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Abstract

The main goal of this thesis is to derive mathematical models which describe
the static and dynamic behavior of three-phase zero-voltage-switching (ZVS)
full bridge (FB) converters, which are commonly used in high power appli-
cations.
The analyzed circuit uses star-connected transformers and a hybdrige recti-
fier, which enhances efficiency by reducing the number of conducting diodes
with respect to traditional full bridge rectifiers.
Switching flow graph (SFG) nonlinear modeling technique combines average
and linearization operations with signal flow graphs theory; such technique
is basically graphical, which makes the analysis intuitive and relatively easy.
The operating modes of the circuit and the steps to derive any switching flow
graph are presented.
The switching flow graph of the circuit under study in then built and the
static and dynamic models are derived from it.
Lastly, time-domain current and voltage waveforms are analyzed to get design
equations of components; the design of a prototype for future measurements
is done and simulations are provided to verify the validity of the mathemat-
ical models.
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Chapter 1

Introduction

1.1 Switch mode power converters

Switch-mode power converters (SMPC) are circuits able to regulate the out-
put voltage through a control signal, the so-called duty cycle, independently
of the input voltage fluctuations and of the load changes. The main reason
why SMPC are so popular is that they have high efficiency, which is the key
parameter when dealing with power electronics.
The control signal is periodic, therefore all the waveforms across the circuit
are periodic. When the transients are expired, the circuit is at steady state,
a condition in which each cycle (or period) is equal to the next one.
The operation of the circuit and the methods to derive mathematical models
of them are presented.

1.1.1 Basic components and operating principle

The components present in basic SMPC topologies are switches and storage
elements. Additional components like transformers and coupled inductors
are present in more complex topologies.

Switches They are components able to behave either as a short circuit
(ON-status) or as an open circuit (OFF-status). Typically, both active
switches (transistors) and passive switches (diodes) are present in SMPC;
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the status of active switches depends on their control signal, whereas the
status of passive switches depends on the circuit. The role of switches in
SMPC is to control the power flow from input to output, according to the
control signal.

Storage elements They are components able to store energy: capacitors
store electric energy, while inductors store magnetic energy.

Operating principle During each cycle, energy is transferred from the
input source to the storage elements, from the input source directly to the
load (the output port) and from the storage elements to the load.
Direct converters transfer energy in all the three ways just mentioned, whereas
in indirect converters there is no direct energy flow from the input source to
the load.
Both in direct and indirect converters each cycle may be divided in two
parts according to the switches’ status: during one part, storage elements
are charged by the input source; during the other one, storage elements dis-
charge transferring energy to the load.

1.1.2 Mathematical models

Mathematical models of the circuits are employed to study and design them.
In SMPC, the static model describes the relation between DC quantities and
it is used to determine the boundaries of the control signal.
The dynamic model describes instead the frequency response of the circuit
and it is used to design a feedback network, which controls dynamically the
output quantities.
The frequency response of a linear time-invariant (LTI) circuit is obtained
applying Laplace transform to the circuit itself. Unfortunately, SMPC are
nonlinear time-variant circuits, therefore some additional operations must be
done.

Average Average operation is applied to obtain an equivalent time-invariant
circuit from the original time-variant one.
According to the status of switches, SMPC work in different topologies; each
of them is an LTI circuit, so they can be described by a linear mathematical
model, like a matrix in the state-space averaging. Since the topology of the
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converter changes with respect to time and those changes are periodic, it is
possible to derive an equivalent representation as the weighted average of
all the topologies with respect to their time duration. The aforementioned
operation is not valid for any mathematical system, but it is valid for SMPC
in general with a good approximation.
Even though average operation keeps the relations between DC quantities
unchanged, it results in some information loss; in fact, time evolution of
signals is not present anymore.

Linearization The circuit resulting from the average operation (or its
equivalent representation, like the matrices in state-space averaging) is still
nonlinear; linearization is then necessary. Linearization consists of consider-
ing the Taylor expansion of the analyzed signal around an operating point
truncated at the first order.
In practice it is assumed that the circuit is working in small condition, which
means that any signal is represented by the sum of its DC value and a vari-
ation, whose amplitude is much smaller than the one of the DC value. If
two or more signals are combined with nonlinear functions, like the multi-
plication, such functions are expanded and the terms whose order is higher
than one are neglected. The order of a term is given by the number of signal
variations present in that term.

1.2 Full bridge DC-DC converters

The circuit that will be analyzed and modeled in the next chapters is a more
complex version of the single phase full bridge converter, which will be first
described. Each element that adds complexity can be analyzed separately,
so they will be presented one by one.

1.2.1 Single-phase full bridge

The most used topology for high power level DC-DC converters is the full
bridge converter, whose topology is reported in Fig. 1.1. It is a buck-derived
isolated converter, which means that its behavior is similar to that of a buck
converter, and it is also galvanically isolated thanks to a transformer.
The output node is connected to the filter inductor as in a buck converter and
the conversion factor, which is defined as the ratio between output voltage

3



SW1

SW2

C

..

1:n

SW3

SW4

D1

D4D2

D3

L

C RV
in in

Figure 1.1: Single phase full bridge converter

and input voltage, depends linearly on the duty cycle.
Transformers are magnetic components able to rescale voltage and currents
according to the turns ratio, which is the ratio between the number of turns
of the windings on the secondary side and on the primary side. Since trans-
formers can work only with AC signals, an inverter circuit is needed between
the input source and the transformer itself.
The output voltage is a pure DC voltage, so the AC signal on the secondary
side of the transformer must be rectified and filtered. The rectifier is needed
because the DC component of an AC signal is zero, whereas the DC value of
a rectified AC signal is non-zero; the output filter is needed because the AC
component present in the rectified signal may be still too large or comparable
with the DC component.

The reason why this circuit is suitable for high power application is that
the stress is better distributed among semiconductor components than for
other buck-derived topologies like push-pull converter or half bridge con-
verter.

Block representation In general, full bridge converters can be repre-
sented as a cascade of functional blocks.

• Input source

• Input filter

• Inverter
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• Transformer

• Rectifier

• Output filter

• Load

INPUT 

FILTER

INPUT

SOURCE
INVERTER TRANSFORMER RECTIFIER LOAD

OUTPUT

FILTER

Figure 1.2: functional blocks description

In the case of the single phase FB shown in Fig. 1.1, the input filter is
a single capacitor, the inverter is implemented as a MOSFET H-bridge, the
transformer is a single phase one, the rectifier is implemented by a Graetz
bridge rectifier and the output filter is a LC filter.

1.2.2 Three-phase operation

Single phase full bridge topology can be modified to make the converter han-
dle more power.
As mentioned previously, an inverter block converts the DC input voltage
into an AC quantity, which is later rectified. It is possible to use three-
phase inverters and, as a consequence, three-phase rectifiers. Three phase
transformers can be used as well as three single-phase transformers; it is con-
venient to connect them in star or in delta configuration, so the number of
semiconductor components in inverter and rectifier blocks can be reduced.
The circuit in Fig. 1.3 shows a three-phase full bridge converter; as it can
be seen, three star-connected single-phase transformers are used and, as a
result, only a pair of transistor is added in the inverter and a pair of diodes
is added on the Graetz brdige recitfier.
Control circuits for three-phase converters are more complicated, but nowa-
days digital control overcomes this issue. On the other hand, three phase op-
eration reduces stresses on components, because it distributed among more
elements. Moreover, input and output currents are at higher frequency, so
the filters can be smaller.
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Figure 1.3: Three-phase full bridge converter with Graetz bridge rectifier

1.2.3 Hybridge rectifier

In any buck-derived converter, the rectifier unit is connected to the induc-
tor of the output filter. Efficiency can be enhanced reducing the number of
conducting diodes of the rectifier, since the losses due to diodes are basically
conducting losses. The hybridge rectifier, whose name is given by mixing the
words hybrid and bridge, combines rectifier and output filter blocks substi-
tuting the high-side diodes of the Graetz bridge with three inductors.
Inductors are magnetic components and they may be quite big in high-power
applications. However, even though the number of inductors and their di-
mension are increased, which leads to a significant increase of the converter’s
volume, losses reduction results in a significant reduction of the dimension
of the heat sink, and the overall volume of the converter is decreased.
The three-phase full bridge converter with Hybridge rectifier is reported in
Fig. 1.4.

1.2.4 Zero-Voltage-Switching

Zero-voltage-switching is an important feature in pulse-width-modulated (PWM)
converters, because it reduces switching losses, which are the main contribu-
tion in transistor losses.
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Figure 1.4: Three-phase full bridge converter with Hybridge rectifier

This effect is due to the resonance between the parasitic capacitances of the
transistors and the equivalent inductance that such capacitance sees at its
terminals. According to the operating modes and to the diodes conducting
on the secondary side, the equivalent inductance seen by the parasitic capaci-
tance can be either the leakage inductance at primary side of the transformer
or the output filter inductor. ZVS is obtained if the energy stored in the
equivalent inductance is large enough to charge the parasitic capacitances.
If the equivalent inductance is the filter inductance, the energy stored in it is
large and ZVS is always reached; if the equivalent inductance is instead the
leakage inductance, the minimum load condition to achieve ZVS should be
verified, as it will be discussed later on.
The ZVS Three-phase full bridge converter with Hybridge rectifier is reported
in Fig. 1.5.

Asymmetrical driving Driving signals of each pair are complementary.
This kind of technique allows for a better exploitation of semiconductors and
makes ZVS effective for a wide load range.
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Figure 1.5: ZVS Three-phase full bridge converter with Hybridge rectifier

1.3 Switching flow graph technique

As mentioned previously, switch-mode power converters are nonlinear time-
variant circuits, so a method to derive an equivalent linear time-invariant
circuit is needed. The proposed method is basically graphical and makes the
analysis intuitive and simple.
Switching flow graph method is presented and an example on a simple con-
verter is given to better understand it.

1.3.1 General overview

Switching flow graph nonlinear modeling technique is a generalized method to
obtain large signal model, static model and dynamic model of PWM switch-
ing converters.
It basically consists of building a signal flow graph for each stage of the con-
verter under analysis, then of performing the average to get a large signal
model of the converter; once the large signal model in obtained, the static
and dynamic models can be obtained from it through linearization.

Signal flow graphs Signal flow graphs are graphical mathematical objects
similar to block diagrams. Like block diagrams, they can be used do describe
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LTI systems only and some mathematical rules, like Mason’s gain formula
and superposition of effects, can be used to derive relations between quanti-
ties.
The way to build a signal flow graph is quite easy: nodes represent signals;
oriented branches, which connect nodes, represent the cause-effect relation
between signals. Each branch has its own transmittance, which quantifies
such cause-effect relation. In electric circuits, nodes are currents and volt-
ages, whereas transmittances are impedances, admittances and constants.
There are two kind of nodes:
Input nodes are connected to other nodes with exiting branches only;
Output nodes are all the other nodes.
Fig. 1.6 reports current and voltage across a resistance and the signal flow
graph related to it.

� 

� 

(a) Schematic representation

� � 
� 

(b) Signal flow graph representation

Figure 1.6: Signals on a resistance

1.3.2 Building large signal model

The steps to derive a switching flow graph and the large signal model asso-
ciated to it are here presented.

State space average-like procedure Similarly to the State-Space Av-
erage method, a SFG of each state needs to be built; all the graphs will be
then merged together, as it is done for matrixes in State Space Average. All
the graphs must have the same nodes (signals). Branches, instead, may exist
in some graphs only, or they can have different transmittance in different
stages.
Each stage is associated with a switching function, which is related to the
time duration of the stage normalized to the switching period.
In the final switching flow graph, the branches which are not the same in
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every graph are substituted by switching branches, which are characterized
by the transmittance and a switching function. The switching function asso-
ciated to the switching branch is the one corresponding to the stage where
the branch exists. It is worth noting that branches can exist in several stages.

(a) ON stage (b) OFF stage

Figure 1.7: Signalflow graphs

Large signal model The large signal model can be derived directly from
the switching flow graph. Each switching branch is substituted by a multi-
plier (the symbol used is an AND gate), whose input signals are the input
node of the switching branch and the large signal value of the switching func-
tion and whose output signal is the output node of the switching branch.
Such a model can be implemented on simulators like Simulink, for instance to
test the large signal stability; moreover, it can be linearized to derive static
and dynamic models.

(a) Switching flow graph (b) Large signal model

Figure 1.8: Switching flow graph and large signal model

1.3.3 Static and dynamic models

The most useful models that are obtained from the switching flow graph
method are the static model, which is describes the behavior of the DC com-
ponent of the signals and the dynamic model, which describes the behavior
of the variation of the signals. Since they are linear, they are actual signal
flow graphs; therefore, they benefit from the mathematical rules associated
to them; for example Mason’s gain formula can be employed to calculate
closed loop transfer functions.
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To obtain these models, it is necessary to translate linearization into graphi-
cal representation. Currents, voltages and control signals can be represented
as the sum of their DC component value and first order variation; assuming
small signal conditions, the variations whose order is higher than one are
neglected.

Static model Switching branches are replaced by continuous branches
whose transmittance is the steady state value of the switching function. The
circuit itself is at steady state, therefore impedances are replaced by their
resistance only and admittances by their conductance. It may be useful to
consider parasitic elements for pure reactive components in order to avoid
having branches with infinite or zero transmittance. After the desired trans-
fer function is obtained, it can be simplified setting to zero (or infinite) the
parasitic elements.
Another possibility is to keep impedances and admittances in the static model
and then calculate the limit for s approaching zero on the final expression of
the desired relation.
Typically, the most important relation is the ratio between the output DC
voltage and the input DC voltage, called static gain, which is indicated with
the letter M .

Dynamic model The nodes of the dynamic model represent the first order
variation of the signals. One additional node should be added for every
independent control signal. Like the static model, the dynamic model is
linear and Mason’s gain formula and superposition of effects can be used.
Typically, the most important relation is the ratio between the variation of
the output voltage and the variation of the control signal, which is indicated
with the letter H.

Mason’s gain formula This formula is used to get relations in systems
that have feedback loops. Let first define what are loops and forward paths
and then derive the formula itself.
A Loop is a path, i.e. a succession of nodes that starts from a node and ends
in the same node. The loop gain is the product of the transmittances of the
branches of the loops. Loops can be independent or touching. Two touching
loops share one or more nodes, whereas independent loops do not share any
node.

