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Abstract

In this work we propose and test a method to perform video anomaly detection exploiting
the power of deep convolutional neural nets to extract strong low dimensional
representations to be used in conjunction with novelty detection algorithms.

Given the outstanding performances obtained in image and human action recognition using
convolutional neural networks trained on large datasets, in our work we used a 3D
convolutional neural network pretrained on the Kinetics 700 and UCF101 datasets as a
feature extractor, to map snippets of surveillance videos into a lower dimensional embedding
space. We then tested whether snippets of anomalous events are mapped into statistical
outliers in the embedding space, which can be detected using novelty detection
algorithms.

Using our technique on the UCF Crime dataset we got a final AUC score of 74.8 % which is
comparable to the 75.4% obtained by the creators of the dataset, Sultani et al. [1]
demonstrating the validity of our approach.
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Acronyms

List of the most used acronyms in the following work:

• NN: Neural Network

• CNN: Convolutional Neural Network

• FCNN: Fully Connected Neural Network

• TL: Triplet Loss

• AE: AutoEncoder

• GAN: Generative Adversarial Neural Network

• SCL/ SupConLoss: Supervised Contrastive Loss [2]

• CEL: Cross Entropy Loss

• AUC: Area under the Roc Curve

• LOF: Local Outlier Factor
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1 Introduction

In the last decade with the advent of deep convolutional neural networks (CNNs) the field of
computer vision has been completely revolutionized. Thanks to their high flexibility, they
have been massively used in almost every task that concerns image or video processing. A
way to interpret the function CNNs play is that they work as highly sophisticated and
automatized feature extraction systems; they allow to embed high dimensional data into a
lower dimensional dimensional space (see fig 1.1) that still contains semantic information
useful for the task at hand.

Throughout this work we propose and test a new approach to tackle the problem of video
anomaly detection leveraging CNNs’ aforementioned capacity to extract meaningful features
and pairing it with novelty detection techniques.

Figure 1.1: A pictorial representation of a CNN embedding images into a 2 dimensional space.

Video anomaly detection is the task of individuating within a stream of footage, segments of
video that are considered anomalous. More specifically in this work we tackle the task of
temporal anomaly detection which consists in finding what frames are anomalous; this in
contrast to spatial anomaly detection which aims at finding where inside the frame the
anomaly happens.

To tackle this problem the first step in our approach is to have a feature extractor that maps
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the potentially anomalous videos in an embedding space that contains information about the
human actions contained in them. This is accomplished by using as a feature extractor a 3D
CNN trained on human action recognition. Here, we assume that anomalous videos contain
specific actions clearly distinct from those found in normal videos, and that the feature
extractor maps different actions into different regions of the embedding space. In that way
by projecting the videos into this space, the anomalous ones should end up being isolated
from the rest.

The proposed approach works then as follows: First, we assume to have a long stream of
normal footage, i.e. with no anomalies in it. This stream is divided into snippets which are
mapped into an embedding space via the 3D CNN which has been previously trained on an
action recognition dataset. These embeddings will form then the "Normal Clusters" in this
space which, thanks to the pretraining on action recognition, should contain information
about the normal actions/activities that take place in the videos. Having defined these
normal clusters, on inference time one maps the video snippets to be evaluated into the
embedding space and through novelty detection techniques (in our case using the Local
Outlier Factor algorithm), one determines whether the new embeddings belong to any of the
normal clusters or not, classifying as anomalous those that don’t. For this reason we
consider ours an unsupervised method, in the sense that we don’t explicitly tell our model
what an anomaly "looks like", instead we tell it what normal "looks like" and then an
anomaly is defined as that which doesn’t look normal. This means that we provide a normal
distribution in embedding space and an anomaly is then defined as a statistical outlier from
this distribution.

The anomaly detection system itself consists of the following parts:

1. Feature Extractor: This is used to map the surveillance videos into the lower
dimensional embedding space. In our case we used a 3D CNN trained on an action
recognition dataset.

2. Novelty Detection Algorithm: With it, first the system learns what normality means
during its training in which it sees the embeddings of Normal videos. Then we make
our trained algorithm predict the anomaly score of normal and anomalous embeddings.

1.1 Relation with previous works

Our method draws inspiration mainly from the success of the reidentification techniques
found in [3] where CNN where used to map photos of people in a hidden embedding space.
A cluster is associated to each person. Then, when a new unseen photo is given to the
model, the system finds the nearest cluster to the new embedding, associating the respective
person to the embedding.
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Our idea is analogous since our method is also based on the idea that a 3D CNN pretrained
on action recognition should be able to cluster videos with similar actions into regions of the
embedding space, and the anomalies woud then be outliers to the so formed clusters.

In the field of deep video anomaly detection there are also two approaches that bear some
resemblance to our own:

The Auto Encoder (AE) approach: This method, explored in works like [4] and [5], makes
use of the AE architecture in its usual way; it uses a neural net encoder to compresses an
input into a latent embedding space and then decompresses it using a decoder neural net.
To use as an anomaly detection system they repurpose the reconstruction error to be an
anomaly score. These kinds of systems are trained by making them reconstruct normal video
footage of the setting.

The GAN approach: The philosophy of this method is similar to the AEs and is explored in
works like [6]. It also consists of an encoder that compresses the frames of the video into a
latent space, and of a decoder that afterwards tries to reconstruct it. The encoder/decoder
structure works as the generator of the GAN. The discriminator then sees both the original
and the reconstructed frame and has to learn to recognize the original one. The generator
and the discriminator are then pitted against one another in regular GAN fashion. This
system is also trained by reconstructing normal video footage.

The similarity between our approach and the two just mentioned is that they all encode
information from the video into a latent embedding space. Some differences that we find
with respect to these approaches are the following: First, we don’t reconstruct the frames
from the embedding space instead we do the anomaly detection directly in it. We suspect
this to be an advantage since reconstructing the frame is a complex task to perform and
might suppose and unnecessary burden for the anomaly detection task. Second, their neural
nets are trained to reconstruct normal video footage of the setting in which to do anomaly
detection, while ours is trained on Kinetics700. This could be both an advantage and a
disadvantage. The disadvantage would be that there is a domain gap between the videos
used to train our feature extractor and the videos on which the anomaly detection is
performed, while the advantage is that our net learns to extract more abstract and
meaningful features given that it is trained on a harder and more sophisticated task
(classifying human actions). A third advantage is that the neural net of our feature
extractor doesn’t need training on the surveillance videos. Training effectively a neural net
can be time consuming and computationally expensive and their approaches need to do so
for every new setting on which they’re implemented while our net is only trained once.
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Figure 1.2: Illustration of the resemblances and differences between our proposed method and
previous attempts with AutoEncoders and GANs.
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1.2 Structure of the work

The structure of this work is the following:

1. Theoretical Framework: In this chapter we talk about theoretical concepts that we
used for our work, dividing it in three parts. We start by dissecting the feature
extractor. In section 2.1.1 we give a brief introduction to neural networks while in
2.1.2 and 2.1.3 we explain in more detail the kind more fit for our task, the
convolutional neural networks, known as CNNs, and the reason why they proved to be
so successful in computer vision tasks, highlighting also (sec 2.1.4) the contribution of
large datasets and data augmentations for this deep learning revolution.

