
POLITECNICO DI TORINO
Master’s Degree in

Mechatronic Engineering

Master’s Degree Thesis

Dictionary of motion primitives for
vision-based navigation using

Optical Flow

Supervisors

Prof. Gianluca Setti

Prof. John Baillieul

Candidates

Chiara Boretti

Philippe Bich

April 2021

Abstract

In the last twenty years Autonomous Vehicles (AVs) have turned into reality
but, despite the technology is becoming increasingly mature, AVs are still only
able to reach relatively simple goals in structured environments with large energy
consumption. A new generation of more energy efficient systems capable of pursuing
complex goals in highly dynamic environments must be created. This is the goal of
a MURI Project, sponsored by the U.S. Office of Naval Research (ONR), carried out
by Boston University, Massachusetts Institute of Technology and several Australian
universities and this is the context in which this thesis came about during the
authors’ visit to Boston University during the academic year 2020-21.

The objective of the work is to develop a dictionary of motion primitives that
exploit visual cues coming from sequences of images acquired by a monocular
camera in order to safely guide a mobile robot in unknown environments. From
the computation of the optical flow field it is possible to retrieve the values of
time-to-transit, a quantity probably computed in the animals’ visual cortex, that is
used in different steering control laws. In order to improve its estimation, negatively
affected by rotational motions, a Sense-Perceive-Act cycle is introduced. After a
filtering operation, an estimate of the environment’s geometry is obtained thanks
to the analysis of the spatial distribution of time-to-transit values and the suitable
control law is applied.

The controller has to switch between two main motion primitives: the Tau Bal-
ancing control law and the Single Wall strategy. The former allows the navigation
in different scenarios such as straight corridors and turns when the number of
features is sufficiently high and uniformly distributed in the image. The latter is
employed in situations characterized by feature sparsity.

The entire algorithm has been implemented in the Robotic Operative System
(ROS) through nodes written in Python exploiting the OpenCV library. Everything
has been tested in Gazebo on a ground vehicle and the simulation results show the
ability of the robot to safely navigate in artificial environments (with fixed and a
priori defined feature density) as well as in more realistic scenarios (with unknown
feature density).

In order to understand the performances of the algorithm on a real platform, it
has been deployed on a Jackal robot equipped with a MYNT EYE S1030 camera.
Several experiments have been done remotely after sharing code with people from
the Boston University Robotics Lab on the same UGV equipped with a Stereolabs
Zed 2 camera. The results of this testing phase have been compared to the ones
obtained through simulations highlighting the effectiveness of the control system
developed.

ii

Acknowledgements

We would like to thank our supervisor Professor Gianluca Setti for giving us the
possibility to develop this work at Boston University.

We are highly indebted to Professor John Baillieul, his constant guidance and
support during the last six months have been fundamental. His keen interest in
our project and his willingness to share his vast knowledge made us complete the
assigned tasks on time.

Our thanks and appreciations also go to the whole research group at Boston
University with whom we had the chance to share ideas and information during
the organized weekly meetings.

Moreover, we would like to express our gratitude to Professor Marcello Chiaberge
and to the whole team working at PIC4SeR for giving us the opportunity to test
our work on the Jackal robot despite the restrictions due to the pandemic. A
special thank goes to Simone without whom we could not have completed our work
in such a short time.

Last but not least we would like to thank our families for the love and the support
that they have provided us during these challenging years.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xiv

