
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

High accuracy Pose Estimation with
Computer Vision

Supervisor Politecnico di Torino
-Prof. Alessandro RIZZO

Supervisor FAPS
-M.Sc. Oguz KEDILIOGLU
-Prof. Dr.-Ing. Jörg FRANKE

Candidate
-Tomás Marcelo BOCCO

April 2021

In partnership with:

Institute for Factory Automation and Production Systems (FAPS)
from Friedrich-Alexander University Erlangen-Nuremberg (FAU).

ii

Abstract

This thesis aims to develop a Computer Vision system that measures the position
and orientation of a sample attached to an anthropomorphic robotic manipulator with
high accuracy. This system is intended to act as the primary sensor in an external
control loop to improve the accuracy in the actual sample positioning system for the
neutron diffractometer STREESS-SPEC at the Heinz Maier-Leibnitz center in Garching,
Germany.

The experiments carried out in this facility require an error in position to be less
than 50 µm in any direction, while for orientation, it cannot be higher than 0.5◦ in each
axis. The actual positioning system consists of a 6-axis industrial manipulator with a
repeatability of 50 µm, but an absolute accuracy of approximately 0.5 mm. It is assumed
that the primary source of error can be explained by a deficient description of the robot’s
kinematics in its control system, which leads to an inaccurate pose estimation of the
end-effector.

Due to this fact, it is necessary to rely on an external measuring system that can
perceive deviations both in position and orientation. This information will serve as
feedback to compensate the pose of the robot. This thesis is part of the RAPtOr project
carried out by FAPS (Institute for Factory Automation and Production Systems) and
aims to provide a solution for this problem.

Two different methods were tested for this research. The first one consists of computing
the pose of a square fiducial marker based on the information provided by a set of two
cameras in Stereo Vision configuration. The author proposed this fiducial and consists
of an enhanced version of ArUco markers that allows subpixel algorithms for corner
detection.

In order to detect corners more accurately, a Super-Resolution Deep Neural Network
(SRDNN) was tested. This network had as input a corner image of 8x8 px, and returned
as output an enhanced image of 64x64 px. The output training data consisted of pictures
of the corners from a calibration board at different positions, with dimensions 64x64 px.
They were resized to 8x8 px, and noise was added to generate the input training data.
Various tests determined that the improvement due to this technique was not significant.

The second one is also based on Stereo Vision, but in this case, the fiducials are
Concentric Contrasting Circular (CCC) markers. These are not internally codified, which
makes more challenging the correlation process between images. Despite this, its small
size is advantageous since it is more practical to attach them to complex samples under
test.

For the latter approach, it was necessary to develop an algorithm that could scan
a sample and generate a 3D map with the relative position between markers. As a
consequence that all CCC fiducial are alike and do not have an internal codification, they
need to be individually identified by their relative position with respect to each other.

A laser tracker with 10 µm accuracy was used to compare the Computer Vision
algorithms’ performance. Three reflectors were positioned on the manipulator’s end-
effector for the laser tracker to measure its position. The relative location between this
instrument and the cameras had to be estimated through an optimization algorithm that
aligns both measurements. Since the markers were located at a different position from
the reflectors, it was also necessary to compute the relative pose between both.

The results of the measurements concluded that both methods are similar in accuracy.
The cameras available for testing at FAPS resulted to be insufficient for the task at
hand. A new pair of 20 Mpx cameras with 16.4 mm diagonal will be used for the target
applications. In combination with 50 mm lenses, these cameras are expected to reach
the required accuracy for pose estimation.

ii

Acknowledgements

First of all, I want to express my gratitude towards my supervisors from FAPS, Oguz
Kedilioglu and Prof. Dr.-Ing. Jörg Franke that give me the opportunity to carry out my
thesis with them. From the beginning, it was clear the commitment that was put on this
research. They have helped me to overcome the barriers that have constantly appeared.

I also want to thanks my supervisor from Politecnico di Torino, Profesor Alessandro
Rizzo, who accepted being my tutor. He was also my professor and awakened my curiosity
towards Robotics while laying the theoretical foundations necessary to accomplish this
research.

My sincere thanks also go to Politecnico di Torino and Universidad Nacional de
Córdoba that allowed me to finish my career in Italy through a Double Degree program.

Last but not least, I want to thank my parents for their unconditional support and
love. Through the different stages of my life, they have provided me the skills that I
need to be here today. Despite the distance, they constantly encourage me to achieve my
goals and dreams.

iii

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 1
1.3 Thesis Focus . 3

1.3.1 Control system architecture . 3
1.3.2 External measuring system . 5

2 Stereo Vision: Theory and general technique 7
2.1 General technique . 7
2.2 3D Reconstruction and Calibration . 8

2.2.1 Intrinsic parameters . 8
2.2.2 Extrinsic parameters . 11
2.2.3 Stereo Calibration . 11

2.3 Feature detection and correlation . 13
2.3.1 Fiducial Markers . 13
2.3.2 Correlation . 14
2.3.3 Epipolar Geometry . 14

2.4 Triangulation . 16
2.4.1 Method . 16
2.4.2 Theoretical precision . 17

2.5 Pose estimation . 20
2.5.1 Pose of a Rigid Body . 20
2.5.2 Position and Orientation computation 20
2.5.3 Iterative closest points (ICP) . 22

3 Pose estimation with ArUco Markers 25
3.1 Marker description . 25
3.2 Pose estimation with a single camera . 26
3.3 Subpixel algorithms . 27
3.4 Enhanced ArUco Markers . 28

iv

3.5 Pose estimation with Stereo Vision . 29
3.6 Preliminary test results . 30
3.7 Super-Resolution . 33

3.7.1 Dataset . 33
3.7.2 Network Architecture . 34
3.7.3 Loss function . 36
3.7.4 Output . 37

4 Pose estimation with CCC Markers 40
4.1 Marker description . 40
4.2 Blob Detection . 41

4.2.1 Filters . 42
4.3 Point correlation . 43
4.4 Markers mapping . 46

4.4.1 ICP algorithm . 46
4.4.2 Filters for correlation . 48

4.5 Pose estimation . 52

5 Validation method 58
5.1 Laboratory equipment at testing facility 58
5.2 Data alignment . 59
5.3 Transformation estimation . 59
5.4 Error metrics . 63
5.5 Pose compensation . 64

6 Test and results 67
6.1 Absolute Accuracy . 67

6.1.1 Method comparison . 68
6.1.2 Baselines comparison . 71
6.1.3 Poses with highest error . 73
6.1.4 Synthetic Data . 76
6.1.5 Robot Accuracy . 77

6.2 Repeatability . 78
6.3 Pose compensation . 79

7 Conclusion 82
7.1 Summary . 82
7.2 Future work . 83

Acronyms 85

Appendices 87

A Two link planar arm: kinematic error compensation 88

B Stereo Error: Theoretical Analysis 92

v

C SRNN Architecture in Tensorflow 99

D Alignment matrices obtention: Matlab Code 101

Bibliography 103

vi

List of Tables

3.1 Preliminary test results . 32

6.1 Standard deviation of the error in X, Y and Z and in the rotation angles
RX, RY and RZ for the different methods 68

6.2 Parameters of ed error . 69
6.3 Standard deviation of the error in X, Y and Z and in the rotation angles

RX, RY and RZ for the different methods and for different baselines . . . 72
6.4 Parameters of ed error for different baselines 72
6.5 Error comparison between synthetic and real data 77
6.6 Volumetric error comparison between robot and camera measurements . 78
6.7 Standard deviation of the error in X, Y and Z and in the rotation angles

RX, RY and RZ for the different methods 79
6.8 Maximum position error in each axis. 79
6.9 Parameters of ed error . 79

vii

List of Figures

1.1 Diffractometer [1] . 2
1.2 Inner Gauge (Image from Winfried Petry) 2
1.3 Eulerian cradle and X-Y-Z table (Image from M. Landesberger presentation) 2
1.4 Robot positioning system at STRESS-SPEC [5] 2
1.5 Leica laser tracker . 3
1.6 Robot with 6 reflector attached to its end-effector [4] 3
1.7 Control architecture: External feedback that compensates errors provoked

by the RMCS . 4
1.8 External controller . 5
1.9 ArUco Markers . 6
1.10 Blade with dot markers . 6

2.1 Stereo vision overview . 8
2.2 Pinhole camera model (Image from [10]) 9
2.3 Effects of tangential and radial distortion [12] 10
2.4 Reconstruction . 11
2.5 Example images for stereo calibration . 13
2.6 Point correlation between images . 14
2.7 Epipolar geometry [18] . 15
2.8 A point seen from an image can be located in any position of a line on the

other image, based on [20] . 16
2.9 Triangulation: projections are backpropagated, but because of the mea-

surement imperfection they do not coincide in a point, based on [18] . . . 17
2.10 a) Configuration of the cameras and the point p to measure, b) Error

volume in x-z plane defined by cameras error, c) Error volume in x-y plane 18
2.11 Projection of an error pixel error into space. 18
2.12 Volume error modeled as a combination of normally distributed errors in

every axis, the diamond shape represents the previously considered error
region. 19

2.13 Estimating the pose of a body consist in determine the transformation
that it is necessary to be applied from it zero FR, to match in position
and orientation with the actual pose. 21

2.14 Schematic representation of a 3 step ICP process to align two curves.
Image from [21] . 23

viii

2.15 Algorithm by Hanzhou Lu [22] . 24

3.1 4x4 ArUco marker with id = 0 . 26
3.2 Subpixel corner detection . 27
3.3 a) Chessboard corners b) ArUco marker corners 27
3.4 Error in detection: a) Not all the markers are detected b) The green

line does not match the perimeter of the marker c) One of the corners is
erroneously detected . 28

3.5 Parts of enhanced marker . 28
3.6 Detection of the inner and outer frame of enhanced ArUco markers 29
3.7 Detection of corner C1 for different orientations. 29
3.8 Projections of ArUco marker corners into camera planes. 30
3.9 Virtual Set-up configuration. 31
3.10 Some calibration images that were used. 31
3.11 Test images: In the first two, the standard ArUco marker is present while

in the last two the enhanced version of it. The first and third image are
from camera 1 while the second and fourth one from camera 2. 32

3.12 Corner extraction from calibration images 33
3.13 After detecting the corner a 64 by 64 pixel frame is defined centered on it.

The frame is then moved apart randomly a few pixels from the original
position. Finally, the image inside the latter frame is used for training data 34

3.14 Generation of input dataset: k is a square matrix kernel, while n is a noise
matrix with the size of the output image. 35

3.15 Generation of input dataset, figures based on [32]. a) Convolutional layer
b)Transpose Convolution layer c) Transpose Convolution layer with input
strides . 36

3.16 SRNN Architecture . 36
3.17 MSE error after each epoch . 37
3.18 The left image was obtained with a SRNN trained with perceptual loss as

it object function, the original image is the one at the right. There are
part of the fur in the left image that is not present in the right one [33] . 38

3.19 Test dataset: In the first column there are the LR images, in the middle
the HR predictions, and finally in the right column the original HR images 38

3.20 The first row is an expansion of images from the second row, which is a
an image from an enhance ArUco marker. In the first column there are
the LR images, in the middle the HR predictions, and finally in the right
column the original HR images . 39

4.1 CCC marker . 41
4.2 Blob detection example: a) Original image, b) Image after binarization,

c) Filtered image by maximum blob area, d) Filtered image by minimum
blob area. 42

4.3 Due to the epipolar constraints, the lines in image (b) represent the possible
locations of a detected marker from (a) in (b). The markers are identified
with different colors that will be the same for the correspondent line. . . 44

ix

4.4 Triangulation for consecutive instances . 47
4.5 The transformation matrix Ti between two consecutive cloud of points is

computed with the ICP algorithm. The process also returns as output Lci
that is the list of matched points from both CoP. 48

4.6 Matrix of correlation for every pose . 49
4.7 Different case scenarios . 49
4.8 Multiple correlation case . 50
4.9 Correlation between points representing different markers 51
4.10 The 3D relative position between CCC markers at the end-effector of the

robot. The frame of reference was chosen arbitrary, and the CoP was
aligned in such a way that the object RF coincides with the world RF. . . 51

4.11 Example of a non-convex 1D ICP matching problem based on [37]: The
blue and red dots represent different CoP. The red CoP can be moved a
distance t from its original position. The optimization problem consists in
finding the distance t that minimizes the loss function. The loss function
is equal to the sum of the square distances between points from different
clouds matched by closeness. 52

4.12 Two points of the different CoP are correlated if they share at least three
lengths in common. Green lines represent lengths found in both CoP,
while red lines represent lengths not found in the other cloud. 55

4.13 Common points are plotted as solid red dots. a) 3D map CoP of the
relative position of all the markers on the end-effector, b) Detected points
CoP, the isolated element in the corner is an incorrect measurement. . . 55

4.14 Images of the robot at a certain pose taken from both cameras in the SVS. 56
4.15 Distance matrices: a)Detected points distance matrix D_det, b) 3D map

distance matrix D_map colored in orange for similar values of column C
in D_det, c) 3D map distance matrix D_map colored in gray for similar
values of column E in D_det . 57

5.1 Available equipment at the testing Laboratory 59
5.2 Photo of the real equipment, the blue arrows indicates the measure of the

ArUco markers from the cameras, while the red arrows shows the measure
from the laser tracker to the different reflectors. 60

5.3 End-effector of the robot. At the top the FR of the reflectors can be seen,
at the middle the one from the ArUco marker, and at the bottom the one
from the robot . 60

5.4 Chain of transformations . 60
5.5 Chain of transformations with a difference Te,i in the final position of the

markers. This is due to errors in calibration and measurements. 61
5.6 Flow of information through device’s interface 65
5.7 Set of transformations from cameras FR to robot FR. 66

6.1 Relative position between cameras, laser tracker, and measured points . . 68
6.2 ed histogram with its respective fitting Nagakami curve for the different

methods . 69

x

6.3 Fitting of CDF curve for ed in every method 70
6.4 Estimated PDF and CDF curves for the different methods in an unique plot 71
6.5 Expected RMSE in function of x = B

2 zc
. 72

6.6 a) Experiment reconstruction with 300 mm of baseline, b) Experiment
reconstruction with 800 mm of baseline 73

6.7 ed in every pose after computing the alignment parameters with the other
26 poses. 74

6.8 Bar chart for points in Figure 6.7 . 74
6.9 Stereo images of critical poses . 75
6.10 Computer generated images: Markers at different distances from the baseline 76
6.11 Reconstruction of the test set-up with the frame of reference from the

different instruments and from the 27 measured poses. 77
6.12 Images of the robot end-effector for different light conditions 78
6.13 Final measurement by the Stereo Vision system 80
6.14 Total location error ed and errors in each axis over time. The vertical

yellow lines indicates the robot movement. 80
6.15 Rotation errors in the different axes. The vertical yellow lines indicates

the robot movement. 81

A.1 Two link planar arm model . 88
A.2 Simulink model of a two link planar arm with a deficient inverse kinematic

block, being compensated with an external control loop 89
A.3 External controller . 90
A.4 Pose of the manipulator from iteration 1 to 3. Point D represent the

desired position for W . 90
A.5 Simulation output . 91

B.1 a) relative pose between cameras and point to be measured b) Uncertainty
volume from plane x-z perspective . 92

B.2 Transformation of the parallelepiped error volume into an ellipsoid. The
boundary on each axes is equal to three times its respective standard
deviation. 94

xi

Chapter 1

Introduction

1.1 Motivation

The purpose of RAPtOr project, carried out by FAPS institute, is to find an alternative
for the actual sample positioning system at the STRESS-SPEC neutron diffractometer.
This instrument is part of the Heinz Maier-Leibnitz Center (HML) and is used for a wide
range of applications in the field of material science [1].

It emits a beam of neutrons, part of it is reflected by the sample under test and then
captured by an area detector. The properties of the reflected ray, such as its direction
and intensity, depend on the internal structure of the sample material. Texture and
non-destructive residual stress analyses can be carried out with the output information
of this experiment. A scheme of the diffractometer is shown in Figure 1.1.

With this aim, it is necessary to position the sample with high accuracy at the focus
point of the neutron source [2]. It also must be located at different orientations, in such
a way that the gauge volume remains in the path of the neutron beam [3]. In Figure 1.2
it is shown a sample being hit by a neutron beam, the inner gauge is schematized as a
dashed circle inside the sample.

1.2 Related Work

The research carried out by Randau in 2015 [4] described the requirements of the
positioning system. The neutron diffractometer STRESS-SPEC can define a gauge
volume as small as 0.5 x 0.5 x 0.5 mm3. The accuracy of the positioning system should

1

Introduction

Figure 1.1: Diffractometer [1]
Figure 1.2: Inner Gauge (Image
from Winfried Petry)

be ten times smaller than the gauge volume, resulting in a required accuracy of 50 µm.