In Sec 2.2 we explain the theoretical details of the strategies we used to tune the
feature extractor and improve its resulting embeddings. We also provide brief
theoretical explanations of the different losses used for this task and of the silhouette
score, the metric used to measure the quality of the embeddings.

In the third part we explain in detail the algorithm that we used to do anomaly
detection. Since an important part of our work is focused on choosing the dimension
of the embedding space, in sec 2.3.1 we discuss the curse of dimensionality, that is an
evocative name that refers to some counter intuitive phenomena that prevent an
effective anomaly detection in very high dimensional spaces.

We then proceed to explain in depth the Local Outlier Factor in sec 2.3.2, the
algorithm that we used to do the anomaly detection.

2. Experimental Part: In this chapter we gather and discuss all the experiments that
we performed to validate our model. In sec 3.1 we compared the performance of two
metric learning losses mentioned in the Theoretical Framework, triplet and contrastive,
using the silhouette score as a performance measure. These tests were performed on
image datasets that are less computationally expensive.

We then went on to build and test the feature extractor for our anomaly detection
system. The feature extractor has two components, the backbone (a 3D CNN) and
the projection head which consists of a single layer fully connected neural net that
takes the output of the backbone and projects it into the final embedding space of our
system. To choose the backbone we reviewed different pretrained architectures
available on the internet, finally opting to use a 50 layer Resnet(2+1)D. We tested
several projection heads, changing specifically two aspects: changing the output
embedding dimension (sec 3.3.3) and changing the loss ( sec 3.3.4) used to tune
them. The performance comparison of the different models was done using the
silhouette score obtained in the tuning on the action recognition dataset, and not yet

5



on an actual anomaly detection task.

With the feature extractor ready, in this last section we put our system to the test in
an anomaly detection task. Here, in sec 3.3.1, we first introduce the dataset that we
used for this purpose, UCF Crime, and explain the particular way in which we used it.

In these experiments again we compared performances changing the feature extractor
along the same domains tested during its tuning: changing embedding dimension and
loss function. This time though, the comparison is done comparing their performance
on the anomaly detection task, more specifically, we compare the AUC scores obtained
with the different feature extractors.

In sec 3.3.3 we compared the performance of the feature extractor in the anomaly
detection task changing the dimension of the embedding space. Through this
experiment we discovered strong evidence for the dependence of the anomaly
detection performance on the dimension of the embedding space, so care must be
taken in choosing this hyper parameter.

We also studied how the different losses influenced the anomaly detection performance
in sec 3.3.4 but these results were nevertheless inconclusive. In the end we found a
good performing anomaly detection system using a randomly initialized projection
head, this suggests there were problems in the tuning of the projection head (we
suspect associated to the UCF101 dataset) but we got results comparable to others in
the industry suggesting the system has potential left exploit.

3. Conclusions We end this work by summarizing the most important results found,
pointing out the direction for further research and improvement.
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2 Theoretical Framework

This chapter is devoted to the theoretical explanation of the concepts that we used
throughout the work. The chapter is divided into three sections:

1. Feature Extraction: In this section we explain explain some of the different
technologies underlying the neural net we used as our feature extractor, a
Resnet50(2+1)D.

2. Creating good embeddings: In this chapter we explain how we trained our feature
extractor in order to guarantee a good performance when used in conjunction with the
anomaly detection algorithm, and we explain the theoretical details of various losses
used during said training.

3. Anomaly Detection: In this section we will talk about what anomaly detection
algorithms are, and in particular a subclass of these, novelty detection algorithms,
which ended up being the most fitting to address our task. Also, we introduce the
specific algorithm that we used in this work: the Local Outlier Factor.

2.1 Feature extraction

In most machine learning problems, the data under study live in very high dimensional
spaces. Even in our case a short 10 second 128x128 video is represented as an array with a
whopping 14.745.600 entries (128 x 128 x 30fps*10s x 3). Applying classical machine
learning techniques (like anomaly detection algorithms) directly in such high dimensional
spaces is a hopeless endeavor, and so methods to reduce the dimensionality while still
preserving meaningful information are necessary. In the early days this lead practitioners to
handcraft features out of the raw unstructured data.

In the field of computer vision though, a technology completely revolutionized this process:
Convolutional Neural Nets. Through their convolutional layers, CNNs not only completely
automated the feature extraction process, but they also did so in a way that allowed to
break all performance benchmarks in the computer vision tasks of the time.

The feature extractor of our anomaly detection system belongs to this family of networks.
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It’s a 50 layers deep Resenet(2+1)D followed by a fully connected projection head, and the
next sections are devoted to explaining the different technologies that underlie this
architecture, starting from it’s simplest predecessor: the fully connected neural net.

2.1.1 Neural Networks

Figure 2.1: Pictorial representation of a fully connected neural net. (Image taken from
Stanford’s CS231n course on convolutional neural nets)

Traditional feed forward neural networks can be thought of as a sequence of layers of neurons
(see figure 3.1) where the first layer is the raw input data (in our case it would be the pixel
values of a video) and subsequent layers, called hidden layers, extract ever more abstract
information of the data-object until one reaches the final layer, called the output layer.

Internally, each neuron in the net has a value associated to it, called an activation, which
depends exclusively on the activation values of the neurons of the preceding layer. More
specifically, the activations of the neurons in the l -th layer, x (l), are a linear combination of
the values of the preceding layer, x (l−1), passed through a non linear function σ (usually a
ReLU function):

x (l) = σ(W (l)x (l−1) + b(l)) (1)

where W (l), the weights matrix, and b(l), the bias vector, are parameters whose values are to
be tuned depending during the training stage of the neural net.

During said training stage some training data is passed through the NN and the output is
passed to a loss function. This function associates a loss or cost to this final representation
of the data, and the neural network "learns" to minimize said loss by tweaking the weight
and bias parameters using gradient descent or some other gradient based optimization
algorithm.

The gradients can be calculated efficiently by using the backpropagation algorithm.
Backpropagation is a dynamic programming algorithm introduced by Rumelhart, Hinton and
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Williams in [7] which computes the gradient of the loss with respect to each of the NNs
parameters in a recursive way down the computational graph of the network.

Early theoretical results like the "universal approximation theorem" [8] seemed to hint this
type of systems could have great potential. This theorem states that just with a 2-layer
neural network, by making the hidden layer arbitrarily "tall" (increasing its number of
neurons), one could always find parameter values such that the NN could approximate any
non-linear function. In reality though, the theorem doesn’t prescribe how to find said values,
which makes the result not useful in practice.

So in the end tall didn’t make perfect, it turns out though, increasing depth did do the trick.
Fully connected nets though, posses a bottleneck that prevents them from being too deep:
they have too many learnable parameters. As mentioned before, in a fully connected neural
network each activation neuron can attend to every neuron from of the preceding layer. To
do this it requires the W matrix which maps a d-dimensional vector into another
d ′-dimensional vector, meaning W has dxd ′ parameters, so if you have a high dimensional
data such as an image or a video, deep fully connected networks quickly become
computationally unfeasible to train.

To solve this problem people came up with Convolutional Neural Networks (CNNs) that by
making use of good assumptions about the structure of images, they require far fewer
parameters to train.

2.1.2 2D Convolutions

Figure 2.2: Pictorial representation of a fully connected neural net (left) and a convolutional
neural net (right). (Image taken from Stanford’s CS231n course on convolutional neural nets)

2D CNNs are a type of neural networks in which the activations of neurons in the next layer
are not influenced by every neuron in the precedent layer but only on a subset of these.

