
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

3D RECONSTRUCTION OF INDOOR

ENVIRONMENTS

Supervisor:

Prof. ANDREA SANNA

Candidate:

FRANCESCO TAMBURELLO

March 2021

Contents

1 Introduction 4

1.1 How the World view is changing 4

2 State of the Art 10

2.1 The Scene Reconstruction Problem 10

2.2 Representations of 3D Objects 12

2.3 Traditional Approaches 15

2.3.1 Kinect Fusion 15

2.3.2 AliceVision 18

2.4 Learning-Based Methods 21

2.4.1 Neural Networks 25

2.5 State-of-The-Art Systems 36

2.5.1 Convolutional Occupancy Network 36

2.5.2 PIFuHD . 39

2.5.3 BSP-Net 43

2.6 Virtual Reality . 46

1

2.7 Augmented Reality 48

3 Reconstruction System 51

3.1 Preliminary Work 53

3.2 System Architecture 56

3.3 Data Acquisition 57

3.4 Reconstruction . 59

3.5 Acquisition and Placement Side 61

3.5.1 Organization and Composition 61

3.6 The Lyfecycle . 62

3.6.1 The Photo Mode 63

3.6.2 The Reconstruction Mode 64

3.6.3 The Gallery 67

3.6.4 The RGB image 68

3.6.5 The Object Panel 73

3.6.6 The Model definition 75

3.7 The Model Decoding 78

3.7.1 Data Transfer Protocol 79

3.8 Reconstruction Side 83

3.8.1 Server Design and organization 83

2

3.8.2 Semantic Segmentation 85

3.8.3 Mask Extraction 88

3.8.4 Object Reconstruction 89

3.8.5 Remeshing 92

3.8.6 Rendering Generation 94

3.8.7 Rotation Estimation 95

3.8.8 Object Rotation 96

3.8.9 Server Connection 97

4 Testing and Results 100

5 Conclusion and Future Works 117

3

1 Introduction

1.1 How the World view is changing

In the modern era, most of the tasks that are assumed to be done by

humans are slowly, but steadily, being replaced by computers. Most

of the algorithms are capable to exceed by far the work of people,

reducing the time to complete it and increasing the accuracy and the

quality of the work. In addition, the continuous development allows

discovering new and powerful tools to facilitate the everyday routine.

It is impossible to deny that at present, the machines influence all as-

pects of our life, from the trivial act of checking the weather forecast,

to the entire management of our life as the way we interact and estab-

lish connection with other people around us. In fact, in less than 20

years, the technological innovation has seen an exponential growth in

all possible fields of applications and in all types of industries, reach-

ing goals which were unthinkable only a couple of years before. As

already mentioned, we discovered ways to make possible for comput-

4

ers to accomplish tasks and learn by themselves, for example using

peculiar structures defined “Neural Networks” (NNs), which have the

principal purpose to emulate the cognitive process of decision and

recognition. Considering those as the starting point, as the central

theme of this thesis we can refer to one of the most advanced field of

research in the spotlight, which is changing the interaction between

the machine and the world as well between the human and the world.

This theme can be defined using the term Deep Learning (DL), which

is related to the more general concept of Machine Learning (ML), that

is per se self-explanatory inasmuch it searches and defines a series

of methods to make computers perceive and understand the external

world in the same way we perceive it. The innovation of this idea re-

sides in the fact whereby, if the computer manages to perceive the ex-

ternal world, it becomes self-aware of it in a semantic sense, making

it able to manipulate and extract data from what it sees. Nowadays

many applications of DL are in the field of Computer Vision (CV),

but other fields such as Physics Simulation and Computer Graphics

are also seeing a surge in academic endeavors inspired by ML core

ideas. There are a multitude of applications that include a CV system

integrated with other tools to have improved the performances in spe-

5

cific tasks.

Figure 1.1: Examples of different Computer Vision applications. Im-
age taken from [33].

One of the most interesting applications of the computer vision con-

cerns the integration of the reality with the virtual environment, which

led to the creation of different applications. We can refer to those as

Augmented Reality (AR), where the virtual world and the real one

overlap, mixing digital elements in a real environment, for example

by using a smartphone device, and Virtual Reality (VR), where the

user is transported entirely in a digital environment with which the

user can interacted, most commonly by using specific devices defined

6

as Head-Mounted Displays (HMDs). Some commercial VR products

like the Oculus Quest or the Sony PlayStation VR have sold millions

of units as of 2021. These applications open a vast amount of possi-

bilities in terms of entertainment in general and video games princi-

pally, but are also finding a consistent employment in different fields

such as healthcare, education, military, manufacturing and so on. It is

not visionary to consider that in a not so distant future, these reality

augmentation devices will be implemented in all aspects of society,

changing the everyday life in the same way that computers did almost

fifty years ago.

Considering the AR as the main objective of this essay, it was decided

to engineer and develop a system allowing users to recreate and visu-

alize 3D models of an indoor environment by using the RGB camera

of a smartphone integrated with the functionalities provided by the

Google ARCore framework. This is an attempt to give to users a tool

to digitalize the environment and manipulate it, eliminating the disad-

vantage to use pre-built models. The smartphone application allows

the user to take a photo of an object and send it to a server, which has

the task to build the 3D model from the photo received and return it

to the application, where it will be displayed on the AR environment.

7

Figure 1.2: A Virtual Reality application (on the left) and an Aug-
mented reality application (on the right). Images taken from [20] and
[14].

The first chapter is a brief introduction with a general view of the

technologies in today’s world, followed by a discussion on the AR

and VR. The second chapter investigates the basic concepts for a bet-

ter comprehension of the mechanism employed in the thesis. In the

third chapter a discussion of the state of the art on object reconstruc-

tion is presented, and preliminary results on the most promising exist-

ing reconstruction methods are described. The fourth chapter presents

the general idea of the proposed system and its functioning, splitting

the description between the application and the server side. The fifth

chapter discusses in detail the mechanisms of the client side and its

implementation, whereas the sixth chapter discusses the tasks per-

8

formed by the server in order to achieve a successful reconstruction

of a model, relying only on the image of the object. In the seventh

chapter the results obtained in the final implementation of the server

and client and the overall accuracy obtained are presented, as well

the time employed to perform a complete cycle, from the start of the

application, to the final visualization of the model in an AR environ-

ment. The eighth and last chapters contain a discussion regarding the

achievement obtained, the possible improvements and fields of appli-

cation that the system can have.

9

2 State of the Art

The Computer Vision aims to recreate the human vision and its way

to process and interpret images or videos, and extracts features from

it using deep neural networks as support and the integration of cam

and software for the acquisition and elaboration of images, producing

a digital electric signal as output to be elaborated.

2.1 The Scene Reconstruction Problem

The Reconstruction problem in Computer Vision refers to the process

of understanding the shape of a specific object of the real world and

reproducing it as a digitalized 3D model. Reconstructing a model im-

plies that all its coordinates in space must be known to be able to de-

fine its profile, using various range of methods that are distinguished

in two categories: the active and passive methods.

10

The Active Methods The Active methods directly interfere with the

object with sensors as rangefinders or lasers, capable of measuring

the reflected part emitting radiance towards the object and thus re-

constructing its depth maps, which represent the distance from the

camera to each part of the object, dividing it in various range of col-

ors depending on the detected distance. An example of Active method

is given by the Time-Of-Flight (TOF) lasers, LiDAR (Light Detection

and Ranging) as in Fig.2.1 and 3D ultrasonic sensors.

The Passive Methods The Passive methods do not interfere directly

with the object but measure the radiance emitted or reflected by a

surface and try to infer its structure by image understanding. These

methods do not require an object, but only its photos or videos, thus,

they can be used in a larger range of different cases with respect to the

active ones. This category includes the highest number of machine

learning applications.

11

2.2 Representations of 3D Objects

In the field of Computer Graphics (CG) we have different ways to

represent three-dimensional objects:

1. Voxels

2. Point clouds

3. Polygonal meshes

4. Implicit representations

Figure 2.1: Example of Room Scanning using the Iphone 12 Pro
LiDAR. Image taken from [2].

12

Figure 2.2: The different representation of a generic object using
Point clouds (a), Voxels (b), Meshes (c) and Implicit representations
(d). Image taken from [16].

Voxels The term Voxel means Volumetric picture element. It can be

described as the 3D equivalent of 2D image pixels, where each value

is associated to a regular grid in three-dimensional space. A voxel

does not have an associated position, but this is defined relying on

the position relative to other voxels in its neighborhood. Interesting

works on reconstructions based on voxels can be found in [24, 31].

Point clouds Point clouds are an aggregation of points placed on a

3D space characterized by not having topological information. To-

gether with position, other values such as luminosity, color and depth

may be associated to points. Those are broadly used in the repre-

sentation of large three-dimensional structures when scanners or 3D

sensors are used in order to minimize the storage usage.

13

Polygonal meshes A polygonal mesh, or simply mesh, is a grid

that defines an object in the space and it is composed by vertices,

edges and faces. Faces are usually triangles or quads (polygons with

4 vertices), and sometimes particular faces with more than 4 vertices,

called N-gons, are employed. The complexity and the smoothness of

a mesh can be increased by dividing the mesh into more faces, at the

expense of higher memory requirements and more processing power

needed to draw those faces on screen. This representation was the

subject of investigation in different articles such as [11, 21, 32].

Implicit representations The Implicit representation differs from

the previous type of representations by being a continuous represen-

tation, thus not discretized in a finite quantity (number of vertices,

voxels or points). This representation can leverage on the use of a

NN to create an occupancy probability of an object in the space or a

distance field.

14

2.3 Traditional Approaches

In Computer Vision the methods which do not use the Machine Learn-

ing and Neural Networks to reconstruct the object are defined as Ac-

tive Methods. Those can also be defined as traditional since they ex-

ploit the information derived directly from the object and often require

the use of specific tools. Those were the first steps towards the auto-

matic reconstruction of objects and environment whose major draw-

back was the necessity to be able to interact with objects, meaning

that were limited to the surrounding area where they were set. We can

now define some of these traditional approaches.

2.3.1 Kinect Fusion

An interesting research is presented by KinectFusion: Real-Time Dense

Surface Mapping and Tracking [23], that shows a system which accu-

rately maps objects and indoor scenes in real-time. The entire system

is powered by a Microsoft Kinect sensor and uses an optimized Itera-

tive Closest Point (ICP) algorithm. The Kinect was a device originally

released by Microsoft in 2010 as a gaming peripheral for the Xbox

15

Figure 2.3: The Structure of Kinect. Image taken from [7].

360 console; although nowadays it is not used anymore for gaming,

it became quite popular in the academic community. The Kinect is

composed by an RGB camera, an infrared camera, a 3d scanner that

maps depth using structured light or TOF calculation, a microphone

array and a base with a motorized pivot.

The approach described in the paper solves the reconstruction

problem similarly to how the Simultaneous Localization and Map-

ping (SLAM) works and is composed by four modules:

1. The first module is the Surface Measurement, that can be de-

fined as a pre-processing stage, where the initial transformation

matrix of the camera is defined and computes the raw measure-

ments from the Kinect device, producing a normal pyramid map

and a dense vertex map.

16

2. The second module is the Sensor Pose Estimation that basically

uses a multi-scale ICP to define the alignment between the cur-

rent sensor measurement and the predicted surface.

3. The third module is the Surface Reconstruction Update, where

the depth data obtained in the first module are used in order

to reconstruct a scene model that is integrated and maintained

as representation of a volumetric TSDF (Truncated Signed Dis-

tance Function).

4. The fourth and last module, defined as Surface Prediction, pro-

vides the information from the previous models to define a dense

surface prediction and reconstruction aligned to the depth map

given from the Kinect sensors. The system contains a feed-

back loop, where the reconstructed surface is passed again to

the Sensor Pose Estimation module in order to verify the ac-

tual correspondence between the reconstruction and the given

measurement.

17

Figure 2.4: The results produced by the Kinect Fusion system.

2.3.2 AliceVision

AliceVision is a photogrammetric framework which can provide 3D

reconstructions using camera tracking algorithms [17, 22]. It can be

defined as something between the Active and Passive methods, given

the fact that its reconstruction does not need the physical object to in-

fer its reconstruction, and it is not based on any of the learning-based

approaches. AliceVision is based on the Photogrammetry, that is the

field of science that aims to obtain reliable environment and physical

object information by means of interpreting, recording and measur-

ing images and the phenomena in it. The system is programmable as

a chain of different blocks whose input is the output of the previous

block and takes as input a large quantity of images of a single object

from different points of view. The system first extracts a group of

pixels from the images, which are invariant to changing camera view-

18

points, using a SIFT (Scale-Invariant Feature Transform) algorithm,

extracting natural features, then it uses an image matching algorithm

in order to find images pointing to the same area in the scene, defining

the distance from the object of interest along with the camera position.

