
POLITECNICO DI TORINO

M.Sc. in Mechatronic Engineering

Master Thesis

Study and development of
calibration algorithms of

multicamera systems for precision
agriculture robotics

Supervisors
Prof. Alessandro Rizzo
Ing. Antonio Petitti

Candidate
Mariangela Autera

A.Y. 2020-2021





Summary

This thesis has been developed in collaboration with STIIMA-CNR (Sistemi e Tec-
nologie Industriali Intelligenti per il Manufaturiero Avanzato - Consiglio Nazionale
delle Ricerche) located in Bari.
The aim of this thesis is to propose new techniques in the areas of mobile robotics.
In particular, we studied innovative data processing techniques devoted to the es-
timation of the relative pose of a multi-camera system, which can be used also on
mobile robots. The estimated pose is obtained thanks to heterogeneous sensors
mounted on the platform. So, a method of extrinsic calibration is used applied to
a multi-camera system.
Later, the already calibrated multi-camera systems will be used for both robot lo-
calization and for the analysis of the surrounding environment.
In order to validate all the methods, we utilize algorithms applied in general for
multi-camera systems, but we have validated them with a minimum number of
cameras, i.e. two. These cameras are rigidly coupled each other in space. Each
camera captures, in time, a cloud of 3D points and estimates the trajectory trav-
eled in space, through SLAM algorithms. Based on reconstructed trajectories and
joint motion constraint, the extrinsic calibration algorithm is able to estimate the
relative pose between the cameras.
We test the developed algorithms both in simulation and experimentally.
After trying a number of procedures, that did not guarantee an optimal result, we
were able to demonstrate through the validation that the methods leads to good
calibration results and that therefore, if we know the trajectory accomplished by a
robot, we can estimate the relative pose of the two cameras.
The thesis is structured in this way:

• The first chapter deals with the multi-camera vision system applied to mobile
robots. We will discuss about the state of the art of this kind of systems,
the importance of calibrating systems, talking about the calibration in general
and the various methods. Finally, we will talk about some sensors needed to
collect images and data.

• The second chapter is entirely dedicated to the extrinsic calibration proce-
dures. The method for a non-overlapping camera network is reported. Some
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algorithms are explained in detail, by differentiating methods using a mobile
camera from methods that do not use a mobile camera.

• The third chapter shows some methodologies and instruments to better un-
derstand the approaches developed.

• The fourth chapter describes the different algorithms developed to achieve the
desired result. So, the algorithms are introduced and demonstrated theoreti-
cally, also explaining the reason for the choice of different procedures.

• The fifth chapter reports the tests carried out to validate the algorithms. The
physical system used is described and shown, together with a further technical
explanation on the cameras used. Finally, the results of the experiments are
also presented.

• The sixth and final chapter summarizes the main considerations that were
made throughout the thesis.
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Chapter 1

Calibration, sensors and
multi-camera vision system

Nowadays, robots have spread in many industrial production sectors, even in the
agri-food one. We talk about Agriculture 4.0, used to improve the quality of work,
as we can see in Figure 1.1. In fact, in many farms, drones or robots are used

Figure 1.1: Agriculture by robots

to automate certain human operations, also relieving them from dangerous tasks
[1]. Year by year, agricultural equipment is grown with new sensors, software that
collects data using machine learning and robots walking the ground with wheels
or on rails. The most innovative solutions seek to optimize processes and reduce
costs, by combining robots, sensors, cameras and algorithms of satellite imaging
and machine learning [2].
Another innovation comes from Denmark and it is a robot, Farmdroid, powered by
the sun and easily transportable [3], as shown in Figure 1.2. The advent of these
robots has brought a great innovation in every field of the production. Moreover, the
use of mobile robots and mobile manipulators creates the flexible and autonomous
industrial automation, where the greatest advantage is the exchange of information
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Figure 1.2: Farmdroid

made possible by the integration of the latest intelligent technologies into robotics,
such as the Internet of Things, Artificial Intelligence, or Big Data. Mobile robots
thanks to all their advantages, allow to create more efficient industrial processes
with a better use of resources.
The main characteristic of mobile robots is the intelligent automation, that means
that they can perform a task without the human intervention and they are capable
to make decisions. So, they can execute dangerous processes alone. The connectivity
allows to make a communication between different machines. In this way robots can
interact with humans through integrated interfaces that simplify the collaborative
work. The flexibility is the adaptability that robots have to modify their disposal,
so modifying their way of working, according to the demands of the production
line, or the changes in the working environment [4].
In this thesis, we will deal with mobile robots in the field of multi-camera visual
system. It is however important to underline that the calibration is fundamental
in this systems, because it allows to improve the accuracy of the final result.

1.1 Calibration
Calibration is the operation in which a measuring instrument is adjusted to improve
accuracy. In particular, the camera calibration has an important role in computer
vision. In order to make this operation, it is important to obtain the intrinsic and
the extrinsic parameters of cameras.
In the computer vision, the geometric information of the three-dimensional object
is obtained from the image information of the camera. The camera calibration is
responsible for providing the relationship between the spatial point and the cam-
era image pixel. This relationship is given by the geometric model of the camera
imaging, that are exactly the camera parameters. These parameters must be ob-
tained through the experiment and the calculation and this process is the camera
calibration. There is not a single useful method, but depending on applications
and efficiency, different procedures are used.
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Moreover, camera calibration has several applications and it is used in various ar-
eas. The following are the main areas of interest.
Autonomous navigation is a fundamental capability for a mobile robot in order to
make it able to interact with the outside world and to have an interaction between
the robot and the environment. In order to obtain a large scene, it needs to layout
multiple cameras in the environment. So the camera calibration method has an
important role in navigation and positioning accuracy. In Figure 1.3 is shown a
mobile robot navigation using heading and waypoint information.

Figure 1.3: Mobile robot navigation

In the machine vision, the calibration methods are required to satisfy specific de-
mands. In fact, with the development of processing technology, there is a greater
demand in the mechanical field of high speed, high accuracy and high precision
process automation. Machine vision can be incorporated in robotics, giving them
the skills of object detection to allow for identification and the classification of
numerous objects simultaneously. In Figure 1.4, we can see an application of ma-
chine vision. It also helps robots collaborate with human workers, and to integrate
information from visual sources with that coming in from different sensors. This
integration can help robots understand their location in space. These benefits have
driven the applications of machine vision in robots [5].
In the biomedical area, with the help of robot and computer, it is now possible to
improve the quality and the precision of the surgical operations. Moreover, thanks
to robots, we can also complete the surgery and complex diagnosis which is very
difficult for the routine method. It is demonstrated that with the arrival of new
technologies, there is an improve of the efficiency, of the quality of the operations
and there is a reduction of costs. Obviously, to make possible this coexistence, the
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Figure 1.4: Machine Vision System

calibration of the robots and of the cameras is necessary. In Figure 1.5 we can see
how robots assist doctors in performing operations.

Figure 1.5: Robots in medicine

Talking about the visual surveillance, we find calibration methods during the image
acquisition phase. In fact, since the complexity of the road condition and vehicles
are more and faster, it is necessary to improve the calibration accuracy of the im-
age acquisition devices and the image processing speed [6]. An example of traffic
monitoring system in Figure 1.6.

1.2 Why calibrate the instruments?
It is important to calibrate the instruments in order to fit together different mea-
surements and, moreover, it allows to determine the errors and the uncertainties
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Figure 1.6: Traffic monitoring system

associated with an instrument. Nowadays, there are different methods of mea-
surement, which, however, must produce not only the best measurements, but
principally the measurements with the correct meaning. The best measurements
require a link to national standards, hence the need for calibration. The calibration
of the instruments builds a professional credibility, because involves high quality
measurements and connected to the national standards. Furthermore, it allows to
detect errors and uncertainties. Finally, it permits measurements from different
instruments and different instrument types to be integrated [7].
All the measurements that, then, are fit together, come from different sensors.

1.2.1 Sensors
Sensor are used to make interactions of a complex system or a robot with the
surrounding environment.
In fact, "a sensor is a device that detects changes in the surrounding environment
and responds by means of some outputs on another system" [16]. So, they collect
external stimuli and send them to a microprocessor
There are many types of sensors, classified according to their operating principle,
to the type of output signal, but mostly to the type of physical size they measure.
Below we report only some.
The light sensors [17], whose module we see in Figure 1.7, measure illuminance,
which can be used to measure more than the brightness of a light source. Because
the illuminance decreases as the sensor moves away from a steady light, the light
sensor can be used to compute relative distance from the source. They are used in
different fields, also in the agricultural, in which the sunlight has an important role.
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The temperature sensors [18] measure temperature and its variations. Depending

Figure 1.7: Module of a light sensor

on the applications, there are different sensors with different features. Moreover,
we distinguish contact sensors, like thermocouple in Figure [1.8] and non-contact
sensors, like infrared sensors, in Figure 1.9. The optical sensors [19], in Figure

Figure 1.8: Thermocouple
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Figure 1.9: Infrared sensors

1.10, convert the light rays into an electronic signal. They consist of a light source,
a sensing platform, a light detector and a data processor. In the agricultural field,
sensors carrying out optical measurements by means of remote sensing systems are
widely used. They assess the state of the cultures based on modifications that the
light radiation is affected by the plant.

Figure 1.10: Optical sensors

1.2.2 Calibration of sensors
In order to obtain accurate and usable data, it is important to calibrate the sensors,
comparing the measures of the instrument with references [20]. The main features
of a sensor are the precision and the resolution.
Thanks to calibration it is possible to eliminate a possible systematic error that
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will always provide a value different from the real, thus making it more accurate.
In Figure 1.11 is shown how calibration can make improvements to the final result.

Figure 1.11: Data collected with and without calibration

Digital sensors shall be calibrated by the manufacturer, but they could still have
imperfections. So, in order to obtain the best possible accuracy, it is necessary to
calibrate a sensor in the system in which it will be used.
First of all, the sensor response must be compared with a reference. Later, cal-
culate the calibration curve of the sensor, that you get after we compare, with a
mathematical equation, our measurements with the standard ones.
The last step is to periodically repeat the calibration. One of the reasons why we
do it is to counter the drift, which can lead to wrong conclusions.
The sensor calibration [21] deals with the estimation of the intrinsic, like the focal
length, and the extrinsic, like the pose with respect to the world or to another
sensor, parameters of a sensor. It is an important prerequisite for the applications
in robotics, in order to fuse measurements from different sensors, because all the
sensors’ measurements have to be expressed in the common reference frame. While
in computer vision and in the augmented reality, the pose of a sensor or of a cam-
era with respect to the world has to be known in order to superimpose an object
into the scene. In order to calibrate a sensor, it is necessary that the system is
observable, so the sensors’ measurements have sufficient information for estimating
all degree of freedom of the calibration parameters and, given this system, it is
possible to find a solution. The intrinsic parameters do not depend on the outside
world and how the sensor is placed.
After speaking in general about calibration, its importance and its relationship with
sensors, in the following sections, we will talk about different calibration methods.
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1.3 Calibration in multi-camera vision systems
The system we have been working on is a multi-camera vision system, so in this
section we will discuss about it.
A multi-camera vision system (MVS) presents some advantages respect of systems
with a single camera, because they allow to have a larger field of view and to acquire
geometric information of large-scale objects or scenes [8].
The global calibration of a multi-camera vision system is used to calculate the
poses of the camera frames and the global coordinate frame, and also to measure
the accuracy of the system. In many applications, sensors have not a common
field of view, because in order to satisfy various requirements, it is necessary that
cameras shoot different parts of the object.
Most of the non-overlapping field of view global calibration methods can be divided
in six categories. The first one is based on large-range measuring devices. Then, we
will talk about the large-scale calibration targets. Later the optical mirrors. The
motion model, the laser projection and finally the visual measuring devices.