Their workhorse, the convolutional layer is similar to their fully connected counterpart in
that it relates a set of input neurons to a set of output neurons through an affine
transformation followed by a non linear operation.

In CNNs this process is mediated through what its called a filter, that is a tensor of learnable
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Figure 2.3: Different filters look for various patterns in images creating different feature maps

parameters, which slides over the two dimensions (hight and width) of an image performing
a convolution, that is a weighted sum between the values of a tensor image and the weights
of the filter. The resulting tensor of activations is called a feature map and it expresses, with
high values, the areas where the filter overlaps the most with the original images. So if the
filter represent a particular kind of edge, meaning that the high values neurons in the filter
form an edge, the resulting feature map from the convolution on a image will highlight the
particular zones where that edge is present in the image. A convolutional layer is composed
of different filters that creates different feature maps (fig 2.3)

This filter-based approach in the processing of data has some peculiarities that makes this
kind of deep models very well suited for computer vision tasks:

1. Locality: In convolutional neural nets, the fact that feature maps of consecutive layers
are connected through this convolution operation means that neurons are only allowed
to look at a small patch of the neurons (sometimes referred to as the receptive field)
from the preceding layer. This, in contrast with the fully connected case, in which the
neurons are connected to all of the neurons from the preceding layer. This property
finds correspondance with the fact that in an image the correlation between pixels is
extremely local. In most computer vision applications, for example, we would like a
model that knows to detect an eye independently of the content of far-away pixels.

2. Translational invariance: Since the weights of the filters are the same during the
convolution across the image, the detection of patterns does not depend on where
that particular pattern is situated in the image. This gives a lot of flexibility to the
model since usually different viewing angles and positions do not change the semantic
of the image. If our model aim to detect the presence of cats in an image, the position
of the cat in it is irrelevant.

CNNs are hierarchically structured in a series of consecutive convolutional layers with
different purposes. In each layer the feature maps expressed by the filters in the previous
layer are convolved by another set of learnable filters and this process continues till the last
convolutional layer that signs the end of the backbone of the convolutional neural network.
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(a) layer 7 (b) layer 74 (c) layer 168

Figure 2.4: Visualization of trained filters of a CNN Resnet 50 on different layers from [9].
The deeper the filter is the more complex and abstract patterns it can capture: in early layers
(fig. 2.4a) filters look for simple lines and thus they can captures more texture features. Going
through the middle of the layers (fig. 2.4b) the filters look for more complex patterns and
even some flower-like objects can be recognized in the lasts layer (fig. 2.4c)

One convolutional layer of a CNN is made of several of filters. During trainig these filters
specialize in the detection of one specific feature of the image. Along the networks the
specialization of the filters follow a hierarchical order: filters in the firsts layers learn to
detect simple patterns like lines and edge and various textures while later filters detect more
abstract and complex patterns like eyes, teeth, doors depending on the dataset they’re
trained on. This is also due to the fact that deeper layers have a larger view on the original
image than the shallower ones: if the first filters look at a 3× 3 portion of nearby pixels of
the image, in the second layer, by sliding another 3× 3 filter on the feature maps of the first
layer, it will look at a 9× 9 portion of the original image making it possible for those filters
to learn more global features of the image.

2.1.3 3D Convolutions

The same idea for 2D images can also be applied in video to extract motion features The
first attempt in this area was made by Ji et al. [10], where they trained a 7 layer 3D
convolutional network.

Their convolutional layer consists of a filter that is a 3 dimensional tensor (Time, Hight and
Width). While in 2D CNN filters scan the image in on a plane, the filter in 3D CNN scans
the time dimension as well. This means that the filter not only will recognize spacial features
like edges and lines, but also features linked to actions, making the 3D CNN a very powerful
tool for action recognition.

At that time memory and data constraints strongly limited the depth of these kind of
architectures, but after the breakthroughs brought by the AlexNet [11] and ResNets [12] and
more vast datasets like Kinetics, researchers have tried to apply deeper neural networks to
the task of human action recognition. With the hope of replicating the success of convnets
in image recognition one obvious path to follow is to inflate existing 2D models as in [13] to
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Figure 2.5: Image taken form [15]
a): standard 3D convolutional layer composed by a single 3D filter
b): (2+1)D convolutional layer decompose the convolution into 2 parts, in which the first
perform the convolution along space dimensions and the latter along the time one

create 3D resnet [14] and that brought advancements in this area.

In another work by Du Tran, Yann LeCun et al. [15] they tried to factorize the time
convolution and the spacial one in what they called "(2+1)D" convolution. This means that
the convolution over the video frames is done in two steps: First, a filter of dimensions
1× height× width perform the spacial convolutions over the frames, then a non-linear
function creates the feature maps that are processed by a second filter of dimensions
time× 1× 1 and passed again to a non linear function like ReLu (see fig. 2.5)

They noticed that by factorizing the 3D convolution into two separate and successive
operations one can double the number of non linearities making the model capable of
representing more complex functions and making it also easier to optimize.

The Resnet(2+1)D that we use in this work is based on this type of convolutional layer and
reaches SoA results on classification on Kinetics 700, but we will discuss more about this in
sec. 3.2.1.

2.1.4 Large Datasets and Data Augmentation

CNN revealed themselves to be very powerful and versatile tools for computer vision tasks.
Nevertheless, as has become current theme in deep learning, their potential was only truly
expressed when huge datasets were created. In tasks involving images (like image
classification and object detection) a landmark happened in 2009 with the creation of
Imagenet which when released had more then 10 million images and 10.000 categories and
has been continually expanding, counting nowadays with more then 14 million annotated
images of 21.000 different categories.

Training on big datasets like Imagenet addressed two major problems in machine learning:
overfitting and generalizability.
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Overfitting happens when the accuracy of a model trained on a dataset drops consistently
when new unseen data is shown. This failure often happens when the model is overly
complex (i.e. has too many parameters as it’s common in deep learning) and few training
data is available. The problem of generalization is related to the one of overfitting, but while
overfitting refers to the performance on unseen data, the generalizability of the model refers
to the its capability to have good performance in different tasks in which it has not been
directly trained. To solve both problems a good model should look for the right patterns in
the data that generalize well enough to different settings and tasks, and training on large
datasets was found to be crucial for achieving this [16].

Needless to say, Imagenet revoluzionized the field of image classification, object detection
and image segmentation, and efforts were made to replicate the same success in the task of
human action recognition following the same steps [17]. In 2017 kinetics 400 was announced
and it was formed by more then 16.000 different 10 second videos divided into 400 different
human action classes. In its latest update kinetics counted with 700 different classes of
actions and 650.000 different videos [18].

As larger datasets were forming, deeper data-hungry CNN models started to appear which
required even more training data, but manually increasing the size of datasets is a labor
intensive task, and so new techniques were devised to "artificially" increase the available
training data.

These techniques are called "data augmentations" and they consist of slight modifications of
the data in a way that changes its appearance but preserves its semantic content. Thanks to
these tricks the model can see many more samples than there’s present in the dataset,
leading to longer epochs of training and, at the same time, strongly limiting the risk of
overfitting. In image classification it’s worth mentioning three data augmention that stood
out for their importance in the improvement of the performance: Random Crop of the
image, Flipping and Rotations [2] [19].