This paper also explains that the positioning system used to be an X-Y-Z table in
combination with Eulerian cradles, shown in Figure 1.3. Despite being accurate, this
system limits the sample space and makes automation difficult. As a consequence, a
positioning system based on the use of an industrial robot was developed (Figure 1.4).

Figure 1.3: Eulerian cradle and X-Y-Z table (Image
from M. Landesberger presentation)

Figure 1.4: Robot positioning
system at STRESS-SPEC [5]

Regardless of its good repeatability (±0.05mm), its absolute accuracy was lower than
desired. The study of Randau has shown that the relative accuracy on the relevant
working region of the robot is ±0.5mm, ten times lower than required.

Due to this fact, they used an external measurement system to accurately determine
the absolute position of the sample, in order to utilize that information to compensate
for the pose error. This method reduced the absolute positioning error to ±35µm.

2

Introduction

They used a Leica laser tracker to measure the absolute pose of the robot. At the
end-effector, six reflectors were attached symmetrically forming a hexagon, as depicted in
Figure 1.6 . In order to obtain the 6DOF pose, at least three of them had to be measured.

Despite its accuracy, the measuring system cannot be used for every orientation or
sample, since the three reflectors needed may not be reachable by the laser tracker.

The aim of this thesis is to provide a solution to replace this measuring system with a
more practical one.

Figure 1.5: Leica laser tracker Figure 1.6: Robot with 6 reflec-
tor attached to its end-effector [4]

1.3 Thesis Focus

1.3.1 Control system architecture

As seen in Section 1.1 the existing robot motion control system (RMCS) is not accurate
enough for placing a sample with the required specifications. One of the hypotheses of
this thesis is that the main source of error is due to the inverse kinematic block on the
RMCS.

This block computes the joints parameters that are necessary to achieve a certain
position and orientation of the manipulator. Several modifications on this block were
made, but there were no significant improvements according to Randau [4].

Nubiola [6] in 2013, achieved a significant reduction of the absolute error of an industrial
robot through kinematic calibration. He used a 29-parameter model to calibrate an
ABB IRB 1600 with a repeatability of ± 0.05mm, the same as the target robot in this
research. However, this was achieved with 1000 data points from a laser tracker, which

3

Introduction

this thesis tries to replace. Furthermore, the mean error resulted to be 292µm, which is
much greater than the required specifications.

Taking this into consideration, an external control loop was proposed to improve the
accuracy of the system, Figure 1.7. Because it is external, there is no need to modify
the RMCS already existing. The desired pose xd will cease being the input signal of the
RMCS and would be replaced by xn that is the output of the external controller.

Figure 1.7: Control architecture: External feedback that compensates errors provoked by the
RMCS

This controller will have xd as input, and xm, which is the pose measured by the
external measuring system (EMS). By nature, the external control system is discrete,
since before sending an instruction, it has to wait for the robot to reach the previously
commanded pose.

The architecture of the controller is straightforward, and it can be seen in Figure 1.8.
On each iteration, xn will be computed as the sum between the actual pose xd and the
sum over time of the difference between xd and xm. The sum block that can be seen in
Figure 1.8 acts as a discrete integrator. The output xn could be interpreted as a modified
desired pose that overweights the Inverse Kinematic Transformation’s errors.

The architecture of this controller was tested in a simulated two planar arm manip-
ulator, with a deficient inverse kinematics block. The position error was reduced from
70 mm to less than 50 µm in four iterations. The complete analysis of it can be seen in
Appendix A.

External controllers based on Neural Network architecture were also considered. For
example Chi-Tho [7] developed a Neural Network external controller in which no iteration
was needed. However, its resulting mean error was around 2 mm.

The author is aware that the architecture of the controller can be enhanced to work
faster. However, it is not the main objective of this thesis. It is preferable a greater
accuracy rather than a short settling time. The focus is on developing an accurate

4

Introduction

external measuring system.

Figure 1.8: External controller

1.3.2 External measuring system

The external measuring system must have an absolute accuracy error under 50µm.
As described in section 1.1 the Leica laser tracker, despite reaching the accuracy goal,
was not suitable for being inconvenient.

For this reason, at HML it was decided to develop a solution based on Computer
Vision principles. A set of cameras would take images of the samples at STRESS-SPEC,
and after processing them, the pose of it should be computed. Finding a method that
achieves this with the required specifications is the main objective of this thesis.

Two different methods are proposed in the chapters Chapter 3 and Chapter 4 respec-
tively:

1. End-effector pose estimation with ArUco markers: For this technique,
ArUco markers are used as fiducial to determine the pose of the end-effector. With
this information, the pose of the sample can be directly computed with a simple
homogeneous transformation. A single ArUco marker is sufficient for computing
the pose of an object in space, either with mono or stereovision. Figure 1.9.

2. Object pose estimation with CCC markers: This technique intends to measure
the pose of a sample directly. The markers are placed on the object and not in
the end-effector as the method mentioned before. At least three markers must be
visible to compute its pose with stereo vision, but the number of markers increases
to six with monovision. Figure 1.10.

5

Introduction

Figure 1.9: ArUco Markers

Figure 1.10: Blade
with dot markers

6

Chapter 2

Stereo Vision: Theory and
general technique

2.1 General technique

An image is a two-dimensional projection of a three-dimensional space, it inherently
causes a loss in depth information. However, if two images from different perspectives
are available, and the cameras’ intrinsic parameters and the relative position between
each other is known a priori, it is possible to triangulate the position of a common point
to get its three spatial coordinates. This process is known as Stereo Vision.

Pose estimation with Stereo Vision consists mainly of 4 steps. They are represented
schematically in Figure 2.1:

1. 3D Reconstruction and Calibration: It consists of estimating the relative
position between the two cameras and their relationship with the environment.
It can be achieved with a calibration method, as would be seen in Section 2.2.
The intrinsic parameters of the cameras can also be estimated with calibration,
they would be required to correct camera lenses distortions and for the step of
triangulation. (Figure 2.1 a).

2. Feature detection and correlation: Is necessary to identify points in an object
that are visible in both pictures. This process is not straightforward since a point
in an image could not necessarily be precisely identified in the other one. Some
techniques try to find relevant features on objects automatically, such as SIFT [8].
However, for this thesis, it was decided to rely on fiducial markers, more in Section
2.3.1. (Figure 2.1 b).

7

Stereo Vision: Theory and general technique

Figure 2.1: Stereo vision overview

3. Triangulation: With the information of the intrinsic and extrinsic parameters of
the cameras and the location of the feature points in both images, their position in
space can be derived. (Figure 2.1 c).

4. Pose estimation: To define the pose of a rigid body it is necessary to determine
six parameters, as would be seen in Section 2.5. A single point is not enough. We
need to know at least three points of the solid in space to compute its position and
orientation with respect to the world reference frame. This can be achieved with
the equation of Section 2.5.2. (Figure 2.1 d).

These four steps will be described in detail in the following subsections.

2.2 3D Reconstruction and Calibration

2.2.1 Intrinsic parameters

Pinhole camera model

The pinhole camera model consists simply of a linear transformation between a 3D
space onto a 2D plane. The coordinates (Xw, Yw, Zw), are transformed into (u, v) through
Equation 2.1 from Siciliano’s Book [9]. Figure 2.2 illustrates this concept.

s

uv
1

 = Ω ΠT c
w

Xw

Yw
Zw
1

 (2.1)

8

Stereo Vision: Theory and general technique

Figure 2.2: Pinhole camera model (Image from [10])

With:

Ω =

fx 0 cx
0 fy cy
0 0 1

Π =

1 0 0 0
0 1 0 0
0 0 1 0

T cw = [Rcw | tcw]

(2.2)

As it can be seen, both coordinates are represented in homogeneous form. The
parameter s is an arbitrary scale factor, while Π is an auxiliary matrix used to match
matrix dimensions. The subindex w in [Xw, Yw, Zw]Í, indicates that the coordinates are
referred to the world reference frame. They must be first pre-multiplied by T cw, that is
a homogeneous transformation matrix that relates the world reference frame with the
camera reference frame, as shown in Equation 2.3:

Xc

Yc
Zc
1

 = T cw

Xw

Yw
Zw
1

 (2.3)

9

Stereo Vision: Theory and general technique

If the word reference frame coincides with the camera reference frame, the only
parameters that must be estimated for calibration are fx, fy, cx, cx , which are part of
the camera matrix Ω.

Lenses distortion

Camera lenses distort the image causing that Equation 2.1 turns to be inadequate.
There are two principal distortion effects, tangent and radial distortion, according to the
documentation of OpenCV [11]. To correct the first one, we use the following equations:

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6)

ycorrected = y(1 + k1r
2 + k2r

4 + k3r
6)

(2.4)

with:

r2 = x2 + y2 (2.5)

Because of this, 5 different coefficients must be estimated:

Distortion Coefficients = (k1, k2, p1, p2, k3) (2.6)

Figure 2.3: Effects of tangential and radial distortion [12]

10

Stereo Vision: Theory and general technique

2.2.2 Extrinsic parameters

The so-called extrinsic parameters of a stereo vision system, are simply the relative
position of the cameras to each other and to the world reference system. These relation-
ships can be expressed with only two homogeneous transformation matrices: T c1

c2 and
TWc2 .

These two matrices can be obtained through a stereo calibration process as would be
described in Section 2.2.3.

Figure 2.4: Reconstruction

2.2.3 Stereo Calibration

As seen in the last two subsections, the reconstruction of the intrinsic and extrinsic
parameters requires estimating 6 different elements. They are:

• Two camera matrices.
• Two distortion coefficients vectors.
• The homogeneous transformation matrix between camera one and camera two.
• The homogeneous transformation matrix between camera two with the world

reference frame.

11

Stereo Vision: Theory and general technique

The last item can be computed afterward if we know the first three, by measuring the
position of a reference object with respect to the cameras.

Each camera matrix has 4 degrees of freedom, the transformation matrix has 6 and
the distortion model is defined with 5 parameters. In total, the problem in question has
24 degrees of freedom.

All these unknowns can be computed with OpenCV stereoCalibration method at
the same time. The calibration process consists of detecting the corners of a calibration
board from both cameras’ images, and then an optimization algorithm tries to find the
optimal intrinsic and extrinsic parameters that produce the smallest reconstruction error.

1 ret, M1_n, d1_n, M2_n, d2_n, R, T, E, F
2 = cv2.stereoCalibrate(objpoints, imgpoints_l,imgpoints_r, M1, d1, M2,
3 d2, dims, criteria=crit,flags=flags)

Listing 2.1: Stereo calibration method in OpenCV

The corner detection is refined through a subpixel algorithm that estimates the
position of the desired points on the image with higher accuracy. Apart from the images,
the calibration function needs as input the geometry of the pattern.

An alternative approach consists of calibrating each camera’s intrinsic parameters first,
and then its extrinsic parameters. This increases the number of optimization problems to
solve. Nonetheless, each of them would have a smaller amount of unknown parameters.

For the specific task at hand, a chessboard pattern was mounted on a tripod, with the
two cameras focusing on it. The board was moved to different positions and the camera
took images of it. The extrinsic and intrinsic parameters were computed at the same
time.

In general, the intrinsic parameters of cameras do not change much over time, on
the other hand, the extrinsic parameters do if there is a slight variation on the relative
pose of a camera with respect to the other. These changes in position could be caused
simply by changes in temperature. Because the error should be reduced at its minimum
expression, it is necessary to calibrate the extrinsic parameters frequently.

The chessboard pattern is very useful for the computation of the intrinsic values since
its covers almost the whole image. However, because of its dimensions, automating the
calibration with such a board becomes impractical.

An automatic extrinsic calibration algorithm was developed to correct the extrinsic
parameters if necessary. It detects the corners of ArUco markers stuck to the robot.
In spite of its relatively small size compared with the calibration board, the markers’

12

Stereo Vision: Theory and general technique

Figure 2.5: Example images for stereo calibration

position can be moved through the entire coverage area of the cameras. With images
from both cameras at the same instants, the extrinsic parameters can be derived without
the use of a chessboard.

2.3 Feature detection and correlation

2.3.1 Fiducial Markers

Fiducial markers are patterns that can be easily detected by a computer vision system.
They are used in a wide variety of fields, just to mention a few: augmented reality,
industrial systems, robot navigation, etc. For this research, it was decided to use fiducial
markers for the reasons mentioned below:

• Detection: Markers are designed in general with the objective of being easy to
detect. Well known image processing techniques can be used to locate and isolate
these markers.

• Resources already available: The existence of libraries already available in
almost any programming language, that can detect fiducial markers, is a great
advantage to start working with.

13

Stereo Vision: Theory and general technique

• Avoid automatic feature detection: detecting features on images is in many
cases a complicated problem and does not always lead to a precise result. It is
because of this, that it was decided to define a priori the points to be detected.

• Precision required: Several researchers in the last year attempted to estimate the
pose of an object using machine learning algorithms [13] [14] [15] [16] [17]. Neither of
the papers mentioned satisfied the requirements needed for this case of study. The
metric used to validate their models consist in the percentage of measurements with
a mean error less than 10% of the object’s diameter. In this thesis, it is intended to
measure objects as large as 200 mm with 50 µm precision, which represents 0.025%
of the object diameter.

2.3.2 Correlation

In a stereo vision system, it is not sufficient to localize fiducial markers on the images,
it is necessary also to match corresponding detected points from both images.

If the markers are internally codified the correlation process is straightforward. When
a fiducial is detected in an image the Id of it can be derived, and points with matching
Ids from both pictures will be correlated. This is the case of the first approach on this
thesis using ArUco markers, Figure 1.9.

If the markers do not present a codification it is still possible to correlate them. This
is the case CCC markers, Figure 1.10, which is the second approach in this thesis. In
the next subsection 2.3.3, it will be described how the epipolar geometry set correlation
constrains based on the camera’s poses.

Figure 2.6: Point correlation between images

2.3.3 Epipolar Geometry

In the case of working with markers that have not an internal codification, as dot
markers mentioned in Chapter 4 , it is still possible to correlate them. This can be done
thanks to the known restrictions set by its epipolar geometry.

14

Stereo Vision: Theory and general technique

Considering a setup of two cameras as seen in Figure 2.7, let’s define point O1 and O2
as camera 1 and 2 reference frames respectively. The point P projection onto the camera
planes results in points s1 and s2 respectively. The line that passes through the points
O1 and O2 is called the based line, and the intersection with the camera planes defines
two points e1 and e2.

Figure 2.7: Epipolar geometry [18]

The location of point s1 in camera one image defines immediately a constrain of s2 in
camera two images. The plane defined by points O1, O2, and s1 is called the epipolar
plane and contains point s2. Because of this, the projection of P in the image plane of
camera two, s2, must belong to the line defined by the intersection between the epipolar
plane with camera two image plane. These restrictions are express by equation 2.7.

sT1 F s2 = 0 (2.7)

F is called the Fundamental matrix and can be computed with the intrinsic and
extrinsic parameters. This constrain is very useful in the sense that, the correlative point
from the image of one camera to another can be searched in the vicinity of the epipolar
line, instead of looking at the overall image. Two correlated points, s1 and s2, will hardly
satisfy equation 2.7 due to errors in measurements. Nonetheless, a threshold near zero
can be defined to determine if two points are correlated.

This section was written based on Siciliano’s book section 10.4.1 [19].

15

Stereo Vision: Theory and general technique

Figure 2.8: A point seen from an image can be located in any position of a line on the other
image, based on [20]

2.4 Triangulation

2.4.1 Method

In the ideal case, it is possible to compute the position of a point considering its
projection onto two different image planes. For the task at hand, these projections are
the positions of a correlated point in the different images. Using the same nomenclature
as in subsection 2.3.3, we define t as the translation vector from frame one to two, and R
as the respective rotation matrix between them, these are the extrinsic parameters.

As seen in section 2.2.1, the line in space λ1 s1 represents all the positions of point
P that could have generated the projection on image one, the same for λ2 s2 and image
two. Now if we refer this second condition with respect to the frame from camera one,
the following set of equations arises:

pi = λ1 s1

pi = t+ λ2 Rs2
(2.8)

From this set of equations, pi can be derived. However in practice, due to errors in
measurements, the correlated points do not satisfy the epipolar constrain causing that
the system 2.8 has no solution. From a graphical point of view, the backpropagated rays
from both images will not intersect as shown in Figure 2.9

Taking this into account, an approximate solution can be derived through numerical
methods based on least square algorithms. The Python library OpenCV has an internal
command called triangulatePoints, that uses the DLT method mentioned in [20] [18].

This section was written based on Siciliano’s book section 10.4.2 [19].

16

Stereo Vision: Theory and general technique

Figure 2.9: Triangulation: projections are backpropagated, but because of the measurement
imperfection they do not coincide in a point, based on [18]

2.4.2 Theoretical precision

The analysis of the precision on the triangulation of a stereo vision system is in general
complex. This section does not intend to provide a rigorous error analysis but instead,
its aim is to find a tool that allows computing the optimal position for the cameras.

