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Abstract

Concatenation of linear block codes enhances the performance with respect to the use
of single linear block codes, while increasing the decoding complexity. In particular,
the serial concatenation of linear block codes has proven to be an important tool for the
design of powerful binary linear short codes. This was decisive for the discovery of new
codes capable of approaching the bounds of the best possible codes at finite length.
The class of convolutional codes, upon termination, are known to provide very powerful
codes for large memory values at the encoder. However, the decoding complexity of
these codes grows exponentially with their encoding memory, preventing the practical
use of very large memories. The serial concatenation of convolutional codes with outer
(cyclic redundancy check) linear block codes can reduce the needed memory of the
convolutional code to achieve very good performances, at the expense of using a list
decoding scheme. In this Master thesis we study the performance of such concatena-
tion via weight enumerator and the performances of the serial-list and the parallel-list
Viterbi algorithm as decoding algorithms with bounded list sizes. Lastly, we propose
a suitable sorting network capable of reducing the time complexity of the parallel-list
Viterbi algorithm when implemented in hardware.
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Introduction

INTERNET-OF-THINGS (IoT) was “born” sometime between 2008 and 2009 as reported
by CISCO in [Evans, 2011], under the idea of enabling internet access to electrical

and electronic devices [Miraz et al., 2015], thus allowing them to collect and exchange
data. Since its introduction, the number of connected devices has managed to surpass
the number of humans connected to the internet [Evans, 2011] and it is expected to
have 12.3 billions of IoT devices sold by 2022 [CISCO, 2019].

The increasing number of both mobile and embedded IoT devices has led to a
sensors-rich world, capable of addressing a various number of real-time applications,
such as security systems, healthcare monitoring, environmental meters, factory au-
tomation, autonomous vehicles and many others [Al-Fuqaha et al., 2015].

Satellite communications are networks capable of providing coverage in remote and
arduous areas [De Sanctis et al., 2015], thus enabling to extend the use of IoT devices
in those areas.

Most of the IoT devices, especially sensors and meters, are characterized by their
low cost, their sporadic exchange of small data packets with essential information, their
limited processing power, small storage capabilities. Furthermore, they are powered
with batteries of limited capacity, which are required to last over 10 years without being
replaced or recharged [GSMA, 2018]. All these important constraints have to be taken
into account in the design of the communication modules for such devices.

The communication on the uplink channel of satellite IoT networks, the one where
the IoT device is the transmitter which sends data to the satellite, is the most crucial part
in this networks, because it affects the power consumption of the embedded device.

Claude Shannon in 1948 showed in his paper "A mathematical theory of commu-
nications" [Shannon, 1948] that it is possible to transmit information through a noisy
channel with an arbitrarily small error probability by using a code with a rate R smaller
than the channel capacity C, the largest possible transmission rate of the given chan-
nel. However, his theorem did not tell us how to construct such capacity-achieving
codes. Moreover, his theory assumes sufficiently large code word length.

Since then, a lot of work has been done, and nowadays, for large blocklength codes,
well-established tools exist to approach channel capacity with a reasonable decoding
complexity. On the other hand, for codes in the short blocklength regime, where the
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amount of bits is “very small” (e.g., k = 64 information bits), such tools are not that
effective and the design of good codes and decoding schemes is mainly driven by
intuition [Liva, 2014].

The class of convolutional codes (CC), introduced by Elias in 1955 [Elias, 1955],
are known to provide, upon termination, powerful short codes, for which an optimum
and low complexity maximum-likelihood decoding algorithm was proposed by Viterbi in
1967 [Viterbi, 1967].

Recently [Lou et al., 2015; Yang et al., 2018a,b; Liang et al., 2019], a serial concate-
nation of CCs with outer cyclic redundancy check (CRC) codes was proposed, which
can be decoded with a list Viterbi algorithm (LVA) to approach the decoding bounds on
the block error probability of the best short code of a given rate.

This thesis is structured as follows.

In Chapter 1 we review necessary coding theory aspects about binary linear codes
and convolutional codes, from their graphical representations to some decoding as-
pects.

Chapter 2 gives a review of an important family of convolutional code list decoders.

The design of serial concatenations of CCs with outer CRC codes is detailed in
Chapter 3, with numerical results for various CCs and CRC codes.

A hardware friendly proposal for a fast implementation of a parallel-list Viterbi algo-
rithm is presented in Chapter 4.

We summarize and conclude this contribution in the last chapter of this thesis, while
in the appendix are shown some tables with the CRC codes found for various memories
of the CCs and parameters of the CRC codes.

The algorithms used to design and to decode such codes are made publicly avail-
able at github.com/rickyskv/Serially_concatenated_CC_with_CRC.

Schiavone. R pag. 2
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1. Convolutional Codes

BINARY convolutional codes (CCs) are binary linear codes introduced by Elias in
1955 [Elias, 1955]. In this chapter we introduce binary linear codes and their prop-

erties in Section 1.1, we then introduce the properties and encoders of convolutional
codes in Section 1.2. Finally, in Section 1.3 we present their trellis structure and the
Viterbi algorithm (VA) for decoding.

1.1 Binary Linear Codes

Definition 1.1. An (n, k) binary linear code is a k−dimensional subspace of the n−di-
mensional vector space Fn2 .

An (n, k) binary linear block code C is usually defined by its generator matrix G,
a k × n binary matrix. A k−bits long message u encoded by G produces a binary
codeword c of length n,

c = uG. (1.1)

Alternatively, a binary linear block code can be defined by its (n−k)×n parity check
matrix H as

cHT = 0 (1.2)

where 0 is the all-zero vector.

The rows of H span the subspace orthogonal to C and we denote such a subspace
by C⊥. The vectors in C⊥ form a (n, n− k) binary linear code called the dual code.

For instance, consider the (5,3) code and a 3-bit long message u = (0 1 1), then the
corresponding codeword is defined in this way:

(0 1 1)ü ûú ý
u

1 0 0 1 1
0 1 0 1 0
0 0 1 1 1


ü ûú ý

G

= (0 1 1 0 1)ü ûú ý
c

Definition 1.2. Given a vector v ∈ Fn2 , its syndrome w.r.t. H is given by

s = vHT . (1.3)

By definition s is 0 if and only if v ∈ C.





1.1. BINARY LINEAR CODES Convolutional Codes

Definition 1.3. Given a binary vector v ∈ Fn2 , its Hamming weight wH(v) corresponds
to the number of non-zero entries in the vector. The Hamming distance between two
binary vectors is defined to be the Hamming weight of the sum over the binary field of
the two vectors,

dH(v1,v2) = wH(v1 + v2). (1.4)

An important characterization of a code is its minimum distance dmin, because it
gives some information about the error detection and error capabilities of such code.

Definition 1.4. The minimum distance dmin of a binary linear code C is the minimum
Hamming distance between any two distinct codewords in C. Due to the linearity, it
corresponds to the smallest Hamming weight among all codewords in C, except the
allzero codeword,

dmin(C) = min
c/=cÍ

c,cÍ∈C

dH(c, cÍ) = min
c/=0
c∈C

wH(c). (1.5)

Theorem 1.1. A linear code can detect all binary error vectors with Hamming weight
up to dmin − 1, and all binary vector errors which do not correspond to codewords in C.
The same code can correct at least all errors with Hamming weight ≤ t, with t given by:

t =
7
dmin − 1

2

8
. (1.6)

A more complete characterization of a linear block code is its weight enumerator
(WE) or distance spectrum.

Definition 1.5. The weight enumerator of an (n, k) linear block code Ad(C) corresponds
to the multiplicity of all codewords in C with Hamming weight equal to d,

Ad(C) = |{c ∈ C, wH(c) = d}|. (1.7)

The WE can be also represented via the weight enumerator function (WEF) A(X):

A(X) =
nØ
d=0

AdX
d. (1.8)

Given a code distance spectrum, we can estimate the decoding performance of such
code under maximum likelihood decoding via the union bound (UB) on the block error
probability, PB. If we assume the channel is a binary-input Additive White Gaussian
Noise channel (bi-AWGN), PB is given by

PB ≤ PUB = 1
2

nØ
d=dmin

Ad erfc

Aó
d R

Eb
N0

B
(1.9)

with R = k/n being the code rate, Eb/N0 the energy per information bit to noise power
spectral density ratio and erfc the complementary error function. When the signal-
to-noise ratio is large, only the Admin term in the UB is sufficient to approximate the
performances of the code.

Schiavone. R pag. 4



Convolutional Codes 1.2. CONVOLUTIONAL ENCODERS

1.2 Convolutional Encoders

CCs are a particular type of binary linear codes invented in 1955 by Elias [Elias, 1955]
and which can be efficiently described through their encoder. Consider at time t the
encoder input to be given by the k−bit vector ut. The output at time t is given by the
n−bit vector ct

ct =
νØ
i=0

ut−iGi

where Gi, i = 0, . . . , ν are k × n binary matrices and where ν is referred to as the
memory.

Definition 1.6. The free distance of an (n, k, ν) binary convolutional code C is the min-
imum Hamming distance between two distinct sequences produced by its encoder

dfree(C) = min
c/=cÍ

c,cÍ∈C

dH(c, cÍ) (1.10)

The largest possible free distance of a CC depends on its memory ν, and well-
known upper bounds there exist, as the Heller’s upper bound [Heller, 1968] and the
Griesmer’s upper bound [Griesmer, 1960].

Corollary 1.1 (Heller’s bound). The free distance dfree for any rate R = k/n convolu-
tional code of memory ν satisfies

dfree ≤ min
i≥1

7 (ν + i) · n
2 · (1 − 2−ki)

8
(1.11)

Theorem 1.2 (Griesmer’s bound). The free distance dfree for any binary rate R = k/n
convolutional code of memory ν satisfies

ki−1Ø
j=0

9
dfree
2j

:
≤ (ν + i) · c, i = 1,2, . . . (1.12)

In this work we will focus only in (n = 2, k = 1, ν) CCs, but generalizations of the
work are possible. An example of (n = 2, k = 1, ν = 2) CC encoder is shown in
Figure 1, where D represents a delay block.