In this thesis we worked with videos and we made heavy use of data augmentations
techniques. We noticed it was risky to use random crop in videos since we could possibly cut
important parts of movement, so we resolved to use others types of data augmentations.
Together with flipping and 10 degrees random rotations, we also used the time dimension to
augment the data, by preforming:

1. Time crops: Video samples of the training set are in general too long (timewise) to be
fed directly to the neural net and so a random portion of the video is chosen each time
it is loaded into a batch.

2. Randomly fixing the frame rate: the frame rate is chosen randomly, making the videos
faster or slower.
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Figure 2.6: Residual connection between layers of a neural network. Image taken from [12]

2.1.5 Resnets

The architecture that we used in this work comes from the Resnet family, that in the last
few years became one of the standards of the industry.

The most popular convolutional models today are Resnets. Introduced for the first time by
Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun in 2015 [12], they won several
Imagenet competitions and showed that training very deep models was possible.

Before Resnets, very deep models were very hard to train because of the problem of
vanishing gradients. What used to happen is that as one backpropagated further back
through the net, gradients would become smaller, to the point where deepest layers weren’t
able to modify their parameters and so the early layers could not learn. In order to solve this
problem Kaiming He et al. proposed to insert in the model a "gradient highway", that is,
shortcuts to route more efficiently the gradients to the early layers.

The main component of the Resnet is the "residual block", which is a sequence of
convolutional layers (called the residual layers) where the output is summed to their input, in
what it’s called a "skip connection". If we consider the neural network as a computational
graph whose gradient flows from the last layer to the early layers during backpropagation,
the optimization is made easier since each gradient can use these the skip connection to
reach deeper layers.

The concept of the residual block is expressed with equation 2:

y = F(x, {Wi}) + x (2)

where F is the function representing the residual neural network and x and y are the input
and the output of the block.

The skip connection made possible to have unprecedentedly deep convolutional networks
that brought state of the art results in a wide variety of computer vision tasks.

14



For resnet architectures with 50 layers or more, the standard resnet block is replaced by a
stack of 3 convolutional layer: the first layer is composed of 1× 1 filters that simply reduce
the number of feature maps, the second layer is formed by 3× 3 filters and the last 1× 1

filters restore to the input to its original number of feature maps. The advantage of this
block is that it increases the depth of the block without increasing its time complexity.

2.1.6 The Architecture of our Feature Extractor

The feature extractor that we used for our task of anomaly detection on video is a Resnet 50
(2+1)D which consists of 16 bottleneck residual blocks stacked one after the other each
containing one (2+1)D convolutional layer, plus a final fully connected layer which we
denominate the projection head.
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2.2 Creating good embeddings

In this work we intend to make use of convolutional neural networks as feature extractors
that embed very high dimensional video data into a lower dimensional space that contains
enough information so that an anomaly detection algorithm can recognize embeddings
associated to anomalous videos.

But what information should the feature extractor distill in order to isolate the anomalies?
In our work we assume said information should be pertaining to human actions , and so we
trained our feature extractor on human action recognition tasks in order for the extracted
embeddings to contain this information.

If one wishes for the feature extractor to generalize well, however, than one should train
train on a huge dataset, and since in this case the datasets would consist of videos which
use a lot of memory, the training would require considerable amounts of computing power.
To give a sense of the amount, we estimated that using the 2 GPUs available to us to train
a classifier on the kinetics 700 dataset would require 200 days for 100 epochs of training.
Luckily, researchers and companies that have the required computing power have made their
trained models available on the internet so that others can exploit and have access to
powerful CNNs without having to go through the cost of training them.

These pretrained models are usually used as a backbone of a larger neural net which has a
couple further fully connected neural nets which allow to adapt the entire neural net to the
task at hand. In our case, the available backbones had to high of a final embedding
dimension (we delve more deeply into problems related to dimensionality in Section 2.3.1)
and so the further fully connected layer was necessary to project into a lower dimensional
space. The task of training this projection head we will call tuning throughout our
work.

2.2.1 Tuning the projection head

We want for the head of our feature extractor to further project the output of the backbone
into a lower dimensional space without losing information pertaining to human actions. For
this purpose we trained it in another human action classification task. For this, the standard
loss to use is the Cross Entropy Loss which we explain in detail in section 2.2.1.1.

A classification task is usually not the best for training a feature extractor that will be used in
conjunction with clustering techniques. In our case this would be because anomaly detection
algorithms use specifically the notion of distance to asses whether a sample is anomalous or
not, since samples which are far from the normal ones are considered anomalous. Feature
extractors trained on classification tasks on the other hand, learn to partition/divide the
embedding space into semantically meaningful portions (to be able to associate a label to
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each portion) but they don’t specifically encode the information into the distance i.e. they
encode the information in the topology, not in the metric. So for the anomaly detection
algorithm to find anomalous videos, it is necessary that our feature extractor guarantees that
videos which are semantically similar are also close in embedding space:

Video1 and Video2 are similar ⇐⇒ Embs1 and Embs2 are close (3)

There exists various losses designed to enforce this correlation between distance and
semantic similarities, which are called metric learning losses. We will explain the two losses
of this kind, Triplet and Contrastive, in sections 2.2.1.2 and 2.2.1.3 respectively.

Finally, as a performance metric of the property stated in eq 3 we used the silhouette score,
which we explain in section 2.2.1.4

2.2.1.1 Cross Entropy Loss

To train a model for classification, Cross Entropy is the "go to" loss. The Cross Entropy
Loss (CEL) assumes that, when you give a sample to your neural net, the final output are
scores that tell you how strongly the neural net believes that your sample belongs to a class.
The CEL then associates a high loss when the "belief" doesn’t match the actual class of the
sample. Calling the scores si and the actual class y , the loss is calculated as follows:

LC .E .({si}, y) = −sy + log

( ∑
i∈classes

esi

)
(4)

though to understand it’s meaning it must be cast into a more illuminating form:

LC .E . = − log

 esy∑
i∈classes

esi


= −

∑
j∈classes

δj ,y log

 esj∑
i∈classes

esi


= −

∑
j∈classes

pj log(qj) (5)

In this expression q and p can be interpreted as probability distributions:

• qi =
esi∑

j∈classes
esj

; is the probability that the sample belongs to class i according to the

neural net, and is computed by applying a softmax over the activations, si , of the last
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layer.

• pi = δj ,yi represents the probability distribution we hope the neural net would output,
i.e. the target probability distribution of the sample belonging to class i .

and equation (5) is called, in information theoretic circles, the cross entropy between p an
q.

Given a random variable I ∼ p, the information obtained by drawing the value i , written as
Ip(i), is defined as:

Ip(i) = − log(pi) (6)

The cross entropy then measures the average information on a distribution q of a random
variable drawn from a probability distribution p and it’s defined as:

H(p, q) = −
∑
i

pi log(qi) (7)

This definition has some traits that makes it a suitable candidate for a classification loss:
The function is smooth on the qi s, and has high values when the probability distribution of
the predicted label qi is different from the desired probability distribution pi . It can be
proven that the cross entropy serves as a sort of distance function between the 2
distributions which assumes its lowest value when qi = pi , ∀i .

So minimizing the cross entropy in (5) means we’re making the probability distribution qi to
be the same as the desired probability distribution pi .

2.2.1.2 Triplet Loss

The Triplet Loss is a loss that has been used quite successfully in the task of person
re-identification.

