finally, looking at the evaluation parameters, mean accuracy scores, and mean cross-

validation scores we can conclude that Random forest, Decision tree, and Neural

network approach are providing more accurate predictions as compared to others.

While conducting the analysis with all 18 experiments concatenated to form a data-set

and splitting them by using train-test split method, we have acquired the predicting
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accuracy of 99.193%. The machine learning model is efficient but assuming it in a

real case scenario it may be overfitting or giving biased results.

we have applied the cross-validation approach for getting the unbiased predicting

accuracies for all the experiments as test set, and giving a single mean accuracy value

for the analysis. This analysis also concluded with a higher mean accuracy value

for Random Forest algorithm, with an accuracy value of 78.35% and cross-validation

score of 90.50%. It shows that the for predicting the tool condition in a milling

operation random forest algorithm can be beneficial.

The research has concluded that the strength of features is more important than

the number of features for training a machine learning model. Principal component

analysis shows that our features are weak to extract any of them as the significant

features. It’s beneficial to have features who have a quite significant variation with

the tool condition at any point in time.

Machine learning framework as discussed above can play an important role in

decreasing the downtime during a milling process and in return can increase the

production efficiency and product quality. It could be possible by the implementa-

tion cyber-physical systems more precisely for attaining data-set with some strong

features.

Now-a-days for any machine learning model the main limitation is the availability

of the data-set with some strong features. Due to the COVID most of the companies

has closed or temporarily stopped their ongoing projects. For the same reason i did

not get the data-set which i was supposed to get from an italian car prototyping

company. The unavailability of the data with required features was the main hurdle

in my research.

Further improvements for the smart manufacturing system for tool condition and

machining process monitoring involves the development of effective data preparation

methodology to produce more general data in the corresponding machining process

and the advanced signal processing methods can be applied for feature generation.

Acoustic and vibration signals can be used for generating strong features. In addition

to the Neural Networks, convolution neural networks (CNN) and reinforced machine
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learning techniques can be used to get more accurate predictions. Work also remains

regarding tool wear regression-based classification in place of discrete classification;

such an investigation will require close monitoring of tool condition at various points

during tool life. Another important development could be the prediction of the re-

maining useful life of the tool (RUL), which can be beneficial for optimizing the

maintenance operation.
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Appendix

Phython Code

8.1

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

frames = list()

results = pd.read_csv("train.csv")

for i in range(1,19):

exp = ’0’ + str(i) if i < 10 else str(i)

frame = pd.read_csv("experiment_.csv".format(exp))

row = results[results[’No’] == i]

frame[’TC’] = 0 if row.iloc[0][’tool_condition’] == ’worn’ else 1

frames.append(frame)

df = pd.concat(frames, ignore_index = True)

df.head()

df.replace(’Machining_Process’: ’Starting’:’Prep’,’end’:’End’,

inplace=True)

print(df[’Machining_Process’].value_counts().sort_index())

x = df.iloc[:,:-1].values
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y = df.iloc[:,48].values

from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import OneHotEncoder

ct = ColumnTransformer([(’encoder’, OneHotEncoder(), [47])], remainder=’passthrough’)

x= np.array(ct.fit_transform(x))

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.25,random_state=0)

from sklearn.preprocessing import StandardScaler

sc_x = StandardScaler()

x_train[:,8:] = sc_x.fit_transform(x_train[:,8:])

x_test[:,8:] = sc_x.transform(x_test[:,8:])

from sklearn.tree import DecisionTreeClassifier

classifier = DecisionTreeClassifier(criterion= ’entropy’, random_state=0) classifier.fit(x_train,y_train)

from sklearn.model_selection import cross_val_score

clf = cross_val_score(classifier,x_train,y_train)

y_pred = classifier.predict(x_test)

from sklearn.metrics import confusion_matrix, accuracy_score

cm = confusion_matrix(y_test, y_pred)

print (cm)

ac = accuracy_score(y_test,y_pred)

print (ac)

imp= classifier.feature_importances_
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8.2

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import random

imported all the libraries

frames = list()

results = pd.read_csv("train.csv")

for i in range(1,19):

exp = ’0’ + str(i) if i < 10 else str(i)

frame = pd.read_csv("experiment_.csv".format(exp))

row = results[results[’No’] == i]

if row.iloc[0][’machining_finalized’] == ’yes’:

frame[’TC’] = 0 if row.iloc[0][’tool_condition’] == ’worn’ else 1

frames.append(frame)

else:

i+=1

imported all experiments in which machining is finalized

giving the class labels worn = 0 and unworn = 1

appended all the experiments in the list called "frames"

accuracy = list()

cross_val_scorelist= list()

Def a variable "accuracy" in the list type to store the accuracy scores.

