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Abstract

Global Navigation Satellite Systems (GNSSs) represent a ubiquitous radio-
navigation technology offering reliable and long-term stable localization services
with global coverage. In the framework of outdoor positioning and navigation,
there are some critical applications, such as autonomous driving for land-vehicles,
whose strict requirements, in terms of ranging-accuracy and service availability,
cannot be met by a standalone GNSS receiver. A typical approach to overcome
GNSS limitations and to pursue high-precision Positioning, Navigation and Timing
(PNT) involves fusing the former system with an Inertial Navigation System (INS).
A INS/GNSS integrated navigation unit leverage the complementary characteristics
of the two navigation sensors in order to enhance the accuracy and robustness in
the localization solution. Depending on the degree of information sharing between
the coupled units, multiple hybridization strategies are available. Among them, a
Tightly Coupled (TC) architecture builds on a centralized processor, the navigation
filter, which exploits low-rate GNSS noisy measurements (pseudorange and Doppler
shift) to correct high-rate INS estimates to the inertial position, velocity and atti-
tude states of a moving target. The navigation filter, in the flavour of a Bayesian
estimator, must rely on some discrete-system state-space formulation, which in-
volves the definition of a state-vector, the actual object of the estimation process,
and the identification of convenient models to characterize state and measurement
dynamics. On top of that, statistical models for both state and measurement noises
are needed too.

The state-of-art solution for fusing INS and GNSS is represented by the Ex-
tended Kalman Filter (EKF), where the aforementioned models are handled in a
linearised fashion. While the process model, describing the evolution of inertial
dynamics, is mostly linear thanks to the high INS-rate, the measurement model,
which stems from satellite-based multilateration, is inherently non-linear. Based
on these premises, this thesis targets the study of more advanced Bayesian esti-
mation approaches better fitting with non-linearities. A first methodology, still
confined within the class of Kalman filters, deals with the Unscented Kalman Filter
(UKF), which relies on the Unscented Transform (UT) function to avoid model
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linearisation. However, all Kalman-based strategies might be strongly penalized
by their underlying assumption of Gaussian-distributed input measurements. In
fact, when travelling multipath environments, such as down town roads, noisy
GNSS-observables might not be normally distributed and this would reflect on a
performance decay due to mismodelling of their probability densities. The former
issue steers the research towards Sequential Monte-Carlo (SMC) estimation and,
specifically, towards the Particle Filter (PF). This estimator, besides preserving
non-linearities, offers enough flexibility to accommodate multiple density models
for the description of noise statistics. The joint synthesis between the UT-concept,
at the basis of the UKF, and the Sequential Importance Sampling (SIS) idea, the
operational trademark of any PF, gives rise to the Unscented Particle Filter (UPF),
which sets as the innovative and high-complexity proposal aimed at enhancing the
integrated system capability.

A crucial requirement to achieve accurate state estimation lies on the appropri-
ate representation of noise statistics. In a dynamic system which fast evolves in
dynamic environment, measurement noise frequently behaves as a non-stationary
and non-ergodic stochastic process. As such, static (or semi-static) Bayesian formu-
lations might fail to track it properly. Therefore, as a first optimization pattern, it
is explored the application of adaptive integration schemes able to promptly mirror
environmental changes on the filter statistical information. Starting from low-
complexity innovation-based (IAE) and residual-based (RAE) approaches, a more
sophisticated strategy exploiting redundant measurements is developed. Further-
more multipath, which identifies the harshest error source affecting GNSS ranging
observables, is addressed too; its mitigation is pursued through the elaboration of
a portable, low-complexity and self-contained signal-processing module allowing to
relax bias injections on the navigation solution.

To pursue a performance validation, the proposed Bayesian algorithms, consid-
ered both in legacy and adaptive implementations, are embedded in a software
environment engineered to simulate a TC-architecture which fuses real INS and
Global Positioning System (GPS) data. For testing purposes, it is employed a
dataset with measurements collected during a on-field campaign. The hybrid
filters’ estimation accuracy is assessed by comparing the experimental trajectories
against a sub-centimetre accurate ground-truth. Then, a Root-Mean-Square Error
(RMSE) metric is chosen to mathematically quantify the loss budget w.r.t. the
ideal solution. In light of the above, the ultimate proposal is to verify whether
the expected accuracy gain, theoretically entailed by the investigated filters, truly
justifies the increase of complexity over a plain EKF approach.
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Chapter 1

Radio Navigation and
Inertial Navigation systems

1.1 Global Navigation Satellite Systems
Global Navigation Satellite System (GNSS) is a general concept used to identify

a broad family of space-based networks which allow to determine positioning and
timing information, with respect to an absolute reference frame, by relying on
a constellation of satellites. To supply an exhaustive definition, it is due saying
that a satellite-based navigation system is a passive (listen-only) radio-ranging
system continuously broadcasting synchronized Radio Frequency (RF) signals
to terrestrial users. Such waveforms, then, allow for the evaluation of Position,
Velocity, Timing (PVT) information using one-way ranging from a set of spacecrafts
orbiting the Earth [1]. Despite the great popularity and the wide spectrum of
nowadays applications involving the use of satellites, space-based navigation is not
such an old concept. However, the underlying radionavigation paradigm takes its
roots much earlier, after World War II.

1.1.1 The principle of satellite-based radionavigation
The conventional approach for GNSS-based localization, also referred to as Time-

of-Arrival (ToA) positioning, involves two main steps: the collection of ranging
measurements from a set of visible reference transmitters and the resolution of a
multilateration problem.
As regards the first point, the distance between the receiver, hereinafter referred
to as user, and each satellite, acting as reference point, is estimated through a
passive ToA measurement, which requires accurate synchronization between the
two communicating endpoints. Being infeasible, for cost-complexity reasons, to

2



1.1. Global Navigation Satellite Systems

have the user clock perfectly aligned to that of the transmitter, the reciprocal
temporal misalignment is typically considered as an additional unknown in the
positioning context. In other words, a conventional receiver is involved with the
solution of a four-dimensional problem: estimation of the three components of its
spatial position plus the bias of its clock. Once distances are computed from a
minimum of four space-trackers (as many as the number of involved unknowns)
and considering, for sake of simplicity, a bi-dimensional set-up, a geometrical
position can be unambiguously retrieved from the intersection of three circles (i.e.
trilateration) as represented in Figure 1.1.

𝑟𝑟𝐴𝐴

𝑟𝑟𝐵𝐵𝑟𝑟𝐶𝐶

xA, yA, zA

xC, yC, zC xB, yB, zB

ToA receiver

satellite
Range

Figure 1.1: 2-D trilateration based on Time-of-Arrival (ToA) measurements with
synchronized transmitters and receiver.

Extension to 3-D positioning, in the aim of estimating the third spatial compo-
nent (i.e. height), requires to account for spheres in place of circles. The range
measurement from a first reference satellite S1 localizes a terrestrial observer on a
spherical surface of positions centred in S1. The retrievement of another ranging
measurement from a second satellite S2 restricts the unknown receiver location on
a circular line of positions. Further, a third distance estimate from S3, reduces the
former circle to two points. Eventually, a fourth reference transmitter positions
the receiver unequivocally.
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1.1.2 Navigation Satellite Systems
Nowadays, multiple satellite systems are actively operated both for military

and civilian applications. In the following, a short description of the most popular
ones providing global coverage is offered, with the primary intent of reviewing
their fundamental characteristics in terms of architectural organization and signal
planning. Among them, special attention is devoted to the Global Positioning
System (GPS) system, since all the GNSS ranging data managed within this thesis
pertain to the latter constellation.

GPS

Within the class of GNSSs, the GPS, originally Navstar GPS, represents the
oldest space-based navigation project that was developed, for military purposes, by
the U.S. Navy and the Air Force in the late 1960s. Later, in 1973, the Department of
Defence (DoD) approved the basic architecture and the first satellite was launched
in 1978. The nominal GPS constellation involved a fleet of 24 Medium-Earth Orbit
(MEO) satellites circling the Earth twice a day (celestial time) at an altitude of
about 20200 Km. Satellites were nearly-uniformly arranged on six equally-spaced
orbital planes with a 55° inclination relative to the equatorial plane and a mutual
separation of 60° between the corresponding ascending nodes. Each plane consisted
of a minimum of four slots hosting baseline satellites. In this sense, the original
24-slots arrangement was conceived to grant users with at least four visible satellites
from nearly any point on the Earth. Over the years, the original constellation
has been modified by expanding the slots to include extra-satellites, in the aim
of improving global coverage and enhancing system availability. At the time of
writing, the number of operational GPS satellites amounts to 31 [2, 3]. As regards
frequency planning, the L-band (1 GHz - 2 GHz) was selected to accommodate
two carrier frequencies: L1 at 1575.42 MHz and L2 at 1227.60 MHz. Each carrier,
then, identified the central frequency of a 20 MHz bandwidth which was carrying
the BPSK modulated spectrum of a Pseudo Random Noise (PRN) ranging code,
useful to implement Code Division Multiple Access (CDMA) scheme to grant
orthogonality between transmissions from different satellites. Furthermore, two
signals were transmitted over the L1-band, one for civil-users and the other for
DoD-authorized users (military-service). On the contrary, the L2 band hosted the
military signal only [1].
Looking at the GPS architecture, but this is true for any GNSS, it organizes across
three operational segments: space segment, control segment and user segment. The
space segment consists of the whole satellites’ constellation whose major function
is the downlink transmission of radionavigation signals, including storage and
re-transmission of the navigation message sent by the control segment. As regards
the latter, it consists of a global network of ground facilities that track the GPS
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satellites, monitor their transmissions, perform analyses and send commands and
data to the space constellation. Finally, the user-segment includes GPS-receiver
equipment that physically acquires the RF signals broadcast by the satellites and
extracts useful information to supply end-users with coordinates and time [4].

Other global satellite systems

Although the final assessment primarily addresses GPS signals and their cor-
responding measurements, the research carried out in this thesis applies to all
satellite systems and the explored methodologies can even be tailored to multi-
constellation signal processing. Hence, it is the right time to briefly address other
global space-based navigation systems which have become operational after the
GPS advent.
Galileo, a joint initiative of the European Union (EU) and the European Space
Agency (ESA), is a GNSS system designed for civilian use and planned as an open,
global system, fully interoperable with GPS and GLONASS, but independent from
them [1]. As scheduled to be hit by the end of 2020, the fully deployed Galileo
system consists of 24 operational satellites plus six in-orbit spares, positioned in
three circular MEO-planes at an altitude of 23222 Km above the Earth [5]. Galileo
satellites permanently transmit three independent CDMA signals: E1 (1575.420
MHz), E5 (1191.795 MHz) and E6 (1278.750 MHz); E5 signal is further sub-divided
into two signals, E5a (1176.450) and E5b (1207.140) [6]. Differently from GPS
signals, a Galileo payload, on top of the carrier modulation, bears a sub-carrier
modulation (Binary-offset carrier - BOC) meant to ensure interoperability with
GPS system and to reduce interference from other systems transmitting over the
same bands.
In the late 1970s, while GPS system was under development, the Sovietic Union
launched a similar system, the Globalnaya navigatsionnaya sputnikovaya
sistema (GLONASS). It is a space-based navigation technology providing reliable
positioning, navigation and timing services to users worldwide. Similarly to GPS,
it was primarily designed for military purposes, with the first satellite launched in
1982 and a full constellation established in 1996. Legacy GLONASS-M satellites
transmit Frequency Division Multiple Access (FDMA) signals, implying that the
same PRN is broadcast by the same satellite over different RF-carriers. Next
generation GLONASS-K satellites are meant to transmit CDMA signals for both
restricted and civil services [1].
The BeiDou Navigation Satellite System (BDS), also known as BeiDou-2, is
China’s second-generation satellite navigation system, conceived as a global evolu-
tion of the previous regional navigation system (BeiDou-1). The official approval
by the Chinese Government for the development and deployment of BeiDou-2 was
done in 2006 and the operability of the global positioning service was planned
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by 2020. At the date of writing, the nominal space constellation consists of 3
Geostationary-Earth Orbit (GEO) satellites, 3 Inclined Geosynchronous Orbit
(IGSO) satellites, and 24 MEO satellites.

Figure 1.2: Frequency bands of the various GNSSs [7].
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1.2 GNSS receiver: from ranging signals to posi-
tion estimation

A GNSS receiver represents the central node of the user segment and sets
as an interface between the navigation system and a generic target end-user.
Considering the most popular application of the involved navigation technology
oriented to localization purposes, the receiver accomplishes all those operations
which are necessary to retrieve positioning and timing information. Given a group of
visible satellites belonging to a generic GNSS-constellation, it acquires the involved
RF-signals which, travelling huge distances and crossing both ionospheric and
tropospheric layers, are typically characterized by a very low power budget. From
them, the receiver should extract temporal misalignment information, leading to
pseudorange measurements, and frequency-offset information, leading to Doppler-
shift measurements. The combination of these observables, then, is exploited within
a processing unit to produce a PVT solution (Section 1.3).
In the most common architecture, a GNSS receiver allocates one processing channel
for each visible satellite and, in order to ensure uninterrupted signal tracking,
two quantities are continuously estimated and corrected: code delay and carrier
frequency offset. For low-cost receiver equipment in the mass-market sector, code
delay is used to evaluate an unambiguous but noisy pseudorange measurement, while
the received signal frequency is employed to detect a Doppler-shift value, which
carries on information about the relative user-to-satellite velocity. On the contrary,
high-cost professional receivers use phase-information for range measurements too,
gaining precision at the price of integer-cycle ambiguity [8].
With this in mind, the current section offers a short overview of the GNSS receiver
radio-frequency front-end and, beyond analogue-to-digital conversion, of the early
signal-processing stages.

1.2.1 The Signal-in-Space structure
GNSS satellites continuously transmit synchronous navigation signals, conven-

tionally named Signal-in-Space (SIS), towards the Earth. As a matter of fact, these
waveforms are properly constructed to contain ranging codes and navigation data,
thus allowing any receiver to compute, at every epoch, both the satellite coordi-
nates and the user-to-satellite temporal misalignment, in the view of constructing
an estimate of the pseudorange (i.e. noisy and biased user-to-satellite range) [7].
Additionally, the SIS should be tolerant to some level of multipath reflections,
to reasonable amounts of intentional and unintentional interference and should
provide ionospheric delay measurements.
The multiple components of a navigation signal are generated by the satellite
payload and, once mixed, they give rise to a baseband navigation signal. The
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latter is further modulated on a predefined carrier at RF and transmitted by the
front-end. The frequency planning among the various navigation systems is shown
in Figure 1.2.
It is important to remark that the SIS, which is the beamed waveform at RF,
may potentially multiplex several baseband components (channels). Anyway, each
component must always include:

- Spreading code, a binary PRN ranging sequence which grants the orthogo-
nality between signals belonging to the same constellation (Multiple Access
scheme) and implements spectral spreading (DSSS paradigm) to mitigate
inter-system interference.

- Navigation message, a binary sequence which brings about relevant infor-
mation including ephemeris, satellite-clock corrections, and all synchronization
parameters exploited by the receiver to retrieve a pseudorange estimate.

To give an example, Figure 1.3 shows the three (including the carrier) fundamental
layers of a single GPS-channel broadcast over L1 and L2 bands.

Figure 1.3: Transmitted GPS channel with its constituent components: carrier
(top), code (middle), navigation message (bottom) [1]. The picture is not in scale.

1.2.2 The received signal and the front-end
The RF-SIS broadcast by a given satellite travels distances of thousands of

kilometers and crosses the upper (ionosphere) and lower (troposphere) layers
of the atmosphere, thus being impaired by interference effects (RFI), both of
intentional (e.g. jamming, spoofing etc.) and unintentional (rising from other GNSS
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systems transmitting over adjacent bands) natures, and ionospheric scintillation
effects, which primarily involve fluctuations in the amplitude and phase dimensions.
Consequently, the GNSS receiving antenna is involved in capturing a radio signal
which, besides heavily compromised in its integrity, is also characterized by very
low intensity.
Considering a single constellation and recalling the intrinsically shared nature of the
physical propagation medium, the received waveform results in the superposition
of the contributions of the various signals, transmitted over a fixed bandwidth, by
all the satellites in view. Assuming Ns satellites in view, the typically adopted
model is the following:

zRF (t) =
NsØ
i=1

z̃RF,i (t) + η (t) (1.1)

where z̃RF,i (t) identifies the i-th satellite SIS-contribution, affected by both delay
and Doppler in general, and η (t) represents an overall additive noise random
process, which is considered white, zero-mean and normally distributed (AWGN-
channel assumption).
Looking at the i-th satellite term z̃RF,i (t), it generally multiplexes M different
channels (independent baseband components) and, by accounting for the m-th
fundamental component, it can be formally expressed as:

z̃RF,im (t) =
ñ

2Prxc (t− τ) c̄ (t− τ) d (t− τ) cos (2π (fc + fD) t+ φ) (1.2)

where τ represents the unknown code-delay, fD the unknown doppler frequency
and φ the unknown carrier phase-offset.
Once the GNSS signal has been captured by the receiver antenna, it is fed to the
front-end section, which determines the analogue part of the radio-receiver. The
front-end (Figure 1.4) is responsible for preparing and conditioning the received tiny
waveform such that it becomes suitable for further signal processing. In particular,
the main operations can be summarized as follows [9]:

- Filtering (to ensure low-noise and out-of-band rejection) and amplification (to
raise-up the intensity of the weak received signal).

- Down-conversion of the spectrum from RF to IF, thus leaving a residual carrier
modulation on top of the unknown Doppler modulation.

- Sampling and Quantization, which are the standard steps to achieve Analogue-
to-Digital Conversion (ADC).

- Automatic Gain Control (AGC), which adjusts the gain of the front-end
section to benefit from the full dynamic range.
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Figure 1.4: GNSS receiver analogue front-end. Picture taken from [10].

1.2.3 Signal Acquisition and Tracking
At the receiver front-end output, the ADC definitely identifies the frontier

between analogue and digital domains. In fact, it supplies the downstream signal
processing stages with a sequence of noisy IF samples yIF [n] generated from
the properly-conditioned received RF-signal. On the digitalized signal, then, the
cascaded acquisition and tracking stages target to estimate delay and Doppler-shift
values to align the incoming signal with a local replica of the PRN ranging sequence.
In particular, the acquisition stage, starting from the noisy IF-samples, is in charge
of identifying which satellites are visible by correlating multiple local replicas (code
and carrier) and by extracting coarse estimates of the delay and Doppler-shift.
Then, the tracking process refines the local replica generation in order to retrieve
accurate delay and Doppler estimates, which are eventually exploited to construct
pseudorange and Doppler measurements [1].

Acquisition stage

The acquisition stage is adopted by a GNSS receiver to estimate the arrival
time τ , which contains basic range and timing information required to compute
the receiver position and the clock bias, and the Doppler shift fdop, which contains
pseudorange rate information useful to compute the user velocity and the clock
drift [1]. It follows that, the sequence of IF-samples yIF [n] contains two unknowns
which can be collected in a vector p = {τ, fdop} (here, we are neglecting the carrier
phase offset). Acquisition, then, requires the identification of visible satellites to
produce an estimate p̂ = {τ̂ , f̂dop} of the unknown couple p. Adopting Maximum
Likelihood (ML) approach, the ML estimate of the code-delay and the Doppler-shift
can be obtained as:

p̂ML = arg max
{τ,fdop}

----- 1S
S−1Ø
s=0

yIF [s] l̂IF [s]
-----
2

(1.3)
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where S identifies the number of samples employed to process the received IF
sequence. Evidently, the acquisition problem consists in the maximization of a 2-D
cross-correlation (Cross-Ambiguity Function (CAF)) between yIF [n] and a local
signal replica l̂IF [n] defined as:

l̂IF [n] = c [n− τ̂ ] ej2π(fIF+f̂dop)n (1.4)

where τ̂ is a test value for the delay and f̂dop is a test value for the Doppler, both
extracted as a couple {τ̂ , f̂dop} from a pre-defined 2-D discrete Search-Space. From
(1.4), it is clear that the local carrier involves both a In-phase and a Quadrature
components, which implies that both the I/Q branches of the received sequence
take part in the correlation defined in (1.3). The latter aspect, besides appearing
redundant, is fundamental for the stage to estimate f̂dop without needing the
knowledge of the carrier phase-offset φ [1].

Tracking stage

The chief objective of the tracking stage is the refinement of the code-delay
estimate τ̂ and the Doppler-shift estimate f̂dop, starting from the error-bounded
coarse predictions produced at the output of the acquisition stage. In this sense,
the tracking stage must guarantee, with the highest possible level of accuracy,
the preservation of the alignment between the received code and the local code
replica, in such a way that the receiver can continuously retrieve pseudorange and
Doppler measurements. Structurally, this stage defines an outer closed feedback
control loop which, inside, contains other two coupled feedback loops, namely the
Delay-Lock Loop (DLL) and the Phase-Lock Loop (PLL) (see Figure 1.5). The DLL
implements code-tracking by continuously adjusting the local code replica to keep
it aligned with the code-layer in the received signal sequence. When the two codes
are aligned, the PRN sequence is removed from yIF [n] (code wipe-off ), leaving the
carrier which still is modulated by the low-rate navigation data message. The DLL
output signal, then, is input to the PLL carrier tracker. The latter, by relying on a
sinusoidal signal generated through a local oscillator (LO) unit, synchronizes to
the frequency and phase of the incoming carrier, in order to accomplish navigation
data demodulation and to refine the Doppler-shift estimate (carrier wipe-off ). It is
important to remark that, at the PLL output, the received code is at baseband since,
through Doppler refinement, full signal demodulation is possible. Furthermore, the
two loops are initialized by the outputs of the acquisition stage {τ̂A, f̂dop,A} [1].
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Figure 1.5: High-level tracking loop (PLL+DLL) architecture.
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1.3 PVT computation
When both the carrier (PLL) and code (DLL) tracking loops are locked, the

GNSS receiver can estimate the apparent transit time of the signal from each
satellite, computed as the difference between the signal reception time (ToA mea-
surement), as defined by the receiver clock, and the signal transmission time,
as marked on the signal navigation message (demodulated after carrier synchro-
nization). This measurement is intrinsically biased due to the fact that the two
interacting endpoints keep time independently and, therefore, are not synchronized.
The product of each biased transit time by the speed of light, then, allows to
retrieve an estimate of the biased user-to-satellite range (ie. pseudorange) [1]. As
anticipated in Section 1.1.1, given the temporal misalignment between receiver and
transmitter, the positioning problem involves four unknowns: the components of
the position w.r.t. an absolute 3-D reference frame, and the receiver clock bias
w.r.t. a common GNSS time-scale. Consequently, a minimum of four pseudorange
measurements are required to pursue localization. Furthermore, using the same set
of satellites, but independently from the foregoing pseudorange estimation pattern,
the receiver carrier tracking loop supplies Doppler-shift measurements based on
the variation of the received ranging signals’ frequency.
In light of the above, the current section is devoted to the analysis of the funda-
mental models and mathematical principles allowing to get a real-time estimate
of the receiver position, velocity and time (PVT) based on pseudorange and
pseudorange-rate (i.e. Doppler-shift) measurements.

1.3.1 Pseudorange measurement model
The basic pseudorange measurement equation from the k-th satellite at epoch t

can be written as:

ρ̃k (t) = rk (t, t− τ) + c [δtu (t) − δts (t− τ)] + Ik (t) + Tk (t) + Ôρ
k (t) (1.5)

where rk (t, t− τ) is the true (unknown) distance between the receiver antenna
at signal reception time t and the satellite antenna at transmission time t − τ
(τ being the transit time); δtu (t) and δts (t− τ) are the receiver clock offset and
the satellite clock-offset w.r.t. GNSS time-scale, respectively; Ik (t) and Tk (t)
are the ionospheric and tropospheric induced delays, respectively; finally, Ôρ

k (t)
accounts both for modelling errors (satellite clock mismodelling or errors in orbital
predictions) and unmodelled effects (receiver noise, multipath etc.).
Based on the parameters extracted from the demodulated navigation binary stream,
a standalone GNSS receiver can correct the known bias-error components including,
among the others, the satellite clock offset, relativist effects and the ionospheric
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and tropospheric induced delays.
The corrected pseudorange ρk (t), after deterministic-error compensation, can be
re-written as:

ρk (t) = rk (t, t− τ) + c · δtu (t) + Ỗρ
k (t) (1.6)

where Ỗρ
k (t) identifies the User Equivalent Range Error (UERE), which includes all

residual error sources.
Defining xu = (xu, yu, zu) the vector collecting the components of the receiver
spatial position and xk = (xk, yk, zk) the vector collecting the components of the
k-th satellite spatial position, the true user-to-satellite geometric range is expressed
as:

rk =
ñ

(xk − xu)2 + (yk − yu)2 + (zk − zu)2 = ||xk − xu|| (1.7)

where the time-index is dropped without loss of generality and ë·ë is the norm-
operator.
Substituting (1.7) into (1.6):

ρk = ||xk − xu|| + bu + Ỗρ
k (1.8)

where the receiver clock-bias term c · δtu has been replaced by its range-equivalent
bu, in units of meter.
It is worth remarking that, in the computation of the geometric range, the positions
of both the user and the satellite must be expressed w.r.t. a common absolute 3-D
reference frame. For convenience, the Earth-Centered Earth-Fixed (ECEF)-frame
[11], together with a Cartesian coordinate system, is adopted, and the positioning
solution discussed in the following section is determined in such frame [1].

1.3.2 Position computation using pseudorange measure-
ments

Given that (1.8) entails four unknowns, then a minimum of four pseudorange
equations, constructed from four distinct satellites, are strictly necessary to solve
for the instantaneous user position and clock-bias states. Neglecting the error term
Ỗρ

k affecting each pseudorange measurement, a mathematical formalization of the
solution to the trilateration problem can be provided in the following algebraic
system:
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

ρ1 =
ñ

(x1 − xu)2 + (y1 − yu)2 + (z1 − zu)2 + bu

ρ2 =
ñ

(x2 − xu)2 + (y2 − yu)2 + (z2 − zu)2 + bu

ρ3 =
ñ

(x3 − xu)2 + (y3 − yu)2 + (z3 − zu)2 + bu

ρ4 =
ñ

(x4 − xu)2 + (y4 − yu)2 + (z4 − zu)2 + bu

(1.9)

Clearly, (1.9) is a non-linear system of equations and this evidences the intrinsic
non-linearity characterizing trilateration. A typical approach to solve the pseu-
dorange equations involved in (1.9) is to linearize them about an approximate
user position, and to solve iteratively. More precisely, the idea is to start with
rough estimates of the user position and bias states, identifying an initial approx-
imation state x̂u =

1
x̂u, ŷu, ẑu, b̂u

2
, and to iteratively determine correction states

δxu = (δxu, δyu, δzu, δbu) until the estimated states do not fit the measurements
better (Newton-Raphson method) [1].
In light of the above, the true position and clock bias can be expressed as:

xu = x̂u + δxu

yu = ŷu + δyu

zu = ẑu + δzu

bu = b̂u + δbu

and, accounting for a generic satellite k, the approximated pseudorange equation
can be written in the following manner:

ρ̂k =
ñ

(xk − x̂u)2 + (yk − ŷu)2 + (zk − ẑu)2 + b̂u (1.10)

At this point, knowing the pseudorange ρ̂k at the approximation point x̂u, it is
possible to re-formulate the original non-linear problem into a linearized approxi-
mation where the unknowns become the correction states collected in δxu [1]:

δρk = ρk − ρ̂k

= ||xk − (x̂u + δxu) || − ||xk − x̂u|| +
1
bu − b̂u

2
≈ −ax,kδxu − ay,kδyu − az,kδzu + δbu

(1.11)

where the linearization is the result of a first-order Taylor series expansion applied
to the norm-operator. In particular, the coefficients ax,k, ay,k and az,k are calculated
as:
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ax,k = xk − x̂u

||xk − x̂u||

ay,k = yk − ŷu

||yk − ŷu||

az,k = zk − ẑu

||zk − ẑu||

(1.12)

and they identify the Cartesian components of a unit steering vector ak pointing
from the approximation point (x̂u, ŷu, ẑu) to the k-th satellite.
Considering the approximate pseudorange equation (1.11), the linearized trilat-
eration (more properly, multilateration) problem can be reformulated using the
following matrix notation:

δρ =


δρ1
δρ2
δρ3
δρ4

 =


−ax,1 −ay,1 −az,1 1
−ax,2 −ay,2 −az,2 1
−ax,3 −ay,3 −az,3 1
−ax,4 −ay,4 −az,4 1


ü ûú ý

H


δxu

δyu

δzu

δbu


ü ûú ý

δxu

(1.13)

which admits an equivalent compact notation:

δρ = H δxu (1.14)

where matrix H characterizes the user-satellite geometry [1].
Eventually, the correction-state vector δxu can be computed:

δxu = H−1 δρ (1.15)

The solution proposed so far, which considers the minimum required number of
pseudorange equations, is not always achievable. In fact, if matrix H is not full-
rank, which physically means that the elevation angles of at least two satellites
measured from the user position are the same (bad satellite geometry in the sky),
then more than four pseudorange equations are necessary to retrieve a trilaterated
position and a clock-bias estimate [1]. That said, modern GNSS constellations
are designed to guarantee more than four satellites visible at nearly all terrestrial
latitudes. Assuming to have a number K > 4 of pseudorange measurements, the
Least-Squares (LS) criterion is typically adopted to solve the linearized problem
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[1]:

min ëδρ − H δx̂uë2 (1.16)

and the LS-solution for the correction estimate to be applied to the initial approxi-
mation takes the form:

δx̂LS
u =

1
HT H

2−1
HT δρ (1.17)

Recalling the initial assumption xu = x̂u + δxu, the solution in (1.17) can be
applied iteratively until δxu becomes acceptably small according to a pre-defined
threshold.

Approaching the end of this section, two important remarks are still to be done.
First of all, the LS-solution in (1.17) implicitly assumes that all the pseudorange
measurements have equal quality. In fact, this is never true; pseudorange mea-
surements from low-elevation satellites are, most of times, affected by larger errors
than those from high-elevation satellites. Given so, the typical way to handle
measurements with different quality is to weight them based on some goodness
criterion (e.g. satellite elevation). Calling W = diag (w1, w2, ..., wK) a weighting
diagonal matrix, the Weighted Least-Squares (WLS) solution of (1.13) is defined
[1]:

δx̂W LS
u =

1
HT W H

2−1
HT W δρ (1.18)

Furthermore, in many GNSS-based positioning systems (e.g. integrated navigation
systems), the multilateration problem in (1.9) is solved by means of Bayesian
estimators (e.g. Kalman Filters or Particle Filters), which allow for a PVT solution
at every epoch irrespective of the constraint K ≥ 4 on the number of visible
satellites [12]. In such framework, then, a WLS is run just to initialize the solution
or in case it is necessary to re-set the system.

1.3.3 Doppler measurement and velocity determination
The relative motion between the satellite and the GNSS-receiver reflects in

changes of the observed frequency of the received signal. This Doppler-shift w.r.t.
the nominal carrier frequency is measured routinely in the carrier tracking loop
(PLL) and, when combined with the information about the satellite velocity provided
through ephemerides, it allows to estimate the user velocity [1, 12]. Despite the
possibility to estimate user velocity through an approximate derivative of the user
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position, a better approach involves processing carrier-phase measurements to
obtain a refined estimate of the received Doppler frequency [12].
According to a Doppler-model, the received frequency from k-th satellite is expressed
as:

fk
u = fc

A
1 − vk

u · ak

c

B
(1.19)

where fc is the nominal carrier frequency of the transmitted SIS, vk
u is the user-to-

satellite relative velocity in 3-D ECEF components, ak is the unit steering vector
pointing from the user position towards the k-th satellite, and c is the speed of light.
The dot-product vk

u · ak simply computes the projection of the relative velocity
vector on the LoS to the satellite.
The relative user-to-satellite velocity vk

u =
1
vk

u,x, v
k
u,y, v

k
u,z

2
is given as:

vk
u = vk − vu (1.20)

where vk = (vk,x, vk,y, vk,z) is the k-th satellite velocity and vu = (vu,x, vu,y, vu,z) is
the receiver velocity, both referenced to a common ECEF-frame.
Then, the Doppler-shift δfk

u can be computed:

δfk
u = fk

u − fk
c = −fk

c

(vk − vu) · ak

c
(1.21)

where fk
c is the actual transmitted satellite frequency, which does not coincide

with the nominal carrier frequency fc. In fact, satellites generate frequencies based
on a high-accuracy on-board atomic clock which is offset w.r.t. the system time.
This offset is specified in the navigation message and, after data demodulation, is
applied by the receiver to the nominal carrier frequency to obtain the transmitted
frequency [12].
From (1.21), the Doppler equation for k-th satellite in (1.19) can be re-written as:

fk
u = fk

c

I
1 − 1

c
[(vk − vu) · ak]

J
(1.22)

Moreover, the GNSS receiver measures a received frequency fk which is different
from fk

u by a frequency bias offset. The latter can be related to the receiver
clock-drift δṫu relative to the GNSS time-scale [12]. It follows that this relation
holds:

fk
u = fk

1
1 + δṫu

2
(1.23)
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1.3. PVT computation

In light of the above, substituting (1.23) into (1.22), results in:

c
1
fk

c − fk

2
fk

c

− vk · ak = −vu · ak + c fk δṫu
fk

c

(1.24)

and, expanding the inner product terms, it is obtained:

c
1
fk

c − fk

2
fk

c

− vk,x ax,k − vk,y ay,k − vk,z az,k =

= −vu,x ax,k − vu,y ay,k − vu,z az,k + c fk δṫu
fk

c

(1.25)

The left-hand side terms of (1.25) are known; the satellite velocity components
vk = (vk,x, vk,y, vk,z) are estimated from ephemerides, while the unit steering vector
components ak = (ak,x, ak,y, ak,z) are inherited from the earlier solution to the
multilateration problem in (1.13). Furthermore, without inducing any relevant
error, a simplification can be done in the right-hand side by assuming that fk

fkc
Ä 1.

Introducing a dummy variable dk to label the left-side, (1.25) reduces to:

dk = − ax,kvu,x − ay,kvu,y − az,kvu,z + c δṫuü ûú ý
ḃu

(1.26)

In fact, (1.26) defines the generic Doppler-measurement equation for k-th satellite
and it is function of four unknown quantities: the 3-D components of the user
velocity in ECEF-frame and the clock-drift. By defining ẋu =

1
vu,x, vu,y, vu,z, ḃu

2
the

unknown vector and considering a generic number K > 4 of Doppler-measurements,
the following matrix-equation holds:

d =


d1
d2
...
dK

 =


−ax,1 −ay,1 −az,1 1
−ax,2 −ay,2 −az,2 1

... ... ... 1
−ax,K −ay,K −az,K 1


ü ûú ý

H


vu,x

vu,y

vu,z

ḃu


ü ûú ý

ẋu

(1.27)

Employing the LS-method, provided that the geometric matrix H is invertible, the
solution is retrieved as:

ˆ̇xLS
u =

1
HT H

2−1
HT d (1.28)
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1.3. PVT computation

which simplifies to ˆ̇xu = H−1 d when K = 4 and H is full-rank.