1.3.1 Methods of global calibration for non-overlapping cam-
eras

The advantage of having multiple cameras is that we can study a larger area. How-
ever, in multi-camera vision systems, it happens that cameras have not a common
field of view. In Figure 1.12, there is a system with multiple cameras with non-
overlapping field of view between every two cameras.

The calibration of the system is composed of two parts. In the first moment
intrinsic parameters of every camera are calibrated and subsequently, the relative
position parameters between different cameras are calibrated, which is the main
purpose of the calibration process.
Theoretically, each cameras’ coordinate system is transformed into the world coor-
dinate system, but, for simplicity, one camera is chosen as the main one and so, the
relative pose of the other cameras is computed compared to the chosen one. When
the computations have been carried out, the translation vector and the rotation
matrix are computed.

Methods based on large-range measuring devices

The large-range measuring devices are high precision instruments used to ensure
the accuracy of the calibration. The most common large-range measuring devices
are theodolites, laser trackers and laser range finder.
The first method is composed of a calibration target into the field of view of the
camera and two theodolites, that we can see in Figure 1.13 used to measure the
3D coordinates of the markers on the calibration target and then, the positional
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Figure 1.12: Multiple cameras with non-overlapping field of view

relationship between the calibration target and the camera is computed.

Figure 1.13: Laser with theodolite
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Another approach uses the laser tracker, in Figure 1.14, which has an higher accu-
racy. If the corresponding relationship between the 3D coordinates and the image
points of all spots on a calibration board is known, the pose of the camera relative
to the laser tracker can be computed. With another strategy, a camera calibration
technique for a large-scale space is presented. In this case, since there is not an
enough large calibration board, a moving calibration board is used to cover the
entire space. Each position of the board can be scan by laser tracker and cameras
simultaneously.

Figure 1.14: Laser trackers

Another method, instead, proposes the use of external parameters calibration for
multiple cameras based on laser range finder, of which we find an example in Fig-
ure 1.15. The cameras capture the laser spots projected on the planar object and
the laser measures the distance between the spots. To solve the problem of non-
overlapping views, the calibration of all the cameras can be achieved by pair-wise
calibration. This method uses only a planar object and the laser range finder, so
it is not so expensive. The advantages are that it is simple and it guarantees high
accuracy, but it could be subject to certain light effects. Another method always
uses a laser range finder but with an outdoor distributed camera network with a
small overlapping fields of view. The data, came from the laser, are registered along
the complete area of the network using SLAM algorithms. This procedure can be
applied in person and robot detection localization, but it is not ensure accuracy
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Figure 1.15: Laser range finder

and precision.
With all these kind of devices, 3D points of a plurality of calibration targets of a
non-overlapping field of view can be obtained.

Methods based on large-scale targets

A calibration target is an instrument with high precision. Planar calibration targets
are the most used calibration targets, because features are easy to extract and the
place consistency is good.
The first method proposes a compound target consisting of two planar calibration
targets, fixed together, as shown in Figure 1.16, in which one vision sensor is con-
sidered the global coordinate frame. The target is placed in front of the sensors
for several times and the transformation matrix from the coordinate frame of each
vision sensor respect of the global coordinate frame is computed. This procedure
does not require high precision measurements, it has a high flexibility and it can
be applied to different measurement environments. The disadvantage is that, since
the distance between the cameras is greater than the field of view of each camera,
the pose change of the target cannot be too large. In contrast to the 2D target,

22



Calibration, sensors and multi-camera vision system

Figure 1.16: System with two planar calibration targets

1D target has a simple structure, light and portable. Another method uses, in fact,
this type of target.
The cameras are divided in binocular sets. The fundamental matrix of each set
is computed. In order to have a high accuracy, the length of the 1D target is
proportional to the distance between sensors. Another approach starts from the
estimation of the relative pose of the two cameras, which is computed changing the
distances between light spots on the two 1D bars. This method is more flexible
than the others. The disadvantage is that if there are more cameras, only two
cameras can be calibrated at a time, which make calibration method complicated
to be realized.

Methods based on optical mirrors

Mirror-based methods use the reflection characteristics of the optical mirrors. The
great advantage is that the cameras do not have to see the target directly, but they
can observe it through the mirror, as shown in Figure 1.17.
With regard to the case in which the camera has not a direct view of the object,
the first method uses a planar mirror to estimate the target’s pose [12]. The re-
flected views are considered as if they were seen directly. This procedure computes
the camera pose and then it gets the pose of virtual camera relative to the object,
estimating then the positions of the mirrors. In Figure 1.18, a calibration with a
planar mirror is shown [9].
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Figure 1.17: System with a no direct view

Figure 1.18: Calibration with a planar mirror

Another procedure estimates the six degrees of freedom transformation between a
camera and the body of the robot, using the planar mirror to compute the calibra-
tion between them. The robot moves in front of the mirror and all the measures
are collected in an estimator, which produces estimates for the camera to the robot
transformation. The advantage is that is so easy to use, but it requires that the
coordinates of the points on the robot-body frame must be known a priori.
The following method uses planar calibration plates and planar mirrors. It com-
putes intrinsic and extrinsic parameters, solving a set of transformation relationship
between the other cameras, including the mirrored camera and the global central
camera.
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Also spherical mirrors, whose radius is known, are used. The position of the mirror
and the external parameters are computed in the same time. Moreover, the bound-
ary of the mirror is visible in the image, by using the projection of the 3D reference
point. So, the method is simple and practical.
These procedures are used also for visual navigation purpose in urban environment.
They do not use the scene geometry, but visual markers stuck on the mirror surface.
Therefore, for small systems with a small number of cameras, these approaches are
simple to use. But, if the distance from the camera increases, the image of the
reference object becomes smaller and the accuracy decreases.

Methods based on structure from motion

Structure from motion (SFM) is used to calibrate multiple cameras. Tracking the
movement of people or other objects on the ground, this method computes the
relationship of different camera field of view.
A procedure proposes the use of a rigid link [33]. It uses two internally calibrated
non-overlapping cameras to capture the sequence of images in order to calibrate
the external parameters of the cameras. Each camera captures a sequence, that is
then processed by a SFM algorithm.
Another method assemblies cameras on a vehicle for visual navigation purpose in
urban environments [10]. The calibration procedure consists in manoeuvring the
vehicle while each camera observes a static scene. Then another approach considers
the missing trajectory information in the unobserved areas of the multi-sensor con-
figuration using both parametric and non-parametric algorithms. First of all, the
Kalman filter is used to estimate the trajectory. Then, linear regression computes
the position of the target. At the end, the relative orientation of the sensors is
calculated using the target position from the adjacent cameras.
The last proposed method [11] tries to solve the problem for non-overlapping surveil-
lance cameras with a known gravity vector. In this way, it is possible to deal with
the problem of missing points correspondences required by SFM algorithms.
All these methods based on structure from motion do not require high precision
devices, so they are flexible and not expensive. The disadvantage is that they
need scene information, feature difficult to obtain in industrial measurements and,
moreover, the accuracy has to be improved.

Methods based on laser projection

The laser projection method [13] is the most used method in the global calibration,
because it has a larger measurement range and it is less affected by light. It is widely
used for the non-overlapping field of view of the calibration parameters thanks to
its laser point, that is small, portable and accurate.
In the first approach, the field of view of a non-overlapping camera is realized by
passing the laser beam through the field of view of different cameras. It is simple,
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low cost for large-scale and it is operable in narrow space environments. However,
it is difficult to ensure that each camera captures high-quality planar targets and
spot images.
Another procedure uses a laser pointer on a calibration target, in order to calibrate
the camera pointing toward and away from the camera. The advantage is that,
as long as the laser can pass through, even a narrow space, this procedure can be
used. The problem is that is not sensitive to a variety of lightning conditions.
Instead, using oblique lights as target, it is possible to generate a group of laser
pointers as the calibration targets. This procedure is more flexible, but it is difficult
in practice, because it requires a large number of cameras. Compared with the laser
line, the laser plane gives more information, increased the accuracy and it is more
flexible and suitable for field calibration.

Methods based on visual measuring instruments

The vision-based measurement devices, such as close-range photogrammetry and
hand-held scanners, are used for techniques of 3D reverse engineering. These tech-
niques are employed when it is necessary to compute only the camera’s external
parameters, because the spatial coordinates of multiple feature points and the in-
ternal parameters are already known.
With the close-range photogrammetry, encoded targets for multi-view and un-
ordered image sets are used together because there are not enough feature points
on the surface of an object. A proposed method does not calibrate the target or the
camera. In fact, it reconstructs the three dimensional coordinate points of the tar-
gets directly with a hand-held camera and then it calibrates the camera’s internal
parameters. At the end, each camera uses an image to estimate the external pa-
rameters, as we can see in Figure 1.19. Another approach uses a calibrator similar

Figure 1.19: System based on close-range photogrammetry
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to the shape of the measured object. So, it attaches some reflective markings on it
using the close-range measurement method and then it obtains the 3D coordinates
of the markers, that are applied to the camera’s global calibration. This method
can provide high accuracy.
Another procedure uses the hand-held scanner. With it, the measured object can
be used directly as a calibrator without the need of other calibration targets. Ob-
viously, this method is flexible and suitable for indoor or outdoor measurements.

Hereinafter, we compare the different methods, highlighting advantaged and disad-
vantages.
Methods based on large-range measuring devices have a large operating range, so it
provides high accuracy. Moreover, they have high precision and for this, they are
used for the geometric parameter measurement of large objects. But, due to the
need of special devices, they are expensive and heavy.
Methods based on large-scale targets have low costs and moderate precision, so they
are a trade-off in terms of costs and accuracy due to the need of simple targets.
However, they require complex algorithms.
Methods based on optical mirror need only a mirror and a calibration target, so
the cost is not so high. But, the area of calibration target in the mirror and the
constrained placement of the targets can deteriorate the accuracy.
Methods based on structure from motion do not require high precision devices, so
the cost is not high. But they need support of the scene information, that is a
difficult task for the industrial and they can affect the accuracy.
Methods based on laser projection provide accuracy but they are dangerous for
people.
Methods based on visual measuring instruments have high precision and good flex-
ibility, but the utilized devices are not so expensive.