The Triplet loss assigns a value to a triplet of samples which are denoted as:

• The anchor: a sort of reference sample against which the others are compared.

• The positive: a sample that belongs to the same category as the anchor.

• The negative: a sample that belongs to a different category than the anchor’s.

The aim of the TL then, is to pull together the anchor and the positive, and to push away
the anchor from the negative. More formally, it associates the following value to the triplet
of samples:
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Figure 2.7: Diagramatic representation of the use of the Triplet Loss in person re-identification.

L(A,P ,N) = max(d(A,P)− d(A,N) + α, 0) (8)

Where A is the embedding of the anchor, P is the embedding of the positive, N is the
embedding of the negative, d is a distance/similarity function in the embedding space and α
is a tunable hyperparameter. From expression (8) we can see that in order to minimize the
loss, on must minimize distance between the anchor and the positive while maximizing the
distance between the anchor and the negative.

For the TL to be effective though, some care must be taken in choosing the triplets. If for a
given anchor one simply chooses a random positive/negative, if by bad chance the positive is
already close and the negative already far, the loss value will be zero and it won’t contribute
to the learning. It turns out this happens more often that one might expect and so to
address this, people resorted to hardmining the triplet.

Ideally hardmining would assign to every anchor the furthest away positive and the closest
negative, in that way it would maximize the loss of the triplet, in turn increasing the value of
the gradient and guarantying that some learning takes place. The problem with this though,
is that to build the triplet you would have to go through the entire dataset to find the ideal
positive/negative, which is too computationally expensive, and so the most common
compromise is to restrict this search to samples within the same batch, in this way you get
reasonably good triplets without the cost of searching though the entire dataset for each
one.
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2.2.1.3 Supervised and Self-Supervised Contrastive Loss

As the triplet loss, the supervised contrastive loss [2] also aims at pulling together clusters of
points in the embeddings space that belong to the same class and push apart those that
don’t.
The main differences with the aforementioned triplet loss is that, instead of considering
triplets, all the elements in the batch are compared with the anchor.
The technique draws inspiration from its self-supervised counter part [20] which we also use
throughout our project, in which the positive is only the augmented version of the anchor
and all the remaining elements of the batch are negatives.

Both types rely on the concept of multiview batch, that is a batch that contains a set of
samples and additionally augmented versions (the "views" of the samples) of these, i.e.
copies of the samples to which some augmentation transforms has been applied.

Given I the set of indexes in multi-view batch, P(i) the set of the indexes of the positive
instances with respect to i , the expression of the supervised contrastive loss function is the
following:

L =
∑
i∈I

−1
|P(i)|

∑
p∈P(i)

log
exp(zi · zp/τ)∑

j∈I/{i} exp(zi · zj/τ)
(9)

The self-supervised contrastive loss has the same expression but the set P(i), instead of
considering all the instances with the same label, contains only the augmented version of i ,
as shown in fig 2.8.

With respect to the triplet loss, it has the advantage of having the hard mining built into it,
since every anchor is compared to all the instances in the batch.

2.2.1.4 Silhouette Score

One metric to measure the quality of our embeddings is the Silhouette Score and we use it
throughout our work as a quantitative proxy of the clusterization of our embeddings. The
silhouette score, given a reference sample, it tells you how close it is to same-labeled
instances in comparison to those with different labels. To do so it calculates the average
distance between the reference sample and elements with a different label, and compares
this with the average distance to the other samples of the same class. More specifically it
calculates the mean interclass distance of the closest neighboring cluster and substracts from
it the mean intraclass distance, finally normalizing this number to give a score between 1
and -1. The expression to calculate it is:
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Figure 2.8: Self-Supervised Contrastive Loss vs Supervised Contrastive Loss. The latter takes
as input also the labels and try to minimize the cosine distances between the the anchor and
the positives, that are the augmented views of the anchor and the same-class instances, while
it also maximize the distances with all the others

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(10)

where

b(i) = min
k 6=i

1

|Ck |
∑
j∈Ck

d(i , j) and a(i) =
1

|Ci | − 1

∑
j∈Ci ,i 6=j

d(i , j) (11)
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2.3 Novelty Detection

Novelty detection algorithms are a class of machine learning algorithms, most used in data
mining for tasks like network intrusion detection, that focus on the search of novelties that
are a type of outliers that occur after the training phase is completed [21].

The task of novelty detection consists of, given a set of normal instances, discriminating
whether a new unseen piece of data belongs or not to the same distribution as the normal
training instances. In other words, the algorithm tries to determine whether a new piece of
data represents an outlier where, using the definition by Knorr and Ng [22]:

"An outlier is an observation that deviates so much from other observations as to arouse
suspicion that it was generated by a different mechanism"

Some important algorithms used for novelty detection are:

• One class SVMs [23]:
One class SVM is a variation from a classical kernel-based Support Vector machines
that try to find the smallest hypersphere that include all the training data. During
inference a data point lying outside this hypersphere is considered as an outlier.

• Isolation Forest [24]:
Starting from the assumption that anomalies are isolated and lies on a low density
region of the space, this machine learning algorithm associate for each point an
anomaly score not using any concept of distance, but instead a value that relates on
how difficult is to seperate one specific point from all the others.

For each data x the isolation forest algorithm constructs an ensemble of tree graphs
(also called forest) in which each tree node partitions the space until x is isolated from
all the other points. in this frame of reference, outliers that live in low densities part of
the space will be easier to isolate, so the average tree length ( that measures how
many steps on average it is required to separate one point from all the others) will be
shorter. The anomaly score for a data point x among n total points, is:

s(x , n) = 2−
E(h(x))
c(n)

where E(h(x)) is the average depth of each binary search tree, and c(n) is a
normalization factor that depends on the number of data points n

• Local Outlier Factor [25]:
Starting from the same assumption of Isolation Forest that anomalies are sparse, living
in low density region of the space, this method finds local outliers that exhibit a lower
density than their neighbors. This is the approach used throughout our work and it’s
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explained in more detail in Sec. 2.3.2

For each of these methods, one crucial factor that needs to be controlled for an effective
novelty detection is the dimension of the space in which the analysis is performed. The risk
of choosing an embedding space too small is that the points would not encode for enough
information, while having a too high dimensional space it’s possible to incur in the "curse of
dimensionality".

2.3.1 Curse of Dimensionality

In this work we reserved special care in selecting the dimension of the embedding space into
which map the different video snippets. This because the novelty detection task, which is
the essence of the second stage of our approach, is susceptible to the dimensionality of the
space in which it’s performed since some counter intuitive phenomena arise in high
dimensions. In their work [26], Zimek et al. explore these problems which are commonly
referred to as the "curse of dimensionality". The first problem mentioned in [26] is the
"concentration of distances", that states, citing the main discovery made by Beyer et al. in
[27], that given a set of i.i.d. points in a d-dimensional space Xd , the ratio of the variance of
their lengths (||Xd ||) and the length of the mean point vector E[||Xd ||] tends to zero as the
dimension d tends to infinity.

lim
d→∞

(
||Xd ||
E[||Xd ||]

)
= 0 (12)

The consequence of this lemma is that for any set of points in a high dimensional space the
relative contrast between the farthest-point (Dmax) point and the closest point (Dmin)
vanishes, making the concept of nearest neighbours unstable [27].

lim
d→∞

(
||Xd ||
E[||Xd ||]

)
= 0 =⇒ Dmax − Dmin

Dmin
→ 0 (13)

Zimek et al, also show that this result leads to high false positives rates using kNN outlier
detection, while the Local Outlier Factor algorithm gives more stable results.