Similarly to the approach described in Section 1.3.2, it is possible to re-formulate
the velocity estimation problem using Newton-Raphson method. In particular,
it is possible to start from coarse estimates of the user velocity and drift states,
collected in the approximation state ˆ̇xu =

3
v̂u,x, v̂u,y, v̂u,z,

ˆ̇bu

4
, and to iteratively

retrieve correction states δẋu =
1
δvu,x, δvu,y, δvu,z, δḃu

2
until proper fitting with

the Doppler measurements.
Again, the true velocity and clock-drift are expressed as:

vu,x = v̂u,x + δvu,x

vu,y = v̂u,y + δvu,y

vu,z = v̂u,z + δvu,z

ḃu = ˆ̇bu + δḃu

Given so, considering satellite k, the true Doppler measurement and the approximate
Doppler measurement can be expressed as:

dk = − ak · (v̂u + δvu) + ˆ̇bu + δḃu

d̂k = − ak · v̂u + ˆ̇bu

(1.29)

Moreover, dk and d̂k can be related to the measured Doppler-offset ρ̇k and the
approximate Doppler-offset ˆ̇ρk using the following relations:

ρ̇k = dk + ak · vk

ˆ̇ρk = d̂k + ak · vk

(1.30)

Eventually, it is possible to reformulate a Doppler model where the unknowns are
the correction states collected in δẋu:

δρ̇k = ρ̇k − ˆ̇ρk = −ax,kδvu,x − ay,kδvu,y − az,kδvu,z + δḃu (1.31)

and extending to a generic number K > 4 of Doppler measurements, the following
matrix equation holds:
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1.3. PVT computation

δρ̇ =


δρ̇1
δρ̇2
...

δρ̇K

 =


−ax,1 −ay,1 −az,1 1
−ax,2 −ay,2 −az,2 1

... ... ... 1
−ax,K −ay,K −az,K 1


ü ûú ý

H


δvu,x

δvu,y

δvu,z

δḃu


ü ûú ý

δẋu

(1.32)

Being (1.32) equivalent to the formulation in (1.13), just in terms of velocity and
clock-drift correction terms in place of position and clock bias components, the
overall WLS for the PVT solution can be solved by combining the multiple factors
into a bigger composite problem.
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1.4 Inertial Navigation System
Historically, the first application of inertial navigation can be dated back to the

guidance system in the V-2 rocket engineered by Germans in 1942. However, a
steady and fruitful research on inertial technology sparked off, after World War II,
in the United States, which produced inertial guidance units for ballistic missiles.
Then, with the advent of the Space Age in the 1960’s, inertial systems found their
way in space missions, to be then deployed in aeronautics, both for military and
commercial purposes [13].
This section offers an overview on inertial navigation technology, from the archi-
tectural and functional basics to the mathematical models allowing to solve for
position, velocity and attitude states.

1.4.1 Principles and Structure
Inertial navigation is based on laws of inertia and gravity defined by Newtonian

physic and it involves a blend of inertial measurements, mathematics, control sys-
tem design and geodesy [14]. Differently from other navigational aids, an Inertial
Navigation System (INS) does not rely on external measurements. Instead, it
exploits the inertial properties of sensors to supply self-contained, non-radiating,
non-jammable and possibly accurate estimation of instantaneous navigation states
[15], including position, velocity and attitude. It is important to remark that,
differently from any GNSS, INSs can only retrieve relative positioning information;
thus, some initial a-priori information, together with an initial frame, must be
known, in order to provide absolute navigation solutions (i.e. dead reckoning).
Two types of measurements are involved, namely, specific forces (i.e. inertial
accelerations according to Newton’s laws), as measured by accelerometers, and
angular rotations, as measured by gyroscopes [15]. More specifically, looking at
the accelerometer, it measures the total acceleration, caused by the application
of external forces on the sensor, encountered by the object. After integration in
time, and knowing some initial conditions, it is possible to determine variations of
body velocity and position. However, these sensors cannot distinguish between the
accelerations provoked by gravity and those induced by inertial motion. Therefore,
when using an accelerometer, it is necessary to compensate for the specific force
caused by gravity [16]. To this end, the tilt of the platform, accelerometers are
mounted on, must be known. This motivates the need for gyroscopes.
Gyroscopes are used to retrieve relative attitude information, based on the spinning
rate they are subjected to w.r.t. a local sensitivity axis; given a set of measured
angular rates plus some initial conditions being set up, it can be determined the
tilt of the platform w.r.t. an external reference frame (i.e. the body attitude in
ECEF frame).
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1.4. Inertial Navigation System

The combination of inertial sensors (i.e. accelerometers and gyroscopes) defines an
Inertial Measurement Unit (IMU). Figure 1.6 shows a typical strapdown inertial sen-
sors assembly for an IMU. By the term strapdown, it is meant an IMU-configuration
in which inertial sensors are directly strapped to the vehicle and rotate with the
body platform [15].

Figure 1.6: IMU assembly for a triad of strapdown inertial sensors [17].

There are different categories of IMUs based on their accuracy performance (grade).
In this thesis, we deal with a low-cost Micro Electro-Mechanical System (MEMS)
IMU, which can be included in the automotive-grade and that is typically employed
in the mass-market sector. MEMS-technology involves small sensors able to realize
low-performance IMUs [18, 10]. A conventional IMU (Figure 1.6) consists of three
gyroscopes for measuring angular rates and three accelerometers for measuring
accelerations. They are mounted in triads with the sensitive axes of sensors mutually
orthogonal, setting up a Cartesian reference frame. The IMU frame is aligned with
the local reference frame of the platform where these sensors are mounted. The
body frame is the coordinate system that is aligned with the body of the sensor
[19]. On an vehicle, the sensor x-axis often points to the forward direction, the
y-axis points to the lateral direction, and the z-axis points to the vertical down
direction, thus forming a right-handed orthogonal coordinate (see Figure 1.7) [16].

1.4.2 Strapdown Mechanization
A INS mainly involves two cooperating blocks: an IMU, which is defined

by the triads of strapdown inertial sensors (whose assembly is mounted on the
vehicle platform), and a strapdown processing unit, which elaborates raw sensor
measurements to calculate by dead reckoning navigation solutions.
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Z
X

Y

Figure 1.7: IMU axes aligned with the vehicle body frame.

Before moving to the details of the inertial equations allowing to compute the
instantaneous position, velocity and attitude states of a moving object, it is essential
the choice of a convenient reference frame. Theoretically, both an inertial reference
frame and a Earth-fixed frame would be equally acceptable choices, despite leading
to different resolution processes. However, when considering navigation over the
Earth surface, a Earth-fixed frame (which rotates with the Earth) is usually selected.
Hereafter, we consider a ECEF frame [11].
With this in mind, starting from the available inertial sensor measurements, the
system of equations used to compute the inertial position, velocity and attitude, in
the selected reference frame, is called mechanization [10].

Resolution of accelerometer measurements and the Coriolis theorem

Accelerometers usually provide a measurement of specific force, denoted by
f b, in a body-fixed axis set. In order to navigate, it is necessary to resolve the
components of specific force in the selected reference frame [20]. Given the choice
of an Earth-fixed frame, the following operation is simply required:

f e = Ce
bf b (1.33)

where f e is the specific-force vector in the ECEF-frame and Ce
b identifies the rotation

Direction Cosine Matrix (DCM) from the body to the Earth frames.
When considering a situation where the vehicle navigates w.r.t. an inertial frame
(fixed, non-rotating set of axis), the measured components of specific force (collected
in vector f b) and the estimates of the gravitational field g are summed to jointly
determine the components of body acceleration in a space-fixed reference frame [20].
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Temporal integration of these estimates, then, allows to retrieve inertial position
and velocity. However, when considering navigation over the surface of the Earth
with respect to a rotating frame, some additional apparent forces, due to the frame
motion itself, must be accounted for. In this context, to estimate the body ground
speed w.r.t. the Earth, the Coriolis theorem can be exploited [20]:

ve = ṗe = vi − ωie × pi (1.34)

where superscripts b,e and i indicate that the involved quantities are expressed in
the body, inertial, Earth-fixed reference frames respectively. Clearly, the term ve

identifies the vehicle ground velocity, while ωie represents the rotation rate of the
ECEF frame with respect to an inertial frame. Differentiating (1.34), the body
ground acceleration is obtained as [20]:

v̇e = p̈e − ωie × ve − ωie ×
è
ωie × pi

é
(1.35)

where the term ωie × ve identifies the Coriolis acceleration due to the vehicle
speed over a rotating surface, and the term ωie × [ωie × pi] is the body centripetal
acceleration.

Attitude computation

Given the low-cost MEMS strapdown inertial sensor measurements, the first
inertial navigation state which can be resolved is the attitude, which describes the
body orientation in the selected coordinate frame. There are different mathematical
representations of the attitude information w.r.t. a reference frame. Among them,
we mention DCM and Euler angles [20]. While the former approach involves 3 × 3
matrices and is suitable when operating vector transformation between different
sets of reference axes, the latter notation is certainly more physically intuitive.
In terms of Euler angles, frame transformation is accomplished through three
successive ordered rotations about three different orthogonal axes, where the Eu-
ler angles of rotations are termed yaw (ψ), pitch (θ) and roll (φ) [20]. Beyond
that, it is quite easy to construct 3 × 3 DCMs from Euler angles. For the fol-
lowing discussion on mechanization, DCM-based attitude representation is adopted.

To update the body attitude information, it is necessary to compute the rota-
tion rate vector of the body w.r.t. the Earth frame, expressed in body coordinates,
according to the following relationship [20]:

ωb
eb = ωb − CeT

b ωe
ie (1.36)
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in which ωb is the gyroscopes measured angular rate vector, ωe
ie is the estimated

Earth’s rotation rate and Ce
b is the body frame to Earth-fixed frame rotation DCM

matrix. The latter is computed as [20]:

Ċe
b = Ce

bΩb
eb (1.37)

with Ωb
eb being the skew-symmetric form of ωb

eb.
Matrix Ce

b being estimated, then, it is possible to derive Euler angles to represent
the change in the body orientation between successive updates of the attitude
information.

Velocity computation

Computing Ce
b as in (1.37), the accelerometer specific force measurements in

the Earth-fixed frame (collected in vector f e) can be resolved according to (1.33).
At this point, everything is set-up to allow for the evaluation of the body ground
acceleration (rate of change of the vehicle ground speed w.r.t. Earth axes) using
[20]:

ae
e = v̇e

e = Ce
bf b − 2ωe

ie × ve
e + ge

l (1.38)

where the Coriolis term (ωe
ie × ve

e) is subtracted, and the components of mass
gravity attraction (accelerometers sense the reaction to gravity attraction on the
body) and centripetal acceleration are compensated for and collected in the term
ge

l .
Integrating the ground acceleration over time, the vehicle ground speed can be
estimated and updated.

Position computation

Eventually, the body position in Earth-fixed frame axes can be retrieved by
performing a second temporal integration on the estimated ground speed exploiting
the well known relation (1.39), where the dot-symbol on top of a vector indicates
that a partial derivative is taken on each axis component.

ṗe
e = ve

e (1.39)
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Chapter 2

Integration of Inertial
Navigation and
Satellite-based positioning

Different sensors which are employed for positioning and navigation, depending
on their nature and intrinsic properties, are characterized by both weaknesses
and strengths. From a general perspective, under some assumptions and proper
conditions, a single navigation sensor (e.g. a standalone Global Navigation Satellite
System (GNSS) receiver) may be sufficient to estimate and track over time the
position, velocity and timing information of a self-navigating body. Considering
an Inertial Navigation System (INS), choosing a proper reference frame and being
some a-priori conditions set up, it is possible to derive position, velocity and atti-
tude solutions by processing the raw angular rate and specific force measurements
from the Inertial Measurement Unit (IMU). Such system is robust, self-contained
and immune to radio interference effects; moreover it provides updates to the
positioning information at high rate (e.g. 100 Hz). However, real inertial sensors
are intrinsically affected by deterministic errors, such as bias turn-on or scale-factor
errors (related to the sensor sensitivity) and stochastic errors, such as bias drift or
sensor noise [21]. As regards the latter, it is generally moderate w.r.t. the amount
of noise affecting GNSS code-based ranging measurements. Nevertheless, despite a
stochastic modelling of these foregoing errors is feasible, they cannot be completely
removed. Consequently, they are integrated within the inertial mechanization and
affect the accuracy level in the navigation solution over time.
In contrast to an INS, GNSS offers both good long-term stability, with positioning
errors limited to few meters, and the availability of low-cost user hardware in the
mass-market sector [16, 21]. However, the system rate is typically lower (some high-
rate GNSS receivers are indeed available on the market), if compared to that of an
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inertial system, and the localization performance is strongly affected by the external
environment. In fact, at least four satellites in visibility are needed to supply a
Weighted Least-Squares (WLS) navigation solution, and the Radio Frequency (RF)
signals broadcast by a constellation of satellites suffer from reflections and diffrac-
tions due to the presence of obstacles along the travelled path, degradation caused
by the crossing of ionospheric and tropospheric layers, induced multipath effects
and several other impairments [22]. For sake of completeness, it is due remarking
here that differential GNSS receivers implementing carrier-phase based ranging
(e.g. Real-Time Kinematic (RTK)) can achieve sub-metre accurate Positioning,
Navigation and Timing (PNT). By the way, they belong to the professional market
segment and have higher costs, hence being out of the scope of this research.
Capitalizing on the complementary characteristics of the two systems, their syner-
gistic integration allows to overcome individual drawbacks in the view of enhancing
the accuracy and robustness of the navigation solution both in the short term
and in the long term [21]. In such context, while GNSS can update the inertial
navigation solution to prevent it from drifting, the INS can bridge during GNSS-
system outages or in case of ranging signal losses. Regarding the latter aspects,
the short-term accuracy and the high resolution of an INS allow to finely track the
dynamics of motion between consecutive GNSS-epochs. This is perfectly suitable to
support vehicle-tracking applications with strict requirements in terms of accuracy,
continuity and reliability, but at affordable costs.

2.1 Integration strategies
Various strategies are proposed in literature to implement hybridization of GNSS

and INS systems. These approaches mainly differ in the way the navigation units
interact each other and in the kind of information which is shared throughout the
integration process. The following strategies are the most common [23]:

• uncoupled integration

• loose integration

• tight integration

• ultra-tight integration

In the uncoupled architecture, the degree of integration is extremely low and the
two systems are mainly acting separately. Once properly initialized, the INS solves
by dead-reckoning the mechanization to compute its high-rate inertial navigation
solution, which is adopted as the integrated system output between consecutive
GNSS epochs. Clearly, depending on the IMU grade, such solution might drift more
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or less rapidly. When a new set of GNSS measurements becomes available, the
GNSS-receiver supplies its standalone Position, Velocity, Timing (PVT) solution,
which is selected as system output for that epoch and, furthermore, is used to
re-set the INS solution. Nonetheless, differently from the remainder hybridization
schemes, the uncoupled strategy does not exploit effectively all the advantages
brought about by integrating the two systems, primarily because no control is put
on the temporal accumulation of sensor drift errors over consecutive GNSS epochs
[24, 25].
In the ultra-tight architecture, instead, there is a strict cooperation between the
two systems with the deepest possible level of integration. In fact, the GNSS
tracking module is directly inserted within the integration filter and, by deriving
the Doppler estimate from the INS, it is possible to maintain the tracking loops
during GNSS signal outages or when navigating in harsh environments with severe
motion dynamics. However, this deep-level coupling requires access to the receiver
hardware and is not limited to pure DSP. [10, 26, 25].

In the following sections, a detailed description is provided of the integration
architectures which are most often implemented: loosely coupled and tightly
coupled.

IMU MECHANIZATION 
PROCESSOR

GNSS INTEGRATION 
FILTER(𝑷𝑷,𝑽𝑽)

𝑰𝑰𝑰𝑰𝑰𝑰
(�𝑷𝑷𝒆𝒆𝒆𝒆𝒆𝒆, �𝑽𝑽𝒆𝒆𝒆𝒆𝒆𝒆)(𝑷𝑷,𝑽𝑽)𝑮𝑮𝑰𝑰𝑰𝑰𝑰𝑰

[ (𝑷𝑷,𝑽𝑽)𝒂𝒂𝒂𝒂𝒂𝒂,𝚿𝚿𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 ][ 𝑷𝑷,𝑽𝑽
𝑰𝑰𝑰𝑰𝑰𝑰

, 𝚿𝚿 ]INS

IMU ERRORS

SYNCHRONIZATION LOGIC

−

−

+

+

Figure 2.1: Block-diagram for INS/GNSS loosely-coupled architecture.

2.1.1 Loosely-coupled architecture
In the Loosely Coupled (LC) hybridization strategy, the GNSS receiver and the

INS act as two interacting but independent navigation units. At each epoch, the
absolute position and velocity estimates computed by the GNSS receiver are fed
as input observations to an integration filter (also referred to as navigation filter
in the following). In parallel, at higher rate, the INS can provide the updates to
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the position, velocity and attitude states through the mechanization of raw inertial
sensors data. It is clear that, in this architecture, the GNSS measurements from
satellites signals (code delay, phase delay and Doppler shift) are processed by the
GNSS-receiver prior to be fed to the navigation filter. The latter, then, blends
the relative positioning information from the INS with the absolute position and
velocity estimates from the GNSS system, in order to retrieve the final positioning
solution which is output from the whole navigation unit. Moreover, through the
information about the body attitude update, the biases affecting inertial sensors
are estimated by the navigation filter and fed-back to the INS. In this way, IMU
sensor errors can be somehow mitigated and the inertial trajectory refined [10, 27].
A schematic representation of the discussed LC approach is detailed in Figure 2.1.
The first advantage of this architecture is that it is quite easily implementable
since integration is achieved at high-level and there are no a-priori constraints on
the choice of the GNSS receiver. In addition to that, the number of navigation
states which have to be estimated in such configuration is smaller than that of a
traditional Tightly Coupled (TC) architecture, thus lowering the computational
complexity and shortening the processing time.
However, few drawbacks are present. First of all, since the navigation filter
is independent from the GNSS-unit, the former is unaware of the statistics, in
terms of variances and correlations, characterizing the navigation states. Thus, if
such information is not externally provided to the filter, performance drops are
experienced [10]. Secondly, the GNSS receiver is still acting as an independent
module and retains its intrinsic flaws. For instance, it might happen the GNSS
filter to loose the locking condition in the tracking loop. In such case, without some
aiding information, the receiver is forced to repeat the acquisition of satellites (cold
start) and this considerably impacts on the Time To First Fix (TTFF). A possible
solution to mitigate the latter problem could be that of providing the GNSS receiver
with the necessary information about the inertial position and velocity states, so
that to allow it undergoing a warm start [23].
To summarize, a LC-architecture implements a decentralized filtering scheme where
the raw data measurements are first processed by two local filters (GNSS receiver
and INS-mechanization) working in parallel (at different rates) and producing
"partial" navigation solutions which, later on, are further mixed in a main navigation
filter. The resulting structure has a reduced computational load but the overall
architecture is not robust and performances are inferior than those achievable with
a TC-scheme [28].

2.1.2 Tightly-coupled architecture
The main characteristic of a TC-architecture is that the noisy ranging observ-

ables extracted by the GNSS-receiver, in terms of pseudorange and Doppler shift
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measurements, are directly passed to the navigation filter without being processed
first by an independent GNSS filter. The raw GNSS measurements, then, are fused
with the position, velocity and attitude high-rate updates coming from the INS
mechanization. In other words, in a TC-approach, the inertial system acts as a
self-contained unit (INS filter) which predicts the nominal position, velocity and
attitude of the navigating body with high-rate. In addition, the inertial predictions
are used themselves to predict the nominal pseudorange and Doppler shift measure-
ments related to a set of tracked satellites. At each GNSS-epoch, then, the observed
pseudorange and pseudorange-rate measurements represent the navigational aid
allowing the integration filter to evaluate the errors on the inertial solution as well
as on the estimate of sensor biases, and to refine the system position, velocity and
attitude states. Eventually, the refined solution is used as the output of the whole
integrated navigation unit [10, 27, 23].
The detailed block-diagram for a TC architecture is provided in Figure 2.2.
The first advantage of the TC-strategy, compared to the LC-scheme, involves the
availability of the navigation states’ covariance information directly inside the
integration filter. As discussed in Section 2.1.1, the LC-configuration requires the
independent GNSS processing unit to furnish, as part of its output, some precious
information about the statistical correlation among different states. Contrarily, in
the currently discussed integration approach, the statistical characterization of noise
sources and the modelling of the correlations between different states, are directly
elaborated inside the navigation filter. This eventually results in the knowledge of
better statistics and, consequently, in a higher accuracy of the integrated solution
[10, 28].
A second strength of the TC-scheme lies on the fact that it is not computed any
GNSS standalone WLS solution, which would have required a minimum of four
satellites in Line-of-sight (LOS) visibility. Thus, if less than four satellites are
tracked at a given epoch, the small set of raw GNSS measurements are anyway
exploited in the fusion routine to generate the refined integrated solution. The
latter aspect represents a major gain to enhance system continuity and robustness
in harsh navigation environments (e.g. urban canyons). Furthermore, as discussed
in [23], process noise is only added in the integration filter and this results in a
better elaboration of GNSS measurements.
Likewise the LC-scheme, the TC-configuration presents some disadvantages. For
instance, the number of states which have to be resolved by the integration filter is
larger since, for instance, the timing information, in terms of receiver clock bias
and drift, is no longer estimated separately by a standalone GNSS processing unit.
Hence, the computational load and the system complexity are enhanced.
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Figure 2.2: Block-diagram for INS/GNSS tightly-coupled architecture.
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2.2 Tight integration module: details and imple-
mentation

In the framework of this thesis, an integrated INS/GNSS unit is implemented in
the TC-configuration, hence focusing on such hybridization paradigm hereinafter.
The present section covers the formulation of a discrete state-space representation
for the involved integrated navigation system, meant to characterize the evolution
of inertial dynamics as well as to relate GNSS measurements with the system state.
In the final part, specific details about the developed TC-architecture are provided.

2.2.1 INS/GNSS state-space model
As discussed in Section 2.1.2, a INS/GNSS TC-architecture builds on a central-

ized filtering stage where the raw GNSS-receiver measurements are processed and
blended with the information about position, velocity and attitude retrieved from
the mechanization of inertial sensors. The rigorous formulation of a state-space
model for the system under analysis is pivotal to the development of a navigation
filter fusing data from heterogeneous sources. It constitutes a substrate layer which
fixes the physical and mathematical means allowing to construct a navigation
solution at each time instant. It includes the description and modelling of the
inertial motion dynamics of the navigating body which is tracked over time, as well
as a mathematical model which, by handling and processing the raw measurements
from an external sensor (GNSS in our context), converts them into a useful aid
to update and refine the estimate of the system state. In literature, depending on
the state-estimation procedure and the filtering system model, we can distinguish
between two separate navigation modes for implementing an integrated INS/GNSS
unit [29]:

• direct navigation mode, which is based on the standard inertial navigation
equations described in Section 1.4.2, and where the integration filter estimates
the absolute body position, velocity and attitude quantities together with the
biases affecting INS sensors

• indirect navigation mode, which relies on inertial error-propagation equations
and where the navigation filter estimates error-states useful to correct and
refine earlier predictions of the associated absolute positioning quantities

Hereinafter, the thesis will address the development of a filtering system model
agreeing with the indirect (or error-based) mode.

Given a INS/GNSS TC navigation system with indirect configuration, the system
state-vector, which identifies the multi-dimensional and unknown output of the
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navigation filter at every integration epoch, does not contain total states but rather
corrections. In other words, as anticipated earlier, the integration filter, by relying
on the set of ranging and ranging-rate measurements available at every GNSS-
epoch, is involved in estimating correcting factors (or error components) which are
meant to rectify the standalone INS high-rate predictions to the overall navigation
states (i.e. body position, velocity and attitude, plus INS-sensors’ biases). As such,
the state-vector is more properly regarded to as an error-state vector. However,
throughout the course of this thesis, the two terms are often confused, since it is
always implicit the reference to an indirect architecture. Furthermore, as regards
notation, the symbol δ indicates a correction to the quantity it is preposed to. For
the integrated system under analysis, by selecting Earth-Centered Earth-Fixed
(ECEF) frame coordinates, the error-state vector counts 17 elements (i.e. dimen-
sions) and it is defined as follows [23]:

δxe =
è
δre

x δr
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y δr
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where superscripts e and b refer to the Earth-fixed frame and the local body-frame
respectively. From (2.1) we can identify the following terms:

• δre = [ δre
x δr

e
y δr

e
z ] is the vector of position errors along the three Cartesian

axes of the ECEF-frame

• δve = [ δve
x δv

e
y δv

e
z ] is the vector of velocity errors along the three Cartesian

axes of the ECEF-frame

• δÔe = [ δÔe
x δÔ

e
y δÔ

e
z ] is the vector of misalignment angles along each axis,

expressed in ECEF coordinates

• δbb
a = [ δbb

a,x δb
b
a,y δb

b
a,z ] is the vector collecting the estimated corrections to

the biases of the accelerometers along the tri-axial orthogonal body-frame
reference

• δbb
g = [ δbb

g,x δb
b
g,y δb

b
g,z ] is the vector collecting the estimated corrections

to the biases of the gyroscopes along the tri-axial orthogonal body-frame
reference

• δt = [ δtu ˙δtu ] is the vector collecting the estimated receiver clock-bias and
clock-drift corrections

Evidently, error-states related to position and velocity are represented in the ECEF-
frame; attitude errors (which are linked to misalignment errors) and sensor biases
are expressed in the local body frame.
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2.2.2 System process model
This section is devoted to the discussion of the process (system) model, included

its formalisation in state-space form, which is essential to mathematically describe
the temporal evolution of the states (collected in (2.1)) for the tracked navigat-
ing body. For the TC-architecture, the dynamic system model is set from the
mechanization of inertial navigation equations. However, according to the indirect
paradigm, the resolution of the navigation equations as discussed in Section 1.4.2
is not sufficient to provide information about the errors affecting the total system
states and the way such errors evolve and propagate over time. In other words, the
standard equations of inertial motion blindly process data received from the IMU
to obtain updated navigation parameters without regard to the veracity of these
parameters [23].
That said, in the developed integrated framework, it is required to derive a mech-
anization involving inertial error propagation equations. This can be achieved
through a perturbation of the intrinsically non-linear system of inertial equations,
and the result is summarized in the following matrix equation [23]: δ̇r

e

˙δve

Ô̇e

 =

 δve

−FeÔe + Neδre − 2Ωe
ieδve

−Ωe
ieÔ

e

+

 0
Re

bδf b

Re
bδωb

ib

 (2.2)

where we observe that

• Fe is the skew-symmetric form of accelerometer measurements expressed in
the ECEF-frame

• N is the tensor form of the gradient operator applied to the gravity vector g

• δf b collects the body-frame triaxial error components on accelerometer mea-
surements

• δωb
ib collects the body-frame triaxial error components on gyroscope measure-

ments

However, the linearized error mechanization model in (2.2) would fit with the
process model (error-propagation model) for an INS/GNSS integrated system only
in case the inertial sensor error vectors, specifically δf b and δωb

ib, agreed to a
zero-mean multi-variate normal distribution. Unfortunately, the aforementioned
conditions do not apply due to the presence of deterministic sensor bias components
that move the average of such distribution [23]. Therefore, in [23], a simple but
effective model (first-order linearization) for the inertial sensor errors is proposed.
They can be written as
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δf b = ba + ωf

δωb
ib = bg + ωω

where each sensor error is constituted by a bias component (with some hidden
temporal variability), which embodies all time-dependent effects that are not
explicitly addressed in such reduced and simplified error model, plus an additive
noise component. Let’s underline that the errors related to the bias components
(δbb

a and δbb
g) are elements of the error-state vector defined in (2.1).

Given this simplified sensor bias error-model, the resulting INS mechanization, in
terms of error states, can be expressed in state-space form as follows [23]:
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which is clearly a linear model, additive in noise, and time-dependent. Moreover,
the following terms need to be specified:

• diag (αi) is a diagonal matrix for modelling the accelerometer bias states are
first-order Gauss-Markov processes

• diag (βi) is a diagonal matrix for modelling the gyroscope bias states are
first-order Gauss-Markov processes

• ωba is the noise related to accelerometer bias components

• ωbg is the noise related to gyroscope bias components

Finally, as highlighted in (2.3) through curly under-bracing, Φ is a 17 × 17
state-transition matrix which determines the corresponding state-transition model
(process model) in the integrated navigation system state-space representation.
In other words, Φ is the mathematical formalization of the dynamic model for
the time-evolution of the errors affecting the inertial states. Furthermore, matrix
Q identifies the 17 × 17 process-noise covariance matrix which statistically
characterizes, in terms of variances and correlations, the noise components on
sensor errors and on sensor bias errors, together with any mismodelling in the
state-representation.
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Before moving ahead with the discussion about the observation model, it is impor-
tant to remark that the dynamic inertial error-model illustrated in (2.3), despite
being linear, is still poorly handleable and practically not feasible in the context
of a real-time implementation of an INS/GNSS fusion algorithm; thus, a further
numerical approximation is required.
Using a Taylor series expansion, matrix Φ can be formulated as [23]:

Φ = I + F∆t+ (F∆t)2

2! + ... (2.4)

and, truncating at the first-order term, it is eventually obtained the approximated
error-dynamics matrix F. Moreover, since F contains terms involving specific-force
measurements, it is by nature time-dependent (Fk) and is updated at the INS rate.
An analogous procedure of numerical approximation is operated on the process
noise covariance matrix Qk which, in the end, is discretized and approximated in
terms of matrix Gk.

To conclude, the approximate linearized inertial error dynamic model can be
summarized in the following equation [23]:

δxk+1 = Fkδxk + Gkvk (2.5)

The simplified linear model in (2.5) can be employed as process model in the
framework of real-time implementation of an INS/GNSS TC-integrated system
provided that, at system bootstrap, a calibration process is carefully conduced on
inertial sensors [30].

2.2.3 System observation model
As briefly mentioned at the beginning of Chapter 2, the observation model,

once mathematically formalized, represents the tool allowing the navigation fil-
ter to combine and process the new set of raw input measurements, at every
integration epoch, in the view of constructing a refined update of the error-state
vector estimate. In this sense, the same model sets up and specifies the actual
relationship existing between the observations and the states. In the TC-scheme
with indirect configuration, the measurement vector supplied at the integration
filter input is obtained from the difference between the raw GNSS measurements
and the INS-predicted measurements. The former measurements correspond to the
estimates of pseudorange and Doppler-shift obtained from a GNSS-receiver exploit-
ing ephemeris data of tracked satellites, while the latter measurements involve a
prediction of pseudoranges and pseudorange-rates by combining the position and
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velocity of satellites with the INS-predicted position and velocity states [21]. In
this context, the difference between the two groups of measurements embodies the
truly innovative information brought, as an external aid, to the navigation system
[16].
Being Nsat the number of tracked satellites, the observation vector in the mea-
surement model for a TC-architecture can be formalized as follows [27]:

zk = ζsat,k − ζ̂ins,k (2.6)

where the following terms are specified:

• ζsat,k = [ ρsat,k, ρ̇sat,k ]T is a column vector of size 2Nsat ×1 collecting the raw
GNSS pseudorange (ρk) and Doppler-shift measurements (ρ̇k) from visible
satellites at k-th epoch

• ζ̂ins,k = [ ρ̂ins,k, ˙̂ρins,k ]T is a column vector of size 2Nsat × 1 collecting the
pseudorange and pseudorange-rate predictions (related to the same set of
satellites) from the current INS-estimate of the body trajectory

Recalling Section (1.3.2), it has been provided an extensive derivation of the Least-
Squares (LS) method, applied to the non linear PVT system of equations, to retrieve
a standalone GNSS-based PVT solution starting from a set of raw pseudorange
measurements and given an initial approximation point. The linearized pseudorange
model is specified in (1.13). Similarly, in Section (1.3.3), it has been described the
linearized model, in state-space format, for the determination of the velocity and
clock-drift navigation states starting from the raw GNSS-receiver Doppler-shift
measurements. Such model is summarized in (1.32).
The combination of the aforementioned models, leads to the formulation of the
following (linear) INS/GNSS observation model [16]:
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where uj,k = 1
Rj

[ xu − xj, yu − yj, zu − zj ] is the line-of-sight unit vector, in
ECEF-frame Cartesian coordinates, pointing from the approximation point, built
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with the most recent updates to the INS position and velocity, to the j-th satellite
at integration epoch k. As highlighted in (2.7) through curly under-bracing, Hk

represents the system observation matrix having size 2Nsat × 17. It is worth
remarking that Hk, after a proper re-framing, includes the Jacobian matrix of the
non-linear relationship between the user’s position and clock and the set of Nsat

pseudoranges. Moreover, observing the size of the measurement matrix, a relevant
difference between the LC-scheme and the TC-scheme pops up. In fact, in the
former, Hk has fixed size while, in the latter approach, it depends on the number
of tracked satellites, that reasonably changes over time depending on the navigated
environment. Finally, Ôk collects the residual stochastic errors affecting, for each
tracked satellite, the measurement vector zk both in the pseudorange and in the
Doppler components. The stochastic characterization, in terms of variances, for
such errors is collected in the observation-noise covariance matrix Rk.
From (2.7), the linearity of such model is clear. However, in the INS/GNSS
integration context, the state of the system includes some quantities, among others,
which are exclusively associated to the INS and its IMU-error model, while, on top
of that, the GNSS noisy observations are coming from a source completely external
to the INS. Thus, reasonably, there should exist an indirect relationship between
the observations and the state-variable, at least up to some components. As a
matter of fact, a linear dependency can be constructed if, instead of considering
the raw GNSS-measurements directly, it is accounted for their difference w.r.t. a
prediction of the same noisy observables based on the system inertial state (which
is the idea behind the observation vector definition (2.6)). The latter difference,
then, can be regarded as an error that, likely, is directly related to the system
error-state variable [24].