After comparing all the images, an operation of feature matching is

performed with the purpose to define all features possessed by the

object in order to prepare a dense scene using the information from

the feature matching and a depth maps estimation, obtaining a dense

pointcloud representation of the object.

Figure 2.5: The scene reconstructed using pointclouds in AliceVi-
sion. Image taken from [1].

The system then tries to build a mesh from the points of the point-

clouds joining all depth maps in a global octree, merging the com-

patible depth values and performing a 3D Delunay tetrahedralization,

producing a dense geometric surface representation. Finally, the sys-

19

tem computes UV maps and textures of the scene in order to apply

color textures to the reconstructed object mesh. The entire process re-

quires from 30 to 40 minutes for the reconstruction of a medium-sized

object and its accuracy depends on the number of photos fed to it and

the gap between an orientation of a photo with respect to its previous

and successive one. Normally an optimal number of photos to suc-

cessfully reconstruct the object is from 30 to 60 with a gap between

the photos which is not larger that 10◦.

Figure 2.6: The results produced by the AliceVision system. Image
taken from [26].

20

2.4 Learning-Based Methods

A method is defined learning-based when it exploits specific struc-

tures to define specific patterns from a great amount of data and is

capable of predicting an outcome given specific inputs. The advan-

tages in these methods is to be able to define autonomously a specific

pattern for a given set of inputs, thus being able to have more flexi-

bility, better accuracy and not being limited to a specific type of data.

These methods have seen an enormous amount in applications.

The neural networks implemented to perform such hard tasks as clas-

sification and recognition are the result of an intensive research and

advancement in the field of Machine Learning. The Machine Learn-

ing is a branch of Artificial Intelligence which studies algorithms

which allow the machine to accomplish different tasks in an autonomous

manner, recognizing patterns of data. The Artificial Intelligence evo-

lution skyrocketed when the first Artificial Neural Network (ANN or

NN) began to be employed, defining a new type of learning, called

deep learning, with the goal to imitate and reproduce the way a hu-

man learns and produces results based on thinking.

21

Figure 2.7: Venn Diagram of the relation between the Computer Vi-
sion and the Artificial Intelligence.

The process which allows the machine to learn how to perform a task

is called training. Similarly to how animals learn from experience,

machines can learn from large collections of data representing exist-

ing knowledge on a specific task. For example, we can identify cats in

pictures because we see a large number of observations of them and

we learn how to discern those features that are most commonly asso-

ciated with cats; exactly in the same way a machine can learn how to

recognize cats if we feed it with a large number of pictures of cats.

What the training does is essentially tuning the parameters of a model

in order to maximize the performance in executing the desired task.

The collection of data used for training is usually called dataset. The

22

training can be considered in three different types and is influenced

by the type of data contained in the dataset:

1. Supervised learning

2. Unsupervised learning

3. Reinforced learning

Supervised learning Supervised learning is the most common one,

and is distinguished by the use of two datasets, which differ in dimen-

sion and purpose.

The small one is a database consisting in images which were previ-

ously labeled by human and contains the right association between

inputs and outputs. This aims to let the program to establish a re-

lationship between the images. The algorithm starts to associate the

label and the image through the adjustment of the weights. At the

end of the training, a refinement step is done in order to increase the

accuracy of the NN by using the bigger database where it needs to

associate the labels without knowing a priori the right output.

Unsupervised learning Unsupervised learning is more versatile than

the supervised one. The versatility is given by the fact that the images

23

given to the algorithm are not machine readable, that basically means

that no labels are associated to them. This brings to a lack of informa-

tion, forcing the algorithm to create hidden structures where the data

points are perceived in abstract manners and defining connections be-

tween them.

Reinforcement learning Reinforcement learning is a peculiar algo-

rithm whose central idea is based on the human behaviour. It consists

in the implementation of a system with reward/penalty concept based

on the output of the algorithm. In particular if the output is right it “re-

wards” the algorithm, otherwise it forces it to reiterate the procedure

until a better result is provided. This method con be also defined as a

trial-and-error method based on the decision of an interpreter which

decides how accurate the output of the algorithm is.

In the context of machine learning, the capability of acquisition and

understanding of data is performed using a singular type of algo-

rithm with a composite structure defined as Artificial Neural Net-

works. Those were firstly theorized in 1943 and developed further

in the years until today, where a different variation was created and

implemented to perform higher grade tasks.

24

2.4.1 Neural Networks

An important step to take into account in order to understand the base

of this application is the explanation of what a Neural Network is and

how it works. A Neural Network can be defined as a complex config-

uration inspired by the biological network of the animals and is de-

signed to simulate its way of learning using a non-linear layout. The

system improves its performance and continuously evolves its struc-

ture, adapting according to what we feed. Every NN is composed by

a variable amount of processing units or “neurons”, each one belong-

ing to a specific layer and connected to other neurons of other layers

through an input/output chain system. Every neuron contains an in-

ternal state, called activation function, that is used to construct the

signal to send to the next ones and defines how the information will

be transferred; the knowledge is stored according to a specific weight

associated to it. Considering a generic neuron X0 with a weight w0,

which has as inputs other two neurons X1 and X2 with weight respec-

tively w1 and w2, it will have an input yin equal to yin = w1x1 +w2x2,

then its output will be given by his activation function as function of

25

his input and its weight as:

yout = f(yin, w0) = w0(w1x1 + w2x2) (2.1)

Hence the neurons are arranged by layers and are connected to the

other layer’s neurons in a sequential mode. The NN deals with mul-

tiple layers interconnected to a single input and output, or with layers

fully connected (i.e., each neuron is directly linked to each other neu-

ron of the next layer), or we can crop some interconnections with ad

hoc techniques (e.g., drop out, normalization) in order to speed up the

computation and improve the learning process. Every processing unit

makes decisions based on a weighted system that is used to produce an

output for the next neuron in the successive layer or to the final output.

These weight used to make decision are not static, in fact the aspect

of the NN similar to the units is the capability to adjust the weight

of the neuron that are multiplied with inputs, i.e. it is learning. The

Network is structured into three main levels: the input level, where

all the information from external sources are fed into the system and

passed to the successive layers; the hidden layer, which contains every

stack of neurons that computes the inputs and forward the elaborating

26

output to the next layer (e.g., the Multi-Layer-Perceptron) or directly

to the output (e.g., the Single-Layer-Perceptron). Finally, all the elab-

orated features are passed to the output layer which produces a final

outcome.

The overall system can improve its performance using a system called

back-propagation on the neurons. It consists in a reverse mechanism

based on mathematical derivatives which adjust the weights accord-

ing to what has been learnt so far.

Figure 2.8: The connections in a generic structure of a Neural Net-
work on a 3D view. The example regards the number recognition.
Image taken from [8].

Having defined the general points of a Neural Network, we can dis-

cern different types of these. In fact, based on the workload associated

to it, the NN can change the structure or the modus operandi which

27

defines it.

In the vast domain of the NN we can consider some specific cate-

gories:

1. Feedforward Neural Networks

2. Recurrent Neural Networks

3. Convolutional Neural Networks

4. Deep Neural Networks

5. Generative Adversarial Network

Feedforward Neural Networks

This the most basic type of NN where there are no cycles between

neurons. The information given to the input always navigates forward

with respect to the input-output logic, without storing the information.

We can distinguish two variants of this structure: the Single-Layer

Perceptron (SLP) and the Multi-Layer Perceptron (MLP).

The SLP consists in a single layer of output nodes. The data elabo-

ration is provided by the single layer and does not contain any other

hidden layer. This type of system is not used, since his computational

28

capability is limited due to his non-existance capability of data com-

bination.

Figure 2.9: The scheme of a Single Layer Perceptron. Image taken
from [3].

The MLP can be defined as the evolution of the SLP idea and it ba-

sically means that between the input and output are defined a vari-

able number of layers, each one with a variable number of neurons.

The system increases in complexity and it is more suitable to perform

more difficult tasks and predictions. The adoption of these system

revolutionized the approach of all the tasks that a machine was capa-

ble of doing.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of NN derived from

the feedforward and differs from them for its network layout that de-

29

Figure 2.10: The scheme of a Multi Layer Perceptron. Image taken
from [9].

fine a graph connection between nodes, forming a sort of temporal

sequence, allowing the dynamic modelling of the network.In addi-

tion, it possess a particular type of neurons which are connected with

themselves, forming a loop. This type of Networks can be inserted

in a various amount of applications that led to the birth of several

structures:

1. Fully recurrent RNN

2. Hopfield Network

3. Recursive RNN

30

4. Long short-term memory (LSTM)

Figure 2.11: The scheme of a generic Recurrent Neural Network.
Image taken from [15].

We can briefly refer to the recursive neural networks, which are net-

works where a static set of weights is applied recursively to a struc-

tured input, with the goal of producing a structured prediction. Those

has been used to learn the logical terms and the distributed represen-

tations.

31

Figure 2.12: The scheme of a Recursive Neural Network. Image
taken from [4].

Convolutional Neural Network

The CNN is a revolutionary class of NN that is designed to learn

features and spatial association in a adaptive and automatic manner

using backpropagation. In this way it is possible to transfer vectors

of weights and biases, which can be also shared with other neurons,

and adjust them, meaning that little pre-processing is used. A typical

CNN can be defined by multiple blocks such as convolutional, pool-

ing, ReLU and fully connected layers and takes a tensor as input.

32

The Convolutional layers have the main scope to convolve the data

and the final result will be a feature map, i.e., an abstraction of the

inputs. The neurons of a layer process data only for its receptive field.

The Pooling Layer has the main goal to reduce the amount of data

passed as input, combining the inputs of multiple neurons, and can be

of two types: Max Pooling where only the max value of the outputs

received by the cluster of neuron is passed, or the Average Pooling,

where the passed value is the result of the average between all the in-

puts given to the neuron.

The fully Connected Layer is a regularized and structured version of

a MLP where every neuron in a layer is connected to all the neurons

in the successive layer; this leads to slower but more accurate final

outcome.

This part of the CNN is the one responsible for classification

Generative Adversarial Networks

This framework, defined also as GAN, was designed by Ian Goodfel-

low and consists in two neural networks that compete each other in a

contest where the gain of one of the two is a loss for the other (a form

of zero-sum game). This method is developed under a single training

33

Figure 2.13: The scheme of a Convolutional Neural Network.

set given to the two networks, where the goal is to generate new data

with the same features with respect to the known set. The idea is that

the created data should be as original as possible and appearing real-

istic to a human eye. To perform such action each system needs to

”fool” the discriminator, which is at the same time updated dynam-

ically in order to think that the image is real and not generated by

34

the Network. This methods indirectly achieve a sort of ”unsupervised

learning” for the two networks, that constantly uses backpropagation

to update its nodes and thus improve its work.

Figure 2.14: Faces reproduced by a GAN, given certain photos as
inputs. Image taken from [13].

35

2.5 State-of-The-Art Systems

Having introduced the Neural Networks, we can now describe some

of the most advanced techniques in the field of 3D reconstruction,

which make use of learning-based methods to improve the perfor-

mance in terms of quality of results produced. Those systems were

also tested in the phase of project design, to evaluate the performances

in order to decide if were suitable for the system to be implemented.

2.5.1 Convolutional Occupancy Network

Regarding Convolutional Occupancy Network [25], it presents an ap-

proach where the general idea consists in the reconstruction of an

entire scene using the implicit representation. The system can take

point clouds or voxels as input and feed them to the system, where

are encoded in a feature grid, which can be 2D or 3D. This features

are passed to a convolutional network which processed them and pro-

duces an occupancy probability in the space.

The system is composed by an Encoder, a Convolutional Network and

a Decoder.

36

The Encoder The encoder is where the external inputs are first pro-

cessed and varies its use depending on the type of representation fed to

it. As mentioned before, the inputs can be voxels, which in this case

will require the use of a 3D CNN with one layer, or Point Clouds,

which will require a PointNet [27]. The encoder extracts features and

maps them, constructing a planar or volumetric representation to en-

capsulate local information from neighborhood.

Figure 2.15: representation of the different types of encoder in the
system.

The Decoder The features extracted from the Encoder are then pro-

cessed through the Decoder, whose function is to process the infor-

mation of feature planes and feature volumes received with the aid

37

of a 2D and 3D convolutional Hourglass Network (U-NET [29], [6]).

The system produces feature maps in output and therefore, given the

convolutional operation equivariant in translation, is possible to pre-

serve global information to allow the reconstruction of the model from

sparse inputs.

Occupancy Prediction

The feature maps give access to the estimation of the occupancy of

any point p in space. The method of extraction varies accordingly

to the type of decoder used that can be single-plane or multi-plane,

where the first projects each point p ortographically onto the ground

plane, and extracts the feature values using a bilinear interpolation.