A maybe even more important factor that must be taken into account when dealing with
high dimensional data is that irrelevant features can conceal other more relevant attributes,
possibly masking outliers. As shown in fig 2.9 (taken from [26]) having a relative high
number of noisy dimensions drastically reduces the anomaly score measured using
LOF.
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Figure 2.9: Increasing the number of noisy dimensions drastically reduces the LOF outlierness
measure of the anomalous point (purple dotted line). Image taken from [26]

2.3.2 Local Outlier Factor

Local Outlier Factor (LOF) is a novelty detection algorithm introduced by M. Bruening in
[25]. Based on the assumption that outliers lives in low densities region of the space, LOF
associates an anomaly score to a sample by computing how much it is isolated with respect
to its neighbours.

To explain better the algorithm let’s introduce a couple definitions. First, the k-distance(O)
is the distance from O to its k-nearest-neighbour. Then the reachability distance between
two points P and O (reach-distk(P ,O)) can be defined as:

reach-distk(P ,O) = max{k-distance(O), dist(P ,O)} (14)

that is the distance between P and O if such distance is greater than the k-distance of O. It
must be enphasized that this is not a"distance" in the proper mathematicals ense of the
word since it is not symmetric in it’s arguments. However, this definition is useful to have a
less noisy measure of distance between points and allows us to introduce the local
reachability density (lrd) as the inverse of the average reachability distance of a point P from
its neighbours.

lrd(P) =

 1

Nneigh(P)

∑
O∈k-neigh(P)

reach-distk(P ,O)

−1 (15)

where Nneigh(P) is the number of neighbors which are within a distance k-distance(P) from P
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Figure 2.10: Illustration of Local Outlier Factor. P is an outlier since its local density it’s
lower then its neighbours

(it could be more than k if there were two points or more tied with the same distance).

This can be seen as a measure of densities of points around P: if P is an low density region
of the space, meaning its nearest neighbours are far, the average reachability distance will be
high, hence its lrd low (see fig 2.10).

The Local Outlier Factor (LOFk) of a point P compares the local reachability density of that
point with its neighbours

LOFk(P) =

∑
O∈k-neigh(P)

lrdk (P)
lrdk (O)

Nneigh(P)
(16)

(17)

The value of LOFk(P) tells wether P can be considered an outlier or an inlier:

• If LOFk(P) ≤ 1 the point P sees around him the same density of point than its
neighbours, and therefore it’s called inlier.

• If LOFk(P) > 1 than P is an outlier since the density of points around its neighbours
are greater then the density around P

In this work we used the scikit-learn implementation of LOFk (https://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html) setting the
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number of neighbors hyperparameter k = 20.
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3 Experiments

The structure of the experiments that we delineated to create and test the anomaly detector
is the following:

1. Comparison of the metric learning losses: For the purpose of this project we
needed a feature extractor that clusterized effectively. Unsure about which loss, Triplet
(TL) or Contrastive (SCL), was better for this purpose, we experimented on an image
dataset a Resnet 50 on Caltech 101 using both losses and compared their silhouette
scores. The model trained with SCL ended up having the better performance and so
we used it for the later experiments to train the feature extractor of the anomaly
detection system.

2. Building the feature extractor: This section is focused on the feature extractor of
our anomaly detection system and it’s divided into two subsections, one for each of its
parts:

(a) First we do a brief review of the architecture we choose as the backbone of our
model, the Resnet(2+1)D, and other architectures available on the internet.

(b) Then we tuned several projection heads with different embedding dimensions,
and compared their silhouette scores. We also trained a projection head using the
Cross Entropy loss (CEL) to have a baseline performance to compare to those
obtained tuning with SCL.

3. Anomaly detection on UCF Crimes: This part is the core of our project,
consisting of the anomaly detection experiments. In this section we introduce the
dataset used for the task and we performed several analysis using as a performance
metric the AUC score. In particular we focused on two lines of experimentation:

(a) Changing the dimension of the embedding space and checking its effect on the
performance of the anomaly detector, the best one being 256.

(b) Tuning with different losses keeping the dimension of the space fixed at 256 and
seeing their influence on the performance of the anomaly detector. Seeing how
by using different losses we weren’t seeing an improvement on the performance,
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we decided to do a model without tuning, meaning, with a randomly initialized
projector. This ultimately was our best performing model with an AUC of 0.75,
which hints to some issues with the tuning using UCF101, but more importantly
it ultimately pointed to the fact that our model works and still holds promise to
manifest.

3.1 Choosing the metric learning loss: Triplet vs. Con-

trastive

In this section we decided to put to the test the two losses mentioned in the theoretical
framework in sections 2.2.1.2 and 2.2.1.3. To have our own empirical confirmation of which
of the two losses, Triplet (TL) or Contrastive (SCL), worked better for metric learning, we
trained a Resnet50 on the Caltech101 twice from scratch, first using TL and then using
SCL. We calculated the silhouette score of the validation set throughout both trainings.
Additionally we did the same with the Cross Entropy Loss, for comparison reasons. The
results are shown in Figure 3.1 from which it can clearly be seen that the best silhoutte score
was obtained with the Supervised Contrastive Loss. We therefore didn’t use the Triplet Loss
in later experiments.

Figure 3.1: Silhouette scores of models trained on images with various losses, Cross Entropy
(CEL), Supervised Contrastive Loss (SCL), Triplet Loss (TL)
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3.2 Building the Feature Extractor

3.2.1 Choosing the Backbone

As the backbone of our feature extractor we chose the Resnet50(2+1)D-RGB. Next to
I3D-RGB, which is one the standards in the industry, it reaches comparable results on the
kinetics dataset [15], having a 0.1% worse accuracy. Nevertheless, we chose the Resnet in
spite of the minute difference because it was easier to find a pretrained version of it
(https://github.com/kenshohara/3D-ResNets-PyTorch).

Amongst the Resnets(2+1)D the one with depth 50 is the one that achieves better
performance on kinetics, as reported by [28].

It’s also worth mentioning that we don’t use optical flow in our model. This mainly for two
reasons:

1. The Contrastive Loss performs better on a larger batch size, and given that videos are
memory expensive we were already heavily constrained on the size of the batch we
could use for training, even without Optical Flow.

2. Calculating the optical flow is time consuming, so using it would’ve significantly
extended training times that were already long.

3.2.2 Tuning the projection head on UCF101

Having a pretrained backbone we proceeded with the tuning of the projection head. For this
purpose we trained it for 20 epochs using UCF101, keeping the backbone frozen. UCF101
[29] is an action recognition dataset with 101 classes composed of 13.320 videos. We didn’t
use Kinetics 700 even though it would seem natural given that the backbone was pretrained
on it, because of hardware constraints.

3.2.3 Experimental Setup

During training we used as data augmentations 10°rotations, gaussian noise, flipping,
random time crop and random skipping of frames.

To train with the SCL the loss is calculated directly on the output of the projection head. To
train with the CEL an extra fully connected layer is added to go from the emebedding space
to the class scores. A diagrammatic representation of both setups is shown in fig 3.2.