The following assumptions were made:

• Both cameras are equal and the intrinsic parameters are exactly known.
• The cameras are separated between each other on axis x a distance equal to the

baseline B. They share the same coordinates for the other axes. Figure 2.10 a).
• The analysis would be based on a single point p, which position is shown in Figure

2.10 a). The point is located at the same radius for both cameras at a distance of
zb to the baseline. Its coordinates in X and Y are zero.

• Cameras are rotated only in the Z axis in such a way that the projection of point p
on both camera images is located at its center.

• The only source of error considered is due to the camera resolution. The maximum
error emax represents the uncertainty of a single pixel, propagated a distance zc
from the cameras. emax will be considered only as a function of zc, which is the
distance from both cameras to point p.

The uncertainty volume has a parallelepiped shape, it is shown in Figure 2.10 b) and
c). It is formed as the union of the projection of a single-pixel error from both cameras.
The projection of a single-pixel error is schematized in Figure 2.11.

17

Stereo Vision: Theory and general technique

Figure 2.10: a) Configuration of the cameras and the point p to measure, b) Error volume in
x-z plane defined by cameras error, c) Error volume in x-y plane

For the working condition of this thesis, emax is several orders of magnitude smaller
than Zc. This causes that emax remains virtually constant for all the error volume Figure
2.10 b).

Figure 2.11: Projection of an error pixel error into space.

The parallelepiped defines the boundary of the error, but for the computation of the
mean square error (MSE), it is necessary to compute the standard deviation in every
main direction. The error for each axis is modeled as a gaussian distribution with a
standard deviation σi for i = x, y, z, as shown in Figure 2.12. The new model is more
conservative since its volume is larger than the previously defined parallelepiped.

The value of σi is computed as one-third of the distance from the centroid to the
outer boundary of the parallelepiped in the direction of every axis. This set a confidence
interval of 99,73% for every axis, and a total probability of 99,19% that a measured point
lay inside the ellipsoid.

18

Stereo Vision: Theory and general technique

Figure 2.12: Volume error modeled as a combination of normally distributed errors in every
axis, the diamond shape represents the previously considered error region.

The formula to compute each standard deviation is express in Equation 2.9, the
procedure for obtaining it is explained in Appendix B.

σx = zc
6 zb

emax

σy =
√

2
6 emax

σz = zc
6 b emax

(2.9)

The only variables in the equations are zb and B, since zc and emax are functions of
these last two. The formula for obtaining emax is expressed in Equation 2.10. ∆epx is
the smallest division of the cameras, which in this case is one pixel. While fl is the focal
length of the cameras in pixels.

emax = zc
∆epx
fl

(2.10)

In order to find the optimal position for the cameras, it is necessary to define first
an objective function to be minimized. The chosen loss function was the variance of the
error distance, this can be computed as express in Equation 2.11, the derivation of the

19

Stereo Vision: Theory and general technique

formula is explained in Appendix B.

σ2
d = σ2

x + σ2
y + σ2

z (2.11)

In Appendix B it is also demonstrated that the standard deviation σd is equal to the
Root Mean Squared Error (RMSE):

RMSE = σd (2.12)

The optimal value for the baseline resulted to be approximately 1.2872 times zb also
derived in Appendix B.

Bopt = 1.2872 zb (2.13)

2.5 Pose estimation

2.5.1 Pose of a Rigid Body

The complete definition of the orientation and position of a rigid body in space is
known as its pose. It is always measured related to a frame of reference. For its complete
description at least 6 parameters must be known: 3 for position and 3 for orientation.

Position can be expressed using an X-Y-Z Cartesian coordinates system, while ori-
entation can be defined by its Euler angles. There are other ways of defining this last
such as Rotation Matrices and Quaternions, both systems have more parameters than
required, 9 and 4 respectively, however, their degrees of freedom are still 3.

Quaternions are particularly useful to solve a problem known as ’Gimbal lock’ where at
certain configurations one degree of freedom is lost. Because of this, all codes necessary for
testing the measuring system were developed using quaternions for orientation definition.

2.5.2 Position and Orientation computation

Let us define a frame of reference with center in Op attached to a rigid body and
make that reference frame coincides with the world reference frame. P is a set of points
attached to that rigid body, called a Rigid cloud of points.

20

Stereo Vision: Theory and general technique

Let us now call Q the measured cloud of points in the actual position. Finding
φ = (ϕ, ϑ, ψ) and t that satisfy the equation 2.14, would define the pose of the rigid body.

qi = t+R(ϕ, ϑ, ψ) pi for i = 1, . . . , N (2.14)

Figure 2.13: Estimating the pose of a body consist in determine the transformation that it is
necessary to be applied from it zero FR, to match in position and orientation with the actual
pose.

In real applications, and because of errors in measurements, it is possible that equation
2.14 could not be satisfied. Instead, an estimation of the pose of the rigid body could be
obtained, computing the values of R and t that minimize the loss function E defined in
expression 2.15.

E(R, t) = 1
Np

NpØ
i=1

||qi −Rpi − t||2 (2.15)

Hopefully, there is a closed-form expression to compute R and t, if there exist a
correspondence between points from Q and P.

Q = {q1, ..., qn}
P = {p1, ..., pn}

(2.16)

21

Stereo Vision: Theory and general technique

The center of masses of each cloud point can be defined as:

µq = 1
Nq

NqØ
i=1

qi

µp = 1
Np

NpØ
i=1

pi

(2.17)

Extracting its respective centers of masses to Q and P we obtain QÍ and P Í:

QÍ = {qi − µq}
P Í = {pi − µp}

(2.18)

With this new sets of points we define the matrix W which definition is the following:

W =
NpØ
i=1

qÍ
i p

Í
i
T (2.19)

Doing the SVD decomposition of matrix W we obtain:

W = UΣV T (2.20)

The values of R and t that minimize expression 2.15 are the following:

R = U V T

t = µq −Rµp
(2.21)

This set of equations are based on [21].

2.5.3 Iterative closest points (ICP)

In section 2.5.2, it was explained that a closed solution exists if there is already a
correspondence between the points of Q and P. If such correlation is not defined, we still
can apply the iterative closest point algorithm (ICP).

22

Stereo Vision: Theory and general technique

Figure 2.14: Schematic representation of a 3 step ICP process to align two curves. Image from
[21]

The general idea is to correlate every point pi with the point of Q located at the
minimum distance from it. In this way, every point of P would have an initial correlated
point from Q.

Then, with this initial correlation, we can compute the optimal value of R and t as
seen in section 2.5.2. Points from P are rotated and translated according to these values.
The closest point from pi in Q does not guarantee a good correlation, however, the new
position will probably be closer than the initial one.

The process is then repeated, a new correlation between the two sets is made and
the rotation matrix and the translation vector are computed and finally, points in P are
transformed again. Iterating this procedure would converge in a solution. The resulting
homogeneous transformation matrix will be the combination of the n transformations
produced in P .

It is not guaranteed that the result will lead to the optimal solution, the algorithm
can be stuck in a local minimum. However, in many cases, this algorithm results in the
optimal value.

23

Stereo Vision: Theory and general technique

Figure 2.15: Algorithm by Hanzhou Lu [22]

24

Chapter 3

Pose estimation with ArUco
Markers

3.1 Marker description

ArUco markers are a type of square fiducials that possess an internal codification.
This characteristic makes them very useful for correlation in stereo vision systems (SVS).
Each marker can be unequivocally identified on both images of an SVS, and the corners
of it can be triangulated. Another characteristic that may explain its popularity, is that a
single marker provides sufficient information for estimating its pose with a single camera.

They are easily detectable through CV algorithms since they have a thick black border
that contrasts with their white background. The Aruco library was first proposed by
Garrido and Muñoz [23].

Another benefit of working with ArUco markers is that the Python library OpenCV
offers a great number of tools for working with them. For example, there is a buit-in
function for computing its pose in space. For this, it is necessary to know a priori the
intrinsic parameters of the camera and the size of the marker.

Its internal codification allows a robust determination of its Id. Its binary arrangement
is compared with a predefined library and a threshold of correlation can be set.

25

Pose estimation with ArUco Markers

Figure 3.1: 4x4 ArUco marker with id = 0

3.2 Pose estimation with a single camera

It is possible to estimate the pose of ArUco markers relative to a camera if we know
beforehand the shape and dimensions of them. Also, we need the intrinsic parameters of
the camera.

According to [24], the projection of four coplanar points on an image are sufficient for
estimating the pose of the object, if there is no possible combination of three of these
points being collinear. This is the case of a square marker and an example of it can be
found in Siciliano’s Book section 10.3 Pose Estimation [24].

OpenCV has a build-in operation for this purpose:

1 [rvecs, tvecs] = cv.aruco.estimatePoseSingleMarkers(markerCorners,
markerLengthSide, cameraMatrix, distCoeffs)}

Listing 3.1: ArUco pose estimation method with a single camera.

As it can be seen in listing 3.1, the method returns the relative position and orientation
of the marker with respect to the camera. Their inputs are the position of the four
corners of the marker on the image, the length of the marker side, the camera matrix,
and the distortion coefficients of the camera.

As it would be shown in Section 3.6, a small error in the location of the corners on the
image, affects significantly the estimation. Since this project tries to achieve the smallest
possible error, a stereo vision system was proposed.

26

Pose estimation with ArUco Markers

3.3 Subpixel algorithms

The location of a point in an image is determined by its position in X and Y of the
image plane. In general, they are expressed in an integer quantity of pixels, since a single
pixel is the minimum quantity of information in an image.

However, there exist corner detection algorithms that try to estimate the location of
a point with higher accuracy. Since they aim to achieve an accuracy smaller than a pixel
are called Subpixel algorithm.

Figure 3.2: Subpixel corner detection

OpenCV counts with an internal function called cornerSubPix() that improves
the corner detection process through the technique proposed by [25]. Despite this,
its performance with ArUco markers corners is significantly inferior to chessboard-like
patterns (Figure 3.3). At least this is suggested by the preliminary test shown later in
this document (Section 3.6).

Figure 3.3: a) Chessboard corners b) ArUco marker corners

27

Pose estimation with ArUco Markers

3.4 Enhanced ArUco Markers

To improve the accuracy of the detection system, it was decided to modify the standard
ArUco marker to make possible the use of OpenCV corner subpixel function.

The first attempt was to modify its corners by adding little black squares to resemble
a chessboard pattern, as proposed by the creator of ArUco markers Rafael Muñoz Salinas
[26]. However these changes make the marker more difficult to detect, and in some cases,
they were detected incorrectly as can be seen in Figure 3.4.

Figure 3.4: Error in detection: a) Not all the markers are detected b) The green line does not
match the perimeter of the marker c) One of the corners is erroneously detected

Because of this, a new arrangement was proposed based on ChArUco calibration
boards [27]. These are characterized by allowing calibration even under board occlusion,
and because of the chessboard pattern, the location of its corners can be refined with
subpixel algorithms.

The proposed marker is shown in Figure 3.5. It consists of a 4x4 ArUco marker inside
a chessboard-like pattern. The detection algorithm for this modified marker takes a few
more steps than the standard version, described as follows.

Figure 3.5: Parts of enhanced marker

First, the pose of the aruco marker is estimated as in the normal procedure, the size of
the internal frame should be known. Then with the obtained information, and the camera

28

Pose estimation with ArUco Markers

intrinsic matrix, a virtual square with the size of the external frame is projected on the
image with the same location and orientation as the standard marker. The location of
these new points is used as input for the OpenCV function cornerSubPix that refines
the location of these corners with subpixel accuracy.

The pose of the marker is computed again with the location of these new points, the
intrinsic parameter, and the size of the external frame.

Figure 3.6: Detection of the inner and outer frame of enhanced ArUco markers

3.5 Pose estimation with Stereo Vision

The codification in these types of markers also allows locating every corner of them
without ambiguity. This is very helpful for correlating the corners detected in cameras
one and two. With this relation between points, the position of them in space can be
triangulated as seen in Section 2.4.

It is important to highlight that, no matter the orientation of the marker in the
picture, the corners will always be detected in the same order (Figure 3.7).

Figure 3.7: Detection of corner C1 for different orientations.

Moreover, with the information of the position of the four corners in space, the pose
can be estimated with the formula seen in Section 2.5.

29

Pose estimation with ArUco Markers

Figure 3.8: Projections of ArUco marker corners into camera planes.

3.6 Preliminary test results

To have a rough estimation of the precision of the detection of each type of marker
and method, a virtual test environment was set. Using the software Blender, a set of two
cameras located 300 mm apart from each other and at an angle of 7.5◦ on Z axis, were
pointing towards an Array of ArUco markers.

Both cameras have a resolution of 1080 x 1080 px and are located 1000 mm away
from the markers, its focal length is 50 mm and its sensor size is 14.2 mm x 14.2 mm.

Both of them were previously virtually calibrated with a chessboard in 20 different
poses, located at the same distance as the markers, as described in Section 2.2.3. Some
of the calibration images can be seen in Figure 3.10.

The virtual calibration is exactly the same as it would be with real images. However
in this case, the calibration images are computer generated. Because we are working
with an ideal model , it is possible to extract the exact intrinsic and extrinsic parameters.
However, it was decided to rely on calibration images to be in accordance with the real
experiment. Since the computer generated images (CGI) have no lenses distortion, it is
expected that the output error will be lower than from the real application.

The test consists simply on using the cameras to measure the position of the markers
to compute an estimated error. One set of images were taken to an array of standard
markers, and another set to the Enhanced version of them. Only four images were
necessary for this test, they are shown in Figure 3.11.

30

Pose estimation with ArUco Markers

Figure 3.9: Virtual Set-up configuration.

Figure 3.10: Some calibration images that were used.

The markers can be precisely located in the virtual space, so the information of the
real pose is available. These values are compared with the measurements of the different
CV algorithms, and the Root mean square error (RMSE) is computed for the different
axes. This metric can be computed as follows:

RMSEx =

óqN
i=1(xri − xci)2

N
=

óqN
i=1 e

2
x,i

N
(3.1)

N is the total number of markers (9 in this case), xri is the ground truth position in
x while xci is the computed one. A similar formula can be use for the rest of the axes.

31

Pose estimation with ArUco Markers

Figure 3.11: Test images: In the first two, the standard ArUco marker is present while in the
last two the enhanced version of it. The first and third image are from camera 1 while the second
and fourth one from camera 2.

The total root mean square error (RMSET) can be computed as follows:

RMSET =
ñ
RMSE2

x +RMSE2
y +RMSE2

z (3.2)

Table 3.1 shows the RMSET for different combinations: with subpixel algorithms or
not, using standard markers or enhanced ones, and with stereo or monovision.

Subpixel Marker Method RMSE X (mm) RMSE Y (mm) RMSE Z (mm) RMSE T (mm)
Yes Enhanced Stereo 0.1358 0.1352 0.0683 0.2035
Yes Enhanced Single 0.1287 0.1367 0.3436 0.3916
Yes Standard Single 1.2799 1.2852 18.7897 18.8771
No Standard Single 1.3552 1.4203 20.9826 21.0742

Subpixel Marker Method Std ex (mm) Std ey (mm) Std ez (mm) Std Tot (mm)
Yes Enhanced Stereo 0.0087 0.0044 0.0720 0.0727
Yes Enhanced Single 0.01871 0.02652 0.33346 0.3350
Yes Standard Single 1.35300 1.35631 0.56851 1.9983
No Standard Single 1.43539 1.50186 2.75213 3.4482

Table 3.1: Preliminary test results

In monovision configuration, the subpixel algorithm improves the RMSET by only
10%, but the total standard deviation (stdT) a 42%. However, the improvement with
the enhanced markers is 98%, which means that the error was reduced almost 50 times.
Moreover, the standard deviation is reduced 6 times

The stereo vision system additionally reduced the error to a half, while the standard
deviation was reduced to a quarter.

This test, despite being simple, provides a clear estimation of the error. Taking this
into account, the research will be focused on building an accurate and reliable stereo
vision system.

32

Pose estimation with ArUco Markers

3.7 Super-Resolution

In a computer vision system, one of the main factors that limit the accuracy of the
measurements is the camera’s resolution. The most important metrics to consider for
the task at hand is the area that a single pixel represents in an image, the smallest the
better.

However higher resolution cameras are in general more expensive, and their output
images take longer processing time. To sort these barriers, a state-of-the-art technique
was proposed to increase artificially the resolution of the images.

In the last years, several investigations regarding super-resolution algorithms were
published [28] [29] [30]. The majority of them are based on convolutional neural networks
(CNN) that take as input low-resolution images and return as output the high-resolution
version of it. They are called Super-Resolution Neural Networks (SRNN).

As for every other CNN, an input and output dataset is needed for training the
network. Moreover, it is necessary to define the architecture of the network, and the
objective function metric that would be used to tune the model. All of these elements
will be explained in the next subsections.