11



(a) Steady state signal flow graph � 

� 
� 

� 

� 

(b) Small signal signal flow graph

Figure 1.9: Signal flow graphs

A Forward path is a succession of nodes that starts from a node and ends
to another node without touching any node more than once. There may be
more than one forward path between two nodes. The gain of the forward
path is given by the product of the transmittances of the branches present
in the forward path.
Considering a generic output signal Y2, a generic input signal Y1, their ratio
M is given by the following formula:

M =
Y2
Y1

=
N∑
i=1

Mi∆i

∆
(1.1)

Where:

• N is the total number of forward paths present between the nodes Y1
and Y2

• Mi is the gain of i-th forward path, which is the product of the gain of
the branches that connect directly Y1 to Y2

• ∆i is the Delta obtained excluding the loops that touch the nodes
present on the i-th forward path

• ∆ is a quantity related to the loop gains and is given by the following
expression: ∆ = 1-(sum of all loop gains)+(sum of products of two
independent loop gains)+(sum of products of three independent loop gains)+ ...

1.3.4 Example: buck converter

To better understand switching flow graph technique, a simple converter is
analyzed.
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The topology of the circuit is introduced and the signal flow graphs associated
to each stage of the converter are derived. Then the switching flow graph is
derived from them and finally large signal model, static model and dynamic
model are derived.

Circuit topology The topology of buck converter topology is presented
in Fig 1.10.
Two switches are present: a diode D and a transistor SW . There are two
storage elements: the filter inductor L and the output capacitor Co. The ca-
pacitor Cin is the input filter. The load is here represented by the resistance
R.

L

CD

SW

RV C
in in o

i_L

v_L

v_o

Figure 1.10: buck converter

ON stage When the transistor is conducting, the diode is open and the
input voltage is connected to one end of the inductor, while the other end is
connected to the output voltage. Therefore, the voltage across the inductor
is given by the difference between the input voltage and the output voltage.
Inductors current is equal to the inductors voltage divided by the inductors
impedance and the output voltage is the inductors current multiplied by the
RC parallel impedance.

OFF stage When the transistor is open, the diode conducts; the input
voltage is not connected to inductor, whose voltage is equal to the output

13



Figure 1.11: Signal flow graph - ON stage

voltage with negative sign.

Figure 1.12: Signal flow graph - OFF stage

Switching flow graph As presented previously, the ON stage and OFF
stage signal flow graphs can be merged to obtain a switching flow graph; the
switching function k associated to is defined as:

k =

{
1, 0 < t < TON

0, TON < t < TS

Where TON is the time interval in which the transistor is conducting.
The switching flow graph reported in Fig. 1.13 is obtained substituting the
branch that connects the input voltage to the output voltage with a switch-
ing branch.

Large signal model The large signal model is obtained substituting the
switching branch with a multiplier. The multiplier is represented by an AND
gate; the input signals of such multiplier are the large signal value of the in-
put voltage vin and the duty cycle d, large signal value associated to the

14



Figure 1.13: Switching flow graph

switching function k.

Figure 1.14: Large signal model

As mentioned previously, assuming small signal condition, each signal can
be represented as the sum of its DC value and its variation. The product
between signals can be therefore developed and linearized, as shown in equa-
tion 1.3.
In the case of the buck converter, the only product is the one between input
voltage and duty cycle, equation 1.2.

vL = vin d (1.2)

VL + v̂L = (Vin + v̂in)
(
D + d̂

)
= VinD +Dv̂in + Vind̂+ v̂ind̂ (1.3)

DC values can be grouped together in equation 1.4. Moreover, neglecting
the second order term v̂ind̂, the variation of the voltage across the inductor
is linear, as shown in equation 1.5.

15



VL = VinD (1.4)

v̂L = Dv̂in + Vind̂ (1.5)

Static model The static model is obtained considering DC relations only.
The nodes represent the DC component of the signals. Impedances are sub-
stituted by resistances and the switching branch is substituted by the steady
state value of the duty cycle. The signal flow graph is reported in Fig. 1.15.

Figure 1.15: Signal flow graph - static model

As introduced previously, Mason’s gain formula, can be exploited to get
the steady state relation Vo/V in.
In the case of the buck converter, there is one loop only, whose gain is reported
in equation 1.7. The forward path between Vin and Vo is reported in equation
1.8 and the delta associated to it is reported in figure 1.9. The delta of the
graph is reported in equation 1.10.
RL is the equivalent series resistance of the inductor.

M =
N∑
i=1

Mi ∆i

∆
(1.6)

T = − R

RL

(1.7)

M1 = D
R

RL

(1.8)

∆1 = 1 (1.9)
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∆ = 1− T = 1 +
R

RL

(1.10)

The ratio M = Vo/V in can now be calculated in equation 1.11. If the
equivalent series resistance of the inductor is much smaller than the load
resistance, it can be neglected as shown in equation 1.12

M =
D (R/RL)

1 + (R/RL)
= D

1

1 + (RL/R)
(1.11)

M = D
1

1 + (RL/R)

∣∣∣∣
RL→0

= D (1.12)

Dynamic model The dynamic model is obtained considering signals’ vari-
ations, which are represented by nodes. Since such a model is linear, super-
position of effects can be applied; therefore, when the ratio between the
variation of the output voltage and the duty cycle H = v̂o/d̂ is calculated,
the variation of the input voltage is set to zero.
As for the static model, Mason’s formula is used to get the relation H.

H =
N∑
i=1

Hi ∆i

∆
(1.13)

T = −Zo
ZL

(1.14)

H1 = Vin
Zo
ZL

(1.15)

∆1 = 1 (1.16)

∆ = 1− T = 1 +
Zo
ZL

(1.17)

The transfer function reported in equation 1.18 is obtained inserting equa-
tions 1.14, 1.15, 1.16 and 1.17 in equation 1.6.

H =
Vin (Zo/ZL)

1 + (Zo/ZL)
= Vin

1

1 + (ZL/Zo)
(1.18)
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The ratio ZL

Zo
is calculated in equation 1.19. It is then substituted in

equation 1.18 to obtain the final expression in 1.20.

ZL
1

Zo
= sL

(
sC +

1

R

)
= s

L

R
+ s2 LC (1.19)

H = Vin
1

1 + s L
R

+ s2 LC
(1.20)

The most relevant figures of merit are derived from equation 1.20.

• dynamic gain

H0 =
∂vo
∂d

= Vin

• Complex conjugate poles frequency

fP =
1

2π
√
LC

• Quality factor

Q =
R√
L/C

Figure 1.16: Signal flow graph - dynamic model
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Chapter 2

Derivation of the mathematical
model

2.1 Deep analysis of DMAX operating mode

The topology of the converter is presented and its operating modes are de-
scribed. The operating mode DMAX is deeply analyzed by describing its
stages. The load condition for zero-voltage-switching are then derived and
finally, simulations on the software PSIM are briefly presented.

2.1.1 Circuit description and operating modes

The circuit under study, which was introduced in the first chapter and is
reported in Fig. 2.1, is a three-phase converter, and three sections can be
identified in the circuit. Each section is made by the cascade of a transistor
pair, a transformer and a hybridge rectifier, which is a diode-inductor pair.
The three sections are identical, so the values associated to the components
are the same; for instance, the inductance of all three filter inductors has the
value L. Three-phase operation is obtained by shifting the driving signals of
the transistors by 120◦. Letters A,B,C are associated to each section.
In high power application, the load can be modeled with a current source. In
this analysis, instead, a load resistance is used. Since the output voltage is
constant, there is no difference in the static behavior, but the quality factor
of the frequency response is different.
The behavior of the circuit depends on the duty cycle value, which is related
to the driving signal of the transistors. In PWM converters, the duty cycle
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is defined as the ratio between the time in which the transistor is conducting
and the switching period. Since asymmetrical duty cycle technique is em-
ployed, calling D the duty cycle associated to the high-side transistor, the
duty cycle associated to low-side transistors is 1−D.
According to the duty cycle value, the converter may operate in different
modes: if the duty cycle is smaller than 1/3, the converter works in mini-
mum duty cycle operating mode (DMIN); if the duty cycle is bigger than 1/3
and smaller than 2/3, the converter works in medium duty cycle operating
mode (DMED), whereas if the duty cycle is bigger than 2/3, the converter
works in maximum duty cycle operating mode (DMAX). In DMIN mode,
there are time intervals in which the low-side transistors conduct simultane-
ously, whereas in DMAX mode there are time intervals in which the high-side
transistors conduct simultaneously.
The presence of a parasitic inductances on the primary side introduces load
effect, which is expressed through a dimensionless quantity called normalized
current I ′o. The load effect affects the boundaries of the operating modes
and introduces an intermediate mode called DINT between modes DMIN
and DMED. The most relevant parameters associated to each mode are the
gains: the so-called static gain is defined as the ratio between the output DC
voltage and the input DC voltage; the so-called dynamic gain is defined as
the derivative of the output voltage with respect to the duty cycle, and it is
the gain at the origin of the frequency response transfer function.
The following table reports the boundaries of the operating modes and the
gain related to each one of them.

Operating mode DMIN DMED DMAX
Duty cycle range I ′o < D < 1

3
1
3

+ 2I ′o < D < 2
3

2
3
< D < 1− 2I ′o

Static gain M = Vo/Vin n (D − I ′o) n (D − 3I ′o) n (2− 2D − 3I ′o)
Dynamic gain H0 = ∂Vo/∂D nVin nVin −2nVin

Fig 2.2 shows the static gain vs duty cycle characteristics varying the
normalized current I ′o and assuming turns ratio n = 1.
The dynamic gain is positive in operating modes DMIN and DMED and neg-
ative in DMAX mode, so a 180◦ phase difference is present. Since a feedback
loop is used to control the output voltage, the converter should be designed
to operate either in DMAX or in the DMED/DMIN for stability reasons.
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Figure 2.1: Three phase full bridge with Hybridge rectifier

As already mentioned, to have three phase symmetry, the components of each
section should be equal. In particular, the inductance of all the filter induc-
tors has the same value L and the turns ratio of each transformer is defined
ad the ratio between the number of turns of the windings on the secondary
side and the number of turns of the windings on the primary side Ns/Np = n.

2.1.2 DMAX mode

As it was explained earlier, the converter should be designed to operate ei-
ther in DMAX mode or in DMED and DMIN modes for stability reasons.
Since the dynamic gain of DMAX mode is higher, it is chosen to analyze this
mode.
In steady state conditions, all the signals of the circuit are periodic; due to
three-phase operation, each signal of the three section is delayed of one third
of the period with respect to the other stage, for instance the voltage across
diode D2 is delayed by one third of its period with respect to the voltage
across diode D1. Consequently, the frequency of input and output currents
is three times the switching frequency.
Moreover, the switching cycle can be divided into three sub-cycles, which are
composed by three stages; each section of the circuit experiences the three
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Figure 2.2: Static gain vs duty cycle

stages in a different sub-cycle. A sub-cycle begins when all high-side are
turned on and ends when they are switched all on again. At a cycle-level
analysis, it is assumed that transistor switching is instantaneous.
The stages are defined by the time instants in which the transistors are
switched on and off t0, t1, t3 and an additional time instant t2 which will be
introduced shortly. Fig. 2.3 shows the time intervals in which the transistors
conduct and the time instants just mentioned.
The stages that compose the sub-cycle associated to section A is analyzed.

Stage 1 At time instant t0, when transistor SW6 turns off, transistor SW5

turns on instantaneously and stage 1 begins.
Since transistors SW1 and SW3 were already conducting, all high-side tran-
sistors conduct and the input voltage is not connected to the transformers.
Consequently, no energy is transferred from the input source to the load.
Due to the presence of leakage inductances, the voltage and current at the
primary side of the transformers are not zero. The direction of the currents
depends on the cycle, so basically they have the same direction that they
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Figure 2.3: Transistors’ driving signals and time intervals

had in the previous stage.
Similarly, the diode that is conducting is the one that was conducting in the
previous stage; in this case, diode D3.
The time duration of the stage is the time in which all the high-side transis-
tors are off. Each high-side transistor conducts for a time equal to (1−D)TS
and each sub-cycle lasts TS/3. The duration of stage is the difference between
the two time intervals just mentioned, so (D − 2/3)TS.
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Figure 2.4: Stage 1 - schematic
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Stage 2 At time instant t1 , when transistor SW1 turns off, transistor SW2

turns on instantaneously and stage 2 begins.
The direction of currents in sections A and C must be inverted, so diode D1

starts conducting and its current increases from zero to the output current,
whereas the current through diode D3 decreases from the output current to
zero. When this transition ends, stage 3 begins.
During stage 2, filter inductors behave as current sources because their time
constant is much bigger than the duration of the stage. The input voltage
instead is a voltage source, so basically voltage is forced at the primary side
and current is forced at the secondary side. However, since diodes D1 and D3

conduct, the voltage across the secondary side of sections A and C is clamped
at the same value. The values of voltages and currents are now analyzed to
calculate the time duration of the stage, which depends on the value of the
parasitic inductance and on the output current.
As already introduced, the input source forces voltage at the primary side
and the star-center, which is the common point of the transformers, is fixed
at (2/3)Vin; therefore, the voltage across the parasitic inductance and the
primary side of section A is −2

3
Vin as reported in equation 2.1, whereas the

voltage across the parasitic inductance and the primary side of section C is
1
3
Vin as reported in equation 2.2.

At the beginning of the stage, the current flowing through diode D3 is the
output current Io and it decreases linearly until it reaches zero. The current
through diode D1 instead increases from zero to the output current Io. Since
the currents through filters inductors are assumed constant during the stage,
the current variation in the diodes is the current variation in the secondary
side currents ∆isA = Io.
Since the current at the primary side is equal to the current at the secondary
side multiplied by the turns ratio, the current variation of the primary side
is ∆ipA = ∆ipC = nIo both for sections A and C. As a consequence, the
voltage across parasitic inductances vLdA and vLdC is the same, as reported
in equation 2.3.