2.2.4 The INS/GNSS tightly-coupled architecture
In previous sections, the theoretical framework for the state-space definition of

a INS/GNSS TC system in the indirect configuration has been set-up. Given so,
this section can be devoted to the analysis of the software implementation of the
hybridized architecture which has been used for this thesis work.
First of all, the integrated navigation module is administrated by a Finite-State
Machine (FSM) which acts as a scheduling unit to properly interleave the op-
erations between the inertial navigation unit and the integration filter and to
avoid conflicts. Simultaneously, the FSM has to manage the flow of input sen-
sor data involving raw accelerometer specific-force measurements and gyroscopes
angular-rate measurements from the IMU, and raw GNSS-observables produced as
output of a GNSS-processing algorithm. As a matter of fact, the latter task is not
straightforward since the two integrated systems, having complementary natures,
operate at consistently different rates. On one hand, the GNSS processing unit can
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supply Time-of-Arrival (ToA) based pseudorange and Doppler-shift measurements
at low-rate, which is usually upper-bounded to 1 Hz (this depends on the data-rate
of the navigation message). On the other hand, the INS-sensors produce raw specific
force and angular-rate measurements at much higher rate and, correspondingly,
the overall INS-filter elaborates such data at a convenient rate to keep up with the
IMU pace.
In light of the above, to solve the synchronization problem between the two coupled
units, the FSM assigns timestamps separately to both inertial data and GNSS
observables. Consequently, scheduling is operated following the timestamps’ order
and it is not shared any common clock.
In the developed integration software, which should mimic a realistic operating
scenario, the GNSS-rate is set to 1 Hz while the INS-rate is fixed to 10 Hz with
an IMU-rate of 100 Hz. A schematic representation of the integration software is
provided in Figure 2.3. Every 10 ms, a new set of inertial sensors measurements is
produced. For each group of raw data, the inertial processing unit solves the coning
and sculling integrals. Such integrals are related to coning and sculling motions
which, in turn, are related to the non-linear evolution of the navigating body
attitude. Due to non linearities of inertial motion, it is fundamental to solve these
integrals at high rate. However, this approach is beneficial in terms of complexity.
In fact, through coning and sculling, the change of the target orientation and
velocity is finely tracked with high temporal granularity and the update to the
inertial states, provided by the resolution of the mechanization, can be done at a
lower rate of 10 Hz, that is every 100 ms. All these operations, clearly, are executed
within the INS subsystem.
Instead, the timing for the integration filter operations is dictated by the arrival
instants of groups of GNSS-observables. Any time a new set of pseudorange and
Doppler-shift measurements is available, the integration filter applies the obser-
vation model to generate an update, in the flavour of a set of corrections, to the
inertial predictions.
However, in such framework, there is a considerable difference between the two
integrated systems: while inertial sensor data are produced with a fixed periodicity
being the IMU completely self-contained, the arrival frequency of GNSS data is
not stable since it is subjected to external world effects. Therefore, the minimum
temporal width between consecutive updates to the navigation solution is one
second, but it could be potentially wider. The latter consideration emphasizes the
importance of the INS as an interpolator device between consecutive GNSS-epochs,
which lets to enhance the resolution in the tracking process of the motion dynamics
for a given target [24].
For sake of completeness, it might be useful to detail more on the estimation process
involving navigation states.
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Figure 2.3: Flow-diagram of the integration software for the real-time simulation
of an INS/GNSS TC-architecture

The medium-rate processing unit inside the INS, solving the mechanization equa-
tions, produces medium-rate predictions to the absolute position, velocity and
attitude information related to the tracked vehicular target. At the same time,
knowing the change in the navigation states with respect to the previous prediction,
the INS can update the dynamic model for the evolution of the error affecting
the inertial states of the moving body. As already discussed in Section 2.2.2, this
model is characterized in terms of the linearized transition matrix Φk−1 (or its
approximation Fk−1) and of the process noise covariance Qk (or its approximation
Gk). The updated state-transition error model, then, can be used to upgrade the
prediction of the errors on accelerometers and gyroscopes bias states.
Whenever a new set of GNSS noisy observables becomes available, the integration
filter steps in the integration chain and, by relying on the inertial error dynamic
model from the INS and by constructing the matrices involved in the observation
model (Section 2.2.3), produces an estimate δ̂xe of the error-state vector defined in
(2.1). In the end, such (low-rate) estimate is used to correct and refine the most
recent and prior INS-predictions to the vehicle trajectory and to the inertial sensor
biases.
It is worth noting that, by its nature, a INS can only measure relative navigation
states, unless some initialization is set-up. To this end, at integration software
bootstrap, after the inertial calibration process, the first PVT-solution is obtained
by running a WLS on the first incoming set of GNSS-observables.
As a final remark, the timing information inside the integrated system state-vector
cannot be estimated from inertial data. Therefore, a new estimate of the GNSS-
receiver clock-bias and drift can only coincide with an update operation executed
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(at low rate) by the integration filter, and no intermediate prediction is possible.

Latency management

When implementing an integrated navigation software which can faithfully simulate
a real-time system, latency issues should be accounted for. As a matter of fact,
GNSS observables do not manifest a regular behaviour in their arrival frequency,
for different reasons: GNSS-outages, ranging signal losses etc. When integrating
two systems, however, such delays must be properly managed. Among the options
presented in [23], the navigation software for this thesis is developed according to
the replay-buffer solution, which is shown in Figure 2.4.
IMU data coming from inertial sensors are immediately stored and processed as
they are available, thus being never subjected to delays (real-time processing). If
a new set of GNSS-observables is expected but it has some unknown delay, the
INS goes on processing the incoming inertial measurements but also buffers them.
Then, when the latent GNSS-observables arrive, the buffered data are restored and
the GNSS-update is accomplished.
Moreover, in case the delay interval becomes too large, a GNSS-outage is declared
and the corresponding update is skipped.

Figure 2.4: Managing of a replay-buffer to control latency in GNSS-data. Picture
taken from [25].
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Chapter 3

Advanced Bayesian signal
processing for INS/GNSS
hybridization

Chapter 2 has presented the major architectural solutions for the construction
of a Tightly Coupled (TC) Inertial Navigation System (INS)/Global Navigation
Satellite System (GNSS) integrated navigation unit. In particular, a stronger focus
has been oriented to an indirect (or error-state) configuration, and the details about
the definition of a discrete state-space representation, suitable for the accurate
modelling of the dynamic motion of a generic body-target, have been specified. The
latter model is meant to describe, with the highest possible degree of resolution,
the evolution of the dynamics of both the system-state and the measurements,
jointly with the associated noise statistics. However, at the same time, such model
must be simple enough to limit the complexity of the filtering algorithm [31].
The current chapter, then, zooms on the most relevant module of the whole TC-
scheme (refer to Figure 2.3), the integration (or navigation) filter. The latter can
be more properly regarded to as a mathematical estimator that, by relying on the
aforementioned dynamic system model, blends the information brought about by
INS and GNSS measurements, in order to produce an estimate of the error-state
vector (2.1).
Given the intrinsic complexity and time-dependence of both the system state-
transition model and the measurement model, non-linear time-variant estimators
are considered. Despite multiple approaches can be followed for implementing a
discrete mathematical estimator, in the context of sensor fusion for high-accuracy
positioning in vehicle-tracking applications, the Bayesian approach [32] is usually
preferred. According to the Bayesian method, the estimation problem becomes
statistical. On one hand, the stochastic integration filter relies on some a-priori
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(i.e. deterministic) information about the state temporal evolution, which is encom-
passed inside the state-transition model; on the other hand, the system state-vector
is treated as a random variable (r.v.) whose most likely realization, given prior
data and input measurements, defines the output of the navigation filter [32].

In the Bayesian framework, the state-of-art solution for filtering applications
over a generic non-linear discrete state-space model is represented by the Extended
Kalman Filter (EKF), thanks to its strikingly low complexity coupled with a consis-
tent robustness throughout the whole estimation routine. The latter filter defines
a sub-optimal implementation, based on a first-order state-space linearization, of
the Kalman Filter (KF), which represents the target ideal Bayesian estimator,
given its capability of pursuing Maximum a-Posteriori (MAP) state-estimation.
Unfortunately, the KF is optimal only under a set of restricting assumptions related
both to the state-space characteristics and to the measurement noise modelling,
thus resulting not feasible for real fusion algorithms.
Starting from the critical review of a pre-existent Kalman-based hybridization
structure, the proposal of this thesis consists on the implementation and perfor-
mance assessment of more advanced and innovative Bayesian algorithms, acting as
integration filters in the framework of the INS/GNSS TC-architecture presented
throughout Chapter 2. These filters are presented and developed according to
an incremental path in terms of architectural and computational complexities,
with the goals of improving the accuracy-level of the state-estimate and, more
important, of identifying which solution determines the best compromise in terms
of accuracy-complexity trade-off.

This chapter is organized as follows. Section 3.1 presents the general framework of
a recursive Bayesian estimator which can be applied to any generic non-linear non-
Gaussian state-estimation problem. Moreover, an optimal algorithm implementing
recursive Bayesian estimation is discussed.
Section 3.2, then, presents the EKF as the state-of-art sub-optimal Bayesian solu-
tion for fusing INS and GNSS. Later, in Section 3.3, the Unscented Kalman Filter
(UKF) architecture is treated, which consists of a more-refined non-linear filtering
solution in the class of Kalman filters.
After that, in Section 3.4, the Particle Filter (PF) approach is discussed, as an
alternative class of non-linear Bayesian estimators implementing Monte-Carlo ap-
proximation; in such context, the strengths and weaknesses of this approach, also
compared to Kalman-based solution, are investigated.
Finally, Section 3.5 presents an innovative Unscented Particle Filter (UPF)-
architecture which hybridizes the two classes of Kalman filters and Particle filters.
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3.1 Recursive Bayesian state-estimator
In this section, the general concept of Bayesian estimation is presented tailored

to the framework of target-tracking applications under non-linear and non-Gaussian
system state-space characterizations. To avoid loss of generality, we consider an
unspecified discrete-time state-space representation, both for the process and the
observation models.
Recursive Bayesian estimation involves a probabilistic approach to estimate, re-
cursively over time, an unknown Probability Density Function (p.d.f.), by using a
set of external noisy measurements together with a pre-defined process model. In
turns, this p.d.f. is used to estimate the dynamic state of a system; the latter, is
mathematically formalized through the state vector x, which includes position and
velocity states plus other states (in the case of an INS/GNSS TC-integrated system,
the state vector takes the form in (2.1), accounting for an indirect configuration)
[33].
In particular, given a set of available incoming observations at epoch k, collected
in the measurement vector zk ∈ RNz , and a sequence of past measurements
z1:k−1 = [z1, ..., zk−1], the Bayesian filter estimates the system state-vector xk ∈ RNx

at same epoch k, as the most probable realization of an unknown random vector
Xk with known a-priori distribution p (x) [33].
At the basis of Bayesian recursion, it lies the assumption that the system state
agrees to a first-order Markov model, and more precisely to a Hidden Markov
Model (HMM). According to such paradigm, the same system can be viewed as a
stochastic process whose states are not directly observable (i.e. hidden) and can be
inferred from measurements which, instead, are available at system input [32]. In
light of the previous statement, the Bayesian algorithm has to solve the following
problem in the end: given an initial state x0 with known initial distribution p (x0),
the sequence of hidden states x0:k = [x0,x1, ...,xk] has to be estimated, given the
knowledge of the observation sequence z1:k = [z1, ..., zk] and the specification of a
discrete state-space model. The latter, according to the HMM assumption, can be
formalized as follows [16, 32]:

xk = fk−1 (xk−1, uk−1, vk−1) (3.1)

zk = hk (xk, uk, wk) (3.2)

where (3.1) is defined as process/state-transition equation and models the dynamic
evolution of the system states as a discrete-time stochastic process (it represents
the process model), while (3.2) is referred to as measurement equation and charac-
terizes the relationship between the states and the measurements (it represents the
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observation model). Specifically, fk−1 and hk are the state-transition (or process)
function and the measurement (or observation) function, respectively, which can
be either linear or non-linear in general. In practice, in the framework of the
INS/GNSS TC-architecture treated in Chapter 2, the process function fk−1 is
identified by the approximated error-dynamics matrix Fk−1 in (2.5), while the
observation function hk is known (and simple) for GNSS (refer to (2.7)). Moreover,
vk−1 identifies the process noise vector, which includes any mismodelling in the
state-space characterization and additional unmodelled effects, while wk defines
the observation noise vector and gathers all impairments affecting the sequence
of input measurements. Both noises are assumed to be statistically independent
from the state-variables at all times, mutually independent each other and with
known statistics. Finally, uk is a vector collecting the set of input deterministic
signals to the system (for example, in a vehicle, they might correspond to output
signals generated by a closed-loop feedback controller with actuators or signals
from temperature and stability sensors).
Observing the process equation in (3.1), the effect of the Markovian assumption is
clear: the current system state vector xk only depends, through the state-transition
model, on the previous state realization xk−1 at estimation epoch k − 1, and it is
not affected at all by the past history of system states {xk−1, ...,x0}.
The discrete system state-space representation can be equivalently reformulated in
terms of probability distributions as [32]:

xk ∼ p (xk|xk−1) (3.3)

zk ∼ p (zk|xk) (3.4)

where (3.3) is simply a reformulation of (3.1) and p (xk|xk−1) is named state-
transition density (or motion model), which tells where the system is expected
to move at time k, given the prior knowledge of the previous state xk−1 and the
availability of a model for the description of the dynamic state evolution. On the
other side, (3.4) is a reformulation of (3.2) and p (zk|xk) is typically called likelihood
function (or perception model [33]). For sake of meticulousness, p (zk|xk) is a
probability distribution and not a likelihood. The difference is subtle but hides the
fundamental paradigm of Bayesian inference. In fact, using the likelihood, the input
measurements would represent the fixed deterministic conditioning information and
the hypothesis on the system-state (i.e. xk) would identify the variable quantity
(a Maximum-Likelihood estimator attempts at maximizing the hypothesis). On
the contrary, the Bayes theorem, which lies at the basis of any Bayesian estimator,
overturns the prior conditioning order allowing to move from a likelihood to a
conditional distribution. The latter, then, sets up the model allowing to exploit the
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innovation from input measurements to derive an a-posteriori update to the state
variable at time k. That said, the term "likelihood" is indeed employed throughout
the chapter, but it is important to be aware of the committed conceptual inaccuracy.

According to the Bayesian perspective, all the information necessary to retrieve
the estimate of x0:k given the observations sequence z1:k, is included in the joint
a-posteriori conditional state-distribution p (x0:k|z1:k). However, thanks to the
Markovian assumption, at epoch k, the marginal posterior distribution p (xk|z1:k)
is fully sufficient to produce an estimate of xk [32].
p (xk|z1:k) is called Bayesian belief [33] and Bayesian filters aim at sequentially
estimating it over the state-space, given the information coming from external
sensors. At every estimation epoch, the belief can be obtained through two steps:
prediction and update.
In the prediction step, the last estimated belief at epoch k−1, that is p (xk−1|z1:k−1),
is propagated to the present epoch k using the motion model (3.3), hence leading
to the determination of the a-priori density [32]

p (xk|z1:k−1) =
Ú
p (xk|xk−1) p (xk−1|z1:k−1) dx (3.5)

Then, in the update step, when the input measurement vector zk is available, the
conditional a-posteriori density is obtained from Bayes’ rule [32]:

p (xk|z1:k) = p (zk|xk) p (xk|z1:k−1)
p (zk|z1:k−1) (3.6)

Being the density p (zk|z1:k−1) at denominator the integral of the numerator over
the state-space, we can consider it as a normalization factor c, and (3.6) can be
re-written as [16]:

p (xk|z1:k) = c · p (zk|xk) · p (xk|z1:k−1) (3.7)

From (3.7), a recursive pattern appears: the Bayesian belief at k-th epoch is
proportionally related to the a-priori density p (xk|z1:k−1) which, in turn, depends
on the estimate of the Bayesian belief at previous epoch k − 1.

The last step of the general Bayesian algorithm requires to perform a Bayesian
inference [16], corresponding to the extrapolation of an estimate x̂k of the true
state-vector xk from the a-posteriori density p (xk|z1:k). As a goodness principle,
the MAP-criterion is typically adopted: the selected output state-vector estimate
coincides with the realization of xk maximizing the Bayesian belief p (xk|z1:k).
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Specifically [32]:

x̂k,MAP = argmax
xk

[p (xk|z1:k)] (3.8)

3.1.1 Optimal Bayesian estimation: the Kalman Filter
Before entering the details of the KF algorithm, it is worth specifying some

notation, concerned with the system state-vector, which is going to be adopted in
the remainder of this chapter:

• xk−1|k−1 identifies the system a-posteriori state at epoch k − 1. In particular,
the subscript k − 1|k − 1 specifies that the estimate at k − 1 is conditioned
upon the information brought about by the measurements at time k − 1.

• xk|k−1 identifies the system a-priori state at epoch k. In particular, the
subscript k|k−1 specifies that the state-hypothesis at k is conditioned upon the
a-priori information that the system owns on the basis of the old measurements
observed at time k − 1.

• xk|k identifies the system a-posteriori state at epoch k. In particular, the
subscript k|k specifies that the state-hypothesis at k is refined, w.r.t. xk|k−1,
based on the innovative information carried by the new set of measurements
at time k.

Previous Section 3.1 introduced a high-level perspective on the conceptual solution
for Bayesian filtering algorithms applied to discrete-time state-space models. In
reality, such solution can be only treated analytically. In fact, in most of the cases, it
is not possible to characterize (3.3) and (3.4) with enough statistical resolution [32],
and the integrals involved in the computation of the a-priori (3.5) and a-posteriori
(3.7) state densities cannot be solved in closed-form [16].
However, if the discrete state-space model satisfies the following conditions:

• the state-transition model fk−1 is a known linear function of xk−1, uk−1 and
vk−1

• the observation model hk is a known linear function of xk and wk

• the process noise vk and the observation noise wk are zero-mean additive and
with known Gaussian statistics

then, the KF is found to be an optimal recursive Bayesian filter, since it can achieve
MAP state-estimation. In the following, the general KF-algorithm is presented.
The constrained additive linear and Gaussian state-space model, under which the
optimality of this filter is guaranteed, can be expressed through the following
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process (3.9) and measurement (3.10) equations [32]:

xk = Fk−1xk−1 + vk (3.9)

zk = Hkxk + wk (3.10)

where [32] Fk−1 is the linear state-transition matrix and Hk represents the linear
observation matrix. Moreover, justified by the assumptions, the process noise
vector vk and the measurement noise vector wk are considered to be drawn from a
zero-mean Gaussian distribution with noise covariances Qk and Rk respectively.
The fundamental aspect which characterizes the KF algorithm is that of considering
the Bayesian belief as normally distributed, implying that a full statistical charac-
terization is possible by simply knowing its mean vector and its covariance matrix.
Looking at the posterior density at epoch k − 1, it has the following statistical
description:

p (xk−1|z1:k−1) ∼ N
1
x̂k−1|k−1,Pk−1|k−1

2
(3.11)

where x̂k−1|k−1 is the last system state-estimate and Pk−1|k−1 the related state-
covariance matrix. As such, given the recursive pattern in (3.7), the a-priori state
density, the likelihood density and the a-posteriori density functions at the current
epoch k can be regarded as normally distributed too.
Similarly to the general Bayesian algorithm discussed in Section 3.1, the KF-routine
implements the prediction and update steps. In the prediction step, the a-priori
state estimate x̂k|k−1 is obtained by propagating the last a-posteriori state-estimate
through the linear process model. Formally [32]:

x̂k|k−1 = Fk−1x̂k−1|k−1 (3.12)

Pk|k−1 = Qk + Fk−1Pk−1|k−1F
T
k−1 (3.13)

In the update step, then, when a new input measurement sequence zk is available,
the innovation vector sk is computed as:

sk = zk − Hkx̂k|k−1 (3.14)

From (3.14), it is clear that the innovation vector, being the difference between
the observed measurements and the predicted measurements using the observation
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matrix, includes the truly new information on the system dynamic behaviour that
external observables have brought about. Thus, the filter itself must exploit such
new information to update the state-prediction optimally.
Given so, the update step can be summarized through the following equations [32]:

x̂k|k = x̂k|k−1 + Kk

1
zk − Hkx̂k|k−1

2
(3.15)

Pk|k = Pk|k−1 − KkSkKT
k (3.16)

with Sk being the innovation sequence covariance matrix and Kk being the Kalman
Gain matrix. The latter quantities are computed as follows [32]:

Sk = HkPk|k−1HT
k + Rk (3.17)

Kk = Pk|k−1HT
k S−1

k (3.18)

In particular, the Kalman gain Kk has an outstanding importance in the economy
of the algorithm since, depending on the values of its entries, the filter tunes the
impact of external observations in correcting the a-priori state-estimate as a result
of the update step.
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3.2 Extended Kalman Filter
The optimality conditions for the KF state-estimate are in general too restrictive

and have a poor bearing on applications involving real navigation scenarios, such a
INS/GNSS fusion. In most cases, the system process and observation models might
be non-linear, regardless of the specific degree of such non-linearity and, even in
case they were linear, the system and measurement noises could be characterized
by unknown non-Gaussian multivariate distributions which, furthermore, might
not be centred in zero [32, 33]. For these applications, the optimal state-estimate in
Bayesian-sense cannot be achieved. Thus, it is necessary to resort to sub-optimal
Bayesian filtering approaches that can better fit with real scenarios. In such frame-
work, as already hinted at in the introduction to this Chapter, the highly-popular
state-of-art solution is represented by the EKF.

Considering a non-linear non-Gaussian set-up, the fundamental idea at the basis
of the EKF-algorithm is to operate a local linearization of the discrete system
state-space model while preserving the Gaussian constraint on the stochastic densi-
ties [32]. That said, it becomes clear that the sub-optimality of such filter does
not reside in the filter itself, but rather on the way the filter handles the model.
In fact, in the EKF-context, the original non-linear problem is transformed into
its linear approximation which is solved optimally (MAP) [28]. Consequently,
the EKF-performance heavily depends on how much the linearized problem is
accurately modelled.

3.2.1 General EKF algorithm
The discrete-time state-space representation for non-linear dynamic state-space

models can be written as [32]:

xk = fk−1 (xk−1) + vk (3.19)

zk = hk (xk) + wk (3.20)

where fk−1 is a known non-linear process function and hk is a known non-linear
measurement function. Similarly to the KF-case, both the process noise vk and
the observation noise wk are mutually independent random vectors, statistically
characterized by zero-mean multivariate Gaussian distributions with covariance
matrices Qk and Rk, respectively.
Moreover, retaining the assumption on the Gaussianity of the a-posteriori p.d.f.,
the state estimate is obtained through the two-stage process of prediction and
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update.
In the prediction step, a linearization of the state-transition function is operated
locally, around the updated state-estimate x̂k−1|k−1 at previous epoch, by applying
the gradient operator to fk−1 (xk−1). The linearized function can be expressed in
the following manner [32]:

F̂k−1 =
è
∇xk−1fk−1 (xk−1)

é
| xk−1=x̂k−1|k−1

(3.21)

Given F̂k−1, the a-priori predicted state estimate x̂k|k−1 and its covariance Pk|k−1
can be obtained as [32]:

x̂k|k−1 = F̂k−1x̂k−1|k−1 (3.22)

Pk|k−1 = Qk + F̂k−1Pk−1|k−1F̂T
k−1 (3.23)

Later, in the update step, similarly to the above, a local linearization of the
non-linear observation function hk is operated around the a-priori predicted state-
estimate at current epoch [32]:

Ĥk = [∇xkhk (xk)]| xk=x̂k|k−1
(3.24)

At this point, given the linearized observation function Ĥk and the input measure-
ment sequence zk, the innovation (or residual) sequence sk can be obtained:

sk = zk − Ĥkx̂k|k−1 (3.25)

In (3.25), the innovation sequence is computed as the residual between the observed
measurement vector zk and the predicted measurements using the approximate
linearized observation function Ĥk.
Next, the Kalman Gain is computed [32]:

Kk = Pk|k−1 ĤT
k S−1

k (3.26)

where Sk = Ĥk Pk|k−1 ĤT
k + Rk is the residual sequence covariance matrix.

In the end, the a-posteriori state estimate x̂k|k and the a-posteriori state-covariance
Pk|k are computed as [32]:

x̂k|k = x̂k|k−1 + Kk (zk − sk) (3.27)
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Pk|k = Pk|k−1 − Kk Sk KT
k (3.28)

The general EKF-routine is summarized in Algorithm 1.
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Algorithm 1 Summary of EKF algorithm
Assumptions: Non-linear state-transition function fk−1 and observation func-
tion hk + zero-mean Gaussian distributed process and observation noises.
Require: knowledge of the initial state x0 and state-covariance P0.

1: for k = 1 : inf do
Prediction step

2: Estimate the a-priori state-vector x̂k|k−1 as:

x̂k|k−1 = F̂k−1x̂k−1|k−1

where F̂k−1 identifies the linearized system model. The latter is obtained using
the gradient operator applied locally, around the a-posteriori estimated state
at k − 1, that is x̂k−1|k−1,to the non-linear process function:

F̂k−1 =
è
∇xk−1fk−1 (xk−1)

é
| xk−1=x̂k−1|k−1

3: Estimate the a-priori state covariance Pk|k−1 related to the a-priori predicted
state-vector x̂k|k−1:

Pk|k−1 = Qk + F̂k−1Pk−1|k−1F̂T
k−1

Update step
4: Estimate the innovation sequence sk as the residual between the observed

measurement vector zk and the predicted observation sequence from the mea-
surement model:

sk = zk − Ĥkx̂k|k−1

where Ĥk is the local linear approximation, using the gradient operator, of hk.
5: Estimate the Kalman Gain matrix Kk as:

Kk = Pk|k−1 · ĤT
k · S−1

k

with Sk = ĤkPk|k−1ĤT
k + Rk being the residual sequence covariance.

6: Compute the a-posteriori state-estimate and its covariance:

x̂k|k = x̂k|k−1 + Kk (zk − sk)

Pk|k = Pk|k−1 − KkSkKT
k

7: end for
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3.2.2 INS/GNSS EKF-based integration filter

After the establishment of a purely theoretical framework for the description of
the general EKF-algorithm for non-linear and Gaussian state-estimation problems,
the application of such estimator as a navigation filter is now investigated in the
framework of a INS/GNSS TC-architecture.
First of all, it is reminded that, implementing the sensor-fusion algorithm according
to an indirect (error-based) approach, the state vector xk is indeed an error-state
vector δxk, which contains corrections (incremental states) to the fundamental 3D
position, velocity and attitude states of the navigating vehicular target, estimates
of the inertial sensors bias-errors (according to a simplified modelling presented
in Section 2.2.2) and clock-bias and clock-drift terms (timing information). The
mathematical representation of the system error-state vector was given in (2.1).
Moreover, for the same integrated system, the discrete state-space model is that
formalized in Sections 2.2.2 and 2.2.3. As long as the process model is concerned,
it coincides with the approximated dynamic inertial error-mechanization model in
(2.3). On the other hand, the measurement model is embodied in the formulation
of (2.7). Clearly, both models are linear, and this is a remarkable condition in light
of implementing an EKF-based hybridization filter.
Moving the attention to noises, both the system process noise and the system obser-
vation noise are considered as mutually independent and additive. However, based
on the available information, the degree of accuracy in their statistical characteriza-
tion is different. For the process noise, the accuracy resolution in the modelling is
quite high. Usually, any realization of the process noise sequence is gathered from
a zero-mean multi-variate Gaussian distribution. The zero-mean assumption is
valid since all the deterministic bias components affecting the system state-variable
(bias turn-on, temperature variability, inertial body-axes alignment and others)
are compensated within the INS, partly through an initial calibration process on
inertial sensors, and partly through a de-noising (with temperature compensation)
operated on raw inertial sensors data. Consequently, the residual noise affecting
the states can be reasonably considered to have null bias. Concerning the state
covariance matrix Qk, its elements are initially estimated at calibration-time and
then, any time the INS solves the mechanization at medium-rate, updated through
Ce

b (refer to 1.33).
Moving the attention towards noises affecting GNSS-measurements, we can con-
sider them to have zero-mean in ideal conditions, but not in general. In fact, the
GNSS-unit inside the navigation software, compensates for all the deterministic
(i.e. a-priori known) bias components, including ionospheric and tropospheric
induced delays, satellite-clock error, relativistic effects etc. Then, ideally, the
stochastic residual-error would be unbiased. However, in real scenarios, there might
be unpredictable and uncontrollable error sources (e.g. multipath) injecting some
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extra-bias on ranging and ranging-rate measurements, thus violating the foregoing
zero-bias condition. As regards the statistical distribution for such error, if using
the EKF as sub-optimal Bayesian estimator implementing the fusion filter, the
standard Gaussian model is selected. The normal distribution is the preferred
choice since, in most of cases, gets closest to the true unknown distribution of the
error. Moreover, being the involved noises directly modelled inside the covariance
matrix Rk, it is forced to employ the same statistical characterization for all the
measurements. However, when navigating in highly-reflective environments (e.g.
urban canyons) some pseudorange measurements might be affected by multipath
and other major impairments. In such case, the corresponding residual errors would
be more suitably modelled through other distributions [34].

Given the presented framework, the EKF-algorithm in the INS/GNSS integrated
system architecture is implemented inside the navigation filter module (Figure 2.3)
and agrees with the flow presented in former Section 3.2.1.

The prediction step relies on the most recent INS update to the dynamic error-
state transitional model, embodied by matrices Φ and Qk. It must be noticed that
Φ indicates the general continuous-time linear and time-variant process model,
but the integrated system under analysis is inherently discrete. In such context,
similarly to the general EKF-algorithm, the adopted state-transition model is
identified by the approximated error-dynamics matrix Fk defined in (2.4). The
latter matrix is a discrete approximation of the linear process matrix Φ up to a
2nd-order Taylor series expansion. Given such comments, it follows that the actual
process model used in the prediction step matches with (2.5).
After a prediction δ̂xk|k−1 of the error-state vector is formulated, all ingredients are
set-up to proceed with the update step. Given the collected input raw pseudor-
ange and pseudorange-rate measurements from the set of tracked satellites, after
compensating for the most recent estimates of the receiver clock-bias and clock-drift
errors, the innovations are constructed. For each satellite j, the innovation sj is
computed as the difference between the raw pseudorange and Doppler observables
and the nominal measurements obtained from the lately inertial updates to the body
trajectory. Additionally, the linear observation model, in terms of the observation
matrix Hk, is constructed as in (2.7).
After that, the Kalman Gain matrix Kk is retrieved according to (3.26).
Eventually, the a-posteriori updated error-state vector estimate δ̂xk|k and its rel-
ative error-state covariance matrix Perr,k|k are evaluated using (3.27) and (3.28),
respectively.
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3.3 Unscented Kalman Filter
As thoroughly discussed in Section 3.1.1, the fundamental trademark of Kalman

filters is the propagation of the state, seen as a Gaussian-distributed random variable,
through the system dynamic process and observation models. In the EKF algorithm,
the posterior state-density is characterized according to a multidimensional Gaussian
model and all relevant noise densities are assumed to be additive, zero-mean and
normally distributed. The unknown system state, then, is propagated though a
first-order linearization of both process and measurement models [16]. However, for
a wide variety of real applications, the system state is strongly non-linear and, even
more, its distribution might be other than Gaussian. If this happens, or in case
of inaccurate filter initialization, the EKF estimate may diverge and the accuracy
performance of the whole integrated unit deteriorates.
Given so, as part of the contribution to this thesis work, more advanced and
possibly robust Bayesian architectures are investigated.
By standing within the class of Kalman estimators, an evolution of the EKF is
represented by the UKF [32]. As any other KF-based algorithm, the UKF adopts
a multidimensional Gaussian model for the a-posteriori state distribution. As
such, to fully characterize it from a statistical point of view, the knowledge of the
mean-vector and the covariance matrix are enough. These parameters become
the output of the Bayesian estimation routine over a non-linear state-space model.
Thus, up to this point, no big difference exists w.r.t. the EKF. However, the UKF
does not estimate the a-posteriori statistics of the state by first linearizing the
discrete state-space model, but it makes use of the mathematical concept of the
Unscented Transform (UT) [32].
The fundamental idea behind the UT is that it is much easier to approximate a
Gaussian distribution rather than a non-linear model [35]. The UT-process involves
the generation of a finite set of deterministically and properly selected points, named
sigma-points, from the domain of the distribution to be estimated. These sample-
points are artificially selected in such a way that they can completely represent the
mean and covariance of the distribution they are drawn from. Then, these points
are propagated through the non-linear models. Finally, the set of transformed
points are exploited to construct an estimate of the mean and covariance parameters
of the target (a-posteriori) state-distribution [35].
A simplified and intuitive 2-D representation of the UT-process involving sigma-
points for state-estimation is provided in Figure 3.1.
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Figure 3.1: 2-D representation of the UT-concept and sigma-points over a non-
linear system model.

3.3.1 General UKF algorithm
The discrete state-space formulation of the non-linear dynamic system model is

the same as that formally expressed in (3.19) and (3.20) for the EKF-algorithm
(Section 3.2.1). The state-transition function fk−1 and the observation function
hk are considered known and possibly non-linear, while the system process noise
vk−1 and the measurement noise wk are still additive, zero-mean and Gaussian-
distributed. Moreover, identically to the EKF-case, all involved state-distributions
are Gaussian and the knowledge of an initial distribution p (x0) is assumed.
In light of the above, looking at the k-th estimation epoch, the general UKF
algorithm starts by considering the last estimated a-posteriori state-distribution
p (xk−1|z1:k−1), characterized by the posterior estimated mean-vector x̂k−1|k−1 and
its corresponding covariance matrix Pk−1|k−1. Given these parameters, the UT is
applied and a set of 2n+ 1 sample-points, n being the state-vector dimension, is
deterministically generated according to the following relations [32, 35]:

χ0
k−1 = x̂k−1|k−1

χi
k−1 = x̂k−1|k−1 +

ò
(n + κ)

è
Pk−1|k−1

é
i
, i = 1, ..., n

χi+n
k−1 = x̂k−1|k−1 −

ò
(n + κ)

è
Pk−1|k−1

é
i
, i = 1, ..., n

(3.29)

where
è
Pk−1|k−1

é
i
identifies the i-th row of Pk−1|k−1, while κ is a tuning factor

typically chosen as κ = n (κ2
1 − 1), κ1 being a positive scaling scalar that can be

made arbitrarily low. Specifically, κ1 determines the spread of the sigma points
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around x̂k−1|k−1 and κ2 is a secondary parameter usually set to 0 [32].
It is interesting to point out here that, for the construction of the sigma-points, the
term

ò
(n + κ)

è
Pk−1|k−1

é
can be obtained by applying a Cholesky factorization to

(n + κ) Pk−1|k−1 [16].
The set of sigma-points is then assigned a corresponding set of weights [32]:

w0
k−1 = κ

n + κ

wi
k−1 = κ

2 · (n + κ) , i = 1, ..., n

wi+n
k−1 = κ

2 · (n + κ) , i = 1, ..., n

(3.30)

satisfying the normalization condition q2n
i=0 w

i
k−1 = 1.