We can view the CC encoder as a finite state machine (FSM) with 2ν states and 2k
possible transitions from each state and represent such FSM using a state-transition
diagram as in Section 1.2 or its equivalent state-transition table as in Section 1.2.

The input-output relationships of a convolutional encoder can be represented using
the D-transform which is defined as it follows:

x = (...,x−1,x0,x1,x2, ...) D−→ x(D) =
Ø
t

xtDt = ...+ x−1D
−1 + x0 + x1D + x2D

2 + ...

(1.13)

with xt = (x(1)
t , x

(2)
t , ...).
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𝐷 𝐷

𝑐𝑡
(1)

𝑐𝑡
(2)

𝑢𝑡

1 𝐷 𝐷2

1 𝐷2

Figure 1: Convolutional encoder for an (n = 2, k = 1, ν = 2) code with
G(D) = [1 +D +D2, 1 +D2].

Current State
(ut−1, ut−2)

Input
ut

Next State
(ut, ut−1)

Output
ct = (c(1)

t , c
(2)
t )

S0 = (0,0) 0 S0 = (0,0) (0,0)
1 S1 = (1,0) (1,1)

S1 = (1,0) 0 S2 = (0,1) (1,1)
1 S3 = (1,1) (0,0)

S2 = (0,1) 0 S0 = (0,0) (1,0)
1 S1 = (1,0) (0,1)

S3 = (1,1) 0 S2 = (0,1) (0,1)
1 S3 = (1,1) (1,0)

(a) State transition table

S0

S1S2

S3

0/(0,0)

1/(1,1)

0/(1,1)

1/(0,0)

0/(0,1)

0/(1,0)

0/(0,1)

1/(1,0)
(b) State transition diagram

Figure 2: State transition table (a) and state transition diagram (b) of the (n = 2, k =
1, ν = 2) convolutional code with G(D)=[1 +D +D2,1 +D2].

Doing so, the equations of Figure 1 can be expressed as

ct = [c(1)
t , c

(2)
t ] = [1 · ut + 1 · ut−1 + 1 · ut−2, 1 · ut + 0 · ut−1 + 1 · ut−2]

D ↓
c(D) = [c(1)(D), c(2)(D)] = u(D) G(D) = u(D) [(1 + 1 ·D + 1 ·D2), (1 + 0 ·D + 1 ·D2)]

where G(D) is a k× n matrix called the transfer function and each of its entries can be
written as a polynomial rational function in the form f(D)/q(D).

When we encode an information sequences u of length K, multiple of k, by a CC
encoder, we can graphically represent the space of possibles transmitted sequences ct
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through a tree structure (Figure 3a) or in a more compact way with a trellis representa-
tion (Figure 3b). Each tree node at depth t is splitted in 2k different branches, according
to all possible information sequences ut. The Trellis diagram has K/k sections, each
having 2ν nodes, and each node at time t is connected to the nodes in the following
section according to the rules specified by the state-transition diagram.

𝑢𝑡 = 1

𝑢𝑡 = 0

0/(0,0)

1/(1,1)

0/(0,0)

0/(0,0)

1/(1,1)

1/(1,1)

0/(1,1)

0/(1,1)

1/(0,0)

1/(0,0)

0/(1,0)

1/(0,1)

0/(0,1)

1/(1,0)

(a) Tree representation

S1

S2

S0

S3

S1

S2

S0

S3

S1

S2

S0

S3

S1

S2

S0

S3

S1

S2

S0

S3

0/(0,0)

1/(1,1)

0/(1,1)1/(0,0)
0/

(1
,0)

1/(
0,1

)

0/(
0,1

)

1/(1,0)

0/(0,0)

1/(1,1)

0/(1,1)1/(0,0)

0/
(1
,0)

1/(
0,1

)

0/(
0,1

)

1/(1,0)

0/(0,0)

1/(1,1)

0/(1,1)1/(0,0)

0/
(1
,0)

1/(
0,1

)

0/(
0,1

)

1/(1,0)

0/(0,0)

1/(1,1)

0/(1,1)1/(0,0)

0/
(1
,0)

1/(
0,1

)

0/(
0,1

)

1/(1,0)

(b) Trellis graph

Figure 3: Tree representation (a) and trellis representation (b) of the (n = 2, k = 1, ν =
2) convolutional code with G(D)=[1 + D + D2,1 + D2]. (Dotted edges correspond to
information bits equal to 1).

When a convolutional code is terminated it can be seen as a (N,K) linear block
code, where N is the number of transmitted bits and we can compute its weight enu-
merator Ad (and as a byproduct its minimum distance dmin).

In the following section we present two popular termination schemes: the zero-tail
termination and the tail-biting one.

1.2.1 Zero-Tail Termination Convolutional Codes

A very simple termination for a CC code, is the zero-tail termination. At time t = 0 the
encoder is initialized to the state S0, the allzero state, then the the K-bits sequence
u(D) is encoded through G(D). After that, ν zeroes are encoded through G(D) to
force the encoder to come back to S0. A code which respects the zero-tail termination
condition is called a zero-tail terminated convolutional code (ZTCC).

The resulting binary linear block code is an (N,K) code with N = (n/k) · (K + ν).
The code rate of such code is given by

RZTCC = K

N
= k

n

K

K + ν
(1.14)
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which is clearly smaller than k/n. However for a long information sequenceK, RZTCC −→
k/n.

A way to obtain a rate k/n is via puncturing n · ν output bits of the ZTCC encoder,
which means we do not transmit those bits. Puncturing affects the minimum distance
of a CC code, and the dmin of a punctured code is upper bounded by the one of the
original code.

An example of the trellis of a ZTCC is shown in Figure 4.

ut = 0

ut = 1

S1

S2

S0

S3

S1

S2

S0

S3

S1

S2

S0

S3

S1

S2

S0

S3

S1

S2

S0

S3

S1

S2

S0

S3

S1

S2

S0

S3

S1

S2

S0

S3

S1

S2

S0

S3

Figure 4: Zero-terminated trellis of the convolutional code with G(D)=[1+D+D2,1+D2].

The generator matrix of the equivalent block code of a ZTCC is simply obtained as
shown in Equation (1.15), where GZTCC has dimensions N ×K.

GZTCC =


G0 G1 . . . Gν

G0 G1 . . . Gν

. . . . . . . . .
G0 G1 . . . Gν

 . (1.15)

1.2.2 Tail-Biting Convolutional Codes

Another possible way to terminate CCs is by imposing the tail-biting condition. Differ-
ently from the zero-tail termination case where we start at t = 0 from S0 state, in the
tail-biting case we can start from whichever state Si, but we have to terminate, after
encoding the K bits of u, again in the same state Si. A CC code of this kind is called
tail-biting convolutional code (TBCC).

A tail-biting path in a trellis is depicted in red in Figure 5.
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ut = 0

ut = 1

S1

S2

S0

S3

S1

S2

S0

S3

S1

S2

S0

S3

S1

S2

S0

S3

S1

S2

S0

S3

S1

S2

S0

S3

S1

S2

S0

S3

S1

S2

S0

S3

S1

S2

S0

S3

Figure 5: Tail-biting terminated trellis of the convolutional code with G(D)=[1 + D +
D2,1 +D2]. An example of tailbiting path is highlighted in red.

The rate of TBCCs is RTBCC = K/N with N = (n/k) ·K,

RTBCC = K

N
= k

n

K

K
= k

n
. (1.16)

This means that TBCCs do not suffer of any rate loss, even for short block codes.

The generator matrix of the equivalent block code can be obtained using the wrap-
around technique, which produces the result shown in Equation (1.17). GTBCC is a
K ×N matrix.

GTBCC =



G0 G1 . . . Gν

G0 G1 . . . Gν

. . . . . . . . .
G0 G1 . . . Gν

Gν G0 G1 . . . Gν−1

Gν−1 Gν
. . . . . .

...
...

. . . . . . G1
G1 G2 . . . Gν G0


(1.17)

1.2.3 Weight Enumerator of Terminated Convolutional Codes

There are several ways to find the weight enumerator and the minimum distance of a
terminated convolutional code. If the tailbiting code is long enough, the dmin of a TBCC
is equivalent to that one of a ZTCC. An efficient and simple algorithm to find the dmin of
a ZTCC is the Garello-Vila-Casado algorithm [Garello and Vila-Casado, 2004] and it is
based on the VA [Viterbi, 1967] which we discuss in Section 1.3.2.

To find instead the weight enumerator of a CC we can use the state-transition matrix

pag. 9 A.Y. 2020/2021



1.2. CONVOLUTIONAL ENCODERS Convolutional Codes

T of its convolutional encoder, with Ti,j = Xd where d is the Hamming weight of the
encoder output for the transition Si → Sj . An example of such matrix is shown in
Figure 6.

S0

S1S2

S3

wH((0,0)) = 0

2

2

0

1

1

1

1
(a) State transition dia-
gram with weights

S0

S1S2

S3

XwH((0,0)) = X0 = 1

X2

X2

1

X

X

X

X

(b) State transition dia-
gram with polynomials

T =

S0
S1
S2
S3

S0 S1 S2 S3
1 X2 0 0
0 0 X2 1
X X 0 0
0 0 X X



(c) State transition matrix of Fig-
ure 6b with Y = 1

Figure 6: State transition diagram with the Hamming weight of the corresponding output
vector (a), with corresponding output monomial (b) and the state transition matrix (c) of
the convolutional code with G(D)=[1 +D +D2,1 +D2].