After seeing an overview of the different calibration methods, in the chapter [1.3.1]
we deal in detail with the extrinsic calibration and some applications.
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Chapter 2

Extrinsic Calibration
Procedures

The term calibration of cameras meas the process of determining the parameters
defining the camera model. Calibration is a process necessary to derive metric
information from the image and to be able to use a camera as a measuring instru-
ment.
In particular, the extrinsic calibration is necessary when we want to acquire a
subject with two or more cameras and then reconstruct in three dimensions. De-
pending on your position each room will have a certain frame of the object and so
the recorded images will be different from each other [14].
There is no standard imposing a particular calibration methodology, but based on
the application in which the cameras are used, one technique may be used rather
than another.
For this reason, in this chapter we will deal in detail with extrinsic calibration and
of various methods, since the thesis handles with finding the relative pose of a
multi-camera systems using extrinsic calibration methods. Thanks to this general
summary, we are then able to choose the most appropriate method and that best
suits our canons.

2.1 Extrinsic Calibration
The extrinsic parameters describe the pose of a sensor or a camera with respect
to an external reference frame. In this scenario, the problem to estimate these
parameters is called global localization, shown in Figure 2.1 and it is solved with
efficient algorithms. Another problem could be the 3D camera localization, also
known as extrinsic camera calibration, in Figure 2.2. If there are several sensors
rigidly attached to the same device, it is important to fuse them in order to ensure
that the system is observable and to increase the robustness. Fusion can be applied

28



Extrinsic Calibration Procedures

Figure 2.1: Pose of a sensor with respect to the global reference frame

Figure 2.2: Pose of a sensor in the 3D space

only if all the sensors are spatially related. These problem is called sensor-to-sensor
transformation and it deals with expressing all the measurements with respect to a
common reference frame. The process of estimating this transformation is known as
extrinsic sensor-to-sensor calibration and, depending on the type of sensor used, is
divided in pairs of sensors whose spatial measurements can be correlated, in which
the sensors can localize themselves with respect to a common reference frame and
pairs of sensors whose spatial measurements cannot be directly correlated, in which
the pose of two sensors cannot be obtained with respect to the common reference
frame and so, considering that they are rigidly connected, we can deduce their
transformation [21].
The extrinsic calibration is used for data fusion, so, as we have already said, point
clouds that come from different sensors are studied into a common reference frame
[22].
Below, there is a quick roundup of different methods of extrinsic calibration and
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between different devices.
The following sections will occupy of the application of the extrinsic calibration
using different sensors or cameras.

2.2 Extrinsic Calibration of a camera and laser
range finder

Let us consider now a method for extrinsic calibration of a camera and laser range
finder.
Two dimensional laser range finders mounted on a mobile robot become very com-
mon in the navigation task field. In fact, they provide in real time accurate range
measurements and enable robot to perform tasks by fusing image data from the
camera mounted on them. In order to use these data, it is important to know the
position and the orientation of the camera with respect to the laser range finder.
The calibration is divided into internal and external parameters. The latter are the
position and the orientation of the sensor relative to a coordinate system.
The method of extrinsic calibration we will talk about in this section uses a planar
calibration pattern viewed in the same time by the camera and the laser range
finder.
As we can see in Figure 2.3, there is our system in front of a checkerboard, so a
planar pattern, that is visible to both the camera and the laser range finder. First

Figure 2.3: A planar calibration pattern is posed in the both views of the camera
and the laser range finder

of all, we propose a linear solution to solve the problem. Then, we will consider a
nonlinear optimization with outlier detection and at the end, we will talk about a
global optimization. The latter is done to refine both the intrinsic and the extrinsic
parameters more accurately.
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With the first solution, so the linear one, we assume that the camera is calibrated
and we need to know the calibration plane parameters by solving the pose of the
camera. Initially, we determine the camera’s extrinsic parameters and then, we
obtain the calibration plane parameters. For each pose of the calibration plane,
we will have several linear equations, that we can solve with linear least squares.
The second approach, which is the nonlinear optimization, proposes to minimize
the distance between the laser points and the checkerboard planes. While, with
the last procedure, the global optimization, the camera calibration is not known
and the measurement errors can affect the final result. So, given the orientation
and the position of the camera, the laser gives some constraints on the position of
the planar pattern, that are analyzed in the camera intrinsic calibration. In con-
clusion, to refine the camera intrinsic and extrinsic parameters, it is appropriate
the global optimization with the initial estimate of the both intrinsic and extrinsic
parameters. For further clarifications, please consult [24].

2.3 Extrinsic Calibration of a 3D-Lidar and a cam-
era

In this section, we will present an extrinsic parameter estimation algorithm between
a 3D LIDAR and a projective camera. This method uses data coming from the
common field of view of the LIDAR and the camera, placing the planar board at
different poses.
First of all, the procedure localizes the target and its edges in LIDAR and camera
frames. Then, it matches planes and lines and at the end, it solves a cost function
composed of the geometric constraints that links the features detected in both the
LIDAR and the camera with non linear least squares.
Cameras and LIDARs work complementarily. In fact, depth information that cam-
eras cannot provide, are provided by the LIDARs. In the same way, color, texture
and appearance information that LIDARs cannot give, are given by the cameras.
Furthermore, cameras can recognize objects, but it cannot tell us how far it is, in-
formation that LIDARs give us. Camera sensors are better then LIDAR sensors for
place recognition and loop closures, but they are affected by illumination. Instead,
LIDAR sensors are immune to illumination changes.
So, cameras and LIDARs are used together for multi-sensor state estimation, map-
ping and localization and, not by chance, the Simultaneous Localization and Map-
ping (SLAM) algorithms need both cameras and LIDARs for robust state estima-
tion.
In order to fuse the information coming from these two sensors, it is necessary using
the extrinsic calibration procedure. Most algorithms assume the extrinsic calibra-
tion to be known a-prior, so it is important to estimate the Euclidean 6 Degrees
of Freedom (DoF) transformation between a LIDAR center and a camera center
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using data generated by them.
The 3D-LIDAR camera extrinsic calibration problem is classified into two cate-
gories,target based approaches and target less approaches. Moreover the latter is
divided into scene based approaches and motion based approaches. Target less ap-
proaches rely on a good initial guess and are sensitive to the calibration environ-
ment. While, the target based approaches are computationally light weight and
offer good initialization for target less approaches, if available. So, they simplify
the data association problems.
The resolution of this problem is based on the technique described in the previous
section, i.e. the observation of a planar checkerboard by both the sensors. The
checkerboard gives the pose of the planar surface in the camera frame. The extrin-
sic parameters between the camera and the LIDAR are determined by solving the
constraint formed by projecting the LIDAR points on the checkerboard plane in the
camera coordinate system. In [25] are explained, in detail, the different procedures.

2.4 Extrinsic Calibration and odometry for camera-
LIDAR systems

Continuing to talk about the camera-LIDAR systems, in this paragraph we focus
on another method, precisely, a two-stage extrinsic calibration method as well as a
hybrid-residual-based odometry approach. The extrinsic calibration can estimate
the relative transformation between the camera and the LIDAR with high accu-
racy, in order to register image and point cloud data in a proper way. After the
calibration, the hybrid-residual-based-odometry can be used to provide real-time
estimates. This approach exploits both direct and indirect image features.
The problem to be studied is the camera-LIDAR extrinsic calibration problem so
that the LIDAR and the camera data can be registered under a common reference
frame. As we have already said, the proposed method is a two-stage extrinsic cali-
bration method. With the first calibration stage we obtain a proper initial guess of
the extrinsic parameters by using the constraints between the motions of individ-
ual sensors. With the second stage we refine the results by registering the LIDAR
information to the image information, assuming the camera and the LIDAR have
a sufficiently overlapped field of view.
In the previous sections, we discuss about methods based on motion-based ap-
proaches and mutual-information-based approaches. Both presented disadvantages
and advantages, so in order to combine these latter, the two-stage calibration
method is developed. In fact, the first one can work without an initial guess,
but its estimation is not so accurate. While, the other one, can provide more ac-
curate calibration results, but it needs an initial guess of the extrinsic calibration.
We assume that the camera and the LIDAR are synchronized and the intrinsic cal-
ibration parameters are pre-calibrated. The extrinsic parameters are the rotations
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and the translations of the LIDAR coordinate frame with respect to the camera
coordinate frame. Detailed explanations of the two methods, are cited in[26].
After the calibration, to guarantee an accurate real-time motion estimation, it is
proposed an hybrid-residual-based camera-LIDAR odometry method. The problem
found in this approach is similar to the problem of estimating the camera motion
using both the image and the points cloud data, i.e. due to the limited number of
laser beams in the LIDAR, the point clouds are sparse in the vertical direction, and
this can pose difficulties in the registration. On the other hand, the camera images
give dense appearance information, which means high costs. So the solution is the
combination of the two.
Instead in this case, our approach relies on two types of the landmark, the photomet-
ric landmarks and the reprojection landmarks. In Figure 2.4 is shown an example
of extracted photometric landmarks (marked green), on the left and an example of
extracted reprojection landmarks (green mark) on the right. We assign each of the

Figure 2.4: Photometric landmarks and Reprojection landmarks

landmarks either from a LIDAR range readings and through a depth interpolation
algorithm. Each landmark introduces a photometric or a reprojection residual term
in the motion estimation model. Both models have been clearly explained in [26].

2.5 Extrinsic Calibration with a thermal camera
In this section, we deal with another method, i.e. the extrinsic calibration between
a sparse 3D LIDAR and a thermal camera, using a monocular visual camera [23].
All the sensors have limitations. In fact, not all sensors guarantee the same results
in all environments. For this reason, robots are equipped with multiple sensors.
In order to combine all the information came from them into a common reference
frame, it is necessary to know the relative position and orientation between sensors,
obtained thanks to the extrinsic calibration.
A 3D LIDAR is used mostly in robot devices, because they can capture distant
details more that any other type of sensors. However, if the lighting condition
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is too poor, the device is disable. So, in order to compensate this lack, thermal
cameras are used. Since a direct method to calibrate a sparse 3D LIDAR with a
thermal camera does not exist, we will consider a two-step method to obtain the
extrinsic calibration. First of all, we obtain the transformation matrix between
the LIDAR and the visual camera. Then, we obtain the transformation matrix
between the thermal camera and the visual camera. And at the end, the extrinsic
parameters are calculated by multiplying the above two matrices.
The first proposed approach uses a rotating 2D LIDAR to produce 3D point cloud.
In order to calibrate the device with a thermal camera, a checkerboard with black
and white melamine blocks is utilized. However, the thermal contrast is not good
to detect the corners. So, another research proposes a board with a large circular
hole, that is easier to detect by configuring the background temperature. Another
method deals with the extrinsic calibration between a visual camera and a thermal
camera. In this case, we have a checkerboard with square holes. The calibration is
done only if the image domain is similar to a stereo calibration.
In conclusion, the extrinsic calibration between a 3D LIDAR and a thermal camera
can be done using a checkerboard with circular or square holes. Comparing different
kind of checkerboards, it has been noted that a board with asymmetric circular
holes, in Figure 2.5, fits better with the problem [27].