At this point, the prediction step can be accomplished. The set of deterministically
selected samples is directly propagated through the non-linear state-transition
function to obtain the transformed points [32]:

χi
k|k−1 = fk−1

1
χi

k−1

2
(3.31)

The set of transformed points {χi
k|k−1}

2n+1
i=1 , along with the weights’ set {wi

k−1}2n+1
i=1 ,

is then used to construct the mean-vector x̂k|k−1 and the covariance matrix Pk|k−1
estimates of the a-priori state distribution, where x̂k|k−1 coincides with the a-priori
prediction to the state-vector variable. Formally [32]:

x̂k|k−1 =
2n+1Ø
i=1

wi
k−1χ

i
k|k−1 (3.32)

Pk|k−1 = Qk +
2n+1Ø
i=1

wi
k−1

1
χi

k|k−1 − x̂k|k−1
2 1

χi
k|k−1 − x̂k|k−1

2T
(3.33)

Moving to the update step, the standard Kalman filter equations are used to
refine and update the state-prediction. Specifically, given the input observation
sequence zk, the innovation sequence sk can be retrieved [32]:

sk = zk − ẑk|k−1 (3.34)

where the predicted measurements, collected in ẑk|k−1, are obtained by propagating
the transformed set of sample-points {χi

k|k−1}
2n+1
i=1 through the possibly non-linear
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observation function hk in the following way [32]:

ẑk|k−1 =
2n+1Ø
i=1

wi
k−1hk

1
χi

k|k−1

2

Defining the measurements auto-covariance matrix Pzz and the state-measurement
cross-covariance matrix Pxz:

Pzz =
2n+1Ø
i=1

wi
k−1

1
hk

1
χi

k|k−1

2
− ẑk|k−1

2 1
hk

1
χi

k|k−1

2
− ẑk|k−1

2T

Pxz =
2n+1Ø
i=1

wi
k−1

1
χi

k|k−1 − x̂k|k−1
2 1

hk

1
χi

k|k−1

2
− ẑk|k−1

2T

all ingredients are made available for the computation of the Kalman Gain matrix
Kk [32]:

Kk = PxzS−1
k (3.35)

with Sk = Pzz + Rk.
Eventually, the a-posteriori statistics are constructed [32]:

x̂k|k = x̂k|k−1 + Kk

1
zk − ẑk|k−1

2
(3.36)

Pk|k = Pk|k−1 − KkSkKT
k (3.37)

The general UKF-routine is summarized in Algorithm 2.
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Algorithm 2 Summary of UKF algorithm
Assumptions: Non-linear state-transition function fk−1 and observation func-
tion hk + zero-mean Gaussian distributed process and observation noises
Require: knowledge of the initial state x0 and state-covariance P0

1: for k = 1 : inf do
Prediction step

2: Given n the state-vector dimension, generate a set {χi
k−1}2n+1

i=1 of determin-
istic sigma-points

χ0
k−1 = x̂k−1|k−1

χi
k−1 = x̂k−1|k−1 +

ò
(n + κ)

è
Pk−1|k−1

é
i
, i = 1, ..., n

χi+n
k−1 = x̂k−1|k−1 −

ò
(n + κ)

è
Pk−1|k−1

é
i
, i = 1, ..., n

with its corresponding set of scalar normalized weights {wi
k−1}2n+1

i=1 :

w0
k−1 = κ

n + κ

wi
k−1 = κ

2 · (n + κ) , i = 1, ..., n

wi+n
k−1 = κ

2 · (n + κ) , i = 1, ..., n

3: Propagate {χi
k−1}2n+1

i=1 directly through the possibly non-linear state-
transition function fk−1

χi
k|k−1 = fk−1

1
χi

k−1

2
obtaining the transformed set {χi

k|k−1}
2n+1
i=1 .

4: Estimate the a-priori state-vector x̂k|k−1 and its covariance:

x̂k|k−1 =
2n+1Ø
i=1

wi
k−1χ

i
k|k−1

Pk|k−1 = Qk +
2n+1Ø
i=1

wi
k−1

1
χi

k|k−1 − x̂k|k−1
2 1

χi
k|k−1 − x̂k|k−1

2T

Update step
5: Estimate the innovation sequence sk as the residual between the observed

measurement vector zk and the predicted observation sequence from the mea-
surement model:

sk = zk − ẑk|k−1
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where ẑk|k−1 = q2n+1
i=1 wi

k−1hk

1
χi

k|k−1

2
is obtained from propagation of trans-

formed sigma-points through the non-linear observation function hk.
6: Estimate the Kalman Gain matrix Kk as:

Kk = PxzS−1
k

with Sk = Pzz + Rk is the residual sequence covariance and

Pzz =
2n+1Ø
i=1

wi
k−1

1
hk

1
χi

k|k−1

2
− ẑk|k−1

2 1
hk

1
χi

k|k−1

2
− ẑk|k−1

2T

Pxz =
2n+1Ø
i=1

wi
k−1

1
χi

k|k−1 − x̂k|k−1
2 1

hk

1
χi

k|k−1

2
− ẑk|k−1

2T

7: Estimate the a-posteriori state-vector x̂k|k and its covariance:

x̂k|k = x̂k|k−1 + Kk

1
zk − ẑk|k−1

2
Pk|k = Pk|k−1 − KkSkKT

k

8: end for

3.3.2 UKF-based INS/GNSS integration filter
Similarly to the approach followed in Section 3.2.2, the application of the UKF

estimator in the INS/GNSS TC-integrated system context is explored.
Regarding the definition and characterization of the discrete-time system state-space
model, the statistical description of the density distributions for both process and
measurement noises, and the mathematical formalization for the system state-vector
in terms of error-states, no significant differences are highlighted with respect to
the EKF-based solution (the reader is invited to refer to Section 3.2.2 to investigate
further on these aspects).
Moving the attention on the development of the fusion algorithm according to
the UKF filtering scheme, the flow of operations presented in Section 3.3.1 is
maintained to a large extent, but slight modifications are introduced anyway and
are discussed here.
First of all, it is important to recall that, by relying on an indirect state-space
representation, the a-posteriori error-state vector at previous epoch is considered to
have all-zero error-components. This choice is motivated by the fact that, between
consecutive integration instants, the INS-unit, by solving the inertial system mech-
anization, continuously updates the overall navigation states of the system, thus
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allowing to track with higher resolution the evolution in the motion dynamics of
the target body. Moreover, the medium-rate module updates the state-transition
model too, and the prediction of the error components related to the inertial sensor
biases can be corrected. As such, the error-state estimate from the navigation
filter at a previous GNSS-epoch becomes completely obsolete and the integration
algorithm cannot rely on it as an initialization.

As far as the prediction step is concerned, a first set of 2n (n being the number
of error-states collected in the error-state vector, that is 17) sample points are
deterministically generated according to (3.29). Referring back to Section 3.3.1,
the tuning factor κ is set to a null value and all sigma-points are assigned the same
weight wi

k−1 = 1
n .

After that, sigma-points are transformed by applying them to the state-transition
function. The latter, similarly to the EKF-framework, agrees to the simplified linear
process model (2.3) and, after discretization, it coincides with matrix Fk. Thus,
in the context of INS/GNSS integrated system, the transformation of the set of
sigma-points is a linear operation involving matrix multiplication. The transformed
points, then, are used to build-up an a-priori prediction δ̂xk|k−1 of the error-state
vector and of its corresponding covariance Perr,k|k−1 according to (3.32) and (3.33).

For the implementation of the update step, the a-priori predictions on the
state-variables are used to generate, in the same exact way as for the prediction
step, a new set of 2n sigma-points. Using some terminology, the former set of
sample-points can be regarded as a-priori samples, while the latter set can be con-
sidered a-posteriori sigma points. Despite these minor lexical aspects, the algorithm
applies these samples to the aforementioned observation matrix Hk. The resulting
points, properly combined, define the predictions (indicated as ẑk|k−1 in Section
3.3.1) to the errors on the pseudorange and Dopper-shift input measurements. The
latter predictions, then, are compared to the measured observation error-vector,
which is computed as the residual between the raw input GNSS-measurements and
the same observables predicted through the most recent INS-solution.
Blending the measured and predicted observation-error sequences, the innovation-
error sequence is obtained and, later on, the Kalman Gain matrix can be set-up
using (3.35).
Eventually, after deriving the correlations Pzz and Pxz between the predicted error
measurement vector and the a-priori predicted error-state vector, the updated
a-posteriori error-sate estimate δ̂xk|k and error-covariance estimate Perr,k|k can be
generated ((3.36) and (3.37)).

Before concluding, there is a subtle aspect which deserves some care. In the
above description and characterization of the update-step, the linearized (and,
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hence, approximated) observation model, in terms of the measurement matrix Hk,
has been used. However, one strength of the UKF, compared to the EKF, is its
capability of directly handling non-linear models without requiring any preliminary
linearization. Tailoring the former sentence to our context, it means that, in
principle, the UKF could directly use the non-linear pseudorange model (1.8) and
the non-linear Doppler model (1.26) when propagating sigma-points to retrieve
the predictions to the errors on the input raw pseudorange and Doppler-shift
measurements.
That said, it might seem erroneous, or at least contradictory, the use of the lin-
earized observation model when implementing an UKF as navigation filter for
an integrated INS/GNSS system. In fact, this choice has a strong motivation;
for GNSS-based positioning applications (at least for those which do not involve
hybridization with terrestrial range-measurements), due to the huge distances
separating terrestrial users from satellites, the approximation of the non-linear
pseudorange and Doppler equations through a first-order Taylor series expansion
is rather optimal, with an induced accuracy penalty in the positioning solution
sufficiently small (few millimetres) to be mistaken with noise.
To further support the previous assertions, a simulation has been run on a real
vehicular trajectory using the integration software described in Section 2.2.4 with an
UKF-based integration filter relying on both models. To assess their performance,
the horizontal components (Easting and Northing in Universal Transverse Mercator
(UTM)-coordinate) of the vehicle ground position along the trajectory are compared
to a ground-truth. The result is shown in Figure 3.2, where the Cumulative Density
Functions (CDFs) of the Root-Mean-Square Error (RMSE) for both models are
considered. Evidently, the two curves are almost matching with differences of, at
most, few millimetres. Moreover, Figure 3.3 zooms in for horizontal errors below
2m, thus proving that, neither in the high-accuracy, there is an apparent gain in
using directly the non-linear measurement model.
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Figure 3.2: Empirical CDF of the RMSE on the horizontal component in UTM-
coordinates. UKF accuracy performance when using both the linearized and the
non-linear observation models.
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Figure 3.3: Zoom of Figure 3.2 for horizontal RMSE below 2m.
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3.4 Particle Filter

In the framework of Bayesian estimation applied to general non-linear non-
Gaussian discrete state-space models, Sequential Monte-Carlo (SMC) methods
identify an alternative class, considerably different from Kalman estimators, of
simulation-based filtering methods. In the context of this research, the focus is
oriented towards the Particle Filter (PF) [32]. PFs own the remarkable advantage
of being able to represent any arbitrary statistical distribution, not necessarily
in agreement with a Gaussian model, as well as the higher flexibility in handling
possibly non-linear and non-Gaussian measurement models [32]. The latter feature,
which highlights a breakthrough with respect to Kalman-based methodologies,
turns out to be very useful in a variety of GNSS applications, since it offers the
possibility of optimally tuning the statistical modelling of measurements depending
on the characteristics of the external environment.

3.4.1 Monte-Carlo integration and Sequential Importance
Sampling

The general purpose of SMC methods is the representation of a target density
distribution through a set of randomly drawn samples, with associated weights,
and the computation of estimates based on these samples and their relative weights
[36]. More specifically, exactly as for KFs, the PF aims at recursively estimating
the a-posteriori distribution p (x0:k|z1:k), assuming the knowledge of an initial
distribution p (x0,P0). Based on the HMM-assumption, at k-th estimation epoch,
the posterior distribution can be fully specified in terms of its marginal distribution
p (xk|z1:k). Given so, the problem that the PF proposes to solve involves the
evaluation of the expectation of a generic function g (·) of the state-vector xk,
conditional upon the set of input observations up to time k, that is z1:k. Formally
[32]:

I (gk) = E{gk (xk) |z1:k} =
Ú
gk (xk) p (xk|z1:k) dxk (3.38)

Clearly, the above integral must be evaluated over a pre-defined generic discrete
state-space whose representation is formulated in (3.1) and in (3.2).
In order to approximately solve (3.38), a random set {ξi

k}Ns
i=1 of Ns identically

distributed and statistically independent particles, with associated positive scalar
weights {ψi

k}Ns
i=1, are drawn from the domain of p (xk|z1:k); then, the same distribu-

tion, together with the former expectation, are approximated as follows [32]:
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p̂ (xk|z1:k) =
NsØ
i=1

ψi
kδ
1
xk − ξi

k

2

Î (gk) =
NsØ
i=1

ψi
kgk

1
ξi

k

2 (3.39)

where δ is the Dirac’s Delta function. Analyzing (3.39), we capture the true meaning
of Monte-Carlo (MC) integration: the original expectation integral over a p.d.f. is
transformed into its discrete-approximation using a random set of weighted points
ensembling the original marginal density (discrete-time sampling effect of δ) [16].
It is worth remarking that the proposed expectation defines an unbiased estimate
which, for a large number of particles, should converge to the true value [33]. In
practice, the latter statement opens up a big convergence issue for PFs (especially
baseline versions), the curse of dimensionality. In fact, whilst the unbiased filter
state-estimate approaches the true system-state with a rate which is proportional
to 1/

√
Ns (Monte-Carlo rate), the estimation error grows exponentially with the

number of dimensions n of the state-space. In other words, the rate of increase of
the estimation error as a function of the system dimension is faster than the rate of
convergence of the same estimate to the true value, thus making the filter infeasible
for high-dimensional applications [37, 38]. By the way, in the studied framework
where a TC-integrated INS/GNSS navigation unit is involved, the state-space
dimension is limited to n = 17 and the foregoing convergence problem is rather
marginal. More qualitatively speaking, provided that it is generated a sufficiently
large number of particles properly fitting with the considered state-space dimension,
the strength of the PF is in the ability of focusing its resources (i.e. particles) in
high probability regions of the state-space so that the posterior statistics can be
captured with high resolution.

Unfortunately, it is usually impossible to directly draw samples from the a-posteriori
state-density p (xk|z1:k), since it is often a complex multi-variate non-Gaussian
distribution. Thus, most of times, it is necessary to resort to the Importance
Sampling (IS) concept. It involves drawing the random set of samples {ξi

k}Ns
i=1 from

another density function π (xk|z1:k), called importance/proposal density function,
which is expected to be proportional to the original unknown density p (xk|z1:k) at
every particle, with a different scalar weight for each sample-point [16, 32]. The
validity of such approach is motivated by the chance of retrieving the particle set
from a simpler and known distribution; then, by knowing a set of scalar weights
(provided that they exist) and multiplying each particle for its weight, it is possible
to infer the target set of particles which would be generated from the true, but
unknown, a-posteriori density. To mathematically formalize the previous sentence,
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if we denote as {ξi
k}Ns

i=1 the ideal set of particles which could be drawn from the
posterior density p (xk|z1:k), and as {χi

k}Ns
i=1 the set of samples from the importance

density π (xk|z1:k), then we have [16]:

p
1
xk = ξi

k|z1:k
2

= w̃i
k · π

1
xk = χi

k|z1:k
2

(3.40)

where w̃i
k is the so called importance weight associated to particle i drawn from

the importance distribution.
Provided that the set of importance weights exists, the approximated expectation
Î (gk) formulated in (3.39) can be reframed as:

Î (gk) =
NsØ
i=1

wi
kgk

1
xi

k

2
(3.41)

where, henceforth, the set of particles drawn from the importance density are
labelled as {xi

k}Ns
i=1, and wi

k identifies the normalized importance weight associated
to particle i. The latter is defined as [16, 32]:

wi
k = w̃i

k
1

Ns

qNs
j=1 w̃

j
k

(3.42)

The IS-approach presented so far hides a huge limitation. In fact, at every estimation
epoch k, in order to produce a discrete-approximation p̂ (xk|z1:k) of the posterior
density as in (3.39), and in order to retrieve an estimate of the expectation as in
(3.41), it is necessary to employ all the history of input observables provided at the
filter input up to k. Consequently, as the epochs accumulate, the computational
burden introduced inside the algorithm grows unbounded, since weights must be
always recomputed considering the update to the whole trajectory. In light of the
previous comment, it is compulsory the introduction of some recursive pattern
inside the IS-method, thus leading to the Sequential Importance Sampling (SIS)
algorithm [32].
Assuming to know an initial state-distribution p (x0) and relying on the HMM-
assumption, the discrete approximation p̂ (xk−1|z1:k−1) of the past-epoch (k − 1)
a-posteriori density can be considered available at present epoch k.
Given so, as a new measurement sequence zk is received, the algorithm should
proceed with the generation of a new particles set. Factorizing the importance
distribution [32]:

π (xk|z1:k) = π (x0)
kÙ

j=1
π (xj|z0:j−1, z1:j) (3.43)
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it can be immediately understood that the new set of particles at epoch k can be
retrieved by just expanding the already existing set at previous epoch k − 1.
Moreover, the a-posteriori distribution can be factorized too [32]:

p (xk|z1:k) = p (zk|xk) · p (xk|xk−1) · p (xk−1|z1:k−1) (3.44)

where p (zk|xk) corresponds to the likelihood function (refer back to (3.4) for a
deeper insight) and p (xk|xk−1) is the state-transition density (i.e. motion model
(3.3)).
Reached this point, by combining (3.43) and (3.44) in (3.40), the recursive equation
for the importance weights computation is obtained [32]:

w̃i
k ∝ w̃i

k−1
p (zk|xi

k) p
1
xi

k|xi
k−1

2
π
1
xi

k|xi
k−1, z1:k

2 (3.45)

Once the computed weights are normalized, the necessary output estimates can be
retrieved:

p̂ (xk|z1:k) =
NsØ
i=1

wi
kδ
1
xk − xi

k

2
(3.46)

x̂MAP
k = arg max

xi
k

{wi
k} (3.47)

Pk =
NsØ
i=1

wi
k

1
xi

k − x̂MAP
k

2 1
xi

k − x̂MAP
k

2T
(3.48)

The baseline SIS PF-scheme proposed and described in this section, although being
applicable to any state-tracking problem, has two big flaws. First of all, it has a
large sensitivity on the state initialization, meaning that the filter would diverge in
case the initial state mean was far from its true value. Secondly, up to now, input
external measurements have been used inside the likelihood density only, but no
update step involving such observables is present [16].

3.4.2 Degeneracy phenomenon and Resampling
In previous Section 3.4.1, the general mathematical rule for computing particles’

importance weights has been rigorously covered (3.45). A relevant weakness of
the SIS-PF algorithm, and more in general of any SMC-based filter, reveals in the
so-called degeneracy phenomenon, which, from a high-level point of view, gives rise
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to an increase in the variance of importance weights over successive estimation
epochs [16]. The evidence of such degeneracy effect is in that, after few recursions,
the majority of particles tend to assume negligible normalized importance weights
values (that, in the limit, tend to zero), except for one or few particles which
take on high-valued weights (that, in the limit, tend to 1). Moreover, it has been
proved in [39] that the variance of importance weights can only increase over time,
implying that such degeneracy in unavoidable [36]. The big side-drawback which is
brought about by particles degeneracy is that, within the algorithm, a large part of
the computational load is put on particles that, being low-weighted, are practically
not contributing to the discrete approximation of the a-posteriori density function.
A convenient indicator which is typically used to quantify the degree of degeneracy
inside the PF-algorithm is the effective sample size Neff , which is defined as follows
[32]:

N̂eff = 1qNs
i=1 (wi

k)2 (3.49)

and the inequality 1 ≤ N̂eff ≤ Ns holds. Then, values of N̂eff increasingly small
and closer to the lower bound, indicate an increasingly higher degeneracy inside
the algorithm.
In the view of counteracting degeneracy, a brute force approach could be that of
increasing Ns, that is using more particles to approximate the posterior distribution
and its statistical moments. Unfortunately, such method is useless and deplorable
mainly for two reasons: first, the generation of a higher number of particles injects
more complexity inside the algorithm; secondly, the approach itself is just trying
to circumvent degeneracy without handling it directly, thus making it occurring
after few iterations anyway [16].
In literature, there exist two major strategies which can be pursued to act against
degeneracy:

• Appropriate choice of the importance density π (xk|z1:k)

• Resampling operation

As for the first approach, an appropriate choice for π (xk|z1:k) is truly a critical
issue. As a general key idea, being the degeneracy phenomenon an effect of increase
in the variance of the importance weights, it is reasonable to consider that a good
importance density would minimize the variance of these weights [36]. Needles
to say, the optimal importance distribution matches to the target a-posteriori
distribution p (xk|z1:k), which by the way is not accessible. Consequently, it is
necessary to resort to clever but sub-optimal choices. A common straightforward
proposal is to employ the state transition density (3.3), thus making the filter
implementation simple in general and with low complexity. Unfortunately, if no
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additional operations (e.g. resampling, measurement-update etc.) are introduced
in the algorithm, the estimator performance proves to be quite ineffective. The
reason is that, many times, the paramount importance of the likelihood p (zk|xk)
(more correctly, it is a probability distribution), which indicates the state-space
region where the true unknown system state is most likely to be, happens at the
tails of the state-transition density and, accordingly, many particles are needed to
let the filter capture the correct state after weights are assigned [16]. Moreover, a
scarcity of diversity among particles onsets. This occurs because the latest available
information brought by the input observations is not used to propose new values of
the state.
To have a more qualitative understanding of the previous comments, the reader is
invited to take a look at Figure 3.4, which considers a simplified one-dimensional
state-estimation problem.

IMPORTANCE DENSITY
𝜋𝜋 𝐱𝐱k|𝐳𝐳1:k = 𝑝𝑝 𝐱𝐱k|𝐱𝐱k−1

LIKELIHOOD DENSITY
𝑝𝑝 𝐳𝐳k|𝐱𝐱k

TRUE SYSTEM-STATE 

𝐱𝐱k

𝑖𝑖-TH PARTICLE

𝐱𝐱k𝑖𝑖

WEIGHTING

Figure 3.4: Weights distribution in SIS-PF when the state-transition density is
employed as importance density for drawing particles.

In literature, alternative solutions for the selection of the importance distribution
are available, promising better performance w.r.t. the state-transition density at
the price of higher complexity.
In the last part of this Chapter, one of these solutions, which relies on the use of
the UT, will be treated extensively and an innovative Bayesian architecture will be
proposed.
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The second strategy useful to mitigate the effects of degeneracy involves the
use of a resampling procedure whenever a significant level of degeneracy is triggered
(usually this happens when N̂eff ≤ Nth, Nth being commonly set equal to 2

5Ns).
The basic idea of resampling is to eliminate particles that have small weights
and to concentrate on particles with large weight, keeping fixed to Ns the size of
the particles’ set [36]. For further clearness, the rationale behind the resampling
operation is summarized in the following relation [36]:

P
1
xiõ

k = xj
k

2
= wj

k (3.50)

where xiõ
k indicates the i-th particle in the resampled set, and xj

k indicates the j-th
particle in the original set. The meaning of (3.50) is the following: the probability
that the i-th particle in the resampled set coincides with the j-th original particle,
equals the weight of the latter particle. Therefore, the high-weight particles are
going to be selected many times for resampling, while the low-weight particles are
either eliminated or resampled few times.
The aforementioned approach, despite effectively counteracting the degeneracy
effect, gives rise to another unwanted phenomenon: samples impoverishment. In-
deed, after resampling, the total number of particles is the same but the actual
information spread in the resampled set may come from few significantly weighted
particles belonging to the initial set, leading to a loss of diversity among particles
[16].
Before concluding, one aspect is still to be remarked. After resampling, a new set
of Ns particles is generated and the weights are reset to wi

k = 1
Ns

for all resampled
particles. It follows that, in terms of scalar weights, resampled particles are un-
weighted. This is justified by the fact that, after resampling, particle weights are
hidden in the frequency of appearance of each particle within the resampled set:
the more a particle is repeated , the higher is its weight and viceversa. To conclude,
different resampling strategies are available in literature. Among them, stratified
resampling is often found enhancing the performance of the implemented PF-based
Bayesian estimation algorithm at a reasonable complexity (for a deeper insight on
resampling strategies, the reader is invited to review [40]).

3.4.3 Sequential Importance Sampling Resampling (SISR)
algorithm

The general Sequential Importance Sampling Resampling (SISR) PF-algorithm
requires a set of baseline assumptions:

• Knowledge of an initial-state distribution p (x0)
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• Knowledge of the set of a-posteriori particles {xi
k−1}Ns

i=1 at previous estimation
epoch k − 1

• Adoption of the state-transition density as importance distribution, that is
π (xk|z1:k) = p (xk|xk−1)

• Execution of resampling at every recursive step

Given these premises, the estimation process develops through five steps.
In the initialization step, a set of Ns particles {xi

k}Ns
i=1 is created using the state-

transition density as importance distribution. It follows that particle i is computed
according to [32]:

xi
k = p

1
xk|xk−1 = xi

k−1

2
, xi

k−1 ∈ {xi
k−1}Ns

i=1 (3.51)

After that, the prediction step is dealt with by propagating particles through
the system process model, which is characterized in terms of the state-transition
function fk−1 with its relative process noise sequence vk. Formally [32]:

xi
k,pred = fk−1

1
xi

k , vk−1
2

(3.52)

Then, the algorithm proceeds with the importance weights computation by
generating a set {w̃i

k}Ns
i=1 using the likelihood density p (zk |xk). In particular, for

particle i, the importance weight is evaluated as [32]:

w̃i
k ∝ p

1
zk|xi

k

2
(3.53)

Furthermore, the resulting weights are also normalized according to (3.42), thus
obtaining the normalized importance weights set {wi

k}Ns
i=1.

Examining (3.53), it can be noticed that wi
k does not depend on wi

k−1, something
we would have instead expected according to (3.45). However, this result is not
surprising because, according to the SISR-PF algorithm, resampling is executed at
each recursion and, as a consequence, importance weights are always reset.
The following step in the PF-routine involves resampling, which recombines the
original set of particles according to their associated weights. In the resampled set
{xi

k,res}Ns
i=1, then, particles are unweighted, meaning that they are assigned all-equal

weights wi
k,res = 1

Ns
.

In the end, using resampled particles, Bayesian inference is achieved by generating
an a-posteriori refined estimate of the system state-vector variable x̂k and of its
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covariance matrix Pk [32]:

x̂k =
NsØ
i=1

xi
k,res (3.54)

Pk =
NsØ
i=1

1
xi

k,res − x̂k

2 1
xi

k,res − x̂k

2T
(3.55)

76



3.5. Unscented Particle Filter

3.5 Unscented Particle Filter
Scrolling through former sections, it emerges a fundamental difference between

Kalman-based solutions (EKF,UKF) and SMC-based algorithms (PF): while in the
former class of Bayesian estimators, even in the more advanced Unscented version,
both state and measurement noises are always treated as zero-mean, additive
Gaussian processes, in PF architectures no assumptions are put neither on the
linearity of the system-state models nor on noise statistics. Consequently, it is
possible to assert that any PF, regardless of the specific implementation details,
delivers a non-parametric estimation over a pre-defined discrete state-space model
[30].
Undoubtedly, the hallmarks of a standard PF can be summarized in the following
two points:

• Monte-Carlo integration, allowing to get a Delta Dirac’s based discrete
approximation of the target system a-posteriori state distribution.

• Importance Sampling assumption, that makes possible the generation of
particles from a simpler and known importance distribution.

These two conditions must be tightly met to guarantee an acceptable estimation
performance.
Focusing the attention on the importance distribution, it has been already pointed
out, in Section 3.4.2, that a proper choice of such density is critical, because it
has a direct impact on the variance of the generated particles and, accordingly, on
the frequency of occurrence of the degeneration phenomenon. Assuming to use
the state-transition density p (xk|xk−1) as importance distribution and observing
Figure 3.4, it may happens that the two curves poorly overlap, implying that
particles are not intrinsically generated in high-likelihood regions. In literature,
different solutions to mitigate this problem are proposed, such as prior editing [41]
and rejection methods [42], which are not discussed here since they are out of the
scope of this thesis.
An interesting alternative, in light of the above, is represented by the UPF.

The true reason which has driven the choice of implementing the UPF-architecture
takes its roots from the possibility of improving the design of a convenient im-
portance distribution based on some goodness criterion. As regards the latter,
it was stated in Section 3.4.2 that the optimal choice for the importance density
would coincide with the state-posterior density which, besides being the object of
the MC-approximation, is often unknown. Hence, in such context, it may seem
appealing the idea of exploiting a Bayesian estimator to produce an acceptably
accurate approximation of the true a-posteriori state density to be used as impor-
tance density in the PF afterwards.
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Among Kalman-based solutions, there is a consistent gap between the EKF and
UKF in terms of accuracy on the estimate of the state a-posteriori statistics (in the
Gaussian assumption, for statistics it is enough to consider the state a-posteriori
mean and covariance). Such difference is highlighted in figure 3.5.

1st ORDER LINEARIZATION – EXTENDED KALMAN FILTER

A-PRIORI MEAN

A-PRIORI COVARIANCE

ESTIMATED MEAN

ESTIMATED 
COVARIANCE

A-POSTERIORI 
COVARIANCE

Deterministic weighted
sigma-points 𝑋𝑋𝑋𝑋 ,𝑊𝑊𝑋𝑋

UNSCENTED TRANSFORM

UT-MEAN

UT-COVARIANCE

A-POSTERIORI 
MEAN

Transformed sigma-points 
�𝑋𝑋𝑋𝑋 ,𝑊𝑊𝑋𝑋

A-POSTERIORI 
COVARIANCE

A-PRIORI COVARIANCE

A-PRIORI MEAN

A-POSTERIORI 
MEAN

Figure 3.5: Difference between the effects of linearization (EKF) and unscented
transformation (UKF) on the mean and covariance statistics in a simplified two-
dimensional problem.

In fact, the EKF implements a first-order approximation of the discrete system
state-space model and the estimates on the state statistics result being biased, as
a consequence of linearization. On the contrary, the UKF is able to capture the
first and second moments of the a-posteriori state variable with an accuracy up
to the 3rd-order, thanks to the propagation of the set of weighted deterministic
sigma-points directly through the process and observation models without any
linearization. This makes the UKF a better candidate for accurate importance
distribution generation within the PF-framework [43].

The new UPF-architecture consists of a baseline PF which exploits, as a feed-
ing stage, an UKF to construct an importance distribution which should be as
much as possible matching with the optimal state a-posteriori distribution.
At each estimation epoch, given the UKF a-posteriori mean and covariance esti-
mates, the PF importance distribution is specified and a new set of particles is
produced. After computing the importance weights associated to these particles,
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the estimates to the posterior state-mean and state-covariance are refined [30].
It is important to notice that, since the importance distribution is redefined at each
algorithm iteration and, correspondingly, a new particle set is created, the resam-
pling step becomes useless in such Bayesian architecture. This is a big advantage
because resampling has, on average, a remarkable impact on the computational
load of the estimation routine.

3.5.1 Unscented Particle Filter algorithm
First of all, the UPF algorithm must be developed according to a pre-defined

discrete state-space representation. To this end, we consider a high-level formulation
such that fk−1, as part of the process model, is a generic linear/non-linear state-
transition function and hk, as part of the observation model, is a generic linear/non-
linear observation function. Mathematically [30]:

xk = fk−1 (xk−1) + vk−1

zk = hk (xk) + wk

(3.56)

where both the process noise sequence vk−1 and the measurement noise vector wk

are considered zero-mean, additive, and with covariance matrices Qk−1 and Rk,
respectively. As a matter of fact, in order for the feeding UKF to produce accurate
a-posteriori state estimates, a good knowledge of the system noise statistics is
strictly necessary, otherwise the filter is prone to divergence and the overall system
performance hugely degrades [16].
Given the aforementioned model and assuming the knowledge of an initial state
x0 with initial distribution p (x0), thanks to the HMM-assumption, the state a-
posteriori mean estimate x̂k−1|k−1 and the state covariance matrix estimate Pk−1|k−1
at previous epoch k − 1 are available, and can be exploited at the current epoch k.
From these parameters, the UT is applied and a set of 2n sigma-points, n being the
state-vector dimension, is deterministically generated according to the following
relations [30]:

χi
k−1|k−1 = x̂k−1|k−1 +

ò
n
è
Pk−1|k−1

é
i
, i = 1, ..., n

χi+n
k−1|k−1 = x̂k−1|k−1 −

ò
n
è
Pk−1|k−1

é
i
, i = 1, ..., n

(3.57)

where
è
Pk−1|k−1

é
i
identifies the i-th row of Pk−1|k−1, while the term

ò
n
è
Pk−1|k−1

é
can be obtained by applying the Cholesky factorization to nPk−1|k−1 [30].
Then, the prediction step can be accomplished. The set of deterministically
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selected samples {χi
k−1|k−1}2n

i=1 is directly propagated through the possibly non-
linear state-transition function fk−1 to obtain the transformed samples [30]:

χi
k|k−1 = fk−1

1
χi

k−1|k−1

2
(3.58)

At this point, the set of transformed samples {χi
k|k−1}2n

i=1 are used to construct the
mean-vector x̂k|k−1 and covariance matrix Pk|k−1 of the a-priori state distribution,
where x̂k|k−1 coincides with the UKF a-priori prediction to the state-vector variable.
Formally [30]:

x̂k|k−1 = 1
2n

2nØ
i=1

χi
k|k−1 (3.59)

Pk|k−1 = Qk−1 + 1
2n

2nØ
i=1

1
χi

k|k−1 − x̂k|k−1
2 1

χi
k|k−1 − x̂k|k−1

2T
(3.60)

Moving to the update step, a new set {χi
k|k}2n

i=1 of 2n sample-points are determin-
istically generated based on the UKF a-priori state mean and covariance estimates
[30]:

χi
k|k = x̂k|k−1 +

ò
n
è
Pk|k−1

é
i
, i = 1, ..., n

χi+n
k|k = x̂k|k−1 −

ò
n
è
Pk|k−1

é
i
, i = 1, ..., n

(3.61)

After that, given the input observation sequence zk, the innovation sequence sk

can be computed as:

sk = zk − ẑk (3.62)

where the predicted measurements, collected in ẑk, are obtained by propagating
the latter new set of sigma-points {χi

k|k}2n
i=1 through the (possibly non-linear)

observation function hk:

ẑk = 1
2n

2nØ
i=1

hk

1
χi

k|k

2

Defining, at epoch k, the measurements auto-covariance matrix Pzz
k and the state-

measurement cross-covariance matrix Pxz
k [30]:
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Pzz
k = 1

2n

2nØ
i=1

1
hk

1
χi

k|k

2
− ẑk

2 1
hk

1
χi

k|k

2
− ẑk

2T
+ Rk

Pxz
k = 1

2n

2nØ
i=1

1
χi

k|k − x̂k|k−1
2 1

hk

1
χi

k|k

2
− ẑk

2T
(3.63)

all the necessary quantities allowing for the computation of the Kalman Gain
matrix Kk are set-up. The latter matrix is constructed in the following manner
[30]:

Kk = Pxz
k (Pzz

k )−1 (3.64)

Eventually, the feeding UKF can construct a discrete-approximation p̂ (xk|z1:k) of
the true posterior state density p (xk|z1:k) using the Delta Dirac’s function:

p̂ (xk|z1:k) = 1
2n

2nØ
i=1

δ
1
xk − χi

k|k

2
(3.65)

Moreover, the a-posteriori state statistics, in terms of mean and covariance, are
retrieved [30]:

x̂k|k = x̂k|k−1 + Kk (zk − ẑk) (3.66)

Pk|k = Pk|k−1 − KkPzz
k KT

k (3.67)

In the UPF, the first two moments (mean-vector and covariance) of the a-posteriori
state-statistics estimated by the UKF, are used to shape a Gaussian importance
distribution N

1
x̂k|k,Pk|k

2
for randomly generating a set {xi

k}Ns
i=1 of Ns particles

[30]:

xi
k ∼ N

1
x̂k|k,Pk|k

2
i = 1, ..., Ns (3.68)

together with a set {wi
k}Ns

i=1 of associated importance weights such that, the i-th
particle weight w̃i

k, is found according to [30]:

w̃i
k =

p (zk|xi
k) · N

1
xi

k|x̂k|k−1,Pk|k−1
2

N
1
xi

k|x̂k|k,Pk|k
2 (3.69)
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In (3.69), the term N
1
xi

k|x̂k|k−1,Pk|k−1
2
simply indicates that a multivariate

Gaussian distribution with mean-vector x̂k|k−1 and covariance matrix Pk|k−1 is
sampled at a point of its support which is coincident with the i-th particle xi

k.
Furthermore, the importance weights are normalized [30]:

wi
k = w̃i

kqNs
i=1 w̃

i
k

,
NsØ
i=1

wi
k = 1 (3.70)

Finally, the set of particles {xi
k}Ns

i=1 and the set of normalized importance weights
{wi

k}Ns
i=1 are used to refine the a-posteriori mean and covariance estimates [30]:

x̂k =
NsØ
i=1

wi
kxi

k (3.71)

Pk =
NsØ
i=1

wi
k

1
xi

k − x̂k

2 1
xi

k − x̂k

2T
(3.72)

From (3.71), it is clear that the refined a-posteriori state mean estimate is calculated
as a weighted average over the set of particles.
A summary of the UPF algorithm is shown in Figure 3.6.
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Figure 3.6: Unscented Particle Filter - Flowchart of the algorithm [30].
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3.5.2 UPF: implementation and details

Having characterized the general anatomy of the UPF, it is now the due time to
discuss its operation and employment within the INS/GNSS TC system context. As
for the definition and characterization of the discrete-time system state-space model,
both in terms of process model and in terms of measurement model, the linear
approximations formalized in (2.3) and in (2.7) are adopted. In particular, referring
to an error-based formulation of the system state-variable (2.1), the discretized
error-state transition model, at k-th epoch, is embodied in the transitional matrix
Fk (2.4), while the observation model is reflected on the observation matrix Hk.
Concerning the statistical characterization of process and measurement noises,
the assumptions of additivity, mutual independence and zero-bias are kept the
same as discussed in previous Sections 3.2.2 and 3.3.2. However, compared to the
framework of Kalman-based estimation applied to INS/GNSS integrated navigation,
it emerges a remarkable difference on handling the statistics of noise affecting input
measurements. In fact, looking back at the class of Kalman filters, both in the
EKF and in the UKF, the residual error components affecting the input raw GNSS
pseudorange and Doppler-shift measurements are directly modelled within the
observation noise covariance matrix Rk by relying on the hypothesis of Gaussianity.
On the contrary, in the UPF, but more broadly in any PF-based scheme, the sta-
tistical modelling of the error on satellite-based measurements is achieved through
the construction of the likelihood distribution p (zk |xk) which, in turns, determines
the importance weight that each particle gets assigned. In this sense, the latter
statement is at the basis of the huge success of PFs for hybrid GNSS-based posi-
tioning applications.