Def a variable "cross_val_scorelist" in the list type to store the cross val-
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idation scores.

for c in range(0,14):

generated a "for loop" in the range 0-14 for spliting the train and test sets

in each iteration"

df_testlist = list()

df_trainlist = list()

Def two list type variables "df_testlist" and "df_trainlist" to store train

and test experiments at each instance.

for a in range (0,14):

if a==c:

print(’c’, a)

df_test= frames[a]

if a==0:

df_test.replace(’Machining_Process’: ’Starting’:’Prep’,’end’:’End’, inplace=True)

df_testlist.append(df_test)

appended the experiment which is test set for the instance to the list

else:

print(a,’ ’)

df_train= frames[a]

if a==0:

df_train.replace(’Machining_Process’: ’Starting’:’Prep’,’end’:’End’, inplace=True)

df_trainlist.append(df_train)

appended all other experiments in the train set list.

a+=1

print(’———’)

df = pd.concat(df_trainlist, ignore_index = True)

concatenated all the experiments in the train list for applying the model.
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x = df.iloc[:,:-1].values

assigned the columns for the independent variable x

from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import OneHotEncoder

ct = ColumnTransformer([(’encoder’, OneHotEncoder(), [47])], remainder=’passthrough’)

x= np.array(ct.fit_transform(x))

OneHotEncoding is done to convert the categorial features into numerical

one.

y = df.iloc[:,48].values

assigned the column for dependent variable "Tool Condition"

x_test = df_test.iloc[:,:-1].values

x_test= np.array(ct.fit_transform(x_test))

y_test = df_test.iloc[:,48].values

Feature scaling by using Standardization

from sklearn.preprocessing import StandardScaler

sc= StandardScaler()

x= sc.fit_transform(x)

x_test= sc.transform(x_test)

Applying machine learning model to the data set i-e x and y will be

independent and dependent variables respectively.

Classifier is trained for the respective model (Random Forest, Decision

Tree, and Neural Networks) with the given dataset.

from sklearn.ensemble import RandomForestClassifier

classifier = RandomForestClassifier(n_estimators = 50, criterion= ’entropy’, ran-

dom_state= 0)

classifier.fit(x,y)
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cross_val_score returns score of test fold where cross_val_predict

returns predicted y values for the test fold

from sklearn.model_selection import cross_val_score

clf = cross_val_score(classifier,x,y)

cross_val_scorelist.append(clf)

Machine learning model(Random Forest) predict the value of y for the

corresponding x_test.

y_pred = classifier.predict(x_test)

Accuracy is one metric for evaluating classification models.

Informally, accuracy is the fraction of predictions our model got right.

from sklearn.metrics import accuracy_score

ac = accuracy_score(y_test,y_pred)

accuracy.append(ac)

c+=1

import statistics

mean accuracy score for all iterations.

mean= statistics.mean(accuracy)

print (mean)

mean cross validation score for all iterations.

cvm = statistics.mean(clf)

print (cvm)
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8.4

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import random

imported all the libraries required.

means = list()

medians = list()

kurtosiss = list()

skewnesss = list()

stds=list()

frames = list()

results = pd.read_csv("train.csv")

imported all experiments in which machining is finalized giving the

class labels worn = 0 and unworn = 1 appended all the experiments in

the list called "frames"

for i in range(1,19):

exp = ’0’ + str(i) if i < 10 else str(i)

frame = pd.read_csv("experiment_.csv".format(exp))

row = results[results[’No’] == i]

mean = frame.mean(axis=0)

median = frame.median(axis=0)

kurtosis = frame.kurtosis(axis=0)

skewness = frame.skew(axis=0)

std= frame.var(axis=0)