Figure 2.5: Board with asymmetric circular holes

2.6 Extrinsic Calibration of the non-overlapping
camera network

Now let us focus on a method for a non-overlapping camera network, based on
close-range photogrammetry. In Figure 2.6 there is a diagram of the field of view
of a non-overlapping camera network. The procedure consists of three steps. The
first one is reconstructing the 3D coordinated of the target. Then it performs the
intrinsic calibration and, at the end, it calibrates the extrinsic parameters of each
camera. Multiple cameras are used because they are more convenient respect of
the single-camera systems, since they can be employ to cover a wider field of view.
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Figure 2.6: Diagram of the field of view of a non-overlapping camera network

The applied algorithms for the extrinsic calibration of non-overlapping cameras can
be classified into two categories, those in which the camera has may not move and
those in which the camera has to be moved.
Speaking of the first category, a proposed approach uses a moving object in the
cameras’ field of view to compute the poses of the camera and to build the trajec-
tory. A suggested way uses a maximum a posterior (MAP) estimation, with which
the target moves varying velocities and directions, but it is assumed that the target
cannot do sharp turns. A more robust solution allows to the target to make sharp
turns along a trajectory. Another studio has dealt with improving the robustness
and reducing the amount of prior information, using the unobserved trajectory and
estimating the position and orientation, at the expense, however, of the accuracy of
the method. Recently, another research proposes to calibrate the extrinsic param-
eters of multiple vision sensors based on a 1D target. The problem is that, even if
the 1D target has a simple structure, it would bend or deform and this can affect
the final results.
In order to have an high accuracy, other methods were developed. The first one is
the photogrammetry method, that adopts a set of encoded targets to obtain the
relative poses of the cameras. The calibration procedure is divided in three stages:
the reconstruction of the 3D coordinates of the targets through an hand-held digi-
tal camera, the calibration of the intrinsic parameters and the localization of each
camera with only one image. With this procedure, the extrinsic calibration is done
very quickly, so it is more efficient than the other methods.
While, speaking of the methods that need a moving camera, the two main solu-
tions are the hand-eye calibration (HEC) and the mirror-based method. As regards
the first research, it is thought to use sequences of the poses of each camera to
estimate the localization of multiple rigidly coupled cameras. Subsequently, after
other attempts to improve the accuracy, a solution is provided for calibrating both
intrinsic and extrinsic parameters of the non-overlapping camera rig simultane-
ously. Referring to the mirror-based method, the mirror has been used to generate
an overlapping view between cameras, which moved a mirror pose camera instead
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of the real camera. This procedure is not so convenient to implement because it
requires a mirror during the calibration.

2.7 What is the best way?
In conclusion, we can say that, for estimating the extrinsic parameters of the cam-
era network is necessary to determine the localization of each camera relative to
the world coordinate system, that has to be determined, while the 3D coordinates
of all the points have to be obtained. Before starting the calibration, the intrinsic
parameters are required, through one of the methods above mentioned. Significant
assumptions are that the cameras are synchronized and the estimation of the pose
of a calibrated camera is achieved from 3D to 2D point correspondences. So, the
localization of all the cameras has been determined and, hence, it is easy to obtain
the relationship between each camera. In Figure 2.7 there is a description of the
transformation between cameras in non-overlapping camera network.

Figure 2.7: Transformation between cameras in non-overlapping camera network

Since our system uses moving cameras with non-overlapping field of view, the most
suitable procedure is the one just described, that is the Hand-eye Calibration, men-
tioned in detail in the chapter 4.
The HEC [15] method is also called robot-sensor or robot-world calibration, because
it determines the transformation between a robot and a camera or a robot and the
world coordinate system. There are two kind of HEC, shown in Figure 2.8. In the
first one, on the left image, the camera is mounted stationary next to the robot, as
in our situation. In this case, we have to find the transformation from the camera’s
coordinate system to the coordinate system of the robot base. In the other one, on
the right image, the camera is mounted on the robot. It is a convenient approach
because it is able to improve the accuracy and to minimize the scheme using robot-
and corresponding camera poses. Robot poses are read directly from the robot,

36



Extrinsic Calibration Procedures

Figure 2.8: The camera mounted next to the robot and the camera mounted on
the robot

while camera poses are calculated from the camera image.
In order to solve our problem, we combined the HEC method with the LM method,
adapting it with modifications, explained better in the chapter 4.
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Chapter 3

Methodologies and
instruments

In this chapter we will talk about all the methodologies and instruments useful to
better understanding the procedures introduced in the following.

3.1 Structure From Motion
The Structure From Motion (SFM) algorithm is a method for 3D reconstruction
from 2D images and it is used to "determine the spatial and geometric relationship
of the target through the movement of the camera" [36]. The computation of 3D
reconstruction from 2D images is composed of three steps, that are rectification, in
which a transformation of each image is determined to reduce the correspondence
problem from 2D search to 1D search. The second step is the correspondence search,
in which the correspondence between pixels is determined in the left and in the right
image, that is found searching the same row of the pixels in both the images. The
last step is the reconstruction, in which we compute th3 3D at that pixel, using
the triangulation algorithm for each pixel and its correspondence. The main model
to build a SFM system is shown in Figure 3.1. The relationship between the red
block, the estimation of the multiple view geometry, and the blue box, the feature
tracking, consists of the multiple view relationships used to regularize the feature
tracking. The 3D structure is based on the features and on the estimation of the
camera parameters. If the extracted features are image points, the 3D structure
will be a 3D point cloud.
Furthermore, depending on the type of used data, there are two kind of approaches.
The first one is the feature-based reconstruction, in which it uses characteristics of
two images representing the same scene but from two different points of view. The
other one is the flow-based reconstruction, that through the optical flow, studies
the features velocity field generated by the camera motion[37].
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Figure 3.1: The block diagram of the SFM system

So, to reconstruct the image is necessary to identify the image points corresponding
to the same 3D points of view in different images. Those pixels that are difficult to
separate from one other, are removed. This is the first step, called feature detection.
The successive step, matching phase, finds feature points in different images that
correspond to the same 3D point. In the last step, the geometric model is built.
For further clarifications, please consult [38].
The advantages of this method are that is not expensive, because it only uses a
RGB camera, there is an high resolution 3D data acquisition. But it is a complex
algorithm, so it needs speed and accuracy.
Nowadays, this SFM is applied in different techniques, that have been made easier
thanks to this procedure. For example, in the image-based 3D modeling, while
creating a simple 3D model was easy, obtaining an accurate 3D model of a complex
real scene was difficult. To solve this problem, the SFM is used. Another application
is in hand-eye calibration, in which, previously, a calibration object was used, that
now it was replaced by SFM algorithms. In the augmented reality, some limitations,
like to place a virtual object with correct poses in a proper location, were overcome
using SFM. In the photo organization and browsing, the SFM resolves the problem
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of estimating the viewpoints of cameras from a large number of unordered images.
Other applications, less used, are explained in [39].

3.2 Iterative Closest Point
The Iterative Closest Point [35] is an algorithm used in the process of registration
of 3D point cloud data to describe the environment and it is applied to minimize
the difference between two clouds of points and to reconstruct 2D or 3D surfaces.
It takes two point clouds as input and returns the rigid transformation. It formed
by different steps. Let us consider two input point clouds S and M, where S is the
source point cloud and M is the model point cloud. In the first step, we compute
the nearest point in S for every point is M, using the Euclidean distance. If this
distance is bigger than a threshold, we remove a given pair of points. Then, we
add the weights to pairs of points and we compute the rotation matrix and the
translation vector. Later, we compute the the transformation of the set S and at
the end, after calculating the error, we iterate until we reach the required accuracy
[40].
The tricky part is to start to an appropriate initial value and an approximate reg-
istration of two point clouds to ensure that the algorithm does not fall down into
local extremes, but in the actual point cloud.
One of the methods used for the algorithm is the LiDAR technology. This proce-
dure measures the distance to a target by illuminating it with a pulsed laser light
and it measures the reflected pulse with a sensor. When the sensing device moves,
the final cloud of points is partially overlaid, so it is necessary to assemble these
scans together to form the final object. Neverthless, with laser scanners is impos-
sible to obtain all the point cloud information of the object, because it has some
limitations on the field of view. In order to have a complete point cloud, you have
to find a 3D rigid body transformation, so that the 3D coordinates of the point
cloud at different angles can be overlapped.
Furthermore, several improved algorithms based on ICP exist. One of these pro-
poses to find in the current set, in each iteration, the nearest point of each point
set at the point of the other set. With another one, the algorithm has to find the
nearest point from another set point as the corresponding point of the current set.
And finally, specifying the error metric function, we can improve the accuracy of
point cloud registration.
For more details about the mathematical solution of the problem, see [41].

3.3 Simultaneous Localization And Mapping
SLAM is the acronym for Simultaneous Localization And Mapping. It is used to es-
timate the pose of a robot and the map of the environment at the same time. It is a
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complex method because the map is needed for localization and the pose estimated
is needed for mapping. Moreover, it is considered a hard problem because, since
both the path and the map are unknown, the errors in map and pose estimates are
correlated. Furthermore, since the mapping between observations and landmarks
is unknown, choosing wrong data associations can make catastrophic events.
The SLAM procedure is used in air and underwater applications, and also in indoor
and outdoor implementations for autonomous and unmanned vehicles [44].
There are three major models of algorithms from which all the SLAM methods
derive. The first one uses the Kalman filter (EKF) for representing the robot’s best
estimate. There are different steps leading to build the final map, which are the
state prediction, in which the robot-landmark cross-covariance matrix is predicted,
the measurement prediction, in which the pose of the robot and the pose of the
landmarks are estimated, the observation, the data association, in which the pre-
dicted measurements are associated with observation, the filter update, in which the
Kalman filter is applied and at the end the integration of new landmarks, in which
the coordinates of the landmarks are added to the state vector. The final result is
shown in Figure 3.2, in which in the right image we can see the map and in the
left image we can see the correlation matrix [44]. The second procedure uses the