The multi-plane decoder makes a sum of all of the 3 planes features,

aggregating the information from them. Then the occupancy of a

point p is predicted, given a vector for input x as:

fθ(p, φ(p, x))→ [0, 1] (2.2)

The final results of the reconstruction can be seen in (2.16)

38

Figure 2.16: The comparison of result between different reconstruc-
tion’s approach.

2.5.2 PIFuHD

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution

3D Human Digitization [30] were tested for its astonishing perfor-

mance that focuses his works on Human reconstruction, producing

detailed 3D models of a person, starting from a 2D image. This goal is

achieved using a specific function called Pixel-Aligned Implicit Func-

tion to estimate the occupancy of a 3D dense volume. The system

structure is composed by two modules, called Coarse Pixel-Aligned

Implicit Function or Coarse PIFu and the Fine PIFu. An additional

operation is performed at the start of the framework to predict the

39

front and back normal maps of the photo. In particular, the back map

which is not directly observed is inferred using an MLP network that,

due to the uncertainty, tends to produce smooth and featureless recon-

structions. Finally, the system was abandoned due to the fact that the

conversion of the system from human to object reconstruction was

complex and the training time for the NN needed to acquire an ac-

ceptable result was long-lasting and required a high computational

capability.

Figure 2.17: Schematic of the framework implemented in the PI-
FuHD system.

Pixel Aligned Implicit Function This function is the baseline for

all the works described in the paper and its goal is to define a function

capable of estimating the binary occupancy for any 3D position in a

40

camera space, X = (Xx, Xy, Xz) ∈ R3, given an RGB image I:

f(X, I) =

1, if Xis inside mesh surface

0, otherwise
(2.3)

This function is modeled using a NN architecture and an end-to-end

training. The final result of the function is thus expressed as:

f(X, I) = g(Φ(x, I), Z), (2.4)

where x is the orthogonal projection expressed as : x = (Xx, Xy),Φ(x, I)

is the image feature extracted from the 2D point location and Z = Xz

is defined as the depth of the ray in the 2D projection of x. As well

as all the points along a ray can have different image features, a MLP

is used for the 2D feature of the g function to vary the input depth Z,

and a CNN is used for the 2D feature of the function Φ

Coarse PIFu The Coarse PIFu has the function to extract the global

features from the image and also to produce the backbone features in

a resolution of 128x128. The input of the module takes a 0.5x down-

sample of the image, resulting in a 512x512 resolution. This module

41

differs from the standard PIFu as far as it uses also the predicted fron-

t/back normal maps. Given IL as the low-resolution input,FL and BL

as predicted normal maps, the function is thus defined as:

fL(X) = gL(Φl(xL, IL, FL, BL,), Z) (2.5)

Fine PIFu This module has the task of producing the details of the

model, extracting them from the image. It takes as input the high

resolution image (1024x1024) and also the predicted back and front

normal maps. It also takes into account the 3D embedding features

which are extracted from the coarse level. The function, as variation

of the standard PIFu, is defined as:

fH(X) = gH(ΦH(xH , IH , FH , BH ,),Ω(X)), (2.6)

where IH , FH , BH represent the input image, the front normal map

and the back normal map and Ω(X) represents the feature extracted

from the coarse PIFu module in an intermediate level of gL.

42

Figure 2.18: Result obtained trying different design of the system.

2.5.3 BSP-Net

The foundation of this entire project is presented in the article BSP-

Net: Generating Compact Meshes via Binary Space Partitioning [5]

where the system defines an implicit field to indicate if a detected

point is inside or outside the shape and thus reconstructing a compact

polygonal mesh from a single view of a photo. The algorithm is com-

posed by three main modules or layers that correspond to different

feature vectors extracted by an encoder and reproduce the object as a

model.

Hyperplane extraction module The first module has the goal to ex-

tract hyperplanes from the input data. The hyperplanes are subspace

43

Figure 2.19: The organization of BSP-Net.

of an environment space, whose dimension is given by the space co-

ordinates of that environment minus one (i.e. a Three-dimensional

space will produce a hyperplane with two-dimensional planes), and

are used to create learning models for classification and regression.

The hyperplanes are generated by an MLP in order to obtain a vector

of signed distance to each plane, exploiting the plane parameters ex-

tracted. This signed function will have negative distance if a generic

point with three-dimensional coordinates is inside the plane, and pos-

44

itive if it is outside, considering it with respect to the normal plane.

Hyperplane grouping module This layer has the goal to create

parts grouping hyperplanes in the half-spaces form. This procedure

is obtained by employing a binary matrix with max pooling to form a

set of convex primitives by the aggregation of input planes primitives.

We can express this function as:

C∗j (x) = max
i

(Di, Tij)

< 0, inside

> 0, outside
(2.7)

The Shape Assembly module

This block is designed, as the name suggests, to assemble the parts

together and rebuild the object. This goal is achieved by using a min

pooling in order to obtain a non-convex shape to group convexes in

output, using:

S∗(x) = min
i

(C+
i (x))

= 0, inside

> 0, outside
(2.8)

45

Figure 2.20: The result obtained by BSP-Net, compared to other ob-
ject reconstruction networks and the ground truth.

2.6 Virtual Reality

As mentioned before, The Virtual Reality give the possibility to the

user to interact in a virtual three-dimensional space and interact with

it using headset, which are specific devices that replace the informa-

46

tion that the user receive from its senses with virtual ones, allow to

reconstruct a complete experience, as it if were there.

The VR evolved during the years and led to the possibility to expand

thanks to the massive advancements in the computer vision and the

improvement of the available computational tools. The principal ap-

ply in these years were in the videogame industry, to allow the player

to have a complete experience of the game.

A different purpose is in medical context, where the students can prac-

tice on interventions in a safe and controlled environment, where they

can develop practice skills without any impact in case of failure(fig.

2.21).

Another interesting application is in the Psychotherapy field, where

the VR is used to cure the PSTD (post-traumatic stress disorder) of

the patient.

Figure 2.21: A medical students performs a simulation of treatment
on a virtual patient. Image taken from [28].

47

Despite huge development in modern times, the VR constitutes a not

completely accessible technology, due to different factor.

The main one is the computational load that have on the computers,

caused by the high stream of data to process in real time, which re-

flects an ever higher demands in terms of performance required to be

utilized. These demands are not inaccessible, but require an high level

hardware in order to work at its best capability and costs, as well as the

cost of the headset which is quite expensive too. The stream of data

to be computed is a crucial problem caused by the fact that affects the

responsivity of the environment to the user, lacking the capability of

a full immersion.

2.7 Augmented Reality

Virtual Reality is the enrichment of sensory perception using infor-

mation not achievable using the human senses. It is obtained using

a smartphone camera or a computer with an adequate webcam and

differs from the Virtual Reality since the user does not lose the per-

ception of the surrounding world, but instead he or she acquires ad-

ditional information from it and extends the possibility to visualize

48

object which are not present.

The Virtual Reality offer different fields of application where it im-

proves the user experience showing the content of a box (as in fig.

2.22), or the staff training, or still the automatic detection and visual-

ization of imperfections in products in a factory and so on.

Figure 2.22: The Augmented Reality Lego kiosk, where customers
can visualize the final content of the product by placing the box in
front of a camera. Image taken from [19].

The AR, similarly to the VR, requires a computational capability that

exponentially increases with the application complexity and some-

times can be prohibitive to run on smartphones.

If on one hand VR requires its specific headset to work, the AR can

49

run on a device with camera, despite some requirements must be ful-

filled in order to be able to effectively run, as far as it requires an ef-

ficient gyroscope to preform spacial operations and tracking, as well

as the capability to create depth maps to perform mapping operation

and object placement in the scene.

50

3 Reconstruction System

The system was firstly designed to match specific requirements. The

concept idea was to have a real-time application to perform a recon-

struction of the object in an indoor room by taking a photo, and then

visualize the 3D reconstruction in Augmented Reality in that same

room. It was needed to split the entire project in two parts, as the

computational capability of a smartphone was not enough to run the

reconstruction program and the user application as well the possibility

to make them work simultaneously, thus it was decided to divide the

entire process in the “Acquisition and Placement Side” on the smart-

phone which acts as a client, and the “Reconstruction Side” on a PC

which acts as a server, connecting each other through a TCP (Transfer

Control Protocol) connection in order to have a reliable communica-

tion between them during the data exchange. Concerning the client

side, it was important to have a reliable structure that was capable to

take images and send them to the server side, as well as the possi-

bility to reconstruct the entire object from a file or string. The real

51

time mesh reconstruction of an object was not to be underestimated,

considering how a not complex object could store more that ten thou-

sand lines of vertices and faces and could be divided into different

pieces, therefore there was a need for the reconstruction to host a sin-

gle complete mesh of the object without material or texture to lower

the complexity of reading and reconstructing. For what regards the

server side, hosting the entire reconstruction program, it requires to be

able to establish a connection with the application, to retrieve the im-

age sent and to reconstruct the corresponding model. The model then

should be encapsulated and returned to the application. The critical

point of this system is the necessity to spend as little time as possi-

ble for image processing and object reconstruction. The best possible

option is to have a system capable to perform those actions in around

one minute. The starting step towards the realization of the project is

to agree about a suitable reconstruction system which would satisfy

the system requirements.

52

3.1 Preliminary Work

Among the different works done in this field, in order to obtain the ob-

jective prefixed in the thesis, different approaches were implemented

and tested, comparing the obtained results and choosing the one that

was the best compromise in terms of quality and time spent on the

rebuilding process. Moreover, it is also interesting to highlight and

explain the reasons which led to the final decision. The tested sys-

tems were:

1. Convolutional Occupancy Network

2. PIFuHD

3. BSP-Net

4. AliceVision Meshroom

The implementation and testing were carried out on each of those

systems on different class of objects. Starting from Convolutional

Occupancy Network [25], this system was extremely similar to BSP-

Net but it has substantial differences in the used algorithm and in the

required input for the system. Convolutional Occupancy Network re-

53

quired as input a pointcloud file of the object which was extremely de-

manding, considering the architecture of the application, which was

only capable to take a photo of the object and thus required an addi-

tional system capable to reconstruct the 3D pointcloud from a single-

view image. The implementation of a system composed by two mod-

ules, one for converting image from pointcloud and one to convert

pointcloud to meshes, was deemed wasteful compared to BSP-Net

where the system already contains an algorithm to convert a single

view image into meshes, without the necessity of an intermediate step.

In terms of quality of the reconstructed mesh, it was possible to no-

tice how the result of Convolutional Occupancy Networks was not at

the level of BSP-Net, so the system was abandoned. The second sys-

tem taken into account was PIFuHD, whose results had a quality of

meshes extremely good and it was relatively fast in the computation,

even more than BSP-Net. The main problem of this algorithm is that

it was designed for the reconstruction of people and not objects, there-

fore, to match the requirements of our system, it was needed to change

the neural network in order to switch the focus of reconstruction from

people to objects and undergo to intensive training to perform the op-

eration of weighting of every neuron of the Network. This operation is

54

extremely heavy from a computational point of view and is normally

performed with a computer with high quality components. Then, the

time required to re-apply the weight undergoing training and the test-

ing of the network on a normal computer, was extremely long. For

those reasons, the system was discarded. The third system to be tested

was the Meshroom software of AliceVision. As mentioned before, it

needed only photos of the object as input to works, and the provided

results were extremely good. Different types of objects were tested

in order to examine the behaviour of the system but different prob-

lems have arisen. The system worked well only when a large amount

of photos is fed in and the time required to apply the reconstruction

was exponentially related to the number of photos and dimension of

the object to reconstruct; besides, reducing the amount of photos fed

in the system, the time and complexity decreased significantly, giv-

ing, however, a result which was extremely poor, incomplete and in

the most cases also different from the original. In the end, having

as a requirement that the reconstruction process would take no more

than a few dozens of seconds, it was prohibitive to force the user to

take thirty photos and wait for more or less one hour just for a single

reconstruction; for these reasons Meshroom was discarded. Finally,

55

the BSP-Net [5] was tested: its results were acceptable and the time

required for the entire reconstruction was less than a minute, which

was suitable for the application. The input required by the system

was a single photo, which was extremely convenient, given our sys-

tem architecture. Hence, it resulted as the best choice between the

considered solutions and it was decided to implement it in the project.

3.2 System Architecture

The Project has the final goal to produce a user-friendly application

on smartphone for the reconstruction of 3D models of real objects and

place them in the real environment exploiting the Augmented Reality.

The Application allows the user to take photos of different objects,

visualize them in the application, and manipulate them. We can split

the overall system in 2 parts: the “Acquisition and Placement Side”

which is substantially the application on the smartphone and acts as a

client, and the “Reconstruction Side”, where the reconstruction pro-

gram resides and acts as a server.

56

Figure 3.1: The general pipeline of the system.