Calculated the features (mean, median,kurtosis and skewness) for the

feature extraction
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mean[’TC’] = 0 if row.iloc[0][’tool_condition’] == ’worn’ else 1

means.append(mean)

median[’TC’] = 0 if row.iloc[0][’tool_condition’] == ’worn’ else 1

medians.append(median)

kurtosis[’TC’] = 0 if row.iloc[0][’tool_condition’] == ’worn’ else 1

kurtosiss.append(kurtosis)

skewness[’TC’] = 0 if row.iloc[0][’tool_condition’] == ’worn’ else 1

skewnesss.append(skewness)

frame[’TC’] = 0 if row.iloc[0][’tool_condition’] == ’worn’ else 1

frames.append(frame)

i+=1

making the lists of required features respectively.

df_me = pd.concat(means, axis=1 , join=’inner’)

df_md = pd.concat(medians, axis=1 , join=’inner’)

df_ku = pd.concat(kurtosiss, axis=1 , join=’inner’)

df_skw = pd.concat(skewnesss, axis=1 , join=’inner’)

df_std = pd.concat(stds, axis=1 , join=’inner’)

Concatenated all the features to convert list into a dataframe.

Taking transpose of features for further analysis.

df_me=df_me.transpose()

df_md=df_md.transpose()

df_ku=df_ku.transpose()

df_skw=df_skw.transpose()

df_std=df_std.transpose()

Concatenated all the features in a single dataframe. df = pd.concat([df_me.drop(’TC’,axis=1),df_md.drop(’TC’,axis=1),df_ku.drop(’TC’,axis=1),df_skw],

axis=1 , join=’inner’)
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df.insert(0, "No", [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17], True)

Def a variable "accuracy" in the list type to store the accuracy scores.

Def a variable "cross_val_scorelist" in the list type to store the cross

validation scores.

accuracy = list()

cross_val_scorelist= list()

generated a "for loop" in the range 0-18 for spliting the train and test

sets in each iteration"

for c in range(0,18):

Def two list type variables "df_testlist" and "df_trainlist" to store

train and test experiments at each instance.

df_testlist = list()

df_trainlist = list()

for a in range (0,18):

if a==c:

print(’c’, c)

df_test= df[df["No"] == c]

df_test=df_test.drop(labels= ’No’,axis= 1)

df_testlist.append(df_test)

appended the experiment which is test set for the instance to the list

else:

print(a,’ ’)

df_train= df[df["No"] == a]

df_train= df_train.drop(labels=’No’,axis= 1)

df_trainlist.append(df_train)
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a+=1

print(’———’)

me = pd.concat(df_trainlist, ignore_index = True)

concatenated all the experiments in the train list for applying the model

x = me.iloc[:,:-1].values

assigned the columns for the independent variable x

y = me.iloc[:,188].values

y=y.astype(’int’)

x_test = df_test.iloc[:,:-1].values

y_test = df_test.iloc[:,188].values

y_test=y_test.astype(’int’)

Feature scaling by using Standardization

from sklearn.preprocessing import StandardScaler

sc_x = StandardScaler()

x = sc_x.fit_transform(x)

x_test = sc_x.transform(x_test)

Applying machine learning model to the data set i-e x and y will be

independent and dependent variables respectively. Classifier is trained for

the respective model (Random Forest, Decision Tree, and Neural Net-

works) with the given dataset.

from sklearn.tree import DecisionTreeClassifier

classifier = DecisionTreeClassifier(criterion= ’entropy’, random_state=0)
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classifier.fit(x,y)

cross_val_score returns score of test fold where cross_val_predict

returns predicted y values for the test fold

from sklearn.model_selection import cross_val_score

clf = cross_val_score(classifier,x,y)

cross_val_scorelist.append(clf)

Machine learning model(DecisionTreeClassfier) predict the value of y

for the corresponding x_test.

y_pred = classifier.predict(x_test)

from sklearn.metrics import accuracy_score

ac = accuracy_score(y_test,y_pred)

accuracy.append(ac)

c+=1

import statistics

Accuracy is one metric for evaluating classification models. Informally,

accuracy is the fraction of predictions our model got right.

mean= statistics.mean(accuracy)

print (mean)

mean cross validation score for all iterations.