3.7.1 Dataset

The most important elements in the images of the SVS are the corners of the enhanced
ArUco markers. It is not necessary to increase the resolution of every part of the images,
the focus will be put just on the corners. This would make the training of the SRNN less
demanding since the input images would be smaller, and the input and output image
diversity is significantly reduced.

Figure 3.12: Corner extraction from calibration images

The dataset was built with calibration images where a chessboard pattern was used.
First, the location of the corners was detected by the same procedure used for calibration.

33

Pose estimation with ArUco Markers

After a successful localization of each corner, 64x64 pixel sections of the image were
extracted. These new images contained the corners, but they were not located precisely
in the center, it was decided to move the square frame randomly a few pixels apart to
make the model more robust. (Figure 3.13)

Figure 3.13: After detecting the corner a 64 by 64 pixel frame is defined centered on it. The
frame is then moved apart randomly a few pixels from the original position. Finally, the image
inside the latter frame is used for training data

These high-resolution (HR) corner images were used as the output y of the SRNN.
For generating the low resolution (LR) images for input x, a blur kernel was applied to
the HR images and was downsampled to a dimension of 16x16 pixels. With the aim of
obtaining a most robust model, noise was added to the resulting images. These steps are
summarized in Equation 3.3, the equation is present in [31].

x = (y ⊗ k) ↓s +n (3.3)

The blur kernel k consists of a square matrix with all its elements equal to one, this
matrix is convoluted with the corner image. The size of k varies randomly from 1x1 px
to 15x15 px. After downsampling the image, a noise matrix n is added to the resulting
corner image. It modifies each pixel value up to 5 points in brightness (the scale is from
0 to 255). If a pixel reaches a value outside the range of 0 to 255, its value is set to the
closest limit. A graphic representation of this process is shown in Figure 3.14

The resulting dataset was 44832 corner images of 64x64 px as desired output and the
same amount of input images of 16x16 px.

3.7.2 Network Architecture

The vast majority of sequential neural networks tend to reduce the amount of informa-
tion from its input to its output. A very common example of it are image classification
problems, where the input is a picture and the output is just a label.

34

Pose estimation with ArUco Markers

Figure 3.14: Generation of input dataset: k is a square matrix kernel, while n is a noise matrix
with the size of the output image.

However, for the task at hand, the amount of information in the output is higher
than on the input. It is necessary to increase four times the resolution of an image. At a
first glance, it would look like this process is violating the Data Processing Inequality
concept, which expresses that it is not possible to increase the amount of information
with an operation. Nonetheless, the training process itself adds information to the net,
which makes the augmentation in resolution possible, without being against the concept
previously mentioned.

A possible approach for an SRNN is to first scale the LR image through a bicubic
interpolation method making its size equal to the desired output. This modified image
would then be processed through different convolutional layers with the hope that the
output would be similar to the desired one. In this way, the size of the image would
remain the same at every layer. However, according to [31], this process unnecessarily
increase the processing time and it may introduce arbitrary smooth effects

Convolutional layers reduce or maintain the size of an image (Figure 3.15 a)). For
this case the shape of the image has to increase, it is because of this that transpose
convolutional layers would be used. This type of operation consists of multiplying a nxn
kernel with a single element from the input, and add the result to the output (Figure
3.15 b)). If the input is expanded with strides the output will augment it’s size (Figure
3.15 c)).

Taking all of this into consideration, the final architecture is plotted in Figure 3.16.
It consists of 11 layers: Except for the first one, all the convolutional layers use six 3x3
kernels generating six different outputs. The first one, on the other hand, has six kernels
with a size of 6x6. The only layers that are not convolutional are number 5 and 9, which
are transpose convolution and have the property of augmenting the output size by 2. To
avoid overfitting, before each transpose convolution a dropout step is placed.

The network was coded in Python using the Tensorflow library with Keras layers.
The complete model is in Appendix C.

35

Pose estimation with ArUco Markers

Figure 3.15: Generation of input dataset, figures based on [32]. a) Convolutional layer
b)Transpose Convolution layer c) Transpose Convolution layer with input strides

The model was trained using 44832 corner images, which were divided into 404 batches.
The total number of epochs for training were 4. To avoid overfitting, the training process
was stopped when the validation error started to increase. (Figure 3.17)

Figure 3.16: SRNN Architecture

3.7.3 Loss function

The most simple metric to consider is the mean square error (MSE). For the task at
hand, each pixel in the output image is compared with its correspondent pixel in the
desired output. The difference of intensity between both is squared, and the result is
obtained as the average of this value for the whole image.

36

Pose estimation with ArUco Markers

Figure 3.17: MSE error after each epoch

Nonetheless, the metrics used for training a SRNN are in general based on how real
the output image looks for a human being. The most popular one is the perceptual loss,
where both the output image and the desired output are transformed into feature vectors.
These features are in general extracted from the first layers of pre-trained CNN. The
values of the feature vectors are compared to obtain a final metric.

According to [31], the use of perceptual loss as the objective function for training a
SRNN, generates more pleasant and realistic images. This is because the chosen features
were from a CNN trained with a large number of real images. Therefore, the output that
looks more realistic would achieve lower error.

However, perceptual loss in the search for more realistic images, leaves behind the
correctness of every pixel value. The utility of SRNN for this research is not related to
obtaining more realistic images, but to obtain a higher resolution image as similar as
the original. It is because of this that the MSE metric would be used as the objective
function.

3.7.4 Output

The SRNN was trained with a specific dataset dimension, nonetheless, since it is a
convolutional network an image of any size can be an input. This is because the kernels
are the trained elements and they can be used for convoluting any image size. The only
condition is that the input image is larger than any kernel.

37

Pose estimation with ArUco Markers

Figure 3.18: The left image was obtained with a SRNN trained with perceptual loss as it object
function, the original image is the one at the right. There are part of the fur in the left image
that is not present in the right one [33]

Figure 3.19 shows the result of some validation images. Figure 3.20 shows the output
of a complete Enhance ArUco marker, it is important to recall that the training data
were only corner images. In spite of this, the model returns, in any case, sharper images.

Figure 3.19: Test dataset: In the first column there are the LR images, in the middle the HR
predictions, and finally in the right column the original HR images

Although the HR images are sharper than the LR images, in Chapter 6 it would be
shown that this process does not improve significantly the accuracy of the system.

38

Pose estimation with ArUco Markers

Figure 3.20: The first row is an expansion of images from the second row, which is a an image
from an enhance ArUco marker. In the first column there are the LR images, in the middle the
HR predictions, and finally in the right column the original HR images

39

Chapter 4

Pose estimation with CCC
Markers

4.1 Marker description

Concentric Contrasting Circle (CCC) fiducial markers were first proposed by Gatrell
in 1992 [34]. It consists simply of a solid white circle inside a black one, illustrated in
Figure 4.1. They must be placed over a white background or have an additional white
border.

The detection algorithm consists in 3 steps:

1. Binarize the image: the image is transformed to grayscale and then an arbitrary
brightness threshold level is determined. The pixels with a value above this threshold
will automatically set to the highest possible brightness value, while the ones whose
value is under or equal to the threshold will be set to 0.

2. Detect white and black blobs and compute its centroid: connected pixels
from the same colors from different regions are called Blobs. For each of these
regions the centroid is computed.

3. Compare the centroid of white and black blobs: The centroids of white and
black blobs are compared, if there is an almost identical value of centroid from a
white and black blob that point is considered to be a marker.

In contrast with ArUco markers, a single CCC marker does not provide by its own
sufficient information to compute its pose in space, neither with monovision nor with
stereovision. Also, since they are not internally codified, it is harder to correlate them in

40

Pose estimation with CCC Markers

different images from stereo vision applications.

In spite of this, these types of markers are smaller, and thus, more practical to attach
to a sample. Aruco markers to be identified, need to have a considerable size and be
planar, so they are not useful for non-planar objects.

If we are able to detect at least 3 markers from an object in a stereo vision set-up,
and we can successfully correlate them from the different camera images, it is possible to
compute the pose of the sample in space. This can be done only if we know a priori the
position of the markers with respect to the object.

It is because of this, that a marker scanner system was developed. It gives as output
a 3D map of the relative location of every marker attached to a sample. This can be
achieved using the same cameras for stereo vision, so no additional equipment is necessary.

Figure 4.1: CCC marker

4.2 Blob Detection

The term Blob Detection refers to the identification of regions in an image that shares
some kind of common property [35]. For the particular case of CCC markers detection, It
is necessary to identify connected bright or dark regions. Because these type of fiducials
contain black and white regions, after the binarization of the image, they would be
identified as individual blobs with almost any threshold.

In this type of circular markers, the white region is contained inside a solid black one.
This allows that after binarization, the white regions remain isolated from other regions,
which permits that the detection algorithm identifies each white circle as a single blob.
The centroid of each blob is computed, and also some other properties that would make
possible to filter out some of them.

OpenCV counts with a tool that allows to identify these regions and is called Simple-
BlobDetector. Many parameters can be tuned for their use on special applications, in the

41

Pose estimation with CCC Markers

next subsection, it would be described the different options that can be set up.

a) b)

c) d)

Figure 4.2: Blob detection example: a) Original image, b) Image after binarization, c) Filtered
image by maximum blob area, d) Filtered image by minimum blob area.

4.2.1 Filters

Identifying the white isolated regions in an image is not enough for detecting CCC
markers. If only this policy is applied, a large number of regions that are not markers
would be detected, resulting in a great number of false positives. To avoid these problems,
several filters can be applied, the ones that are already available with the OpenCV
function are described below [36]:

• Color Filter: It filters out dark or bright blobs by the value at its center.
• Area Filter: A minimum and a maximum threshold can be set, to filter out any

blob that has an area outside a certain range.
• Circularity Filter: The Circularity is defined as: 4π Area

perimeter2 . As with the area

42

Pose estimation with CCC Markers

filter, we can set a range of circularity values. Any blob outside this range will be
filtered out.

• Inertia ratio Filter: The minimum inertia of the blob is divided by the maximum
inertia of the blob to obtain an Inertia rate. A range of valid rates can be set to
filter out blobs outside these values.

• Convexity Filter: Convexity is defined as: Blob Area
Blob Convex hull Area . A minimum and

maximum value can be set to filter out blobs outside this range.

The most relevant one resulted to be the Area filter. This range can be set computing
the size of the markers with the information of the expected distance from the cameras.
The value of the other filters were tuned after several trials with sample data, some of
them can even be ignored. Other filters can be applied in posterior steps, and would be
described in the following sections.

Gatrell, the creator of CCC markers, proposed another type of filter that consists of
computing the centroid of the white circles and comparing them with the centroids of
the black rings. This is an interesting approach since the possibility of a black and white
blove sharing its centroid is very low if they are not part of the same marker. However,
after several experiments, it was found that with the filters mentioned above it is not
necessary to apply this latter one. By its own, a single blob detection takes the triple of
time in comparison with ArUco markers detection, this type of filter would increase the
detection time at least by two.

4.3 Point correlation

In order to triangulate the position of a marker in a stereo vision system, it is necessary
first to identify it in both camera’s images. This is not straightforward since there can
be several markers visible in both pictures. Luckily, it is possible to constrain the set of
possible combinations if we take into account the epipolar geometry of the stereo system.

As seen in Section 2.3.3, in a stereo vision system, the position of a point seen from
the perspective of one camera, constrains immediately the position of the projection of
that point on the other camera plane (Figure 4.3)

The proposed solution consists of computing the result of equation 2.7 for every
combination of points from one image to the other. The result will be a matrix MF ,
with size nxm with n and m the numbers of points in images one and two respectively.
To compute this matrix it is necessary first to define PC1 and PC2 that are matrices
containing in each row the coordinates of the detected markers for each camera frame of
reference, equations 4.1 and 4.2.

43

Pose estimation with CCC Markers

a) b)

Figure 4.3: Due to the epipolar constraints, the lines in image (b) represent the possible locations
of a detected marker from (a) in (b). The markers are identified with different colors that will be
the same for the correspondent line.

PC1 =

px1 py1

px2 py2

... ...
pxn pyn

C1

(4.1)
PC2 =

px1 py1

px2 py2

... ...
pxm pym

C2

(4.2)

Then the resulting matrix can be computed using the formula 4.3. If two points
from different images, pi C1 and pj C2,represent the same marker in space, then they must
satisfy expression 2.7, and a zero in row i and column j should be in place in matrix MF .

MF = P T
C1 F PC2 (4.3)

However, as explained before, because of error due to measurement or calibration that
number will hardly be exactly zero. This is why it is necessary to set a suitable threshold
that will define if two points are correlated. If it is too high, a wrong correlation could be
set that would result in triangulating an unexisting point in space. On the other hand, if
it is too low, is possible that no correlation would be set. Obtaining M |.|

F as element-wise
absolute value of MF (Equation 4.4), the correlated points from each list will be i and
j such that the element in row i and column j of matrix M |.|

F has a value less than the

44

Pose estimation with CCC Markers

threshold.

M
|.|
F = abs(MF) =

m11 m12 . . . m1m

m21 m22 . . . m2m
...

...
mn1 mn2 . . . mnm

 (4.4)

There can exist situations in which the same point i from PC1 has more than one
correlated points in PC2, or vice versa. To avoid this situation, it is possible to set an
additional restriction shown in expression 4.5.

(p i C1,p j C2) are correlated
í

mij < th ∧ mij = min(Rowi(M |.|
F)) ∧ mij = min(Columnj(M |.|

F))
(4.5)

Condition 4.5 simply expresses that for p i C1 and p j C2 to be correlated points the
value of matrix M |.|

F in row i and column j must be:

1. Lower than the predefined threshold (th)

2. Equal to the minimum value of row i in matrix M
|.|
F

3. Equal to the minimum value of column j in matrix M
|.|
F

Condition 1) was already explained, while conditions 2) and 3) do not permit a point
from an image to have more than one correlation with other points from the other image,
because the correlation will be only set with the point that has the minimum value of m.

What it is expected from this process is a set of correlated points between image one
and two. In case that a marker is visible in one image but in the other not, it would not
have a correlation with any other point.

With this information, it is possible to triangulate the position in space of each marker,
as seen in Section 2.4, in the same way, that was done with the corners of the ArUco
markers. In this stage, other filters can be applied, for example, to set a lower and upper
limit from the different axis. If it is known that the detected markers should be contained
in a certain range of X, Y, and Z, the triangulated points that do not belong to this
volume will be discarded.

45

Pose estimation with CCC Markers

4.4 Markers mapping

Since this type of markers have not an internal codification, the identification of them
is set by the distance that they have with the rest of the markers, this would be explained
more in detail in Section 4.4.1. But in order to do this, it is necessary to know a priori
the relationship between markers. It is imperative then, to build a 3D model that defines
the relative location of them.

With this aim, a method for generating a 3d map was proposed. The main idea
consists of triangulating the position of the markers for various and sequential poses of a
sample. Every partial mapped section can be aligned with the next one and so on. If
a sufficient number of poses are captured the entire description of the position of the
markers on a sample can be set.

In figure 4.4 it can be seen an example of an object in three sequential poses. The
correlated markers in the first and second columns are represented with the same color.
The third column shows the triangulation of the position of the markers in space.

4.4.1 ICP algorithm

In order to sequentially align the different clouds of points, the ICP algorithm seen
in section Section 2.5.3 would be used. Since the position of the markers for pose i+ 1
change very little with respect to pose i, it is straightforward to correlate points that are
close to each other from one cloud to another.

If a correct correlation is set, the alignment process is direct since the rotation matrix
and the translation vector between one cloud and another can be computed with the
closed-form expression seen in Section 2.5.2.

Let’s define Ti as the homogeneous transformation matrix between Pose i and i+ 1.
In order to align our data, the following transformation has to be made to every cloud of
point Ci (CoP):

C
Í

i = TN−1 ... Ti+1 TiCi = (
iÙ

j=N−1
Tj)Ci

for i = 1,2, ..., N − 1
(4.6)

The last cloud is the only one not to be transformed, all others would be aligned with
respect to this last one. If all the aligned clouds are combined into a new one, the map
will have many repeated points, this is because for alignment two consecutive clouds of
points must share at least three points in common. However, since the alignment process

46

Pose estimation with CCC Markers

Left Camera
Pose N°1

Right Camera
Pose N°1

Triangulated points
Pose N°1

Left Camera
Pose N°2

Right Camera
Pose N°2

Triangulated points
Pose N°2

Left Camera
Pose N°3

Right Camera
Pose N°3

Triangulated points
Pose N°3

Figure 4.4: Triangulation for consecutive instances

requires first to correlate points, it is possible to keep track of the elements that represent
the same marker.

The CoP for every pose is simply a list containing the coordinates of every point in
the cloud. The id of a point in each cloud is determined by its index position on the list.
Correlating two CoP consist simply in determine the indices between both clouds that
represent the same points.

47

Pose estimation with CCC Markers

Figure 4.5: The transformation matrix Ti between two consecutive cloud of points is computed
with the ICP algorithm. The process also returns as output Lci that is the list of matched points
from both CoP.