To better grasp the outstanding relevance of the likelihood and the way it re-
flects on the description of the error statistics, let’s consider a generic group of M
visible satellites providing, at epoch k, a set {ρi}M

i=1 of noisy pseudorange measure-
ments and a set {ρ̇i}M

i=1 of noisy Doppler measurements. Knowing, at the same
epoch, the most recently updated inertial solutions to the position and velocity
states of the tracked body-target, it is possible to construct nominal predictions
{ρ̂i}M

i=1 of the satellite-to-user ranges and predictions { ˆ̇ρi}M
i=1 of the satellite-to-user

range rates. Given so, an estimate of the error components affecting both types of
measurements is formed as the residual between the observed and the predicted
quantities. Hereinafter, {ζi}M

i=1 will denote the set of estimates of the pseudorange-
measurement noise samples for the different satellites, while {ζ̇i}M

i=1 will indicate
the set of estimates of the Doppler-measurement errors.
Identifying as pi,ρ the p.d.f. of the i-th satellite pseudorande error and as pi,ρ̇ the
p.d.f. of the i-th satellite Doppler-shift error, and assuming statistical independence
among the measurements, the likelihood associated to a generic particle n can be
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calculated as the product of sampled p.d.f.s associated to each single measurement
[44]:

p (zk|xn
k) =

MÙ
i=1

pi,ρ (ζi) ·
MÙ

i=1
pi,ρ̇

1
ζ̇i

2
(3.73)

From (3.73), the absolute flexibility and superiority of the PF in handling the
statistics of noise affecting input observables is clear; in fact, no assumption is
placed on the specific type of distribution characterizing each pseudorange and
Doppler-shift measurement, thus allowing, at least in principle, to use different
models for different types of measurements (pseudorange or Doppler) and, even
inside the same class of measurements, to potentially employ different statistics
for different satellites. As a matter of fact, such unconstrained variability in deal-
ing with heterogeneous statistics is not feasible in the Kalman framework. Of
course, the only non-negligible condition which must be met is the knowledge of
well-suited models for the measurements. The latter comment, despite appearing
straightforward, pictures out a pivotal point for all those real-time GNSS-based
positioning applications where the noise statistics on measurements are time-variant
and non-ergodic.

In the UPF-algorithm developed as part of this thesis work, the feeding UKF-stage,
which is meant to produce an accurate estimate of the state a-posteriori distribution
to be used later as importance density inside the PF, is implemented following
exactly the same format as that treated in Section 3.3.2. Moreover, within the un-
derlying PF-stage, given a set of particles drawn from the importance distribution,
the likelihood for each particle is computed using (3.73); once the likelihoods for the
different particles are retrieved, the corresponding importance weights are directly
available since the set of particles is re-framed at each iteration and, consequently,
there is no recursive pattern between weights belonging to consecutive epochs.

3.5.3 The State-Splitting concept
This final section aims at discussing on an innovative architectural paradigm

involving PFs which, as a further contribution to this research, has been implemented
and tested in the UPF framework.
In a legacy PF-algorithm, the set of raw GNSS input noisy measurements from
each tracked satellite (pseudorange and Doppler-shift) are jointly combined as in
(3.73) in order to weight the set of randomly generated particles. These samples,
then, are averaged to produce an a-posteriori estimate of the state-variable. That
said, there is an intrinsic fault in the way particle weights are assigned. In fact,
for each particle, they are obtained by constructing a likelihood which mixes
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the information coming from both pseudorange and Doppler-shift measurements.
However, in the context of GNSS-based positioning, pseudorange measurements
only provide information about position and receiver clock-bias, but neither on the
velocity nor on the receiver clock-drift. Oppositely, Doppler-shift measurements
can only supply information about velocity and clock-drift.
In view of the above, it would appear more correct and reasonable that particles,
whose weights are obtained by blending pseudorange measurements, can only
contribute to the determination of position and clock-bias states and, similarly,
that particles, whose weights are computed from Doppler measurements, can only
contribute to estimate the velocity and clock-drift states. Furthermore, in the
framework of a INS/GNSS TC-integrated architecture with indirect configuration,
GNSS-based measurements do not provide any information at all about the inertial
components (inertial sensors errors) included inside the error-state vector.
The idea of the state-splitting method applied to the UPF-algorithm, in the
framework of an integrated INS/GNSS navigation system, would then consist in
the creation of a partition of the error state-vector δx into three components:

• Component including errors on the three-dimensional body position and on
the receiver clock-bias.

• Component including errors on the three-dimensional body velocity and on
the receiver clock-drift.

• Component including any inertial-error state (misalignment errors and three-
axial error terms associated to accelerometers and gyroscopes).

The above partition, clearly, is also propagated onto the set of particles, as they
identify possible realizations of the state-vector itself.
To give some formalism, the three involved segments of the error-state vector can
be indicated as follows:

δxe
ρ =

è
δre

x δr
e
y δr

e
z δtu

é
δxe

ρ̇ =
è
δve

x δv
e
y δv

e
z

˙δtu
é

δxe,b
INS =

è
δÔe

x δÔ
e
y δÔ

e
z, δb

b
a,x δb

b
a,y δb

b
a,z, δb

b
g,x δb

b
g,y δb

b
g,z

é (3.74)

Obtained the above subdivision, the algorithm handles the three components
differently. First of all, since GNSS measurements do not provide any useful inertial
information, δxe,b

INS is just propagated from the UKF-output to the underlying
PF-output without any further refinement. On the contrary, starting from a
common set of particles {δxi}Ns

i=1, two distinct sets of weights {wi
ρ}Ns

i=1 and {wi
ρ̇}Ns

i=1
are generated, the former built upon the set of pseudorange measurements and the
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latter constructed from the set of Doppler-shift measurements. At this point, the
algorithm splits into two separate but parallel branches.
Along one branch, the pseudorange-based partition {δxe,i

ρ }Ns
i=1 of the full set of

particles is propagated and, if needed, resampled according to the group of weights
{wi

ρ}Ns
i=1. Then, the error-state vector component δxe

ρ is estimated by taking a
weighted average over {δxe,i

ρ }Ns
i=1. Along the other branch, instead, the Doppler-

based partition {δxe,i
ρ̇ }Ns

i=1 of the full set of particles is propagated and, if needed,
resampled according to the group of weights {wi

ρ̇}Ns
i=1. Then, the error-state vector

component δxe
ρ̇ is estimated by taking a weighted average over {δxe,i

ρ̇ }Ns
i=1.

Finally, the three estimated partitions are recombined to produce the refined a-
posteriori error-state estimate.
The pseudo-code for the state-splitting strategy is provided in Algorithm 3.
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Algorithm 3 State-Splitting Technique - PseudoCode
Assumptions: Ns particles, Nth = 2

5Ns, M tracked satellites
Require: knowledge of pseudorange-measurement noise samples {ζi}M

i=1 and
of Doppler-measurement errors {ζ̇i}M

i=1

1: for k = 1 : inf do

2: Generate Ns particles: δxj
k ∼ N

1
δxk|k,UKF ,Pk|k,UKF

2
3: for j = 1 : Ns do
4: Split particle j in three components: {δxj

ρ,k, δxj
ρ̇,k, δxj

INS,k}
5: Get Likelihood on pseudoranges: p

1
zρ,k|δxj

ρ,k

2
= rM

i=1 pρ,k (ζi)
6: Compute importance weight on pseudoranges: w̃j

ρ,k = p
1
zρ,k|δxj

ρ,k

2
7: Get Likelihood on Doppler: p

1
zρ̇,k|δxj

ρ̇,k

2
= rM

i=1 pρ̇,k

1
ζ̇i

2
8: Compute importance weight on Doppler: w̃j

ρ̇,k = p
1
zρ̇,k|δxj

ρ̇,k

2
9: end for

10: Compute normalized importance weights on pseudorange: wj
ρ,k = w̃j

ρ,kqNs
j=1 w̃j

ρ,k

11: Compute normalized importance weights on Doppler: wj
ρ̇,k = w̃j

ρ̇,kqNs
j=1 w̃j

ρ̇,k

12: Compute effective sample size on pseudoranges : Neff,ρ = 1qNs
j=1(wj

ρ,k)
2

13: Compute effective sample size on Doppler : Neff,ρ̇ = 1qNs
j=1(wj

ρ̇,k)
2

14: if Neff,ρ ≤ Nth then
15: {δxj

ρ,k}Ns
j=1 = Resampling

1
{δxj

ρ,k}Ns
j=1, {w

j
ρ,k}Ns

j=1

2
16: end if

17: if Neff,ρ̇ ≤ Nth then
18: {δxj

ρ̇,k}Ns
j=1 = Resampling

1
{δxj

ρ̇,k}Ns
j=1, {w

j
ρ̇,k}Ns

j=1

2
19: end if

20: A-posteriori estimate of pseudorange partition: δ̂xρ,k = qNs
j=1 w

j
ρ,kδxj

ρ,k

21: A-posteriori estimate of Doppler partition: δ̂xρ̇,k = qNs
j=1 w

j
ρ̇,kδxj

ρ̇,k

22: Reconstruction of the a-posteriori error-state estimate:
ˆδxk = {δ̂xρ,k, δ̂xρ̇,k, δxj

INS,k}

23: end for
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Chapter 4

Adaptive measurement noise
modelling and pseudorange
pre-processing

4.1 Variance models for GNSS-based observa-
tions

The Bayesian filtering methods discussed in Chapter 3, considered in their
application to discrete non-linear and non-Gaussian state-space models, provide
reliable and highly accurate a-posteriori estimates of the state variable and of
its covariance only in case the prior statistics of both process noise vk−1 and
measurement noise wk are well known [30]. In other words, the performance of
any filtering scheme is not only strongly affected by the degree of truthfulness in
the state-space formulation, which involves the modelling of both the dynamic
system-state evolution and of the relationship between the input observations and
the same state, but it is also strongly conditioned by the statistical characterization
of state and measurement noises.
The latter sentence can be caught thinking about the concept of modelling in
the context of an evolving system; by itself, a dynamic model is a summarized
and simplified representation, in the flavour of a set of mathematical equations,
of a real-world system (e.g. a self-navigating vehicle whose trajectory should be
tracked over time), which is intended to mimic its essential features and the way
such properties modify over time. For instance, the linearized Inertial Navigation
System (INS) mechanization in (2.3) summarizes the time-evolution of the errors
affecting the integrated system inertial states. Therefore, a model, how accurate
it is, can only describe predictable features of the studied system behaviour and,
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besides, it is often necessary to resort to approximations in order to trade some
complexity.
In light of the above, noises become fundamental since they embed most of those
unpredictable aspects that are unknown to the model, as they depend on external
affections, or those system unessential features which are neglected in the model
formulation. Therefore, the more the delineation of noise statistics is precise and
faithful, the higher the accuracy in the estimate of the system states which, in a
positioning context, embed all the variables useful to determine the trajectory of a
moving target.
Based on these premises, the current chapter steers the focus on the noise modelling
task in the context of a Tightly Coupled (TC) INS/Global Navigation Satellite
System (GNSS) navigation unit, putting a stronger effort in the review of state-
of-the-art variance estimation strategies for GNSS-based ranging and ranging-
rate observables. In particular, after a short overview to highlight analogies and
differences in the statistical characterization of both process and measurement noises
inside the integration filter, it is treated a simple but effective parametric approach
for measurements’ covariance estimation. Later on, two adaptive noise-covariance
modelling methods are proposed, seeking for a more flexible Bayesian paradigm able
to promptly mirror the instantaneous changes in the navigated scenario. Eventually,
it is put forward a self-contained, low-complexity pre-processing stage which acts
by automatically reducing unpredictable multipath-related bias injections, hence
reinforcing filter stability in harsh environments. Remarkably important, all the
discussed methodologies operate directly on raw input GNSS measurements and,
as such, are transversally fitting to any Bayesian architecture.

4.1.1 Statistical characterization of process and observation
noises in INS/GNSS system

As already mentioned back in Section 3.2.2, in the framework on an INS/GNSS
TC navigation system, both process and observation noises are usually considered
mutually independent and additive. Nevertheless, there are substantial dissimilar-
ities in the specific description of their statistics, which certainly depend on the
available a-priori information inside the navigation filter.
As far as the process-noise sequence vk−1 (refer to (3.56)) is concerned, a typical
approach is resorting to a zero-mean multi-variate Gaussian characterization. The
zero-mean assumption is sensible because, at each integration epoch, all the de-
terministic effects biasing the inertial components of the system state variable are
compensated for, both through a calibration process operated on inertial sensors
and through a de-noising routine acting on raw accelerometer and gyroscope mea-
surements. Consequently, the residual inertial error components are reasonably
unbiased. As regards the state residual-noise covariance matrix Qk, its elements
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are retrieved through inertial sensors’ calibration and self-alignment processes, and
are continuously updated within the medium-rate INS module (refer to Figure
2.3) [30]. Hence, Qk gets directly constructed from processing raw inertial sensor
measurements and there is no much refinement that can be done on it.
Turning the attention on GNSS measurements, which get engaged in the observation
model (2.7), they are strongly subjected to the environmental effects encountered
along the travelled path. For the bias-term in the observation error, the zero-mean
assumption is still applicable considering that predictable error-sources (satellite
errors, receiver errors, relativistic errors etc.), by agreeing with a certain model,
can be effectively mitigated and, sometimes, even compensated for. However, as
an example, accounting for the problem of estimating and tracking in real-time
the trajectory of a moving vehicular target, there is plenty of impairments whose
induced effects are unpredictable and cannot be handled through the observation
model: multipath errors with uncontrollable bias injections, errors due to interfering
signals, intentionally induced errors (e.g. jamming or spoofing), unpredictable
signal propagation errors etc. [22]. Given so, it turns out that a proper statistical
characterization of measurement-noise wk, besides necessary, is truly more chal-
lenging.
The latter issue could be worked out along two main paths: the identification of
a known statistical distribution which can faithfully approximate the true error-
density, and the formulation of a model for the characterization of the variance of
the error.
As for the first strategy, it is commonly hard to deduce the distribution of noise
affecting GNSS observables, since the related error pattern typically behaves as a
time-variant, non-stationary and non-ergodic stochastic process. Moreover, by re-
stricting the sight on code-based ranging only, multiple pseudoranges are measured
from different RF-signals, broadcast by different satellites, which pursue disjoint
physical paths and are impaired by heterogeneous error-sources. Therefore, it is
likely that the best statistical fit, in terms of noise-distribution, changes among the
various measurements; in such context, only Particle Filters (PFs) can offer enough
flexibility to accommodate multiple density models.
On the other hand, the second strategy is by far more attainable and usually relies
on a simpler Gaussian modelling for the Probability Density Function (p.d.f.) of
the error on both pseudorange and Doppler measurements. Moreover, employing
a common and unified density representation under the zero-mean assumption,
the only parameter which is left out is the measurements’ variance, and it could
be directly featured inside the noise covariance matrix Rk. Consequently, this
technique is truly versatile and there are no limitations for its applicability in the
framework of the various Bayesian architectures presented in Chapter 3.
Before going ahead, it is worth pointing out that the characterization of the variance
of input observations is managed well differently between Kalman-based estimators
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and PFs. Indeed, in the former class, variance modelling is operated within the
measurement noise covariance matrix which, in turns, has an impact on the estima-
tion of the Kalman gain matrix Kk; on the contrary, the latter class keeps the noise
characterization implicit in the definition of the likelihood distribution p (zk|xk)
which, overall, has a direct contribution in the weighting of the different particles.
In light of the above, the different strategies which are going to be investigated
in the following sections are all oriented to the construction of matrix Rk. In
particular, the forthcoming discussion presents the multiple approaches according
to an ascending order in terms of computational load added to the integration
algorithm.

4.1.2 Measurement weighting Based on Carrier-to-Noise-
density ratio

The modelling and characterization, directly inside the covariance matrix Rk, of
the variances of the errors affecting GNSS-measurements, can be conceptually visual-
ized as a weighting scheme applied to the input observations. The underlying theory
supporting the latter statement reminds to the Weighted Least-Squares (WLS)
strategy for an unbiased system state-estimate (Section 1.3.2), where variances
become primary indicators useful to discriminate the quality of input observables.
Structurally, Rk is typically a diagonal matrix with switching size over consecutive
GNSS-epochs. The variability in size is due to the change in the number of tracked
satellites over time, which depends on the instantaneous characteristics of the
external environment. With regards to the diagonality property, it is a simplifying
assumption that drastically neglects the existing correlations between pseudorange
errors from different satellites [1]. Nonetheless, especially for code-based ranging,
it is a well-established and commonly accepted hypothesis which, in GNSS-based
positioning, eases the measurement-error characterization. Given so, on the main
diagonal of Rk, all the estimated variances of the input observables are placed. It
follows that, when applying such matrix in the update step of a Unscented Particle
Filter (UPF) routine where the measurements auto-covariance Pzz

k computation
(refer to (3.63)) is involved, the diagonal elements act as weights on the correspond-
ing measurements.
The previous remarks are pivotal to drive the rationale in the formulation of a
variance model. In fact, the latter must rely on some quantities that, by their
values, can soundly reveal the expected quality of a given incoming pseudorange
or Doppler-shift measurement. In other words, it is necessary to look for some
parameters that could allow the algorithm to infer, even roughly, the potential
impairments that may have impacted, more or less heavily, on the various signals
measurements have been extracted from.
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For high-precision PNT, satellite elevation dependent weighting represents a valu-
able solution, as the impact of error-sources is inversely proportional to the satellite
elevation [45]. Thinking about a satellite at the Zenith (90° elevation), for example,
the broadcast signal travels the shortest distance to reach a terrestrial user and
it is highly probable for the GNSS-receiver tracking-loop to lock on the direct
ray. Oppositely, considering a low-elevation satellite in deep urban navigation
conditions, it is well likely the onset of strong multipath with potential tracking of
Non-Line-of-sight (NLOS) signal reflections.
An alternative valuable indicator is represented by the Carrier-to-Noise-density
ratio (C/N0), which expresses the ratio between the received carrier power and the
noise power, normalized with respect to frequency. In general, it can provide a
bandwidth-independent assessment of the quality of the received signals from each
of the different tracking channels.
Given that it seems to exist a higher correlation between the spread of the obser-
vation error and the C/N0 values, at least for code-based ranging measurements,
then [45] suggests a variance model for weighting GNSS observables based on such
parameter. Considering, by now, only pseudorange measurements, the model, in
terms of the pseudorange-noise covariance matrix Rρ,k, can be formalized as follows
[45]:

Rρ,k =



σ2
ρ1 0 0 . . . 0
0 σ2

ρ2 0 . . . 0
0 0 σ2

ρ3 . . . 0
... ... ... . . . ...
0 0 0 0 σ2

ρNsat

 (4.1)

where the i-th diagonal element, representing the variance weight associated to the
pseudorange measurement from the i-th tracked satellite, can be computed as [45]:

σ2
ρi

= a + b · 10
− C
N0
10 (4.2)

It is important to highlight that the aforementioned variance characterization is
valid as long as GNSS range-measurements can be considered statistically indepen-
dent, zero-mean and normally distributed. Indeed, these are common underlying
assumptions at the basis of the observation models adopted in the framework of
Kalman-based estimation.
As a matter of fact, (4.2) defines a parametric model with a very low complexity,
since it suffices to determine suitable values of two scalar factors, a and b, in order
to achieve a full statistical description of the errors on the noisy measurements. In
particular, the magnitudes of these model parameters are strongly related to the
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external environment and vary depending on the degree of corruption in the received
ranging signals. For navigation in open-sky areas or even in mild urban scenarios,
multipath effects and other major impairments are expected to be weak and to
slightly degrade the quality of the received signal. Consequently, the standard
deviation of the unbiased pseudorange observation should be small, and satisfactory
values for the two constants are found to be: a = 10 m2 and b = 1502 m2Hz [45].
On the contrary, for navigation in harsh environments (e.g. canyons) within a
highly-reflective context, the average signal attenuation and degradation are higher
and it is necessary to use different parameter values to preserve a good fitting of
the model to the standard deviation of the observation error. Good values are
found to be: a = 500 m2 and b = 106 m2Hz [45].
So far, only pseudorange variance modelling has been accounted for and Doppler
measurements have not been examined yet.
In general, the variance model (4.2) can be extended, without major forcing, to
cover the characterization of the statistics of pseudorange-rate measurements, as
well. In this sense, the only requirement which is put on Doppler measurement noise
involves the agreement with zero-bias, additivity and Gaussianity assumptions.
Following a similar approach, it is possible to lay out a Doppler-error covariance
matrix Rρ̇,k [45]:

Rρ̇,k =



σ2
ρ̇1 0 0 . . . 0
0 σ2

ρ̇2 0 . . . 0
0 0 σ2

ρ̇3 . . . 0
... ... ... . . . ...
0 0 0 0 σ2

ρ̇Nsat

 (4.3)

where σ2
ρ̇i = a + b · 10

− C
N0
10 is computed identically to the former model (4.2). That

being stated, a change in the type of measurement which is modelled, reasonably
requires a change in the parametrization. For lightly degraded environments,
acceptable values for the scalars are: a = 0.01 m2/s2 and b = 25 m2Hz/s2

[45]. Instead, when moving to environments involving a strong signal quality
deterioration, the values modify to: a = 0.001 m2/s2 and b = 40 m2Hz/s2 [45].
Finally, the combination of Rρ,k and Rρ̇,k leads to the construction of the usual
measurement-error covariance matrix Rk which is involved in the observation model
definition:

Rk =
C

Rρ,k 0Nsat×Nsat

0Nsat×Nsat Rρ̇,k

D
(4.4)

Reached this point, it has been understood that two important indicators can
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be exploited to drive a proper statistical weighting for the errors affecting GNSS-
measurements: satellites elevation and C/N0 density ratio.
Thus, an appealing idea would be that of developing a slightly more sophisticated
variance model that can jointly combine both metrics. The latter task is readily
achieved by expanding, without altering the parametric structure, the C/N0-based
model, in order to include the information on satellite elevation. The resulting
observation weighting, presented in [27], is the following:

σ2
ρi

= a + b · 10
− C
N0
10

sin (γi)
(4.5)

where γi corresponds to the i-th tracked-satellite elevation angle, in degrees.

4.1.3 Residual-based Adaptive Covariance estimation
In the Bayesian framework applied to an INS/GNSS integrated positioning

system, the navigation filter estimation performance is mainly concerned with the
degree of accuracy in the approximation of the true travelled trajectory and of the
involved sensors errors, by relying on some information about the system dynamics
and the measurements. Indeed, in order for the filter to provide reliable a-posteriori
estimates of the quantities involved in the system state-vector, a precise-enough
knowledge of the a-priori statistics involving both process and observation noises
is strictly demanded [30]. As regards the system state noise, according to what
has been discussed in Section 4.1.1, its stochastic characterization can be supposed
known both in terms of density distribution and in terms of variance description.
By the way, focusing on observation noise, the description of its statistics is much
more challenging because they may change depending on the specific type of appli-
cation and, in general, being influenced from the instantaneous properties of the
external environment, they do not satisfy neither the stationarity nor the ergodicity
assumptions. Given so, insufficiently known prior statistics on both noises would
have the effect of worsening the accuracy on the state-estimate with the injection
of some bias, and would even lead to potential filter divergence [46].
In light of previous comments, integration algorithms employing static or semi-
static variance models (Section 4.1.2) may end up being ineffective in estimating
poorly-observable states (e.g. attitude) or may suffer from abrupt changes in the
physical environment.

An adaptive filter weakly relies on a-priori statistical information and aims at
enhancing the estimation performance by exploiting the learning process based
on the sequence of input innovations [46]. Moreover, thanks to a continuous and
dynamic adaptation of the statistical information, any modification of the external
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environment directly reflects on noise and on its stochastic properties. In the
following, considering a standard Extended Kalman Filter (EKF) implementing the
fusion algorithm, an innovation-based adaptive scheme is proposed and, in the final
part of this section, its implementation within the UPF (Section 3.5) is explored.
In the Innovation-based Adaptive Estimation (IAE) approach, the adaptation is
operated directly on the observation-error covariance matrix Rk [46]. Considering
a generic estimation epoch k , the innovation sequence vk is, by definition, the
residual between the set of input noisy observations, collected in the measurement
vector zk, and the set of a-priori predicted measurements, collected in the prior
observation sequence ẑk. Formally:

vk = zk − ẑk = zk − hk

1
x̂k|k−1

2
(4.6)

where hk identifies a non-specific observation model as part of a discrete state-space
formulation, while x̂k|k−1 corresponds to the EKF a-priori (predicted) state esti-
mate.
Starting from the evaluation of the innovation sequence vk, the statistical informa-
tion stored within the observation error covariance matrix Rk can be adjusted as
[46]:

R̂k = Ĉvk − HkPk|k−1HT
k (4.7)

where Hk identifies the observation matrix coming from the EKF linearization
of the observation model hk, Pk|k−1 corresponds to the estimated a-priori state
covariance matrix, and Ĉvk is the estimated innovation covariance matrix [30].
The latter is simply defined as [46]:

Ĉvk = 1
N

kØ
j=j0

vjvT
j (4.8)

and is retrieved by averaging, over a sliding window of length N , the auto-
correlations of the various innovations, from the last enclosed past epoch at k−N+1
up to the present epoch k.

The presented IAE method, although its mathematical validity, turns out to
be quite unsuitable when selected for adaptive estimation in a INS/GNSS inte-
grated system. In fact, focusing on (4.7), the subtraction operation may cause some
numerical instability. More precisely, if the updated estimate of the measurement-
noise covariance Rk ever contained some negative diagonal elements, then the
integration filter would diverge.
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The straightforward solution to this problem involves the substitution of the
innovation-sequence vk by the residual-sequence, leading to the formulation of a
Residual-based Adaptive Estimation (RAE)-method.

In RAE scheme, the residual sequence rk is defined according to:

rk = zk − ẑk = zk − hk

1
x̂k|k

2
(4.9)

In practice, rk coincides with the difference-sequence between the input raw mea-
surements, collected in zk, and a prediction ẑk of the observables based on the
a-posteriori (updated) state-estimate

1
x̂k|k

2
from the EKF. Considering residuals in

place of innovations, the mathematical model for the measurement-noise covariance
update becomes [46]:

R̂k = Ĉrk + HkPk|kHT
k (4.10)

where the only difference with respect to the IAE approach is represented by the use
of the a-posteriori estimated state-covariance Pk|k to replace the a-priori covariance
Pk|k−1. Moreover, in this context, Ĉrk represents the residual error covariance
and it is computed identically as in (4.8), by just substituting innovations with
residuals.
Analyzing (4.10), it is plain to see that the use of residuals solves the instability
issue inside the filter by transforming the subtraction operation into an addition,
hence making mathematically impossible to have negative diagonal entries in R̂k.
However, a second minor issue arises. By looking at the covariance update in the
RAE-scheme, there is a dependence on the a-posteriori state covariance Pk|k. The
problem is that, according to the equations involved in the update-step of the
general EKF algorithm (Section 3.2.1), the derivation of Pk|k indeed requires the
availability of Rk. To overwhelm this obstacle, the idea is to use the most-recent
past estimated covariance R̂k−1 to approximate the true observation covariance Rk

for retrieving Pk|k. Such approximation is not restricting; R̂k tends to vary slowly
over time since it depends on Ĉrk which, in turns, comes from an average over a
temporally sliding window [30].

An application of the RAE-method can be found in the UPF (Section 3.5.1), in
the aim of introducing an adaptive estimation of the measurement error covariance
Rk which is employed in the update step of the feeding Unscented Kalman Filter
(UKF) stage. The resulting Bayesian architecture, whose algorithmic flowchart is
presented in Figure 4.1, is referred to as an Adaptive Unscented Particle Filter
(AUPF).
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It is important to remark that the covariance update equation (4.10) has been
derived in the EKF framework. For the UKF, a modification is required [30]:

R̂k = Ĉrk + Pzz+
k (4.11)

where Pzz+
k is defined as [30]:

Pzz+
k = 1

2n

2nØ
i=1

1
hk

1
χi

k+|k

2
− ẑk+

2 1
hk

1
χi

k+|k

2
− ẑk+

2T
(4.12)

and ẑk+ = 1
2n

q2n
i=1 hk

1
χi

k+|k

2
, with χi

k+|k being the i-th sigma-point drawn from
the UKF a-posteriori estimates {x̂k|k,Pk|k} (refer to (3.66) and (3.67)).
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Figure 4.1: Adaptive Unscented Particle Filter (AUPF) - Flowchart of the
algorithm with the adaptive part surrounded by a red-dashed line [30].
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4.1.4 Adaptive Noise model based on Redundant Measure-
ments

In the framework of INS/GNSS TC navigation systems, adaptive filtering meth-
ods which dynamically tune and update the error statistics characterizing input
observables, are potentially useful for improving system performance, both in terms
of state-estimation accuracy and in terms of system robustness. Indeed, an adaptive
measurement-error estimation allows to finely track the evolution of the signals
quality for different satellites and to enhance the effectiveness in coupling the two
navigation sensors. The previous sentence well depicts the scenarios which are en-
countered in real navigation applications. When navigating in challenging contexts,
such as downtown roads, satellites suffer from blockages and the GNSS-receiver
might easily loose their tracking. When this happens, it is commonly observed,
throughout the epochs preceeding the satellite loss, an average increase in the error
affecting the code-based pseudorange and Doppler-shift measurements retrieved
from that satellite. Moreover, this increase in the observation noise variance typi-
cally reflects onto the other visible satellites too [47]. Consequently, error-dynamics
are apparently unstable as the result of the environmental instability, and on-line
covariance estimation identifies one smart approach to guarantee flexibility when
modelling observation noise inside a filter.
The IAE and RAE methods, presented in former Section 4.1.3, represent the most
popular solutions to adaptively tune the noise covariance R̂k. Despite promising
good performances, these approaches hide a relevant pitfall. In fact, the mathemat-
ical model allowing to update the variances of GNSS-based observables depends
on the state-vector and, in particular, on the estimates of its first two moments
(mean and covariance). Thus, if the latter are biased, this may reflect on noises’
characterization and, correspondingly, the filter estimation performance would be
degraded.
To overcome the aforementioned weakness, this section presents an alternative
Redundant Measurement Noise Covariance Estimation (RMNCE) scheme, which
adaptively tunes observation noise statistics by relying on redundant information
obtained from two independent measurement systems [48]. The main advantage
of the RMNCE approach is in that the noise variance modelling is strictly based
on measurements themselves and is fully independent from the system states and
their related errors [48].

The idea at the basis of the RMNCE-method is the following: if there exist
two redundant measurements for the same signal (the same quantity) such that
they have uncorrelated zero-mean noises, the variances of such noises can be esti-
mated based of the difference between the two measurements [48].
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Specifically, let’s consider Z1 (k) and Z2 (k) two independent redundant measure-
ments, coming from two different systems, of the same quantity Zk. These observ-
ables can be expressed as follows [47]:

Z1 (k) = Z (k) + S1 (k) + V1 (k)
Z2 (k) = Z (k) + S2 (k) + V2 (k)

(4.13)

where S1 (k) and S2 (k) represent the unknown systems noises, while V1 (k) and
V2 (k) identify the independent zero-bias noises affecting the measurements.
For both systems’ measurements, it is possible to define [48] First-Order Self-
Differences (FOSDs) ∆Z1 (k) and ∆Z2 (k) according to the following relations:

∆Z1 (k) = Z1 (k) − Z1 (k − 1)
∆Z2 (k) = Z2 (k) − Z2 (k − 1)

(4.14)

and, by assuming that Si (k) − Si (k − 1) Ä 0, it is possible to write:

Z1 (k) − Z1 (k − 1) = [Z (k) − Z (k − 1)] + [V1 (k) − V1 (k − 1)]
Z2 (k) − Z2 (k − 1) = [Z (k) − Z (k − 1)] + [V2 (k) − V2 (k − 1)]

Observing (4.14), it can be understood that the FOSD is nothing else than a
discrete approximation of the first-order derivative of each redundant measurement
with respect to epoch-time k. Hence, ∆Z1 (k) and ∆Z2 (k) incorporate information
about the change of each observable between consecutive epochs.
Moreover, a Second-Order Mutual Difference (SOMD) ∆Z1,2 (k) can be defined
[48]:

∆Z1,2 (k) = ∆Z1 (k) − ∆Z2 (k) (4.15)

which only depends on the noises affecting the redundant measurements and ex-
presses the residual between their discrete derivatives.