1 Introduction 1
1.1 Motivation . 1
1.2 State of the art . 2
1.3 Thesis overview . 4

2 Optical Flow 7
2.1 Horn-Schunck method . 9
2.2 Lucas-Kanade method . 10
2.3 Detectors, descriptors and matchers 11

2.3.1 Features Detection and Features Description 12
2.3.2 Features Matching . 19
2.3.3 Implementation Choices . 19

3 Time-to-transit 21
3.1 Geometric and Perceived Time-to-transit 21
3.2 Path segmentation . 24

3.2.1 Simulation Results . 27

4 ROS and Gazebo 31
4.1 Robot Operating System . 31

4.1.1 ROS Filesystem Level . 31
4.1.2 ROS Computation Graph Level 32
4.1.3 ROS Community Level . 33

4.2 Customized ROS Framework . 33
4.3 Gazebo . 35

v

4.3.1 Creation of virtual simulation environments 35

5 Tau subdivision in Regions of Interest 39
5.1 The Optical Flow Node . 39
5.2 The Tau Computation Node . 42

6 Tau Balancing control law 47
6.1 Stability Analysis . 47
6.2 Eulerian Simulation Results . 51

7 Single Wall control law 55
7.1 The problem of distance maintenance using Optical Flow 55
7.2 Stability Analysis . 57
7.3 Eulerian Simulation Results . 61
7.4 Effects of the Sense-Perceive-Act cycle 62

8 Spatial Awareness and Simulation Results 65
8.1 Straight Corridors . 65

8.1.1 Lagrangian simulations results 66
8.2 Turns . 68

8.2.1 Lagrangian simulations results 71
8.3 Single walls . 73
8.4 Obstacles in the central ROI . 75

9 Tests on a Real Platform 79
9.1 Jackal UGV . 79

9.1.1 Mathematical modeling . 79
9.2 Sensors . 80

9.2.1 Intel RealSense D435i . 80
9.2.2 MYNT EYE S1030 . 81

9.3 Tests Results . 83

10 Conclusions and Future work 87
10.1 Conclusions . 87
10.2 Future work . 88

A Effect of feature density on control action 91

B Mathematical modeling of the Jackal UGV 97
B.1 Kinematic model . 97
B.2 Dynamic model . 101

Bibliography 105

vi

List of Tables

9.1 Main characteristics of the RGB camera of the Intel RealSense D435i. 81
9.2 Main characteristics of the MYNT EYE S1030. 82

vii

List of Figures

2.1 Sparse optical flow field for still sideways facing camera. 7
2.2 Sparse optical flow field from drone footage. Close objects have a

larger OF field with respect to far-away ones. 8
2.3 Sparse optical flow field in the case of a moving observer and many

moving objects. 9
2.4 The pyramid method enables Lucas-Kanade algorithm to handle

large pixel motion. Source: https://www.mathworks.com 11
2.5 Comparison between a sparse optical flow field computed using the

Lucas-Kanade algorithm on the left and a dense OF field on the
right (Gunnar-Farneback). 12

2.6 Difference of Gaussians. Source: https://biomedpharmajournal.org . 14
2.7 Pixels used by FAST detector. Source: https://medium.com 16
2.8 Multiscale image pyramid used by the ORB algorithm. Source:

https://medium.com . 17
2.9 Density of the ganglion cells over the retina and retina areas. Source:

[25] . 18
2.10 FReaK sampling pattern. Source: [25] 19

3.1 A single camera moving forward with constant linear velocity. . . . 22
3.2 Resulting trajectories for act and sense phases with different duration.

In particular, on the left, sensing is instantaneous (Eulerian sensing). 25
3.3 A representation of the simulation environment used. 27
3.4 Geometric TTT values on the left and perceived time-to-transit data

on the right (with interpolation functions). 28
3.5 Direct comparison between geometric and perceived time-to-transit

values during the three tests without the implementation of Algo-
rithm 1. 28

3.6 Direct comparison between geometric and perceived time-to-transit
values during the three tests with the implementation of Algorithm
1. The straight path segments are the results of the algorithm’s
implementation of the Sense-Perceive-Act cycle. 29

viii

https://www.mathworks.com/help/vision/ref/opticalflowfarneback.html;jsessionid=4b3554d7cb85befae29e886626a9
https://biomedpharmajournal.org/wp-content/uploads/2020/12/Vol13No4_Rob_Sai_fig3.jpg
https://medium.com/data-breach/introduction-to-fast-features-from-accelerated-segment-test-4ed33dde6d65
https://medium.com/data-breach/introduction-to-orb-oriented-fast-and-rotated-brief-4220e8ec40cf

4.1 Graphical representation of the ROS framework developed in this
work. 34

4.2 Bernoulli distributions used as a texture for the walls in artificial
simulation environments. 36

4.3 On the left an artificial environment while on the right a realistic
environment. Both are implemented using the Gazebo simulation
environment. 37