cvm = statistics.mean(clf)

print (cvm)
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8.5

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import random

imported all the libraries

frames = list()

results = pd.read_csv("train.csv")

for i in range(1,19):

exp = ’0’ + str(i) if i < 10 else str(i)

frame = pd.read_csv("experiment_.csv".format(exp))

row = results[results[’No’] == i]

if row.iloc[0][’machining_finalized’] == ’yes’:

frame[’TC’] = 0 if row.iloc[0][’tool_condition’] == ’worn’ else 1

frames.append(frame)

else:

i+=1

imported all experiments in which machining is finalized

giving the class labels worn = 0 and unworn = 1

appended all the experiments in the list called "frames"

accuracy = list()

cross_val_scorelist= list()

Def a variable "accuracy" in the list type to store the accuracy scores.

Def a variable "cross_val_scorelist" in the list type to store the cross val-
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idation scores.

for c in range(0,14):

generated a "for loop" in the range 0-14 for spliting the train and test sets

in each iteration"

df_testlist = list()

df_trainlist = list()

Def two list type variables "df_testlist" and "df_trainlist" to store train

and test experiments at each instance.

for a in range (0,14):

if a==c:

print(’c’, a)

df_test= frames[a]

if a==0:

df_test.replace(’Machining_Process’: ’Starting’:’Prep’,’end’:’End’, inplace=True)

df_testlist.append(df_test)

appended the experiment which is test set for the instance to the list

else:

print(a,’ ’)

df_train= frames[a]

if a==0:

df_train.replace(’Machining_Process’: ’Starting’:’Prep’,’end’:’End’, inplace=True)

df_trainlist.append(df_train)

appended all other experiments in the train set list.

a+=1

print(’———’)

df = pd.concat(df_trainlist, ignore_index = True)

concatenated all the experiments in the train list for applying the model.
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x = df.iloc[:,:-1].values

assigned the columns for the independent variable x

from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import OneHotEncoder

ct = ColumnTransformer([(’encoder’, OneHotEncoder(), [47])], remainder=’passthrough’)

x= np.array(ct.fit_transform(x))

OneHotEncoding is done to convert the categorial features into numerical

one.

y = df.iloc[:,48].values

assigned the column for dependent variable "Tool Condition"

x_test = df_test.iloc[:,:-1].values

x_test= np.array(ct.fit_transform(x_test))

y_test = df_test.iloc[:,48].values

Feature scaling by using Standardization

from sklearn.preprocessing import StandardScaler

sc= StandardScaler()

x= sc.fit_transform(x)

x_test= sc.transform(x_test)

from sklearn.decomposition import PCA

pca = PCA(0.95)

pca.fit(x)

x= pca.transform(x)

x_test= pca.transform(x_test)

imported PCA from sklearn.decomposition for applying Principal Com-

ponent Analysis.

the algorithm will select the number of components while preserving 95%
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of the variability in the data.

Applying machine learning model to the data set i-e x and y will be

independent and dependent variables respectively.

Classifier is trained for the respective model (Random Forest, Decision Tree,

and Neural Networks) with the given dataset.

from sklearn.ensemble import RandomForestClassifier

classifier = RandomForestClassifier(n_estimators = 50, criterion= ’entropy’, ran-

dom_state= 0)

classifier.fit(x,y)

cross_val_score returns score of test fold where cross_val_predict re-

turns predicted y values for the test fold

from sklearn.model_selection import cross_val_score

clf = cross_val_score(classifier,x,y)

cross_val_scorelist.append(clf)

Machine learning model(Random Forest) predict the value of y for the correspond-

ing x_test.

y_pred = classifier.predict(x_test)

Accuracy is one metric for evaluating classification models.

Informally, accuracy is the fraction of predictions our model got right.

from sklearn.metrics import accuracy_score

ac = accuracy_score(y_test,y_pred)

accuracy.append(ac)

c+=1

import statistics
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mean accuracy score for all iterations.

mean= statistics.mean(accuracy)

print (mean)

mean cross validation score for all iterations.

cvm = statistics.mean(clf)

print (cvm)

92



Bibliography

[1] Arinez, J. F., Chang, Q., Gao, R. X., Xu, C., and Zhang, J. (August 13, 2020).