Given the above relations, the variances of redundant measurements from both
systems can be obtained simultaneously and are given by [48]:
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(4.16)

where E
1
∆Z1,2 (k) ∆ZT

1,2 (k)
2
, E

1
∆Z1 (k) ∆ZT

1 (k)
2
and E

1
∆Z2 (k) ∆ZT

2 (k)
2
are

the discrete auto-correlations, at k-th epoch, of ∆Z1,2 (k), ∆Z1 (k) and ∆Z2 (k)
respectively.
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From (4.16), the absolute gain of the RMNCE approach over the traditional IAE
and RAE methods pops up: for both systems, the mathematical model for the
estimation of observable variances depend solely on measurements and is totally
independent from the system-state. Thus, any bias or inaccuracy in the estimate of
the system state-variable does not propagate in the statistical characterization of the
observation error. Furthermore, the variance estimate is immune to measurement-
system errors and can be retrieved from FOSD and SOMD [48].
The preliminary assumption behind the RMNCE-method requires the existence
of two independent systems which can guarantee redundancy of measurements,
that is two systems providing simultaneously two measurements of the same target
quantity having stochastically independent noises. That said, a TC-integrated
INS/GNSS system seems to be perfectly tailored to such premise. In fact, on one
hand, GNSS can directly supply noisy pseudorange and Doppler observables to the
fusion algorithm while, on the other hand, based on the most recently updated
INS estimates to the body inertial position and velocity, it is possible to indirectly
retrieve estimates of the same quantities. Thus, GNSS and INS can be assigned
the two aforementioned systems.
The method presented so far can already be applied inside the integration filter for
a tightly-coupled architecture in order to estimate the variances of pseudorange and
pseudorange-rate noises. However, few further refinements can still be achieved.
First of all, considering the variability of the external environment along the
travelled trajectory, it is very likely that, for the same measurements obtained from
the same satellite signal, the noise distribution varies over time. Given so, it would
be mindful to average the estimation of the autocorrelations involved in (4.16) over
an observation window which can be made sliding along the encountered epochs.
The use of a sliding window allows to track the real-time noises more accurately
and to mitigate the effects of historical information [47].
Additionally, provided that a windowing scheme is adopted, it would be relevant
to monitor the stability behaviour of each tracked satellite inside the same window.
In this sense, a highly fluctuating satellite whose tracking is lost several times,
should not contribute to the noise characterization since, with high probability, it
would induce an overestimation of the measurement variance. Conversely, a stable
satellite through the entire window length would represent a good candidate for the
noise variance estimation. Finally, when the RMNCE-method is applied, assuming
a number Nsat of tracked satellites at k-th epoch, the estimated covariance R̂k on
pseudorange and pseudorange-rate measurements noise can be constructed as in
(4.4).
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4.2 Code-range pre-processing for multipath mit-
igation

Previous sections have been devoted to the analysis and characterization of
multiple techniques which can be effectively used, in the context of a tightly-
integrated INS/GNSS system, to implement a statistical weighting, directly inside
the navigation filter, of the set of input noisy GNSS-observables. These methods,
with different degrees of complexity, address on-line tracking of measurement-noise
statistics’ dynamic evolution in the view of achieving an adaptation of the stochas-
tic information inside the filter such that it can promptly mirror the changes in
the external environment. Anyway, however sophisticated and state-independent
they are, such techniques are still rather weak to ensure filter robustness and
high-accuracy positioning when navigation is pursued in challenging environments
strongly affected by multipath.

Multipath propagation is very common when travelling dense urban areas with
poor satellite visibility, low elevation angles and heavy RF-signals’ obstructions; it
involves the reception, by the GNSS receiver front-end, of several NLOS replicas of
the direct signal rising from scattering phenomena caused by the same waveform
impinging on buildings and trees (more in general, physical obstacles located in the
environment). These reflected components, especially those arising from nearby
objects and coming to the receiver with nanosecond delays w.r.t. the direct path
(near echoes), are likely to induce a distortion of the correlation peak between
the composite signal (Line-of-sight (LOS) part plus multipaths) and the locally
generated replica within the receiver. Consequently, the true peak gets masked,
thus leading to the injection of a considerable bias-error term in the measured
pseudorange. On top of that, when the shadowing effect is stronger on the direct
path, the received power of scattered contributions could even be higher than that
of the LOS signal, hence misleading the tracking loop which locks on multipaths.
Furthermore, the interfering multipath contributions have different phases and,
after they combine at the receiver front-end, the phase of the composite signal
(inherently related to its delay) reflects on the correlator whose code-based range
measurement might be higher or smaller with respect to the true range [49]. It
follows that, considering the problem of estimating and tracking the trajectory of a
body which is continuously in motion, multipath certainly represents the harshest
error-source for GNSS-based positioning, and its mitigation is quite difficult as a
consequence of the uncontrollability of the phenomenon and the unpredictability
of its effects.
As a contribution to the research carried on throughout this thesis project, a novel
pseudorange pre-processing technique has been conceived in the framework of
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the considered TC navigation system, seeking for an effective and low-complexity
strategy allowing to counteract multipath and, correspondingly, to enhance the
accuracy performance in the estimation process. In particular, this method arises
from some empirical assessment done on a dataset involving real INS and Global
Positioning System (GPS) data, where the integrated navigation software detailed
in Section 2.2.4, running an EKF-based fusion routine, has been tested in the
trajectory estimation for a moving vehicle. Moreover, for the same dataset, a highly
accurate ground-truth is available. The latter has been obtained from a multi-
constellation GNSS receiver, belonging to the Novatel OEM7-family, which com-
bines a tactical-grade Inertial Measurement Unit (IMU) with Real-Time Kinematic
(RTK) technique in order to supply real-time PNT at sub-centimetre accuracy level.

The basic idea is to start from the set of noisy GNSS pseudorange measurements
which are supplied to the navigation filter input at each integration epoch. For
sake of precision, it is remarked here that only code-based range measurements are
considered, which greatly suffer from multipath effects. Referring to an error-based
formulation of the hybridized architecture (Section 2.2) and assuming M tracked
satellites at epoch k, the Bayesian integration filter does not directly plug the
raw pseudorange measurements inside the observation model (2.7), but priorly
retrieves a set of pseudorange error-samples {ζi,k}M

i=1 using, as references, the last
INS-estimates to the position and velocity states of the moving target. To give
some mathematical formalism, the following quantities are identified:

• ρGNSS
i,k , which represents the GNSS code-based pseudorange measurement from
i-th satellite at epoch k.

• ρINS
i,k , which represents the INS prediction to the range between user and

satellite i at epoch k.
Then, for satellite i, the measured pseudorange error ζi,k is obtained through the
following difference:

ζi,k = ρGNSS
i,k − ρINS

i,k (4.17)

Moreover, thanks to the availability of a sub-centimetre accurate ground-truth
position fix at every GNSS epoch, it is possible to simultaneously construct, for
each visible satellite, the true user-to-satellite range. In particular, accounting for
satellite i, it is calculated as:

Ri,k =
ò1

xtrue
i,k − xi,k

22
+
1
ytrue

i,k − yi,k

22
+
1
ztrue

i,k − zi,k

22
(4.18)

where
1
xtrue

i,k , ytrue
i,k , ztrue

i,k

2
represents the ground-truth 3-D position estimate and
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(xi,k, yi,k, zi,k) the i-th satellite position, both expressed in Earth-Centered Earth-
Fixed (ECEF) coordinates at epoch k. Given so, it can be extracted a set of true
pseudorange error-samples {ζ̄i,k}M

i=1 such that, for satellite i, the following relation
holds:

ζ̄i,k = Ri,k − ρINS
i,k (4.19)

where the INS-based range is meant again as the reference observable.
Thus, to summarize, at each integration epoch and for each tracked satellite,
the INS range is used as center of gravity to generate both pseudorange-error
estimates {ζi,k}M

i=1 using raw GNSS-observables and nearly-exact error-samples
{ζ̄i,k}M

i=1 exploiting ground-truth fixes.
The two groups of pseudorange error-samples, {ζi,k}M

i=1 and {ζ̄i,k}M
i=1, are evaluated

for all the epochs involved in the simulated trajectory and their temporal trends
are shown in Figure 4.2. The choice of Pseudo Random Noise (PRN) sequence 32
is totally arbitrary and it is justified by the purpose of selecting a satellite which is
almost always visible, and hence tracked, throughout the whole trajectory course.
Moreover, Figure 4.3 shows the same pseudorange-errors’ trends when taken in
absolute value.
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Figure 4.2: Comparison between measured pseudorange error sequence (blue-
curve) and the true range-error sequence (red-curve). The results are based on raw
ranging observables from GPS PRN 32.

From a qualitative perspective, a similar behaviour can be assessed between the
two error sequences; this is particularly visible both in the range between epochs
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Figure 4.3: Comparison between measured pseudorange error sequence (blue-
curve) and the true range-error sequence (red-curve), both considered in absolute
value. The results are based on raw ranging observables from GPS PRN 32.

600 and 1000, where the time-series evidence an abrupt increment of the ranging
error, and towards the end of the trajectory, after epoch 1300.
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Figure 4.4: Cross-correlation between measured pseudorange error sequence and
true range-error sequence obtained from ground-truth. The results are based on
raw ranging observables from GPS PRN 32.
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To quantitatively investigate on their degree of resemblance, the measured and true
ranging-error sequences have been cross-correlated (numerically) and the outcome
is shown in Figure 4.4. From analyzing the experimental values, it turns out that
the main peak of the normalized correlation exceeds 0.7, which is a good indicator
level for medium-to-high correlation.

The presented results set as important benchmarks useful to suggest some strategy
allowing to effectively mitigate multipath, which is the major candidate phenomenon
contributing to the increase in the ranging-error variance. In particular, some
interesting remarks can be disclosed. First of all, the similarity in the temporal
evolution between the two error sequences is a good evidence of the stability of
inertial measurements. In fact, if the drifting effects of the IMU were considerably
strong, then the ground-truth based pseudorange error sequence would result being
uncorrelated from the other sequence since the inertial drift behaves as an accumu-
lating bias-term over time. Actually, observing Figure 4.2, an average low inertial
drift is indeed present and its effect is visible from the noise-like oscillation pattern
having nearly null mean value. Overall, in the framework of the implemented TC
navigation system, although relying on a low-cost MEMS-based mass-market grade
IMU, the INS proves to behave stably and can be successfully used as reference for
the computation of the measurement errors.
As a second point, by looking again at Figure 4.2, there are some discrete-time
intervals where the swing of the error increases and the trend becomes more peaked.
These effects are very likely provoked by multipath. In fact, as discussed at the
beginning of the present section, multipath induces a systematic error (a bias)
in the measured pseudorange. In other words, if there were no multipath and
the only errors, after bias compensation, were caused by the IMU-drift plus some
residual stochastic noise, then the amplitude of the pseudorange error would be
small and the average null (unless in case of sensor bumping or excessive strains, it
is reasonable to assume that inertial drift cannot induce considerable biases thanks
to multiple robustness strategies operated on the IMU, such as sensor calibration,
temperature compensation etc.). However, the effect of these spikes is exactly that
of increasing the average amplitude of the error and, besides, their occurrence is
absolutely irregular. To better catch the meaning of the last sentences, it may be
helpful to examine Figure 4.5, where it is plotted the absolute difference between the
two involved pseudorange error sequences. In those sectors of the trajectory which
suffer from stronger multipath effects, the difference between the two pseudorange
errors becomes higher and peaked with an increase both in the magnitude of the
error and in its cumulative average.
In light of the above, the joint combination of all these comments suggests that a
sensible approach to mitigate the effects induced by multipath would be attenuating
(and even cutting) the peaks in the measured pseudorange error sequence, whenever
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Figure 4.5: Residual sequence between GNSS-based pseudorange error and
reference range error obtained using the ground-truth. The results are based on
raw ranging observables from GPS PRN 32.

they occur, without affecting the low-frequency zero-mean noise-like pattern which
is due to a blending of inertial bias-drift, inertial data noise plus some unknown
residual contributions. To tell it differently, a profitable approach against multipath
involves, on one hand, the containment and reduction of the amplitude of the
pseudorange error in those sectors of the trajectory where multipath-related bias
injection is stronger with several spikes induced in the measured error sequence
and, on the other hand, the preservation of the low frequency oscillating pattern.

With this in mind, in the remainder of this section it is proposed a self-contained,
low-complexity pre-processing strategy able to operate on-line mitigation of unde-
sired multipath-bias injections without inhibiting the structure of the hybridization
routine. To keep some mathematical and lexical formalisms, hereinafter ζi is going
to indicate the measured (observed) pseudorange error-sequence based on raw
GNSS ranges from satellite i, while ζ̃i will refer to the smoothed error-pattern after
pre-processing is applied. Specifically, ζi,k and ζ̃i,k will indicate the observed and
smoothed error-samples at k-th epoch, respectively.
The originally conceived idea to achieve multipath reduction involved a parametric
strategy based on first-order derivative which, by its nature, brings information
about the measured error-variation between consecutive GNSS-epochs. Specif-
ically, such method was meant to trigger instantaneous jumps of the observed
error-sequence ζi, for each tracked satellite i, possibly induced by multipath; their
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mitigation, then, could be operated in an on-line fashion, that is by just relying on
the difference between the newly observed error-sample ζi,k, at current epoch k, and
on the last measured error-sample ζi,k−1, at previous epoch k − 1. Despite cutting
high-valued spikes, the smoothed sequence ζ̃i turned out to be largely flattened in
the low-error segments, thus being violated the low-frequency noise-like component
characterizing the original sequence ζi.
Based on the former qualitative assessment, it has been elaborated an alternative
approach proving to better fit with the aforementioned pre-requisites on the ex-
pected features of the smoothed error-trend. The idea is to implement a real-time
multi-level scaling of the measured pseudorange-error conditional to some parameter
σth tunable in real-time. In fact, the latter quantity, once properly initialized at
system bootstrap and adjusted at every GNSS-epoch, allows to define multiple
levels (i.e. ranges) of pseudorange error magnitudes, symmetric for positive and
negative values, each of which is proportionally assigned a scaling factor. Then, at
each integration epoch k, depending on the range where ζi,k is observed to fall, the
scaling term associated to that level is applied to get the smoothed error-sample
ζ̃i,k. In this way, the original measured error-pattern is not distorted and, besides,
the adoption of an incremental scaling over multiple error-stripes guarantees both
the abortion of spikes and the preservation of the low-frequency behaviour. Clearly,
σth, as a tunable factor, establishes the impact of such pre-processing operated on
the observed error-sequence. In fact, if a small value of σth is selected, then, for the
same value of ζi,k, the scaling is proportionally stronger (reducing σth has the effect
of shifting the error-ranges towards smaller magnitudes) and peaks are severely
cut-off; contrarily, if a higher value of σth is adopted, the error-scaling is softer
and a weaker attenuation of the spikes is achieved. Furthermore, for those epochs
where the measured error-sample is acceptably small, that is when multipath effect
is evanescent and doesn’t cause an increase in the pseudorange error variance, the
pre-processing routine is suspended.
To offer a deeper insight on such mitigation technique, a pseudocode is supplied
in Algorithm 4. Moreover, Figure 4.6 shows an example of the effect of this
low-complexity pre-processing algorithm in smoothing the measured pseudorange
error-sequence. Evidently, in those GNSS-epochs where multipath-related bias
injection is stronger the error-peaks are attenuated but not completely zeroed,
while in those segments characterized by small error-magnitude the measured and
smoothed error-trends are perfectly matching because no compensation is applied
(case for p = 1 in Algorithm 4).
The envisioned methodology bears multiple advantages. First of all, it allows to
operate a real-time pre-processing of the pseudorange error ζi as it is measured,
without involving any latency or requiring some extra buffering to keep memory
of measured range-errors in previous epochs. Secondly, by operating a simple
proportional scaling of the instantaneously observed error-sample ζi,k, the added
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Figure 4.6: Comparison between measured and smoothed pseudorange error
trends. The results are based on raw ranging observables from GPS PRN 32.

amount of computational burden inside the filtering algorithm is rather negligible.
Furthermore, the developed multipath mitigation scheme is totally self-contained.
Indeed, it directly operates on the measured pseudorange error at each epoch, and
it does not need to rely on some aiding measurement neither of the same quantity
nor of another quantity (for instance, Hatch filters require carrier-phase based
pseudorange measurements or Doppler-error measurements). Last, but not least,
the proposed solution is flexible because it applies transversally, as an independent
module, to all the different Bayesian integrated architectures discussed in Chapter
3, without inhibiting the normal flow of the hybridization routine.
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Algorithm 4 Pseudorange pre-processing (indirect formulation) for INS/GNSS
TC-integrated navigation system - pseudocode

Assumptions:

• M tracked satellites at epoch k

Require:

• Knowledge of GNSS code-based pseudorange measurements {ρGNSS
i,k }M

i=1 at
epoch k.

• Knowledge of INS predictions to user-to-satellite ranges {ρINS
i,k }M

i=1 at epoch
k.

• Knowledge of the cumulative mean of pseudorange error-samples {µi,k−1}M
i=1

at past epoch k − 1.
• Value selection for tunable parameter σth.

1: for k = 1 : inf do

2: Compute (measured) pseudorange error-samples {ζi,k}M
i=1 at epoch k:

ζi,k = ρGNSS
i,k − ρINS

i,k

3: for i = 1 : M do

4: Define f (ζi,k, µi,k−1, σth, p) = |ζi,k − µi,k−1| ≤ 2p · σth

5: if f (ζi,k, µi,k−1, σth, p = 5) then
6:

ζ̃i,k = ζi,k

2p−1

7: else if f (ζi,k, µi,k−1, σth, p = 4) then
8:

ζ̃i,k = ζi,k

2p−1

9: else if f (ζi,k, µi,k−1, σth, p = 3) then
10:

ζ̃i,k = ζi,k

2p−1
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11: else if f (ζi,k, µi,k−1, σth, p = 2) then
12:

ζ̃i,k = ζi,k

2p−1

13: else if f (ζi,k, µi,k−1, σth, p = 1) then
14:

ζ̃i,k = ζi,k

2p−1

15: end if
16: end for

17: Update cumulative mean for satellite i at epoch k:

µi,k = µi,k−1 + ζ̃i,k

k

18: end for
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Chapter 5

Performance assessment in
real urban scenario

Chapter 3 has offered an exhaustive description and characterization of the
major Bayesian architectures which can be adopted for fusing inertial measurements
and Global Navigation Satellite System (GNSS) ranging measurements within the
framework of an integrated Inertial Navigation System (INS)/GNSS navigation
system in a Tightly Coupled (TC) configuration. In particular, starting from the
state-of-art solution, represented by the Extended Kalman Filter (EKF) (Section
3.2), an incremental path, in terms of algorithmic complexity, has been followed;
at first, by keeping the focus on Kalman-based methods, the Unscented Kalman
Filter (UKF) (Section 3.3) has been discussed, and special attention has been
devoted to the Unscented Transform (UT), a technique to generate deterministic
sigma-points (Section 3.3.1). Afterwards, on the basis of the Sequential Monte-
Carlo (SMC) integration concept and its approximation in terms of Sequential
Importance Sampling (SIS), the Particle Filter (PF) has been covered (Section 3.4)
with a highlight on both strengths and potential weaknesses. Eventually, the truly
innovative and more advanced Unscented Particle Filter (UPF) scheme has been
proposed, which cleverly combines the UT-technique, to improve the shaping of the
proposal distribution for particles’ generation (Section 3.5), with the PF flexibility
in handling measurement-noise statistics and reflecting them on particles’ weighting.
Last, but not least, within the UPF-routine, a novel state-splitting approach has
been investigated, which envisions a multiple weighting of each particle (a particle
is, inherently, a possible realization of the state-vector) to estimate separately
different portions of the state-space (Section 3.5.3).
Chapter 4, then, puts forward a set of innovative methodologies ultimately oriented
to an enhancement of the filtering estimation performance, and develops along two
main paths. On one hand, under the assumption of independent zero-bias normally
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distributed GNSS ranging measurements, some adaptive models for the stochastic
characterization of the variance on pseudorange and Doppler-shift observables are
dealt with; the latter are meant to improve the internal responsiveness of the
filter against changes in the navigated physical environment (Sections 4.1.3 and
4.1.4). On the other hand, by targeting a mitigation of multipath effects on the
estimation of the travelled trajectory, a real-time, self-contained and low-complexity
pre-processing routine, acting directly on input noisy pseudorange measurements,
is treated. As such, the reader is also offered a qualitative illustration of the
experimental intuitions that led to the former approach (Section 4.2).
In light of the above, the present chapter is primarily devoted to illustrate and ana-
lyze the performance of the aforementioned Bayesian architectures, when employed
as fusion filters within an integrated INS/GNSS system. For testing purposes, the
navigation module is operated on a high-accuracy and high-precision positioning
and tracking problem, in the framework of vehicular land-based navigation. In
particular, among the available performance indicators, the estimation accuracy is
mostly considered; it is a measure of statistical bias (systematic error) and quantifies
the degree of closeness of the integrated positioning solution to a ground-reference.

5.1 Methodology and underlying assumptions

The ultimate scope of the forthcoming assessment is to verify whether the ex-
pected accuracy gain, theoretically entailed by the investigated advanced Bayesian
approaches (UKF and UPF, in ascending order of complexity), truly justifies the
increase of algorithmic computational burden w.r.t. the original EKF scheme.
In other words, keeping a global view on the available hybridization filters, the
actual objective of the following analysis is a weighting between the cost-complexity
impact of the integration algorithm and the accuracy performance in the estimate
of the target trajectory, seeking for the identification of the most convenient in-
tegrated solution. Moreover, throughout the whole experimental study, Kalman
strategies are maintained as ultimate benchmarks since, generally speaking, they
represent a very good trade-off between performance and complexity. Based on
these premises, the delineation of the experimental set-up, the identification of a
methodology to carry out the assessment and the isolation of a set of underlying as-
sumptions which are maintained in the course of the analysis are strictly mandatory.

To achieve a scientifically relevant validation, a field measurement campaign is
conducted based on a car ride in a urban area nearby Polytechnic University of
Turin (Turin, Italy). Two categories of observables are involved in this test:

• High-rate inertial specific force and angular rate measurements generated
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as output from a low-cost MEMS-technology strap-down Inertial Measure-
ment Unit (IMU), i.e. TDK Invensense MPU-9250, including two triads of
accelerometers and gyroscopes.

• Low-rate noisy pseudorange and Doppler measurements which are output from
a low-cost GNSS receiver, i.e. NVS NV08C-CSM.

The foregoing hardware was mounted on the vehicle platform and the collected
measurements are synchronously blended in the real-time fully-software simulator of
a TC-integrated INS/GNSS navigation system presented in Section 2.2.4. Running
the multiple Bayesian routines covered in Chapter 3, the resulting experimental
trajectory (it counts 1740 GNSS epochs) is investigated and compared against
a highly accurate ground-truth. The latter has been retrieved from a multi-
frequency, multi-constellation GNSS-receiver belonging to the Novatel OEM7
family (user manual available at [50]), which combines a tactical-grade IMU with
Real-Time Kinematic (RTK) technique in order to supply real-time localization
at sub-centimetre level accuracy. The ground reference for the tested car ride
trajectory is supplied in Figure 5.1.
In the following results, some trajectory segments (sectors) are zoomed in, for which
the original EKF-based fusion architecture manifests exceptional behaviours and
that are commonly critical for GNSS-based Positioning, Navigation and Timing
(PNT):

• Sectors A and B identify deep urban environments with poor satellites’ visibil-
ity, unfavourable geometry and potentially strong multipath and shadowing
effects.

• Sector C corresponds to a mild urban context with dense foliage but better
visibility conditions.

• Sector D determines a cut-off slice of the vehicle path where the average accu-
racy performance of any Bayesian hybridization routine tends to dramatically
worsen, likely due to the presence of highly reflective and diffractive surfaces.

To have a deeper understanding of these challenging areas, Figure 5.2 captures an
environmental snapshot for each indicated sector. Just for comment, in previous
chapters it has been always addressed the generic concept of GNSS-receiver and its
related measurements, without forcing any assumption on a specific constellation.
Without loss of generality, the dataset for the current assessment involves Global
Positioning System (GPS) code-ranging data only.
Reached this point, it is due remarking that, besides the intrinsic high cardinality
of the integrated system state-space (Section 2.2.1), only the spatial components
related to the moving-target horizontal position are object of investigation. In this
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Figure 5.1: Ground-truth for the tested vehicular trajectory in the assessment
(Google Earth image).

sense, the vertical position component or, more rigorously, the body geodetic height
(referring to a geodetic coordinate system with an ellipsoidal approximation of the
Earth surface based on WGS84-model), is not examined since, in the context of
GNSS-based positioning, it is typically penalized by the geometry of the multilat-
eration problem to be solved.
Concerning the assessment criterion, the Root-Mean-Square Error (RMSE) metric
is selected. Precisely, by considering the horizontal position in Universal Transverse
Mercator (UTM) coordinates (Easting/Northing), such measure expresses the stan-
dard deviation of the error between the estimated trajectory and the ground-truth
(i.e. ground reference) over consecutive integration epochs. Defining

1
Ek

T C , N
k
T C

2
and

1
Ek

GT , N
k
GT

2
the horizontal UTM components of the k-th position fix (at k-th

GNSS-epoch) associated to the TC-integrated unit and the ground-truth, respec-
tively, the corresponding RMSE can be computed as:

RMSEk
EN =

ò1
Ek

T C − Ek
GT

22
+
1
Nk

T C −Nk
GT

22
(5.1)

Furthermore, it is fundamental to highlight a couple of baseline assumptions on
the integrated system state-space model (Section 2.2.1), which are maintained and
shared across the presented experimental results:
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(a) Sector A. (b) Sector B.

(c) Sector C. (d) Sector D.

Figure 5.2: Challenging navigation environments along the experimental trajectory
involved in the real dataset employed for the assessment (Google Earth images).

• Linearized model for GNSS-observables (Equation 2.7).

• Zero-mean Gaussian modelling for the statistical distribution of the errors
affecting noisy GNSS pseudorange and Doppler measurements.

As far as the observation model is concerned, the linearized approximation is
employed in the update-step for all the different Bayesian estimators, even for
those (UKF and UPF) which could directly handle the non-linear pseudorange
(1.8) and Doppler (1.26) equations. This choice has been already motivated in
Section 3.3.2, where it was shown, via a Cumulative Density Function (CDF) plot
on the horizontal RMSE of the UKF estimated trajectory (Figure 3.2), a nearly
perfect matching between the two curves obtained when using both the linearized
and the non-linear models. For the specified stochastic GNSS-observables’ error
characterization, it is used in all the examined navigation filters. In particular, in
Kalman-based approaches, it impacts on the construction of the observation-noise
covariance matrix Rk at each integration time; on the contrary, for the UPF, it
reflects on the weighting of the particles’ set.
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Although the Gaussianity assumption is a standard trademark for Kalman filters,
for the UPF and, in particular, for the cascaded PF-stage, it may end-up creating
some sub-optimality in the algorithm. In fact, one of the key-features of PFs is the
possibility of handling heterogeneous models for processing the input measurements.

The remainder of this chapter is organized as follows. Section 5.2 assesses the accu-
racy performance of the various baseline Bayesian estimators when implemented
with a semi-static stochastic weighting scheme for ranging measurements noise.
Later on, Section 5.3 steers the focus on adaptive filtering strategies and attempts
to validate the behaviours of residual based and redundant measurement based
observation noise covariance estimation algorithms. Eventually, Section 5.4 con-
centrates on the self-contained pseudorange pre-processing module and its impact
on the quality and robustness of the position estimates under challenging signal
environments. Besides, all the aforementioned sections are developed according
to a common structure, which first analyses Kalman paradigms and UPF-based
schemes separately and, then, transversally combine the two Bayesian families to
highlight mutual performance differences.
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5.2 Legacy Bayesian architectures

This Section considers the legacy versions of the various Bayesian algorithms
discussed in Chapter 3 and characterizes their performances, in terms of horizontal
accuracy of the estimated vehicular trajectory, following a threefold approach. First,
Kalman-only filtering architectures are accounted for, by verifying the response of
the UKF paradigm over the original EKF approach. Then, the attention is oriented
towards the proposed UPF solution and its estimation performance is verified as
a function of the number of particles, according to an increasingly high degree of
computational complexity. Eventually, owning a transversal perspective, all the
available fusion schemes are jointly handled and compared, in order to portray the
gains (or the losses) of each approach over the others. Besides, dealing with the
stochastic characterization of the errors affecting input noisy GNSS code-ranging
observables, the Carrier-to-Noise Ratio based measurement weighting strategy (i.e.
semi-static approach) of Section 4.1.2 is selected for each Bayesian integration
routine.

5.2.1 Kalman-based solutions: EKF and UKF

The first experimental result of Figure 5.3 compares the estimated vehicle
trajectories, by both the EKF-based (Section 3.2.2) and the UKF-based (Section
3.3.2) INS/GNSS integrated navigation systems, with respect to the sub-centimetre
accurate ground truth.
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Figure 5.3: 2-D experimental trajectory in latitude/longitude (LLH) spherical
coordinates. Comparison between EKF and UKF estimates w.r.t. ground-truth.
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Figure 5.3 also shows the experimental trajectory output by a standalone GNSS-
receiver (a GPS solution is considered in this specific framework) running, at each
integration epoch, a Weighted Least-Squares (WLS) routine to retrieve a Position,
Velocity, Timing (PVT) estimate. It is important to point out that, while the TC
navigation unit, thanks to the integrated INS, can guarantee a long-term stable
positioning solution with high update-rate (INS bridges GNSS outages and dead-
reckons position, velocity and attitude states between consecutive GNSS epochs), a
low-rate standalone WLS solution exists only in case a minimum of four satellites
are tracked and the geometric matrix H is full-rank (Section 1.3.2). Observing
the different trajectories, it is apparent the superior accuracy performance of the
integrated solution w.r.t. a GNSS-only WLS estimate, where the former is tighter
to the ground truth and behaves in a smoother fashion over time. In particular,
comparing the EKF and UKF estimates, it is not possible to appreciate consistent
differences at this qualitative level. Furthermore, focusing on the zoomed sectors A
and B, it is evident the injection of a bias in the integrated solution, and this is likely
caused by multipath. Last, but not least, in sector D, the accuracy performance
for both filters degenerates.
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Figure 5.4: RMSE on the horizontal position (E/N) in UTM-coordinates. Com-
parison between EKF and UKF over the estimated trajectory fixes.

The temporal behaviour, over consecutive integration epochs, of the horizontal
position RMSE is shown in Figure 5.4 for both Kalman architectures. In particular,
the critical trajectory sectors A (Figure 5.2a) and D (Figure 5.2d) are identified
and the average error increments are blatant. Such biasing effects are induced
by the presence of tall buildings (and other environmental obstacles) potentially
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obstructing LOS-propagation and enhancing scattering phenomena (i.e. multipath).
Observing the global error-trend, it can be evidenced the presence of a steady bias
floor amounting to about 1.5 m, which is caused by some alignment issues in the
tactical-grade IMU used for the ground-truth.
As it was already foreseen from the graphical representation of the estimated
trajectories, there is a tiny difference, in terms of accuracy performance, between
the EKF and UKF. In fact, the RMSE curves overlap to a large extent, even though
the UKF seems to gain, on average, some very small margin w.r.t. the EKF.
The latter observation can be better appreciated by considering the empirical CDFs
reported in Figure 5.5.
Despite the maximum horizontal error for the EKF (23.7m) is slightly smaller than
that of the UKF (24.1m), the latter architecture always enhances the accuracy
performance by reducing the error of few centimetres at almost all percentiles.
In particular, the maximum improvement is measured at the intermediate 75-th
percentile with a value of 3.49% (9.9 × 10−2 m). It means that, on average over the
whole trajectory, 75% of times the UKF estimate, in terms of horizontal position
component, is affected by an error which is 9.9 × 10−2 m smaller than that of the
EKF, when both misalignments are measured against a common truth. This is
an encouraging result if contextualized within a perspective of balancing between
performance and complexity, but the absolute performance gain is certainly minimal.
Anyway, moving from the EKF to the UKF, the algorithmic complexity is just
slightly increased.
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in UTM-coordinates. Comparison between legacy EKF and UKF architectures.
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Another aspect which should be pointed out, concerns the accuracy gain as a func-
tion of the error magnitude. For small average horizontal errors, in a bounded range
up to 3m, the accuracy improvement, in units of centimetres, is relatively limited,
but the corresponding percentage improvement, especially at 75-th percentile, is
the largest measured. On the contrary, moving towards higher percentiles and,
in particular, observing what happens at the 90-th level, the centimetre gain on
the horizontal error is nearly twice as much as it is at 75-th percentile, but the
percentage improvement is smaller.
Eventually, although not invalidating the comparison, it cannot be neglected the
existence of the aforementioned small-scale bias floor which impacts on the absolute
accuracy performance measured for each Bayesian implementation. In fact, all the
involved error CDFs would be expected to shift to the left such that to roughly
bound the horizontal RMSE below 2m.

5.2.2 Unscented Particle Filter (UPF) and state-splitting
method

In this Section, the attention shifts on the proposed UPF scheme, which is isolated
from the previous Kalman-based approaches and its performance is analyzed by
varying the number of particles in the cascaded PF-stage. Specifically, two baseline
UPF architectures are accounted for, which mainly differ on how particles, together
with their relative weights, contribute to the a-posteriori state-estimation:

• Legacy algorithm (Section 3.5.1), where each weighted particle, representing a
possible realization of the system state, contributes totally to the a-posteriori
state vector and state-covariance estimates. Hereinafter, it will be addressed
as plain UPF version.

• Modified routine (Section 3.5.3), where each particle is assigned multiple
weights and each weight is used to estimate only a portion of the state-vector.
Hereinafter, it will be addressed as state-splitting UPF version.

A comparison of the estimated trajectories, considering both aforementioned archi-
tectures, when varying the number of randomly generated particles, is supplied in
Figure 5.6.
First of all, by looking at sector A, it is apparent that the trajectory output by
the state-splitting architecture suffers from a larger error w.r.t. the plain version,
when both are referenced to the ground-truth. In other words, it seems that,
in presence of multipath, the splitting method still grants a smooth trajectory
estimate but it is more prone to absorb an unpredictable bias, potentially affecting
pseudorange measurements, which detaches the estimated vehicle position fixes
from the ground-reference. This effect, in particular, gets even stronger as the
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Figure 5.6: 2-D experimental trajectory in latitude/longitude (LLH) spherical
coordinates. Comparison, over the integration epochs, between plain and state-
splitting UPF architectures at 102, 103 and 104 particles.

number of particles decreases. Furthermore, such bias, once onset, is dragged over
a non-negligible set of consecutive GNSS epochs and the filter manifests weak
reactivity in recovering from it.
Instead, moving the attention on sector D, the state-splitting UPF is able to keep
the error bounded, while the plain routine starts diverging. Hence, given these
experimental evidences, a hypothetical suggestion is that, in harsh navigation
conditions with poor satellite visibility and strong measurement noise, the Bayesian
UPF-strategy with state-splitting offers higher robustness to the integrated naviga-
tion system and higher stability to the positioning solution, but it is more sensitive
to multipath-related bias injections and slower in recovering from them.
Contrarily, in the mild urban context of sector C, both UPF paradigms exhibit a
good accuracy performance, even for a small number of particles, and it is hard,
by just observing the trajectories, to identify which implementation outperforms
the others. Anyway, the choice of highlighting such sector stems from the will to
observe what happens to the horizontal position estimate when the vehicle inertial
dynamics are evolving much faster. As a matter of fact, the INS proves to be stable
(as discussed in Chapter 4) and there is no critical enhancement of the IMU-drift.
The former comments can be further supported by investigating on Figure 5.7,
which displays the horizontal position RMSE and highlights the critical trajectory
segments where peaky error behaviours pop up. Interestingly, between epochs
1400 and 1600, the horizontal error measured for the plain architecture explodes
to unacceptably large values above 100m, irrespective of the number of employed
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particles (the case at 102 particles is not shown due to filter divergence). The
state-splitting variant, instead, succeeds in keeping the maximum error bounded
and the filter is stable even for a limited amount of particles.
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Figure 5.7: RMSE on the horizontal position (E/N) in UTM-coordinates. Com-
parison between plain and state-splitting UPF architectures at 102, 103 and 104

particles.
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splitting UPF 102 particles (B).
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(e) Plain UPF 104 particles (A) & state-
splitting UPF 103 particles (B).
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Figure 5.9: One-to-one comparison among different couples of baseline UPF
architectures (plain and state-splitting) in terms of percentage accuracy gain/loss
considering 50-th,75-th and 90-th percentiles.
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Table 5.1: Horizontal (E/N) position RMSE measured, for both plain and state-
splitting UPF routines, at 50-th, 75-th and 90-th percentiles.