To find A(X) for a ZTCC we have

A(X) =
NØ
d=0

Ad ·Xd = (T
K+ν
k )0,0 (1.18)

while for a TBCC we have

A(X) =
NØ
d=0

Ad ·Xd = tr(T
K
k ). (1.19)

Due to the sparsity of T, the trellis can be exploited to reduce the computations
through simple sums of polynomials and multiplications of polynomials with monomials.
An example of the run of such algorithm for ZTCC is shown in Figure 7. For TBCC the
algorithm is repeated 2ν times, each of them starting from a different state Si.

Note that the number of different paths in the trellis representation of a (n, k, ν) CC
encoder which start at state Si at section 0 and reach the same state at section t are
2t/ν. So both the ZTCCs with (K + ν)/k trellis sections and the TBCCs with K/k trellis
sections and built from the same encoder have 2K codewords.
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0 S1

0 S2

1 S0

0 S3

S0

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S3

1

X2

1

X2

X4

X2

1 +X5

X2 +X5

X3 +X4

X2 +X3

1 +X4 + 2X5

X3 + 2X4 +X7

1 + 2X4 + 4X5 +X8

+

+

+

+

+

+

+
•1

•X 2

•1

•X 2

•1

•X 2

•X 2

•1

•X 2

•1

• X

• X

• X

•X

•1

• X

•1

• X

•X 2

• X

Figure 7: A trellis-based algorithm to compute the weight enumerator of the convolu-
tional code with G(D)=[1 +D +D2,1 +D2].

1.3 Decoding of Convolutional Codes

Previously we have seen how the convolutional encoder can be used to build block
codes to protect the information bits, hereinafter we show how to recover such informa-
tion sequence when the transmitted sequence is corrupted by a channel.

CC encoder modulation channel decoder
u c x y û

Figure 8: Encoding-Decoding block scheme

In particular we focus on transmission over an AWGN channel with binary phase
shift keying (BPSK) modulation, with the bitwise mapping according to:

xt : ct → (−1)ct =⇒ 0 → +1
1 → −1 =⇒ c = (1 0 0 1 0) BPSK−→ x = (−1 + 1 + 1 − 1 + 1)

the binary input additive white Gaussian noise (bi-AWGN) channel is defined by

y = x + z , with zt i.i.d. and zt ∼ N
3

0, N0

2

4
.

We have that the output distribution condition on the input is

p(yt|ct) = p(yt|xt(ct)) = 1√
2πσ2

· e− (yt−xt)2

2σ2 . (1.20)
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In the following section we discuss the ML decoding, then in Section 1.3.2 we
present the ML decoder for CCs, based on the Viterbi algorithm. Finally, in Sec-
tion 1.3.3 a near-ML decoder for TBCCs is detailed.

1.3.1 Maximum Likelihood Decoding

The aim of the maximum likelihood decoder is to estimate the transmitted codeword
c and so the transmitted information sequence u, choosing among all the possible
transmitted codewords the one that maximizes the likelihood of observing y given that
c has been transmitted, i.e.

ĉ = arg max
c∈C

p(y|c)

= arg max
c∈C

ln
NÙ
t=1

p(yt|xt(ct)) =

= arg max
c∈C

NØ
t=1

ln
; 1√

2πσ2
· e− (yt−xt(ct))2

2σ2

<
= arg min

c∈C
d2
E(y,x(c)).

Where we see that, over the AWGN channel, the ML decoding rule reduces to
finding the (modulated) codeword at minimum Euclidean distance from the observation
y.

We should observe that a direct implementation of the rule above requires comput-
ing 2K Euclidean distances, where K is the number of information bits. This task has
a complexity that is prohibitive already for K in the order of a few tens of bits.

Note that the expression above can be further simplified in the case of constant
envelope modulations and the minimization problem on the Euclidean distance square
metric corresponds to a maximization problem of the correlation between y and all
possible x(c).

1.3.2 The Viterbi Algorithm

For CCs there exist a ML decoder which can run over the code trellis, and it is based
on the Viterbi algorithm (VA) [Viterbi, 1967].

It is based on the Bellman’s theorem [Bellman, 1957] and Dijkstra’s algorithm [Di-
jkstra et al., 1959] and on the additivity of the squared Euclidean distance Equa-
tion (1.21).

d2
E(y,x) =

NØ
i=1

(yi − xi)2 (1.21)

To find the codeword at minimum Euclidean distance from y, for a ZTCC, we have
to:
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1. draw K + ν consecutive trellis sections, starting at t = 0 only with S0 and ending
at t = K + ν with only S0

2. for all possible connections at each trellis section, we compute λSi→Sj
t , that is de-

fined as the squared Euclidean distance at trellis section t between the modulated
codeword bits of the edge Si → Sj and the values of the received vector y at time
t

3. we define as Λi
t as the squared Euclidean distance between state S0 at section

0 and state Si at section t of the minimum path connecting those two states. We
start with Λ0

0 = 0 and thanks to the additivity property of the squared Euclidean
distance, moving from from t = 1 on, for all states Si at every section t we can
compute Λi

t as the minimum Λj
t−1+λSj→Si

t for all states Sj at section t−1 connected
with state Si at section t. We also store the edge arriving at each state with
the minimum cumulative metric (i.e., minimum accumulated squared Euclidean
distance)

4. at section t = K + ν, after having found the Λ0
K+ν we move from state S0 back-

ward along the stored edges. That path is the maximum likelihood path and its
corresponding ĉ and û are the maximum likelihood codeword and information se-
quence, respectively.

In Figure 9 is shown an example of a VA decoder.

In principle for TBCCs we can repeat the VA for each initial/final state Si finding the
best paths S0

i → SKi , and then choosing (among those) the one that minimizes the
squared Euclidean distance from y.

1.3.3 Wrap-Around Viterbi Algorithm

A drawback of the approach for decoding TBCCs discussed above is that 2ν instances
of the VA have to be run, one of each initial/final state. Such algorithm becomes im-
practical for TBCCs with already small memory ν. And since the minimum distance of
a CC grows with ν, a low complexity alternative is needed. We present next a near-ML
decoder which is of practical utility: the wrap-around Viterbi algorithm (WAVA) decoder
[Shao et al., 2003].

It consists in a round of the VA over the trellis, where we start at time t = 0 from all
states Si with Λi

0 = 0. In fact, in probabilistic terms each state is equally probable to
be the starting state. At section t = K we check if the minimum path is also tail-biting
(S0
i → SKi ). If it is tail-biting, we output the corresponding decisions ĉ and û. Otherwise

we re-initialize the metrics Λi
0 of the states at t = 0, but this time with the metrics

obtained at t = K, Λi
0 = Λi

K , and we re-run the VA. After the first round of Viterbi, we
repeat this process until we find a tail-biting path or we reach the maximum number of
iterations. If we do not find a TB path, we declare an error, while if we find more than
one path we choose the one at minimum Euclidean distance from the received vector.
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Sa

Λa
t−1

Sb

Λb
t−1

Sc Λc
t = min (Λa

t−1 + λSa→Sc
t ,Λb

t−1 + λSb→Sc
t )

λSa→Sc
t = d2

E(yt,xSa→Sc
t )

λSb→Sc
t = d2

E(yt,xSb→Sc
t )

(a) Viterbi update rule

y = (0.1174,−2.0891) (1.0326,−0.4475) (0.1006, 2.5442) (1.0859,−0.4916) (−1.7423,−0.0616) (1.3505, 0.3844)

Λ0
0 = 0 S0

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S3

S0

S1

S2

S3

ΛS0
1 = 10.32

ΛS1
1 = 2.43

12.42

14.76

6.87

4.53

15.61

10.47

8.13

17.90

8.40

14.71

15.08

12.70

17.04

14.38

16.42
(+1,+1)

(−1,−1)

(+1,+1)

(−1,−1)

(+1,+1)

(−1,−1)

(−1,−1)(+1,+1)

(−1,−1)(+1,+1)

(+
1,

−1
)

(−
1,+

1)

(−
1,+

1)

(+1,−1)

λS0→S0
1 = 10.32λ S

0 →
S
1

1

=
2.43

λS0→S0
2 = 2.10λ S

0 →
S
1

2

=
4.44

λ S
1 →
S
2

2

=
4.44λ S

1 →
S

3

2

=
2.10

(b) Viterbi example

Figure 9: Example of the Viterbi algorithm on the trellis of the (n = 2, k = 1, ν = 2)
convolutional code with K = 4, ν = 2. The stored edges at each section are marked in
red.

The re-initialization of the metrics Λi
0 at t = 0 can be seen as assigning a new

probability to each initial state Si.

In Figure 10 we show the error correction performances in terms of codeword error
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rate (CER) obtained by the WAVA algorithm as function of the number of rounds (it-
erations, I) around the trellis as function of the signal-to-noise ratio Eb/N0 in dB. The
codes used are the (n = 2, k = 1, ν = 5) and the (n = 2, k = 1, ν = 8) TBCCs with
G = [53,75] and G = [561,753] respectively, where the polynomials are expressed in
octave. The length of the information sequence is of K = 64 bits.

In the same figure the random coding union bound (RCU) bound [Polyanskiy et al.,
2010] is plotted, an achievability bound predicting the existance of a code with such
performance.

As we can see in Figure 10, increasing the memory ν of the CC, we increase the
error correction performance of such code, approaching the bound.
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(a) (n = 2, k = 1, ν = 5) TBCC with G = [53,75] and K = 64
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I =3

I =4

RCU bound

(b) (n = 2, k = 1, ν = 8) TBCC with G = [561,753] and K = 64

Figure 10: Simulated codeword error rate on a bi-AWGN channel as a function of Eb/N0
of a TBCC decoded via WAVA for different number of iterations I.
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2. List Decoders for Convolutional
Codes
WE are now going to review some decoders which do not output only the minimum

distance trellis path, but a sorted list L of size L including the paths at low distance
from the channel output. They are based on the VA, for this reason are called LVAs
(LVAs).