−2

3
Vin = vpA + vLdA (2.1)

1

3
Vin = vpC − vLdC (2.2)

vLdA = vLdC (2.3)
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vpA = vpC (2.4)

Equation 2.2 is reorganized to get 2.5.

vpC =
1

3
Vin + vLdC (2.5)

Substituting equations 2.3 and 2.4 into equation 2.5, equation 2.6 is ob-
tained.

vpA =
1

3
Vin + vLdA (2.6)

Finally, the expression of vLdA reported in equation 2.7 is obtained sub-
stituting equation 2.6 in equation 2.1.

−2

3
Vin =

1

3
Vin + vLdA + vLdA → −

2

3
Vin −

1

3
Vin = 2vLdA

vLdA = −1

2
Vin (2.7)

When a constant voltage is applied to an inductor, its current decreases
(or increases) linearly according to the following equation.

vL =
∆iL L

∆t
(2.8)

Where vL is the voltage across the inductance, ∆iL is the current variation
during time ∆t and L is the value of the inductance.
Since the voltage across vLdA is constant, equation 2.8 valid and 2.9 is derived.

vLdA =
∆ipLd
∆t2

(2.9)

Where ∆ip is the current variation at the primary side, which is equal
to the output current times the turns ratio ∆ip = −nIo, ∆t2 is the time
duration of the stage and Ld is the value of parasitic inductance LdA. Since
the voltage across LdA is half the input voltage as it was derived in equation
2.7, the time duration of stage t2 is finally derived.

−1

2
Vin = Ld

−nIo
∆t2

→ ∆t2 = 2
nIoLd

Vin
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∆t2 = 2
nIoLd

Vin
(fS TS)→ ∆t2 = 2

nIoLd fS
Vin

TS

The quantity (nIoLd fS) /Vin is the so-called normalized current I ′o. The
expression of time ∆t2 that will be used in the next sections is reported in
equation 2.10.

∆t2 = 2I ′oTS (2.10)
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Figure 2.5: Stage 2 - schematic

Stage 3 When the currents in diode D3 reaches zero, stage 3 begins.
Diode D1 conducts and the input voltage is applied to inductors L2 and L3.
The duration of the stage is calculated as the difference between the ON-
time of low-side transistors, (1−D)TS, and the duration of the second stage,
(2I ′o) TS, which is then (1−D − 2I ′o)TS.
To understand better the voltage division on the primary side, the impedances
seen by the voltage source Vin are analyzed.
The equivalent impedance of the primary side of the transformers Zp is the
series of the parasitic inductance Ld and the parallel of the impedance seen
from the intrinsic primary side Z ′p and magnetizing inductance Lm, which is
not reported in the schematics of the converter, but is reported in the equiv-
alent model of the transformer in figure 2.6.
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Like in stage 2, the inductors behave as constant current sources, which are
open circuits from a dynamic stand point. Therefore, the impedance seen at
the primary side of the transformers is the series of the parasitic inductance
and the magnetizing inductance. Such impedance is the same for all the sec-
tions of the circuit. Therefore, since the primary side of sections B and C are
in parallel, their equivalent impedance is half the impedance of the primary
side of section A. This is the reason why the voltage at the star-center of the
primary is fixed at 2

3
Vin; these conditions are valid also for stage 2. However,

only one diode conducts in stage 3 and the star-center of the secondary side
is equal to the star-center of the primary side times the turns ratio, whereas
in stage 2 diode D3 conducts and the star-center is fixed at 1

6
nVin.

..

1:n

Z
s

L
d

L
m

Z
p

Z’
p

Figure 2.6: Transformer equivalent model

The three stages just described compose the sub-cycle associated to sec-
tion A only. The two sub-cycles associated to sections B and C are not
analyzed because the results is the same as the one just obtained.

2.1.3 Load condition for ZVS

Zero-voltage-switching (ZVS) is an important goal in PWM converters, be-
cause they are characterized by low conducting losses but high switching
losses. ZVS is basically due to the resonance between the parasitic capaci-
tance of the transistors and the equivalent inductance seen at their terminals.
The energy stored in the equivalent inductance charges the parasitic capaci-
tance of one transistor of a pair and discharges the capacitance of the other
transistor of thar pair. If the energy stored in the inductance is large enough
to fully charge/discharge the capacitances, ZVS is achieved.
In the case of the converter under study the behavior of low-side transistors
and of the high-side transistors should be evaluated differently.
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Figure 2.7: Stage 3 - schematic

Considering some dead time between the turn-off of a transistor and the
turn-on of the other one, the high-side transistors always switch losslessly
because they are not connected to the input voltage when they switch.
In the case of the low-side transistors there are two possible situations: when
the low-side transistors are turned on, the equivalent inductance is the series
of the leakage inductance and the filter inductance seen by the primary side,
whereas when they are turned off the equivalent inductance is the leakage
inductance only, because the diode is conducting at the secondary side.
Since the filter inductance is typically large, the energy stored in it is large
too and ZVS is always achieved.
On the other hand, if the parasitic capacitance sees the leakage inductance
only, the energy stored in it should be large enough to discharge the parasitic
capacitance of the low-side transistor and discharge the parasitic capacitance
of the high-side transistor. Since the energy stored in an inductor depends
on the current flowing in it, ZVS depends on the output current.
The minimum load condition is now evaluated.
At the end of stage 3, when the low-side transistor is turned off, the current
flowing through is is about n (2/3) Io, and the energy stored in it is reported
in equation 2.11.
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ELd =
1

2
LdIpk

2 ≈ 1

2
Ld

(
n

2

3
Io

)2

=
2

9
n2LdI

2
o (2.11)

The energy ECe of the low side parasitic capacitance is zero and at the
end of the charge depends on the square iof the inbout voltage as shown in
equation 2.12. The high-side capacitor instead is charged at the input voltage
and must be discharged of the same amount ECe.

ECe =
1

2
CeV

2 =
1

2
CeV

2
in (2.12)

Since the energy stored in the leakage inductance must charge one capac-
itance and discharge the other one, it should be equal to twice the energy of
the capacitance. Equation 2.13 reports the minimum load condition, i.e. the
minimum output current Io, to achieve ZVS for all transistors.

2

9
n2LdI

2
o = 2

(
1

2
CeV

2
in

)
→ I2o =

9

2

CeV
2
in

n2Ld

Io =
3√
2

Vin/n√
Ld/Ce

(2.13)

2.1.4 PSIM simulations

The software PSIM was used to perform circuit simulations and compare
their results with the mathematical models. All simulations are time-based,
which means that signal are integrated in time domain.
Two kind of simulations were performed to get different results.

Steady state simulations It is possible to sweep the parameter of a com-
ponent and compare the DC voltage on a desired measurement point. The
value of the duty cycle, which was implemented as a voltage generator, was
swept throughout its range and the DC output voltage was measured. The
measurement is performed after a settable steady-state time is ended.

Small signal simulations It is possible to simulate the small signal behav-
ior of the circuit exciting the circuit with a sinewave with settable amplitude
and measuring the amplitude and phase of the sinewave of the desired mea-
surement point on the circuit. The frequency of the excitation is swept in a
range which should be defined in the simulation control panel.
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2.2 Simplified converter model

Before analyzing the complete converter and deriving the models associated
to it, a simplified version of the converter is studied. The simplification
introduced basically consists of setting to zero the parasitic inductance on
the primary side of the transformers. As a consequence, stage 2 does not
exist and the duration of stage 3 is the maximum (1−D)TS, because the
normalized current I ′o, which depends on the parasitic inductance Ld is zero.
This simplified analysis makes it possible to get more familiar with three-
phase PWM converters and with switching flow graph method. Moreover,
the effect of the parasitic inductances on the mathematical models can be
evaluated comparing the most relevant figures of merit of the converter.

2.2.1 Building the switching flow graph

To build an effective flow graph, it is useful to follow some rules, like placing
the sequence of nodes as they appear on the circuit, putting voltage nodes
before current nodes for inductive elements and vice versa for capacitive ele-
ments. As in the buck converter example, the signals used to build the graphs
are the ones related to the input side of the converter and the output side of
the converter, so the input voltage vin, the voltages across the inductors vL1,
vL2 and vL3, the output current io and the output voltage vo.
Fig. 2.8 reports the and the nodes present in the switching flow graph that
will be derived. The polarity of the voltages and the direction of the currents
will be always indicated on the schematics.
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��� 

�� 

Figure 2.8: Signals - signal flow graph
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Stage 1 - signal flow graph During stage 1, all high-side transistors con-
duct, therefore the voltage across the primary side of the transformers is zero.
Diode D3 is forward biased (because it was conducting in the previous stage)
and the voltage drop across the other two diodes is zero, even if they do not
conduct. As a consequence, the voltage drop across the inductors equals the
output voltage (with negative sign) and all their currents decrease linearly.
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Figure 2.9: Stage 1 - schematic

The following equations are derived from the previous considerations:

• inductors voltages
vL1 = vL2 = vL3 = −vo

• inductor’s current

iL = vL
1

ZL

• output current

io = iL1 + iL2 + iL3 = (vL1 + vL2 + vL3)
1

ZL

Where ZL = sL + RL is the impedance of each inductor and 1/Zo =
(sC+1/R) is the admittance of the output RC parallel. As it was mentioned

31



already, the components are assumed ideal in the analysis. A parasitic resis-
tance is placed in series to the filter inductors because it is useful for deriving
the static model, as it wll be explained shortly.
It is worth reminding that if two or more signals enter a node, it means
that they are summed. The currents in the filter inductors are not present
explicitly on the graph, but they are implicitly present as the voltage across
the inductors divided by the impedance of the inductors and summed in the
output current node io.
The signal flow graph associated to this stage is derived from the equations
reported above and it shown in Fig.2.10. It is possible to notice just looking
at the graph that input power is not transferred to the load, in fact the node
vin is not connected to any other node.
As mentioned in the previous chapter, the switching function is a variable
related to the time duration of the stage. It is associated to the branches of
the stage under study. The switching function is 1 during the stage and is
zero elsewhere.

The switching function k1 associated to stage 1 is reported in equation
2.14 and it large signal value is d− 2/3.

k1 =

{
1, t0 < t < t1

0, t1 < t < t3
(2.14)
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Figure 2.10: Stage 1 - signal flow graph
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Stage 3 - signal flow graph As it was introduced previously, since the
leakage inductance is zero, the normalized current I ′o is zero and stage 2 does
not exist because its duration is proportional to the normalized current.
When transistor SW2 is switched on stage 3 begins.
As it was explained when analyzing DMAX mode, the input source forces
voltage on the primary side of the transistors. the impedance seen at the
primary side of each transformer is the same. Therefore, since the primary
side of the transformers of sections B and C are in parallel, their equivalent
impedance is halved and the star-center is fixed at (2/3)Vin Derive voltage
on inductors
During stage 3, input power is transferred to the load, in fact the voltage
node vin is connected to the filter inductors’ voltages.
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Figure 2.11: Stage 3 - schematic

The following equations are derived from the schematic in Fig. 2.11 and
are reported on the signal flow graph associated with stage 3 in Fig. 2.12.

• Primary side voltages

vpA = −2

3
vin

vpB =
1

3
vin
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vpC =
1

3
vin

• Secondary side voltages

vsA = −2

3
nvin

vsB =
1

3
nvin

vsC =
1

3
nvin

• Inductor voltages
vL1 = −vo

vL2 = −vo + vsB − vsA = −vo +
1

3
nvin −

(
−2

3
nvin

)
= −vo + nvin

vL3 = −vo + vsC − vsA = −vo +
1

3
nvin −

(
−2

3
nvin

)
= −vo + nvin

• Output current

io = iL1 + iL2 + iL3 =
vL1
ZL

+
vL2
ZL

+
vL3
ZL

• Output voltage
vo = Zoio

As is can be seen directly from the signal flow graph, there is a direct
path from the input source to the load.
The switching function k3 associated to stage 3 is reported in equation 2.15
and its large signal value is 1− d.

k3 =

{
1, t1 < t < t3

0, t0 < t < t3
(2.15)
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Figure 2.12: Stage 3 - signal flow graph

Switching flow graph As it was explained in the first chapter, average
operation is performed on the signal flow graphs associated to the stages of
the converter described above and a switching flow graph is obtained. The
branches that exist in some stages only are replaced by switching branches,
which are associated to the sum of the switching function of the stages in
which hat branches existed.
The switching flow graph associated to section A is reported in Fig. 2.13.
The branches that connect the input voltage to inductors voltages vL2 and
vL3 exist in stage 3 only, so in the switching flow graph they are replaced by
a switching branch with switching function k3 and transmittance 1.

The switching flow graph just described is related to section A only;
thanks to three-phase operation, it is not necessary to analyze the three
stages of the other two sections, because the result is the same, apart from
the switching branches. In the sub-cycle associated to section B, there are
two switching branches connecting the node vin with the nodes vL1 and vL3;
In the sub-cycle associated to section C, there are two switching branches
connecting the node vin with the nodes vL2 and vL3.
The final switching flow graph, which is the combination of the three just
mentioned, is reported in Fig. 2.14. The switching functions present in
the final graph are the sum of the switching functions present in the graphs
associated to the three sections.
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Figure 2.13: Switching flow graph - section A

2.2.2 Large signal model and linearization

As it was introduced in the first chapter, a large signal model, reported in
Fig. 2.15, can be derived directly from the switching flow graph associated
to the three sections.
To do that, switching branches should be replaced by a multiplier whose
input signals are the input signal itself and the large signal value of the
switching function.
In the case of the simplified converter model, the large signal value of the
switching function is 2 (1− d), in fact the switching function k3 is associated
to stage 3, whose duration is (1−D).

It is useful to write the expression of the signals that contain a product of
two or more signals to derive easily the steady state and small signal models.
In the case of the simplified converter, the signals given by a product of two
signals are voltages across inductors.
The expression of the voltage across each inductor is given by equation 2.16.

vL = n vin (2− 2d)− vo (2.16)

Assuming small signal condition, each signal can be expressed as the sum
of its DC value, indicated in capital letters, and its variation, indicated with
the hat operator.
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Figure 2.14: Switching flow graph - three sections

VL + v̂L = n (Vin + v̂in)
(

2− 2D − d̂
)
− (Vo + v̂o) (2.17)

Equation 2.17 can be developed.

VL + v̂L = nVin (2− 2D) +nVin

(
−2d̂

)
+n (2− 2D) v̂in− 2nv̂ind̂− (Vo + v̂o)

(2.18)
Equation 2.18 can be regrouped to separate DC values and small signal

variations.