UPF architecture 50-th percentile
Error (m)

75-th percentile
Error (m)

90-th percentile
Error (m)

Plain (103 particles) 1.55 2.66 5.45
Plain (104 particles) 1.51 2.81 5.56

State-splitting (102 particles) 2.18 5.43 14
State-splitting (103 particles) 1.47 2.68 7.96
State-splitting (104 particles) 1.47 2.81 9.48

The empirical CDFs for the horizontal position RMSE, associated to the analyzed
UPF approaches as a function of the number of particles, are shown in Figure
5.8. Accordingly, Table 5.1 summarizes the measured horizontal errors at the
percentiles of interest (50-th, 75-th and 90-th). Although, for lower percentiles,
the estimated errors are comparable between plain and state-splitting algorithms,
at higher percentiles the measured horizontal error for the latter UPF solution is
nearly twice as much the error measured for plain filter version. In fact, this is not
at all a surprising experimental outcome since it simply reflects the tendency of
the splitting-based scheme to easily absorb some bias (likely induced by multipath)
which, above all, is slowly neutralized.
In order to draw up some additional comments to assess the performances of the
multiple UPF strategies investigated within this section, it might be helpful to
resort to Figure 5.9, where the involved Bayesian schemes are treated in pairs and,
for each couple, focusing on the 50-th, 75-th and 90-th percentiles, it is highlighted
the percentage accuracy gain (or loss) of one filter over the other. Again, only the
accuracy performance on the horizontal position component is accounted for.
Concerning the plain UPF algorithmic solution applied to an integrated INS/GNSS
navigation system, it is not apparently advantageous to increase the number of
particles in the aim of gaining some better accuracy. Indeed, looking at Figure
5.9a, when moving to higher percentiles the UPF with 103 particles grants a
better horizontal accuracy w.r.t. the case at 104 particles. The latter evidence is
satisfactory because the lower the number of particles, the smaller the amount of
handled computational burden. On the other hand, focusing on the UPF variant
with state-splitting through Figures 5.9g and 5.9h, the implemented solution with
103 particles outperforms, by no means, the low-complexity stage at 102 particles
(5.9g). On top of that, from Figure 5.9h, it comes out again that an increase in
the number of particles is not rewarded by an accuracy enhancement. Hence, for
both filtering variants, the mid-complexity solution at 103 particles sets as the best
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compromise between performance and complexity.
In the end, seeking for a cross-comparison between the two UPF architectural
proposals, Figures 5.9b and 5.9f deliver a one-to-one comparison at a fixed number
of samples (103 and 104). Both plots share an intrinsic analogy: the plain UPF
performance is worse than the state-splitting one at 50-th percentile (and even for
lower percentiles, if considering Figure 5.8), but a complete turnaround is observed
for higher percentiles, especially at 90-th one. The interpretation of this result is
fully aligned to previous observations; the low-percentile loss is plausibly induced
by the large horizontal error which is measured in sector D (Figure 5.6), which
is anyway a short-term performance degradation (low percentile). On the other
side, averaging over the full trajectory, the split-solution is affected by a larger
bias (Figure 5.8) and this directly mirrors the larger error-magnitude for high
percentiles. A different reading of the foregoing outcomes can be achieved adopting
the RMSE magnitude as viewpoint. As such, the state-splitting paradigm grants a
finer estimation quality in the high-accuracy CDF segment where horizontal errors
below 2 m are involved; on the contrary, for larger misalignment ranges, the plain
architecture yields better performance.
To conclude, weighting the variety of results discussed in this section, the plain UPF
architecture at 103 particles ends up providing the most advantageous trade-off
between estimation accuracy and complexity when considering the RMSE trend
globally. Instead, in case the interest is limited to the high accuracy region, the
state-splitting implementation turns out to be rather effective.

5.2.3 UPF vs Kalman schemes
Previous Sections 5.2.1 and 5.2.2 have been devoted to the assessment and

characterization of the two disjoint families of Bayesian architectures, namely PF-
based strategies (UPF) and Kalman-based (EKF and UKF) methods, respectively.
The present section, then, proposes a synthesis, achieved through experimental
validation, between the multiple and heterogeneous filtering schemes in the view of
picking out, if possible, the most promising and best balanced architectural solution
for an estimator to be operated as navigation filter in a TC INS/GNSS system.
As a starting point, some performance hints can be caught from examining Figure
5.10, where the estimated horizontal trajectories of the moving vehicles are shown.
Looking at Sector A, it seems that the standard UPF scheme, at both 103 and
104 particles, is tighter to the truth w.r.t. the other filters, and this is partially
confirmed in Sector B, where the Kalman approaches estimate a trajectory which is
roughly as accurate as that of the UPF. Clearly, the UPF at 102 particles does not
have enough samples to catch a system state-estimate which, considering horizontal
position components only, can get close to the reference (i.e. true state-components).
The latter problem culminates into the filter divergence in sector D, and this is
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Figure 5.10: 2-D experimental trajectory in latitude/longitude (LLH) spherical
coordinates. Comparison between EKF, UKF and UPF (plain and state-splitting
architectures at 102, 103 and 104 particles).

the reason why it will not be analysed further in the remainder of this section.
Anyway, qualitatively speaking, there is not a filtering solution which is strikingly
outperforming the others in harsh trajectory segments (i.e. A,B and D). Certainly,
the state-splitting UPF, both at 103 and 104 particles, is suffering more from
multipath interference with an estimated trajectory which is shifted. Eventually, in
parallel to the discussion of Section 5.2.2, the state-splitting version at 102 particles,
despite being more robust and providing a smoother trajectory estimate than
the equivalent plain solution, is characterized by a poorer accuracy performance.
Therefore, it is neglected hereinafter. To pursue a deeper characterization of the
considered architectures, it would be interesting to inspect Figure 5.11, which shows
their horizontal RMSE CDFs. At 50-th percentile, the best accuracy is achieved
by the state-splitting UPF with a measured horizontal error of 1.47m (refer to
Table 5.2), which implies an accuracy gain of 3.4 × 10−2 m w.r.t. the UKF and
an even larger gain of 6.4 × 10−2 m w.r.t. the EKF. The latter result is promising,
especially when noticing that the maximum error is bounded to less than 2m almost
60% of time. Moving to the higher 75-th percentile, it is possible to observe an
inversion of the initial trend which brings ahead the plain UPF implementation at
103 particles, whose accuracy performance starts prevailing over the other filtering
schemes. Simultaneously, the curves associated to the state-splitting solutions (103

and 104 particles) bend down the right and, from here on, the achieved perfor-
mances become worse than those provided by Kalman estimators. Then, at 90-th
percentile, the UKF strategy outperforms, limiting the horizontal position error to
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5.25m (Table 5.2). Based on this last experimental evidence, it could be asserted
that the UKF identifies the best behaving architecture with a reasonably limited
complexity, since 90% of times it grants the estimated position to have a maximum
error of 5m w.r.t. the ground-truth. However, prior to come to any conclusion,
it is advisable to take a look at Figure 5.12, where the different architectures are
compared at couples to emphasize the accuracy improvement or deterioration of
one integrated system over the other.
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Figure 5.11: Empirical CDF (ECDF) of the RMSE on the horizontal position
(E/N) in UTM-coordinates. Comparison between EKF, UKF and UPF (plain and
state-splitting architectures at 102, 103 and 104 particles).

Figure 5.12a definitely validates what has been discussed in Section 5.2.1, with an
overall improved accuracy performance of the UKF over the EKF, at the cost of a
moderate complexity enhancement (the implemented UKF, in fact, relies on 2n
sigma points only, where n = 17 is the integrated system state-space dimension).
Focusing on the standard UPF algorithm employing 103 particles (Figures 5.12b
and 5.12c), it can be highlighted, at the 75-th percentile, an horizontal accuracy
gain over the Kalman architectures. In particular, compared to the EKF, the
improvement amounts to 6.27%. Moreover, for higher percentiles and, specifically,
at the 90-th one, the same UPF scheme looses some accuracy w.r.t. Kalman filters,
but moderately. The latter fact suggests that, very likely, the UPF is not able to
gain at all percentiles (i.e. in absolute terms) since its performance is somehow
penalized by the permanent adoption of a zero-mean Gaussian density model for
the noise affecting input GNSS-measurements. Accordingly, for those trajectory
sectors where the external environment is expected to degrade considerably the
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observables quality, the Gaussian model is probably not the best stochastic fit
to approximate the true unknown noise distribution and it would be necessary
to resort to alternative analytic models. Unfortunately, the non-stationary and
non-ergodic measurement-noise process evolution complicates the elaboration of
unambiguous statistical characterizations; hence, a Gaussian approximation is still
rather effective. Keeping the same UPF architecture and increasing by a factor
10 the number of particles (Figures 5.12f and 5.12g), it improves the accuracy
performance at lower percentiles (50-th percentile) but, for high percentiles, the
measured loss is higher than that for the 103 particles solution. Consequently, the
filtering scheme at 103 particles identifies the best trade-off between estimation
accuracy and computational complexity. Moving the attention on the state-splitting
UPF, Figures 5.12d and 5.12f compare the implementation at 103 particles against
both versions of Kalman filters. Evidently, at both 50-th and 75-th percentiles, it is
measured an accuracy gain for the UPF over both the EKF and the UKF. However,
for higher percentiles, the UPF accuracy behaviour worsens (refer to Figure 5.11
for a visual understanding) and, at 90-th percentile, the estimated performance
loss is above 30%.
Coming to a conclusion, the UKF demonstrates to slightly improve, at almost
all percentiles, the horizontal accuracy over the original EKF, with a contained
complexity enhancement. The increase of computational burden, w.r.t. Kalman
solutions, brought about by the UPF architecture does not seem to be justified
by a remarkable gain over the other fusion algorithms. Potentially, if valuable
measurement models other than Gaussian were accessible, the observed UPF
improvement would be much higher.

Table 5.2: Horizontal (E/N) position RMSE measured for EKF, UKF and UPF
(both plain and state-splitting versions), at 50-th, 75-th and 90-th percentiles.

Bayesian architecture 50-th percentile
Error (m)

75-th percentile
Error (m)

90-th percentile
Error (m)

EKF 1.534 2.839 5.412
UKF 1.504 2.740 5.248

Plain UPF (103 particles) 1.554 2.661 5.452
Plain UPF (104 particles) 1.505 2.807 5.556

State-splitting UPF (102 particles) 2.175 5.426 14
State-splitting UPF (103 particles) 1.470 2.675 7.964
State-splitting UPF (104 particles) 1.471 2.813 9.483
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(a) UKF (A) & EKF (B).
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(b) Plain UPF 103 particles (A) & EKF (B).
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(c) Plain UPF 103 particles (A) & UKF (B).
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(d) State-splitting UPF 103 particles (A) &
EKF (B).
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(e) State-splitting UPF 103 particles (A) &
UKF (B).
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(f) Plain UPF 104 particles (A) & EKF (B).
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(g) Plain UPF 104 particles (A) & UKF (B).
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(h) State-splitting UPF 104 particles (A) &
EKF (B).

Figure 5.12: Comparison at couples between EKF, UKF and baseline UPF
(plain and state-spitting) architectures in terms of percentage accuracy gain/loss
considering 50-th,75-th and 90-th percentiles.
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5.3 Bayesian architectures with adaptive noise
variance models

Section 5.2 characterized the accuracy performance, in terms of vehicle horizontal
position components (Easting/Northing), of the legacy (or baseline) Bayesian
estimation strategies covered in Chapter 3, by testing them with real INS and
GPS data. As a matter of fact, a zero-mean Gaussian model was adopted for
the stochastic description of noise affecting input GPS measurements, thus letting
their variance as the only tunable statistical parameter inside the integration filter
(one degree of freedom). Given so, the semi-static (i.e. with weak adaptivity
pattern) Carrier-to-Noise-density ratio (C/N0) based variance weighting strategy
was accounted for throughout the assessment.
In light of the above, this Section deals with the adaptive variance modelling
paradigms discussed in Chapter 4 and, specifically, the Residual-based Adaptive
Estimation (RAE) scheme (Section 4.1.3) and the Redundant Measurement Noise
Covariance Estimation (RMNCE) method (Section 4.1.4) are experimentally tested
and validated. The performance assessment develops across three stages of analysis.
First, the estimated trajectory by an adaptive UKF is compared against that of
an adaptive EKF, to verify the response of the former approach over the latter.
Moreover, both architectures are compared against the legacy implementations to
ultimately assess whether adaptive solutions really bring about some advantage at
the cost of higher complexity. Secondly, the Adaptive Unscented Particle Filter
(AUPF) paradigm is targeted and, by fixing the number of particles to 103, the
estimation performance of RAE and RMNCE implementations are verified in
detail and compared to the baseline filtering model. In the end, the different
adaptive fusion algorithms are transversally handled to highlight the strengths and
weaknesses of each approach over the others.

5.3.1 Adaptive Kalman filters
Considering both legacy and adaptive (RAE and RMNCE) implementations of

EKF and UKF Bayesian architectures, Figure 5.13 shows the estimated vehicle
trajectories in the horizontal spatial component (the altitude behaviour is not
considered in this assessment) using geodetic latitude and longitude coordinates.
The same figure also reports the estimated vehicle path by a standalone GNSS
receiver running a WLS solution at each epoch.
Looking at Sector A, it turns out that all solutions have a very similar trend but
the baseline routines get closer to the ground-truth (reference trajectory).
Furthermore, from a purely qualitative perspective, fixing the measurement-noise
variance model, there is a tiny mismatch between UKF and EKF estimates with
differences of few centimetres in the horizontal accuracy performance. The latter
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Figure 5.13: 2-D experimental trajectory in latitude/longitude (LLH) spherical
coordinates. Comparison between legacy (C/N0 based) and adaptive (RAE and
RMNCE) EKF and UKF algorithms.

statement further confirms the observations discussed in Section 5.2.1. Contrarily,
fixing the same Bayesian architecture and accounting for adaptive noise-variance
estimation methods only, it seems the RMNCE scheme suffers less (better accuracy)
from multipath w.r.t. the RAE approach. To investigate on the possible reasons,
it is useful to review the key features of the adaptive algorithms presented in
Sections 4.1.3 and 4.1.4. In fact, the RAE method estimates the measurement
noise covariance matrix Rk as the sum of the residual-sequence covariance matrix
Crk (Equation 4.8) and a term which depends on the a-posteriori state-covariance
update Pk|k (Equation 4.10). As for Crk , it is built from measurement residuals
(Equation 4.9) and, if few raw observables were affected by a strong bias induced by
multipath, this would inevitably reflect on the estimate of their residual covariance.
More importantly, considering the dependence on Pk|k, if the a-posteriori state
estimate x̂k|k were biased, this effect would mirror on the state-covariance Pk|k
itself and, in turns, would badly affect the estimate of Rk. Thus, to summarize,
the noise covariance estimated by RAE has a double point of failure which can be
smashed by multipath. On the contrary, the computation of Rk by the RMNCE
strategy involves First-Order Self-Differences (FOSDs) (4.14), which correspond
to an approximated, discrete, first-order derivative. Therefore, considering a suf-
ficiently large window of collected pseudorange and Doppler measurements, the
derivative over the window implements a basic low-pass filtering which can help in
attenuating the impact of multipath and of its induced bias.
Moving the attention on Sector B, the accuracy performance of adaptive methods
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improves considerably and gets tighter to the true trajectory. Therefore, although
loosing some performance when navigating in critical environments with heavy
scattering phenomena, adaptive implementations appear to enhance the estimation
accuracy over baseline Kalman algorithms when travelling more favourable scenar-
ios.
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Figure 5.14: Empirical CDF (ECDF) of the RMSE on the horizontal position
(E/N) in UTM-coordinates. Comparison between EKF and UKF employing both
C/N0 based (legacy implementation) and adaptive (RAE and RMNCE) methods
for noise-covariance estimation.

Although the foregoing qualitative assessment allows to catch a general idea about
the performance trend and the behaviour of the investigated adaptive Kalman
strategies, it is certainly not enough to accomplish an exhaustive assessment and a
scientific validation. Therefore, it would be recommended to investigate on Figure
5.14, showing up the empirical CDFs of the RMSE on the horizontal position
components. Starting from low percentiles and, specifically, targeting to the 50-th
percentile, the accuracy performance of the legacy routines is slightly better than
that achieved with either of the adaptive schemes (refer to Table 5.3), especially
when considering the baseline UKF implementation. Isolating the adaptive strate-
gies (zoom in Figure 5.14), the filtering variant with RAE brings a ridiculous
improvement of few millimetres over the corresponding RMNCE method, hence
being considerable equivalent to the latter. Furthermore, scanning Table 5.3, the
legacy EKF roughly converges to the corresponding RAE-based adaptive version,
with a mutual horizontal error variation of about 2 × 10−3 m. Consequently, for
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small-valued horizontal RMSE, say within 1.6m, the best trajectory estimates are
achieved by the baseline UKF routine with a moderate centimetre improvement
(Ä 30 × 10−2 m) w.r.t. to the remainder Kalman variants. Anyway, it is the due
point here to stress that, for tiny horizontal errors, small gains of few centimetres
could be potentially relevant for some high-accuracy positioning applications.
Moving towards higher percentiles, the multiple CDF lines start bending towards
higher errors and branch out, with the legacy architectures granting a superior
performance over adaptive methods by owning an average horizontal RMSE gain
of about 50 × 10−2 m. In particular, at the 75-th percentile, the adaptive RMNCE
and RAE implementations of the UKF measure considerable gaps, compared to the
non-adaptive filter version, of 42.4 × 10−2 m and 69.4 × 10−2 m, respectively (Table
5.3). In addition, focusing on adaptive approaches only, the RMNCE method proves
to be more accurate, with measured horizontal errors having smaller magnitude on
average. For instance, at the 75-th percentile, the UKF with RMNCE gives an error
which is 27 × 10−2 m smaller w.r.t. the one with RAE. Even greater, at the 90-th
percentile the error-gap between RMNCE and RAE rises up to 82.6 × 10−2 m. The
latter results demonstrate that, for higher errors very likely caused by multipath,
the RMNCE paradigm behaves more resiliently and is capable of better mitigating
the impact of such harsh phenomenon.

Digging further in the analysis of the involved Kalman filtering strategies, it
is convenient to look at Figure 5.15, where the aforementioned Bayesian estimators
are isolated in pairs and mutually compared in terms of percentage accuracy. First
of all, observing all sub-plots at the 50-th percentile level, it is plain to see that there
is not an architecture which is considerably improving, or worsening, its horizontal
error performance over the other schemes. Actually, accounting for Figures 5.15b
and 5.15d, the legacy UKF scheme racks up a small improvement of about 2%
w.r.t. its corresponding adaptive versions and sets, for small errors, as the filtering
solution supplying the trajectory fixes closest to those of the ground-truth.
On the contrary, for higher percentiles, the framework becomes more complex.
Restricting the sight on adaptive implementations, Figures 5.15e and 5.15f evidently
emphasize an accuracy gain of the RMNCE method over the RAE which increases
with the error. This is perfectly aligned with the former comments; the higher the
error magnitude, the stronger the probability for the same error to be caused by
multipath and, in presence of the latter unwanted effect, the RMNCE algorithm
demonstrates higher robustness and flexibility. Given so, it is easier to understand
the percentage trends of Figures 5.15a and 5.15b contrasted to those of Figures
5.15c and 5.15d. In fact, at higher percentiles, baseline Kalman routines, which
overall manifest superior performance, have a percentage accuracy gain which is
stronger over the RAE scheme (above 20%) than over the RMNCE (below 13%).
As a matter of fact, this behaviour is verified at the 75-th percentile and it is even
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more stressed at the 90-th one.
Another interesting validation is caught from the lineup between Figures 5.15c and
5.15d; fixing the same adaptive method (i.e. RMNCE), the percentage accuracy
improvement, at all percentiles (that is, both for smaller and larger errors), is a bit
higher for the UKF routine.
Eventually, considering adaptive implementations only and fixing one method (RAE
or RMNCE), the UKF proves to perform better than the EKF, but the percentage
improvements are minor.

Table 5.3: Horizontal (E/N) position RMSE measured for EKF and UKF employ-
ing both C/N0 based (legacy implementation) and adaptive (RAE and RMNCE)
methods for noise-covariance estimation, at 50-th, 75-th and 90-th percentiles.

Kalman architecture 50-th percentile
Error (m)

75-th percentile
Error (m)

90-th percentile
Error (m)

Legacy EKF 1.534 2.839 5.412
Legacy UKF 1.504 2.740 5.248

Adaptive EKF (RAE) 1.536 3.601 6.941
Adaptive UKF (RAE) 1.536 3.434 6.860

Adaptive EKF (RMNCE) 1.538 3.248 6.155
Adaptive UKF (RMNCE) 1.538 3.164 6.034
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(a) Legacy EKF (A) & Adaptive EKF (RAE)
(B).
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(b) Legacy UKF (A) & Adaptive UKF (RAE)
(B).
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(c) Legacy EKF (A) & Adaptive EKF (RM-
NCE) (B).
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(d) Legacy UKF (A) & Adaptive UKF (RM-
NCE) (B).
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(e) Adaptive EKF (RMNCE) (A) & Adaptive
EKF (RAE) (B).
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(f) Adaptive UKF (RMNCE) (A) & Adaptive
UKF (RAE) (B).
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(g) Adaptive UKF (RAE) (A) & Adaptive
EKF (RAE) (B).
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(h) Adaptive UKF (RMNCE) (A) & Adaptive
EKF (RMNCE) (B).

Figure 5.15: Comparison at couples between EKF and UKF (baseline and
adaptive architectures) in terms of percentage accuracy gain/loss considering 50-th,
75-th and 90-th percentiles.
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5.3.2 Adaptive Unscented Particle Filter (AUPF)
In this section the focus is moved towards the AUPF architecture, which is

assessed when using both RAE (Section 4.1.3) and RMNCE (Section 4.1.4) strategies
and its performance is compared against the legacy UPF algorithm. Similarly to
Section 5.2.2, both plain and state-splitting implementations are considered for the
underlying PF-stage. Moreover, throughout the analysis, the number of particles is
kept fixed to 103, which was found to set a worthy trade-off between estimation
accuracy and algorithmic complexity.
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Figure 5.16: 2-D experimental trajectory in latitude/longitude (LLH) spherical
coordinates. Comparison between plain and state-splitting UPF and AUPF (RAE
and RMNCE based) architectures at 103 particles.

Starting from a first high-level comparative characterization, the estimated trajec-
tories of the tracked vehicular target are provided in Figure 5.16.
Looking at Sector A, it is apparent that, on average, plain UPF and AUPF im-
plementations supply fixes that, at each integration epoch, are tighter to the
reference positions. It turns out that, in harsh navigation scenarios with heavy
signal deterioration, the state-splitting configuration, irrespective of the potential
adaptability in the measurement-noise covariance estimation, is particularly pe-
nalized w.r.t. the plain architecture. In fact, it tends to easily absorb a larger
bias which is slowly neutralized over the set of consecutive epochs. The reason
for such behaviour is inherently linked to the operating principle of the splitting
method (Section 3.5.3), which optimizes particle weights towards a restricted set of
state-components and limits the group of measurements determining them. More
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explicitly, accounting for the body 3-D position states only, the particle weights
exploited to estimate the position are exclusively conceived from pseudorange
measurements and, as a matter of fact, multipath deteriorates more the quality of
these observables than that of Doppler ones. Consequently, when navigating in
highly reflective environments, particle weights of the state-splitting architecture
cannot take advantage from a mixing of pseudorange and Doppler measurements
(as it happens for plain implementations) which, hypothetically, might relax the
impact of the considered impairment. Furthermore, similarly to Section 5.3.1, for
the same AUPF architecture (plain or state-splitting), the RMNCE variance model,
thanks to its approximate derivative operation in terms of FOSDs, better manages
to relax multipath bias on ranging measurements, thus allowing a more accurate
positioning solution w.r.t. the RAE scheme.
Shifting the attention on Sector B, the plain AUPF implementation still seems
to offer better estimation accuracy over the state-splitting variant, and the RAE
method tends to reduce the gap with the alternative RMNCE technique. The simi-
larity of the trajectory trends between sectors A and B suggests two aspects. First,
it is possible to extract a further assessment of the good IMU sensors quality which,
even in conditions of higher vehicle dynamics, do not drift markedly. Secondly,
the slight improvement of the RAE trajectory indicates a softening of multipath
influence.
Eventually, in the mild-urban scenario of Sector C the trajectories are nearly
matching each other and it is not possible to understand which architecture is
gaining better performance. In other words, Sector C involves horizontal errors
below 2m (i.e. high accuracy) and an alternative methodology is necessary to
refine the assessment.
In light of the former comments, it is useful to investigate on Figure 5.17 which
illustrates, for the PF-based architectures treated so far, the CDF curves of the
RMSE on the horizontal position in UTM coordinates.
Starting from the small error region (within 2 m), it is apparent that state-splitting
implementations, both for the legacy UPF and the AUPF, outperform plain ar-
chitectures, with an average accuracy gain around 10 × 10−2 m. As repeatedly
remarked in former sections, it does not count so much the magnitude of such gain
(which, by the way, is rather small) but the range of average horizontal errors where
the improvement is measured. Indeed, 10 × 10−2 m of difference upon errors below
2m, that is high-accuracy applications, can be regarded as a quite satisfactory
enhancement. Moreover, for both plain and state-splitting AUPF architectures,
comparing the adaptive observation variance models, it turns out that RAE over-
comes the RMNCE performance. In particular, observing the 50-th percentile zoom
in Figure 5.17, the RAE scheme improves the horizontal error of about 13% w.r.t.
the RMNCE paradigm.
The experimental evidences highlighted so far advantage the RAE approach when
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Figure 5.17: Empirical CDF (ECDF) of the RMSE on the horizontal position
(E/N) in UTM-coordinates. Comparison between standard and state-splitting UPF
architectures, implemented both with semi-static and adaptive noise covariance
estimation, at 103 particles.

small errors are considered, that is when the input GNSS-based ranging measure-
ments are affected by low noise and an almost null bias. In such scenario, the use
of residuals (defined as the difference between the input measurements and the
a-posteriori estimated measurements) and, in particular, the use of their covariance
Crk to evaluate the variances of input observables, is favourable in finely tracking
the evolution of noise statistics.
Moving to higher percentiles, which means to consider a higher magnitude for
the horizontal error and the impact of harsher impairments (e.g. multipath), the
accuracy performance of state-splitting UPF and AUPF implementations definitely
deteriorates, as well as it becomes blatant the trend inversion among the CDF
curves associated to the adaptive schemes. As regards the latter aspect, reading at
Table 5.4, the superiority of the RMNCE-based AUPF is clear and it gets further
stressed for increasingly high percentiles. For example, considering the zoom of
Figure 5.17 at 75-th percentile level, the plain AUPF architecture with RMNCE
gains almost 20% of accuracy over the corresponding RAE-based implementation;
what’s more, such improvement is even bigger at the 90-th percentile (i.e. average
horizontal errors above 6m) where it nearly touches 30%. Once again, the foregoing
results fix the strength and robustness of RMNCE in mitigating tough error sources
and its resilience in keeping the maximum horizontal error bounded.
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A further assessment of the involved Bayesian methodologies is provided in Figure
5.18, where the UPF and AUPF routines are compared in pairs to emphasize the
mutual percentage accuracy improvements. First of all, Figures 5.18a and 5.18b
indicate that, for state-splitting architectures, the use of adaptive paradigms for
the measurement noise covariance estimation is actually not advantageous. In
fact, such result should be particularly read for low percentiles where, in the high
accuracy CDF region, it is well established the finer performance of state-splitting
implementations over plain ones. On the contrary, accounting for Figures 5.18c
and 5.18d, the frame for plain filtering versions seems more garbled. In particular,
considering the plain AUPF with RAE scheme, it gains a little for small horizontal
errors while its performance is definitely worse at high percentiles. Potentially, by
extending the width of the residuals buffer for the construction of the covariance
matrix Rk, it might be possible to increase the percentage improvement in the high-
accuracy region. For the RMNCE-based AUPF solution, instead, its employment
is suggested only for high percentiles or, equivalently, for large horizontal errors.
To tell it differently, the use of such adaptive approach could make sense when
the tracked moving target is travelling a challenging environment. Anyway, in the
90-th percentile region, where the horizontal error magnitude is above 6m (Table
5.4), the increase of computational burden induced by the adoption of RMNCE is
certainly not upheld by such a moderate accuracy gain of 4.6%.
After that, Figure 5.18f highlights that, for larger horizontal errors, the adaptive
RMNCE approach is superior than RAE and the accuracy performance divergence
between the two methods augments proportionally to the considered percentile (i.e.
proportionally to an increase of the RMSE value). Eventually, it turns out that
the percentage improvement, w.r.t. the state-splitting version, brought about by
the RMNCE paradigm implemented on a plain AUPF architecture is considerably
large (up to 40%, looking at Figure 5.15h).

Table 5.4: Horizontal (E/N) position RMSE measured, for both UPF and AUPF
(plain and state-splitting) architectures, at 50-th, 75-th and 90-th percentiles. A
fixed number of 103 particles is considered.

UPF architecture 50-th percentile
Error (m)

75-th percentile
Error (m)

90-th percentile
Error (m)

State-splitting UPF 1.470 2.675 7.964
State-splitting AUPF (RAE) 1.467 3.682 7.977

State-splitting AUPF (RMNCE) 1.630 3.933 8.603
Plain UPF 1.554 2.661 5.452

Plain AUPF (RAE) 1.547 3.325 7.258
Plain AUPF (RMNCE) 1.778 2.666 5.201
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(a) State-splitting UPF (A) & State-splitting
AUPF (RAE) (B).
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(b) State-splitting UPF (A) & State-splitting
AUPF (RMNCE) (B).
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(c) Plain AUPF (RAE) (A) & Plain UPF (B).
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(d) Plain AUPF (RMNCE) (A) & Plain UPF
(B).
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(e) State-splitting AUPF (RAE) (A) & State-
splitting AUPF (RMNCE) (B).
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(f) Plain AUPF (RAE) (A) & Plain AUPF
(RMNCE) (B).
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(g) Plain AUPF (RAE) (A) & State-splitting
AUPF (RAE) (B).
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(h) Plain AUPF (RMNCE) (A) & State-
splitting AUPF (RMNCE) (B).

Figure 5.18: One-to-one comparison, in terms of percentage gain/loss at multiple
percentiles, among different couples of plain and state-splitting UPF and AUPF
architectures. A fixed number of 103 particles is considered.
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5.3.3 Adaptive Kalman Filters vs AUPF

After characterizing separately the accuracy performance of both legacy and
adaptive Kalman filters and Unscented Particle filters, this section combines them
transversally to ultimately identify the most convenient statistical integration
scheme. In the framework of Kalman solutions, both EKF and the more advanced
UKF are considered, while, in the UPF context, the same algorithmic strategies
assessed in previous Section 5.3.2 are treated in the following (the number of
particles is still kept equal to 103). Before entering the analysis, it is right to
premise that, contrarily to previous sections, the experimental vehicle trajectories
are not shown here, mainly because of the large number of compared hybridization
routines. The first adopted comparative methodology relies on Figure 5.19, which
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Figure 5.19: Empirical CDF (ECDF) of the RMSE on the horizontal position
(E/N) in UTM-coordinates. Comparison between legacy and adaptive EKF, UKF
and UPF architectures (plain and state-splitting implementations).

incorporates, at a glance, all the multiple CDF curves on the horizontal RMSE
whose behaviour is explored. For sake of clarity, it has been chosen to divide it into
two segments, by isolating the low error region (below 2m) from the remainder
part. Starting form the high-accuracy slice, the reader is invited to refer to Figure
5.20, which provides a zoom on Figure 5.19. As largely expected on the basis of
the experimental outcomes observed in former analysis, state-splitting PF-based
architectures prevail over the other filtering solutions. This behaviour is true since
very small errors around 50 × 10−2 m but it becomes definitely stressed above 1m.
Interestingly, above 50 × 10−2 m, the state-splitting UPF architecture manifests a
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Figure 5.20: Zoom of Figure 5.19 for horizontal RMSE values within 2m.
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Figure 5.21: Zoom of Figure 5.19 for horizontal RMSE above 2m.

greater performance, but around the metre, the AUPF with RAE scheme comes
out and enhances the accuracy over the other filters up to 25 × 10−2 m. Anyway,
this contrasting course reabsorbs towards 1.5m and, at the 50-th percentile, state-
splitting UPF and RAE-based AUPF perform equivalently. Moreover, at the same
percentile, the state-splitting UPF improves the horizontal accuracy by a 4.37%
factor w.r.t. the legacy EKF, and this margin gets narrower when referring to the
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UKF.
The former evidences, once more, establish the prominent performance in the
high-accuracy region of the state-splitting method, which takes advantage from the
finer weighting scheme applied to the set of randomly generated particles (Section
3.5.3). It is worth highlighting that, all the involved outcomes, are determining
a scientifically-relevant, preliminary validation, since they result from testing the
integration algorithms on real data, which have been collected from a field test and
are not synthetically created.
Still observing the low-error segment, regardless of the selected Bayesian stage, it
is plain to see that the average accuracy of the RMNCE paradigm is inferior than
RAE. In fact, when measurement noise is weak, the use of residuals, in place of
FOSDs, brings the fusion filter with more relevant pieces of information which are
helpful to faithfully infer observables’ variances.