Figure 4.6 shows the Matrix of correlation of several consecutive CoP. Each row
represents a different pose, while each column represents a unique marker. The numbers
inside the matrix tell us the index of that point in a certain CoP. For example the CoP
in poses 1 and 2 have all their points correlated, point 2 from Pose 1 is correlated with
point 6 from Pose 2, and so on. Point P1 is present in all the CoP of poses from 1 to 14,
and after alignment, the final position will be the result of averaging the coordinates in
all these different poses.

All the points that represent the same marker are averaged to obtain a unique position.
In spite of this, it is possible that during the scan process the same points appear in two
different moments, if this happens it would be detected as a new one, since a sequential
correlation of a marker finish when from one pose to the other a point is not detected
anymore. An example of this is that points 9 and 10 from Figure 4.6. At pose 8, point 9
stop being detected and is detected again in pose 9. Despite P9 and P10 represent the
same marker, they will be saved as different since their detection was no consecutive.

In order to avoid this, the distance between the remaining points is computed and
the ones that are closer than a defined limit are considered the same point and then
averaged.

4.4.2 Filters for correlation

As explained before, in order to align two clouds of points a true correlation between
the elements of them has to be set. A desirable configuration should be similar to Figure
4.7 (a) (blue and red dots represent two consecutive CoP of pose i and i+1). In this
setup, it is easy to make a correlation, since it is only needed to match the closest points.

48

Pose estimation with CCC Markers

Figure 4.6: Matrix of correlation for every pose

(a) (b) (c)

Figure 4.7: Different case scenarios

However, it is harder to do so in situations like in Figure 4.7 (b), where from instance
i to i+1 a new point is detected and another is not detected anymore. The new red point
will be correlated by closeness with a blue dot that is already correlated, and the same
will happen with the blue dot that, from one instance to another, stops being detected.

A successful policy to overcome this problem is to set a correlations only if it is mutual.
This condition can be expressed formally in the following way: point pC1

i from cloud C1
and point pC2

j from C2 would be correlated only if the closest point from pC1
i belonging

to C2 is pC2
j , and the closest point from pC2

j belonging to C1 is pC1
i .

As an example, in figure 4.8 the closest blue point to r2 is b1 however, the closest red
point to b1 is r1 not r2, so there is no correlation between b1 and r2. Because of this, r2

49

Pose estimation with CCC Markers

Figure 4.8: Multiple correlation case

will not be taken into account for the computation of the rotation matrix and translation
vectors between the blue and red cloud.

Another situation that can occur is that two points from different clouds are mutually
correlated but they do not represent the same marker, Figure 4.7 (c). If these points are
considered for the computation of the rotation and translation parameters, there would
be a significant increase in the error defined in equation Equation 2.15. If this error is
higher than a predefined threshold, a good policy that can be applied is to recompute
the optimal translation without the pair of points that produce the highest error. The
reason for this is the following: If the two clouds represent consecutive poses, and the
initial correlation is between the closest points, it is expected that the majority of them
will be well correlated, so the pair of points that after an alignment produces the higher
error probably do not represent the same marker.

An alternative approach to correlate points more robustly is described in the next
section. It basically consists of matching points from different clouds, that share similar
relationships with the rest of the elements of the same set. However, it requires in general
more processing time, and it increases quadratically in relationship with the number of
elements in a cloud.

Once we have the complete 3D map of the location of the CCC markers on sample, we
need to defined where the frame of reference (FR) of the object will be located. For this
purpose, it is necessary to transform the 3D map accordingly. It must be done in such a
way that the chosen FoR coincides with the world FR. This step is necessary since the
pose of the object in space will be determined based on its zero pose. In Figure 4.10 the
FoR of the object has x, y and z coordinates equal to zero, while all of its Euler angles

50

Pose estimation with CCC Markers

Figure 4.9: Correlation between points representing different markers

are also zero.

Figure 4.10: The 3D relative position between CCC markers at the end-effector of the robot.
The frame of reference was chosen arbitrary, and the CoP was aligned in such a way that the
object RF coincides with the world RF.

51

Pose estimation with CCC Markers

4.5 Pose estimation

As mentioned before, estimating the position of an object with CCC markers consists
simply of applying the procedure described in Section 2.5.2, between the detected points
of a sample in a certain pose and the 3D map of the sample’s markers. But in order to
apply this procedure successfully, it is necessary first to find a correct matching between
the two clouds while identifying its outliers.

Several attempts were made on adapting the ICP algorithm for this particular case,
however almost every time the matching solution was suboptimal. The main cause of it
is the difference in the number of elements in each cloud. While the 3D map contains the
position of every marker, a cloud of points for a particular pose contains only a fraction
of them.

As expressed in [37], adapting the ICP algorithm to match the detected points with
the ones from the 3D maps, implies solving a global optimization problem. These type of
problems are in general non-convex, requiring complex algorithms to obtain the optimal
solution. Even a simple one-dimension ICP problem as the one in Figure 4.11 turns out
to be non-convex.

Figure 4.11: Example of a non-convex 1D ICP matching problem based on [37]: The blue and
red dots represent different CoP. The red CoP can be moved a distance t from its original position.
The optimization problem consists in finding the distance t that minimizes the loss function. The
loss function is equal to the sum of the square distances between points from different clouds
matched by closeness.

Because of this, it was decided to developed a more simple matching technique. The
points from different CoP will be matched if they share similar distances with other

52

Pose estimation with CCC Markers

points in the same cloud. This method takes advantage of the fact that a same length
between two points in different poses change very little because of the precision of the
measuring system. With such a required precision, it is improbable that two distances
between different pairs of points are equal. Also, since we are dealing with a relatively
low amount of markers (less than 100), computing the distance of a point with every
other in its cloud, is not a demanding task.

Let us define a "Distance Matrix" as the one containing the distance between every
possible pair of points in a cloud. The dimension of it will be NxN with N equal to the
number of elements of the CoP. The value of this matrix in a generic position (i,j), will
be the distance of point i with respect to point j. Since one of our hypotheses is that we
are working with rigid CoP, no matter the orientation, this value must remain constant.

This matrix is symmetric since the distance from i to j is the same that from j to i.
It’s main diagonal has all its elements equal to zero, since the distance between a point
with itself is null.

The correlation technique consists of searching for elements in common between the
distance matrix from the 3D map (Dmap), and the one from the detected cloud of points
(Ddet). The Python code is shown in Listing 4.1.

1 def corr_3d(map_3d, det_points, th=0.0005, n_th1=3, n_th2=3):
2 # Number of points from 3D map and Detected CoP
3 l_det = len(det_points)
4 l_map = len(map_3d)
5

6 # Compute distance matrix from 3D map, and Detected CoP
7 D_det = dist_matrix(det_points,det_points)
8 D_map = dist_matrix(map_3d,map_3d)
9

10 # Create "Similarity Matrix", which will contains information of
regarding equal lengths between D_det and D_map

11 SM = np.zeros((l_det , l_det , l_map))
12

13 # Iterate for every row in D_det
14 for i in range(l_det):
15 # ran is a list containing all integers from 0 to l_det the i

value is extracted from the list since it is the same point
16

17 ran = list(range(l_det))
18 ran.remove(i)
19

20 # Iterate for every column of D_det (Except for column i)
21 for j in range(l_det-1):

53

Pose estimation with CCC Markers

22 # M_log is the "Logic matrix" that identify distance values
from D_map that are almost equal to a distance between
points i and ran[j] from D_det

23

24 M_log = np.abs(D_map - D_det[i,ran[j]])<th
25 SM[ran[j],i,:] = np.array(np.sum(M_log,0)>=1,dtype="bool")

#M_map is append to SM
26

27 # Return list of correlated points that have more than n_th1 lengths
in common

28 indices_det , indices_map = np.where(np.sum(SM,0)>=n_th1)
29

30 return indices_map ,indices_det

Listing 4.1: Python code for point correlation

The code in Listing 4.1 will be explained briefly in the following paragraphs. First,
the function computes both distance matrices from the 3D map and the detected points,
D_map respectively D_det. It then creates a three-dimension matrix with dimensions
(l_det, l_det, l_map). Two consecutive for cycles goes to every element of D_det, those
elements represent the lengths between point i and j that are the row and column index
respectively. The only elements that these for cycles do not go through are the diagonal
of D_det, since all its elements are zero because they represent the distance of a point
with itself.

On line 24 from Listing 4.1, the value (i,j) from D_det is compared with all the
elements of D_map. A matrix M_log is created with the same dimension of D_map. In
each element of this matrix, there would be a 0 or a 1 depending if the value at the same
position in D_map differs in less than th with respect to point (i,j) in D_det.

On line 25 the values from each column of M_log are summed. If the sum of one
column is equal or greater than one, it would mean that the point in that column index
has at least one connection with another point almost equal to the value (i,j) from D_det.
A boolean list is saved in position (i,j) in SM.

Finally, in line 28 the indices of the correspondent points from the 3D map and the
Detected points CoP are obtained. The points are correlated if they share at least a
number of n_th1 similar lengths with the other points of their cloud.

This approach would not work if the error in measurements is large since two similar
lengths could be confused. Nonetheless, the measurements for the task at hand need
an accuracy of 50 µm, which makes improbable to find two equal distances with that
precision.

54

Pose estimation with CCC Markers

Figure 4.12: Two points of the different CoP are correlated if they share at least three lengths
in common. Green lines represent lengths found in both CoP, while red lines represent lengths
not found in the other cloud.

Example

For a more clear understanding, an example of how the algorithm works is shown in
this section. In Figure 4.13 (a) is plotted the location of the point of the overall 3D map,
while in Figure 4.13 (b) the detected points from a specific position. The latter cloud
was obtaining triangulating the detected points from Figure 4.14. The red solid points
in both images from Figure 4.13 represent the ground truth points in common between
both clouds.

(a) (b)

Figure 4.13: Common points are plotted as solid red dots. a) 3D map CoP of the relative
position of all the markers on the end-effector, b) Detected points CoP, the isolated element in
the corner is an incorrect measurement.

In order to find a correlation between the two clouds of points, the Distance Matrices
for the 3D map Dmap and the detected points Ddet are computed. They are shown in
Figure 4.15 (a) and (b) respectively.

55

Pose estimation with CCC Markers

The algorithm starts from column A of Ddet, and looks in Dmap similar distance values.
Since there is no similar distance, point A will not be correlated.

The next four points (B,C,D and E) will be correlated. Figure 4.15 (b) shows in
orange the cells from Dmap that have similar values of the element from column C in
Ddet. Column E in Dmap has in total 3 different matches with column C in Ddet, no other
column have that quantity of points in common. This is the reason why point C from
Ddet will be correlated with point E in Ddet. A similar plot is shown in Figure 4.15 (c)
with respect to column E in Ddet.

(a) (b)

Figure 4.14: Images of the robot at a certain pose taken from both cameras in the SVS.

56

Pose estimation with CCC Markers

(a)

(b)

(c)

Figure 4.15: Distance matrices: a)Detected points distance matrix D_det, b) 3D map distance
matrix D_map colored in orange for similar values of column C in D_det, c) 3D map distance
matrix D_map colored in gray for similar values of column E in D_det

57

Chapter 5

Validation method

5.1 Laboratory equipment at testing facility

The developing process of the new external measuring system was carried out at FAPS
laboratory in Erlangen, Germany.

The cameras available for testing were two Jai GO-5000C-USB with 5 megapixels
each. They were equipped with Kowa lenses with 16mm focal length. Both were linked
to a desktop computer by USB connection. The images from the cameras were sent as
ROS 2 messages to our software for processing.

While on STRESS-SPEC the robot used for sample positioning is a 6-axis Stäubli
RX160, for testing a Stäubli TX2-60L was used. Since both models are from the same
company and have the same number of axes, the motion control model for the robot
under test can be easily adapted to the target one. The robot commands are sent from a
desktop computer through ROS 1 interface.

A Leica laser tracker AT901 was also at disposal. This instrument allows taking
external measurements for a later validation of the computer vision system. It was
connected to an external computer with an ethernet cable.

A graphical representation of the hardware and its interface is plotted in Figure 5.1.

58

Validation method

Figure 5.1: Available equipment at the testing Laboratory

5.2 Data alignment

As explained before, the measurements from the Computer Vision System (CVS) will
be compared with the ones from the laser tracker, to estimate the accuracy of the former.
These two sets of measurements cannot be compared directly mainly because of two
reasons.

The first one is due to the fact that the zero frame of reference (FR) from the cameras
is different from the one of the laser tracker, as a result, it is required to compute first
the transformation between these two instruments.

The second obstacle is because the points being measured by each instrument are
located in different positions in the end-effector, the cameras compute the pose of the
markers while the laser tracker the pose of the reflectors (Figure 5.2). As a consequence,
also the relative transformation between the frame of reference of the reflectors and the
markers should be estimated (Figure 5.3).

The method for surpassing these obstacles is explained in the following sections.

5.3 Transformation estimation

In Figure 5.4 is schematically represented the different homogeneous transformations
(HT) between the frame of references. T rl,i represents the measurement i of the laser
tracker, it can be interpreted as a transformation between the reflector and the laser

59

Validation method

Figure 5.2: Photo of the real equipment, the blue arrows
indicates the measure of the ArUco markers from the
cameras, while the red arrows shows the measure from the
laser tracker to the different reflectors.

Figure 5.3: End-effector of the
robot. At the top the FR of the re-
flectors can be seen, at the middle
the one from the ArUco marker,
and at the bottom the one from
the robot

tracker frame of reference. In the same way, Tmc,i is the pose estimation i of the markers
measured by the camera system. Both of this transformation varies for different poses of
the end-effector.

Figure 5.4: Chain of transformations

On the contrary, transformation T cl and Tmr remain constant despite of the end-effector
movement. The values of T cl stay unchanged since the cameras and the laser tracker are
fixed. While for Tmr , the reflectors and the markers are attached to the same rigid body
(Figure 5.3), due to this fact, no matter the pose of the end-effector this transformation

60

Validation method

would not change.

In the ideal case, Equation 5.1 should be valid for every pose of the end-effector.
However, because of the error in measurements from both instruments, this expression
does not hold.

T cl T
m
c,i = T rl,i T

m
r for i = 1,2, ..., N (5.1)

The translation error for every measurement can be expressed also through an homo-
geneous transformation matrix (HTM) Tei as shown in Figure 5.5 and computed with
expression 5.2.

Tei = (T cl Tmc,i)−1 T rl,i T
m
r (5.2)

Figure 5.5: Chain of transformations with a difference Te,i in the final position of the markers.
This is due to errors in calibration and measurements.

An estimation of T cl and Tmr can be obtained by solving the optimization problem
expressed in Equation 5.3. First the rotation and translation parameters of each one is
computed forming the vectors p1 and p2. With this parameters, T cl and Tmr are calculated
with Equation 5.5.

p1, p2 = argmin
p1,p2

NØ
i=1

(α ||Eor
i (p1, p2) ||22 + β ||Etrans

i (p1, p2) ||22) (5.3)

α and β are coefficients that balance the weight of the orientation and translation
error. Eor

i is the orientation error for measurement i, while Etrans
i is the translation error

also for measurement i, both of them are vectors. The first one with 4 elements that
represent the error in each quaternion component. While the latter one has 3 elements,

61

Validation method

for the error in each of its coordinates (X, Y, and Z). Its value is computed according to
Equation 5.4.

Eor
i (p1, p2) = quat(T cl (p1)Tmc,i) − quat(T rl,i Tmr (p2))

Etrans
i (p1, p2) = trans(T cl (p1)Tmc,i) − trans(T rl,i Tmr (p2))

(5.4)

The function quat extracts from an HTM the rotation matrix and transforms it into
quaternion form. While function trans extracts the translation parameters in every
coordinate.

As mentioned before, p1 and p2 are vectors containing the rotation and translation
parameters of T pl and Tmr respectively (Equation 5.6). Their first four elements express
the rotation in quaternions, while the last three are the translation for each axis X,Y
and Z in millimeters.

T ab (p) =

x1
x2R(q1, q2, q3, q4)
x3

0 0 0 1

 (5.5)

With:

p = (q1, q2, q3, q4, x1, x2, x3) (5.6)

And:

q2
1 + q2

2 + q2
3 + q2

4 = 1

The Matlab Code for computing the Alignment Matrices T cl and Tmr can be found in
Appendix D.

62

Validation method

5.4 Error metrics

After obtaining T cl and Tmr , it is possible to compute the difference in measurement
between the cameras and the laser tracker. (Equation 5.7)

(eRxi , eRyi , eRzi) = eul(T cl Tmc,i) − eul(T rl,i Tmr)

(exi , eyi , ezi) = trans(T cl Tmc,i) − trans(T rl,i Tmr)
(5.7)

From the different measured HTM the rotation matrix is extracted and transformed
into Euler angles. The error value is the difference in each Euler angle from the measure-
ment from the laser track and the cameras. If the error in some axis is larger than π, to
that value is subtracted or added π n times till the error is in the range [−π,π].