"Artificial Intelligence in Advanced Manufacturing: Current Status and Future Out-

look." ASME. J. Manuf. Sci. Eng. November 2020; 142(11): 110804.

[2] Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., and Siegel, D., 2014, “Prog-

nostics and Health Management Design for Rotary Machinery Systems —Reviews,

Methodology and Applications,” Mech. Syst. Signal Process., 42(1–2), pp. 314–334.

[3] ge.com/research/project/predictive-maintenance.

[4] Lecun, Y., Bengio, Y., and Hinton, G., 2015, “Deep Learning,” Nature, 521(7553),

pp. 436–444.

[5] Gao, R., Wang, L., Teti, R., Dornfeld, D., Kumara, S., Mori, M., and Helu, M.,

2015, “Cloud-Enabled Prognosis for Manufacturing,” CIRP Ann., 64(2), pp. 749–772.

[6] R. Teti, K. Jemielniak, G. O’Donnell, and D. Dornfeld, 2010, “Advanced monitor-

ing of machining operations,” CIRP Ann-Manuf Techn, 59(2), pp. 717-73.

[7] Arinez, J. F., Chang, Q., Gao, R. X., Xu, C., and Zhang, J. (August 13, 2020).

"Artificial Intelligence in Advanced Manufacturing: Current Status and Future Out-

look." ASME. J. Manuf. Sci. Eng. November 2020; 142(11): 110804.

[8] X.S. Si, W. Wang, C.H. Hu, M.Y. Chen, and D.H. Zhou, 2013, “A wiener-process-

based degradation model with a recursive filter algorithm for remaining useful life

estimation,” Mechanical Systems and Signal Processing, 35(1), pp. 219-237.

[9] M. Dong and D. He, 2007, “Hidden semi-Markov model-based methodology for

93



multi-sensor equipment health diagnosis and prognosis,” European Journal of Oper-

ational Research, 178(3), pp. 858-878.

[10] Saha, K. Goebel, and J. Christophersen, 2009, “Comparison of prognostic algo-

rithms for estimating remaining useful life of batteries,” T I Meas Control.

[11] M. E. Orchard and G. J. Vachtsevanos, 2009, “A particle-filtering approach for

on-line fault diagnosis and failure prognosis,” T I Meas Control.

[12] B. Sick, 2002, “On-line and indirect tool wear monitoring in turning with artificial

neural networks: a review of more than a decade of research,” Mechanical Systems

and Signal Processing, 16(4), pp. 487-546.

[13] Kothuru, A., Nooka, S. P.,and Liu, R. (August 3,2018). "Audio-Based Tool

Condition Monitoring in Milling of the Workpiece Material With the Hardness Vari-

ation Using Support Vector Machines and Convolutional Neural Networks." ASME.

J.Manuf. Sci. Eng.November 2018; 140(11):111006.

[14] Sohyung Cho, Shihab Asfour, Arzu Onar, Nandita Kaundinya, Tool breakage

detection using support vector machine learning in a milling process, International

Journal of Machine Tools and Manufacture, Volume 45, Issue 3,2005,

[15] Clayton Cooper, Peng Wang, Jianjing Zhang, Robert X. Gao, Travis Roney, Ihab

Ragai, Derek Shaffer, Convolutional neural network-based tool condition monitoring

in vertical milling operations using acoustic signals, Procedia Manufacturing, Volume

49, 2020,

[16] Wu, Zhenhua. "Cutting Tool Condition Monitoring and Prediction Based on

Dynamic Data Driven Approaches." Proceedings of the ASME 2015 International

Manufacturing Science and Engineering Conference. Volume 1: Processing. Char-

lotte, North Carolina, USA. June 8–12, 2015

[17] Li, X., et al. Fuzzy neural network modelling for tool wear estimation in dry

milling operation. in Annual conference of the prognostics and health management

society. 2009.

94



[18] D. Wu, C. Jennings, J. Terpenny and S. Kumara, "Cloud-based machine learning

for predictive analytics: Tool wear prediction in milling," 2016 IEEE International

Conference on Big Data (Big Data), Washington, DC, 2016, pp. 2062-2069

[19] Kurfess, T., Saldana, C., Saleeby, K., and Parto-Dezfouli, M. (August 28, 2020).