5.1 The image from the camera is split in three sub-images, where
b = 250 and c = 150. 40

5.2 Comparison between the features found before (on top) and after
(on the bottom) dividing the original image in sub-images. 41

5.3 Optical Flow Field. 41
5.4 Structure of the /OpticalFlowMsg.msg. 42
5.5 On the left, the reference frame used in the Optical Flow node. On

the right, the one utilized to compute the time-to-transit values in
the Tau Computation node. 43

5.6 On the left, an artificial environment created in Gazebo. On the
right what a moving robot perceives. Points, which represent the
features, are colored (from red to white) according to the magnitude
of their associated TTT that can be used as a proxy for distance. . 44

5.7 The division of the image in five ROIs. 44
5.8 Structure of the /TauValues.msg. 45
5.9 Visual representation of the inputs coming from the different ROIs

of the image. 46

6.1 A moving vehicle in an infinitely long corridor. Ol(xl, yl) and
Or(xr, yr) are the two features detected on the walls and tan(ϕ) = f
which is the pinhole camera focal length and θ = θ̃ + π

2 . Source: [8]. 48
6.2 The position of the robot when θ0 = π − ϕ on the left and when

θ0 = ϕ on the right. These angles are known as critical angles since
one of the two features cannot be detected anymore. 50

6.3 The Tau Balancing control law presented in (6.4) allows to take as
input the time-to-transit values coming from four different ROIs. . . 50

6.4 Matlab simulation showing the behavior of the Tau Balancing control
law in (6.4) when k < 2

f3(1+R)2 . 52
6.5 Matlab simulation showing the behavior of the Tau Balancing control

law in (6.4) when k > 2
f3(1+R)2 . 52

ix

6.6 Matlab simulation showing that the vehicle undergoes oscillations
when using u = k(τl − τr) with k = 0.14 while a smoother behavior
is obtained when u = kf(τfl − τfr) + km(τl − τr) with kf < k and
km < k (in particular kf = km = 0.12). 53

7.1 A moving vehicle has to align its line of travel to the line that
intersects features O1 and O2. Source: [5]. 56

7.2 A moving vehicle and an infinitely long wall on the right. Or(xr, yr)
is the feature detected on the wall and tan(ϕ) = f which is the
pinhole camera focal length. 58

7.3 A moving vehicle and an infinitely long wall. In the first two
scenarios, the wall is on the right, Or(xr, yr) is the detected feature,
tan(ϕ1) = f1 and tan(ϕ2) = f2. In the last two scenarios, the wall
is on the left, Ol(xl, yl) is the detected feature, tan(ϕ1) = f1 and
tan(ϕ2) = f2. Depending on the position of the available feature, f
is chosen to be f = f1 or f = f2. 59

7.4 Possible trajectories obtained with the Single Wall control law u(t) =
−k(τr − c) with c = 1.8. On the left the proportional gain has been
set to respect k > 4

fc2 and so there are no oscillations, on the right
k has been chosen such that k < 4

fc2 and the system undergoes
oscillations. 61

7.5 Possible trajectories obtained with the Single Wall control law u(t) =
−k(τr − c) where c = τ(t0) and (x0, y0, θ0) = (1, 0, 2π

3). On the left
there are no oscillations because k > 4

fc2 , on the right there are
oscillations because k < 4

fc2 . 62

8.1 Averaged optical flow field distribution in the image typical of a
straight corridor when 8 (at the top) or 5 (at the bottom) ROIs are
considered. 66

8.2 On the left, an artificial straight corridor while, on the right, the
trajectory of the Jackal robot moving in it is represented. 67

8.3 On the left, a tree-lined avenue is represented while, on the right, it
is shown the trajectory of the Jackal robot moving in the environment. 68

8.4 Averaged optical flow field distribution in the image typical of a turn
when 8 (at the top) or 5 (at the bottom) ROIs are considered. . . . 69