VL = nVin (2− 2D)− Vo (2.19)

The first order variation is instead:

v̂L = nVin

(
−2d̂

)
+ n (2− 2D) v̂in − v̂o (2.20)

The second order term −2n v̂in d̂ is non linear. Assuming small signal
conditions, it can be neglected.

2.2.3 Static model

To get the steady state signal flow graph, DC signals are present on the
graph and switching branches must be replaced by regular branches, whose
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Figure 2.15: Large signal - signal flow graph

transmittance is equal to the steady state value of the switching function.
As mentioned in the previously chapter, there are two possibilities to deal
with transmittances.
The first solution is to set the Laplace variable to zero s→ 0 when building
the steady state signal flow graph; therefore, impedances are substituted by
their resistances and admittances are replaced by their conductances. In the
case of purely reactive components, i.e. ideal capacitors and inductors, it is
possible to consider a parasitic resistance in series to inductor or in parallel to
the capacitor in the graph; after the desired relation is obtain, the limits for
inductor’s series resistances approaching zero and the limits for capacitors’
parallel resistances approaching infinite are calculated.
The second solution is to keep impedances on the graph, derive relations us-
ing Mason’s gain formula and calculate the limit s→ 0 in the final formula.
This solution is useful when there are loops that contain the ratio between
impedances or admittances.
In the case of the simplified converter model, the first solution proposed is
used, so the impedance of the filter inductor is replaced by the equivalent
series resistance RL.
The signal flow graph associated to the steady state DC quantities is reported
in figure 2.16.

The steady state signal flow graph is a linear model, so relations be-
tween signals can be derived using the mathematical rules associated to sig-
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Figure 2.16: Steady state - signal flow graph

nal flow graphs. As it was introduced in the previous chapter, the relation
M = Vo/Vin is derived using Mason’s gain formula, which is reported in 2.21.
The node associated to the input voltage contains the turns ratio, so the
ratio Vo/nVin should be multiplied by the turns ratio to get the static gain
M.

M = n
Vo
nVin

= n
ΣMi∆i

∆
(2.21)

There are three identical loops, which are touching. Their gains are re-
ported in equation 2.22.

T1 = T2 = T3 = − R

RL

(2.22)

The Delta of the graph is calculated from the loop gains and is reported
in equation 2.23.

∆ = 1− (T1 + T2 + T3) = 1 +
3R

RL

(2.23)

The gain of the three forward paths between input and output node and
the delta of each path are reported respectively in equations 2.24 and 2.25.

Mi = (2− 2D)
R

RL

(2.24)
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∆i = 1 (2.25)

The quantities just obtained are then substituted in Mason’s gain formula
to get the stati gain M .

M = n
Vo
nVin

= n
ΣMi∆i

∆
= n

3 (2− 2D) R
RL

1 + 3R
RL

= n
2− 2D
RL

3R
+ 1

∣∣∣∣
RL→0

= n (2− 2D) (2.26)

As it was explained at the beginning of the paragraph, the equivalent
series resistance was taken into account in the signal flow graph. The limit
for RL approaching zero is calculated in equation 2.26.

Comparison with simulations The validity of the mathematical model
just obtained can be verified comparing it with circuit simulations.
Fig. 2.17 shows that the simulation results and the model perfectly overlap.
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Figure 2.17: Static gain curves: model vs simulation
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2.2.4 Dynamic model

The dynamic model is obtained assuming small signal conditions and neglect-
ing the second order terms of the expression derived from the large signal
model. In the signal flow graph in Fig. 2.18, the nodes represent the vari-
ation of the signals. As it can be seen, an additional node, the variation of
the duty cycle d̂, is present with respect to the other signal flow graphs. The
transmittance of the branch exiting from it was calculated previously.
Like the static model, the small signal model is linear and Mason’s gain for-
mula can be applied. Superposition of effects can also be applied, so the
variation of the input voltage v̂in is set to zero and the ratio v̂o/d̂ can be
calculated. The node associated to the variation of the duty cycle d̂ contains
the factor −2. Consequently, to get the relation v̂o/d̂, the ratio v̂o/(−2d̂)
obtained with Mason’s gain formula should be multiplied by −2.
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Figure 2.18: Small signal - signal flow graph

There are three identical loops, which are touching. Their gains are re-
ported in equation 2.27.

T1 = T2 = T3 = −Zo
ZL

(2.27)

The Delta of the graph is calculated from the loop gains and is reported
in equation 2.28.
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∆ = 1− (T1 + T2 + T3) = 1 +
3Zo
ZL

(2.28)

The gain of the three forward paths between input and output node and
the delta of each path are reported respectively in equations 2.29 and 2.30.

Hi = (nVin)
Zo
ZL

(2.29)

∆i = 1 (2.30)

The quantities just obtained before are used to get the control transfer
function H.

H = −2
v̂o

−2d̂
= −2

ΣHi∆i

∆
= −2

3nVin
Zo

ZL

1 + 3Zo

ZL

(2.31)

Numerator and denominator of equation 2.31 are multiplied times the
term ZL/ (3Zo) to obtain equation 2.32.

H = −2nVin
1

1 + 3ZL

Zo

(2.32)

The term ZL/ (3Zo) is developed in equation 2.33 and then substituted
in equation 2.32 to obtain equation 2.34.

3
ZL
Zo

= 3 (sL)

(
sC +

1

R

)
= s

3L

C
+ s2

LC

3
(2.33)

H = −2nVin
1

1 + s 3L
C

+ s2LC
3

(2.34)

Figures of merit The most important figures of merit associated to the
transfer functions are derived; they will be compared to the real converter
model to evaluate the effect of non-idealities on the transfer function.

• Dynamic gain

Ho = −2nVin (2.35)
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• Poles frequency

fp =
1

2π
√

LC
3

(2.36)

• Quality factor

Q =
R√
L
3C

(2.37)

Comparison with simulations As for the static model case, simulations
results have been compared to the model. Again, the model and the simula-
tion curves perfectly overlap.
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Figure 2.19: Dynamic behavior: model vs simulation

2.3 Complete converter model

The complete converter model is here finally analyzed. The circuit under
analysis takes into consideration the leakage inductances of the transform-
ers.
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The mathematical models of this converter will be derived as for the simpli-
fied converter and the most relevant figures of merit of the models will be
compared with the ones of the simplified converter to evaluate the impact of
the leakage inductances on the behavior of the circuit.

2.3.1 Building the switching flow graph

As for the simplified converter, the switching flow graph is obtained combin-
ing the signal flow graph associated to each stage.
Besides the signals present in the simplified converter graphs, the currents
flowing through the inductors are added (in the simplified converter model,
they were implicitly summed in in the output current node). There are no
nodes associated to the leakage inductance itself; its effect is considered in
the branches that enter inductors’ voltages nodes, allowing for a more com-
pact SFG.
The signals present in the graphs are reported in Fig. 2.20.
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Figure 2.20: Signals - signal flow graph

Stage 1 Like in the simplified converter, during stage 1 the high-side tran-
sistors conduct and the input voltage is not transferring energy to the output.
The presence of the leakage inductances however makes the voltage at the
primary side of the transformers non-zero. The voltage across the leakage in-
ductance is equal to the primary side voltage with negative sign, as reported
in equations 2.38 AND 2.39.
The voltage across the secondary side of section A is equal to the secondary
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side of section B; the voltage across the secondary side of section C is twice
the voltage across the secondary side of section A with negative sign, as
shown in equation 2.40.

vpA = −vLdA = −sLdipA = −sLdnisA (2.38)

vpB = −vLdB = −sLdipB = −sLdnisB (2.39)

vsC = −2vsA = −2vsB (2.40)

The voltage across the secondary side of the transformers is equal to the
voltage on the primary side times the turns ratio.

vs = nvp (2.41)

The voltage across inductors L1 and L2 are derived from the previous
equations.

vL1 = −vo−vsC+vsA = −vo+3vsA = −vo+3nvpA = −vo−3n2 sLdiL1 (2.42)

vL = −vo−vsC+vsB = −vo+3vsB = −vo+3nvpB = −vo−3n2 sLdiL2 (2.43)

The term −3n2 sLd, present in equations 2.42 and 2.43, will be referred
to as the leakage impedance ALd, as shown in equation 2.44.

ZLd = −3n2 sLd (2.44)

The following equations are derived from the previous considerations:

• inductors voltages
vL1 = −vo + ZLd iL1

vL2 = −vo + ZLd iL2

vL3 = −vo
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Figure 2.21: Stage 1 - schematic

• inductors currents

iL1 = vL1
1

ZL

iL2 = vL2
1

ZL

iL3 = vL3
1

ZL

• output current

io = iL1 + iL2 + iL3 = (vL1 + vL2 + vL3)
1

ZL

• output voltage
io = Zovo

The switching function k1 associated to stage 1 is reported in equation
2.45 and its large signal value is d− 2/3.

k1 =

{
1, t0 < t < t1

0, t1 < t < t3
(2.45)
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Figure 2.22: Stage 1 - signal flow graph

Stage 2 When transistor SW2 is turned on, stage 2 begins. Diode D1

starts conducting and the current in it increases, while current in diode D3

decreases.
As it was introduced previously, the voltage at the star-center is (2/3)Vin, so
the voltage across the leakage inductance LdB and the primary side of section
VB vsB is (1/3)Vin, as shown in equation 2.46.
The voltage across the secondary side of section A is equal to the secondary
side of section C; the voltage across the secondary side of section B is twice
the voltage across the secondary side of section B with negative sign, as
shown in equation 2.47.

vpB =
1

3
vin − vLdB =

1

3
vin − sLdiLdB =

1

3
vin − sLdnisB (2.46)

vsA = vsC = −1

2
vsB (2.47)

The voltage across the secondary side of the transformers is equal to the
voltage on the primary side times the turns ratio.

vs = nvp (2.48)

The voltage across inductor L2 is derived from the previous equations.
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vL2 = −vo − vsC + vsB = −vo +
3

2
vsB = −vo +

3

2
nvpB =

= −vo +
3

2
n

(
1

3
vin − sLdnisB

)
= −vo +

1

2
nvin −

1

2
3n2sLdisB (2.49)
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Figure 2.23: Stage 2 - schematic

The following equations are derived from the previous considerations:

• inductors voltages
vL1 = −vo

vL2 = −vo +
1

2
vin +

1

2
ZLd iL2

vL3 = −vo

• inductors currents

iL1 = vL1
1

ZL

iL2 = vL2
1

ZL

iL3 = vL3
1

ZL
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• output current

io = iL1 + iL2 + iL3 = (vL1 + vL2 + vL3)
1

ZL

• output voltage
io = Zovo

The switching function k2 associated to stage 2 is reported in equation
2.50 and its large signal value is 2 i′o.

k2 =

{
1, t1 < t < t2

0, t0 < t < t1Vt2 < t < t3
(2.50)
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Figure 2.24: Stage 2 - signal flow graph

Stage 3 When stage 2 ends, stage 3 begins Diode D3 does not conduct
antmore, so diode D1 is the only diode conducting.

vpB =
1

3
vin − vLdB =

1

3
vin − sLdiLdB =

1

3
vin − sLdnisB (2.51)
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vpC =
1

3
vin − vLdC =

1

3
vin − sLdiLdC =

1

3
vin − sLdnisC (2.52)

vsB = vsC = −1

2
vsA (2.53)

The voltage across the secondary side of the transformers is equal to the
voltage on the primary side times the turns ratio.

vs = nvp (2.54)

The voltage across inductor L2 is derived from the previous equations.

vL2 = −vo − vsA + vsB = −vo + 3vsB = −vo + 3nvpB =

= −vo + 3n

(
1

3
vin − sLdnisB

)
= −vonvin − 3n2sLdisB (2.55)

vL3 = −vo − vsA + vsC = −vo + 3vsC = −vo + 3nvpC =

= −vo + 3n

(
1

3
vin − sLdnisC

)
= −vonvin − 3n2sLdisC (2.56)
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Figure 2.25: Stage 3 - schematic

The following equations are derived from the previous considerations:
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• inductors voltages
vL1 = −vo

vL2 = −vo + nvin + ZLd iL2

vL3 = −vo + nvin + ZLd iL3

• inductors currents

iL1 = vL1
1

ZL

iL2 = vL2
1

ZL

iL3 = vL3
1

ZL

• output current

io = iL1 + iL2 + iL3 = (vL1 + vL2 + vL3)
1

ZL

• output voltage
io = Zovo

The switching function k3 associated to stage 3 is reported in equation
2.57 and its large signal value is 1− d− 2 i′o.

k3 =

{
1, t2 < t < t3

0, t0 < t < t2
(2.57)

Switching flow graph Like in the simplified converter model, the switch-
ing flow graph of the sub-cycle associated to section A only was built, and the
switching flow graphs associated to sections B and C can be derived directly
from it.
There are five switching branches. Two branches connect the input voltage
to inductors’ voltages. In section A, the branch nVin → vL2 is associated
to the switching function (1/2)k2 + k3 and the branch nVin → vL3 is as-
sociated to the switching function k3. As a consequence, in section B the
branch nVin → vL3 is associated to the switching function (1/2)k2 + k3 and
the branch nVin → vL1 is associated to the switching function k3. Finally,
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Figure 2.26: Stage 3 - signal flow graph

in section C the branch nVin → vL1 is associated to the switching function
(1/2)k2 + k3 and the branch nVin → vL2 is associated to the switching func-
tion k3.
A similar operation can be done for the switching branches that connect in-
ductors’ currents to inductors’ voltages.
Fig. 2.27 reports the switching flow graph associated to section A; the large
signal value of the switching functions k1, k2 and k3 are reported in equations
2.58, 2.59 and 2.59.

k1 = d− 2

3
(2.58)

k2 = 2i′o (2.59)

k3 = 1− d− 2i′o (2.60)

As it can be seen in the final graph reported in Fig. 2.28, the switching
function of the branch nvin → vL is (1/2)k2 + 2k3, whereas the switching
function of the branch iL → vL is 2k1 + (1/2)k2 + 2k3.
Their large signal values are reported in equations 2.61 and 2.62.