It is necessary only to compare the translation parameters inside the HTM from the
cameras and the laser tracker to obtain the translation error in each coordinate.

The probabilistic distribution of each of these error components is assumed to be
normal, so for each of them, the standard deviation will be computed. The mean is
expected to be near zero since the data points were aligned in such a way that the total
error was reduced to its minimum expression.

The required accuracy in position was set to ± 50 µm, while for orientation ± 0.5
degrees. The parameter that would be used to compare those values would be ± 3
standard deviations on the error for each axis, both for orientation and location.

The other type of error to consider, is the distance error edi that is computed with
Equation 5.8.

edi =
ñ
e2
xi + e2

yi + e2
zi (5.8)

ed is by definition always positive, so it would not be correct to model it as normally
distributed. Nonetheless, e2

d is the sum of three normal distribution functions squared.
Because of this, e2

d could be modeled as a Chi-squared distribution, that by definition
represents the squared sum of n normal distributed variables with zero mean, and the
same variance.

Since it is expected that the variance of ez would be larger than ex and ey, it was
decided that e2

d would be modeled as a Gamma distribution that is a generalization of
the Chi-squared distribution. This type of distribution can be tuned with 2 continuous
parameters (k and θ), in contrast with the Chi-squared distribution that has only one
which has to be an integer (k). If e2

d follows a Gamma distribution, ed can be modeled

63

Validation method

as a Nakagami distribution. Every Nakagami distribution can be expressed as the root
squared of a Gamma distribution.

Fitting the Nagakami distribution with the measured values of ed would make it
possible to compute the following metrics:

• e50% : Value of ed for which the fitted cumulative distribution function is equal to
50 %.

• e90% : Value of ed for which the fitted cumulative distribution function is equal to
90 %.

Appart from this two, also the RMSE of ed would be computed as seen in Equation
3.1.

5.5 Pose compensation

As seen in Section 1.3.1, the stereo vision system acts as the main sensor in an external
control loop that compensates the pose of the robot. This section intends to explain how
the compensation process was tested.

In Figure 5.6 is schematized the flow of information through the different devices
in the test set-up. First, Computer 1 receives the images from both cameras, they are
processed and the actual pose of the robot is computed. It is required for pose estimation,
to know a priori the calibration parameters of the stereo vision system.

Computer 2 publishes a message through a ROS topic and Computer 1 subscribes this
message. The connection between computers is made through a ROS 1/ ROS 2 bridge
since the code in them works with a different version of ROS. When computer 1 receives
the message, it sends the actual pose Tmc and the desired pose TmÍ

c to Computer 2 as a
string. Both of these poses are measured with respect to the camera reference frame.

Computer 2 also receives the actual pose of the robot T er and computes the new
comanded pose T eÍ

r . Computer 2 uses the information regarding the transformation
between the robot FR and the camera FR T cr computed as in Section 5.3. Also the
transformation between the end effector and the markers FR Tme is available. On Figure
5.7 is schematically represented all the transformations.

The new pose of the robot T eÍ

r is computed through Equation 5.9. It consists simply
in computing the transformation difference Td between the actual pose and the desired
one. This transformation is obtained through the camera measurements and is used to

64

Validation method

Figure 5.6: Flow of information through device’s interface

calculate the new pose for the robot.

T e
Í

r = T er T
m
e Td (Tme)−1

with :

Td = (Tmc)−1 Tm
Í

c

(5.9)

This is an iterative process that would be repeated till the error stops decreasing. The
results of the compensation test will be shown in the next chapter. absolute

65

Validation method

Figure 5.7: Set of transformations from cameras FR to robot FR.

66

Chapter 6

Test and results

In this chapter, it will be presented the results obtained from the different experiments.
It is divided into three sections: The first one shows the results regarding absolute
accuracy, the second one the repeatability of the measurement system, while the third
section focuses on the error after compensation.

6.1 Absolute Accuracy

To compute the absolute accuracy a set of 27 different poses were chosen to be
measured (Figure 6.1). The position of these points in space form a cube of 250 mm on
each side, it would be called measured volume. The center of the cube is 775 mm apart
from the camera’s baseline.

The orientation of the measured points varies ± 10 degrees with respect to each other.
This range was chosen in such a way that the laser tracker could still measure the position
of each reflector without the need of rotating them.

It is important to highlight that not only the position of the end-effector was computed
but also the orientation. The laser tracker measured the pose of the reflectors RF, while
the cameras compute the pose of the markers RF. In spite of this, the transformation
matrices T cl and Tmr would be computed in order to relate both measurements, as seen
in Chapter 5. The poses will be computed from the laser tracker RF to the markers RF,
the pertinent transformations in each case are made.

67

Test and results

Figure 6.1: Relative position between cameras, laser tracker, and measured points

6.1.1 Method comparison

This section has the objective of comparing the absolute accuracy of CCC markers
and Enhanced ArUco Marker (ArUcoE). In the case of the latter, it was also compared
the measurements with one single camera, with Super-Resolution (SR) corner detection,
and the standard Subpixel corner detection algorithm.

All of these measurements were carried out using the same set-up. The cameras were
located 300 mm apart from each other, and its baseline at a distance of 775 mm from the
center of the measured volume. Moreover, the calibration parameters for every method
were the same, both intrinsic and extrinsic.

The matrices T cl and Tmr were recomputed for each method using the 27 data points.

On Table 6.1 it is shown the standard deviation of the error in the six degrees of
freedom (DoF). The measurements from the laser tracker are compared to each method,
and the error in each DoF is computed for the different poses.

Method σx (µm) σy (µm) σz (µm) σRx (deg) σRy (deg) σRz (deg)
ArUcoE Single Image 713.4 423.5 351.2 0.85 0.74 0.42
ArUcoE Stereo SR 143.7 141.5 206.4 0.16 0.14 0.18
ArUcoE Stereo Sub-pixel 132.1 141.4 197.7 0.13 0.14 0.14
CCC 161.6 122.1 178.1 0.07 0.08 0.12

Table 6.1: Standard deviation of the error in X, Y and Z and in the rotation angles RX, RY
and RZ for the different methods

As expected, the worst performance was with the Single Image method. The errors
for this method were considerably larger than the other three.

On Table 6.2 different parameters of the distance error ed, computed as in Equation 5.8,

68

Test and results

are shown. As explained in Chapter 5 a Nagakami function will be used to approximate
the probabilistic density function (PDF) and the cumulative density function (CDF) of
the error. After fitting the probabilistic model, the values of ed 50% and ed 90% seen in
Section 5.4 can be computed.

Method RMSE ed (µm) ed 50% (µm) ed 90% (µm) ed max (µm)
ArUcoE Single Image 884.0 794.5 1260.6 1778.2
ArUcoE Stereo SR 283.2 256.3 400.9 473.1
ArUcoE Stereo Subpixel 271.5 248.9 378.2 464.2
CCC 264.7 226.6 394.1 486.0

Table 6.2: Parameters of ed error

It can be seen that the standard subpixel algorithm is superior to the Super-Resolution
method in any metric of Table 6.2. Moreover, considering the fact that the SR method
takes 5 times more processing time than the standard one (76 seconds vs 15 seconds for
the 27 pairs of images), we conclude that the SR is not worth considering.

The CCC method surpasses the standard ArUcoE method in RMSE and ed50%. On
the other hand, the latter method is superior taking into account ed90% and edmax
metrics. It is not possible to determine in this case which method is superior.

The fitting of the Nagakami functions for ed is shown in Figure 6.2. The scale for all
stereo vision methods goes from 0 to 0.6 mm. While for the single image method the
range is larger. On the other hand, on Figure 6.3 is shown the fitted CDF in contrast
with the real data. The ranges are the same of Figure 6.2.

Figure 6.2: ed histogram with its respective fitting Nagakami curve for the different methods

69

Test and results

Figure 6.3: Fitting of CDF curve for ed in every method

The PDF and CDF curves from the previous figures are plotted together on Figure
6.4. This figure makes easier the comparison between methods. Clearly, the Stereo
Vision methods are superior to the single image one. Moreover, there is a little difference
between the ArUcoE subpixel and the CCC method, the curve from the latter is a bit
closer to zero.

70

Test and results

Figure 6.4: Estimated PDF and CDF curves for the different methods in an unique plot

6.1.2 Baselines comparison

This section intends to test if an increase in the baseline length truly reduced the
absolute error. According to Equation 2.13 the optimal baseline distance is approximately
998 mm for an object located 775mm apart from the cameras.

In the previous section for all the experiments, the baseline was 300 mm. For
practicality, instead of the optimal value, for this experiment, it was chosen a baseline
of 800 mm. The expected variation for this value is very close to the optimal. In
Figure 6.5 it is plotted the expected RMSE in function of x defined in Appendix B as
x = Baseline

2 ∗ Object distance to cameras .

71

Test and results

Figure 6.5: Expected RMSE in function of x = B
2 zc

The expected RMSE according to formula Equation 2.12 for a baseline of 300 mm is
228 µm, while for a baseline of 800 mm it is expected 129 µm. This implies a reduction
of 43 % in RMSE.

On tables Table 6.3 and Table 6.4 it is shown a comparison between the error in pose
estimation of CCC markers for two different baselines values. The RMSE for a baseline
of 300 mm was 265 µm, and 180 µm for a baseline of 800 µm. The reduction on the
RMSE, in this case, was 32 %.

Method σx (µm) σy (µm) σz (µm) σRx (deg) σRy (deg) σRz (deg)
CCC (b=300mm) 161.6 122.1 178.1 0.07 0.08 0.12
CCC (b=800mm) 51.6 141.6 104.7 0.02 0.02 0.03

Table 6.3: Standard deviation of the error in X, Y and Z and in the rotation angles RX, RY
and RZ for the different methods and for different baselines

Method RMSE ed (µm) ed 50% (µm) ed 90% (µm) ed max (µm)
CCC (b=300mm) 264.7 226.6 394.1 486.0
CCC (b=800mm) 180.1 157.4 263.8 332.5

Table 6.4: Parameters of ed error for different baselines

What it is important to highlight in this section, is that without an improvement on
the software or hardware of the Stereo Vision System, a significant reduction in the error
was achieved in every metric. In this case, the only change was on the relative position
between cameras.

72

Test and results

a)

b)

Figure 6.6: a) Experiment reconstruction with 300 mm of baseline, b) Experiment reconstruction
with 800 mm of baseline

6.1.3 Poses with highest error

In order to have an estimation of which poses produce the highest errors, cross-
validation was carried out. For pose i, the transformation matrices T cl and Tmr were
computed individually using the other 26 poses. In other words, the alignment of the
data is performed without the point that is going to be measured. This guarantees that
the computed ed in the point is not affected by the optimization problem that computes
the transformation matrices.

73

Test and results

This experiment was carried out with a baseline of 800 mm, using the same data from
the previous section.

The results are shown in Figure 6.7 and Figure 6.8.

Figure 6.7: ed in every pose after computing the alignment parameters with the other 26 poses.

Figure 6.8: Bar chart for points in Figure 6.7

The three highest errors in positions 9, 21 and 27, coincides with the corners of the
cube located closer to the cameras. The images in those three positions are shown in
Figure 6.9. It is possible that these errors can be reduced with a most representative
calibration, using a bigger calibration board.

74

Test and results

a) Left camera image pose 9 b) Right camera image pose 9

c) Left camera image pose 21 d) Right camera image pose 21

e) Left camera image pose 27 f) Right camera image pose 27

Figure 6.9: Stereo images of critical poses

75

Test and results

6.1.4 Synthetic Data

The setup with a baseline of 800 mm was virtually reconstructed in the software
Blender. The markers were located forming a cube of side 250 mm at an average distance
of 775 mm from the camera’s baseline. The calibration was carried out in the same
manner as in Section 3.6 with synthetic calibration images. The dimension of the output
images was 2560x2048 px and focal length was 16 mm, equal to the real cameras at the
lab.

The difference with the real experiment is that, the rendered images from the software
have no distortion, have no noise, and the markers always look sharp because of the
absence ot blurriness effects. As a result, it is expected that the errors turn out to be
lower.

In Table 6.5 it is shown the comparison between the best performing real test (CCC
b=800mm) and the computer-generated test. There is a remarkable difference in all the
metrics in favor of the synthetic test. The results of this experiment can be interpreted
as the maximum level of accuracy that is possible to reach with the proposed setup.

a) Left camera image
650 mm from baseline

b) Left camera image
775 mm from baseline

c) Left camera image
900 mm from baseline

d) Right camera image
650 mm from baseline

e) Right camera image
775 mm from baseline

f) Right camera image
900 mm from baseline

Figure 6.10: Computer generated images: Markers at different distances from the baseline

76

Test and results

Method σx (µm) σy (µm) σz (µm) σRx (deg) σRy (deg) σRz (deg)
CCC (b=800mm) 51.6 141.6 104.7 0.02 0.02 0.03
Syntetic Data 26.3 20.7 16.3 0.03 0.05 0.05

Method RMSE ed (µm) ed 50% (µm) ed 90% (µm) ed max (µm)
CCC (b=800mm) 180.1 157.4 263.8 332.5
Syntetic Data 37.2 31.5 54.1 61.3

Table 6.5: Error comparison between synthetic and real data

6.1.5 Robot Accuracy

This section intends to estimate the absolute error of the Robot measuring system.
The measured poses of the robot was extracted and aligned with the measurements from
the laser tracker, as seen for the cameras system in Section 5.2.

On Figure 6.11 it is plotted the reconstruction of the experiment, with the frame
of references from the different instruments. It is worth mentioning that the robot
measurement was obtained from the same experiment of the CCC markers with a baseline
of 800 mm. Because of this, the laser tracker measurements are the same.

Figure 6.11: Reconstruction of the test set-up with the frame of reference from the different
instruments and from the 27 measured poses.

Table 6.6 summarized the absolute error metrics for the Robot measuring system,
and compare them with the best performance camera test.

77

Test and results

Method σx (µm) σy (µm) σz (µm) σRx (deg.) σRy (deg.) σRz (deg.)
CCC (b=800mm) 51.6 141.6 104.7 0.02 0.02 0.03
Robot 55.3 94.7 52.7 0.02 0.02 0.02

Method RMSE ed (µm) ed 50% (µm) ed 90% (µm) ed max (µm)
CCC (b=800mm) 180.1 157.4 263.8 332.5
Robot 121.7 100.3 180.2 244.7

Table 6.6: Volumetric error comparison between robot and camera measurements

The experiment shows clearly that in the test environment the robot has higher absolute
accuracy than the stereo camera system. Nonetheless, on the target application at Heinz
Maier-Leibnitz Center, the Staubli robot RX160 has lower repeatability (± 0.05mm)
in comparison with the Staubli robot TX2-60L at the lab (± 0.03mm). Moreover, the
cameras on the real application will have a resolution of 20 Mpx in contrast with the
actual cameras of 5 Mpx each.

At 1000 mm distance a single-pixel represents an area of 312x312 µm2 for the actual
cameras, while for the 20 Mpx cameras this area is reduced to 48x48 µm2. Thus, it is
expected that the error of the Stereo Vision system is reduced in the same proportion,
since according to Equation 2.10 it is directly related.

6.2 Repeatability

A set of 45 image pairs for each type of marker were taken, to measure the repeatability
of the stereo vision system. Those images were taken for the same pose of the robot but
with different light conditions as can be seen in Figure 6.12. To generate these changes,
a source of light was placed at different positions during the data collection.

a) b) c) d) e) f)

Figure 6.12: Images of the robot end-effector for different light conditions

On Table 6.7 it is shown the standard deviation in position of X, Y, and Z axes, and
the same for the rotation expressed in the variation of Euler angles.

78

Test and results

Method σx (µm) σy (µm) σz (µm) σRx (deg) σRy (deg) σRz (deg)
ArUcoE Single Image 255.6 112.1 5.021 0.02 0.04 0.02
ArUcoE Stereo SR 8.5 6.4 4.7 0.03 0.03 0.02
ArUcoE Stereo Sub-pixel 9.1 5.2 4.7 0.02 0.03 0.02
CCC 9.1 4.1 3.0 0.02 0.02 0.03

Table 6.7: Standard deviation of the error in X, Y and Z and in the rotation angles RX, RY
and RZ for the different methods

Table 6.8 shows the maximum position error for each axes. While Table 6.9 shows
the parameters of the total distance error ed

Method emax x (µm) emax y (µm) emax z (µm)
ArUcoE Single Image 954.9 420.7 12.4
ArUcoE Stereo SR 18.7 17.1 11.0
ArUcoE Stereo Sub-pixel 19.7 12.6 9.4
CCC 16.5 9.9 7.6

Table 6.8: Maximum position error in each axis.