8.5 A mobile robot approaching a turn. The time-to-transit associated
to the feature detected on the left changes suddenly when the feature
OÍ
l is detected. 69

x

8.6 On the left, it is shown the line from where it is possible to start
turning when the initial heading is θ0 = 72◦ (with some possible
trajectories). On the right the full area (in the case θ0 = 72◦) from
where a mobile robot can start turning and the relative minimum
constant curvature that must be guaranteed to make the turn is
represented. 70

8.7 On the left, the artificial simulation environment created in Gazebo
is shown while, on the right, the Jackal trajectory is represented. . . 71

8.8 On the left an artificial L turn is shown while, on the right, the
Jackal trajectory is represented. 72

8.9 On the left a challenging realistic environment while, on the right,
the trajectory followed by the Jackal is presented. 72

8.10 A too small hFOV can let the robot perceive the turn too early and
it forces the vehicle to abandon the Tau Balancing control law used
in straight corridors. 73

8.11 Averaged optical flow field distribution in the image with features
detected only on the right side when 8 (at the top) or 5 (at the
bottom) ROIs are considered. 74

8.12 On the left an artificial wall while, on the right, the trajectory
followed by the Jackal robot. 74

8.13 On the left a complex artificial environment to highlight the possible
usage of the Single Wall strategy even when dealing with turns while,
on the right, the trajectory of the Jackal is represented. 75

8.14 On the left a complex realistic environment in which all the motion
primitives presented in this work are used while, on the right, the
trajectory followed by the Jackal robot is shown. 75

8.15 Averaged optical flow field distribution when a central object is
present in the case 8 (at the top) or 5 (at the bottom) ROIs are
considered. 76

8.16 The combination of two motion primitives could help to avoid an
obstacle in the center ROI. 77

9.1 Jackal UGV. Source: https://clearpathrobotics.com 80
9.2 Intel RealSense D435i stereo camera. More information can be found

at https://www.intelrealsense.com 81
9.3 The MYNT EYE S1030 stereo camera mounted on the Jackal robot.

Source: https://www.mynteye.com/ 82
9.4 Jackal setup for tests in the PIC4SeR laboratory. 83
9.5 Jackal setup at Boston University. 83

xi

https://clearpathrobotics.com
https://www.intelrealsense.com/depth-camera-d435i/
https://www.mynteye.com/products/mynt-eye-stereo-camera

9.6 On the left the straight corridor created in the laboratory while,
on the right, two trajectories followed by the Jackal robot for two
different starting points. 84

9.7 On the left the turn of almost 90◦ created in the laboratory while,
on the right, the trajectory followed by the Jackal robot. 85

9.8 On the left the single wall environment created in the laboratory
while, on the right, the trajectories followed by the Jackal robot: in
blue the trajectory with c = constant fixed a priori, in green the
trajectory with c = τ(t0) where t0 is the first instant in which the
single wall control law is applied. 85

9.9 On the left the U turn created in the laboratory while, on the right,
the trajectory followed by the Jackal robot. 86

A.1 A corridor composed of many strips each of them containing a fixed
amount of features (identified by ∗). 91

A.2 Representation of the perceived time-to-transit as a Gaussian random
variable with mean τ0. 92

A.3 Increasing the number of features in a wall strip will lead to a better
estimation of τl and τr. 92

A.4 Probability ξ(N) of a wrong match with respect to the number of
features in a wall strip described by different smooth-step functions. 93

A.5 The behavior of Ô(N) for different values of k is shown. 95
A.6 The behavior of Ô(N) for different ξ(N) is shown. 96

B.1 The SSMR model in the Inertial basis. Source: [28] 98
B.2 Graphical representation of the Jackal’s wheels velocities. Source: [28] 99
B.3 Graphical representation of the resistive and active forces acting on

the Jackal UGV. Source: [28] . 102

xii

Acronyms

AV Autonomous Vehicle

BRIEF Binary Robust Independent Elementary Features

COM Center of Mass

DoG Difference of Gaussian

EMD Elementary Motion Detector

FAST Features from Accelerated Test
FOE Focus of Expansion
FOV Field of View
FReaK Fast Retina Keypoint