They were firstly introduced in [Seshadri and Sundberg, 1994] and they are referred
as: the parallel-list Viterbi algorithm (P-LVA), presented in Section 2.1, which outputs
at once the full list, and as the serial-list Viterbi algorithm (S-LVA), presented in Sec-
tion 2.2, which outputs at every iteration i the i−th best path.

2.1 Parallel-List Viterbi Algorithm

P-LVA is a simple modification of VA, where at every state Si and at every trellis section
t, we do not store only the metric Λi

t of the minimum distance path reaching state Si, but
we store the metrics of the Li minimum distance paths. With Li equal to L, the algorithm
guarantees to find the L global paths at low distance from the channel output. The l−th
shortest distance trellis path at section t reaching the state Si is denoted by Li,(l)

t and
identified by three parameters: Λi,(l)

t , containing its squared Euclidean distance, Si,(l)t−1 ,
identifying the previous trellis state, and li,(l)t−1 , which is the index of the path in the list L
at the previous state.

At each state Si we merge the L trajectories from each one of the 2k incoming
edges.

In Figure 11 is shown an example of such sorting algorithm when k = 1, while in
Algorithm 1 the merging algorithm is shown.

For instance, the P-LVA can be used to decode TBCCs finding the best L paths at
each initial/final state Si and then check which of them matches the tail-biting condition,
if any, and output the corresponding ĉ and û of the shortest among them.

For TBCC, in order to save the time-complexity of checking the tail-biting condition
of all the L best paths, we can store in Li(l)

t also the starting state of such path.





2.2. SERIAL-LIST VITERBI ALGORITHM List Decoders for Convolutional Codes

Algorithm 1 Algorithm to merge the 2k incoming lists in the P-LVA when k = 1.
la = 1, lb = 1
Λa = Λa,(la)

t−1 + λ
(Sa→Sc)
t

Λb = Λb,(lb)
t−1 + λ

(Sb→Sc)
t

for l = 1 , ... , L do
if Λa < Λb then

Λc,(l)
t = Λa

la = la + 1
Λa = Λa,(la)

t−1 + λ
(Sa→Sc)
t

else
Λc,(l)
t = Λb

lb = lb + 1
Λb = Λb,(lb)

t−1 + λ
(Sb→Sc)
t

end if
end for

Sa


S
a,(1)
t−2 l

a,(1)
t−2 7.84

S
a,(2)
t−2 l

a,(2)
t−2 9.18

S
a,(3)
t−2 l

a,(3)
t−2 14.56

S
a,(4)
t−2 l

a,(4)
t−2 15.37



S
a,(1)
t−2 l

a,(1)
t−2 Λa,(1)

t−1
S
a,(2)
t−2 l

a,(2)
t−2 Λa,(2)

t−1
...

...
...

S
a,(L)
t−2 l

a,(L)
t−2 Λa,(L)

t−1



Sb


S
b,(1)
t−2 l

b,(1)
t−2 6.53

S
b,(2)
t−2 l

b,(2)
t−2 7.15

S
b,(3)
t−2 l

b,(3)
t−2 9.21

S
b,(4)
t−2 l

b,(4)
t−2 18.92



S
b,(1)
t−2 l

b,(1)
t−2 Λb,(1)

t−1
S
b,(2)
t−2 l

b,(2)
t−2 Λb,(2)

t−1
...

...
...

S
b,(L)
t−2 l

b,(L)
t−2 Λb,(L)

t−1



Sc


Sb 1 9.80
Sb 2 10.42
Sa 1 12.22
Sb 3 12.48



S
c,(1)
t−1 l

c,(1)
t−1 Λc,(1)

t

S
c,(2)
t−1 l

c,(2)
t−1 Λc,(2)

t
...

...
...

S
c,(L)
t−1 l

c,(L)
t−1 Λc,(L)

t



λSa→Sc
t = d2

E(yt,xSa→Sc
t )

λSb→Sc
t = d2

E(yt,xSb→Sc
t )

Figure 11: Example of the update rule of the P-LVA. Each entry of each list contains in
position l the parameters of the l-th minimum distance path according to the Euclidean
distance metric. An example of such rule when L = 4 is depicted in blue.

2.2 Serial-List Viterbi Algorithm

In [Seshadri and Sundberg, 1994] was presented a naive approach of the S-LVA al-
gorithm which is based on the following idea for a ZTCC: with the VA we can find the
minimum distance path Li,(l)

t at each state Si of the trellis. For instance, for a ZTCC,
L0,(1)
K+ν is the minimum distance path starting/ending in S0. The global second best path,

always according to the Euclidean distance, L0,(2)
K+ν has to be a path which leaves the

best path at a time t1 and rejoin it at time t2. In order to find it, at each section t we
store the best path merging L0,(1)

K+ν at that section and we select among the stored paths
the one at minimum Euclidean distance from the channel output.
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We repeat this procedure to find the third global best path L0,(3)
K+ν , but this time we

compare the minimum distance path merging L0,(2)
K+ν different from L0,(1)

K+ν with the best
path merging L0,(1)

K+ν different from L0,(2)
K+ν . We then select the path at minimum Euclidean

distance from the channel output.

In order to find L0,(4)
K+ν , we compare the minimum distance paths merging L0,(1)

K+ν , L0,(2)
K+ν

and L0,(3)
K+ν , but different from those paths. The one at shortest Euclidean distance is

our 4−th global minimum distance path, and so on.

This procedure guarantees to find at each iteration the next global best path.

For TBCCs, we can extend such algorithm, but we do not only compare the paths
reaching S0 (L0,(l)

K ), but all the paths Li,(l)
K at final state Si.

A faster version of such algorithm is known as tree-trellis list Viterbi algorithm and is
detailed in [Roder and Hamzaoui, 2006].

This faster implementation is based on Viterbi and a data structure which can man-
age the list of best paths with fast insertion and search, i.e., the heap data structure
[Williams, 1964] or a red-black tree [Bayer, 1972] that have a logarithmic complexity in
time.

In order to find the local best merging path at section t to a given path, we have to
look at the best of the merging paths at section t incoming from a different edge with
respect to the one selected by Viterbi. For k = 1, for instance, this corresponds to the
path coming from the incoming edge which was not selected by Viterbi. We can store
the information about that path in a node and sort it in our list based on its Euclidean
distance from the received vector.

In order to find all the local best paths merging a given path, we need to repeat this
operation for all the trellis sections. However, if the given path is the local best path of
another path, and it merges its best path at time t1, we can reduce the search space
only looking at the sections with with t < t1. This is due to the fact that for t ≥ t1 the two
paths traverses the same nodes and edges, and so also the local best paths at those
sections have to be the same.

We propose a visual example of the procedure in Figure 12.

2.3 On the complexities of P-LVA and S-LVA

The P-LVA with list size L requires a single forward step of the VA, but its complexity
w.r.t. such algorithm grows linearly in L due to the merge operation at each node of the
incoming lists. While the backward of the VA is repeated at most L times, one for each
of the L global best paths.

The S-LVA complexity when the list size is L, with the fast tree-trellis implementation,
is the same in forward of the VA, while in backward we have at most L backwards.
During the backward, for each trellis section we have to compute the metrics which
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best path

2nd local best paths

insert in a sorted list L

choose best
best path

2nd global best path

best path2nd global best path

best path2nd global best path

local best paths

insert sorted in previous L

choose best

3rd global best path

Figure 12: Visual example of the serial-list Viterbi algorithm.

identify the local best path merging at that section and then insert those metrics in the
heap data structure or in the binary tree, which has a time complexity of at most log2(L).

In Table 1, we report the time complexities of P-LVA and the tree-trellis implementa-
tion of S-LVA for decoding a ZTCC, according to [Roder and Hamzaoui, 2006, Table I].
The TBCC case is similar, with the change that we have K trellis sections instead of
K + ν.

Table 1: Time complexity for decoding the L best paths of length K + ν sections for a
binary rate−1/n ZTCC with memory ν. Source [Roder and Hamzaoui, 2006, Table I],
with the notation adapted to the one used in this work. The complexities of the S-LVA
are the ones of its tree-trellis implementation.

Forward pass Backward passes Overall
P-LVA O (L 2ν (K + ν)) O (L (K + ν)) O (L 2ν (K + ν))
S-LVA O (2ν (K + ν)) O ((K + ν)L log2(L)) O ((K + ν) (2ν + L log2(L)))
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3. Serial Concatenation of Con-
volutional Codes with Outer (CRC)
Linear Block Codes
3.1 Code construction

The concatenation of linear block codes can enhance the performance of such codes.
The possible concatenations are the parallel one, where the same sequence of infor-
mation bits is encoded by two or more different encoders; the serial concatenation,
where a sequence of information bit is encoded firstly by an encoder and the output of
such encoder is then encoded through another encoder. It is possible even to combine
such concatenations in different schemes.

The use of concatenation usually increases also the decoder complexity, but can
lead to very powerful codes such as the turbo codes which are a parallel concatenation
of two CCs.

A powerful concatenation for short information sequences is the serial concatena-
tion of CC with an outer linear block code such as a cyclic redundancy check (CRC)
code. The use of a CRC code as outer code is not new and can lead to very powerful
codes such as in the case of the concatenation with polar codes [Arikan, 2009; Tal and
Vardy, 2015].