3.3 Data Acquisition

Regarding the application, it is composed by three main windows,

each one with a specific task. The first of them, defined as the main

window or the photo window, has the intent to allow the user to take

photos of the object of interest in the environment and place some

indicators to designate its approximate position and also track the ob-

ject already photographed, which is necessary when the number of

objects to reconstruct is large. The second window, defined as the re-

construction or visualization window, is where the user can effectively

57

visualize and manipulate the 3D models reconstructed by the server.

In this window it is possible to manipulate the virtual object in terms

of scaling, rotation and translation, in order to match the real object

pose as close as possible. The last window is defined as the Gallery

and, as its name suggests, it allows the user to visualize and navigate

the photos they have taken.

Figure 3.2: The scheme of the Client.

58

3.4 Reconstruction

The 3D reconstruction of the object is performed on a server to whom

the client connects to. The server is composed by different parts con-

nected in a chain, where the sequentiality is mandatory in order to

accomplish its task. In fact, every block uses the input coming from

the output of the block before in order to provide its own result as

input to the next block. When the server is started, it establishes im-

mediately a connection with the client and waits to receive informa-

tion from it. When those are received, first it decapsulates them in

a legible way and pass those to the first block of the pipeline. The

blocks start by segmenting the photo in classes of objects, and pro-

ducing a grayscale image, where each level of gray correspond to a

class of object. The next part, The Mask Extraction, processes the im-

age created in the previous step and produces a binary mask to apply

to the original photo, resulting in a new image with white background

and the object positioned in the center. After the mask extraction, the

masked photo is then passed to the object reconstruction block based

on BSP-Net, where the program reconstructs the object present in the

image into a 3D model, deducing its volume with the aid of a Binary

59

Space Partitioning(BSP). In this section of the pipeline, the mesh may

have several imperfections, therefore the model undergoes through an

operation of remeshing to adjust and improve the overall quality of its

shape. Finally, the model is almost ready to be sent to the server but,

before the actual forwarding of the data, another information needs

to be found out. The object, when it is photographed, has a specific

orientation in the space relative to the camera, hence to instantiate the

object with a correct orientation, two steps, called Rendering Gener-

ation and Rotation Estimation, are performed. The Rendering Gener-

ation consists in rendering multiple frames of the object with a slight

angle of difference from each other. Those frames are stored and are

used for the final step; the Rotation Estimation module searches the

frame whose orientation is similar to the one in the photo and defines

the angle of difference between the camera and the object. Finally, the

last module called Object Rotation provides an alignment between the

server coordinates and the client ones. As this step is completed, all

the information can be encapsulated and sent through a socket to the

client.

60

Figure 3.3: The scheme of the Server.

3.5 Acquisition and Placement Side

3.5.1 Organization and Composition

The main purpose of the client is to provide an accessible environ-

ment for the user to reconstruct and visualize the real scene where

the 3D models in it are the result of a reconstruction from the photos

that were taken during the session. The Application was developed

using Google ARCore functionalities and the Unity Game Engine.

Google Arcore is a software development kit provided by Google for

61

the creation of Augmented and Virtual reality applications. It makes

it possible by tracking the phone with respect to the world with six

degrees of freedom, and it is capable to take over the dimension and

position of flat object like floor or tables and also estimate the light

condition of a particular environment, adapting to it. Unity is a multi-

platform game engine with the original purpose to allow the develop-

ment of video games and interactive contents such as applications or

animations. This program utilizes the C-Sharp language to program

contents inside it, using an object-oriented approach, and embedding

some specific functions for the manipulation of items and events in-

side the Unity environment. The project is mainly managed by a sin-

gle script, which defines the entire workflow of the application, and is

supported by two other scripts, one for the connection, the TCPHan-

dler, and one for the manipulation of the objects, the ObjectHandler.

3.6 The Lyfecycle

We can divide the lifecycle of the application in the workflow of each

window.

62

3.6.1 The Photo Mode

The Main Window, or Photo Mode, is the window displayed when

the application starts and has the main target to allow the user to take

the photo of an object in the room in which it is situated, visualize

the gallery or switch to the reconstruction mode. A simple flowchart

regarding the main operations of the Main window can be seen in

Fig.3.4.

Figure 3.4: Flowchart of the Main window.

When the application starts, it is important to help the application to

63

recognize the floor or a flat surface, otherwise the user will not be

able to place indicators and objects in the scene. When a photo is

taken, the program shows a preview of that and if it is not in line

with the standard of the user, the image will be removed and it will

return to the photo mode to retake the photo. If the photo is good

enough for the user, the program will automatically disable all the

User Interface(UI) in the scene and the user will be forced to place an

indicator in the scene in correspondence to the photographed object.

In this way, an anchor will be placed whose information will be stored

to track where the corresponding reconstructed model will have to be

placed. Simultaneously to the placeholder positioning, the program

will encapsulate the index of the photo(which also corresponds to the

index of the anchor placed) and the photo, handing them over to the

TCPConnectionHandler in order to be sent to the server.

3.6.2 The Reconstruction Mode

The Reconstruction mode or window is where the user can visualize

the 3D models reconstructed by the server and manipulate them and

it is accessible through the switch from the photo mode.

64

Figure 3.5: Showcase of the Main Windows on the left and the pre-
view of the photo taken on the right.

The flowchart of the cycle of the reconstruction mode, can be seen in

fig.3.6. When the user enters in reconstruction mode, it is assumed

that he/she has already taken pictures of different object in the room

65

Figure 3.6: Flowchart of the reconstruction window.

and the server has returned at least one object. If it has not, the re-

construction mode will be inaccessible. If the user had already taken

some pictures and the server has elaborated them and returned the

models, those will be shown in the scene in the exact place where the

indicator were previously placed. From here, he can tap on an ob-

ject to make appear the object handler panel. This panel allows the

rotation, scaling or translation of the object.

66

Figure 3.7: Placeholder placement on the Photo mode on the left
and correspondent substitution with 3D model in the Reconstruction
window on the right. The 3D model was the one used during the
preliminary tests on the application.

3.6.3 The Gallery

The Gallery has a simpler workflow than the other two, and its main

purpose it to visualize the images taken as a reminder of all the ob-67

jects that were already photographed. This window consists of three

buttons, two to navigate the gallery, the back and forward button, and

one to return to the main windows.

Figure 3.8: Showcase of the Gallery (on the left) and flowchart of the
gallery (on the right).

3.6.4 The RGB image

A consideration should be done concerning the RGB image as not

standard format for the camera of the Android devices. Instead, An-

droid uses the YUV format, which is a color format used to code

68

images and video and is employed to mask transmission or compres-

sion error by adopting a reduced crominance bandwidth. This format

is represented by three values, the Y which represents the luminance,

whereas U and V that represent the chrominance of an image. The

YUV format is used to indicate an analog value of a photo, and when

it is digitalized, the format can be defined as Y CBCR that represent

respectively the deviation from the gray on the blue-yellow axis and

on the red-cyan axis. The complete denomination of the Android stan-

dard is defined as YUV-420-888 where 888 indicates the number of

bit used for each value of R (red), G (green) and B (blue) and 420

stands for the subsampling of the chrominance aspect (U-V), respect

the luminance (Y), defining an actual ratio of 4:2:0 with a subsam-

pling of the UV value of one half respect of the Y value. The zero

should indicate that no value of V are sampled in this format, but

actually, this format utilizes a single interlacing plane for the chromi-

nance of U and V, forming a single UV plane that is subsampled of

one half respect the luminance value, removing the needs of the third

plane.

69

Figure 3.9: The distribuition of the YUV pixels in a RGB convere-
sion. Image taken from [12].

Therefore, there was the need to transform the camera format in RGB

in order to be saved in the gallery and sent to the server and the func-

tion to provide this was coded and embedded in the TakePhoto() func-

tion. We can report the actual extract of the conversion as follows:

70

Figure 3.10: Representation of the different YUV planes respect the
RGB ones in a generic photo. Image taken from [10].

1 Texture2D tex = new Texture2D(width, height, ...

TextureFormat.RGB24, false);

2

3 byte[] bufferY = new byte[image.Width * image.Height];

4 byte[] bufferUV = new byte[image.Width * image.Height /2];

5 System.Runtime.InteropServices.Marshal.Copy(image.Y, ...

bufferY, 0, image.Width * image.Height);

6 System.Runtime.InteropServices.Marshal.Copy(image.U, ...

bufferUV, 0,image.Width * image.Height/2);

7 Color c = new Color();

71

8 for (int y = 0; y < image.Height; y++)

9 {

10 for (int x =0; x<image.Width;x++)

11 {

12 float Y = bufferY[y * image.Width + x];

13 float U = bufferUV[(y/2) * (image.Width) + (x/2)*2];

14 float V = bufferUV[(y/2) * (image.Width) + (x/2)*2+1];

15

16 c.r= Y + (1.370705f * (V-128f));

17 c.g= Y - (0.698001f * (V-128f)) - (0.33633f*(U-128f));

18 c.b= Y + (1.732446f * (U-128f));

19

20 c.r /= 255.0f;

21 c.g /= 255.0f;

22 c.b /= 255.0f;

23

24 if (c.r < 0.0f) c.r = 0.0f;

25 if (c.g < 0.0f) c.g = 0.0f;

26 if (c.b < 0.0f) c.b = 0.0f;

27

28 if (c.r > 1.0f) c.r = 1.0f;

29 if (c.g > 1.0f) c.g = 1.0f;

30 if (c.b > 1.0f) c.b = 1.0f;

31 tex.SetPixel(image.Width-1-x, y, c);

32 }

33 }

As described in the function, the buffer of the two vectors (Y and

72

UV) are instantiated using the ratio of 4:2:0, then two loops along the

image width and height is performed and the three planes are divided

as shown in the photo (3.9), then the actual conversion is performed.

This conversion is defined “full range” because it produces values

comprehended in the all RGB interval [0, 255] and beyond, hence the

results are normalized in the interval of [0, 1]. The last operation is

performed since, being the chromatic scale of the YUV larger than the

RGB, some values could be under 0 or over 1 after the normalization.

Eventually the pixels are applied to the Texture that will represent the

image.

3.6.5 The Object Panel

As already mentioned, on the reconstruction windows is possible to

manipulate the object. This function was developed for users who

want to try to change the configuration of the 3d models in the vir-

tual room and to add some dynamical trait to the application. In the

reconstruction windows, when the screen is touched, a line is virtu-

ally casted from the point of the screen to the virtual environment in

the scene. If this ray hit an object, is searched its index value and it

73

is passed to the ObjectHandler script that will associate the control

panel to it. Exploiting the Unity possibilities, using two sliders, it is

possible to rotate and scale the object. In this panel it is also possi-

ble to change the target object to manipulate by simply tapping the

other objects in the scene. A different mechanism is applied when the

user wants to move the object. If the user is in the control panel of

a particular object and hit the button to move the object, the function

will lock the object until the button is pressed again and will disable

the two sliders for scaling and rotation. When the object is locked,

the user can freely move the object by dragging it in the scene or by

touching the area where he wants to move it. It is important to remark

that the object is not allowed to be moved in sections where the AR

plane is not present.

74

Figure 3.11: Showcase of the manipulation panel of an object before
manipulation(left) and after manipulation(right). The 3D model was
used to perform preliminary tests of the applications.

3.6.6 The Model definition

An aspect to highlight is that the model received by the server and

reconstructed by the “Objreceived()” function is not prepared to be

instantiated, and must be treated before it can be actually shown in the

75

scene. When the model is retrieved, a function, called ObjConstructor

has the task to complete the model adding all parts needed.

1 public void objcontructor(receiver rec)//receiver rec

2 {

3 GameObject GO = rec.g; //is the gameobject

4 int s = rec.index;

5 int rotation = rec.rot;

6 GameObject ex = Instantiate(GO); //this is only ...

the object;

7 BoxCollider boxCollider = ...

ex.AddComponent<BoxCollider>();

8 boxCollider.size = new Vector3(60,60,60);

9 boxCollider.center = new Vector3(0,40,0);

10 GameObject e = Instantiate(new ...

GameObject(),ex.transform.position, ...

ex.transform.rotation); //this is the container

11 e.transform.rotation = new ...

Quaternion.Euler(0,rot,0)

12 e.transform.position = ex.transform.position; ...

//same position as gameobject

13 ex.transform.parent = e.transform; ...

//object is now parent of the container

14 GameObject ShadowQuad = Instantiate(SQuad); ...

//instantiate the shadowquad

15 ShadowQuad.transform.parent = e.transform; ...

76

//shadowquad is now parent of the container

16 ShadowQuadHelper shadowQuadHelper = ...

e.AddComponent<ShadowQuadHelper>();

17 e.transform.position = Anc[s].transform.position;

18 e.transform.rotation = Anc[s].transform.rotation;

19 e.transform.tag =‘‘example'';

20 e.transform.parent = Anc[s].transform;

21 OBJs.Add(e);

In the code above, the function takes as input a structure called re-

ceiver, that will be discussed in the section[4.7]. In particular the

gameobject is instantiated and a box collider is attached to it. A func-

tion called Shadowquad to cast the shadows in the scenes to improve

the augmented reality experience, and the correspondent gameobject

are instantiated and attached to an empty gameobject, which will store

also the model. The final structure referred to as “e” in the code, con-

tains the model with the boxcollider, the Shadowquad script and the

object Shadowquad. This gameobject is finally translated to the po-

sition of the correspondent anchor using the index contained in the

receiver.