Shifting the attention on larger RMSE error values (Figure 5.21), two aspects
emerge. On one hand, the accuracy performance of state-splitting UPF and AUPF
implementations degrades significantly, with an average loss of more than 1.5m
over corresponding plain architectures. For example, at the 85-th percentile, the
error committed by the state-splitting AUPF with RMNCE is 2.4m bigger than
that committed by the corresponding plain filter version (36.3% loss). At further
high percentiles, the loss gets even bigger touching the 40% threshold towards
90-th percentile level. On the other hand, for horizontal errors above 4m, the
plain RMNCE-based AUPF architecture slightly improves its accuracy w.r.t. lower
percentiles. In particular, at the 75-th level, it is measured a modest 6.27 %
improvement over the legacy EKF, which is however nearly halved at higher error
levels.
Overall, in the low-precision region, the outperforming filters are the UPF and the
RMNCE-based AUPF, both taken with plain implementations. Compared each
other, they can be regarded as equivalent, being the mutual error differences almost
irrelevant. However, in terms of complexity, the gap between these architectures is
consistent, hence not being advisable to augment the Bayesian structure applying
an adaptive strategy.

An alternative viewpoint, more strictly oriented to assess RMNCE and RAE
noise covariance estimation strategies, is detailed in Figure 5.22, where few couples
of adaptive Bayesian schemes are compared based on the percentage horizontal
accuracy metric. In particular, in the framework of Kalman methods, it is consid-
ered only the UKF since, for almost all percentiles, it tends to slightly improve the
performance over the original EKF.
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(a) State-splitting AUPF (RAE) (A) & Adap-
tive UKF (RAE) (B).
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(b) State-splitting AUPF (RMNCE) (A) &
Adaptive UKF (RMNCE) (B).
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(c) Plain AUPF (RAE) (A) & Adaptive UKF
(RAE) (B).
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(d) Plain AUPF (RMNCE) (A) & Adaptive
UKF (RMNCE) (B).
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(e) State-splitting AUPF (RAE) (A) & Adap-
tive UKF (RMNCE) (B).
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(f) State-splitting AUPF (RMNCE) (A) &
Adaptive UKF (RAE) (B).
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(g) Plain AUPF (RAE) (A) & Adaptive UKF
(RMNCE) (B).
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(h) Plain AUPF (RMNCE) (A) & Adaptive
UKF (RAE) (B).

Figure 5.22: One-to-one comparison among different couples of adaptive (RAE
and RMNCE) UKF and AUPF (103 particles) architectures, in terms of percentage
accuracy gain (or loss) at different percentiles.
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Given so, Figures 5.22a and 5.22b offer interesting comparisons between state-
splitting AUPFs and adaptive UKFs. Evidently, the results are globally unfavourable
for the former filtering solutions with consistent accuracy losses (especially for the
RMNCE-based AUPF at high percentiles) w.r.t. the adaptive Kalman estimator.
However, a moderate improvement of 4.49% is measured for the AUPF with RAE
strategy at 50-th percentile level (Figure 5.22a). These results underline, just from
a different perspective, the good accuracy behaviour granted by the state-splitting
methodology for high-accuracy estimation, as well as they emphasize its average
performance degradation for larger RMSE.
Another meaningful trend pops up in Figure 5.22d, where a plain AUPF filter-
ing scheme with RMNCE is compared against an adaptive UKF employing the
same covariance estimation strategy. Interestingly, for higher percentiles, the per-
centage accuracy gain is respectable and, considering the measured horizontal
errors specified in Table 5.5, it translates into 49.8 × 10−2 m (75-th percentile) and
83.3 × 10−2 m (90-th percentile) of difference in terms of distance of the estimated
trajectory fixes from the ground-truth. Such outcome explains, with an alternative
indicator, the solid performance of the RMNCE under harsh navigation conditions
with stronger multipath effects.
A further hint on this aspect can be extracted from Figure 5.22e, where the RAE-
based state-splitting AUPF gains about 7 × 10−2 m of estimation accuracy over
the UKF with RMNCE (Table 5.5). At higher percentiles, then, the performance
turnaround is blatant. Anyway, the last comments, together with the percentage
levels specified in Figure 5.22g, are relatively weak and less significant than others,
since both the state-splitting and the plain AUPF variants with RAE demonstrate,
on average, to supply position estimates which are quite erroneous if compared to
reference fixes.

Final remarks

In this Section it has been offered an extensive assessment of the accuracy
performance of adaptive strategies for measurement noise covariance, both in the
framework of Kalman architectures and in the UPF context. Referring to the former
class of filters, it is definitely not advisable the employment neither of the RAE
scheme nor of the RMNCE method within the UKF and EKF estimation structures
(refer also to Table 5.3), unless additional signal processing stages are introduced
(e.g. the pseudorange pre-processing stage analyzed in the following section). For
the UPF paradigm, instead, the review is trickier. For small percentiles, in the high
accuracy region of the error CDF, the RAE-based state-splitting AUPF, taking well
behaving filtering solutions as terms of comparison, gains 5.17% of accuracy w.r.t.
the equivalent plain implementation (Figure 5.18g) and a smaller 2.46% w.r.t. the
legacy UKF fusion algorithm. In fact, these are rather small improvements that,

149



5.3. Bayesian architectures with adaptive noise variance models

however, might become significant when accounting for horizontal errors below
1.5m. Nevertheless, the selection of such adaptive PF-based architecture must be
weighted by the complexity enhancement induced by the RAE-routine, which varies
proportionally to the residuals’ buffer size. Moving to higher RMSE values, it has
been commented already that the RMNCE-based AUPF improves the accuracy by
few centimetres over the UPF, when both are taken in their legacy versions (i.e.
plain implementations). Consequently, the increase of complexity brought about by
the adaptability in the covariance estimate is not adequately rewarded by such a
limited performance enhancement, especially if scaled to the considered horizontal
error levels.

Table 5.5: Horizontal (E/N) position RMSE measured for adaptive EKF, UKF and
AUPF (plain and state-splitting) architectures at 50-th, 75-th and 90-th percentiles.
A fixed number of 103 particles is considered.

Bayesian architecture 50-th percentile
Error (m)

75-th percentile
Error (m)

90-th percentile
Error (m)

Adaptive EKF (RAE) 1.536 3.601 6.941
Adaptive EKF (RMNCE) 1.538 3.248 6.155
Adaptive UKF (RAE) 1.536 3.434 6.860

Adaptive UKF (RMNCE) 1.538 3.164 6.034
State-splitting AUPF (RAE) 1.467 3.682 7.977

State-splitting AUPF (RMNCE) 1.630 3.933 8.603
Plain AUPF (RAE) 1.547 3.325 7.258

Plain AUPF (RMNCE) 1.778 2.666 5.201
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5.4 Legacy and Adaptive Bayesian filters with
pre-processing

At the beginning of this chapter, in Section 5.2, the legacy Bayesian architectures
described in Chapter 3 have been assessed in their accuracy performance, when
implemented with a C/N0 based approach involving measurement-noise covariance
Rk estimation. In particular, for both Monte-Carlo and Kalman integration
strategies, the analysis has been conducted by testing the INS/GNSS TC system
on a dataset involving real inertial and GPS observables. Later, in Section 5.3, the
former fusion methodologies have been characterized when augmented with adaptive
noise-variance modelling paradigms, such as the RAE and RMNCE algorithms
presented in Sections 4.1.3 and 4.1.4, respectively. In the remainder of this chapter,
then, the aforementioned integrated filtering solutions are further expanded by
including the self-contained pseudorange pre-processing module proposed in Section
4.2. For the assessment, it is preserved the same methodology of previous sections,
involving experimental rating based on the CDFs of the horizontal position RMSE.
Furthermore, analogously to the foregoing analysis, results are presented as a
three-stage path. First, the attention is conveyed to Kalman filters only; then, the
focus is transferred onto the UPF estimation pattern; eventually, the relevantly
performing filtering stages, identified through the two former steps, are mutually
compared, seeking for the identification of the most advantageous architecture to
be applied to INS/GNSS sensor fusion.

5.4.1 Pseudorange pre-processing in Kalman filters
In the framework of Kalman estimators, both legacy and adaptive implementa-

tions are accounted for, in the view of assessing the potential benefits, in terms of
estimation accuracy and filtering robustness, induced by pre-processing pseudor-
ange data prior to integrate them within the state-space observation model. To
avoid increasing too much the number of compared Bayesian routines, adaptive
architectures without measurement pre-processing (Section 5.3.1) are neglected
hereinafter, as they were found poorly behaving w.r.t. legacy EKF and UKF
algorithms.

Figure 5.23 shows up the empirical CDF curves for the RMSE on the horizontal
position components (E/N) in UTM coordinates.
Starting from the high-precision segment (Figure 5.24), where the involved horizon-
tal errors stand below 2 m, the accuracy performance of the RAE-based adaptive
Kalman implementations with pre-processing module stands out over the other
filtering variants. This behaviour starts becoming particularly evident towards the
metre, and it is highly marked in the range from 1m to 1.4m. For example, at
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Figure 5.23: Empirical CDF (ECDF) of the RMSE on the horizontal position
(E/N) in UTM-coordinates. Comparison between legacy and adaptive EKF and
UKF implementations with pseudorange pre-processing module.
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Figure 5.24: Zoom of Figure 5.23 for horizontal RMSE values below 2m.

the 30-th percentile level, the measured relative distance between the estimated
position fixes from the adaptive RAE-based UKF with pre-filtering and the legacy
UKF amounts to 10.2 × 10−2 m, which corresponds to a 7.5% accuracy gain of the
former solution over the latter. Then, increasing the horizontal error towards 1.5m,
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Figure 5.25: Zoom of Figure 5.23 for horizontal RMSE values above 2m.

the gap narrows and, at the 50-th percentile level (zoom in Figure 5.24), it equals
2.4 × 10−2 m, which corresponds to a minimal accuracy improvement of 1.6%.
In parallel, still considering small errors, the average accuracy profile of the adaptive-
RMNCE Kalman variant with pre-processing is the worst. However, from 1.6m on
(about 60-th percentile), the CDF trend overturns. Overall, for high-accuracy, the
RAE paradigm jointly combined with pseudorange pre-processing seems to improve
the performance over the legacy EKF and UKF architectures, but a single-dataset
assessment prevents from stating whether such adaptive implementation is definitely
advisable.

Moving to higher horizontal errors (Figure 5.25), perfectly in agreement with
former Section 5.3.1, the adaptive RAE scheme suffers performance deterioration
induced by multipath. On the other hand, the mixing between the RMNCE
paradigm exploiting FOSDs, which calculate an approximate first-order derivative
on a buffer of noisy pseudorange measurements, and the measurement pre-processing
algorithm strengthen the estimation capability of the integrated navigation system.
In fact, the accuracy behaviour of the resulting adaptive filtering architecture is
better than that of legacy Kalman routines and, even for high percentiles, the
maximum horizontal error is bounded to acceptable values. More in depth, Figure
5.25 highlights the mutual differences in terms of RMSE on the horizontal position
fixes. At the 75-th percentile level, which corresponds to horizontal misalignments
in a range between 2m and 3m, the RMNCE-based UKF with pre-processing
commits an error, w.r.t. the ground-truth, which is 18.9 × 10−2 m smaller than the
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error measured for the legacy architecture, hence achieving a moderate accuracy
gain of 6.9%. Moreover, at the higher 90-th percentile (error range between 5m and
6m), the error difference is slightly increased (20.4 × 10−2 m) but the percentage
improvement is smaller (3.89%).
Another interesting aspect, which anyway considers the entire error-CDF at all
percentiles, concerns the legacy EKF and UKF implementations when augmented
with pre-processing. In fact, no relevant performance variations are triggered,
measuring both negligible percentage accuracy improvements in some error ranges
and minor accuracy losses (few centimetres) in other CDF segments. In light of
the above, it seems that, at least for Kalman filters, pseudorange pre-processing
impacts more incisively on an estimation performance enhancement when operated
jointly with adaptive noise-covariance estimation strategies. Anyway, the choice of
the most feasible architecture, which balances at best accuracy and complexity, is
nearly unaffected by the pre-processing scheme, since it infinitesimally impacts on
the sensor fusion algorithm computational complexity.

Table 5.6 specifies the measured horizontal RMSE for the aforementioned Kalman
strategies. It is interesting to compare it against Table 5.3, which summarizes the
same quantities for the adaptive filtering schemes without pre-processing. The
accuracy improvement determined by the introduction of such strategy is rather
apparent. For instance, focusing on the adaptive RAE scheme applied to the
UKF, the insertion of pre-processing causes a reduction of the horizontal error
by 5.6 × 10−2 m (3.6% accuracy gain) at the 50-th percentile (low RMSE region).
As another example, considering the RMNCE-based adaptive EKF at the 90-th
percentile, the horizontal error contraction made possible by pre-filtering amounts
to 1.25m, which translates in a non-negligible percentage enhancement of 20.23%.
More generally, according to a rule-of-thumb evaluation, pre-processing within the
adaptive RMNCE Kalman fusion structure mitigates the accuracy loss of about
60 × 10−2 m at the 75-th percentile and of about 1m at the 90-th level, but the
effect is irrelevant on the low-error CDF slice (high-accuracy). On the contrary, the
application of pre-processing within the adaptive RAE Kalman structure attenuates
by about 5 × 10−2 m the error in the high-accuracy region of the CDF, but it turns
out to be quite ineffective at higher percentiles.

5.4.2 UPF and pseudorange pre-processing

Having characterized the impact of pseudorange pre-processing in the Kalman
framework, this section analyzes plain and state-splitting AUPF implementations
(103 particles), which are compared each other to investigate the potential improve-
ments deriving from the application of the pre-processing stage.
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Table 5.6: Horizontal (E/N) position RMSE measured for legacy and adaptive
Kalman architectures with pseudorange pre-processing at 50-th, 75-th and 90-th
percentiles.

Kalman architecture 50-th percentile
Error (m)

75-th percentile
Error (m)

90-th percentile
Error (m)

Legacy EKF 1.534 2.839 5.412
Adaptive EKF (RAE) with pre-proc. 1.488 3.240 7.123

Adaptive EKF (RMNCE) with pre-proc. 1.522 2.634 4.910
Legacy EKF with pre-proc. 1.533 2.967 5.858

Legacy UKF 1.504 2.740 5.248
Adaptive UKF (RAE) with pre-proc. 1.480 3.084 6.710

Adaptive UKF (RMNCE) with pre-proc. 1.511 2.551 5.044
Legacy UKF with pre-proc. 1.535 2.970 5.706
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Figure 5.26: Empirical CDF (ECDF) of the RMSE on the horizontal position
(E/N) in UTM-coordinates. Comparison between AUPF implementations with and
without pre-processing module.

The starting point of the assessment targets Figure 5.26, which presents the CDF
lines of the RMSE on the horizontal position components associated to the tracked
vehicular target.
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Figure 5.27: Zoom of Figure 5.26 for horizontal RMSE values below 2 m.

Looking first at Figure 5.27, where the low horizontal error region is zoomed
in, the average accuracy performance of the state-splitting AUPF architecture is
superior than the plain implementation. Interestingly, the best behaving scheme is
represented by the RAE-based AUPF variant without pseudorange pre-processing
stage. For such fusion strategy, the percentage accuracy gap when using or not
pre-filtering is rather wide, especially for errors included between 1m and 1.5m.
For example, at the 40-th percentile level, the state-splitting AUPF with RAE
gains 21.2% accuracy over the same architecture just augmented with pseudorange
pre-processing. The latter percentage improvement translates into 30 × 10−2 m of
difference in terms of average distance of the estimated fixes from the ground-truth
positions. However, for slightly increasing horizontal RMSE, the separation between
CDF curves reduces, as well as it decreases the accuracy penalty of plain AUPF
routines versus state-splitting ones. In particular, as highlighted in the zoom at
the 50-th percentile level, the measured accuracy loss affecting the plain AUPF
with RMNCE and pre-processing, w.r.t. the equivalent state-splitting version,
equals 13.98%. Anyway, such error trend is more or less maintained up to 2m,
where a remarkable performance inversion between plain and state-splitting AUPF
paradigms takes place, as it will be discussed shortly. Observing further Figure 5.27,
another relevant aspect can be grasped, dealing with the impact of pseudorange
pre-processing in the high-accuracy region. Plainly, the CDFs associated to the
same Bayesian structure, which only differ for the presence of the data pre-filtering
module, are tightly evolving and match to a large extent, especially for plain
implementations, hence signalling that the former methodology is not crashing.
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The reason is that, by its nature, pre-processing targets to relax the spiky behaviour
affecting noisy code-ranging measurements, whose major responsible is multipath.
In other words, pre-processing aims at enhancing the accuracy and robustness of the
integrated solution when the fusion algorithm is involved with highly deteriorated
signal measurements due to a challenging physical environment. Obviously, such
operating condition is not mirrored by the high-precision CDF segment, but rather
it is embodied in the low-accuracy portion, with horizontal errors well greater than
2m.
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Figure 5.28: Zoom of Figure 5.26 for horizontal RMSE values above 2 m.

Figure 5.28 shows up the remainder portion of the involved CDF curves for values of
the horizontal RMSE between 2m and 20m. As anticipated in previous paragraph,
pseudorange pre-processing is primarily meant to enhance the integrated system
performance under critical signal environments, where multipath bias injections
are strong and provoke a degradation of the filter estimation accuracy. Blatantly,
the pre-filtering scheme positively impacts in the medium-to-high error region, by
determining an accuracy enhancement over all the other architectures. In particular,
the effect is marked on plain AUPF implementations, while state-splitting ones, in
line with previous results, suffer considerable performance loss when multipath gets
heavier. Concerning the plain AUPF with RMNCE, its outperformance over the
other UPF and AUPF architectures was already outlined in Figure 5.21, but it was
also emphasized its infeasibility due to a non-advantageous cost-complexity trade-
off. Here, the expansion of the former structure, by introducing a low-complexity
pre-processing, increases the accuracy gain further. The latter statement can be
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better understood by referring to Figure 5.29a, which compares the plain RM-
NCE-based AUPF with pseudorange pre-processing against the analogous version
without pre-processing. At the 75-th percentile, the additional extra-gain granted
by pre-filtering amounts to 12.79%, which corresponds to an average horizontal
error which is reduced by 34.1 × 10−2 m. Then, at the higher 90-th percentile, the
average error cut is slightly higher (38.9 × 10−2 m) but the percentage enhancement
smaller (7.42%).
Another interesting comparison is caught through the zooms of Figure 5.28, where
the plain AUPF architecture with RMNCE and pre-processing is compared against
the alternative state-splitting solution. In such case, the accuracy gap is much wider.
At the 75-th level, the former fusion scheme achieves an average improvement in
the estimation of horizontal position fixes by 94.9 × 10−2 m (28.99%) while, at the
90-th percentile, the accuracy boost is huge (3.98m, corresponding to 45.22%).

To achieve a deeper insight on the assessment, the reader is invited to take a
look at Figure 5.18. In particular, it is interesting to jointly comment on Figures
5.29b, 5.29c and 5.29d. Picking the plain AUPF implementation with RMNCE
observation variance modelling and code-ranging pre-processing, it always shows
sub-optimal estimation performance for horizontal RMSE below 2m. In particular,
at the 50-th percentile, the estimated position fixes are, on average, shifted from
the ground-truth 30 × 10−2 m more than those produced by alternative AUPF
schemes implementing the pre-filtering strategy. Consequently, if the application
target requires very-high accuracy and the physical environment is favourable,
the former Bayesian architecture might not be recommended. However, if higher
percentiles are accounted for (i.e. higher RMSE values), the accuracy gain for
the same architecture is definitely not questionable and it even increases with the
horizontal error. As an example, in Figure 5.29d, the 90-th percentile improvement
of the RMNCE-based AUPF with pre-processing amounts to 48.4%, which signifies
an horizontal error contraction by 4.52m. To be honest, the latter consistent error
reduction results from the combination of two effects: the performance degradation
of the state-splitting paradigm under multipath signal environments, on one hand,
and the remarkable accuracy improvement and error bounding granted by the same
adaptive filter when augmented with pre-processing.
In Figure 5.29h, the state-splitting AUPF with RAE and pseudorange pre-filtering
is compared to the equivalent RMNCE-based AUPF variant. In the high-accuracy
CDF region, the RAE paradigm tends to prevail, with an average accuracy improve-
ment of 5.05%, which is moderate but relevant for small RMSE magnitude. On
the contrary, at higher percentiles, especially at the 75-th level, the trend reverses.
Eventually, taking into account Figures 5.29f and 5.29g at high percentiles, the
accuracy loss of the state-splitting AUPF (RMNCE) with pre-filtering w.r.t. a
plain AUPF with RAE is not as heavily stressed as for the cases diagrammed
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in Figures 5.29c and 5.29d. Two main reasons explain such difference: first of
all, for higher horizontal errors above 2m, the RAE scheme is weaker than RM-
NCE in faithfully characterizing the variance of noisy pseudorange measurements
potentially impacted by multipath; secondly, the RMNCE technique joined to a
state-splitting architecture contributes in mitigating the performance deterioration
in the low-accuracy CDF segment.

Table 5.7: Horizontal (E/N) position RMSE measured for plain and state-splitting
AUPF architectures (103 particles) with/without pseudorange pre-processing, at
50-th, 75-th and 90-th percentiles.

UPF architecture 50-th percentile
Error (m)

75-th percentile
Error (m)

90-th percentile
Error (m)

State-splitting AUPF (RAE) 1.467 3.682 7.977
State-splitting AUPF (RAE) with pre-proc. 1.466 4.035 9.332

State-splitting AUPF (RMNCE) 1.630 3.933 8.603
State-splitting AUPF (RMNCE) with pre-proc. 1.544 3.274 8.790

Plain AUPF (RAE) 1.547 3.325 7.258
Plain AUPF (RAE) with pre-proc. 1.548 3.297 6.856

Plain AUPF (RMNCE) 1.778 2.666 5.201
Plain AUPF (RMNCE) with pre-proc. 1.795 2.325 4.815
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Figure 5.29: One-to-one comparison among couples of plain and state-splitting
AUPF architectures with/without pseudorange pre-processing.
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5.4.3 Kalman filters vs AUPF with pre-processing
The final section of this chapter tries to collect and compare the most relevantly

performing fusion architectures encountered so far. More specifically, the focus
is oriented, for both Kalman-based and PF-based implementations, towards the
filtering variants including adaptive RAE (Section 4.1.3) and RMNCE (Section
4.1.4) models for online measurement-noise covariance estimation and, possibly,
code-ranging data pre-processing (Section 4.2). As a further remark, the selection
of one specific fusion scheme is guided by the foregoing experimental evaluations
which are strictly concerned with estimation accuracy on the horizontal position
state.
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Figure 5.30: 2-D experimental trajectory in latitude/longitude (LLH) spherical
coordinates. Comparison between RMNCE-based adaptive UKF and AUPF (plain
architecture at 103 particles) with pseudorange pre-processing.

A first result, offering a purely qualitative assessment, is provided in Figure 5.30,
which depicts the estimated vehicle trajectories by the UKF and the plain AUPF,
both implemented with adaptive RMNCE strategy and augmented with the low-
complexity pre-filtering module. As an additional aid, the same Figure incorporates
some zooms on specific trajectory sectors that, in the course of the assessment,
have been found to critically prove both the robustness of the filtering algorithm
and the accuracy preservation in the solution to the localization problem.
In Sector A, both Bayesian fusion algorithms demonstrate robustness against
multipath and, even in case some bias accumulates in the estimated trajectory fixes,
it gets compensated with high responsiveness. Moving the attention on Sector
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B, the AUPF estimated position fixes are tighter to the ground-truth than those
supplied by the adaptive UKF. Finally, looking at Sector D, where most of the
Bayesian schemes treated so far (especially legacy architectures) dramatically loose
accuracy or even diverge, the considered adaptive filters with pre-processing turn
out to preserve a rather high accuracy level in the horizontal position estimates,
and neither a solution divergence nor an error bouncing are triggered.
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Figure 5.31: Empirical CDF (ECDF) of the RMSE on the horizontal position
(E/N) in UTM-coordinates. Comparison between adaptive EKF, UKF and AUPF
implementations (plain and state-splitting) with pseudorange pre-processing.

To acquire a clearer perspective on the average accuracy behaviour of the afore-
mentioned Bayesian strategies and of few other high performance ones, it might be
useful to account for the CDF trend of the RMSE on the horizontal (E/N) position
components (Figure 5.31). Starting form the high-accuracy segment, Figure 5.32
considers average horizontal errors below 2 m only. Once again, analogously to the
observations of Section 5.4.2, the state-splitting RAE-based AUPF architecture,
when augmented with data pre-processing, is apparently outperforming the re-
mainder fusion algorithms, involving both adaptive solutions in the Kalman family
and alternative plain AUPF schemes. For example, looking at the proposed 50-th
percentile zoom, the average error is reduced by 1.4 × 10−2 m w.r.t. an adaptive
(RAE-based) UKF routine with pre-processing. The corresponding percentage
accuracy gain is slightly below 1%, which is not a minor improvement both be-
cause it is measured for magnitude values of the RMSE around 1.5m and, more
importantly, because the same percentage enhancement is much larger at slightly
lower percentiles (in particular, a maximum gain is observed between 1.1m and
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1.2m). As far as adaptive Kalman filters (with pre-processing) are concerned, their
low-error trend is mid-way between plain and state-splitting AUPF paradigms.
However, it is noticeable a finer behaviour of the estimator variant relying on RAE
modelling rather than the one adopting RMNCE. Again, this is not surprising in
light of former considerations, since the use of measurement residuals, when short
misalignments are involved, is highly advantageous to precisely track noise statistics.
Eventually, the average less accurate position estimates, at any percentile below
the 50-th level, are those output by a plain AUPF with RMNCE, hence upholding
the ineffectiveness of FOSDs and Second-Order Mutual Differences (SOMDs) in
carefully approximating the variance parameter when Gaussian observation noise
is little.
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Figure 5.32: Zoom of Figure 5.31 for horizontal RMSE below 2 m.

By the other side, Figure 5.33 outlines the CDFs for horizontal RMSE magnitudes
above 2 m. Apparently, the former high-accuracy trend is overturned, and the plain
RMNCE-based AUPF architecture, augmented with pseudorange pre-processing,
proves superior accuracy performance w.r.t. the other involved Bayesian architec-
tures. Nevertheless, RMNCE-adaptive EKF and UKF strategies with pre-filtering
are not outdone at all, and the performance interplay between such filtering method-
ologies is plain since average horizontal errors above 5m. More scrupulously, in a
RMSE range between 2m and 5m, the accuracy gap between the foregoing AUPF
solution and the adaptive UKF routine is wider. For instance, as highlighted in
the zoom at the 75-th percentile, the AUPF gains 8.86% accuracy. In other words,
as an average statement, 75% of time the AUPF error is 22.6 × 10−2 m smaller
than that of the adaptive UKF. Furthermore, this performance difference enhances
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Figure 5.33: Zoom of Figure 5.31 for horizontal RMSE above 2 m.

proportionally to the RMSE, and a peak is observed around 3m. Then, from the
85-th percentile level on, the accuracy gap progressively reduces and, at the 90-th
level (zoom of Figure 5.33), it is nearly halved. Beyond, for horizontal errors above
5m, it can be stated that the considered CDFs match to a large extent.
The story is well different for state-splitting AUPF architectures which, suffering
multipath, make hard in keeping the average horizontal misalignment bounded to
small values. For instance, at the 90-th percentile, the measured RMSE is about
3m larger than that committed by plain AUPF implementations. Moreover, as
an additional term of comparison, the plain AUPF scheme produces a maximum
average horizontal error which is slightly below 20m, while the state-splitting
strategy measures twice as much the value.

A thorough investigation on the aforementioned filtering paradigms is pursued
with the analysis of Figure 5.34, which compares some of them in pairs at the
percentiles of interest. Starting from the simultaneous observation of Figures
5.34a, 5.34b, 5.34c and 5.34d, it comes out a key result of the entire assessment
path. In fact, in the medium-to-low accuracy CDF segment, that is for horizontal
RMSE above 2m, the plain AUPF architecture with RMNCE and pre-processing
is unquestionably gaining accuracy over any other advanced Bayesian solution.
Particularly, looking at Kalman implementations for the comparison (5.34b and
5.34c), the average improvement at the 75-th percentile is of about 31 × 10−2 m
(11.73%) w.r.t. the adaptive EKF, and of 22.6 × 10−2 m (8.86%) over the adaptive
UKF. Thus, at the 75-th level, the RMNCE-based UKF with data pre-filtering is
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slightly less sub-optimal (smaller accuracy loss) than the equivalent EKF routine.
Contrarily, at the 90-th percentile, the AUPF gains 9.5 × 10−2 m (1.93%) over the
EKF and 22.9 × 10−2 m (4.54%) over the UKF, hence reversing the sub-optimality
order. Overall, these results stress the importance of jointly combining, within the
hybridization filter, the RMNCE paradigm with the pre-processing module, in the
aim of better counteracting multipath in signal-degraded navigation scenarios.
Moving to Figures 5.34e and 5.34f, the ultimate attempt is showing the advantage of
adopting the state-splitting paradigm to multiply weight error particles in PF-based
architectures. It has been already clarified that, for horizontal errors above 2m
(percentiles higher than the 60-th level), such approach suffers a consistent accuracy
degradation, with the corresponding CDF curves that markedly bend towards the
right. Instead, it is important to highlight the state-splitting behaviour in high
accuracy, especially when augmented with an adaptive RAE observation variance
modelling stage. At the 50-th percentile, the improvement is more than moderate,
with an average horizontal error reduction of 2.1 × 10−2 m w.r.t. the adaptive EKF
and of 1.3 × 10−2 m w.r.t. the adaptive UKF. However, sliding down to errors
below 1.4m, the enhancement gets more marked (refer to Figure 5.32). Eventually,
expanding the state-splitting AUPF with ranging measurement pre-processing, it
doesn’t seem to pay much. Indeed, comparing Figure 5.34g to Figure 5.34e and
Figure 5.34h to Figure 5.34f, the percentage accuracy gain variation at the 50-th
percentile is minimal (few millimetres of difference).

Table 5.8: Horizontal (E/N) position RMSE measured for adaptive EKF, UKF
and AUPF architectures (plain and state-splitting) with pseudorange pre-processing,
at 50-th, 75-th and 90-th percentiles.

Bayesian architecture 50-th percentile
Error (m)

75-th percentile
Error (m)

90-th percentile
Error (m)

Adaptive EKF (RMNCE) with pre-proc. 1.522 2.634 4.910
Adaptive UKF (RMNCE) with pre-proc. 1.511 2.551 5.044
Adaptive EKF (RAE) with pre-proc. 1.488 3.240 7.123
Adaptive UKF (RAE) with pre-proc. 1.480 3.084 6.710
Plain AUPF (RMNCE) with pre-proc. 1.795 2.325 4.815

Plain AUPF (RMNCE) 1.778 2.666 5.201
State-splitting AUPF (RAE) with pre-proc. 1.466 4.035 9.332

State-splitting AUPF (RAE) 1.467 3.682 7.977
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(h) State-splitting AUPF (RAE+pre-proc.)
(A) & Adaptive UKF (RAE+pre-proc.) (B).

Figure 5.34: One-to-one comparison among couples of adaptive EKF, UKF
and AUPF (plain and state-splitting) architectures with/without pseudorange
pre-processing.
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Global Navigation Satellite System (GNSS) is a ubiquitous radio-navigation
technology providing reliable and long-term stable localization capabilities at af-
fordable costs. In the framework of land-vehicle positioning and navigation, dense
urban areas identify challenging environments, where the presence of multipath
and the poor satellite visibility conditions detrimentally affect the quality of GNSS-
standalone Positioning, Navigation and Timing (PNT) solutions. It follows that,
for critical applications requiring high precision and accuracy, the absolute po-
sitioning paradigm offered by satellite-based multilateration becomes infeasible,
hence paving the way to advanced multi-sensor navigation units. In such context, a
strong research effort has been put on coupling GNSS with an Inertial Navigation
System (INS), by leveraging the complementary natures of the two navigation
sensors to enhance both quality and robustness in the localization solution.
The recent advances in stochastic sensor fusion methodologies based on Bayesian
estimation have laid the means for the studies involved with this thesis. The most
common sub-optimal Kalman filter implementation, in terms of the Extended
Kalman Filter (EKF), sets as the state-of-art integration module for a INS/GNSS
system. When properly configured in its parameters attaining to the discrete sys-
tem state-space model, the EKF proves good effectiveness in the state-estimation
process.

Given this starting point and pursuing an indirect (error-based) state-space
formulation, it has been proposed the implementation of a more complex and
advanced Unscented Particle Filter (UPF) architecture. It implements a synthesis
between the Unscented Transform (UT) function, engaged in the importance dis-
tribution refinement for particles’ draw, and the Sequential Importance Sampling
(SIS) concept, which fixes the operational trademark of any Sequential Monte-Carlo
(SMC) filter. Focusing on the underlying PF-stage within the UPF scheme and
looking over canonical particle weighting, it has been put forward an innovative
state-splitting criterion, which does not introduce extra computational burden and
can be extended to any PF model. It envisions a multiple weighting of random
particles such that each weight contributes to the estimation of just a portion of
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the whole state-space. Although this original weighting paradigm has not been
conceived within this thesis, the current research has offered the first assessment on
a real dataset with sub-centimetre accurate ground-truth. From the outcomes of
Chapter 5, state-splitting architectures have been found improving the estimation
performance in the high-accuracy region, that is for positioning errors below 2m.

One of the chief motivations fuelling the research on the UPF and, more
in general, on PFs, is the huge filter flexibility in handling and accommodating
multiple models, in terms of analytic distributions, for the stochastic description of
noise affecting input GNSS-observables. This perspective carries a great potential
over Kalman filters which, by their nature, are forced to select Gaussian models.
Nevertheless, in a dynamic system which fast evolves in a dynamic environment,
the non-stationary and non-ergodic measurement-noise process behaviour com-
plicates the elaboration of alternative, unified statistical characterizations, and a
further research effort is demanded on this topic. Accepting zero-mean Gaussian
measurement densities, the optimization was then oriented along two main paths;
on one hand, the exploration of adaptive paradigms for real-time measurement-
noise covariance estimation, thus allowing for a prompt reflection of environmental
changes on the filter statistical information; on the other hand, the design and
implementation of a portable, low-complexity and self-contained signal processing
module to mitigate multipath-related bias injections in the integrated PNT solution.
As far as the first aspect is concerned, Residual-based Adaptive Estimation (RAE)
and Redundant Measurement Noise Covariance Estimation (RMNCE) algorithms
have been investigated. From the final assessment on the accuracy of the horizontal
position estimates, two important hints have been grasped. First, the introduc-
tion of an adaptive RAE routine in the state-splitting UPF architecture grants a
performance gain in the high accuracy. Secondly, the combination of the adaptive
RMNCE strategy with the self-contained pre-filtering unit allows to effectively
counteract multipath and to improve the estimation quality in the low-precision.

Putting an eye to the future, it is worth expanding the INS/GNSS unit to
support multi-constellation signal processing and dual-frequencies, thus easing
the deployment of sophisticated RAIM techniques to hold up the integrity and
availability of the hybrid PNT solution. Another research pattern should foster
the elaboration of convenient inertial models to support the design of a Tightly
Coupled (TC)-scheme in direct configuration, where the fusion routine outputs
total navigation states in place of correcting factors. Furthermore, a profitable
architectural evolution might envision the integration of additional aiding sensor
technologies (e.g. visual sensors, UWB solutions etc.). Eventually, the navigation
filter observation model could be extended as well, to bear collaborative positioning
paradigms or network assistance strategies.
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