3.2 Cyclic Redundancy Check Codes

CRC codes [Peterson and Brown, 1961] are (n, k) binary linear codes built from a
polynomial g(X) of degree m = n− k with g0 = gm = 1 as

g(X) = g0 + g1 ·X + g2 ·X2 + . . .+ gm ·Xm = 1 +
m−1Ø
i=1

gi ·X i +Xm. (3.1)

Their encoder follows Equation (3.2), where c(X) and u(X) are the codeword and
the information sequence respectively expressed in polynomial form

c(X) = u(X) · g(X). (3.2)

Definition 3.1. A cyclic code is a binary linear code with the added property that the
circular shift of a codeword is also a codeword. An (n, k) binary linear code built from
a polynomial g(X) according to Equation (3.2) of degree m = n − k with g(X) being a
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factor of Xn − 1 is a cyclic code.

Definition 3.2. Cyclic codes can be shortened by setting the j most significant bits of
the message u(X) of Equation (3.2) to zero, which forces to select the subset of c(X)
of the cyclic code with the j most significant bits always equal zero. This procedure
goes under the name of code shortening.

Theorem 3.1. The minimum distance of a shortened cyclic code is at least as large
as the original cyclic code, since we are using a subset of the original codewords,
although the error detection performance over the binary symmetric channel (BSC)
can be deteriorated by shortening [Wolf and Blakeney, 1988].

The generator matrix of the CRC codes for an information sequence of length k is a
k × n matrix

GCRC =


g0 g1 . . . gm

g0 g1 . . . gm
. . . . . . . . .

g0 g1 . . . gm

 (3.3)

Their parity check matrix H can be easily obtained in different ways, for instance
with a Gaussian-Jordan elimination over F2.

From the m × n H of the CRC code we can study the WE of the code itself,
firstly computing the WE Function B(X) (see Equation (1.7) and Equation (1.8)) of
its dual code which has only 2m codewords and then applying the MacWilliams identity
[MacWilliams, 1963] shown in Equation (3.4).

ACRC(X) = (1 +X)n
2m B

31 −X

1 +X

4
, with m = n− k (3.4)

3.3 Design of CRC codes

The design of an outer code, e.g., of a CRC code to be used in concatenation with a CC
requires to find the best code in terms of WE: larger minimum distance dmin and smaller
Admin number of codewords with Hamming weight of dmin for the overall concatenated
code.

We can say that only the codewords of the inner code whose messages respect the
outer code conditions are also codewords of the concatenated code. For this reason,
we can measure the performance of the outer code based on its capability of discarding
(e.g., via syndrome decoding it corresponds to a non allzero syndrome vector) the input
words of the inner code with low nonzero Hamming weight. The same problem can be
viewed as the capability of the outer code of detecting the undetectable error events of
the inner code with low nonzero Hamming weight.

For an inner CC, the input words associated to codewords with Hamming weight
smaller than a design parameter d̃ correspond to paths over the trellis of weight smaller
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than d̃. In [Lou et al., 2015; Yang et al., 2020] are presented some efficient methods to
find the best degree-m CRC code to be used in concatenation with an inner ZTCC or
a TBCC.

To evaluate the distance spectrum of the concatenation up to the Ad̃ coefficient, the
inner code input extracted words according to [Lou et al., 2015; Yang et al., 2020], are
tested via polynomial check, but the same results can be obtained via syndrome check
using the parity check matrix of the outer (CRC) linear block code. Input words which
satisfy the outer code constraints correspond to valid codewords of the concatenated
code and so they are counted in the weight enumerator of the concatenated code.

When the outer code is a CRC code, we can compute the distance spectra of the
concatenation of the CC code with all the possible 2m−1 (K + m,K) CRC codes and
choose the CRC code with the best distance spectrum.

By using some symmetries of the ZTCC and TBCC codewords and trellis paths, and
by using the detection properties of the CRC code, we can deeply reduce the number
of checks to be performed for all the possible 2m−1 CRC codes, in order to compute the
weight enumerator of the concatenated code and find the best CRC code in an efficient
way [Lou et al., 2015; Yang et al., 2020].

3.4 Study CRC codes

We are going now to use the Poltyrev’s tangential sphere bound (TSB) [Poltyrev, 1994]
to evaluate the performance under a ML decoding of such concatenation scheme in
terms of codeword error rate (CER), using the distance spectrum of such concatena-
tion.

We compare such performance with the performance of a random code of the same
rate R which is in our case :

R = k

n

K

(K +m)

with k/n the rate of the CC, K the length of the information sequence and m the degree
of the polynomial of the CRC code.

Since the combination of the CRC with the TBCC may results in a large number
of codewords at minimum distance, affecting the performance of the codes, for this
reason, applying a random interleaver between the outer and the inner encoder may
results beneficial to enhance the general performances of these codes.

In order to evaluate the possible gain we are going to use the Poltyrev’s TSB on the
average weight enumerator (AWE) Ad of the ensemble of the combination of the TBCC
with the CRC code. To do so, firstly we computed the input-output WE ATBCCi,d of the
TBCC and the WE ACRCi of the CRC. ATBCCi,d is always obtained using the algorithm in
Figure 7, but using as edges of the trellis the ones in Figure 13. Y is the input variable,
while X is always the output variable. The exponent of Y is given by the Hamming
weight of the k input bits, while X the Hamming weight of the n output bits.
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S3

Y 0XwH((0,0)) = X0 = 1

Y X2

X2

Y

Y X

X

X

YX

Figure 13: Input-output state transition diagram of the (n = 2, k = 1, ν = 2) convolu-
tional code with G(D) = [1 +D +D2,1 +D2].

The AWE Ad is then obtained with the formula in Equation (3.5).

Ad =
K+mØ
i=0

ACRCi · ACCi,d!K+m
i

" (3.5)

However the ensemble can contain also bad codes (codes with lower minimum dis-
tance than the average minimum distance of the ensemble). For this reason, in order
to understand which is the average performance of the random interleavers applied
between our outer code and the convolutional encoder, we need to derive an upper
bound to the ensemble expurgated from the bad codes. In [Gallager, 1963], a simple
derivation is shown. Firstly we know that the cumulative distribution of the minimum
distance for the codes in the ensemble satisfies

P{dmin(C) ≤ d} ≤
dØ

w=0
Ad − 1 =: f(d)

For an arbitrary θ ∈ (0,1), we define:

d∗ := max
d∈N

{d|f(d) < θ}

Then,

P{dmin(C) ≤ d∗} ≤
dØ
d=0

Ad − 1 ≤ θ

It follows that a fraction of at least (1 − θ) codes from the ensembles has dmin > d∗,
these codes are the expurgated ensemble.

In Section 2.2 of [Gallager, 1963] it is shown that the average weight enumerator of
the expurgated ensemble can be upper bounded by
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A
exp
d = 1 , d = 0

A
exp
d = 0 , 0 < d ≤ d∗

A
exp
d ≤ 1

1−θAd , d > d∗

We studied the case with k = 1, n = 2 and K = 64 for various cases of ν and m and
it appears that the concatenation of TBCC with CRC codes is indeed very powerful and
match the performance of the expurated ensemble as shown in Figure 14.

In the same figure is shown the Poltyrev’s tangential sphere bound of a random code
with the same code rate R. Such bound is achievable, which means that there exist
codes which can achieve such bound.

3.5 List size

In this section we shows some simulated results of the decoding of the codes obtained
with the serial concatenation presented before, comparing the list size when a S-LVA
and a P-LVA are used.

We use a (n = 2, k = 1, ν) TBCC as convolutional code, and a (K + m,K) CRC.
K = 64 and we use as rate of the concatenation R = 1/2. Such rate is achieved via
puncturing one bit of c every T sections with T = å(K + m)/(2 · m)æ. If in one section
the punctured bit is the one of the first generator of the CC, the punctured bit at the
next punctured section is the one of the second generator of the CC.

The CRC is found using the messages extracted from the already punctured Trellis.

In the P-LVA decoder each entry of the list stores also the starting state, and in order
to reduce the backward operations we do as shown in Figure 15: firstly we check the
tail-biting condition simply comparing that the starting state of the entries in each state
Si is exactly Si, then since we can compute the minimum distance of the concatenated
code [Lou et al., 2015; Yang et al., 2020], in order to avoid the selection of a tail-biting
path not too close to the received vector with the risk of increasing the undetected error
probability, we check its distance from the received vector. Note that the undetected
error probability is a really important parameter in satellite communications. After the
BPSK mapper our code can be represented in the Euclidean space and each codeword
is mapped to a signal code vector. We can compute the minimum Euclidean distance
square d2

E,min among its signal code vectors which is given by

d2
E,min = min

c/=cÍ

c,cÍ∈C

d2
E(x(c),x(cÍ)) = 4 dmin, (3.6)

where dmin is the minimum distance of the code in the Hamming space. Similar to the
Hamming space, also in this Euclidean space, under ML decoding, we can define the
correcting capability of the code. In the BPSK case, under ML decoding, the code is
capable to correct at least all errors at Euclidean distance square smaller than

d2
E,min

2 .
For this reason, we check that any tail-biting path at the last trellis section is at most at
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(b) ν = 3,m = 1,K = 64
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(c) ν = 7,m = 1,K = 64
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(d) ν = 3,m = 6,K = 64
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(e) ν = 7,m = 6,K = 64
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(f) ν = 3,m = 10,K = 64
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(g) ν = 7,m = 10,K = 64

Figure 14: Poltyrev’s tangential sphere bound of : the average weight enumerator Ad,
of the ensemble, of the expurgated ensemble Aexpd , of the CRC ACRCd and of a random
code of the same rate.
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that distance.

s0
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s2ν−1
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...

check TB

check
d2
E(·) ≤ 4 · dmin

2
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d2
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2

sort check CRC û

L0

L2ν−1

Figure 15: Last stage operations at each State Si of the P-LVA decoder.

The simulations highlight the important role of the number of iterations in WAVA, for
both the P-LVA and S-LVA decoder to reduce the list size L for decoding TBCCs. The
list decoder is used only in the last round of WAVA, while the pure VA (L = 1) is used
in all the other rounds.