Figure 3.2: Map and Correlation Matrix

particle filter method, a method where a set of particles is used to represent robot’s
belief, instead of using parametric values. Each particle has an hypothesis of the
robot pose that assume its pose is correct. Starting from this assumption, every
particle build their map. Obviously, some particles will have more accuracy than
others. The negative aspect of this process is that the number of particles required
grows exponentially with the size of the space state. Even in these algorithm, there
are several steps to implement it. The first one is drawing a distribution of weighted
particles, then there is the update of the robot’s state in each particle. Later the
observation data are collected, with which the robot’s state estimate is updated
thanks to the robot’s observation. After, the weight of each particle is calculated
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and at the end the particles are resampled proportional to their weights [45].
The last model begins with the fact that the SLAM problem is like a sparse graph
of constraints, so it uses nonlinear optimization for recovering the map and the
robot’s pose. So, whenever the robot obtains a measurement, we add a node to the
graph. This node represents the pose of the robot at which the measurement was
obtained.
Other fields outside robotics, for example the photogrammetry and the computer
vision, have studied the making of environment models from a moving sensor plat-
form. Starting from these works, the SLAM algorithm tried to solve the problem.
There is not a single solution to the SLAM method, but the chosen method depends
on a number of factors, such as the map resolution, the features of the map, the
update time and so on [46].
With the SLAM, the devices take data from sensors to build a picture of the envi-
ronment and to estimate their position. These sensors can use visual data, such as
cameras, non visible data sources, such as Sonar, Radar or Lidar, and basic potential
data, using an Inertial Measurement Unit (IMU). When the device moves, all the
features in the environment will move in relation with it, so the SLAM algorithm
can study and improve the new positional information. In fact, "the more iteration
the device takes, the more accurately it can position itself within that space". So,
SLAM algorithms are designed for devices that are moving through a space [47].
Let us now analyse how the SLAM algorithm works. There are two types of tech-
nology components to achieve SLAM, the sensor signal and front end processing
and the pose graph optimization. Talking about the first type, we distinguish Visual
SLAM and Lidar SLAM.
Visual SLAM uses images acquired from cameras or other vision sensors. It can
use simple cameras, compound eye cameras and RGB-D cameras. Moreover, since
cameras give a lot of informations, they can be used to detect landmarks, improving
the SLAM flexibility. When the SLAM uses a single camera, it is called monocular
SLAM.
LIDAR SLAM means Light Detection And Ranging and it uses a laser sensor or
a distance sensor. Lasers are more precise than other cameras and they are used
for applications with high speed moving vehicles, such drones. By matching the
point cloud, the movement is estimated and it is used to localize the vehicle. The
disadvantages of the point clouds are that they are not detailed as images, so they
do not give sufficient informations. In addition, they require high processing power,
so it is necessary to optimize the processes to improve speed. For these reasons, in
order to obtain the desired effect, it is necessary to fuse other measurement results,
such as wheel odometry, global navigation satellite system and IMU data.
SLAM algorithms are used for practical applications, that, however, could generate
problems and errors. For example, SLAM estimates sequential movement, includ-
ing some margin of error, which is accumulated in time. This is called loop closure
problem. This type of errors are unavoidable, so it is important to detect them
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and try to correct them. In order to do that, it is opportune to remember some
characteristics from a previously visited place and minimize the error. Another
problem in the development of the algorithm concerns the computing costs. Costs
depending on several utilized processes, such as image processing, point cloud pro-
cessing and optimization. In order to overcome this problem, it is possible to run
different processes in parallel [48].

3.4 Real Sense T265 and Visual Inertia Odome-
try

The RealSense T265, shown in Figure 3.3, is a camera that " uses proprietary simul-
taneous location and mapping technology with visual-inertial odometry (V-SLAM)"
[50]. The RealSense T265 is a surveillance camera based on visual processing unit

Figure 3.3: Real Sense T256

(VPU) and it processes all the data necessary for tracking, so it is ideal for applica-
tions where it is important to locate the location of a device [52]. The localization
could be indoor or in remote places, so it is easily added to little devices like light
robots or drones, but also smartphones or viewers.
It is a system inside-out, that is, it does not use external sensors to understand the
surrounding environment and it offers a 6 DOF monitoring, collecting informations
from two cameras.
As already mentioned before, it uses a Visual Inertial Odometry (VIO). The VIO
is "the process of estimating the state of an agent by using only the input of one or
more cameras plus one or more Inertial Measurement Units(IMU) attached to it"
[51]. These sensors are present in almost all the robots used today, because both
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cameras and IMUs are very cheap.
Unlike the SLAM algorithm, in which the feature positions and device pose are
both estimated, with the VIO, pose estimation is achieved without assuming a fea-
ture map.
All of the V-SLAM algorithms run directly on the VPU, providing low latency and
efficient power consumption. That is why, these devices are used in applications
that require high precision and low latency.

3.5 Robot Operating System and rosbag
The Robot Operating System (ROS) is a framework and a collection of tools,
libraries and conventions for the development and programming of robots. It pro-
vides the same functions as an operating system, but it is not a real-time operating
system, although it is possible to integrate ROS with some real-time modules. This
system is not only used for robots, but the majority of tools provided are focused
on working with peripheral hardware [53].
ROS is considered a coupled system where a process is a node and every node is
responsible for one task. Nodes communicate using messages passing via logical
channels called topics. Moreover, each node send and get data from other node
using a public model. In order to manage the coupled system, there is a master
which is responsible of all the actions that take place in the system, as shown in
Figure 3.4. Messages are structs of data filled with pieces of information

Figure 3.4: Master in ROS

by nodes [54].
The focal point is this communication system, allowing you to design complex soft-
ware without knowing how certain hardware works. So, developers can assemble a
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complex system by connecting existing solutions for small problems. The number
of tools connected to the framework are its biggest power, in addition to reactivity
and low latency. The principal advantage is that it allows collaborative develop-
ment of robotics software. For example, if we consider several laboratories working
on similar projects and that could interface and help each other, thanks to ROS
they can collaborate and build upon each other’s work [55].
Data contained in ROS messages can be recorded in specific files, called bags. Ros-
bags "is a set of tools for recording from and playing back to ROS topics. It is
intended to be high performance and avoids deserialization and reserialization of
the messages"[49]. The principal advantage is that the recording can be used sev-
eral times, reproducing each time the exact operating scenario in which the bag
was recorded. For example, registered messages can then loaded without the need
to repeat the experiment, thus allowing to develop more easily algorithms [56].
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Chapter 4

Calibration algorithms for a
multi-camera system

In this chapter, we explain the methods studied and implemented.
The considered setup assumes two 3D cameras rigidly coupled moving in the space.
Each camera captures, in time, a cloud of 3D points and estimates the trajectory
traveled in space, through SLAM algorithms. Based on reconstructed trajectories
and joint motion constraint, the extrinsic calibration algorithm is able to estimate
the relative pose between the cameras.

4.1 Levenberg-Marquardt method

Given two trajectories constrained by a constant rotation matrix R and a transla-
tion vector C, the objective of the method is to estimate this constraint, which is
of how much they are rotated and translated with respect to each other.
The procedure [28] proposes to find a solution that minimizes the sum of the squares
of the errors between the model function and a set of data points.
We have a set of data (x1, y1), (x2, y2), ..., (xN , yN), where xi are independent vari-
ables, (x1 /= x2 /= . . . /= xN)n yi are the observations and N is big. We want to fit
the data with a straight line p(x) = a1 + a2x. It is not possible to find a straight
line such that p(xi) = yi, so we look for the straight line that minimizes

S =
NØ

i=1
(yi − p(xi))2 (4.1)

Each yi − p(xi) is a residual, that is the difference between the observed value yi

and the predicted one p(xi). Rewrite it through a matrix form, you get Ax = y, in
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which

A =

x11 . . . x1,N

. . . . . . . . . .
xN1 . . . xN,N

 (4.2)

x =

a1
. . .
aN

 (4.3)

is the vector of size N of the linear combination coefficients and

y =

y1
. . .
yN

 (4.4)

is the vector of size N of the experimental measurements.
The final result is a straight line approximating the N observations, as shown in
Figure 4.1.

Figure 4.1: solution of LS method

Therefore, the problem to minimize leads to minimize the norm of the residue
||Ax− y||. To deepen the various mathematical steps, please, refer to [29].
As we will see the in chapter 4, since the data comes from experimental measure-
ments and thy are affected by noise, it is convenient to approximate to least squares.
In our problem, we want to minimize the equation ||P1 – R ∗ (P2 - C)||, where
P1 is the vector formed by the points of the first trajectory, while P2 is the vector
formed by the related points of the second one.
It is now necessary to parameterize R, and the simplest solution is through the
axis-angle representation, better known as Rodrigues’ formula. We can write R =
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I + (s(ϑ)) ∗K + (1− c(ϑ)) ∗K2, where s(ϑ) = sen(ϑ) and c(ϑ) = cos(ϑ), which is
equivalent to the rotation matrix

R =

 c(ϑ) + k2
x(1− c(ϑ)) kxky(1− c(ϑ))− kzs(ϑ) kys(ϑ) + kxkz(1− c(ϑ))

kzs(ϑ) + kxky(1− c(ϑ)) c(ϑ) + k2
y(1− c(ϑ)) −kxs(ϑ) + kykz(1− c(ϑ))

−kys(ϑ) + kxkz(1− c(ϑ)) kxs(ϑ) + kykz(1− c(ϑ)) c(ϑ) + k2
z(1− c(ϑ))


(4.5)

Obviously, in the absence of rotation, the matrix is reduced to identity.
The matrix R allows you to rotate a vector in the space, given an axis and an
angle of rotation. I is the identity matrix, K is a skew symmetric matrix, in which
the unknown components k1, k2, k3 indicate around which axis the trajectory is
rotating and how much, representing by the angle ϑ [30].
To minimize the equation we use the Levenberg-Marquardt algorithm. This method
is used to solve nonlinear least squares problems. The LM algorithm “can be
thought as a combination of steepest descent and the Gauss-Newton method. When
the current solution is far from the correct one, the algorithm behaves like a steepest
descent method" [31], so it is slow but guaranteed to converge. When the current
solution is close to the correct solution, it becomes a Gauss-Newton method. For
further clarification about the algorithm, see [32].
The final goal is to find values of ϑ and K that optimizes the initial problem. After
finding our unknown quantities solving a single equation, we realized that the values
found were far from what we expected, so we decided to face the problem in a
different way.
At the beginning, we assume to know of how the trajectory is translated and we
want to estimate the rotation matrix. Subsequently, after finding the matrix that
best fits the problem, we impose to know of how the trajectory rotates, using
the newly calculated matrix and around which axis and then we calculate the
translation vector. After computing at the first iteration the rotation matrix and
the translation vector, we repeat the procedure until we notice the convergence of
the values in a predetermined bound. The problem with this method is that it is
only valid for absolute measures.

4.2 Hand-eye calibration method
We are looking for a method that will ensure a solution with measures of a relative
nature.
In this section, we consider a system composed of rigidly coupled cameras with
non overlapping view, setup that, nowadays, is very common, for example, in the
automotive industry. In Figure 4.2, there is an example of a multi-camera systems.
It consists of two camera clusters, one on each side of a vehicle. The cameras are
attached to the car and can be considered a rigid body [42]. In Figure 4.3, we can
see another example of multi-camera system in automotive field, used to reduce

48



Calibration algorithms for a multi-camera system

Figure 4.2: Multi-camera system

accidents in working environments. In fact, multi-camera system for forklift trucks
facilitates precision manoeuvring.

Figure 4.3: Multi-camera system for forklift trucks facilitates precision manoeuvring

At first, considering our model, let us imagine to generate two trajectories, seen in
the local camera reference frame, with two cameras, simulating a rigid body. Each
camera, assuming that there is not an overlapping view, captures an individual
sequence, processed by a structure and motion algorithm. The transformations
between the two cameras are estimated using the rigidity constraint of the rig. Let
us consider two trajectories in their local reference systems. The change between
two Cartesian reference frame is described by a similarity transformation, that is
of the form

T =
A
λR C
0T 1

B
(4.6)

where λ is the scale, R is the rotation matrix and C is the translation between the
two reference frames.
Through the reading of the trajectories, we can obtain two rotation matrices, that
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we call R0k and Rik, in which the subscript 0 represents the master camera and the
subscript i represents the client camera, at time k. In the same way, we can get
the position vectors, C0k and Cik and consequently the transformation matrices T0k
and Tik [33].