The silhouette score is computed on UCF101’s validation set on the output of the projection
head.

29



Figure 3.2: Experimental setup used for the different losses.

3.2.3.1 Tuning with different embedding dimensions

Knowing about the different effects that the embedding dimension has on clusterizability, we
decided to train several projection heads with different dimensions and see which one
reached the best silhouette score. The results are shown in Table 3.1. Interestingly enough,
the embedding dimension didn’t seem to have any effect on the final silhouette score on
UCF101, it only seemed to influence the number of epochs it took to reach the silhouette
score (see Figure 3.3). It must be said though, that the embedding dimension did ultimately
influence the AUC score of the final anomaly detection system (more on this on the chapter
of experiments on UCF crime).

Embedding Dimension 1 2 8 64 128 256 512
Silhouette Score 0.16 0.53 0.54 0.50 0.52 0.53 0.52

Table 3.1: Shilouette scores on UCF101 obtained with projection heads with different embed-
ding dimension.

3.2.3.2 Tuning a projection head also with CEL

We also trained an extra projector with an embedding space dimension of 128 using the
CEL. This to have a performance baseline for the projection heads trained with SCL and to
confirm that indeed the SCL produced better silhouette scores also training on videos. The
final silhouettes scores obtained are shown in Table 3.2 and in fig 3.4
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Figure 3.3: Silhouette score during training of the different projectors.

Loss Cross Entropy Loss Supervised Contrastive Loss
Silhouette Score 0.32 0.53

Table 3.2: Silhouette scores on UFC101 using Cross Entropy Loss vs Supervised Contrastive
Loss.

Figure 3.4: Silhouette scores during training on UFC101 using Cross Entropy Loss vs Super-
vised Contrastive Loss.
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3.3 Anomaly detection on UCF Crime

Finally in this section we perform an actual anomaly detection task. Up until this point the
anomaly detection system consists of these two parts:

1. A Feature Extractor: The Resnet(2+1)D pretrained on the kinetics 700 dataset,
followed by the projection head (the last fully connected layer) which was tuned using
UCF101.

2. A Novelty Detection algorithm: Local Outlier Factor [25] to do novelty detection
in the embeddings obtained with the feature extractor.

The first will be used to convert video snippets into lower-dimensional embeddings.

Having the anomaly detection system, we needed a dataset on which to test it; we decided
to perform our tests on the UCF Crime dataset, which will be presented in the following
section.

3.3.1 UCF Crime dataset

Figure 3.5: Sample of anomalous frames from UCF Crime. a- Abuse, b- Arson, c- Explosion,
d- Fight, e- Road Accident, f- Shooting. Image taken from [30]

UCF Crime is a famous dataset for anomaly detection. It contains several untrimmed videos
from surveillance recordings that are divided into 13 categories: Normal Videos (that contain
footages of normal situations in various settings), Abuse, Arrest, Arson, Assault, Burglary,
Explosion, Road Accidents, Robbery, Shooting, Shop lifting, Stealing, Vandalism [1].

3.3.1.1 How we used the dataset

The hypothesis we wished to test is the following: Having our system seen footage of
normal events in a given setting, can it detect anomalies in that same setting?
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This question lead us to use the UCF Crime dataset in a way that was not the originally
intended by the creators of the dataset:

We did not make the obvious choice of using the Normal Videos of the dataset for training
the novelty detection system and then the anomalous ones for testing, because that
would’ve meant to train the system in one setting to then test it in another one. Instead we
trained it on normal parts of the annotated anomalous videos and used the remaining normal
and anomalous parts for inference.

In the designated dataset, only its test set contains the annotations that indicate the start
and the end of the anomaly within the video so, in order to test our unsupervised approach
in the way just explained, we trained and tested on just this annotated subset, the test
set.

3.3.2 Experimental Setup

To test our system for anomaly detection on the UCF Crime dataset we followed these
steps:

1. Creation of the embeddings: We divided the anomalous videos into 16 frame long
snippets and we labeled them as anomalous if it had more than 3 anomalous frames
(20% of the snippet). If it had less, we labeled it as normal.

2. Training of the Novelty Detection Algorithm: Out of all the created embeddings
mentioned in the previous step, we trained our novelty detector (Local Outlier Factor)
on 80 % of the ones labelled as normal.

3. Testing: The remaining embeddings that were not used for training we used for
inference; we used our trained novelty detector to predict whether they were
anomalous or not. The ROC curve and the respective AUC score were then calculated
to use as performance metrics.

Figure 3.6: Schematic of the anomaly detector. Video from UCF Crime are passed to the 3D
CNN which creates the embeddings. The anomaly detection on the embeddings is performed
using the Local Outlier Factor algorithm.
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3.3.3 Testing the projectors with different embedding sizes

As reported in section 2.3.1 we suspected that the dimension of the space where we
projected our videos embedding plays a role in the performance of an anomaly detection
system. Yet, in the experiments on UCF101 the dimension of the projection head seemed to
have little to no influence in the clusterization of the embeddings (Table 3.1), hence we
performed the anomaly detection task using the already tuned heads with different
dimensions and compared their respective AUC scores to see if dimension also had no
influence in the performance of this task.

Figure 3.7 and Table 3.3 show the result of these experiments and here, dimension indeed
influenced the result, having found that for this particular task 256 dimensional embeddings
seemed to perform best with respect to lower and higher dimensions, resulting in an AUC
score of 0.70.

It’s worth mentioning that the 2048 dimensional result is obtained by using only the
backbone of the feature extractor without any projection head, because it already had a final
embedding dimension of 2.048. This result shows that reducing the dimensionality indeed
contributes positively to the performance of our systemr.

Emb Dimension AUC score
1 0.500
2 0.520
8 0.637
64 0.676
128 0.681
256 0.696
512 0.673

2048 (*) 0.577

Table 3.3: AUC scores using projection heads with different embedding dimension. (*) For
dimension 2048 we used just the backbone with no projection head at all.

3.3.4 Testing different losses and the final result

Having found the best performing embedding dimension, in the experiments that follow we
kept the dimension fixed in at 256. Here our interests shifted to understanding the impact of
the different tuning loss of the projection head had on the final anomaly detection task,
wondering if the improvement found in the silhouette score during the tuning translated into
an improvement also on the anomaly detection. We decided then to compare the AUC
scores of a head tuned with CEL to the one tuned using the SupCon.

We found that the feature extractor tuned using the supervised contrastive loss (SCL) didn’t
lead to an improvement with respect to the one tuned using the cross entropy loss (CEL)
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Figure 3.7: AUC score for anomaly detection on ucf crimes with different embedding dimen-
sions

(see table 3.4), even if the former one reached a better silhouette score on UCF101 (as
reported in tab 3.2).

This result suggested to us that the improvement of the clusterization brought by the
contrastive loss on UCF101 didn’t translate into a better clusterization in UCF Crime. We
hypothesized that one of the reasons for this could be that the type of videos in the two
datasets are too different, i.e. there’s a domain gap between the videos used for training the
feature extractor and those used for the anomaly detection task. Indeed, human actions
datasets are mainly composed of close-up shots of the actions, while UCF Crimes contains
mostly distant and wide-angle shots from surveillance cameras.

To test this intuition we let the feature extractor "see" this kind of settings by performing
an self-supervised training on the normal training videos of UCF Crime that we hadn’t used
up until this point.