In Figure 16 with the (n = 2, k = 1, ν = 3) TBCC with G = [13,17] and its CRC we
see that with 2 rounds of Viterbi, I = 2, we can nearly reduce by 2 times the list size
and with simply L = 32 we can nearly reach the ML correcting performance that we
approximate by decoding the same code with S-LVA with L = 1e6. In the Figure 17 with
the same code decoded by the S-LVA, since all the paths are inserted in a unique list
with one controller, the list size needs to be larger and we need L ≈ 1000 to reach the
ML performance with I = 1 and also I = 2.

Despite the list size of the S-LVA decoder seems large, in practice the algorithm do
not need to reach the maximum value of L, but it stops itself before it if the tailbiting
condition and the CRC parity check conditions are satisfied. This deeply reduce its
latency and in practice in software on a single core machine the needed time is ≈
×1.4 the pure VA. It is important to note that if we compute the average list size used
by the S-LVA decoder, as done in [Yang et al., 2018b], and we compare it with the
required maximum list size value to approach the ML performance, we can see that the
needed maximum list size is much larger than the average one. It means also that the
decoding latency and the decoding complexity of some codewords is much larger than
the average case.

The performance of the analyzed code with only 8 states per section is nearly the
same of the ν = 6 TBCC with G = [133,171], which has instead 64 states.

As shown in Figure 18 and Figure 19, another interesting result is the possibility of
reaching the correcting performances of the memory ν = 8 TBCC (Figure 10b) using a
memory ν = 6 code and the P-LVA with L ≈ 16 − 32.

Differently from polar codes [Arikan, 2009; Tal and Vardy, 2015] where the bits of
the outer code replace frozen bits, the use of the CRC in our concatenation force us to
puncture the code for achieving the desired code rate R = k/n. This effect deeply af-
fects the list size, because many non tailbiting paths and tailbiting paths come closer to
our transmitted codeword. This phenomenon affects the performances at the decoder,

pag. 27 A.Y. 2020/2021



3.5. LIST SIZE Serial Concatenation of CCs with CRC Codes

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

E
b
 / N

0
 [dB]

10-4

10-3

10-2

10-1

100

C
E

R

=3+CRC-6, I=1, L=1 =3+CRC-6, I=1, L=4 =3+CRC-6, I=1, L=16 =3+CRC-6, I=1, L=32 =3+CRC-6, I=1, L=64

=3+CRC-6, I=2, L=1 =3+CRC-6, I=2, L=4 =3+CRC-6, I=2, L=16 =3+CRC-6, I=2, L=32 =3+CRC-6, I=2, L=64

RCU bound S-LVA L=1e6

Figure 16: Codeword Error Rate of the serial concatenation of the (n = 2, k = 1, ν = 3)
TBCC with G = [13,17] and its CRC of m = 6 over the bi-AWGN channel decoded via
P-LVA. K = 64 and puncturing is applied to obtain R = 1/2.
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Figure 17: Codeword Error Rate of the serial concatenation of the (n = 2, k = 1, ν = 3)
TBCC with G = [13,17] and its CRC of m = 6 over the bi-AWGN channel decoded via
S-LVA. K = 64 and puncturing is applied to obtain R = 1/2.

Schiavone. R pag. 28



Serial Concatenation of CCs with CRC Codes 3.5. LIST SIZE

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

E
b
 / N

0
 [dB]

10-4

10-3

10-2

10-1

100

C
E

R

=6+CRC-6, I=1, L=1 =6+CRC-6, I=1, L=4 =6+CRC-6, I=1, L=16 =6+CRC-6, I=1, L=32

=6+CRC-6, I=2, L=1 =6+CRC-6, I=2, L=4 =6+CRC-6, I=2, L=16 =6+CRC-6, I=2, L=32

RCU bound S-LVA L=1e6

Figure 18: Codeword Error Rate of the serial concatenation of the (n = 2, k = 1, ν = 6)
TBCC with G = [133,171] and its CRC of m = 6 over the bi-AWGN channel decoded
via P-LVA. K = 64 and puncturing is applied to obtain R = 1/2.
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Figure 19: Codeword Error Rate of the serial concatenation of the (n = 2, k = 1, ν = 6)
TBCC with G = [133,171] and its CRC of m = 6 over the bi-AWGN channel decoded
via S-LVA. K = 64 and puncturing is applied to obtain R = 1/2.
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forcing the list to grow every time we increase m by 1 to obtain at least the same per-
formances we had at previous m. In table 2 is shown the minimum list size to reach the
maximum likelihood performances of such concatenation using the (n = 2, k = 1, ν = 5)
TBCC and puncturing.

In the zero-termination case without puncturing decoded via list Viterbi algorithm
(LVA), the effect of the CRC affects only the paths corresponding to the codewords
of the TBCC and so the list size should grows similarly to the case of polar codes
concatenated with a CRC.

Table 2: Simulated required list size as a function of the number m of redundancy bits
of the outer CRC code to approach the maximum likelihood performance of the serial
concatenation of that outer code with the (2,1,5) TBCC with G = [53,75]. Puncturing is
applied and the P-LVA is used at the decoder.

Eb/N0 [dB] m =1 2 3 4 5 6 7 8 9 10
1.0 2 4 8 16 32 32 128 256 512 512
1.5 2 4 8 8 32 32 64 256 256 512
2.0 2 4 8 8 32 32 64 64 256 512
2.5 2 4 4 8 32 32 64 64 256 512
3.0 2 4 4 8 16 32 64 64 256 512
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4. Fixed-latency Parallel-List Viterbi
Algorithm

FROM the simulations of the P-LVA and S-LVA it is clear that the two algorithms
require different list sizes for decoding TBCC and that the list size of the P-LVA

seems smaller.

P-LVA can be of interest in hardware because it has a fixed latency, while the S-LVA
seems to have an average latency which is really different with respect to the worst
case latency.

In this section we propose an efficient implementation in hardware of the P-LVA
decoder based on.

4.1 Simplified Bitonic Circuit

Sorting networks [Knuth, 1998] are networks made of comparators and wires and are
used to sort a fixed number of elements. Each wire carries one single element and
each wire move its element from left to right. When a pair of values, traveling through
a pair of wires, encounter a comparator, the comparator swaps the values if and only if
the top wire’s value is greater or equal to the bottom wire’s value. An exaple is depicted
in

7.15 5.78

5.78 7.15

Figure 20: Example of a simple sorting network made of two wires and a comparator.

Such networks can be very useful in hardware implementation, because when some
comparisons are made in parallel, we can deeply reduce the sorting time of elements,
decreasing the total time complexity of an algorithm.

A very well-known sorting network is the bitonic sorter [Batcher, 1964] which can
sort a list L of elements with a time complexity of log2

2(L), using L · log2
2(L) comparators

and L wires. Its network is shown in Figure 21.

In the case of our P-LVA, for a code with k = 1 at each step, for each node, there are
two lists each of size L which have to be merged and only the best L values have to be
stored at each node. If we sort at each state the list of elements at section t, when we





4.1. SIMPLIFIED BITONIC CIRCUIT Fixed-latency Parallel-List Viterbi Algorithm

wire

comparator

parallel
executions

Figure 21: Example of the bitonic sorter to sort 8 elements. The red boxes underline
the operations which can run in parallel.

transmit such list to the states at section t + 1, there is no need to sort again such list.
It means that at each section t the incoming lists are already sorted.

Since the values are already sorted, and since we have 2 ·L incoming elements, but
only the best L are of our interest, we can simplify the bitonic sorter to obtain the sorting
network of our interest, which is the one shown in Figure 22 and whose algorithm works
as expressed in Algorithm 2. If we compute the time complexity of such network is
log2(2 · L) = 1 + log2(L), while the number of comparators is L

2 (log2(L) + 2).
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Fixed-latency Parallel-List Viterbi Algorithm 4.1. SIMPLIFIED BITONIC CIRCUIT

Λa,(1)
t−1 + λSa→Sc

t

Λa,(2)
t−1 + λSa→Sc

t

Λa,(3)
t−1 + λSa→Sc

t

Λa,(4)
t−1 + λSa→Sc

t

Λb,(1)
t−1 + λSb→Sc

t

Λb,(2)
t−1 + λSb→Sc

t

Λb,(3)
t−1 + λSb→Sc

t

Λb,(4)
t−1 + λSb→Sc

t

Λc,(1)
t

Λc,(2)
t

Λc,(3)
t

Λc,(4)
t

from Sa

from Sb

Figure 22: Example of circuit of the new sorting network for the P-LVA to merge the two
incoming edges at state Sc from state Sa and Sb, respectively. L = 4. The red boxes
underline the operations which can run in parallel.

Algorithm 2 Simplified bitonic sorter for the parallel-list Viterbi algorithm

for i = 1 , ... , L do
Λc,(i) = min{Λa,(i),Λb,(L−i+1)}

end for
N = L
for t = 1 , ... , log2(L) do

for g = 1 , ... , 2t−1 do
for i = 1 , ... , N/2 do

t1 = (g − 1) ·N + i
t2 = t1 +N/2
(Λc,(t1),Λc,(t2)) = (min{Λc,(t1),Λc,(t2)},max{Λc,(t1),Λc,(t2)})

end for
end for
N = N/2

end for
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5. Conclusion and Outlook
To conclude this thesis, in this section we are going to summarize the main results and
discuss some interesting topics for further studies.

In this thesis we have analyzed the decoding performances of the parallel-list Viterbi
algorithm and the serial-list Viterbi algorithm to decode the serial concatenation of the
tail-biting convolutional code of rate R = 1/2 and outer cyclic redundancy check codes
with K = 64 over the binary input additive white Gaussian noise channel.