1

2
k2 + 2k3 =

1

2
(2i′o) + 2 (1− d− 2i′o) = 2− 2d− 3i′o (2.61)
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Figure 2.27: Switching flow graph - one section

2k1 +
1

2
k2 + 2k3 = 2

(
d− 2

3

)
+

1

2
(2i′o) + 2 (1− d− 2i′o) =

2

3
− 3i′o (2.62)

2.3.2 Large signal model and linearization

Starting from the complete switching flow graph just presented, the large
signal model can be derived.
Like in the simplified converter case, the most tricky node is inductor’s volt-
age. The large signal values of the switching functions just obtained are used
to write down the large signal value of inductors’ voltages and derive steady
state and small signal models from it.
Since the equations and the graphs are already complicated, the input voltage
is assumed constant, so its variation v̂in is set to zero.

Starting from the large signal value of the switching functions derived in
equations 2.61 and 2.62, the large signal value of inductor’s voltage is derived
in equation 2.63.

vL = −vo + iLZLd

(
2

3
− 3i′o

)
+ (2− 2d− 3i′o)nVin (2.63)
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Figure 2.28: Switching flow graph - three sections

Assuming small signal conditions, each signal can be represented by the
sum of its DC component and its variation:

• Output voltage
vo = Vo + v̂o

• Normalized current
i′o = I ′o + î′o

• Inductor current
iL = IL + îL

• Inductor voltage
vL = VL + v̂L

• Duty cycle
d = D + d̂

The expression of vL is then rewritten in equation 2.64.

VL + v̂L = −Vo − v̂o +
(
IL + îL

)
ZLd

(
2

3
− 3I ′o − 3̂i′o

)
+
(

2− 2D − 2d̂− 3I ′o − 3̂i′o

)
nVin

(2.64)
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Figure 2.29: Large signal - signal flow graph

All the products in equation 2.64 are developed in equation 2.65

VL + v̂L = −Vo − v̂o + ILZLd

(
2

3
− 3I ′o

)
+ îLZLd

(
2

3
− 3I ′o

)
− 3̂i′oZLdIL

−3ZLdî
′
oîL +

(
2− 2D − 2d̂− 3I ′o

)
nVin − 3nVinî

′
o − 2d̂nVin (2.65)

The DC component and the first order variations are separated. The
second order term −3ZLdî

′
oîL is neglected.

VL = −Vo + ILZLd

(
2

3
− 3I ′o

)
+ (2− 2D − 3I ′o)nVin (2.66)

v̂L = −v̂o + îLZLd

(
2

3
− 3I ′o

)
− 3̂i′o (ZLdIL + nVin)− 2d̂nVin (2.67)

The variation of the normalized current can be rewritten as a function of
the variation of the output current, as shown in equation 2.68.

î′o = îo
nfSLd
Vin

(2.68)

The final expression of the variation of inductor’s voltage is finally re-
ported in equation

v̂L = −v̂o + îLZLd

(
2

3
− 3I ′o

)
− 3̂io

nfSLd
Vin

(ZLdIL + nVin)− 2d̂nVin (2.69)
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2.3.3 Static model

As it was explained in the first chapter, impedances can be replaced by the
resistances in the static model ot the limit for s approaching zero can be
calculated on the final expression.
In the case of the complete converter, the second solution is used and the
signal flow graph associated to it is reported in Fig. 2.30.
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Figure 2.30: Steady state - signal flow graph

There are three touching loops in the path of the nodes Vo → VLi →
ILi → Io → Vo; the subscript i is associated to the sections A, B and C.
They have the same loop gain T1, which is indicated in equation 2.70.

T1 = − R

ZL
(2.70)

There are also three loops which are non-touching with each other, but
are touching with the loops T1; their path is VLi → ILi → VLi. They all have
the same gain T2, which is reported in equation 2.71. As it can be seen from
the graph, the transmittance of these branches still contain impedances, but
their ratio is a finite number, as reported in equation 2.71.

T2 =
(2/3− 3I ′o)ZLd

ZL
=

(2/3− 3I ′o) (−3n2sLd)

sL
= (2/3− 3I ′o)

(
−3n2Ld

L

)
(2.71)
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The Delta of the graph is calculated from them:

∆ = 1− 3T1 − 3T2 + 3T 2
2 (2.72)

The gain of the three forward paths between input and output node and
the delta associated to each path are calculated in equations. For a amore
compact form, the ratio R/ZL is expressed as −T1, from equation 2.70.

Mi = (2− 2D − 3I ′o)
R

ZL
= (2− 2D − 3I ′o) (−T1) (2.73)

∆i = 1− 2T2 + T 2
2 = (1− T2)2 (2.74)

The quantities obtained before are then used to get the final formula of
the static gain:

M = n
Vo
nVin

= n
ΣMi∆i

∆
= n

3 (2− 2D − 3I ′o) (−T1) (1− T2)2

1− 3T1 − 3T2 − 3T 2
2

(2.75)

Multiplying by 1/T1 both numerator and denominator of equation 2.75,
equation 2.76 is obtained.

M = n
3 (2− 2D − 3I ′o) (−T1) (1− T2)2 (1/T1)

(1− 3T1 − 3T2 − 3T 2
2 ) (1/T1)

=

= n
3 (2− 2D − 3I ′o) (1− T2)2

(−1/T1 + 3 + 3T2/T1 − 3T 2
2 /T1) (1/T1)

(2.76)

Since the loop gain T2 does not depend on ’s’ and the quantity 1/T1 → 0
when s→ 0 , it is possible to calculate the limit of equation 2.76.

M = n
3 (2− 2D − 3I ′o) (1− T2)2

(−1/T1 + 3 + 3T2/T1 − 3T 2
2 /T1) (1/T1)

∣∣∣∣
s→0

M = n
3 (2− 2D − 3I ′o) (1− T2)2

3
= n (2− 2D − 3I ′o) (1− T2)2 (2.77)

Since the loop gain T2 is typically small with respect to 1, the term
(1− T2)2can be neglected and the formula of the static gain M is finally
reported in 2.78.

M = n (2− 2D − 3I ′o) (2.78)

57



Comparison with simulations The circuit was simulated on the software
PSIM. The static behavior was simulated with constant output current, in
order to have constant parameterized current. To do that, the load resistance
was then substituted with a current generator. The frequency response of
the new circuit is different, but the steady state is not.
It can be easily seen that the curves do not overlap perfectly as in the leakage-
less converter, even if the model of the components used in the simulation is
ideal (e.g. zero voltage drop across a conducting diode). Such error is due to
the intrinsic non-linearity of the mathematical model. However, such error
is relatively low.
The leakage-less converter curve has been drawn too; it represents the upper
limit of all the characteristics, in fact it is the curve that corresponds to
I ′o = 0.
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Figure 2.31: Static gain curves: model vs simulation

2.3.4 Dynamic model

As it was mentioned in the simplified converter, the small signal model is
linear and superposition of effects can be applied. The variation of the input
voltage is therefore set to zero and the transfer function v̂o/d̂ is calculated.
To make the signal flow graph easier to read, the variation of the input
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voltage v̂in is not represented. Fig. 2.32 reports the small signal model of
the complete converter.
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Figure 2.32: Small signal - signal flow graph

Mason’s formula can be again exploited to derive the transfer function
v̂o/d̂.
There are three kind of loops and the feedback branches of each of them has
a different color.
T1’s feedback branch is black and its path is v̂o → v̂Li → îLi → îo → v̂o; its
gain is reported in equation 2.79.
T2’s feedback branch is blue and its path is v̂Li → îLi → v̂Li; its gain is
reported in equation 2.80.
T3’s feedback branch is green and its path is îo → v̂Li → îLi → îo; its gain is
reported in equation 2.81.

T1 = −Zo
ZL

(2.79)

T2 =
(2/3− 3I ′o)ZLd

ZL
=

(2/3− 3I ′o) (−3n2sLd)

sL
= (2/3− 3I ′o)

(
−3n2Ld

L

)
(2.80)
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T3 = −
3n fSLd

Vin
(ZLd IL + nVin)

ZL
= −

3n fSLd

Vin

(
ZLd

Vo
3R

+ nVin
)

ZL
(2.81)

Where IL is the DC value of inductor’s current. Equation 2.82 gives a
good estimation of it.

IL ≈
Io
3

=
Vo
3R

(2.82)

The delta of the graph is reported in equation 2.83, whereas the forward
path and the delta associated to it are reported in equations 2.84 and 2.85
respectively.

∆ = 1− (3T1 + 3T2 + 3T3) + (6T1T2 + 6T2T3 + 3T 2
2 )− T 3

2 (2.83)

Mi = −2nVin
Zo
ZL

(2.84)

∆i = 1− 2T2 + T 2
2 (2.85)

Subsituting equations 2.83, 2.84 and 2.85 in Mason’s gain formula, the
transfer function is derived.

H =
v̂o

d̂
=

3
(
−2nVin

Zo

ZL

)
(1− 2T2 + T 2

2 )

1− (3T1 + 3T2 + 3T3) + (6T1T2 + 6T2T3 + 3T 2
2 )− T 3

2

(2.86)

Multiplying by ZL/Zo both numerator and denominator of equation 2.86,
the expression of the transfer function can be simplified.

H =
v̂o

d̂
=

3
(
−2nVin

Zo

ZL

)
(1− T2)2

1− (3T1 + 3T2 + 3T3) + (6T1T2 + 6T2T3 + 3T 2
2 )− T 3

2

ZL

Zo

ZL

Zo

=

=
3 (−2nVin) (1− T2)2

ZL

Zo
−
(

3T1
ZL

Zo
+ 3T2

ZL

Zo
+ 3T3

ZL

Zo

)
+
(

6T1T2
ZL

Zo
+ 6T2T3

ZL

Zo
+ 3T 2

2
ZL

Zo

)
− T 3

2
ZL

Zo

(2.87)
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Since T1 depends on s2, T3 depends on s and T2 is a number, the denom-
inator is reorganized to make simplifications.

H =
3 (−2nVin) (1− T2)2

ZL

Zo
(−3T1 + 6T1T2) + ZL

Zo
(−3T3 + 6T2T3) + ZL

Zo
(1− 3T2 + 3T 2

2 − T 3
2 )

=

=
3 (−2nVin) (1− T2)2

−3ZL

Zo
T1 (1− 2T2)− 3ZL

Zo
T3 (1− 2T2) + ZL

Zo
(1− T2)3

(2.88)

Recalling that the loop gain T1 = −Zo/ZL and the loop gain T3 =
−3n fSLd

Vin

(
ZLd

Vo
3R

+ nVin
)
/ZL, equations 2.89 and 2.90 are derived. In the

last expression, the ratio Vo/Vin is substituted by the static gain M.

−3
ZL
Zo
T1 = −3

ZL
Zo

(
−Zo
ZL

)
= 3 (2.89)

−3
ZL
Zo
T3 = −3

ZL
Zo

(
−

3n fSLd

Vin

(
ZLd

Vo
3R

+ nVin
)

ZL

)
=

= 3
1

Zo

(
3
n fSLd
Vin

(
ZLd

Vo
3R

+ nVin

))
= 3

1

Zo

(
n fSLdMZLd

R
+ 3n2fSLd

)
(2.90)

Equations 2.89 and 2.90 can be now substituted in 2.88.

H =
3 (−2nVin) (1− T2)2

3 (1− 2T2) + 3 1
Zo

(
n fSLdMZLd

R
+ 3n2fSLd

)
(1− 2T2) + ZL

Zo
(1− T2)3

(2.91)
Both numerator and denominator of equation 2.91 are now divided by

(1− T2)2.

H =
3 (−2nVin) (1− T2)2

3 (1− 2T2) + 3 1
Zo

(
n fSLdMZLd

R
+ 3n2fSLd

)
(1− 2T2) + ZL

Zo
(1− T2)3

1
(1−T2)2

1
(1−T2)2

H =
3 (−2nVin)

3 (1−2T2)
(1−T2)2

+ 3 1
Zo

(
n fSLdMZLd

R
+ 3n2fSLd

) (1−2T2)
(1−T2)2

+ ZL

Zo
(1− T2)

(2.92)
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Up to this point no approximation has been made. Moreover, impedances
are general, so possible parasitic elements can be included in their expres-
sions. The static gain M is present in the formula. For sake of simplicity, it
is approximated with the static gain of the simplified converter M = 2−2D.
The value of the loop gain T2 depends on the steady state value of normalized
current I ′o, which can be rewritten as reported in equation 2.93.

I ′o =
nfSLdIo
Vin

=
nfSLdVo
VinR

=
nfSLdM

R
(2.93)

An additional approximation is made. Typically, the loop gain T2 is much
smaller than 1, so equations 2.94 and 2.95 acceptable.

1− T2 ≈ 1 (2.94)

1− 2T2 ≈ 1 (2.95)

Such approximation can be verified:

|T2| << 1∣∣∣∣ZLdZL

(
2

3
− 3I ′o

) ∣∣∣∣ << 1

Since the quantity between parenthesis cannot be grater than 2/3, the
following condition is derived: ∣∣∣∣ZLdZL

∣∣∣∣ << 1

Applying finally the approximations introduced in 2.94 and 2.95 into
equation 2.92, substituting equation 2.93 and dividing numerator and de-
nominator by 3:

H =
(−2nVin)

1 + 1
Zo

(3ZLdI ′o + 3n2fSLd) + ZL

3Zo

(2.96)

The impedances of the inductors and of the RC parallel are then substi-
tuted.
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H =
−2nVin

1 +
(
sC + 1

R

)
(−9n2sLdI ′oM + 3n2fSLd) + s2LC

3
+ s L

3R

(2.97)

H = n
−2nVin

1 + 3n
2fSLd

R
+ s

(
L
3R

+ 3n2fSLdC − 9n
2LdI′o
R

)
+ s2

(
LC
3
− 9n2LdCI ′oM

)
(2.98)

Dividing both numerator and denominator by 1+3n2 fSLd

R
, the final equa-

tion is obtained.

H =
−2nVin/

(
1 + 3n2 fSLd

R

)
1 + s

(
L
3R

+3n2fSLdC−9
n2LdI

′
o

R

)
1+3n2 fSLd

R

+ s2
(LC

3
−9n2LdCI′oM)
1+3n2 fSLd

R

(2.99)

Figures of merit The most important figures of merit associated to the
transfer functions are derived; they will be compared to the real converter
model to evaluate the effect of non idealities on the transfer function.