T k
i =

A
Rk

i Ck
i

0T 1

B
(4.7)

Obviously the initial pose of each camera is then given by R0
i = I and C0

i = [0 0
0]T .
To switch from one reference system to the other one, we can act in two ways. By
first changing system of reference of the master at time k and then by using the
transformation [33].

T k
0 ∆Ti (4.8)

or, by first applying the transformation and then by changing the system of refer-
ence at time k.

∆TiT
k
0 (4.9)

So, at the end, we will have

T k
0 ∆Ti = ∆TiT

k
0 (4.10)

Decomposing the equation 4.10 into one constraint regarding only rotation, it be-
comes

Rk
0∆Ri = ∆RiR

k
0 (4.11)

while, linking both orientation and position constraints, the equation 4.10 becomes

Rk
0∆Ci + Ck

0 = ∆λi∆RiC
k
i + ∆Ci (4.12)

When the rig rotates and translates, first we consider the rotation through the
equation 4.11, and then we consider the position with the equation 4.12.
Replacing, in the equation 4.11, the rotation matrices by quaternions q, we will
have

qk
0∆qi = ∆qiq

k
0 (4.13)

or, equivalently
(Tq0k − T ∗

q0k)∆qi = 0 (4.14)

where Tq and T ∗
q define left and right multiplication with quaternion

q = (w, x, y, z)T . Let us derive a linear system of equations with unknows
∆qi = (∆wi ∆xi ∆yi ∆zi)T , imposing that |∆qi| = 1,

wk
0 − wk

i −xk
0 + xk

i −yk
0 + yk

i −zk
0 + zk

i

xk
0 − xk

i wk
0 − wk

i −zk
0 − zk

i yk
0 + yk

i

yk
0 − yk

i zk
0 + zk

i wk
0 − wk

i −xk
0 − xk

i

zk
0 − zk

i −yk
0 − yk

i xk
0 + xk

i wk
0 − wk

i




∆wi

∆xi

∆yi

∆zi

 =


0
0
0
0

 (4.15)
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Now, to solve the problem, it is sufficient to find the eigenvector of A associated
with its smallest positive eigenvalue, thus obtaining the quaternion that will form
our rotation matrix [34], where

A =
NØ

i=1
(Ak

i )T ∗ Ak
i (4.16)

However, this method is not effective for the presented setup.
This problem is due to the fact that, since there are many sources of perturbations
errors associated with camera calibration, the parameters of models robots are not
perfect. It follows that the estimation of the hand-eye transformation has errors
associated with it and it is important to quantify these errors in order to determine
the stability of a given method.
Therefore, in the following, we will introduce another method based on the Iterative
Closest Points (ICP) algorithm.

4.3 Iterative Closest Point method
As the method described above does not work properly, we examine a new procedure
to estimate the rotation matrix.
We now consider two simple straight trajectories. We push them to the Iterative
Closest Point and at the end, we find the estimated rotational matrix ∆Ri. So, once
the internal rotation ∆Ri has been found, we rely again on the method proposed
in [33] in order to find the translation vector ∆Ci, that can be found by starting
from the equation 4.12 and so by solving the following linear system, where ∆λi is
the scale and it is equal to 1 [33].
In this case, the two trajectories used will not be straight, but they will be two
general trajectories, otherwise the algorithm is not observable.

1
I −Rk

0 ∆RiC
k
i

2
ü ûú ý

Bk
i

A
∆Ci

∆λi

B
= Ck

0 (4.17)
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Chapter 5

Numerical simulation and
real world experiments

In this chapter, we deal with the experimental validation of the methods introduced
in the chapter 4. After verifying that all the methods work properly, we prove that
they are also valid experimentally, testing them first in simulation and then with
real data. With regard to simulated data, we used both trajectories derived in
simulation and from a dataset. We used a dataset simulating the navigation of the
robot. The data is collected in photo-realistic simulation environments with the
presence of moving objects, changing light and different weather conditions [43].
The data obtained in simulations are organized in different groups, such as stereo
RGB image, depth image, segmentation, optical flow, camera poses and LIDAR
point cloud. Among all these, we decided to start from the depth images, collected
by both left and right cameras.
Figure 5.1 shows what the left camera sees, while Figure 5.2 shows what the right
camera sees.
The dataset contains also two text-files reporting the real trajectory traveled by the
two cameras, namely left and right. Each line in the file contains seven elements,
of which, the first three elements represent the position along the x-axis, y-axis
and z-axis and the remaining four values represent quaternions, which provide a
mathematical notation for the representation of orientations and rotations of objects
in three dimensions.

5.1 Levenberg-Marquardt method
Given two trajectories, after finding mathematically the rotation matrix and the
translation vector which specifies how these are placed between them, we simulate
a straight trajectory to verify that our assumptions were confirmed.
We imposed that the true values of the rotation angles were 0° around the x-axis,
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Figure 5.1: Room seen from left camera

Figure 5.2: Room seen from right camera

0° around the y-axis and 90° around the z-axis.
By referring to the pseudocode 1, we define:

• the initial trajectory P1 and a hypothetic translation vector and a hypothetic
rotation matrix;

• a function lsqnonlin, that solves non-linear least squares problems and returns
as result the variable LSlsqR;

• a function Rodriguez, that solves the Rodrigues’ formula finding the estimated
rotation matrix Rhat.
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Algorithm 1: Rotation matrix
Data: P1

1 Hypothetic Data: R, C
2 Initialization;
3 P2 = R ∗ P1 + C;
4 LMlsqR = lsqnonlin(P1, P2, C);
5 Rhat = Rodriguez(LMlsqR);
6 return Rhat;
Through the algorithm, we found as final angles values 0° around the x-axis, 0°
around the y-axis and -90° around the z-axis. As you can see there is an error on
the estimation of the angle around the z axis, but this is due to the fact that we
were estimating the opposite rotation, then the estimate is correct. In effect, by
modifying the algorithm setting, also in this case, we have the desired final result.
As regards the displacement, initially we imposed a translation of -0.2335 meters
along the x-axis, -0.0890 meters along the y-axis and 0.0081 meters along the z-axis.
After running the algorithm reported in Algorithm 2, the estimated values found
coincide with the initial ones.
Algorithm 2: Translation vector
Data: P1 and Rhat

1 Hypothetic Data: C
2 Initialization;
3 P2 = Rhat ∗ P1 + C;
4 LMlsqC = lsqnonlin(P1, P2, R);
5 Chat = Rodriguez(LMlsqC);
6 return Chat;
The pseudocode Algorithm 2 is very similar to the 1, but there are small differ-

ences, in fact there is:

• a function lsqnonlin, that solves non-linear least squares problems and returns
as result the variable LSlsqC ;

• a function Rodriguez, that solves the Rodrigues’ formula finding the estimated
translation vector Chat.

Now, starting from the same values as previously chosen for the angles and the
translation, let us add a noise with zero mean value and 0.01 of standard deviation,
to each coordinate of each trajectory point.
Also in this case, as in the ideal case, the estimated values are equal to those initially
imposed.
Subsequently, in order to stress the algorithm and try it even more, we used also
non-straight trajectories.
We imposed again a rotation around the z-axis of 90° and a translation of -0.2335
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meters along the x-axis, -0.0890 meters along the y-axis and 0.0081 meters along
the z-axis. Also in this case, after executing the code, we found a rotation around
the z-axis of -90°, due to the fact that we were estimating the opposite rotation.
As regard the translation, the estimated values coincide with those calculated at
the beginning.
Here too, we added a noise with zero mean value and 0.01 of standard deviation to
each coordinate of each trajectory point and we noticed that the obtained results
are as those studied in the previous case.
Now we obtain, from a dataset, a real trajectory and we simulated that this was
rigidly attached to another camera.
We applied again the above method and we found the new values of the rotation
matrix R and the translation vector C.
In this case, not knowing the initial values, we can not make a comparison between
the values imposed and estimated, so we compute the mean value and the standard
deviation.
In the same way, we calculate the mean value and the standard deviation for the
displacement vector.
In the table 5.1 are shown the mean value and the standard deviation of the rotation
angles around x, y and z axes, that we respectively define ϑ, ϕ and ψ. While, in the
table 5.2 there are the mean value and the standard deviation of the translation
along the x, y and z axes, that we can define Cx, Cy and Cz. As we can notice,

mean value [degrees] standard deviation [degrees]
ϑ −0.0956 0.0010
ϕ 0.4035 0.0009
ψ 0.0601 0.0069

Table 5.1: Mean value and standard deviation of the rotation matrix

mean value [meters] standard deviation [meters]
Cx −0.2317 0.0037
Cy −0.0645 0.0007
Cz 0.0116 0.0006

Table 5.2: Mean value and standard deviation of the translation vector

the standard deviation assumes small values, as we hoped.
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5.2 Hand-eye calibration method
In order to test this method, thanks to the Simulink tool, we used a block rigid
body, that after receiving as input the variables the body mass, the forces acting on
it, the inertia matrix and the time, it returns a trajectory.
Thus, we generate two trajectories, seen in the local camera reference frame, with
two cameras, simulating a rigid body.
We have arbitrarily imposed the position of two cameras in the body reference
system and then we computed the trajectories in the local camera reference system.
In Algorithm 3 is shown the pseudocode of the method that allows to estimate the
angles and the displacement, explained in the chapter 4.

Algorithm 3: Computation of the rotation matrix
Data: R0 and Ri

1 q0 = rotm2quat(R0);
2 qi = rotm2quat(Ri);
3 T0 = q0(:, k);
4 Ti = qi(:, k);
5 Ai = T0 − Ti;
6 A = AT

i ∗ Ai;
7 eigenvectors = eig(A);
8 ∆R = quat2rotm(eigenvectors);
9 return eigenvectors and ∆R;

As regard the translation, the various steps to be taken to find the final result are
shown in the Algorithm 4. Formulae are those mentioned in the chapter 4.

Algorithm 4: Computation of the translation vector
Data: C0 and Ci

1 Use a formula to compute Bi;
2 Use a formula to compute ∆C;
3 return ∆C;

As we expected from the theory, the method does not respect our requirements. In
fact, as we can see in the table 5.3 and in the table 5.4, the estimated values are
far from the initial ones. In order to notice even more the difference between the
two values, we computed the error as the norm of the difference between estimated
and expected value.

errR = |∆R−R0| (5.1)

errC = |∆C − C0| (5.2)
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initial values [degrees] estimated values [degrees]
ϑ −25.0376 180
ϕ 0 0
ψ 0 180

Table 5.3: Initial values and estimated values of the angles

initial values [meters] estimated values [meters]
Cx 0 0.4699
Cy 0 −1.2019
Cz 0 0

Table 5.4: Initial values and estimated values of the translation

As we can see in Figure 5.3 for the translation vector and in Figure 5.4 for the angles
of rotation, the fact that the errors are not uniform is due to a large difference
between the two considered values.