77

3.7 The Model Decoding

The model is received from the server as part of a json structured mes-

sage, which contains various information along with the model. After

the complete reception of the message, the entire model consists of

a single string whose length depends on the dimension and complex-

ity of the object modelled by the BSP-Net. The actual reconstruction

of the model is performed using a Unity plugin called ObjImporter

whose function is to reconstruct the meshes of a model contained in

a text file. Normally, a wavefrom obj model consists of a list of in-

formation that are characterized by a letter at the start of the line (i.e.

”v” for vertices, “f” for faces, “vn” for vertex normal and so on), in-

dicating the type of the info given in that line, followed by the actual

info, thus is important for an .obj file to have its information correctly

disposed and splitted in different lines. As the model is received, and

stored in a single string, it is not possible to have lines, even though

the newline characters are inserted where needed. The first step in or-

der to successfully reconstruct the object, is to write a temporary text

file with all the object information stored in the Android application

files. The path of the file is stored and called for the actual recon-

78

struction and, after the object instantiation, is deleted from the phone

to avoid unnecessary memory usage. The ObjImporter act as a dictio-

nary, reading the file, and storing together the information under the

same initial letter, then, Unity provides a mesh constructor for simple

mesh, which is used by the program to create, little by little, the entire

mesh. Finally, as the material file, which is the file containing info

about texture and Unity material, is not provided because no material

is created by BSP-Net, it creates a default material and apply it to the

model, to be visible in the scene. The model is then prepared to be

instantiated in the scene as described in section 3.6.6.

3.7.1 Data Transfer Protocol

The exchange of data between Client and Server is the crucial part of

the application and is performed with the utilization of the sockets.

The Client, being programmed in Unity, forces the handling of data

and the sender/receiver structure in C-Sharp. The connection, the re-

ception and all the operations performed to encapsulate and decapsu-

late data are handled by a script called TCPConnection, whose func-

tion is to establish a communication stream with the server, knowing

79

a priori its IP and port number and creating a socket. The connec-

tion is established automatically when the application starts and it is

closed when the client closes it. The client has the task to provide to

the server two types of information, which consist in the bytes of the

photo and the index of the object. Those information are stored and

prepared asynchronously when the user, after taking a photo, decides

that it can be used, by agreeing in the preview panel. Then the algo-

rithm passes the information to the TCPhandler script, in order to in-

capsulate those in a JSON (Javascript Object Notation) string, which

is a standard format for the data exchange between applications which

need the support of a server. The data are stored in a static structure to

allow the correct read and extraction of them and then converted into

a string. Eventually a stream is opened and the data are sent.

80

1 public class sender //class to send photo

2 {

3 public int index;

4 public byte[] photo;

5 public sender(int ind,byte[] ph)

6 {

7 index = ind;

8 photo = ph;

9 }

10 }

The class sent from Client to Server

After the server receives the data and elaborates them, it returns an-

other JSON string which contains various types of data. Those data

are decapsulated and decrypted by the client, which already knows

the structure and the organization of them. The operation of recep-

tion is performed by reading the stream, storing them in a byte array

and calling a function called “Decapsulating()”. This function takes

as input the byte array and performs an ASCII decapsulation to re-

trieve the corresponding string. In order to be sure that the message

is complete, a read operation is performed, to check if the final char-

acters of a JSON message, which corresponds to the closing brace,

81

is present. The message is then stored in a structured class directly

matching with the JSON format. A text file containing the lines of

the model are stored in a temporary folder of the user device, while

the other three information are passed as global variables in the main

script along with a Boolean value set to true. This value, called “isob-

jarrived”, has the task to inform the main program that an object is

ready for the reconstruction and is set to False by default. When the

TCPHandler script changes the variable to True, the program calls

the function “ObjArrived()” which is responsible for the model re-

construction function defined in section 3.7.

The data received contain three types of information: The first is the

3D model, which is basically the model destructured in its basic com-

ponents, an index, that match the indicator index, defining where it

will have to be instantiated and a value of rotation that represents the

difference of the degree of the object with respect to the camera when

the photo was taken. This value has the purpose to instantiate the

model with the same rotation as the real object in the scene.

82

1 public class receiver //class to retrieve info from server

2 {

3 public string model;

4 pubic string name;

5 public int index;

6 public float rotation;

7 public receiver(int ind, string mod, string n, ...

int rot)

8 {

9 model = mod;

10 name = n;

11 index = ind;

12 rotation = rot;

13 }

14 }

The Class received from the Server

3.8 Reconstruction Side

3.8.1 Server Design and organization

The server was developed in a parallel thesis work title “Automatic

reconstruction of indoor environments for the sharing of AR and VR

spaces” The Server is constituted by a program on a PC and manages

83

the various phases of the object reconstruction from the reception of

the image, to the actual reconstruction of the model. The entire pro-

cess was programmed using the Python language, which is the most

used language for machine learning and neural networks applications.

The Server is composed by different blocks that have each a specific

task to perform, in order to generate all information needed by the

client. The entire process starts from the decapsulation of the Client

information and finishes with the actual dispatch of the information

needed by it. The problem was of a complex nature and in order to

simplify it, it was decided to decompose the main task in little sub-

tasks, which we will refer to as modules. The modules have specific

sections to manage and are organized as a pipeline, where the output

of the preceding one is necessary for the operation of the successive,

but each one, performs its task in an independent manner. The com-

posed pipeline is organized this way, and it is composed to have a total

of seven modules, which are:

1. Semantic Segmentation

2. Mask Extraction

3. Object Reconstruction

84

4. Remeshing

5. Rendering Generation

6. Rotation Estimation

7. Object Rotation

The basic functioning of the system can be seen in the fig.3.12

Figure 3.12: The flowchart of the pipeline of the server.

3.8.2 Semantic Segmentation

The semantic segmentation is the starting point of the pipeline, where

the image retrieved from the client is first passed. Its behaviour is

based on the Mseg paper [18] and it has been adapted in order to

be compatible with Windows System, given the fact that its original

working environment was supposed to be a Linux-based one. The

main goal of this module is to perform a semantic segmentation, that

85

consists in the recognition and classification of the various objects

in a specific photo by aggregating each pixel in the corresponding

class of what they represent. The input of the system is constituted by

the photo of the object that we intend to reconstruct, given in “.png”

format. The features of the picture are extrapolated and computed

through a series of convolutional layers of the neural network and

with the exploitation of trained weights, the network is able to under-

stand which objects appear in the frame and assigns a label to each

one of them. The process is capable to detect and distinguish differ-

ent types of objects such as chairs, tables, monitors, floor, walls and

so on. Each class of object recognized and labeled, are defined by the

specific coloring applied on them. The final process returns a colored

mask which fits with the pixels of the specific objects. This process is

performed in order to distinguish and to indicate to the next module

which object is the actual target for the reconstruction.

86

Figure 3.13: The segmentation produced by the Mseg system, con-
fronted with other programs.

This method was modified according to the pipeline requirement by

removing those labels, since the mask extraction (the next module

of the pipeline) is based only on the centered object of the scene

and ignores all the other parts; according to this principle there is

no need to classify the objects of the scene and therefore the classifi-

cation is redundant and has been removed. Also, it has been assigned

a grayscale color to each one of the object and the transparent level

has been removed since all the crops operations will be demanded to

next pipeline modules.

87

Figure 3.14: The original photo (left) and its grayscale segmentation
with the modified MSEG (right).

3.8.3 Mask Extraction

Now that the objects inside the picture have been detected and a cor-

responding grayscale value has been assigned to each of them, the

one which is centered in the frame can be extracted. With a sampling

mechanism is possible to define the centered point and its neighbor-

88

hood and this will be considered as a subset of pixels belonging to

the current object that we want to reconstruct. Given the fact that

these subsets have been labelled with a certain color in grayscale by

the semantic segmentation, we will consider all the pixels of the same

color as pixels of the object in consideration, using a flood-fill al-

gorithm that visits recursively the pixel’s neighborhood and checks

which ones have the same gray value of the first one.

At the end of the process we obtain a new file which contains a set of

gray pixels on white background, which consists in the binary mask

of the object that we want to extract. The mask extracted will be fi-

nally applied to the real photo, multiplying the original image with the

binary mask through a “bitwise-and” operation which preserves only

the main object and deletes the background, obtaining an inverted-

color image that, was “bitwise-not” processed, with a clear view of

the extracted object (example in fig. 4.7).

3.8.4 Object Reconstruction

This procedure is the central and most important step in the pipeline,

which has the goal to effectively build the mesh of the object shown

89

Figure 3.15: The binary mask of a chair (left) and the result of the
result obtained applying the mask to the original photo (right).

in the mask passed from the precedent module. The algorithm uti-

lized was described and implemented in the [5] and is called BSP-

Net, whose inner workings were explained in 2.5.3.

Among the different system tested, The BSP-Net resulted as the best

one in terms of computational time and quality of the mesh produced

and is based on an unsupervised network model since during the train-

ing it does not need of any convex shape decomposition. The BSP-Net

algorithm requires certain constrains on the input that are taken into

90

account in order to produce an acceptable result, such as a picture

with a high quality (normally the photo passed from the client has a

resolution of 1080x1920), and with the main object relatively close,

so as it occupies from 40 to 70 percent of the image and is centered in

the scene. The procedure retrieves convexes in an autonomous man-

ner by the structure of planes and exploits it to build a BSP-tree. The

overall procedure happens to produce cases in which the output mesh

is messy due to the fact that the object is too complex, but in the vast

majority of times the output is successfully reconstructed with a mesh

that is more than passable. The output mesh is represented by a struc-

ture containing arrays with faces, edges and vertices and it is saved as

a Polygon File Format (.ply).

91

Figure 3.16: The reconstructed object using BSP-net.

3.8.5 Remeshing

The obtained model will not be flawless, hence it is important to fix

it in order to fill some voids or align some intersection between faces

and vertices of the mesh that can be incorrect due to some critical is-

sues derived from different factors like the model orientation or the

luminosity of the environment when the photo was taken. The model

undergoes through a remeshing algorithm to improve his mesh struc-

92

ture over its entire surface. This procedure is performed using differ-

ent algorithms performed by Blender, which is a modelling software

and it is particularly suitable for this type of operation. Before the

remeshing, the object is converted from a “.ply” format, to a “.obj”

format which is easier to handle and accepted by the Unity environ-

ment on the client. The Blender script is responsible for the format

conversion of the model, as well of the operation of “smoothing” on

vertices, the remeshing and the alignment of the faces of the model.

Figure 3.17: The difference between an object subjected to a remesh-
ing operation before (on the left) and after (on the right).

93

3.8.6 Rendering Generation

The rendering Generation is necessary for the rotation estimation mod-

ule to work. As already mentioned, the model instantiated in the

scene, will not have a precise indication of its orientation, therefore

these two additional steps perform some operations on the object to

find the relative rotation between the object orientation in the photo

and the camera. In order to perform this, an algorithm called Pose

From Shape is employed, and conveniently splitted between this and

the next module. This module has the goal to generate of an appro-

priate number of renders of the 3D model with the usage of Blender.

The model is uploaded in Blender and set in a space surrounded by

a fixed source of light and with a camera which rotates around the

object, taking shots at every iteration. After this first iteration, the

camera rotates completely around the vertical axes, standing parallel

to the ground of the Blender virtual environment. Then another com-

plete rotation around the model is performed, taking the snaps with a

slight slope of the camera, in order to change the point of view of the

rendered images. Due to the expensive computational load graving

on the GPU and CPU during the rendering of the images, to avoid

94

creating a bottleneck in the system, the iteration and the slope of the

camera are adjusted to optimize the rendering generation of the single

frames. The number of image rendered in this step is around two hun-

dred and are stored in a folder, ready to be utilized in the next step.

Figure 3.18: The Result of rendering generation in a Blender envi-
ronment.

3.8.7 Rotation Estimation

While the previous module was a preparation of the data needed, this

module is the actual implementation of a slight adaption of the code

PoseFromShape from [34] This adaption was performed to be opti-

mized and integrated in the pipeline. The main idea is to find the most

similar pose of the object in the photo, trying to deduct it from the

different images of different orientation of the corresponding model.

95

The model takes as input the folder of rendered images obtained in

the previous module and its accuracy depends on the number of dif-

ferent possible orientations given to it, which in other words means

that more images are fed to it the more accurate prediction it will have

as a result. After the algorithm find the image which best fits among

the others, it returns 3 parameters: azimuth, elevation and in-plane

rotation, where only the azimuth value will be employed in order to

instantiate the 3D model with the appropriate orientation.