• Dynamic gain

Ho =
−2nVin

1 + 3n2 fSLd

R

(2.100)

• Poles frequency

fp =
1

2π

√
(LC

3
−9n2LdCI′oM)
1+3n2 fSLd

R

(2.101)

• Quality factor

Q =

√√√√√√√
((

L
3R

+3n2fSLdC−9
n2LdI

′
o

R

)
1+3n2 fSLd

R

)(
1 + 3n2 fSLd

R

)
(
LC
3
− 9n2LdCI ′oM

) (2.102)
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Comparison with simulations Small signal simulations have been per-
formed. The curves are a litle bit shifted, due to the small error in the static
gain, but this difference remains the same throughout all the frequency range,
meaning that the poles frequency is modeled correctly.
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Figure 2.33: Dynamic behavior: model vs simulation
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Chapter 3

Circuit design

3.1 Introduction

The mathematical models derived in the previous chapter can be verified
building and testing a physical prototype; to design a physical circuit, cur-
rent and voltage waveforms related to the components of the circuit mut be
studied to derive parameters and stresses associated to each component.

3.1.1 Components’ design parameters

The most relevant electrical parameters associated to each component are
briefly listed.

Inductors

• maximum RMS current

• maximum peak current

• maximum ripple current

• inductance

• operating frequency
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Output capacitor

• working voltage

• RMS current

• equivalent series resistance in case of an electrolytic capacitor

• capacitance in case of a ceramic capacitor

• Capacitance estimation for electrolytic

Input capacitor

• working voltage

• RMS current

MOSFET switch

• maximum blocking voltage

• ON resistance

• RMS current

Diode

• maximum reverse voltage

• peak current

• average current

Transformer

• RMS current

• turns ratio

• physical dimensions
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Figure 3.1: Schematic IDEAL

3.1.2 Reference schematics

The components present in the circuit may be grouped in to sets: the ones
that provide DC-DC conversion, so basically switches, transformers, diodes,
filter inductors and capacitors; and the ones needed to provide ZVS, so trans-
former’s leakage inductances and transistors’ parasitic capacitances, and the
capacitors that are placed in series to the primary side of the transformers,
which avoid core saturation of the transformers.
Two different schematics will be therefore used to study the behavior of the
circuit:

Simplified converter It only contains components from the first set, so
the ones responsible for DC-DC conversion; the analysis of the waveforms as-
sociated to the components of the first set will be referred to as this schematic.

Complete converter It contains all components and it will be used to
design the remaining components; the results obtained from the analysis
of schematic IDEAL will still be valid. As an example, the current at the
primary side of the transformers is calculated from schematic IDEAL; the
current flowing through the leakage inductance Ld is the primary side current,
and the result obtained from schematic IDEAL will be used.

Components’ values To make calculations easier, it is useful to consider
each section of the circuit equal to the other ones; each section is composed
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Figure 3.2: Schematic COMPLETE

by a cascade of a switch pair, a transformer and a diode-inductor rectifier.
Each transformer is a 1 : n transformer, where:

• n = NS

NP
is the turns ratio

• NS is the number of turns on the secondary side windings

• NP is the number of turns on the primary side windings

The most relevant values are then:

• NS1

NP1
= NS2

NP2
= NS3

NP3
= n

• L1 = L2 = L3 = L

• Cin is the capacitance of input’s capacitor

• Co is the capacitance of output’s capacitor

• Ld is the value of transformers’ leakage inductances

• Ce is the parasitic capacitance of transistors

• Cp is the capacitance of the primary-side capacitors
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3.1.3 Test conditions

The mathematical models that have to be verified are the steady state volt-
age regulation factor (also called static gain) and the frequency response.
Therefore, both static and dynamic measurements will be performed using
an electronic load, which can behave as a constant current absorber or a
resistance. The electronic load will be set to constant current when perform-
ing static measurements, whereas it will be set to resistance when performing
dynamic measurements.

3.2 Converter’s general design

As introduced previously, the waveforms of each component (currents and
voltages vs time) must be studied.

Assumptions Before starting the analysis, it is important to define some
assumptions which make the derivation of waveforms and equations easier:

1. Ideal components: components are ideal (e.g. diode forward voltage is
zero); possible parasitic elements are considered only after the analysis
is completed.

2. Time constant of the circuits are much bigger than the switching period:
thanks to this assumption, reactive components do not resonate during
the switching period.

3. Cyclostationary conditions: the circuit operates in regime condition,
therefore waveforms are periodic.

4. Constant output voltage: typically, DC-DC converters must provide
constant output voltage; therefore, the output voltage is considered
constant with respect to the duty cycle and the ripple voltage is ne-
glected.

Starting point All currents’ waveforms in the circuits are derived from in-
ductors’ currents; to get those currents, the waveforms of the voltages across
inductors must be found in the first place. One side of each inductor is con-
nected to the output voltage. The other sides are connected to the secondary
side of the transformers.
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Figure 3.3: voltage on primary side

Considering the MOSFETs as ideal switches, voltages across the primary
side of the transformers are easily derived: when all high-side switches are
on, the voltage at the primary side is zero; when two high side switches are
on and one low-side switch is on, the input voltage is divided on the primary
sides.

The voltage applied to the primary side of transformer 1 is reported in
figure (Fig.3.3).

3.2.1 Inductors

When the voltage applied to an ideal inductor is a rectangular periodic wave-
form, the current flowing through it is a periodic linear waveform, as it is
shown in figures Fig. 3.4 and Fig.3.5; the slope of the current waveform is
given by the ratio of the applied voltage and the inductance. Fig.3.6 reports
the currents flowing through inductor L1 only; from now on, this is the ref-
erence waveform from which equations are derived.
The average of a linear periodic waveform is the arithmetic mean of the peak
value and the bottom value, whereas the difference between those two values
is the ripple.
Since the conditions just mentioned are true in this analysis, the following
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relations are valid:

ĪL =
iL,pk + iL,btm

2
(3.1)

∆iL = iL,pk − iL,btm (3.2)

Combining equations (3.1) and (3.2) the following ones are derived:

iL,pk = ĪL + ∆iL (3.3)

iL,btm = ĪL −∆iL (3.4)

Four additional current values will be useful for the analysis of the wave-
forms of the other components; those additional values are the values of the
currents at the time instants corresponding tho a switch transition (both
ON → OFF and OFF → ON).
The plot of one current only is necessary to get all the six values. The rip-
ple current is calculated from the slope and the time duration of the first
descending part of the curve:

∆iL = iL(to)− iL

(
t0 +

TS

3
+ (D − 2/3)TS

)
=

∣∣∣∣−Vo

L

∣∣∣∣ (1

3
+ D − 2

3

)
TS =

Vo

fSL

(
D − 1

3

)
(3.5)
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Substituting equation (3.5) in (3.3) and (3.4)

iL,pk = ĪL +
1

2

Vo
fSL

(
D − 1

3

)
= ĪL +

Vo
fSL

(
D

2
− 1

6

)
(3.6)

iL,btm = ĪL −
1

2

Vo
fSL

(
D − 1

3

)
= ĪL −

Vo
fSL

(
D

2
− 1

6

)
(3.7)

Similarly, the remaining four values are calculated: starting from a known
value (iL,pk or iL,btm) a current difference is added or subtracted, recalling that
Vo = nVin2 (1−D)→ nVin = Vo

2(1−D)

i1 = iL,pk−
Vo

fSL

(
D − 2

3

)
= ĪL+

Vo

fSL

(
D

2
− 1

6
−D +

2

3

)
= ĪL+

Vo

fSL

(
−D

2
+

1

2

)
(3.8)

i2 = iL,btm +

(
nVin − Vo

fSL

)
(1−D) = ĪL −

Vo

fSL

(
D

2
− 1

6

)
+

(
Vo

2(1−D) − Vo

fSL

)
(1−D)

= ĪL +
Vo

fSL

(
−D

2
+

1

6
+

1

2
− (1−D)

)
= ĪL +

Vo

fSL

(
D

2
− 1

3

)
(3.9)

i3 = iL,pk −
(
nVin − Vo

fSL

)
(1−D) = ĪL +

Vo

fSL

(
D

2
− 1

6

)
−

(
Vo

2(1−D) − Vo

fSL

)
(1−D)

= ĪL +
Vo

fSL

(
D

2
− 1

6
− 1

2
+ (1−D)

)
= ĪL +

Vo

fSL

(
−D

2
+

1

3

)
(3.10)

i4 = iL,btm +
Vo

fSL

(
D − 2

3

)
= ĪL +

Vo

fSL

(
−D

2
+

1

6
+ D − 2

3

)
= ĪL +

Vo

fSL

(
D

2
− 1

2

)
(3.11)

The design parameters listed in 3.1.1 can now be evaluated.

Maximum RMS current The current RMS value is approximately equal
to the average value if the current ripple is small with respect to the average
value:

iL,rms ≈ iL, ave
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The average value instead depends on the load. For constant load current

iL,rms,max ≈
Io,max

3
(3.12)

whereas for constant load resistance

iL,rms,max ≈
Vo

3Rmin

(3.13)

Maximum peak current It can be calculated studying the sign of its
derivative with respect to the duty cycle. Since from the assumptions listed
in 3.2, the output voltage is constant, the average value of the current iL,ave
is independent of the duty cycle

∂iL,pk
∂D

=
∂

∂D

(
ĪL +

Vo
fSL

(
D

2
− 1

6

))
=

Vo
fSL

1

2

The derivative is positive for any value of D, so the function is increasing
in all the range of duty cycle values. Therefore, inductor’s peak current value
is maximum at maximum duty cycle:

iL,pk,max = ĪL,max +
Vo
fSL

(
Dmax

2
− 1

6

)
(3.14)

Maximum ripple current Resorting to equation (3.5), the maximum
ripple is calculated studying the sign of its derivative with respect to the
duty cycle.

∂∆iL
∂D

=
∂

∂D

(
Vo
fSL

(
D − 1

3

))
=

Vo
fSL

The derivative is positive for any value of D, so like the peak value, also
the ripple current is maximum for maximum duty cycle:

∆iL =
Vo
fSL

(
Dmax −

1

3

)
(3.15)
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Inductance The value of the inductance can be derived imposing the min-
imumn bottom value to be larger than zero. The minimum bottom value is
found studying the sign of the derivative:

∂iL,btm
∂D

=
∂

∂D

(
ĪL −

Vo
fSL

(
D

2
− 1

6

))
= − Vo

fSL

1

2

The derivative is negative for any D, so the function is decreasing. There-
fore, the minimum bottom value occurs for maximum duty cycle:

iL,btm,min = ĪL,min −
Vo
fSL

(
Dmax

2
− 1

6

)
(3.16)

Imposing equation (3.16) to be greater than zero the minimum inductance
is found:

ĪL,min −
Vo
fSL

(
Dmax

2
− 1

6

)
> 0

Vo
fSL

(
Dmax

2
− 1

6

)
< ĪL,min

L >
Vo

fS ĪL,min

(
Dmax

2
− 1

6

)
(3.17)

Frequency The operating frequency of the inductor is the switching fre-
quency of the transistors.

ESR When inductor’s ESR is considered, the static gain is divided by
a factor 1 + ESRL

3R
where R is the load resistance or the equivalent load

resistance, given by R = Vo/Io,max. The make the effect of inductor’s ESR
negligible, next condition should be verified.

1 +
ESRL

3R
≈ 1→ ESRL

3R
<< 1→ ESRL << 3R (3.18)

Output capacitor The sum of all inductors’ currents, which is referred
to as output current from now on, results in two contributions: the DC
component IO which fully flows in the load and the AC component iCo which
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Figure 3.7: currents in output node

flows in the output capacitor Co. The currents flowing in the output node
are reported in Fig. 3.7.

io = iL1 + iL2 + iL3 = io,DC + io,AC = IO + iCo (3.19)

The characterstics of this current are the following:

• its frequency is three times the switching frequency

• it’s a triangular waveform

• the slopes are equal to the sum of the slopes of each inductor’s current

The peak value of the output current occurs at the end of each rising part,
or at the beginning of the falling part, so at time instants t0, t0 + TS

3
, t0 + 2TS

3
:

io,pk = i4 + i2 + iL,pk = 3ĪL +
Vo
fSL

(
D

2
− 1

2
+
D

2
− 1

3
+
D

2
− 1

6

)

= Io +
Vo
fSL

(
3D

2
− 1

)
(3.20)

Similarly, the bottom current can be calculated:
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io,btm = iL,btm + i3 + i1 = 3ĪL +
Vo
fSL

(
−D

2
+

1

6
− D

2
+

1

3
− D

2
+

1

2

)

= Io +
Vo
fSL

(
−3D

2
+ 1

)
(3.21)

The current flowing the the output capacitor can be now calculated as
the difference between the output current io and the load current Io.

iCo = io − Io (3.22)

The average current value is of course zero, whereas the peak-to-peak
ripple is exactly equal to the output current’s ripple.

∆iCo = iCo,pk − iCo,btm = ∆io =
Vo
fSL

(3D − 2) (3.23)

The peak value of current iCo is half the peak-to-peak ripple:

iCo,pk =
∆iCo

2
=

Vo
fSL

(
3D

2
− 1

)
(3.24)

The sign of the derivative of iCo,pk is studied to find its maximum value

∂iCo,pk

∂D
=

∂

∂D

(
Vo
fSL

(
3D

2
− 1

))
=

Vo
fSL

3

2
(3.25)

The derivative is positive for any D, so the maximum current iCo,pk,max

occurs for maximum duty cycle:

iCo,pk,max =
Vo
fSL

(
3Dmax

2
− 1

)
(3.26)

and of course, the maximum peak-to-peak voltage ripple is:

∆iCo,max =
Vo
fSL

(3Dmax − 2) (3.27)

Working voltage The working voltage is the output voltage.

VCo = Vo (3.28)
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RMS current The RMS current is found resorting to the formula of the
parabolic triangle:

iCo,rms =
iCo,pk√

3
(3.29)

Its maximum value is obtained substituting (3.24) in (3.29):

iCo,rms,max =
iCo,pk,max√

3
=

Vo
fSL

(
3Dmax

2
− 1

)
1√
3

(3.30)

Equivalent series resistance Maximum ESR can be calculated from the
maximum output voltage ripple, which is given by specifications, and the
maximum peak-to-peak output capacitor’s current ripple (3.27).