5.3 Iterative Closest Point method
Since the method described in the previous section do not meet our requirements,
we adapted it. Starting from the procedure described in [33], we modified it using
the same setup but not the same formulas presented. Therefore, we have decided
to use the Iterative Closest Point method, as it is able to achieve as a result the
transformation, i.e. a combination of rotation and translation, between a reference
and a source, and that is in our case the master camera and the client camera. The
ICP method is one of the most used models when you have as initial guess a rigid
transformation.
In order to verify the proper functioning of the algorithm, we examine the same
setup considered in the previous section. We look at a rigid body, on which no
external forces act, thus it goes straight and it generates straight lines. Since the
problem examines the case with two cameras, for simplicity, we consider that the
trajectory of the center of mass of the body coincides with the trajectory of the
master camera.
We impose that the slave camera is rotated 45° along the x-axis, 30° along the
y-axis and 90° along the z-axis and is translated of 2 meters along the x-axis and 1
meter along the y-axis. In this first case then, we consider two simple trajectories.
The ICP algorithm, as shown in Algorithm 5, solves our problem:
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Figure 5.3: Norm of the translation vector

Figure 5.4: Norm of the rotation matrix

• we define Phat, that is where the master camera starts;

• a function pointCloud computes the lines followed by the master and the client
cameras;

• a function pcregistericp registers two point clouds using ICP algorithm;

• compute the new rotation matrix ∆R.

In the ideal case, the estimated values are equal to the initial ones.
On the other hand, by calculating the vector, there is a significant difference be-
tween the estimated values and the initial ones, as we can see in the table 5.5.
Thus, we modified the algorithm using generic trajectories rather than straight tra-
jectories, as shown in Algorithm 6.
In this way, the estimated values of the translation vector are equal to the initial
ones.
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Algorithm 5: Computation of the rotation matrix
Data: Phat

1 Hypothetic Data: R
2 P0 = Inizializestraighttraj();
3 P1 = P0 +R ∗ Phat;
4 line0 = pointCloud(P0);
5 line1 = pointCloud(P1);
6 tform = pcregistericp(P0, P1);
7 ∆R = tform.Rotation;
8 return ∆R

Algorithm 6: Computation of the translation vector
Data: Phat

1 Hypothetic Data: R
2 P0 = randn();
3 P1 = P0 +R ∗ Phat;
4 traj0 = pointCloud(P0);
5 traj1 = pointCloud(P1);
6 Use a formula to compute Bi;
7 Use a formula to compute ∆C;
8 return ∆C;
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initial values [meters] estimated values [meters]
Cx 2 −0.0589
Cy 1 0.025
Cz 0 0.120

Table 5.5: Initial values and estimated values of the translation with the ICP

Then, we try to study the trajectories to modify of the uncertainty, seeing how
estimates vary as the noise changes.
So, we add a noise to every point of the trajectory, considering a range within which
the noise varies, for example between 0 and 0.1 with a step of 0.01, in order to have
at the end a series of different trajectories with different amounts of noise and we
repeated the above calculations. Obviously, in this situation where we are not in
the ideal case, thus the values found will not be equal to the initial ones, but they
are very close. In fact, in the table 5.6, we can see the values of the angles, while
in the table 5.7 we can see the values of the translation.

initial values [degrees] estimated values [degrees]
ϑ 45 44.13
ϕ 30 29.95
ψ 90 89.08

Table 5.6: Initial values and estimated values of the angles with the ICP

The veracity of the results is also shown by calculating the error as the norm of the
difference between estimated and expected value.

errR = |∆R−R0| (5.3)

errC = |∆C − C0| (5.4)

As displayed in Figure 5.5 for the angles and in Figure 5.6 for the displacement, the
error settles then the two measures acquire very similar values. Moreover, having
considered a trajectory in which noise varies over time, we can show boxplots, that
highlight the various changes. For semplicity, in Figure 5.7, are shown the boxplots
of the estimated angles of a single noise level, rather than having as many boxplots
as there are noise levels.
The red line indicates the median, and the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively.
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initial values [meters] estimated values [meters]
Cx 2 1.75
Cy 1 1.02
Cz 0 0

Table 5.7: Initial values and estimated values of the translation with the ICP

Figure 5.5: Norm of the rotation matrix

In Figure 5.8, there is the graph that represents the three coordinates considering,
also in this case, a single noise level.
The more flat the boxes, the more correct the result, because it means that there
is not much variance.
After verifying that the algorithm works, we used a real trajectory, caught by a
camera. For this work, the RealSense T265 was chosen.

5.4 Real world measurements
To the trajectory generated from the camera, we rigidly attached another camera,
thus obtaining a final trajectory. Let us imagine a rigid system in which there are
two cameras, placed as shown in Figure 5.9, that move simultaneously. The camera
on the right of the rigid body is the client, the other one is the master.
The system, moving, registers a trajectory, that is saved in some rosbags. In our
experiment, we have two kind of bags, one representing a straight line and the other
one representing a general trajectory. These acquisitions are done under controlled
conditions to assess the estimation error.
Before reviewing the code, we need to make sure that the acquisitions of both cam-
eras are synchronized. In order to do this, it is necessary to know the time stamp of
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Figure 5.6: Norm of the translation vector

Figure 5.7: Boxplot of the estimated angles

the master camera and the client camera and make sure that the i-th element of one
corresponds to the i-th element of the other one. Since, in our case, the acquisition
is not synchronous, we will never have the same time stamp for the two cameras.
Thus, it is indispensable associate each element of the client to the master, since
the latter is composed of fewer elements. We impose a threshold and we affirm that
all the data that fit into its window, is as if they were contemporary. The difference
between the two acquisitions is really minimal, in fact we are able to measure it
only if we consider the nanoseconds. In Algorithm 7 are shown the various steps
just described. In order to estimate the rotation matrix, we utilize the straight
line, while to estimate the position vector, we use the general trajectory and we
proceed according to the ICP algorithm and we repeat the procedures explained in
the previous section.
In table 5.8 the imposed and the estimated values of the angles are shown, while
in the table 5.9 there are the same values, but regarding the translation. As
expected, the values are similar to the imposed ones. Also in this case, we find the
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Algorithm 7: Synchronization of the acquisitions
1 Impose a threshold;
2 Start from msgStructsM ;
3 Start from msgStructsC ;
4 return the difference of nanoseconds;
5 while the difference is greater or equal to the threshold do
6 if the length of the master has been exceeded then
7 return;
8 else
9 Compute the new difference;
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Figure 5.8: Boxplot of the estimated distance

Figure 5.9: Rigid system

negative sign only because we consider the opposite direction of rotation.
At this point, to test even more the algorithm, always starting from the two cam-
eras, we generated again two type of trajectories, one straight and one general. On
these paths, we made a series of acquisitions, to which we have applied the above
mentioned procedures.
At first, our initial measurements of the angles of rotation and the distance between
the two cameras were measured by hand, so inaccurately and with systematic er-
rors of measures. In this way, we do not know the real initial value. Therefore,
the ultimate goal is not to find the error of estimation, but the variance and the
standard deviation.
In the table 5.10 the values of the angles are shown, while in the table 5.11 the
values of the displacement are shown. As we hoped, the standard deviation should
converge to a low value, which means that our value is very close to the real value.
Subsequently, we were able to do controlled acquisitions and to compare the initial
and final measurements, as shown in the table 5.12 for the angles and in the table
5.13 for the displacement. As we can see the estimated values are very close to
those calculated.
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initial values [degrees] estimated values [degrees]
ϑ 180 −179.6
ϕ 0 2.90
ψ 90 101.19

Table 5.8: Initial values and estimated values of the angles with the real acquisitions

initial values [meters] estimated values [meters]
Cx −0.66 −1.16
Cy 0.045 0.049
Cz −0.21 0.41

Table 5.9: Initial values and estimated values of the translation with the real ac-
quisitions

Moreover, in Figure 5.10 the boxplots of the estimated angles are shown, while in
Figure 5.11 there are the boxplots of the displacement, and since the boxes are flat,
we can notice that the estimates are very good.
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mean value [degrees] standard deviation [degrees]
ϑ 179.3388 0.3460
ϕ −0.1756 0.1459
ψ 86.9271 0.9888

Table 5.10: Mean value and standard deviation of the angles with the real acquisi-
tions

mean value [meters] standard deviation [meters]
Cx −0.0839 0.5251
Cy 0.0616 0.5537
Cz −0.0350 0.3311

Table 5.11: Mean value and standard deviation of the translation with the real
acquisitions

initial values [degrees] estimated values [degrees]
ϑ 180 179.3388
ϕ 0 −0.175
ψ 90 88.93

Table 5.12: Initial values and estimated values of the angles with the real acquisi-
tions

initial values [meters] estimated values [meters]
Cx −0.66 −0.083
Cy 0.09 0.072
Cz −0.21 −0.135

Table 5.13: Initial values and estimated values of the translation with the real
acquisitions
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Figure 5.10: Boxplots of the estimated angles

Figure 5.11: Boxplots of the estimated distance
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Chapter 6

Conclusions

The aim of the thesis is to propose new techniques in order to estimate the pose
of a multi-camera systems. In our case, we used only two cameras, that are able
to capture a sequence of 3D point clouds. Thanks to the collected data, each
camera estimate a trajectory, through SLAM algorithms. Then, starting from the
trajectory, we used extrinsic calibration methods in order to compute the relative
pose between the two cameras.
The initial idea was to use a dataset for robot navigation tasks, whose data collected
in simulation by two cameras produced a trajectory. However, we have notice
that SLAM algorithms did not work well in more complex scenarios, where for
example there were challenging viewpoints or diverse motion patterns. In fact,
these situations are difficult to achieve by using physical data collection platforms.
Thus, we studied a series of extrinsic calibration methods in order to achieve our
goal.
The setup is based on two cameras rigidly coupled and estimating the trajectory
accomplished by these, we have been able to know the constraint that exists between
them, that is how much they are shifted and rotated between them.
The choice of using SLAM algorithms compared to other techniques, for example
theGlobal Positioning System or GPS, has been dictated by specifications related to
measurement uncertainty and feasibility. In fact, the GPS is accurate compared to a
global scale, so the accuracy decreases equated to a room or a small area. Moreover,
it is a satellite-based system, suffering from physical limitations. SLAM algorithms,
instead, use as much data as possible to create the surrounding environment map.
In order to satisfy the accuracy requirements, we developed a series of methods.
The first one, the Levenberg-Marquardt, does not fully meet our specifications,
because it is valid only for absolute measures. Instead, the procedure based on the
hand-eye calibration works partially, i.e. it perfectly estimates the rotation, but is
not able to estimate the translation as well. At the end the last procedure, that is
the combination between the last method and the Iterative Closest Point, converges
to the optimal solution.
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After testing the simulation algorithms, we wanted to use real data and we had
to use a robot to record the trajectory taken and collect the data. The actual
robot, shown in Figure 6.1, is the 4WD Four wheel steering robot with suspensions
for autonomous navigation and outdoor applications, designed and developed by
robodyne srl. Unfortunately, for timing problems and other situations, we have

Figure 6.1: 4WD Four wheel steering robot with suspensions for autonomous nav-
igation and outdoor applications

never been able to use it. That is why, we adapted and used a more domestic
system, using a chair with two cameras to reproduce a trajectory.
What we set out to do, has been completed, i.e. to estimate the relative pose of
the two cameras.
However, in the future, one might consider continuing the work studying methods to
improve accuracy and precision. A solution could be to consider a more controlled
environment and initially less subject to noise or making the environment more
infrastructural.