3.8.8 Object Rotation

As final step, the remeshed object is rotated by 90 degrees along the

x-axis in order to map the coordinates from the Blender environment

to the Unity one and thus reconstructing the object with the correct

orientation in the scene. These steps are crucial for the application as

the model instantiated on the detected floor by Google ARCore, which

defines the touching point between the object and the plane using the

model axis as reference, would be placed in the wrong way with its

forward axis pointing downward. Now that the object reference axes

were been aligned and the rotation has been performed the 3D model,

96

Figure 3.19: The model before(left) and after(right) the rotation of
90 degree on its x axis.

it can be sent from the “Reconstruction Side” to the “Acquisition and

Placement Side” which finally will accomplish the task to place it in

the physical environment and move towards the next object that the

users intends to reconstruct, starting the pipeline in an iterative way

until the whole scene is reconstructed.

3.8.9 Server Connection

The server is a standard Python server which establishes a local con-

nection over a specified port with the C-Sharp client. The entire pro-

cess starts when it accepts the connection request from the client,

starting a local loop where first it controls if the connection is still

valid, waits for a reconnection if not available, or starts listening for

97

incoming data otherwise. As the connection is defined by a TCP

socket, the messages received by the client are retrieved as a sin-

gle stream of multiple packets, thus, at every packet, an operation

of ASCII decoding is performed and the contents are concatenated in

a string. At every cycle a function has the task to read the string in

order to control if the message is fully received. Considering known a

priori the structure of the entire message and knowing that the JSON

message is bounded by special characters “{ }”, it is possible to check

them in order to check if the message is completely received. The in-

formation contained in the JSON string are extracted and stored sep-

arately: the index of the image is locally stored to be sent back with

the model and the image is decoded from Base64 and stored in the

folder “0 Input Photo”, which corresponds to the starting point of the

reconstruction pipeline.

The server then performs a polling operation every 100 milliseconds

checking if the model exists in the last folder of the pipeline that cor-

responds to “7 Object Rotation”, containing the final model. If the

object is found, the server represents it as a string and, separately, re-

trieves the azimuth value from the folder “6 Rotation Estimation”.

Finally, the server defines a JSON message containing the object file,

98

the name and index of the object and the azimuth value; this mes-

sage is then encoded in ASCII, sent to the application and finally the

connection can be closed, ready to start a new loop iteration.

99

4 Testing and Results

Having completed and implemented all the necessary steps of the

project, it was necessary to run several tests. As stated in the BSP-

Net description, the network was mainly trained on five object cate-

gories, which are Lamps, Tables, Chairs, Cars and Planes. Since the

system was designed to works on indoor environment, the last two

categories were left out from the tests. The entire reconstruction pro-

cess is completed in less than a minute, and the overall procedure

from the reception of the image, to the acquisition of the complete

structure containing the object takes around one minute and twenty

seconds. this period is an average value between the different mea-

surements and depends on the complexity of the object to reconstruct,

varying from a simple square table, to a modern chair with multiple

parts.

100

Figure 4.1: the reconstruction of different models belonging to the
three categories mentioned above.

The entire reconstruction system was investigated in each passage in

order to define the characteristics that could alter the structure of an

object during its modelization.

101

Figure 4.2: Twelve reconstructions of different models. In the photo
is possible to see two column with each the starting photo, the mask
of the object and the 3D model after remeshing.

Having the pipeline composed by seven well-defined steps, it was pos-

sible to circumscribe the three steps that could be responsible for the

quality of the outcomes: the semantic segmentation, the mask extrac-

tion and, the BSP-Net. However we can avoid to consider the mask

extraction problem as a point of failure of the pipeline since the only

102

possible error related to it occurs when the object to be reconstructed

is not centered inside the picture, i.e., leading to bad behaviour of the

algorithm (e.g., it could consider a wall or the floor as centered point)

as in Fig.4.3. These problems lead to the creation of a wrong 3D

model which represents the attempt of reconstruction extracted in the

mask. Therefore, it is interesting to point out the results produced by

the different errors that can affect the pipeline.

Figure 4.3: Extraction errors due to having the object not being at the
perfect center of the scene.

103

The first step to be taken into consideration is the semantic segmen-

tation, being also the starting step of the process, which partition the

entire photo, defining its components with a specific level of gray.

This step is crucial, as the reconstruction relies entirely on the object

shape defined in this step. The initial limit of this network is deter-

mined by the dimensions of the input image, as it was established that

depends on the GPU installed in the PC. The test showed how, using

a GPU NVIDIA RTX 2070, MSEG was capable of handling photos

with a maximum size of 1080x1920, and any larger size results in the

saturation of the memory. There are several possible errors caused

by the segmentation step, which could be the missed detection of the

hole present between the different parts of the object, or the exact op-

posite, that is when the segmented photo contains holes not present in

the real object. Another possible mistake could be the aggregation of

different objects with the main one, transforming entirely the struc-

ture of the model. The example of those errors are shown in Fig.4.4

104

Figure 4.4: Different types of Mseg error: on top, the erroneous
recognition of a hole, in the center the loss of recognition of the holes
and at the bottom the wrong definition of object outlines of the object.

The other errors that can possibly arise during the reconstruction phase

are caused by the core of the pipeline, which is BSP-Net. This part

was tested using a great amount of different objects and orientations,

taking also into account the perfect distance that allow an acceptable

105

reconstruction. The network was trained using photos of synthetic

model(rendering of digitalized 3D models, not photos of real objects)

with low resolution(128x128), probably due to the fact that the train-

ing phases were quite expensive in terms of computational time and

small images can lead to comparable results saving a huge amount

of time that could be wasted training the neural network. It was de-

cided to resize the image to have a square photo adding a little bit of

padding(white space around the element) around the object in order

to match the condition in which the network was trained.

Figure 4.5: Image reconstructed in normal condition(left) and with
the adding of padding around it.

106

As a matter of fact, BSP-NET build the model starting from a two-

axis point of view and try to extract the third dimension from it, thus

the capability of infer the missing dimension is greatly affected by the

orientation of the object in the photo. After a couple of test, was clear

how the best reconstructions occurred when the object photographed

was rotated of an angle varying from 30◦to 45◦respect its y-axis, as

shown in Fig.4.6.

Figure 4.6: Reconstructions of the same object starting from different
photo angulation.

Another aspect of the network is the fact that, having been trained us-

ing “perfect models”, the differences in luminosity given by the envi-

107

ronment can alter the object and its reconstruction, producing models

of real object less accurate respect the synthetic one. This problem

causes the disruption of the mesh, sometimes adding pieces that are

not present in the photo or with a slight different structure.

Figure 4.7: Comparison between two similar object reconstructed
using photos of synthetic and real object. We can denote as some
details are missing, incomplete or defined in a wrong manner.

The next issue detected concerning this network is caused by the

wrong perception of the object dimension, where the actual dimen-

sion of the object are not fully deductible in the photo and thus are

not respected. This phenomenon causes the network to change the

108

object reconstruction by lowering or increasing its dimension or even

change the actual type of the object, relying on the shape of the object

used for its training.

Figure 4.8: On the top: Reconstruction error caused by wrong per-
ception that change the type of the object (from chair to armchair).On
the bottom: Reconstruction error caused by erroneous perception of
the object dimension(the back of the chair is more elongated than it
should be).

As completion of the overview we also present cases in which the

BSP-NET is not capable to reconstruct the model from the photo due

to the lack of information or the higher complexity in the object shape.

109

This results in the effort of the network to define a similar object re-

sorting to the information stored during the training phase, showing

as the system is slightly biased and sometimes limited to the models

already known and not fully capable to extract the proper shape of the

object.

Figure 4.9: Cases when the object is wrongly reconstructed.

Another interesting step of the pipeline that was taken into considera-

tion was the remeshing, which consists in an operation of smoothing

110

applied to the original mesh to produce clearer result. Although this

procedure is not capable to alter considerably the original mesh or

clean it from superfluous part, it can happen that the mesh is slightly

different, neglecting inconsistent parts. The operation could also lead

to the formation of holes were not present in the original one, result-

ing in a degradation of the overall outcome.

Figure 4.10: Comparison between the original mesh of the model(on
the left) and the object mesh after the remeshing(on the right).

111

Finally, it was taken into consideration how the application works and

respond considering the possible causes of failure and strain. The

overall flow of the application is fluid, at the start the connection is es-

tablished almost immediately and it does not affect the camera frame

rate that is fixed to 60 fps. Google ARCore has the task to manage

the camera and at the same time perform the detection of the floor

without, operation which are performad without any fail. The first

problem arise when the application is active for several minutes, con-

sidering that, during this time, the floor detection is constantly active

and continue to search for floor, which eventually led to an overpop-

ulation of vertical and horizontal plane, sometimes not existent. The

large number of floor constitutes an impediment to the utilization of

the app, in that, considering that the indicator of the object must be

placed on these AR floors, it is possible to place it in a wrong spot

that is directly above or before the point of interest or also preventing

the model to be moved due to the collision of the planes around him.

112

Figure 4.11: Multiple intersecting planes created by the AR Core
session .

For what regard the reconstruction of the model in the scene, it freezes

the application for less that a second, only for the first time an object

is retrieved, meaning that the other times the building and the instan-

tiation does not block the application flow and the entire process from

the reception to the placement of the object lasts around two or fewer

seconds. For what regards the placement in particular, it can happen

that the model have its scale marginally different respect the size of

the real object, on account of the fact that the 3D model size is defined

using an average value between the different dimensions of the object

tested.

113

Figure 4.12: The real object compared to the model with an erro-
neous scaling applied.

As the application was tested under continuous condition, it manages

to successfully reconstruct more than ten objects of a single room,

stressing its flow rate in a time span from ten to thirty minutes with-

out any major issue. In the following photos are presented examples

of scene reconstruction using different objects, positions and config-

urations.

114

Figure 4.13: scene reconstructed using two different objects(on the
left) and five different object(on the right). The top photo on the left
and the on on the bottom on the right show the position of the place-
holders in the environment.

115

Figure 4.14: Scene reconstructed using multiple instance of the same
object.

116

5 Conclusion and Future Works

As conclusion of the project, it is possible to make several consider-

ations regarding the application, the BSP-Net system and the overall

pipeline reconstruction in order to sum up the possible implemen-

tation that could further improve the entire system described in this

essay as a future reference. Starting with BSP-net, the overall recon-

struction was fairly acceptable on determinate situations, since the

original dataset used for the training is balanced towards categories

such as chairs, tables, lamps, planes and cars, making clear that the

application performs quite well when it faces one of these objects.

According to the goal task of the project, in order to achieve better

results, a way is to re-train the network with all the indoor categories

which the user is interested in and creating a new dataset based on

real images and not on synthetic ones, in order to align the training

phase to what will be tested later on. These steps were not possible

to perform, considering that during the realization of this project, was

not possible to access to required resources in terms of hardware and

117

computational capability. In fact to successfully achieve an improved

training, the needed component should be quite powerful, since it af-

fect the computing cost in terms of time which exponentially grow

using older hardware; for instance, using an NVIDIA geForce RTX

2080 Ti GPU to trains the model, it will require more than 5 days non-

stop to complete the entire training task. Another improvement that

is possible to perform is on the input images fed to the system, which

are small-scale and with low quality(128x128) probably to reduce

the training time and to compare the results with previous standard

benchmark. Therefore, with a high quality hardware and a consider-

able amount of time for training, it should be interesting augment the

dimension of the tensors of the network in order to enhance the res-

olution of the input images at least to 1080x1920 to further improve

the quality of the results. As mentioned before, BSP-Net is based on a

Single View Reconstruction approach, meaning that there could be a

margin of improvement for multi-shots images, taking multiple views

of the same object in order to collect more information as possible and

merge them together in order to obtain a high level of accuracy during

the reconstruction of the details of the single model. Another inter-

esting aspect regarding BSP-Net is the production of compact mesh,

118

i.e., low-poly meshes, which would led to the possibility to represent

the output shapes through difference operations rather than a union of

different parts, bringing to a wider generalization approach that can

express complex and concave or convex details. For what regard the

reconstruction side, several improvements should be done to retrieve a

high quality result. The first step that could be improved is the seman-

tic segmentation, as it was evinced by the results how the principal

cause of a low quality reconstruction is due to a wrong segmentation

of the object. Sometimes the network is not able to recognize empty

spaces between object or even the form that they have. In order to

overcome this gap, with the same assumptions of BSP-Net, it should

be performed an intense session of training with a larger dataset to

make the network acquire the capability to segment more complex

objects. Another improvement can be performed on the remeshing

part, which algorithm could be upgraded to detect and fill the empty

gap that sometimes are present in some models due to an error of re-

construction(i.e. a chair with a back with a hole in the middle, which

was not present) and eliminate unnecessary parts which are not con-

nected to the main mesh. At last, it could be also interesting to up-

grade the system switching from a normal RGB camera to an RGBD

119

one, in order to acquire the depth map along the standard image. This

could allow the system to access more information such as the actual

difference in depht between the object and the other parts of the envi-

ronment, achieving a better result in terms of segmentation.