Method RMSE ed (µm) ed 50% (µm) ed 90% (µm) ed max (µm)
ArUcoE Single Image 276.0 162.5 465.5 1043.5
ArUcoE Stereo SR 11.5 10.5 15.9 19.8
ArUcoE Stereo Subpixel 11.4 10.2 16.4 22.3
CCC 10.3 8.9 15.2 17.4

Table 6.9: Parameters of ed error

It is evident that the error values are much lower than for the volume accuracy test
in any metric. The system thus has very high repeatability but a non-sufficient absolute
accuracy.

6.3 Pose compensation

The pose compensation of the robot was carried out as seen in Section 5.5. The target
position was x = 0 mm, y = 0 mm, and z= 800 mm from the left camera FR, while the
target orientation was Rx = -180 deg, Ry = -25 deg, and Rz = 0 deg. After 6 iterations
the robot reached a pose with an average distance error ed equal to 17 µm and 0.05
degrees average rotation error in each axes.

79

Test and results

Figure 6.13: Final measurement by the Stereo Vision system

On Figure 6.14 it is shown the measured error on each axis and the total error ed over
time. Moreover on Figure 6.15 the Euler angles errors are shown over time.

Figure 6.14: Total location error ed and errors in each axis over time. The vertical yellow lines
indicates the robot movement.

80

Test and results

Figure 6.15: Rotation errors in the different axes. The vertical yellow lines indicates the robot
movement.

It is important to highlight that the reached accuracy coincides in order of magnitude
with the robot’s repeatability that according to the manufacturer is 0.03 µm. What these
results express is that the compensation was successful with an accuracy equal to the
repeatability of the robot.

As a consequence, the final position of the robot will be accurate if measured by
the camera system. However, as seen in Section 6.1 the camera system could have an
absolute total error as high as 332 µm for a volume of 250x250x250 mm3.

Nonetheless, since the robot reaches the target pose with high accuracy if measured
by the cameras, by improving the stereo vision system also the robot absolute error will
be reduced to the same degree. The compensation process allows the robot to have an
absolute accuracy in the range of the stereo vision system, being the repeatability of the
robot the accuracy limit.

81

Chapter 7

Conclusion

7.1 Summary

The main focus of this thesis was to develop a Computer Vision measuring system to
estimate the pose of a sample in space. The required accuracy for its implementation
on the STRESS-SPEC neutron diffractometer was very high, ± 50 µm in location and
± 0.5 degrees in orientation. Two different methods were proposed based on fiducial
markers and Stereo Vision.

The first one consisted of the use of ArUco markers, which are square fiducial with an
internal codification. For the shape of these markers, it was possible to estimate their
pose using a single camera. These markers were modified for their use with subpixel
algorithms and were called Enhanced ArUco markers (ArUcoE). These modified markers,
according to the preliminary test, improved considerably the accuracy with a single
camera but it was still not enough for the target application.

After that, it was decided to use a Stereo Vision system to estimate the pose of the
markers. In the test environment, the RMSE error was reduced more than four times
with respect to the single image method. A formula to estimate the optimal position
between cameras was presented in this document, which helped to reduce the absolute
error by 32 %.

In order to improve the corner position of ArUcoE on the images, a Super-Resolution
algorithm was tested. The results did not improve from the standard subpixel algorithm,
and the processing time was approximately 5 times higher. Taking this into consideration,
it was decided not to proceed with the use of it.

The second method consisted of the use of CCC markers. Since they are not internally

82

Conclusion

codified, the point correlation between the stereo image pair was achieved using epipolar
constraints. For pose estimation using these types of markers, it was necessary to build
a 3D model with the relative position of the markers. This was achieved without any
external equipment, and using the same cameras for pose estimation. The alignment
between the different poses was possible with a modified version of the ICP algorithm,
that was also able to detect outliers.

For pose estimation with CCC, it was needed to match the measured points with the
ones from the 3D map. If a true correlation was set, the pose could be computed with
a closed-form expression. The method for point matching was proposed by the author.
This method takes advantage of the high precision of the cameras, and the relatively low
number of points to be measured, for then compute the matching elements between the
two clouds of points based on their relative position with respect to each other. The
same method can identify outliers and it takes a single iteration to produce the output,
in contrast with other proposed methods for partial CoP alignment that takes several
iterations.

The repeatability and accuracy metrics were obtained using a laser tracker. Because
of the experiment set-up, it was necessary to align the data from the different instruments
using two translation matrices. They were computed through an optimization algorithm
developed by the author.

The experiments have shown that with the use of ArUco and CCC markers a similar
level of accuracy is reached, both in stereo vision configuration. With the cameras at the
testing center, the required absolute accuracy was not achieved, but it is expected to do
so with the new equipment. Moreover, it was shown that with the proposed control loop
the robot could reach the accuracy of the camera system till the value of its repeatability.

7.2 Future work

In order to reach the target accuracy, the proposed methods have to be tested with
the pair of cameras of the target application. Because of its resolution, it is expected that
the error could be reduced up to six times. It is possible that at that level of precision
some unconsidered effects could be present that should be properly analyzed.

The validation process with the laser tracker was carried out manually, which has
required long measuring times. It was necessary almost an hour for taking a set of 27
measures. At FAPS, there is an additional laser tracker that could be automated in order
to save time and be able to generate more validation data.

The author considers that there is still space to improve the accuracy of the system
even with the actual equipment. The test carried out with synthetic data, and the
measured precision of the system, have shown that it is still possible to keep reducing

83

Conclusion

the error. The highest errors were located at the corners of the measured volume, areas
that the calibration board could not reach due to its dimensions. The calibration could
be improved by using professional boards that cover almost the complete field of view
of the images. Moreover, more complex calibration techniques with higher degrees of
freedom could be tested.

84

Acronyms

AI
artificial intelligence

ArUcoE
ArUco marker Enhanced

CDF
Cumulative density function

CNN
Convolutional Neural Network

CoP
Cloud of Points

CV
Computer Vision

CVS
Computer Vision System

EMS
External measuring system

FR
Frame of reference

HR
High Resolution

HT
Homogeneous Transformation

HTM
Homogeneous Transformation Matrix

85

Acronyms

ICP
Iterative Closest Points

LR
Low Resolution

MSE
Mean Squared error

PDF
Probability density function

RMCS
Robot motion control system

RMSE
Root Mean Squared error

SRNN
Super-Resolution Neural Networks

SVS
Stereo Vision System

86

Appendices

87

Appendix A

Two link planar arm:
kinematic error
compensation

Figure A.1: Two link planar arm model

The two link planar arm is one of the most simple manipulator models, it consist
in two links united by a revolute joint, and one of them bonded to the word reference
frame by another revolute joint. The prelimar test for the controller was done using this
model due to the fact that, the kinematics and inverse kinematics equation can be easily
derived.

Expresions A.1 and A.2 describe the Kinematics and inverse Kinematics respectively.

88

Two link planar arm: kinematic error compensation

They were obtains from the Book of Sicilianos [38].

Direct kinematics:

Wx = a1 cos(q1) + a2 cos(q1 + q2)
Wy = a1 sin(q1) + a2 sin(q1 + q2)

(A.1)

Inverse kinematics:

q1 = Atan2(Wy,Wx)

q2 = ± cos−1

W 2
x +W 2

y − a2
1 + a2

2

2a1
ñ
W 2
x +W 2

y

 (A.2)

Figure A.2: Simulink model of a two link planar arm with a deficient inverse kinematic block,
being compensated with an external control loop

Following the control architecture of Figure 1.7, a Simulink model was built. The
desired position in x and y are the input of the control system. In the first iteration both
values are feed through the controllers, and because of the architecture of them Figure
A.3, they are not modified.

The inverse kinematic block (IKB) in this example, works with wrong values of a1
and a2. The erroneous values of q1 and q2 are feed through the direct kinematic block
(DKB) which compute the coordinates of W with the real values of a1 and a2.

As it can bee seen in Figure A.2, the lengths a1 and a2 of the IKB are different
from the DKB by a 10%. In the target application the error is expected to be much

89

Two link planar arm: kinematic error compensation

smaller, however even with this large error the position is reach the desired range in only
4 iterations.

The desired position in x is 600 mm while on y is 500 mm. The error due to
measurement is model as a gaussian noise with a standard deviation of 17 µm. The error
in position should be less than ± 50µm.

Figure A.3: External controller

The results of the simulation are shown in Figure A.5. For both axis, the error is
reduced to the desired range on the fourth iteration and it is maintained throught the
entire simulation. In Figure A.4 is graphically represent the poses of the manipulator for
the first three iterations.

it=1 it=2 it=3

Figure A.4: Pose of the manipulator from iteration 1 to 3. Point D represent the desired
position for W

This simple simulation intends to provide preliminary results regarding the behaviour
of the external controller. On the target application the number of axis will be 6 and not
2 as in this case. As explained in Chapter 1 the development of a controller is not the
main focus of this thesis.

90

Two link planar arm: kinematic error compensation

Wx through sequential iteration Wy through sequential iteration

Wx with error range tolerance limits
in red

Wy with error range tolerance limits
in red

Figure A.5: Simulation output

91

Appendix B

Stereo Error: Theoretical
Analysis

Figure B.1: a) relative pose between cameras and point to be measured b) Uncertainty volume
from plane x-z perspective

From the configuration of the cameras shown in Figure B.1 a) the expressions B.1
and B.2 can be derived:

92

Stereo Error: Theoretical Analysis

sin

3
α

2

4
= b

zc
(B.1)

tan

3
α

2

4
= b

zb
(B.2)

Also, from the geometry of the uncertainty volume are obtained the relationships B.2
and B.2. lx and lz are the maximum length of the uncertainty volume in the x and z-axis
respectively, while α is the angle difference between the orientation of both cameras on
the y-axis.

sin

3
α

2

4
= emax

lz
(B.3)

tan

3
α

2

4
=

lx
2
lz
2

= lx
lz

(B.4)

Combining Equation B.1 and Equation B.3, Equation B.5 can be derived. A similar
procedure can be made between Equation B.2 and Equation B.4 to obtain Equation B.6.

lz = zc
b
emax (B.5)

lx = b

zb
lz (B.6)

Equation B.6 can be combained with Equation B.5 to obtained the set of expresions
B.8. The procedure is shown in B.7.

lz = zc
b
emax

lx = b

zb
lz

= b

zb

zc
b
emax

= zc
zb
emax

(B.7)

lz = zc
b
emax

lx = zc
zb
emax

(B.8)

93

Stereo Error: Theoretical Analysis

The proposed probability model consists of assuming that the error on each axis
follows a normal distribution. Because of this, the parallelepiped uncertainty volume is
transformed to an ellipsoid that simplifies the model. This is a conservative step since
the volume of the ellipsoid will be larger than the one from the parallelepiped. The
illustration of this concept is shown in Figure B.2.

Figure B.2: Transformation of the parallelepiped error volume into an ellipsoid. The boundary
on each axes is equal to three times its respective standard deviation.

The standard deviation in x and z would be defined as one-sixth of lx and lz respectively,
Equation B.9. This condition set a probability of 99.19% that a measured point is confined
inside the new uncertainty volume. This value was computed as the joint probability of
each independent coordinate of the measured point laying inside the ± 3σ confidence
interval of their respective axes,(0.99733).

σx = zc
6 zb

emax

σz = zc
6 b emax

(B.9)

To compute σy it was considered that the error distribution is affected by the sum of
the error of both cameras. The maximum error of each camera was defined as emax, while
its probability distribution would be considered as normal with a standard deviation

94

Stereo Error: Theoretical Analysis

equal to a sixth of emax, Equation B.10. The point is at the same distance from both
cameras and emax is equal for both. The value of σy then would be computed as expressed
in Equation B.11.

σec = 1
6 emax (B.10)

σy =
ñ
σ2
ec + σ2

ec =
√

2
6 emax (B.11)

The resulting expression for computing the standard deviation on each axis is express
in B.12.

σx = zc
6 zb

emax

σy =
√

2
6 emax

σz = zc
6 b emax

(B.12)

The standard deviation on each axes provides a good description of the uncertainty
in measurement. Nonetheless, it is necessary first to define a unique parameter to be
minimized in order to find the optimal position for the cameras. The chosen parameter
was the standard deviation of the length of the error. The error length edi is computed as
the distance between a measured point and the mean value as express in Equation B.13.

edi =
ñ

(x̂− xi)2 + (ŷ − yi)2 + (ẑ − zi)2

=
ñ
e2
xi + e2

yi + e2
zi

(B.13)

The variance of ed can be computed with expression B.14. The demonstration of this
equality is shown in B.15.

σ2
d = σ2

x + σ2
y + σ2

z (B.14)

95

Stereo Error: Theoretical Analysis

σ2
d = 1

n

nØ
i=1

e2
di

= 1
n

nØ
i=1

(e2
xi + e2

yi + e2
zi)

= 1
n

nØ
i=1

e2
xi + 1

n

nØ
i=1

e2
yi + 1

n

nØ
i=1

e2
zi

= σ2
x + σ2

y + σ2
z

(B.15)

The formula of σ2
d coincides with the formula of the Mean Squared Error. Thus, it is

possible to derive Equation B.16:

RMSE = σd (B.16)

The goal is to find the optimal relationship between zb and b (Figure B.1) that
minimizes σd. With this aim, it is required to express Equation B.14 in function of
x = b

zb
. The procedure is shown in B.17.

σ2
d = σ2

x + σ2
y + σ2

z

= (zc6 zb
emax)2 + (

√
2

6 emax)2 + (zc6 b emax)
2

= e2
max

36

A
z2
c

z2
b

+ 2 + z2
c

b2

B

= e2
max

36

A
z2
b + b2

z2
b

+ 2 + z2
b + b2

b2

B

= e2
max

36

A
4 + b2

z2
b

+ z2
b

b2

B

= e2
max

36
1
4 + x2 + 1/x2

2

(B.17)

96

Stereo Error: Theoretical Analysis

emax is function of zb and b, so expression must be transform as shown in B.18.

e2
max = (zc

∆epx
fl

)2

= z2
c

f2
l

= z2
b + b2

f2
l

= z2
b

f2
l

A
1 + b2

z2
b

B

= z2
b

f2
l

(1 + x2)

(B.18)

Combining B.18 and B.18 Equation B.19 is obtained.

σ2
d = z2

b

36 f2
l

(1 + x2)
3

4 + x2 + 1
x2

4
(B.19)

Equation B.19 can be further simplified, resulting in the final expression B.20.

σ2
d = z2

b

36 f2
l

3 1
x2 + 5 + 5x2 + x4

4
(B.20)

fl is the focal length of both cameras that is constant, while zb is the working distance
that is also constant. Because of this, finding xopt that minimize σ2

d is equivalent to find
xopt that minimize (1/x2 + 5 + 5x2 + x2).

xopt = argmin
x

3 1
x2 + 5 + 5x2 + x4

4
(B.21)

The solution of this problem was obtained using the web tool Wolfram Alpha [39].
There were six different solutions to the problem but only one that was positive without
an imaginary part.

xopt =
ñ√

2 − 1
xopt Ä 0.6436

(B.22)

97

Stereo Error: Theoretical Analysis

The optimal baseline can be quickly obtained as shown in B.23.

bopt Ä 0.6436 zb
Bopt Ä 1.2872 zb

(B.23)

98

Appendix C

SRNN Architecture in
Tensorflow

1 import tensorflow as tf
2

3 def relu_advanced(x):
4 return tf.keras.activations.relu(x, max_value=255)
5

6 model = tf.keras.models.Sequential()
7 model.add(tf.keras.layers.Conv2D(6,(6,6),input_shape=(16,16,1),

padding="same", activation=tf.nn.relu))
8 model.add(tf.keras.layers.Conv2D(6,(3,3), padding="same",

activation=tf.nn.relu))
9 model.add(tf.keras.layers.Conv2D(6,(3,3), padding="same",

activation=tf.nn.relu))
10 model.add(tf.keras.layers.Conv2D(6,(3,3), padding="same",

activation=tf.nn.relu))
11 model.add(tf.keras.layers.Dropout(0.1))
12

13 model.add(tf.keras.layers.Conv2DTranspose(6,(6,6),padding="same",
dilation_rate=(1,1),strides=(2, 2), activation=tf.nn.relu))

14 model.add(tf.keras.layers.Conv2D(6,(6,6), padding="same",
activation=tf.nn.relu))

15 model.add(tf.keras.layers.Conv2D(6,(3,3), padding="same",
activation=tf.nn.relu))

16 model.add(tf.keras.layers.Conv2D(6,(3,3), padding="same",
activation=tf.nn.relu))

17 model.add(tf.keras.layers.Dropout(0.1))

99

SRNN Architecture in Tensorflow

18

19 model.add(tf.keras.layers.Conv2DTranspose(6,(6,6) ,padding="same",
dilation_rate=(1,1),strides=(2, 2), activation=tf.nn.relu))

20 model.add(tf.keras.layers.Conv2D(6,(9,9), padding="same",
activation=tf.nn.relu))

21 model.add(tf.keras.layers.Conv2D(6,(6,6), padding="same",
activation=tf.nn.relu))

22 model.add(tf.keras.layers.Conv2D(1,(3,3), padding="same",
activation=relu_advanced))

23

24 model.save(’DNN_model.h5’)

Listing C.1: Neural network architecture using Keras, coded in Python

100

Appendix D

Alignment matrices
obtention: Matlab Code

The Matlab code for computing T cl and Tmr is shown in Listing D.1 and D.2. The
latter one is the objective function to be minimized. The code was based on Equation
5.3.