ESRCo <
∆vo,pp

∆iCo,max

=
∆vo,pp

Vo
fSL

(3Dmax − 2)
(3.31)

Estimation of the capacitance The equivalent series resistance intro-
duces a zero fP ; the capacitance of the output capacitor is typically chosen
to have the zero beyond the poles frequency, so some kilohertz

Co ≈
1

2πESRfP
(3.32)

3.2.2 Diode

An ideal diode is a short circuit when it is conducting and is an open circuit
when it is not conducting. Each diode conducts for one third of the switchig
period, which corresponds to one period of the output current. When the
diodes do not conduct, the reverse voltage applied to them is equal to the
input voltage multiplied by the turns ratio.
As an example, voltage and current waveforms of diode D1 are reported in
Fig. 3.8 and Fig.3.9.

Peak current The peak current is equal to the output peak current derived
in (3.20); its derivative is the same of the output capacitor’s current (3.25)
of since the output DC current is constant with respect to the duty cycle,
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Figure 3.9: diode voltage
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therefore the maximum diode peak current iD,pk,max is:

iD,pk,max = io,pk,max = Io,max +
Vo
fSL

(
3Dmax

2
− 1

)
(3.33)

Average current The average diode current is equal to the load current
when the diode is conducting; since the diode conducts for one third of the
switching period, the average current is:

īD =
1

3
Io

and of course its maximum value occurs for maximum load current

īD,max =
Io,max

3
(3.34)

Maximum reversse voltage the maximum reverse voltage is simply the
maximum input voltage multiplied by the turns ratio:

vD,rev,max = nVin,max (3.35)

3.2.3 Transformer

The voltage applied to the primary-side of the transformer was presented
already in Fig. 3.3. The current flowing in the secondary side of each trans-
former is equal to the difference between inductor’s and diode’s currents. The
current at the primary is equal to the current at the secondary multiplied by
the turns ratio.

iS1 = iL1 − iD1 (3.36)

iP1 = niS1 (3.37)

RMS current The RMS current can be evaluated roughly using flat-top
approximation and considering all the positive parts to be n Io

3
and the neg-

ative parts −n2Io
3
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Figure 3.10: current at primary side

iP,rms =

√√√√ 1

TS

((
n
Io
3

)2(
D − 2

3

)
TS +

(
n

2Io
3

)2(
1

3

)
TS +

(
n
Io
3

)2(
1−D +

1

3

)
TS

)

=

√(
n
Io
3

)2(
D − 2

3
+ 4

1

3
1−D +

1

3

)
=

(
n
Io
3

)√
2 (3.38)

Since the RMS primary side voltage does not depend on the duty cycle,
its maximum value depends on the output current only. The maximum RMS
current at the secondary side is obtained dividing the maximum RMS current
at the primary by the turns ratio.

iP,rms,max =

(
n
Io,max

3

)√
2 (3.39)

iS,rms,max =
iP,rms,max

n
=

(
Io,max

3

)√
2 (3.40)

Turns ratio The turns ratio n is a parameter which should be designed
taking into account the required output voltage, the input voltage and the
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maximunm static gain.
The maximum output voltage is given by the maximum ideal static gain:

Vo = Vinn (2− 2D) (3.41)

Since the duty cycle is limited in the range
(
2
3
, 1
)
, the maximum static gain,

which occurs at minimum input voltage, is:

Mmax = n

(
2− 2

2

3

)
= n

2

3
(3.42)

MmaxVin,min = n

(
2− 2

2

3

)
Vin,min = n

2

3
Vin,min (3.43)

From this relations it is possible to choose a suitable turns ratio. Con-
sidering that the maximum theroretical gain is not actually achievable, it is
better to keep some margin.

3.2.4 High-side switch

The most relevant parameters to be defined when designing a MOSFET are
the ones related to stress and conduction losses.

Maximum blocking voltage The voltage across each transistor is ideally
zero when it is conducting and is the input voltage when it is not conducting;
therefore, the maximum blocking voltage is the maximum input voltage.

vSW,block,max = Vin,max (3.44)

ON resistance When high-side transistors are conducting, the current
flowing through them is equal to the primary side current. The voltage drop
across a conducting transistor is given in practice by the drain current times
the drain-source resistance.
The peak drain current corresponds to the negative peak (Fig. 3.12). In
that part, the diode is conducting, so its current is given by the sum of all
inductors’ currents and the secondary side current is equal to the sum of two
inductors current. Therefore, the primary current is for sure smaller than
twice inductor’s peak current. Let use then this value as the secondary side
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Figure 3.11: voltage on high-side switch

maximum peak current; the primary side peak current is derived multiplying
by the turns ratio.

iSW,pk,max = iP,pk,max = niS,pk,max < n (2iL,pk,max) (3.45)

Given the maximum voltage drop across the conducting transistors, for
instance few percent of minimum input voltage, the maximum ON resistance
is calculated.

rDS,on <
vSW,drop
iSW,pk,max

(3.46)

RMS current The RMS current is calculated to evaluate power dissipation
due to conduction losses.
The current in transistor SW1 is analyzed again to derive the RMS current.
Using flat-top approximation, the first part and the last one (the positive
ones) are approximated with n Io

3
whereas the negative part is approximated

with n−2Io
3

.

iSW,HS,rms =

√√√√ 1

TS

((
n
Io
3

)2(
D − 2

3

)
TS +

(
n

2Io
3

)2(
D − 2

3

)
TS +

(
n
Io
3

)2(
1−D +

1

3

)
TS

)
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Figure 3.12: current in high-side switch

=

√(
n
Io
3

)2

((4D − 2)) =

(
n
Io
3

)√
4D − 2 (3.47)

∂iSW,HS,rms
∂D

=
∂

∂D

((
n
Io
3

)√
4D − 2

)
=

1

2

(
n
Io
3

)
1√

4D − 2
4

iSW,HS,rms,max =

(
n
Io,max

3

)√
4Dmax − 2 (3.48)

The maximum dissipated power due to conduction losses is then derived.

PSW,cond = rDS,oni
2
SW,HS,rms,max (3.49)

3.2.5 Low-side switch

The same parameters derived for the high-side switches are derived for the
low-side ones.

Maximum blocking voltage The voltage applied to low-side switches is
different from the high-side ones, but the maximum voltage is the same.
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Figure 3.13: voltage across low-side switch

vSW,block,max = Vin,max (3.50)

ON resistance The drain source conducting resistance should be evalu-
ated in the same way as it is done for the high-side switch. Since the peak
current is the same, the same result obtained previously is valid.

RMS current The RMS current is calculate. Flat-top approximation is
used again to make calculations easier.

iSW,LS,rms =

√
1

TS

(
n

2Io
3

)2

(1−D)TS =

(
n

2Io
3

)√
1−D (3.51)

∂iSW,LS,rms
∂D

=
∂

∂D

((
n

2Io
3

)√
1−D

)
=

1

2

(
n

2Io
3

)
1√

1−D
(−1)

iSW,LS,rms,max =

(
n

2Io,max
3

)√
1−Dmin (3.52)
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Figure 3.14: current in low-side switch

The maximum dissipated power due to conduction losses is then derived.

PSW,cond = rDS,oni
2
SW,HS,rms,max (3.53)

3.2.6 Input Capacitor

The input current iin, which is given by the sum of the DC current from the
input voltage source and the current flowing in the input capacitor, can be
calculated either as the sum of the currents flowing in the high-side transistors
or as the sum of the currents flowing in the low-side transistors.

iin = iSW1 + iSW3 + iSW5 = iSW2 + iSW4 + iSW6 = Iin + iCin
(3.54)

RMS current Since the low-side transistors are never conducting simulta-
neously, their currents are separated in time, so quadratic KCL law (section
3.5) can be exploited. Moreover, since the currents coming from the input
voltage is a a pure DC current and the input capacitor’s current is purely
AC, they are separated in frequency, so quadratic KCL law is valid again.

i2in,rms = i2SW2,rms + i2SW4,rms + i2SW6,rms = I2in + i2Cin,rms
(3.55)
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The RMS currents of low-side transistors are equal and their value is
derived in equation 3.51.

i2SW,LS,rms =

((
n

2Io
3

)√
1−D

)2

= n2I2o

(
4

9
− 4D

9

)
(3.56)

The square value of the input DC current is derived from the static gain.

I2in = (GIo)
2 = (n (2− 2D) Io)

2 = n2I2o
(
4− 8D +D2

)
(3.57)

Combining equations (3.55), (3.56) and (3.57), the expression of input
capacitor’s RMS current is derived:

i2Cin,rms
= I2in − 3i2SW,LS,rms

iCin,rms =
√
I2in − 3i2SW,LS,rms =

√
3n2I2o

(
4

9
− 4D

9

)
− n2I2o (4− 8D +D2)

= nIo

√
−D2 +D

20

3
− 8

3
(3.58)

Its derivative is studied to find the maximum value

∂iCin,rms

∂D
=

∂

∂D

(
nIo

√
−D2 + D

20

3
− 8

3

)
=

1

2
nIo

1√
−D2 + D 20

3 −
8
3

(
−2D +

20

3

)

The square root is always positive when it exists, so the sign of the last
term is the only one that has to be studied.(

−2D +
20

3

)
> 0

D <
10

3

Since the duty cycle is defined only in the range
(
2
3
, 1
)
, the function is

always increasing and the maximum RMS current occurs at maximum duty
cycle.
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iCin,rms = nIo

√
−D2

max +Dmax
20

3
− 8

3
(3.59)

Working voltage The input capacitor is placed in parallel to the input
voltage, so its working voltage is the input voltage.

3.2.7 Leakage inductance

The leakage inductance is intrinsically present in the transformers. However,
physical inductors can be added in series to the primary side to control the
ZVS more effectively.
The leakage inductance, however, introduces a load effect on the static gain
and reduces the quality factor of the frequency response.

Inductance The value of the leakage inductance can be calculated so that
the load effect does not affect the static gain dramatically. The ideal static
gain is Mideal = n (2− 2D). The static gain considering the effect of the
leakage inductance is instead:

Mreal = n (2− 2D − 3I ′o) (3.60)

Where I ′o is the so-called normalized output current, which is given by:

I ′o =
nfSLdIo
Vin

(3.61)

To make the effect of 3I ′o negligible, the following condition is imposed

3I ′o << (2− 2D)

I ′o <<
(2− 2D)

3
nfSLdIo
Vin

<<
(2− 2D)

3

Ld <<
Vin (2− 2D)

3fSIo
(3.62)
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RMS The current flowing through the leakage inductance is equal to the
primary side current, whose maximum RMS value is calculated in (3.39)

iLd,rms,max =

(
n
Io,max

3

)√
2 (3.63)

peak current The peak current is equal to the peak current flowing on
the primary side, which corresponds to the peak current estimated for the
transistors in (3.45)

iLd,pk,max = iP,pk,max = niS,pk,max < n (2iL,pk,max) (3.64)

Operating frequency The operating frequency is the switching frequency.

3.2.8 Parasitic capacitance

Like the leakage inductance is intrinsically present in the transformers, par-
asitic capacitances are intrinsically present in MOSFETs. To achieve zero-
voltage-switching, the value of the parasitic capacitance should be lower than
a maximum value, derived from the load condition for ZVS

Capacitance The capacitance value can be derived from the minimum
load conidtion to achieve zero-voltage-switching:

Io >
3√
2

Vin√
Ld/Ce

(3.65)

Reversing (3.65), the maximum value for Ce is derived:

Ce <
2I2oLd
9V 2

in

(3.66)

3.2.9 Primary capacitor

A capacitors in series to the primary side of the transformers is needed to
avoid core saturation; in fact any DC voltage component applied to the
primary side is blocked by the capacitor.
The value of the capacitance should not be too large, otherwise the capacitor
would never block anything.
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The value of the capacitance should not be too small, otherwise the ripple
voltage across it would be too large.
As a rule of thumb, the capacitance value is estimated imposing the ripple
voltage to be smaller than a percentage of the input voltage.

Capacitance Let calculate the maximum ripple voltage.

Cp =
∆Q

∆vCp

=
∆Q

10%Vin
(3.67)

The maximum charge ∆Q occurs at maximum current and minimum duty
cycle, since it’s given by the integral of the primary-side current in Fig. 3.10
according to the formula

∆Q = n
2Io,max

3

TS
3

(3.68)

Combining equations (3.67) and (3.68) the value of the primary capacitor
is obtained.

Cp =
∆Q

∆vCp

=
n2Io,max

3
TS
3

10%Vin
(3.69)

Working voltage When leakage inductances are present on the primary
side of the transformers, overvoltages occur during switching transitions;
therefore, it is a safe solution to use capacitors whose working voltage is
at least twice the maximum input voltage.

RMS current The RMS current is equal to the primary-side RMS current
calculated in (3.39).

iCp,rms,max =

(
n
Io,max

3

)√
2 (3.70)
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3.3 Low-power prototype

There are no real specifications, so they will be derived from the limitations
of the lab equipment.

3.3.1 Laboratory equipment

The RIGOL DP832 power supply is present in the labs; it has three channels,
the maximum output values for each channel are reported in the following
table.

channel channel 1 channel 2 channel 3
max output current 3 A 3 A 3 A
max output voltage 30 V 30 V 5 V

Channels 1 and 2 can be connected either in series or in parallel to increase
input power.
It is chosen to connect the channel in series, hence doubling the maximum
input voltage.

3.3.2 Measurements

As mentioned in section (3.1.3), both static and dynamic measurements
should be performed.
To test the static gain, the input voltage is from 40V to 60V and the duty
cycle is adjusted so as to keep the output voltage equal to 25 V. It is con-
venient to use a 1:1 transformer turns ratio. Maximum ad minimum duty
cycle values are derived.