Finally, is possible to debate about the Application, which is the in-

teraction point between the user and the reconstruction pipeline. As

mentioned, it is possible to take photo with the smartphone camera

and the resolution of it was set to 1080x1920 to be successfully re-

sized and cropped by the server. If the BSP-Net quality enhancing

mentioned before could be applied, it could be also possible to higher

the photo quality to the actual camera resolution of most phones,

which can be around or over 4K, providing a large number of de-

tail helpful for a realistic model reconstruction.

Another problem of the actual application is given by the scaling size

of the model instantiated, which is defined as an average value be-

tween the different sizes of the object tested and deployed in the scene,

thus, could be helpful to develop a function to automatically create a

bounding box around the object whose photo is taken in order to be

able to adjust the scale of the model which will overlap it.

For what regard the model instantiated in the scene, there are little

120

amelioration that can be applied in order to increase the experience of

the user in the application. One of these could consist in the introduc-

tion of a menu to change the appearance of a specific model from a set

of texture available, as now the only texture automatically applied is a

default white material, which is a Unity standard for model which not

have linked any specific material to it. Concerning the manipulation

of the object, which allow a selected object the possibility to move,

rotate and scale it, occurs that, in the circumstance in which different

number of object reconstructed are present, could be difficult to rec-

ognize the actual object subjected to the manipulation, hence, could

be interesting to introduce an indicator or marker of some sort, which

univocally point or highlight the object which is being manipulated.

Another improvement regards the Gallery, which not provide any-

thing beside the image visualization of the photo taken by the app,

then it should be possible to provide additional functionalities by adding

the possibility to delete a specific photo, eliminating along the indica-

tor and model linked to it using its index, and a function to save the

images in the internal storage of the smartphone.

Finally, what could be interesting, is a complete redefinition of the

archetype of the application, which now is based on taking snapshots

121

of the single object and reconstruct it, and moving towards to a new

system where the user records a video of the indoor scene and sends it

to the Reconstruction Side, which autonomously identifies all the ob-

jects contained in the video of the scene, decompose each one of the

from the background, reconstructs each one of them independently

and sends them back to the client. At lasts, as the application has not

a specific purpose, and it could be possible to implement a system

to export the entire scene currently visualized in Augmented Reality,

in order to transfer the position, dimension and rotation of all object

inside it in a different environment, as a PC, in order to be visualized

and modified.

122

List of Figures

1.1 Examples of different Computer Vision applications.

Image taken from [33]. 6

1.2 A Virtual Reality application (on the left) and an Aug-

mented reality application (on the right). Images taken

from [20] and [14]. 8

2.1 Example of Room Scanning using the Iphone 12 Pro

LiDAR. Image taken from [2]. 12

2.2 The different representation of a generic object using

Point clouds (a), Voxels (b), Meshes (c) and Implicit

representations (d). Image taken from [16]. 13

2.3 The Structure of Kinect. Image taken from [7]. . . . 16

2.4 The results produced by the Kinect Fusion system. . 18

2.5 The scene reconstructed using pointclouds in Alice-

Vision. Image taken from [1]. 19

123

2.6 The results produced by the AliceVision system. Im-

age taken from [26]. 20

2.7 Venn Diagram of the relation between the Computer

Vision and the Artificial Intelligence. 22

2.8 The connections in a generic structure of a Neural

Network on a 3D view. The example regards the num-

ber recognition. Image taken from [8]. 27

2.9 The scheme of a Single Layer Perceptron. Image

taken from [3]. 29

2.10 The scheme of a Multi Layer Perceptron. Image taken

from [9]. 30

2.11 The scheme of a generic Recurrent Neural Network.

Image taken from [15]. 31

2.12 The scheme of a Recursive Neural Network. Image

taken from [4]. 32

2.13 The scheme of a Convolutional Neural Network. . . 34

2.14 Faces reproduced by a GAN, given certain photos as

inputs. Image taken from [13]. 35

2.15 representation of the different types of encoder in the

system. 37

124

2.16 The comparison of result between different reconstruc-

tion’s approach. 39

2.17 Schematic of the framework implemented in the PI-

FuHD system. 40

2.18 Result obtained trying different design of the system. 43

2.19 The organization of BSP-Net. 44

2.20 The result obtained by BSP-Net, compared to other

object reconstruction networks and the ground truth. 46

2.21 A medical students performs a simulation of treat-

ment on a virtual patient. Image taken from [28]. . . 47

2.22 The Augmented Reality Lego kiosk, where customers

can visualize the final content of the product by plac-

ing the box in front of a camera. Image taken from

[19]. 49

3.1 The general pipeline of the system. 57

3.2 The scheme of the Client. 58

3.3 The scheme of the Server. 61

3.4 Flowchart of the Main window. 63

125

3.5 Showcase of the Main Windows on the left and the

preview of the photo taken on the right. 65

3.6 Flowchart of the reconstruction window. 66

3.7 Placeholder placement on the Photo mode on the left

and correspondent substitution with 3D model in the

Reconstruction window on the right. The 3D model

was the one used during the preliminary tests on the

application. 67

3.8 Showcase of the Gallery (on the left) and flowchart of

the gallery (on the right). 68

3.9 The distribuition of the YUV pixels in a RGB con-

veresion. Image taken from [12]. 70

3.10 Representation of the different YUV planes respect

the RGB ones in a generic photo. Image taken from

[10]. 71

3.11 Showcase of the manipulation panel of an object be-

fore manipulation(left) and after manipulation(right).

The 3D model was used to perform preliminary tests

of the applications. 75

3.12 The flowchart of the pipeline of the server. 85

126

3.13 The segmentation produced by the Mseg system, con-

fronted with other programs. 87

3.14 The original photo (left) and its grayscale segmenta-

tion with the modified MSEG (right). 88

3.15 The binary mask of a chair (left) and the result of

the result obtained applying the mask to the original

photo (right). 90

3.16 The reconstructed object using BSP-net. 92

3.17 The difference between an object subjected to a remesh-

ing operation before (on the left) and after (on the right). 93

3.18 The Result of rendering generation in a Blender envi-

ronment. 95

3.19 The model before(left) and after(right) the rotation of

90 degree on its x axis. 97

4.1 the reconstruction of different models belonging to

the three categories mentioned above. 101

127

4.2 Twelve reconstructions of different models. In the

photo is possible to see two column with each the

starting photo, the mask of the object and the 3D model

after remeshing. 102

4.3 Extraction errors due to having the object not being at

the perfect center of the scene. 103

4.4 Different types of Mseg error: on top, the erroneous

recognition of a hole, in the center the loss of recog-

nition of the holes and at the bottom the wrong defi-

nition of object outlines of the object. 105

4.5 Image reconstructed in normal condition(left) and with

the adding of padding around it. 106

4.6 Reconstructions of the same object starting from dif-

ferent photo angulation. 107

4.7 Comparison between two similar object reconstructed

using photos of synthetic and real object. We can de-

note as some details are missing, incomplete or de-

fined in a wrong manner. 108

128

4.8 On the top: Reconstruction error caused by wrong

perception that change the type of the object (from

chair to armchair).On the bottom: Reconstruction er-

ror caused by erroneous perception of the object di-

mension(the back of the chair is more elongated than

it should be). 109

4.9 Cases when the object is wrongly reconstructed. . . . 110

4.10 Comparison between the original mesh of the model(on

the left) and the object mesh after the remeshing(on

the right). 111

4.11 Multiple intersecting planes created by the AR Core

session . 113

4.12 The real object compared to the model with an erro-

neous scaling applied. 114

4.13 scene reconstructed using two different objects(on the

left) and five different object(on the right). The top

photo on the left and the on on the bottom on the right

show the position of the placeholders in the environ-

ment. 115

129

4.14 Scene reconstructed using multiple instance of the same

object. 116

130

Bibliography

[1] ALICEVISION: Photogrammetric Computer Vision Framework.

URL: https://alicevision.org/.

[2] Apple wants to make Lidar a great deal on iPhone 12 Pro and

above. What is it and why is it important. URL: https://

www.haveeru.com.mv/apple-wants-to-make-

lidar-a-great-deal-on-iphone-12-pro-and-

above-what-is-it-and-why-is-it-important/.

[3] Basics of Multilayer Perceptron – A Simple Explanation of Mul-

tilayer Perceptron. URL: https://kindsonthegenius.

com/blog/basics-of-multilayer-perceptron-

a-simple-explanation-of-multilayer-perceptron/.

[4] Chainer Tutorial: Sentiment Analysis with Recursive Neural

Network. URL: https://medium.com/@keisukeumezawa/

chainer-tutorial-sentiment-analysis-with-

recursive-neural-network-180ddde892a2.

131

https://alicevision.org/
https://www.haveeru.com.mv/apple-wants-to-make-lidar-a-great-deal-on-iphone-12-pro-and-above-what-is-it-and-why-is-it-important/
https://www.haveeru.com.mv/apple-wants-to-make-lidar-a-great-deal-on-iphone-12-pro-and-above-what-is-it-and-why-is-it-important/
https://www.haveeru.com.mv/apple-wants-to-make-lidar-a-great-deal-on-iphone-12-pro-and-above-what-is-it-and-why-is-it-important/
https://www.haveeru.com.mv/apple-wants-to-make-lidar-a-great-deal-on-iphone-12-pro-and-above-what-is-it-and-why-is-it-important/
https://kindsonthegenius.com/blog/basics-of-multilayer-perceptron-a-simple-explanation-of-multilayer-perceptron/
https://kindsonthegenius.com/blog/basics-of-multilayer-perceptron-a-simple-explanation-of-multilayer-perceptron/
https://kindsonthegenius.com/blog/basics-of-multilayer-perceptron-a-simple-explanation-of-multilayer-perceptron/
https://medium.com/@keisukeumezawa/chainer-tutorial-sentiment-analysis-with-recursive-neural-network-180ddde892a2
https://medium.com/@keisukeumezawa/chainer-tutorial-sentiment-analysis-with-recursive-neural-network-180ddde892a2
https://medium.com/@keisukeumezawa/chainer-tutorial-sentiment-analysis-with-recursive-neural-network-180ddde892a2

[5] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. “BSP-Net:

Generating Compact Meshes via Binary Space Partitioning”.

In: CoRR abs/1911.06971 (2019). arXiv: 1911.06971. URL:

http://arxiv.org/abs/1911.06971.

[6] Özgün Çiçek et al. “3D U-Net: Learning Dense Volumetric

Segmentation from Sparse Annotation”. In: CoRR abs/1606.06650

(2016). arXiv: 1606.06650. URL: http://arxiv.org/

abs/1606.06650.

[7] Components of Kinect for Windows. URL: https://subscription.

packtpub.com/book/game_development/9781849692380/

1/ch01lvl1sec08/components-of-kinect-for-

windows.

[8] ConvNet Architectures for beginners Part I. URL: https://

medium.com/srm-mic/convnet-architectures-

for-beginners-part-i-233aa9d1761b.

[9] Depth of the neural network for computer vision processing it.

URL: https://programmersought.com/article/

93883332619/.

132

https://arxiv.org/abs/1911.06971
http://arxiv.org/abs/1911.06971
https://arxiv.org/abs/1606.06650
http://arxiv.org/abs/1606.06650
http://arxiv.org/abs/1606.06650
https://subscription.packtpub.com/book/game_development/9781849692380/1/ch01lvl1sec08/components-of-kinect-for-windows
https://subscription.packtpub.com/book/game_development/9781849692380/1/ch01lvl1sec08/components-of-kinect-for-windows
https://subscription.packtpub.com/book/game_development/9781849692380/1/ch01lvl1sec08/components-of-kinect-for-windows
https://subscription.packtpub.com/book/game_development/9781849692380/1/ch01lvl1sec08/components-of-kinect-for-windows
https://medium.com/srm-mic/convnet-architectures-for-beginners-part-i-233aa9d1761b
https://medium.com/srm-mic/convnet-architectures-for-beginners-part-i-233aa9d1761b
https://medium.com/srm-mic/convnet-architectures-for-beginners-part-i-233aa9d1761b
https://programmersought.com/article/93883332619/
https://programmersought.com/article/93883332619/

[10] Displaying video colors correctly. URL: https://blogs.

gnome.org/rbultje/2016/11/02/displaying-

video-colors-correctly/.

[11] Wei Dong et al. “An Efficient Volumetric Mesh Representa-

tion for Real-time Scene Reconstruction using Spatial Hash-

ing”. In: CoRR abs/1803.03949 (2018). arXiv: 1803.03949.