As shown in the simulations, the analyzed concatenation scheme is very effective
to enhance the minimum distance of these codes and so their correcting power, thus
enabling to reduce the required memory at the encoder to achieve the same error cor-
rection performance. However, this gain comes at the price of an exponential increase
in the required list size with respect to m, the amount of redundancy of the outer code.
The wrap-around technique of the wrap-around Viterbi algorithm is effective to help
reducing such list size, especially in combination with the parallel-list Viterbi algorithm
decoder, but it is not sufficient when m is greater than 6.

The implementation of the P-LVA is possible in hardware with a sorting network,
allowing the possibility of using such decoder with a fixed-latency hardware implemen-
tation, while in software, the implementation of the serial-list Viterbi algorithm at the
decoder remains the “preferred” solution, especially at very high list sizes L. In fact,
such decoder is only ≈ ×1.4 times slower than the pure Viterbi algorithm for practical
target values of error rate or signal-to-noise ratio.

For further improving this concatenation scheme while containing the list size, in
order to construct lower rate codes (e.g., 1/3) with a higher rate inner encoder (e.g.,
1/2), investigating the design of random outer codes or parity bit schemes that can be
used to filter the list size at earlier decoding sections might be worth.

Another option would be the use of this concatenation design as outer constituent
code of a serial concatenation with an inner polar code, thus improving the error cor-
rection performance of the actual polarization-adjusted convolutional codes or reducing
their undetected error probability.





Appendix
A.1 CRC Codes

In this Appendix we present the results obtained of the searching for the best, in terms
of distance spectrum, (K,K +m) CRC code with redundancy m for the serial concate-
nation of a (n = 2, k = 1, ν) TBCCs with the outer CRC linear block code. We provide
those results for ν between 3 and 8, m between 1 and 10 and K = 64. For each case we
report the minimum distance dmin of the serial concatenation, the number of codewords
at that distance Admin and the generator g of such concatenation expressed in octave.
The results for the unpunctured case are shown in Table 3, while Table 4 reports the
results for the punctured case.

Table 3: Minimum distance dmin and number of codewords at that minimum distance
Admin of the serial concatenation between the (n = 2, k = 1, ν) TBCC with the outer
CRC code of generator gCRC , expressed in octave, for the unpunctured case.

CRC m =1 2 3 4 5

ν G dmin Admin gCRC dmin Admin gCRC dmin Admin gCRC dmin Admin gCRC dmin Admin gCRC

3 [13,17] 6 65 3 8 198 5 8 130 17 9 71 37 10 20 55

4 [27,31] 8 195 3 9 66 7 8 4 17 10 68 21 10 7 63

5 [53,75] 8 65 3 9 132 7 10 12 11 12 340 21 12 218 77

6 [133,171] 10 325 3 10 66 5 10 8 17 12 86 33 12 8 75

7 [247,371] 10 65 3 12 528 5 12 266 17 14 612 21 14 203 63

8 [561,753] 12 260 3 12 66 5 12 4 17 14 68 21 14 11 63

CRC m =6 7 8 9 10

ν G dmin Admin gCRC dmin Admin gCRC dmin Admin gCRC dmin Admin gCRC dmin Admin gCRC

3 [13,17] 12 735 143 12 154 355 12 11 407 14 219 1511 14 75 2235

4 [27,31] 12 64 117 12 12 265 14 432 555 15 73 1145 14 1 2321

5 [53,75] 14 700 143 12 2 275 16 1188 555 15 73 1511 16 1 2033

6 [133,171] 14 210 177 14 15 377 16 432 505 16 25 1275 16 10 2561

7 [247,371] 14 140 143 14 1 357 16 72 505 17 73 1641 18 247 2727

8 [561,753] 16 210 177 16 86 377 18 360 653 18 146 1401 18 17 2365
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Table 4: Minimum distance dmin and number of codewords at that minimum distance
Admin of the serial concatenation between the (n = 2, k = 1, ν) TBCC with the outer
CRC code of generator gCRC , expressed in octave, for the punctured case. The code
is periodically punctured according to the description provided in Section 3.5.

CRC m =1 2 3 4 5

ν G dmin Admin gCRC dmin Admin gCRC dmin Admin gCRC dmin Admin gCRC dmin Admin gCRC

3 [13,17] 5 6 3 7 48 5 7 26 15 8 30 35 8 1 55

4 [27,31] 7 24 3 8 20 7 7 1 11 8 7 25 9 6 63

5 [53,75] 7 8 3 7 4 7 9 1 11 9 6 21 10 17 45

6 [133,171] 9 50 3 9 20 5 10 41 17 10 12 33 10 1 55

7 [247,371] 9 10 3 10 17 5 10 13 11 11 10 23 11 8 41

8 [561,753] 11 48 3 11 24 5 11 1 11 12 11 21 11 1 63

CRC m =6 7 8 9 10

ν G dmin Admin gCRC dmin Admin gCRC dmin Admin gCRC dmin Admin gCRC dmin Admin gCRC

3 [13,17] 9 16 107 10 69 325 10 22 651 10 1 1041 11 15 2353

4 [27,31] 10 28 117 10 4 221 11 48 523 11 11 1501 12 51 2763

5 [53,75] 10 9 153 11 28 373 11 8 451 11 2 1747 12 8 2301

6 [133,171] 11 5 123 11 1 255 12 7 761 13 79 1323 13 30 3565

7 [247,371] 12 115 143 12 1 351 13 75 421 13 20 1103 13 2 2727

8 [561,753] 12 2 171 13 40 205 14 70 653 14 17 1467 14 10 3637

A.2 Polar Codes Comparison

With the 5G standardization process, a new family of codes has risen interests in the
coding community: the family of the so-called polar codes [Arikan, 2009]. Such codes
have shown powerful performances when designed for very short block lengths. Suc-
cessive cancellation list decoding algorithm [Tal and Vardy, 2015] can reach the max-
imum likelihood performance of such codes by using a list. When these codes are
serially concatenated with outer CRC codes, they do not requires any puncturing due
to their encoding structure and such concatenation is beneficial to improve their perfor-
mances.

We have compared their performances with respect to the use of TBCCs for various
memories and decoded via P-LVA. The results are shown in Figure 23 and we can
see that TBCCs can approach the performances of polar codes with similar list size
and even beat those performances for memory value of 8. The polar codes results are
obtained using the tools in [Liva and Steiner, 2021].
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Polar + CRC-7, L=32 RCU bound

Figure 23: Performance comparison between polar codes and tail-biting convolutional
codes for various memory of the TBCCs for (N = 128,K = 64).

A.3 Time-Variant Convolutional Codes

It is possible to make the relationship between the input and the output of a convolu-
tional encoder vary over time. In this way its input-output relationship can be written
as:

ct =
νØ
i=0

ut−iGi(t) , ∀t = 0,1,2, . . .

This operation can be beneficial in terms of distance spectrum and the resulting
convolutional code is referred as a time-variant convolutional code. Among the classes
of time-variant CCs, there are the periodic time-variant CCs, where Gi changes peri-
odically according to a period T and, so, it can be expressed as Gi(t) = Gi(t mod T ).
Note that if T = 1, then the encoder remains time-invariant.

A possible way to obtain a time-variant CC is via periodically puncturing a lower rate
CC.

A powerful periodic time-variant CC which can be graphically represented using
only 16 states is the Golay CC [Calderbank et al., 1999] which has period T = 4 and
upon termination, when K is multiple of its period, it has a free distance equal to 8.
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So, its free distance is larger then the best, from the distance spectrum point of view,
time-invariant memory 4 CC which instead has dfree = 7.

This code can be constructed in various way, for instance by periodically punctur-
ing the (5,1,4) CC with G(D) = [25,35,27,33,37] expressed in octal format [Riedel and
Weiss, 1999] and obtaining so the following generator transfer matrix G(D) = {t = 0 :
[25,33], t = 1 : [27,37], t = 2 : [35,37], t = 3 : [25,33]}.

However, due to the high multiplicity of codewords at minimum distance, when
Eb/N0 is low, the Golay CC performs similarly with respect to the memory 4 TBCC
with G(D) = [27,31]. And even if concatenated with an outer CRC code, when Eb/N0
is low, the two codes behaves similarly, despite the Golay CC has larger minimum dis-
tance. We show some simulated results where we compare the two codes when no
outer code is present (Figure 24) and when the CRC code as its generator polynomial
of degree m = 8 (Figure 25).

Table 5: Comparison of the minimum distances of the serial concatenation of the outer
CRC code with m redundancy bits and the (2,1, ν = 4) time-invariant TBCC code with
G = [27,31] and with the time-variant Golay convolutional code. The information se-
quence has K = 64 and the codes are unpunctured.

no CRC m = 4 m = 8
G dmin Admin dmin Admin gCRC dmin Admin gCRC

[27,31] 7 128 10 68 21 14 432 555
Golay 8 784 12 1700 21 16 982233 421
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Figure 24: Performance comparison between the (128,64) Golay CC with 16 states and
the (128,64) (2,1,4) time-invariant TBCC without outer code and decoded via S-LVA with
L = 100000.
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(a) (144,64),m = 8
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(b) (128,64),m = 8

Figure 25: Performance comparison between the tail-biting Golay CC with 16 states
and the (2,1,4) time-invariant TBCC when serially concatenated with outer CRC code
with m = 8 when decoded via S-LVA with L = 100000. The unpunctured and punctured
cases are shown repectively in (a) and (b).

pag. 39 A.Y. 2020/2021



Bibliography

[Al-Fuqaha et al. 2015] AL-FUQAHA, Ala ; GUIZANI, Mohsen ; MOHAMMADI, Mehdi ;
ALEDHARI, Mohammed ; AYYASH, Moussa: Internet of things: A survey on enabling
technologies, protocols, and applications. In: IEEE communications surveys & tuto-
rials 17 (2015), Nr. 4, P. 2347–2376