In order to try to bridge the domain gap between the human action recognition datasets
(Kinetics 700 and UCF101) and the surveillance videos of UCF Crime, we performed a
training of the feature extractor on UCF Crime’s normal videos using the self-supervised
contrastive loss [20].

In each forward step 4 different views of the normal video are created. These views are sets
of 16 frames taken at different time positions augmented using gaussian blur, random
rotation of 10 deg and random horizontal flipping.

The contrastive loss is minimized when the embeddings of different views of the same video
are closed together, for each video in the batch (fig 3.8).

The hope in doing this self-supervised training, is that the features used to identify
same/different footages could be useful later to improve performance on the anomaly
detection task. We calculated then the AUC on UCF Crime using this model and the result is
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Figure 3.8: Diagram of the proposed self-supervised training for the feature extractor:
Each normal video of UCF Crimes is cut into 4 different augmented views of 16 frames each
and passed to the 3D CNN. The loss objective is to minimize the distance (expressed as cosine
similarity) of same video snippets.

shown in table 3.4 also with the AUC scores previously obtained with the other losses.

Feature extractor training loss AUC score
Supervised Contrastive 0.693± 0.003
Cross Entropy 0.708± 0.003
Self-Supervised Contrastive 0.697± 0.003

Table 3.4: AUC scores of different training strategies of the feature extractor. For the Su-
pervised Contrastive Loss and the Cross Entropy Loss the feature extractor was trained on
UCF101, while with the Self-Supervised Contrastive Loss it was trained on UCF Crime.

We noticed that this model didn’t seem to offer any performance boost with respect to
those tuned with the other two losses. Nevertheless this self-supervised training gave us a
hint of the importance of the pretraining on kinetics:

Given the domain gap it was not guaranteed that our CNN architecture would actually
extract motion features or it would just extract background features, but we show in 3.5,
that the same model trained on the normal video of UCF Crime had a considerably increase
of performance in the AUC score if the backbone was pretrained on kinetics 700 (tab
3.5.

Seeing that the neither the SupCon loss nor the Self-Supervised Contrastive Loss were
improving the performance we decided to test the anomaly detector with a randomly
initialised projection head without any tuning. This, to have a performance baseline to asses

36



Feature extractor trained self supervised AUC score
with pretrainig 0.696± 0.004

without pretraining 0.576± 0.002

Table 3.5: Comparisons of AUC scores with backbone of feature extractor pretrained and not
pretrained, 256 embedding size.

what was the positive contribution of the tuning step on the performance of the anomaly
detector.

A model with a random dimensionality reduction wouldn’t provide an unreasonable baseline
since we know from results like the Johnson-Lindenstrauss lemma [31] that random
projections approximately preserve the distance between points in an ensemble, distance
between points being the main property necessary for our anomaly detection system to work.
So if the information related to actions extracted by the backbone would partly preserved
using this random dimensionality reduction.

This experiment lead us to a somewhat surprising result: the model without any tuning
outperformed the rest having an AUC score of 0.748± 0.003.

This result is almost the same as the one reported in the original UCF Crime paper [1], in
which, with their proposed method, they reached an AUC score of 0.7544 which strongly
suggests our method has potential.

This also means the backbone is indeed managing to extract information useful for the
anomaly detection task.

Nevertheless, the lower AUC scores of the tuned projection heads implies that, when
projecting the embeddings into a lower dimensional space, the tuned heads are losing more
information than the randomly initialised one, so, unlike the backbone they’re not extracting
information, they’re losing it. Given that the main difference between the training of the
backbone and the projection heads was the datasets, it’s likely that the fact that the tuned
heads didn’t perform was the dataset used to tune them, UCF101. To fully test this
hypothesis though, one should train also the projection head using kinetics 700 and check
whether that would give better results. We didn’t do such experiments in this work because
of time and hardware constraints.

It’s also worth emphasizing that while the pretrained backbone seems to be the reason for
the good result, using the backbone alone to create the embeddings didn’t provide nearly as
good a performance , with an AUC score of 0.577± 0.003 as reported in table 3.3. So
projecting into a lower dimensional space is indeed a key factor in guaranteeing a good
performance for our anomaly detection system.
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4 Conclusion

At the beginning of this work we set ourselves to answer whether 3D CNNs pretrained on
action recognition could work as feature extractors to be used in video anomaly detection, to
which we think the answer is on the affirmative. Additionally, we focused our research on
improving the performance of the feature extractor in mainly two fronts: changing the loss
with which it’s trained and changing the dimension of its embedding space.

From our experiments we extracted the following conclusion:

1. Pretraining on action recognition works: Given the good final performance of our
system we can conclude that models pretrained on human actions do extract
information useful for anomaly detection on surveillance videos. It’s worth noting that
they’re able to do so in spite of there being a domain gap between the videos used for
pretraining and those of the anomaly detection task.

2. Dimension matters: Out of the diverse experiments that we conducted, we can
definitely conclude that the dimension of the embedding space in which the videos are
mapped influences the performance of the anomaly detection task. So, in order to use
our system, particular care must be taken in choosing the embedding dimension to get
the most out of its performance.

This conclusion can be most clearly seen by the fact that just adding to the backbone
a random dimensionality reduction (Section 3.3.4), the performance jumped from an
AUC of 0.57 to an AUC of 0.75, that is, you get a performance increase just by
changing the embedding dimension from 2048 to 256.

3. Care must be taken in choosing what dataset is used for the tuning: The fact that
our model with a random projection head outperformed the tuned ones implies that
the tuned heads are destroying more information in the compression than the random
one. As explained in Section 3.3.4, the evidences points to the dataset chosen for the
tuning as the most likely cause of this result; possibly a larger, harder dataset is
necessary for this stage, but more research should be conducted to arrive to more
definite conclusions.
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4. The SupCon Loss clusterizes better than both the Triplet and the Cross Entropy
but our results on how this translates to the anomaly detection task are inconclusive:
In our experiments on Caltech101 and UCF101 we showed that the models trained
with the Supervised Contrastive Loss reach higher silhouette scores than those trained
with either the Triplet or the Cross Entropy Loss. Additionally, during the tuning stage
of the projection heads using UCF101 we consistently got better silhouette scores using
the SCL over those obtained with the CEL. Nevertheless, the question remains open
about whether this better clusterization during tuning can be translated into better
anomaly detection. Our anomaly detection results seemed to suggest that the SCL
doesn’t bring an improvement over CEL, however, concluding this would be erroneous,
since the problems found during the tuning stage compromise those AUC results.

5. The method shows promise: Our anomaly detector reaches a similar AUC to those of
other methods found in the literature , and this using only a random projection head .
This means that, with an effectively tuned projection head, our model would very
likely reach better AUC scores. The obtained AUC score serves to showcase the
possibilities of our approach.

4.1 Future Works

There’s potential left unexploited in our system given that our best performing model used
the randomly initialized tuning head. Therefore is left as a future work to tune also the
projection head on kinetics 700 to see what AUC scores could be reached.

Since our feature extractor doesn’t require a computationally demanding training on the
specific setting to be used, it lends itself to a readily implementation in a variety of settings,
making a natural continuation of this work to apply this technique in real world scenarios.
This would entail specifying a security camera on which to test it like the camera of a mall
or office, gathering footage that would be considered normal for the setting, and finally
using the approach to study what kind of events are found to be anomalous.
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