URL: http://arxiv.org/abs/1803.03949.

[12] Estrazione immagini in bianco e nero dal formato NV21 della

fotocamera Android. URL: https://www.it-swarm.

jp.net/ja/android/android%E3%82%AB%E3%83%

A1%E3%83%A9%E3%81%AEnv21%E5%BD%A2%E5%BC%

8F%E3%81%8B%E3%82%89%E7%99%BD%E9%BB%92%

E7%94%BB%E5%83%8F%E3%82%92%E6%8A%BD%E5%

87%BA%E3%81%99%E3%82%8B/971495912/.

[13] Generative adversarial networks: What GANs are and how they’ve

evolved. URL: https://venturebeat.com/2019/

12/26/gan-generative-adversarial-network-

explainer-ai-machine-learning/.

133

https://blogs.gnome.org/rbultje/2016/11/02/displaying-video-colors-correctly/
https://blogs.gnome.org/rbultje/2016/11/02/displaying-video-colors-correctly/
https://blogs.gnome.org/rbultje/2016/11/02/displaying-video-colors-correctly/
https://arxiv.org/abs/1803.03949
http://arxiv.org/abs/1803.03949
https://www.it-swarm.jp.net/ja/android/android%E3%82%AB%E3%83%A1%E3%83%A9%E3%81%AEnv21%E5%BD%A2%E5%BC%8F%E3%81%8B%E3%82%89%E7%99%BD%E9%BB%92%E7%94%BB%E5%83%8F%E3%82%92%E6%8A%BD%E5%87%BA%E3%81%99%E3%82%8B/971495912/
https://www.it-swarm.jp.net/ja/android/android%E3%82%AB%E3%83%A1%E3%83%A9%E3%81%AEnv21%E5%BD%A2%E5%BC%8F%E3%81%8B%E3%82%89%E7%99%BD%E9%BB%92%E7%94%BB%E5%83%8F%E3%82%92%E6%8A%BD%E5%87%BA%E3%81%99%E3%82%8B/971495912/
https://www.it-swarm.jp.net/ja/android/android%E3%82%AB%E3%83%A1%E3%83%A9%E3%81%AEnv21%E5%BD%A2%E5%BC%8F%E3%81%8B%E3%82%89%E7%99%BD%E9%BB%92%E7%94%BB%E5%83%8F%E3%82%92%E6%8A%BD%E5%87%BA%E3%81%99%E3%82%8B/971495912/
https://www.it-swarm.jp.net/ja/android/android%E3%82%AB%E3%83%A1%E3%83%A9%E3%81%AEnv21%E5%BD%A2%E5%BC%8F%E3%81%8B%E3%82%89%E7%99%BD%E9%BB%92%E7%94%BB%E5%83%8F%E3%82%92%E6%8A%BD%E5%87%BA%E3%81%99%E3%82%8B/971495912/
https://www.it-swarm.jp.net/ja/android/android%E3%82%AB%E3%83%A1%E3%83%A9%E3%81%AEnv21%E5%BD%A2%E5%BC%8F%E3%81%8B%E3%82%89%E7%99%BD%E9%BB%92%E7%94%BB%E5%83%8F%E3%82%92%E6%8A%BD%E5%87%BA%E3%81%99%E3%82%8B/971495912/
https://www.it-swarm.jp.net/ja/android/android%E3%82%AB%E3%83%A1%E3%83%A9%E3%81%AEnv21%E5%BD%A2%E5%BC%8F%E3%81%8B%E3%82%89%E7%99%BD%E9%BB%92%E7%94%BB%E5%83%8F%E3%82%92%E6%8A%BD%E5%87%BA%E3%81%99%E3%82%8B/971495912/
https://venturebeat.com/2019/12/26/gan-generative-adversarial-network-explainer-ai-machine-learning/
https://venturebeat.com/2019/12/26/gan-generative-adversarial-network-explainer-ai-machine-learning/
https://venturebeat.com/2019/12/26/gan-generative-adversarial-network-explainer-ai-machine-learning/

[14] How did technology transform the retail industry? URL: https:

//www.quora.com/How-did-technology-transform-

the-retail-industry.

[15] How Recurrent Neural Network (RNN) Works. URL: https:

//openbootcamps.com/how-recurrent-neural-

network-rnn-works/.

[16] Introduction To 3D Deep Learning. URL: https://medium.

com/@nabil.madali/introduction-to-3d-deep-

learning-740c199b100c.

[17] Michal Jancosek and Tomas Pajdla. “Multi-view reconstruc-

tion preserving weakly-supported surfaces”. In: CVPR 2011.

IEEE, June 2011. DOI: 10.1109/cvpr.2011.5995693.

URL: https://doi.org/10.1109/cvpr.2011.

5995693.

[18] John Lambert et al. “MSeg: A Composite Dataset for Multi-

Domain Semantic Segmentation”. In: 2020 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, CVPR

2020, Seattle, WA, USA, June 13-19, 2020. IEEE, 2020, pp. 2876–

2885. DOI: 10.1109/CVPR42600.2020.00295. URL:

134

https://www.quora.com/How-did-technology-transform-the-retail-industry
https://www.quora.com/How-did-technology-transform-the-retail-industry
https://www.quora.com/How-did-technology-transform-the-retail-industry
https://openbootcamps.com/how-recurrent-neural-network-rnn-works/
https://openbootcamps.com/how-recurrent-neural-network-rnn-works/
https://openbootcamps.com/how-recurrent-neural-network-rnn-works/
https://medium.com/@nabil.madali/introduction-to-3d-deep-learning-740c199b100c
https://medium.com/@nabil.madali/introduction-to-3d-deep-learning-740c199b100c
https://medium.com/@nabil.madali/introduction-to-3d-deep-learning-740c199b100c
https://doi.org/10.1109/cvpr.2011.5995693
https://doi.org/10.1109/cvpr.2011.5995693
https://doi.org/10.1109/cvpr.2011.5995693
https://doi.org/10.1109/CVPR42600.2020.00295

https://doi.org/10.1109/CVPR42600.2020.

00295.

[19] LEGO Digital Box brings Augmented Reality to LEGO Stores

Worldwide. URL: https://www.mobilevenue.com/

lego-digital-box-brings-augmented-reality-

lego-stores-worldwide-04190305/.

[20] Manufacturing with VR Becoming a (Virtual) Reality. URL:

https://www.qad.com/blog/2018/09/manufacturing-

vr-becoming-virtual-reality.

[21] Ben Mildenhall et al. NeRF: Representing Scenes as Neural

Radiance Fields for View Synthesis. 2020. arXiv: 2003.08934

[cs.CV].

[22] Pierre Moulon, Pascal Monasse, and Renaud Marlet. “Adaptive

Structure from Motion with a Contrario Model Estimation”. In:

Proceedings of the Asian Computer Vision Conference (ACCV

2012). Springer Berlin Heidelberg, 2012, pp. 257–270. DOI:

10.1007/978-3-642-37447-0_20.

[23] R. A. Newcombe et al. “KinectFusion: Real-time dense surface

mapping and tracking”. In: 2011 10th IEEE International Sym-

135

https://doi.org/10.1109/CVPR42600.2020.00295
https://doi.org/10.1109/CVPR42600.2020.00295
https://www.mobilevenue.com/lego-digital-box-brings-augmented-reality-lego-stores-worldwide-04190305/
https://www.mobilevenue.com/lego-digital-box-brings-augmented-reality-lego-stores-worldwide-04190305/
https://www.mobilevenue.com/lego-digital-box-brings-augmented-reality-lego-stores-worldwide-04190305/
https://www.qad.com/blog/2018/09/manufacturing-vr-becoming-virtual-reality
https://www.qad.com/blog/2018/09/manufacturing-vr-becoming-virtual-reality
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2003.08934
https://doi.org/10.1007/978-3-642-37447-0_20

posium on Mixed and Augmented Reality. 2011, pp. 127–136.

DOI: 10.1109/ISMAR.2011.6092378.

[24] Matthias Nießner et al. “Real-Time 3D Reconstruction at Scale

Using Voxel Hashing”. In: ACM Trans. Graph. 32.6 (Nov. 2013).

ISSN: 0730-0301. DOI: 10 . 1145 / 2508363 . 2508374.

URL: https://doi.org/10.1145/2508363.2508374.

[25] Songyou Peng et al. Convolutional Occupancy Networks. 2020.

arXiv: 2003.04618 [cs.CV].

[26] Photogrammery testing 14: AliceVision Meshroom. URL: https:

//peterfalkingham.com/2018/08/11/photogrammery-

testing-14-alicevision-meshroom/.

[27] Charles Ruizhongtai Qi et al. “PointNet: Deep Learning on

Point Sets for 3D Classification and Segmentation”. In: CoRR

abs/1612.00593 (2016). arXiv: 1612.00593. URL: http:

//arxiv.org/abs/1612.00593.

[28] Residenti aperti per la struttura di formazione VR. URL: https:

//www.excite.co.jp/news/article/MoguraVR_

vr-medical-training/.

136

https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1145/2508363.2508374
https://doi.org/10.1145/2508363.2508374
https://arxiv.org/abs/2003.04618
https://peterfalkingham.com/2018/08/11/photogrammery-testing-14-alicevision-meshroom/
https://peterfalkingham.com/2018/08/11/photogrammery-testing-14-alicevision-meshroom/
https://peterfalkingham.com/2018/08/11/photogrammery-testing-14-alicevision-meshroom/
https://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
https://www.excite.co.jp/news/article/MoguraVR_vr-medical-training/
https://www.excite.co.jp/news/article/MoguraVR_vr-medical-training/
https://www.excite.co.jp/news/article/MoguraVR_vr-medical-training/

[29] O. Ronneberger, P.Fischer, and T. Brox. “U-Net: Convolutional

Networks for Biomedical Image Segmentation”. In: Medical

Image Computing and Computer-Assisted Intervention (MIC-

CAI). Vol. 9351. LNCS. (available on arXiv:1505.04597 [cs.CV]).

Springer, 2015, pp. 234–241. URL: http://lmb.informatik.

uni-freiburg.de/Publications/2015/RFB15a.

[30] Shunsuke Saito et al. PIFuHD: Multi-Level Pixel-Aligned Im-

plicit Function for High-Resolution 3D Human Digitization.

2020. arXiv: 2004.00452 [cs.CV].

[31] Steven M. Seitz and Charles R. Dyer. “Photorealistic Scene Re-

construction by Voxel Coloring”. In: Proceedings of the 1997

Conference on Computer Vision and Pattern Recognition (CVPR

’97). CVPR ’97. USA: IEEE Computer Society, 1997, p. 1067.

ISBN: 0818678224.

[32] Daeyun Shin et al. “Multi-layer Depth and Epipolar Feature

Transformers for 3D Scene Reconstruction”. In: CoRR abs/1902.06729

(2019). arXiv: 1902.06729. URL: http://arxiv.org/

abs/1902.06729.

137

http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
https://arxiv.org/abs/2004.00452
https://arxiv.org/abs/1902.06729
http://arxiv.org/abs/1902.06729
http://arxiv.org/abs/1902.06729

[33] Sim4CV: A Photo-Realistic Simulator for Computer Vision Ap-

plications. URL: https://www.semanticscholar.

org/paper/Sim4CV.

[34] Yang Xiao et al. “Pose from Shape: Deep Pose Estimation for

Arbitrary 3D Objects”. In: CoRR abs/1906.05105 (2019). arXiv:

1906.05105. URL: http://arxiv.org/abs/1906.

05105.

138

https://www.semanticscholar.org/paper/Sim4CV
https://www.semanticscholar.org/paper/Sim4CV
https://arxiv.org/abs/1906.05105
http://arxiv.org/abs/1906.05105
http://arxiv.org/abs/1906.05105

	Introduction
	How the World view is changing

	State of the Art
	The Scene Reconstruction Problem
	Representations of 3D Objects
	Traditional Approaches
	Kinect Fusion
	AliceVision

	Learning-Based Methods
	Neural Networks

	State-of-The-Art Systems
	Convolutional Occupancy Network
	PIFuHD
	BSP-Net

	Virtual Reality
	Augmented Reality

	Reconstruction System
	Preliminary Work
	System Architecture
	Data Acquisition
	Reconstruction
	Acquisition and Placement Side
	Organization and Composition

	The Lyfecycle
	The Photo Mode
	The Reconstruction Mode
	The Gallery
	The RGB image
	The Object Panel
	The Model definition

	The Model Decoding
	Data Transfer Protocol

	Reconstruction Side
	Server Design and organization
	Semantic Segmentation
	Mask Extraction
	Object Reconstruction
	Remeshing
	Rendering Generation
	Rotation Estimation
	Object Rotation
	Server Connection

	Testing and Results
	Conclusion and Future Works