"INDUSTRY 4.0 AND INTELLIGENT MANUFACTURING PROCESSES: A RE-

VIEW OF MODERN SENSING TECHNOLOGIES." ASME. J. Manuf. Sci. Eng

[20] I. Dumitrache and S. I. Caramihai, "The Enterprise of Future as a Cyber-Physical

System," IFAC Proceedings Volumes, vol. 46, no. 9, pp. 1310-1315, 2013/01/01/2013

[21] Alothman, Hussam Ali, Khasawneh, Mohammad T., and Nagarur, Nagen N. "In-

ternet of Things in Manufacturing: An Overview." Proceedings of the ASME 2018

International Mechanical Engineering Congress and Exposition. Volume 2: Advanced

Manufacturing. Pittsburgh, Pennsylvania, USA. November 9–15, 2018

[22] W.Z. Khan, M.H. Rehman, H.M. Zangoti, M.K. Afzal, N. Armi, K. Salah, Indus-

trial internet of thing: Recent advances, enabling technologies and open challenges,

Computers Electrical Engineering, Volume 81,2020, 106522,ISSN 0045-7906,

[23] Bergonzi, L, Colombo, G, Rossoni, M, Furini, F. "Data and Knowledge in

IIoT-Based Maintenance Application." Proceedings of the ASME 2017 International

Mechanical Engineering Congress and Exposition. Volume 11: Systems, Design, and

Complexity. Tampa, Florida, USA. November 3–9, 2017

[24] Zheng, P., wang, H., Sang, Z. et al. Smart manufacturing systems for Industry

4.0: Conceptual framework, scenarios, and future perspectives. Front. Mech. Eng.

13, 137–150 (2018).

[25] Jim Davis, Thomas Edgar, James Porter, John Bernaden, Michael Sarli, Smart

manufacturing, manufacturing intelligence and demand-dynamic performance, Com-

puters Chemical Engineering, Volume 47, 2012,

[26] A. Cachada et al., "Maintenance 4.0: Intelligent and Predictive Maintenance

System Architecture," 2018 IEEE 23rd International Conference on Emerging Tech-

95



nologies and Factory Automation (ETFA), Turin, 2018,

[27] Li, Y, Jia, D. "A Real-Time Analysis of Condition-Based Maintenance in a

Multistage Production System." Proceedings of the ASME 2018 13th International

Manufacturing Science and Engineering Conference. Volume 1: Additive Manufactur-

ing; Bio and Sustainable Manufacturing. College Station, Texas, USA. June 18–22,

2018

[28] Yang, Y, Gao, RX, Fan, Z, Wang, J, Wang, L. "Cloud-Based Prognosis: Per-

spective and Challenge." Proceedings of the ASME 2014 International Manufactur-

ing Science and Engineering Conference collocated with the JSME 2014 International

Conference on Materials and Processing and the 42nd North American Manufacturing

Research Conference. Volume 1: Materials; Micro and Nano Technologies; Proper-

ties, Applications and Systems; Sustainable Manufacturing. Detroit, Michigan, USA.

June 9–13, 2014.

[29] Hassan, M., Sadek, A., Attia, M. H., and Thomson, V. (December 18, 2017). "A

Novel Generalized Approach for Real-Time Tool Condition Monitoring." ASME. J.

Manuf. Sci. Eng. February 2018

[30] M. P. Groover, Fundamentals of modern manufacturing: Materials, Processes,

and Systems,1996.

[31] Z. Ge, Z. Song, S. X. Ding and B. Huang, "Data Mining and Analytics in the

Process Industry: The Role of Machine Learning," in IEEE Access, vol. 5, pp. 20590-

20616, 2017, doi: 10.1109/ACCESS.2017.2756872.

[32] Rehan Sadiq, Manuel J. Rodriguez, Haroon R. Mian, Empirical Models to Predict

Disinfection By-Products (DBPs) in Drinking Water: An Updated Review, Editor(s):

Jerome Nriagu, Encyclopedia of Environmental Health (Second Edition), Elsevier,

2019, ISBN 9780444639523,

[33]

96