69



Bibliography

[1] Come i robot trasformeranno l’agricoltura,ht-apps.eu, March 2020.
[2] Alessandro Zorer, I farmbot e la diffusione dei robt in agricoltura, maker-

fairerome.eu, April 2020.
[3] Gian Basilo Nieddu, Farmdroid: il robot agricolo alimentato dal sole, vaielet-

trico.it, July 2020.
[4] Mobile Robots in Industry 4.0: automation and flexibility, robotnik.eu, Jan-

uary 2021.
[5] Sarah Moore, Applications of Machine Vision in Robotics,

www.azorobotics.com, December 2019.
[6] Wang Qi, Fu Li and Liu Zhenzhong, Review on Camera Calibration, Control

and Decision Conference (CCDC), 2010 Chinese, June 2010.
[7] Wang Qi, Fu Li and Liu Zhenzhong, Instrument Calibration for the 21st Cen-

tury, MSPS 57th Annual Meeting, St. Cloud, MN, January 2009.
[8] Renbo Xiaa, Maobang Hua, Jibin Zhaoa, Songlin Chena, Yueling Chena and

ShengPeng Fua, Global calibration of non-overlapping cameras: State of the
art, Optik - International Journal for Light and Electron Optics, December
2017.

[9] Ram Krishan Kumar, Adrian Ilie, Jan-Michael Frahm and Marc Pollefeys,
Simple Calibration of Non-overlapping Cameras with a Mirror, 2008 IEEE
Conference on Computer Vision and Pattern Recognition, June 2008.

[10] Pierre Lébraly, Eric Royer, Omar Ait-Aider and Michel Dhome, Calibration of
non-Overlapping Cameras-Application to Vision-Based Robotics, Proceedings
of the British Machine Vision Conference, January 2010.

[11] Branislav Micusik, Relative pose problem for non-overlapping surveillance cam-
eras with known gravity vector, Conference on Computer Vision and Pattern
Recognition. IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, July 2011.

[12] Peter Sturm and Thomas Bonfort, How to Compute the Pose of an Object
without a Direct View?, Asian Conference on Computer Vision, January 2006.

[13] Qianzhe Liu, Zhen Liu, Junhua Sun and Guangjun Zhang, Global calibration
method of multi-sensor vision system using skew laser lines, Chinese Journal
of Mechanical Engineering 25, March 2012.

70



Bibliography

[14] Giulio Figari, Rubrica: Image Processing – Pt2, gpemmocap.wordpress.com,
March 2017.

[15] Martin Ingvaldsen, Understanding the importance of 3D hand-eye calibration,
blog.zivid.com, November 2019.

[16] Cos’è un sensore e a cosa serve?, dewesoft.com, March 2020.
[17] Jackson Morgan, Light Sensors: Units, Uses, and How They Work,

blog.endaq.com, October 2018.
[18] SENSORI DI TEMPERATURA, luchsinger.it.
[19] Gianluigi Torchiani, Sensori ottici: cosa sono, come funzionano, tipologie e

ambiti applicativi, internet4things.it, January 2020.
[20] Come calibrare un sensore per misure accurate, inquinamenti-italia.com.
[21] Faraz M. Mirzaei, Extrinsic and Intrinsic Sensor Calibration, University of

Minnesota, December 2013.
[22] Jonathan Brookshire and Seth Teller, Extrinsic Calibration from Per-Sensor

Egomotion, MIT Computer Science and Artificial Intelligence Laboratory.
[23] Shuai Dong, Fujun Yang and Xinxing Shao, Extrinsic Calibration of a non-

overlapping camera network based on close-raneg photogrammetry, Applied
Optics, August 2016.

[24] Qilong Zhang and Robert Pless, Extrinsic Calibration of a Camera and Laser
Range Finder, Intelligent Robots and Systems, Intelligent Robots and Systems,
January 2004.

[25] Subodh Mishra, Gaurav Pandey and Srikanth Saripalli, Extrinsic Calibration
of a 3D-LIDAR and a Camera, Intelligent Vehicles Symposium, May 2020.

[26] Junhao Xiao, Chenghao Shi, Kaihong Huang and Qinghua Yu, Extrinsic Cal-
ibration and Odometry for Camera-LIDAR Systems, Modeling the Disaster
Environment Using Intelligent Mobile Robots, September 2019.

[27] Jun Zhang, Prarinya Siritanawan, Yufeng Yue and Chule Yang, A Two-step
Method for Extrinsic Calibration betvween a Sparse 3D LIDAR and a Thermal
Camera, 15th International Conference on Control, Automation, Robotics and
Vision, November 2018.

[28] Andrea Onofri e Dario Sacco, Metodologia sperimentale per le scienze agrarie,
Capitolo 11: I minimi quadrati, October 2010.

[29] Andrea Onofri e Dario Sacco, Least squares method,CNR.
[30] Paolo medici, Parametrizzazione Asse-Angolo, November 2017.
[31] Manolis I. A. Lourakis, A Brief Description of the Levenberg-Marquardt Al-

gorithm Implemened, Institute of Computer Science, Foundation for Research
and Technology, February 2005.

[32] Henri P. Gavin, The Levenberg-Marquardt algorithm for nonlinear least
squares curve-fitting problems, Department of Civil and Environmental En-
gineering Duke University, September 2020.

71



Bibliography

[33] Sandro Esquivel, Felix Woelk, and Reinhard Koch, Calibration of a Multi-
camera Rig from Non-overlapping Views, Pattern Recognition, Christian-
Albrechts-University, 24118 Kiel, Germany.

[34] Radu Horaud and Fadi Dornaika, Hand-eye Calibration, HAL archives-
ouvertes, May 2011.

[35] Prochazkova Jana and Martisek Dalibor, NOTES ON ITERATIVE CLOSEST
POINT ALGORITHM,17th Conference on Applied Mathematics APLIMAT,
Slovak University of Technology in Bratislava, Faculty of Mechanical Engineer-
ing, April 2018.

[36] Nabil Madali, Structure from Motion, towardsdatascience.com, June 2020.
[37] Abdou Shalaby, Mohammed Elmogy and Ahmed Abo El-Fetouh, Algorithms and

Applications of Structure from Motion (SFM): A Survey, International Journal
of Computer and Information Technology, November 2017.

[38] JOHAN FREDRIKSSON, ROBUST ROTATION AND TRANSLATION ES-
TIMATION IN STRUCTURE FROM MOTION, Lund University, Faculty of
Engineering, Centre for Mathematical Sciences, 2016.

[39] Abdou Shalaby, Mohammed Elmogy and Ahmed Abo El-Fetouh, Algorithms and
Applications of Structure from Motion (SFM): A Survey, International Journal
of Computer and Information Technology, November 2017.

[40] Jana Procházková and Dalibor Martišek, Notes on Iterative Closest Point Al-
gorithm, Faculty of Engineering, 17th Conference on Applied Mathematics
APLIMAT, April 2018.

[41] Ying He, Bin Liang, Jun Yang, Shunzhi Li and Jin He, An Iterative Clos-
est Points Algorithm for Registration of 3D Laser Scanner Point Clouds with
Geometric Features, Sensors, August 2017.

[42] Brian Clipp, Jae-Hak Kim, Jan-Michael Frahm, Marc Pollefeys and Richard
Hartley, Robust 6DOFMotion Estimation for Non-Overlapping, Multi-Camera
Systems, 9th IEEE Workshop on Applications of Computer Vision, January
2008.

[43] Wang, Zhu, Wang, Hu, Qiu, Wang, Hu, Kapoor and Scherer, TartanAir: A
Dataset to Push the Limits of Visual SLAM, Cornell University, August 2020.

[44] Wolfram Burgard, Cyrill Stachniss, Kai Arras and Maren Bennewitz, Intro-
duction to Mobile Robotics - SLAM: Simultaneous Localization And Mapping,
University of Freiburg.

[45] Norlida Mohamad Yatim and Norlinda Buniyamin, Particle filter in simulta-
neous localization and mapping (SLAM) using differential drive mobile robot,
Jurnal Teknologi, December 2015.

[46] Sebastian Thrun, Simultaneous Localization and Mapping, Springer Tracts in
Advanced Robotics.

[47] What is SLAM?- What is SLAM and how does it work?, GeoSLAM.com.
[48] What Is SLAM? 3 things you need to know, mathworks.com.
[49] Tim Field, Jeremy Leibs, James Bowman, Dirk Thomas, rosbag, ROS.org.

72



Bibliography

[50] Michele Nasi, Intel presenta la videocamera di tracciamento RealSense T265:
cos’è e come funziona, Soluzioni Tecnologiche, January 2019.

[51] Davide Scaramuzza and Zichao Zhang, Visual-Inertial Odometry of Aerial
Robots, arXiv.org, June 2019.

[52] Fulvio Barbato, Intel presenta Intel RealSense T265, spaziotech.it, January
2019.

[53] Adnan Ademovic, An Introduction to Robot Operating System: The Ultimate
Robot Application Framework, toptal.com, January 2016.

[54] Yahya Tawil, An Introduction to Robot Operating System (ROS), allabout-
circuits.com, June 2017.

[55] About ROS, ros.org.
[56] YoonSeok Pyo, HanCheol Cho, RyuWoon Jung and TaeHoon Lim, ROS Robot

Programming - A Handbook Written by TurtleBot3 Developers, December
2017.

73


	List of Tables
	List of Figures
	Calibration, sensors and multi-camera vision system
	Calibration
	Why calibrate the instruments?
	Sensors
	Calibration of sensors

	Calibration in multi-camera vision systems
	Methods of global calibration for non-overlapping cameras


	Extrinsic Calibration Procedures
	Extrinsic Calibration
	Extrinsic Calibration of a camera and laser range finder
	Extrinsic Calibration of a 3D-Lidar and a camera
	Extrinsic Calibration and odometry for camera-LIDAR systems
	Extrinsic Calibration with a thermal camera
	Extrinsic Calibration of the non-overlapping camera network
	What is the best way?

	Methodologies and instruments
	Structure From Motion
	Iterative Closest Point
	Simultaneous Localization And Mapping
	Real Sense T265 and Visual Inertia Odometry
	Robot Operating System and rosbag

	Calibration algorithms for a multi-camera system
	Levenberg-Marquardt method
	Hand-eye calibration method
	Iterative Closest Point method

	Numerical simulation and real world experiments
	Levenberg-Marquardt method
	Hand-eye calibration method
	Iterative Closest Point method
	Real world measurements

	Conclusions
	Bibliography