1

2 % T_A and T_B are the set of transformation matrices from the different
measurements of the cameras and the laser tracker respectively.

3 % X = [p1;p2]. X is a matrix of 2 rows and 7 columns containing the
parameters for the transformation that we are looking for.

4 % X0 is the initial guess for X
5 % lb and ub are the lower and upper limits of the elements in X
6 % a and b are coefficient that gives weight to the angular and position

error respectively.
7 gs = GlobalSearch;
8

9 problem = createOptimProblem(’fmincon’,’x0’,X0,
’objective’,@(x)Tot_err(T_A,T_B,X,a,b),’lb’,lb,’ub’,ub);

10

11 x = run(gs,problem)

Listing D.1: Matlab code for optimization

1

2 function [Err]=Tot_err(T_A,T_B,X,a,b)
3 % Separete p1 and p2 from X

101

Alignment matrices obtention: Matlab Code

4 p1 = X(1,:);
5 p2 = X(2,:);
6

7 % Built the transformation matrices from p1 and p2
8 T_lc = p2T(p1);
9 T_rm = p2T(p2);

10

11 % Iterate for every set of measurements
12 n=size(T_A,3);
13 tot_sum=0;
14 for i=1:n
15 % Compute Tr_1 and Tr_2 that represent the transformation

matrices from the laser tracker to the reflectors. The
first one measured by the cameras and the second one by
the laser tracker.

16

17 Tr_1=T_lc*T_B(:,:,i);
18 Tr_2=T_A(:,:,i)*T_rm;
19

20 % Parametrize transformation matrices Tr_1 and Tr_2. The
parameters a and b scale the values of the parameters to
balance in the next step the orientation or position
error.

21 v_1=[a*rotm2quat(Tr_1(1:3,1:3)),b*Tr_1(1:3,4)’];
22 v_2=[a*rotm2quat(Tr_2(1:3,1:3)),b*Tr_2(1:3,4)’];
23

24 % The sum of each squared element is added to the total sum,
but first is divided by the number of measurements.

25 tot_sum = tot_sum + sumsqr(v_1 - v_2)/n;
26 end
27

28 % Root of the sum of error
29 Err_0 = (sqrt(tot_sum));
30

31 % Add relaxated contrain in quaternions.
32 Err = Err_0 + (abs(sumsqr(p1(1,1:4).^2)-1)+

abs(sum(p2(2,1:4).^2)-1));
33

34 end

Listing D.2: Matlab error function to minimized

102

Bibliography

[1] STRESS-SPEC: Materials science diffractometer. Heinz Maier-Leibnitz Zen-
trum. url: https://mlz-garching.de/stress-spec (cit. on pp. 1, 2).

[2] FAPS Institue. url: https://www.faps.fau.eu/curforsch/raptor-
automated-sample-positioning-in-neutron-diffractometry/ (cit. on
p. 1).

[3] H.-G. Brokmeier et al. «Texture analysis at neutron diffractometer STRESS-
SPEC». In: Elsevier 20 (June 2011), pp. 569–571 (cit. on p. 1).

[4] C. Randau et al. «Improved sample manipulation at the STRESS-SPEC
neutron diffractometer using an industrial 6-axis robot for texture and strain
analyses». In: Nuclear Instruments and Methods in Physics Research A 794
(2015), pp. 67–75 (cit. on pp. 1, 3).

[5] Elastic Scattering. Heinz Maier-Leibnitz Zentrum. url: https://mlz-garc
hing.de/englisch/neutron-research/experimental-methods/elastic-
scattering.html (cit. on p. 2).

[6] I.A. Bonev A. Nubiola. «Absolute calibration of an ABB IRB 1600 robot
using a laser tracker». In: Robotics and Computer-Integrated Manufacturing
29 (2013), pp. 236–245 (cit. on p. 3).

[7] Van-Phu Do Chi-Tho Cao and Byung-Ryong Lee. «A Novel Indirect Calibra-
tion Approach for Robot Positioning Error Compensation Based on Neural
Network and Hand-Eye Vision». In: App. Sci. 9 (2019), p. 1940 (cit. on p. 4).

[8] DAVID G. LOWE. «Distinctive Image Features from Scale-Invariant Key-
points». In: International Journal of Computer Vision 60(2) (2004), pp. 91–
110 (cit. on p. 7).

[9] Bruno Siciliano et al. Robotics: Modelling, Planning and Control. Springer,
2010. Chap. 5 Actuators and Sensors, pp. 226–230 (cit. on p. 8).

[10] Camera Calibration. OpenCv. url: https://docs.opencv.org/3.4/d9/
d0c/group__calib3d.html (cit. on p. 9).

103

https://mlz-garching.de/stress-spec
https://www.faps.fau.eu/curforsch/raptor-automated-sample-positioning-in-neutron-diffractometry/
https://www.faps.fau.eu/curforsch/raptor-automated-sample-positioning-in-neutron-diffractometry/
https://mlz-garching.de/englisch/neutron-research/experimental-methods/elastic-scattering.html
https://mlz-garching.de/englisch/neutron-research/experimental-methods/elastic-scattering.html
https://mlz-garching.de/englisch/neutron-research/experimental-methods/elastic-scattering.html
https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html
https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html

BIBLIOGRAPHY

[11] Lenses Distortion. OpenCv. url: https://docs.opencv.org/master/dc/
dbb/tutorial_py_calibration.html (cit. on p. 10).

[12] Varlik Kilic. «Performance Improvement of a 3D Reconstruction Algorithm
Using Single Camera Images». MA thesis. Middle East Technical University,
2005 (cit. on p. 10).

[13] Qingnan Li, Ruimin Hu, Jing Xiao, Zhongyuan Wang, and Yu Chen. «Learning
latent geometric consistency for 6D object pose estimation in heavily cluttered
scenes». In: Journal of Visual Communication and Image Representation 70
(2020), p. 102790. issn: 1047-3203. doi: https://doi.org/10.1016/j.
jvcir.2020.102790. url: https://www.sciencedirect.com/science/
article/pii/S1047320320300407 (cit. on p. 14).

[14] Bo Chen et al. «End-to-End Learnable Geometric Vision by Backpropagating
PnP Optimization». In: (2020). url: https : / / arxiv . org / pdf / 1909 .
06043v3.pdf (cit. on p. 14).

[15] Yannick Bukschat and Marcus Vetter. «EfficientPose: An efficient, accurate
and scalable end-to-end 6D multi object pose estimation approach». In: (2020).
url: https://arxiv.org/pdf/2011.04307v2.pdf (cit. on p. 14).

[16] Chen Song et al. «HybridPose: 6D Object Pose Estimation under Hybrid
Representations». In: (2020). url: https://arxiv.org/pdf/2001.01869v4.
pdf (cit. on p. 14).

[17] Sergey Zakharov et al. «DPOD: 6D Pose Object Detector and Refiner». In:
(2020). url: https://arxiv.org/pdf/1902.11020v3.pdf (cit. on p. 14).

[18] Richard Hartley and Andrew Zisserman. Multiple View in Computer Vision.
Cambridge, 2004. Chap. 12 Structure Computation, pp. 311–312 (cit. on
pp. 15–17).

[19] Bruno Siciliano et al. Robotics: Modelling, Planning and Control. Springer,
2010. Chap. 10 Stereo Vision, pp. 433–435 (cit. on pp. 15, 16).

[20] Triangulation. OpenCv. url: https://docs.opencv.org/3.4.12/d0/dbd/
group__triangulation.html (cit. on p. 16).

[21] Introduction to Mobile Robotics: Iterative Closest Point Algorithm. George
Mason University, Department of Computer Science. url: https://cs.gmu.
edu/~kosecka/cs685/cs685-icp.pdf (cit. on pp. 22, 23).

[22] Hanzhou Lu and Yujie Wei. Parallel point cloud registration. url: https:
//hanzhoulu.github.io/Parallel-Point-Cloud-Registration/ (cit. on
p. 24).

104

https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://doi.org/https://doi.org/10.1016/j.jvcir.2020.102790
https://doi.org/https://doi.org/10.1016/j.jvcir.2020.102790
https://www.sciencedirect.com/science/article/pii/S1047320320300407
https://www.sciencedirect.com/science/article/pii/S1047320320300407
https://arxiv.org/pdf/1909.06043v3.pdf
https://arxiv.org/pdf/1909.06043v3.pdf
https://arxiv.org/pdf/2011.04307v2.pdf
https://arxiv.org/pdf/2001.01869v4.pdf
https://arxiv.org/pdf/2001.01869v4.pdf
https://arxiv.org/pdf/1902.11020v3.pdf
https://docs.opencv.org/3.4.12/d0/dbd/group__triangulation.html
https://docs.opencv.org/3.4.12/d0/dbd/group__triangulation.html
https://cs.gmu.edu/~kosecka/cs685/cs685-icp.pdf
https://cs.gmu.edu/~kosecka/cs685/cs685-icp.pdf
https://hanzhoulu.github.io/Parallel-Point-Cloud-Registration/
https://hanzhoulu.github.io/Parallel-Point-Cloud-Registration/

BIBLIOGRAPHY

[23] S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, and M.J. Marín-
Jiménez. «Automatic generation and detection of highly reliable fiducial
markers under occlusion». In: Pattern Recognition 47.6 (2014), pp. 2280–2292.
issn: 0031-3203. doi: 10.1016/j.patcog.2014.01.005 (cit. on p. 25).

[24] Bruno Siciliano et al. Robotics: Modelling, Planning and Control. Springer,
2010. Chap. 10 Stereo Vision, pp. 418–422 (cit. on p. 26).

[25] W FORSTNER. «A fast operator for detection and precise location of distincs
points, corners and center of circular features». In: In Proc. of the Intercom-
mission Conference on Fast Processing of Photogrammetric Data, Interlaken,
1987 (1987), pp. 281–305. url: https://cseweb.ucsd.edu/classes/sp02/
cse252/foerstner/foerstner.pdf (cit. on p. 27).

[26] Rafael Muñoz Salinas. Subpixel Accuracy in corner Detection. Which is the
best approach? url: https://www.youtube.com/watch?v=OhpLCoZ4PtA
(cit. on p. 28).

[27] Detection of ChArUco Corners. OpenCv. url: https://docs.opencv.org/
3.4/df/d4a/tutorial_charuco_detection.html (cit. on p. 28).

[28] Minghua Wang and Qiang Wang. «Hypergraph-regularized sparse representa-
tion for single color image super resolution». In: Journal of Visual Communi-
cation and Image Representation 74 (2021), p. 102951. issn: 1047-3203. doi:
10.1016/j.jvcir.2020.102951 (cit. on p. 33).

[29] Y. K. Badran, G. I. Salama, T. A. Mahmoud, A. Mousa, and A. E. Moussa.
«Single image super resolution based on learning features to constrain back pro-
jection». In: 2019 International Conference on Innovative Trends in Computer
Engineering (ITCE). 2019, pp. 23–28. doi: 10.1109/ITCE.2019.8646324
(cit. on p. 33).

[30] Y. Zhang, Q. Fan, F. Bao, Y. Liu, and C. Zhang. «Single-Image Super-
Resolution Based on Rational Fractal Interpolation». In: IEEE Transactions
on Image Processing 27.8 (2018), pp. 3782–3797. doi: 10.1109/TIP.2018.
2826139 (cit. on p. 33).

[31] W. Yang, X. Zhang, Y. Tian, W. Wang, J. Xue, and Q. Liao. «Deep Learning
for Single Image Super-Resolution: A Brief Review». In: IEEE Transactions on
Multimedia 21.12 (2019), pp. 3106–3121. doi: 10.1109/TMM.2019.2919431
(cit. on pp. 34, 35, 37).

[32] Vincent Dumoulin and Francesco Visin. «A guide to convolution arithmetic
for deep learning». In: (2016). url: https://arxiv.org/pdf/1603.07285v1.
pdf (cit. on p. 36).

105

https://doi.org/10.1016/j.patcog.2014.01.005
https://cseweb.ucsd.edu/classes/sp02/cse252/foerstner/foerstner.pdf
https://cseweb.ucsd.edu/classes/sp02/cse252/foerstner/foerstner.pdf
https://www.youtube.com/watch?v=OhpLCoZ4PtA
https://docs.opencv.org/3.4/df/d4a/tutorial_charuco_detection.html
https://docs.opencv.org/3.4/df/d4a/tutorial_charuco_detection.html
https://doi.org/10.1016/j.jvcir.2020.102951
https://doi.org/10.1109/ITCE.2019.8646324
https://doi.org/10.1109/TIP.2018.2826139
https://doi.org/10.1109/TIP.2018.2826139
https://doi.org/10.1109/TMM.2019.2919431
https://arxiv.org/pdf/1603.07285v1.pdf
https://arxiv.org/pdf/1603.07285v1.pdf

BIBLIOGRAPHY

[33] C. Ledig et al. «Photo-Realistic Single Image Super-Resolution Using a
Generative Adversarial Network». In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2017, pp. 105–114. doi: 10.1109/
CVPR.2017.19 (cit. on p. 38).

[34] Lance B. Gatrell, William A. Hoff, and Cheryl W. Sklair. «Robust image
features: concentric contrasting circles and their image extraction». In: 1992.
doi: 10.1117/12.56761 (cit. on p. 40).

[35] H. Kong, H. C. Akakin, and S. E. Sarma. «A Generalized Laplacian of Gaus-
sian Filter for Blob Detection and Its Applications». In: IEEE Transactions on
Cybernetics 43.6 (2013), pp. 1719–1733. doi: 10.1109/TSMCB.2012.2228639
(cit. on p. 41).

[36] Blob Detection. OpenCv. url: https://docs.opencv.org/3.4/d0/d7a/
classcv_1_1SimpleBlobDetector.html (cit. on p. 42).

[37] J. Yang, H. Li, D. Campbell, and Y. Jia. «Go-ICP: A Globally Optimal
Solution to 3D ICP Point-Set Registration». In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 38.11 (2016), pp. 2241–2254. doi: 10.1109/
TPAMI.2015.2513405 (cit. on p. 52).

[38] Bruno Siciliano et al. Robotics: Modelling, Planning and Control. Springer,
2010. Chap. 2 Kinematics, pp. 93–94 (cit. on p. 89).

[39] Wolfram Alpha. url: https://www.wolframalpha.com/ (cit. on p. 97).

106

https://doi.org/10.1109/CVPR.2017.19
https://doi.org/10.1109/CVPR.2017.19
https://doi.org/10.1117/12.56761
https://doi.org/10.1109/TSMCB.2012.2228639
https://docs.opencv.org/3.4/d0/d7a/classcv_1_1SimpleBlobDetector.html
https://docs.opencv.org/3.4/d0/d7a/classcv_1_1SimpleBlobDetector.html
https://doi.org/10.1109/TPAMI.2015.2513405
https://doi.org/10.1109/TPAMI.2015.2513405
https://www.wolframalpha.com/

	List of Tables
	List of Figures
	Introduction
	Motivation
	Related Work
	Thesis Focus
	Control system architecture
	External measuring system

	Stereo Vision: Theory and general technique
	General technique
	3D Reconstruction and Calibration
	Intrinsic parameters
	Extrinsic parameters
	Stereo Calibration

	Feature detection and correlation
	Fiducial Markers
	Correlation
	Epipolar Geometry

	Triangulation
	Method
	Theoretical precision

	Pose estimation
	Pose of a Rigid Body
	Position and Orientation computation
	Iterative closest points (ICP)

	Pose estimation with ArUco Markers
	Marker description
	Pose estimation with a single camera
	Subpixel algorithms
	Enhanced ArUco Markers
	Pose estimation with Stereo Vision
	Preliminary test results
	Super-Resolution
	Dataset
	Network Architecture
	Loss function
	Output

	Pose estimation with CCC Markers
	Marker description
	Blob Detection
	Filters

	Point correlation
	Markers mapping
	ICP algorithm
	Filters for correlation

	Pose estimation

	Validation method
	Laboratory equipment at testing facility
	Data alignment
	Transformation estimation
	Error metrics
	Pose compensation

	Test and results
	Absolute Accuracy
	Method comparison
	Baselines comparison
	Poses with highest error
	Synthetic Data
	Robot Accuracy

	Repeatability
	Pose compensation

	Conclusion
	Summary
	Future work

	Acronyms
	Appendices
	Two link planar arm: kinematic error compensation
	Stereo Error: Theoretical Analysis
	SRNN Architecture in Tensorflow
	Alignment matrices obtention: Matlab Code
	Bibliography