[Arikan 2009] ARIKAN, Erdal: Channel polarization: A method for constructing
capacity-achieving codes for symmetric binary-input memoryless channels. In: IEEE
Transactions on information Theory 55 (2009), Nr. 7, P. 3051–3073

[Batcher 1964] BATCHER, Kenneth E.: Bitonic sorting. In: Goodyear Aerospace
Corp., Rep. GER-11869 (1964)

[Bayer 1972] BAYER, Rudolf: Symmetric binary B-trees: Data structure and mainte-
nance algorithms. In: Acta informatica 1 (1972), Nr. 4, P. 290–306

[Bellman 1957] BELLMAN, Richard: A Markovian decision process. In: Journal of
mathematics and mechanics 6 (1957), Nr. 5, P. 679–684

[Calderbank et al. 1999] CALDERBANK, A R. ; FORNEY, G D. ; VARDY, Alexander:
Minimal tail-biting trellises: The Golay code and more. In: IEEE Transactions on
Information Theory 45 (1999), Nr. 5, P. 1435–1455

[CISCO 2019] CISCO, Global Mobile Data T.: Cisco visual networking index: global
mobile data traffic forecast update, 2017–2022. In: Update 2017 (2019), P. 2022

[De Sanctis et al. 2015] DE SANCTIS, Mauro ; CIANCA, Ernestina ; ARANITI,
Giuseppe ; BISIO, Igor ; PRASAD, Ramjee: Satellite communications supporting
internet of remote things. In: IEEE Internet of Things Journal 3 (2015), Nr. 1, P. 113–
123

[Dijkstra et al. 1959] DIJKSTRA, Edsger W. et al.: A note on two problems in connex-
ion with graphs. In: Numerische mathematik 1 (1959), Nr. 1, P. 269–271

[Elias 1955] ELIAS, Peter: Coding for noisy channels. In: IRE Conv. Rec. 3 (1955),
P. 37–46

[Evans 2011] EVANS, Dave: The internet of things: How the next evolution of the
internet is changing everything. In: CISCO white paper 1 (2011), Nr. 2011, P. 1–11

I



BIBLIOGRAPHY

[Gallager 1963] GALLAGER, R: Low density parity check codes (Ph. D. dissertation).
In: Massachusetts Institute of Technology, Cambridge, Mass, USA (1963)

[Garello and Vila-Casado 2004] GARELLO, Roberto ; VILA-CASADO, Andres: The
all-zero iterative decoding algorithm for turbo code minimum distance computa-
tion. In: 2004 IEEE International Conference on Communications (IEEE Cat. No.
04CH37577) Bd. 1 IEEE , 2004, P. 361–364

[Griesmer 1960] GRIESMER, James H.: A bound for error-correcting codes. In: IBM
Journal of Research and Development 4 (1960), Nr. 5, P. 532–542

[GSMA 2018] GSMA: 3GPP Low Power Wide Area Technologies (white paper) /
GSMA (Global System for Mobile Communications Association). 2018. – Research
Report

[Heller 1968] HELLER, JA: Short constraint length convolutional codes. In: Space
Program Summary 37-54, Jet Propulsion Laboratory, California Institute of Technol-
ogy, Pasadena, CA, Dec. 1968 3 (1968), P. 171–174

[Knuth 1998] KNUTH, Donald E.: The art of computer programming: Volume 3:
Sorting and Searching. Addison-Wesley Professional, 1998

[Liang et al. 2019] LIANG, Ethan ; YANG, Hengjie ; DIVSALAR, Dariush ; WESEL,
Richard D.: List-Decoded Tail-Biting Convolutional Codes with Distance-Spectrum
Optimal CRCs for 5G. In: 2019 IEEE Global Communications Conference (GLOBE-
COM) IEEE , 2019, P. 1–6

[Liva 2014] LIVA, Gianluigi: Code Design in the Short Block Length Regime. Univer-
sity Lecture at University of Bremen. 2014. – URL https://www.ant.uni-bremen.
de/ait/programm/Liva_TutorialSlides.pdf

[Liva and Steiner 2021] LIVA, Gianluigi ; STEINER, Fabian: pretty-good-codes.org:
Online library of good channel codes. http://pretty-good-codes.org. January
2021

[Lou et al. 2015] LOU, Chung-Yu ; DANESHRAD, Babak ; WESEL, Richard D.:
Convolutional-code-specific CRC code design. In: IEEE Transactions on Commu-
nications 63 (2015), Nr. 10, P. 3459–3470

[MacWilliams 1963] MACWILLIAMS, Jessie: A theorem on the distribution of weights
in a systematic code. In: Bell System Technical Journal 42 (1963), Nr. 1, P. 79–94

[Miraz et al. 2015] MIRAZ, Mahdi H. ; ALI, Maaruf ; EXCELL, Peter S. ; PICKING,
Rich: A review on Internet of Things (IoT), Internet of Everything (IoE) and Internet
of Nano Things (IoNT). In: 2015 Internet Technologies and Applications (ITA), 2015,
P. 219–224

[Peterson and Brown 1961] PETERSON, William W. ; BROWN, Daniel T.: Cyclic codes
for error detection. In: Proceedings of the IRE 49 (1961), Nr. 1, P. 228–235

II

https://www.ant.uni-bremen.de/ait/programm/Liva_TutorialSlides.pdf
https://www.ant.uni-bremen.de/ait/programm/Liva_TutorialSlides.pdf
http://pretty-good-codes.org


BIBLIOGRAPHY

[Poltyrev 1994] POLTYREV, Gregory: Bounds on the decoding error probability of
binary linear codes via their spectra. In: IEEE Transactions on Information Theory
40 (1994), Nr. 4, P. 1284–1292

[Polyanskiy et al. 2010] POLYANSKIY, Yury ; POOR, H V. ; VERDÚ, Sergio: Channel
coding rate in the finite blocklength regime. In: IEEE Transactions on Information
Theory 56 (2010), Nr. 5, P. 2307–2359

[Riedel and Weiss 1999] RIEDEL, Sven ; WEISS, Christian: The Golay convolutional
code-some application aspects. In: IEEE Transactions on Information Theory 45
(1999), Nr. 6, P. 2191–2199

[Roder and Hamzaoui 2006] RODER, Martin ; HAMZAOUI, Raouf: Fast tree-trellis
list Viterbi decoding. In: IEEE transactions on communications 54 (2006), Nr. 3,
P. 453–461

[Seshadri and Sundberg 1994] SESHADRI, Nambirajan ; SUNDBERG, C-EW: List
Viterbi decoding algorithms with applications. In: IEEE transactions on communica-
tions 42 (1994), Nr. 234, P. 313–323

[Shannon 1948] SHANNON, Claude E.: A mathematical theory of communication. In:
The Bell system technical journal 27 (1948), Nr. 3, P. 379–423

[Shao et al. 2003] SHAO, Rose Y. ; LIN, Shu ; FOSSORIER, Marc P.: Two decoding
algorithms for tailbiting codes. In: IEEE transactions on communications 51 (2003),
Nr. 10, P. 1658–1665

[Tal and Vardy 2015] TAL, Ido ; VARDY, Alexander: List decoding of polar codes. In:
IEEE Transactions on Information Theory 61 (2015), Nr. 5, P. 2213–2226

[Viterbi 1967] VITERBI, Andrew: Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm. In: IEEE transactions on Information Theory
13 (1967), Nr. 2, P. 260–269

[Williams 1964] WILLIAMS, John William J.: Algorithm 232: heapsort. In: Commun.
ACM 7 (1964), P. 347–348

[Wolf and Blakeney 1988] WOLF, Jack K. ; BLAKENEY, Robert D.: An exact evaluation
of the probability of undetected error for certain shortened binary CRC codes. In:
MILCOM 88, 21st Century Military Communications-What’s Possible?’. Conference
record. Military Communications Conference IEEE , 1988, P. 287–292

[Yang et al. 2018a] YANG, Hengjie ; LIANG, Ethan ; WESEL, Richard D.: Joint design
of convolutional code and crc under serial list viterbi decoding. In: arXiv preprint
arXiv:1811.11932 (2018)

[Yang et al. 2018b] YANG, Hengjie ; RANGANATHAN, Sudarsan V. ; WESEL,
Richard D.: Serial list Viterbi decoding with CRC: Managing errors, erasures, and
complexity. In: 2018 IEEE Global Communications Conference (GLOBECOM) IEEE
, 2018, P. 1–6

III



BIBLIOGRAPHY

[Yang et al. 2020] YANG, Hengjie ; WANG, Linfang ; LAU, Vincent ; WESEL, Richard D.:
An Efficient Algorithm for Designing Optimal CRCs for Tail-Biting Convolutional
Codes. In: 2020 IEEE International Symposium on Information Theory (ISIT) IEEE ,
2020, P. 292–297

IV


	List of Tables
	List of Figures
	Introduction
	Convolutional Codes
	Binary Linear Codes
	Convolutional Encoders
	Zero-Tail Termination Convolutional Codes
	Tail-Biting Convolutional Codes
	Weight Enumerator of Terminated Convolutional Codes

	Decoding of Convolutional Codes
	Maximum Likelihood Decoding 
	The Viterbi Algorithm
	Wrap-Around Viterbi Algorithm


	List Decoders for Convolutional Codes
	Parallel-List Viterbi Algorithm
	Serial-List Viterbi Algorithm
	Comparison P-LVA and S-LVA

	Serial Concatenation of Convolutional Codes with CRC Codes
	Code construction
	CRC codes
	Design of CRC codes
	Study CRC codes
	List size

	Fixed-latency Parallel-List Viterbi Algorithm
	Simplified Bitonic Circuit

	Conclusion and Outlook
	Appendix
	A.1 CRC Codes
	A.2 Polar Codes Comparison
	A.3 Time-Variant Convolutional Codes

	Bibliography