Vo = nVin (2− 2D)→ D = 1− Vo
2nVin

Dmin = 1− Vo
2nVin,min

= 1− 25V

2× 1× 40V
= 0.68 (3.71)

Dmax = 1− Vo
2nVin,max

= 1− 25V

2× 1× 60V
= 0.79 (3.72)

The dynamic measurements are instead performed with maximum gain
and maximum output voltage, so for Vin = 60V and D = 2

3
; therefore, the
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output voltage will be 40V .
This condition is the one that gives maximum volt-second applied to the
primary side of the transformer; it is necessary to take it into account when
designing transformer.
From Fig. 3.3 presented in the previous section, the flux linkage λ is given
by

λ = ‖ − 2Vin
3
× (1−D)TS‖ =

2Vin,max
3

× (1− 2

3
)TS (3.73)

3.3.3 Load

The maximum load current is set to Io,max = 2.5A, so the maximum output
power, which is given at maximum output voltage, maximum load current,
is 100W .
The minimum load current is set to half the maximum current, therefore
Io,min = 1.25A

3.3.4 Others

Switching frequency In order to make the effect of parasitic components
negligible, it is useful to pick a relatively low switching frequency, i.e. some
tens of kilohertz.

fS = 50kHz

TS =
1

TS
= 20µs

Output ripple The output ripple is 1% of the maximum output voltage,
therefore:

vo,pp,max = 1% (40V ) = 400mV (3.74)

Voltage across transistors The voltage drop across transistors is sub-
tracted from the primary side of the transformers; to have a low impact on
the operation of the circuit, the maximum voltage drop allowed is 1% of the
minimum input voltage.
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vSW,drop = 1%Vin,min = 1% (40V ) = 400mV (3.75)

The values of the components can now be designed.

3.3.5 Inductors

Inductance From equation (3.17)

L >
Vo

fS ĪL,min

(
Dmax

2
− 1

6

)
=

25V

50kHz × 0.417A

(
0.79

2
− 1

6

)
= 274µH

The next value on the E12 series is taken, then L = 330µH

RMS current From equation (3.12)

iL,rms,max ≈
Io,max

3
=

2.5A

3
= 0.833A

Peak current From equation (3.14)

iL,pk,max = ĪL,max+
Vo
fSL

(
Dmax

2
− 1

6

)
=

2.5A

3
+

25V

50kHz × 330µH

(
0.79

2
− 1

6

)
= 1.18A

Ripple current From equation(3.15)

∆iL =
Vo
fSL

(
Dmax −

1

3

)
= 0.69A

Operating frequency The operating frequency is 50kHz.

ESR From equation (3.18)

ESRL << 3R→ ESRL < 5%
Vo

Io,max
= 5%

25V

2.5A
= 500mΩ

3.3.6 Output capacitor

Working voltage The working voltage is the maximum output voltage,
so 40V .

94



RMS current From equation (3.30)

iCo,rms,max =
Vo
fSL

(
3Dmax

2
− 1

)
1√
3

= 161mA

ESR From equation (3.31)

ESRCo <
∆vo,pp

Vo
fSL

(3Dmax − 2)
= 717mΩ

Capacitance From equation (3.32)

Co ≈
1

2πESR× 5kHz
= 44µF

3.3.7 Diode

Maximum reverse voltage From equation (3.35)

vD,rev,max = nVin,max = 60V

Peak current From equation (3.33)

iD,pk,max = io,pk,max = Io,max +
Vo
fSL

(
3Dmax

2
− 1

)
= 2.78A

Average current From equation (3.34)

īD,max =
Io,max

3
= 0.83A

3.3.8 Transformer core

Power transfomers, as well as magnetic components in general, are not usu-
ally present on catalogues, but have to be designed ad hoc. The design is
no trivial task, because electrical specifications must fit in thermal, magnetic
and dimension constraints. The proposed design criteria and the relative
design flow are presented.
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Design criteria A power transformer is a device which has to transfer
energy from the primary-side to the secondary-side; therefore, energy should
not be stored in the core, and this constraint can not be used as a design
criterion. The design criteria are instead related to the losses; in fact, trans-
formers should be able to withstand electrical stress and operate correctly.
From a circuit-level standpoint, power dissipation in the core should be kept
low to maintain a high efficiency.
From a thermal standpoint, power dissipation in the core should be kept low,
because power is dissipated in heat, and heat makes temperature increase.
It is preferable to have magnetic cores working below a certain temperature
(typically 100◦C); moreover, if temperature arises beyond a critical value,
called ”Curie Temperature”, magnetic properties are lost.
Temperature rise depends on thermal resistance, which depends on core ma-
terial, shape, dimension and is difficult to determine. Therefore, approximate
calculations will be used to derive core dimensions.
At high frequency (like 50 kHz) losses are given both by core and wire losses.
Core losses are determined by the flux density swing and wire losses are due
to the parasitic resistance of the windings.
It can be shown that minimum total losses occur when core losses are roughly
equal to wire losses.

Design flow The design steps are here presented.

1. Choose core material and shape

2. Determine allowed power losses, derive core dimensions

3. Derive the number of turns

4. Derive dimension of wires

1 - Core material and shape The choice of core material and shape
depends on the application. Ferrite cores are typically used for high frequency
power transformers (i.e. switching frequency larger than tens of kilohertz); E-
shape cores are a good compromise between dimension and power dissipation
capability.
The material chosen is the following one from EPCOS/TDK: SIFERRIT
material N87.
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2 - Allowed power losses and core dimenions The maximum allowed
power losses is set by efficiency constraints.
From core shape and material it is possible to derive an estimation of the
thermal resistance as a function of core’s dimensions; imposing a maximum
temperature rise, core dimensions are derived.
µF

The maximum power dissipate is set to be about 1% of maximum output
power, so PD,allowed = 1W . Since three transformers are present, efficiency is
lowered by 3%.
As a rule of thumb, for ferrite materials, thermal resistance as a function of
the external surface Aext expressed in square centimeters is:

RTH =
800

◦Ccm2

W

Aext
(3.76)

For E-shape cores, the ratio between surface area and window area (which
is the area through which wires are wound) is constant regardless of the
volume. Such ratio is about 22, so the thermal resistance as a function of
the window area expressed in square centimeters is:

RTH =
36
◦Ccm2

W

Aw
(3.77)

The temperature rise is then

∆T = RTHPD,allowed =
36
◦Ccm2

W

Aw
× 1W =

36◦Ccm2

Aw
(3.78)

For a window area of 1 centimeter squared, the temperature rise is 36◦,
which is acceptable.

The core E36/18/11 is chosen . Its most important dimensions are re-
ported.

• AW = 1.22cm2 window area

• Ac = 1.12cm2 minimum core area

• Ve = 9.72cm3 core volume

• MLT = 7.64cm average length turn
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3 - Number of turns Knowing core dimensions, a rough estimation of the
maximum flux density swing can be derived from power constraints. In fact,
datasheet provide relative core losses PV (power dissipated vs core volume)
varying switching frequency and flux density swing.
Relative core losses, expressed in kilowatts per cubic meter, are derived di-
viding the maximum allowed core losses by the core volume. Core losses are
half the maximum allowed losses, hence 0.5W .

PV =
0.5W

9.72cm2
= 51.4

kW

m3
(3.79)

From graphs present on the datasheet, a maximum peak flux density of
100mT is derived.
Ampere law relates flux density and volt-second according to the formula:

∆B =
λ

2NAc
(3.80)

Where ∆B is the peak flux density, λ is the volt-second applied to the
primary side and N is the number of turns at the primary side.

The maximum volt-second occurs for maximum input voltage and mini-
mum duty cycle.

λ =
2

3
Vin,max (1−Dmin)TS =

2

3
60V

(
1− 2

3

)
20µs = 267V µs (3.81)

Imposing the peak flux density smaller than 100mT , a the condition on
the number of turns is obtained.

λ

2NAc
< 100mT (3.82)

N >
λ

2 (100mT )Ac
=

267V µs

2 (100mT ) 120cm2
= 11.1 (3.83)

The number of turns can be therefore for example 15.

4 - Dimension of wires Losses in the wires are determined by the wire
turn resistance Rturn = ρ×MLT

Awire
and by the RMS current according to the

following formula.
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Pwires =
ρ (MLT )NP

Awire
i2P,rms +

ρ (MLT )NS

Awire
i2S,rms

=
ρ (MLT )

Awire
NP

(
i2P,rms +

NS

NP

i2S,rms

)
Where ρ is the resistivity of the copper, Awire is the cross section of the

wire and the ratio NS/NP = n = 1
The total currents are calculated.(
i2P,rms +

NS

NP

i2S,rms

)
=

(
n
Io,max

3

√
2

)2

+ n

(
Io,max

3

√
2

)2

= 2.77A2 (3.84)

Substituting the current value just calculated and imposing the power
dissipated smaller than half the allowed power dissipated, the following ex-
pressions are obtained.

Pwires =
(1.724µΩcm) (7.64cm) 15

Awire

(
2.77A2

)
(3.85)

Pwires < 0.5W (3.86)

Combining the two equations

(1.724Ωcm) (7.64cm) 15

Awire

(
2.77A2

)
< 0.5W (3.87)

Awire >
(1.724µΩcm) (7.64cm) 15

0.5W

(
2.77A2

)
= 1.1mm2 (3.88)

Wires AWG #16 or AWG #17 are suitable
EPCOS/TDK EE36/18/11

3.3.9 High-side transistor

Maximum blocking voltage From equation (3.44)

vSW,block,max = Vin,max = 60V
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ON resistance From equation (3.46)

rDS,on <
vSW,drop
iSW,pk,max

=
400mV

2× iL,pk,max
=

400mV

2.36A
= 169mΩ

The cold resistance reported on datasheet is typically half the hot resis-
tance calculated here.

rDS,ON,cold =
169mΩ

2
= 85mΩ

RMS current From equation (3.48)

iSW,HS,rms,max =

(
n
Io,max

3

)√
4Dmax − 2 = 0.9A

The maximum dissipated power can be calculated

PD,SW = rDS,ON × i2SW,rms = 169mΩ× (0.9A)2 = 136mW

3.3.10 Low-side transistor

Maximum blocking voltage Like high-side transistor.

vSW,block,max = Vin,max = 60V

ON resistance Like high-side transistor.

rDS,ON,cold =
169mΩ

2
= 85mΩ

RMS current From equation (3.52)

iSW,LS,rms,max =

(
n

2Io,max
3

)√
1−Dmin = 0.96A

The maximum dissipated power can be calculated

PD,SW = rDS,ON × i2SW,rms = 169mΩ× (0.96A)2 = 156mW
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3.3.11 Input Capacitor

Working voltage The working voltage is the input voltage 60V .

RMS current From equation (3.59)

iCin,rms = nIo

√
−D2

max +Dmax
20

3
− 8

3
= 3.5A

3.3.12 Leakage inductance

Inductance From equation (3.62)

Ld <<
Vin (2− 2D)

3fSIo

Vin (2− 2D)

3fSIo
= 213µH

Taking the 5% of the calculated value, the inductance is obtained

Ld = 10µH

RMS current From equation (3.63)

iLd,rms,max =

(
n
Io,max

3

)√
2 = 1.17A

Peak current From equation (3.64)

iLd,pk,max = iP,pk,max = niS,pk,max < n (2iL,pk,max) = 2.36A

3.3.13 Parasitic capacitance

Working voltage It’s equal to the input voltage 60V
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Capactiance From equation (3.66)

Ce <
2I2oLd
9V 2

in

= 965pF

3.3.14 Primary capacitor

Capacitance From equation (3.69)

Cp =
n2Io,max

3
TS
3

10%Vin
=

n×2.5A
3

20µs
3

10%60V
= 1.85µF

Working voltage Due to overvoltage on primary-side parasitic inductors,
it may be safer to set the working voltage to twice the input voltage: 120V

RMS current It is equal to the primary-side RMS current.

iCp,rms,max =

(
n
Io,max

3

)√
2 = 1.18A

3.4 Future perspectives

In future, a prototype of the designed converter may be built and tested,
possibly with a control feedback network.
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3.5 Quadratic KCL

For signals separated in time or in frequency, quadratic KCL is true. It states
that the square RMS of the sum of the signals is equal to the sum of the
square RMS value of each signal. Both the example of time-separated signals
and frequency-separated signals are provided.

Frequency-separated signals Let consider an output signal isum given
by the sum of a purely DC signal iDC and of a purely AC signal iAC of period
TS.

isum = iDC + iAC (3.89)

i2sum,rms =
1

TS

∫ TS

0

(iDC + iAC)2 dt (3.90)

=
1

TS

∫ TS

0

(
i2DC + 2iDCiAC + i2AC

)
dt (3.91)

=
1

TS

∫ TS

0

(
i2DC
)
dt+

1

TS

∫ TS

0

(2iDCiAC) dt+
1

TS

∫ TS

0

(
i2AC
)
dt (3.92)

The second term of equation (3.92) can be rewritten; the DC value is
constant with respect to time, so it can be placed before the integral operator;
the mean integral of a purely AC signal over a period is always zero.

1

TS

∫ TS

0

(2iDCiAC) dt =
2iDC
TS

∫ TS

0

(iAC) dt =
2iDC
TS

(0) = 0 (3.93)

The first and second terms of equation (3.92) are instead

•
(

1
TS

∫ TS
0

(i2DC) dt
)

= iDC,rms2 : square RMS value of iDC

•
(

1
TS

∫ TS
0

(i2AC) dt
)

= i2AC,rms: square RMS value of iAC

The square RMS value of the sum is then

i2sum,rms = i2DC,rms + i2AC,rms (3.94)
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Time-separated signals Let consider an output signal isum given by the
sum of two signals i1 and i2 separated in time, i.e. for any time instant if a
signals is non-zero, the other one is zero.

isum = i1 + i2 (3.95)

i2sum,rms =
1

TS

∫ TS

0

(i1 + i2)
2 dt (3.96)

=
1

TS

∫ TS

0

(
i21 + 2i1i2 + i22

)
dt (3.97)

=
1

TS

∫ TS

0

(
i21
)
dt+

1

TS

∫ TS

0

(2i1i2) dt+
1

TS

∫ TS

0

(
i22
)
dt (3.98)

The praoduct of signals i1 and i2 is always zero, because they are never
non-zero concurrently; since the integral of zero is zero, the second term of
equation (3.98) is always zero

1

TS

∫ TS

0

(2i1i2) dt = 0 (3.99)

The first and second terms of equation (3.98) are instead

•
(

1
TS

∫ TS
0

(i21) dt
)

= i1,rms2 : square RMS value of i1

•
(

1
TS

∫ TS
0

(i22) dt
)

= i22,rms: square RMS value of i2

The square RMS value of the sum is then

i2sum,rms = i21,rms + i22,rms (3.100)
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