GPS Global Positioning System
GUI Graphical User Interface

hFOV Horizontal Field of View

ICR Instantaneous Center of Rotation
IMU Inertial Measurement Unit

LIDAR Light Detection and Ranging

MAV Micro Air Vehicle
MURI Multidisciplinary University Research Initiative

OF Optical Flow
ONR Office of Naval Research
ORB Oriented FAST and Rotated BRIEF

PIC4SeR PoliTO Interdepartmental Centre for Service Robotics

xiv

rBRIEF Rotation-aware BRIEF
ROI Region of Interest
ROS Robot Operating System

SIFT Scale-Invariant Feature Transform
SSMR Skid-Steering Mobile Robot
SURF Speeded-Up Robust Features

TTT Time-to-transit

UGV Unmanned Ground Vehicle
URDF Unified Robot Description Format

xv

Chapter 1

Introduction

In the last twenty years the rapid developments of radar technologies and mi-
croprocessor capacity has turned the idea of Autonomous Vehicles (AVs) into
reality. The most popular application domain is the one of self-driving cars. These
vehicles thanks to rich arrays of sensors such as GPS, LIDAR, cameras, radars
and powerful processors can safely drive themselves from a starting point to a
predefined destination. Although the technology is increasingly mature, AVs are
only able to reach relatively simple goals in structured environments with large
energy consumption.

In order to overcome these limitations, Boston University, Massachusetts Insti-
tute of Technology and several Australian universities have assembled a team of
engineers, computers and neuroscientists to carry out a MURI Project1 with the
goal of developing a new generation of more energy efficient Autonomous Vehicles
capable of pursuing complex goals in highly dynamic environments.

1.1 Motivation
Millions of years of evolution allowed animals to develop highly optimized and
efficient solutions to survive in many dynamic environments, thus making the
animal kingdom a long-standing source of inspiration for scientists and engineers.
The main goal is to improve modern technologies thanks to the application of those
efficient solutions already used by biological systems.

From an engineering perspective, it is of great interest to understand how animals
perceive the environment where they live and what kind of processing algorithms

1"Neuro-autonomy: neuroscience-inspired perception, navigation, and spatial awareness for
autonomous robots" sponsored by the U.S. Office of Naval Research (ONR). More info at:
http://sites.bu.edu/neuroautonomy/

1

http://sites.bu.edu/neuroautonomy/

Introduction

they use to move in it. Among the five senses, sight is the most important for
many living creatures that use visual cues to navigate, hunt and survive. Different
studies have been conducted to understand how animals make the most out of
those signals. In [1] it is highlighted the fact that insects strongly rely on cues
derived from optical flow and, thanks to them, they are able to estimate distances
to obstacles and surfaces and safely explore the environment. In [2] J. Gibson
starts to describe some basic optical information available for control but it is D.
N. Lee in [3] who, years later, suggests that time-to-collision can play a central role
in the perceptual guidance of actions. Y. Wang and B. Frost propose in [4] that
this quantity is signalled by neurons in the nucleus rotundus of pigeons.

Despite a growing literature about time-to-transit as a key element for regulating
motion behaviors, only in recent years TTT has gained importance in robotics. In
favor of this increasing interest, the goal of this thesis is to exploit optical flow data
coming from a single camera and to develop a dictionary of motion primitives, that
use those data, to safely guide a mobile robot in an unknown environment.

1.2 State of the art
In the last decade, a lot of work has been done in order to bring the natural ability
of animals to perceive and move in the environment to robotic systems. In [5], the
three-dimensional movements of bats (M. Velifer) flying in their natural habitat in
Texas have been observed, several steering control laws, based on time-to-transit,
are proposed and the trajectories that have been synthesized thanks to these motion
primitives are qualitatively bat-like.

Since optical flow seems to have a key role in guiding animal motions, in addition
to already being present computer vision algorithms such as the Lucas-Kanade or
Horn-Schunck method, some biologically plausible techniques to compute optical
flow fields have been developed. In [6], two computational optical flow estimation
algorithms, based on the correlational elementary motion detector (EMD), are pre-
sented. The correlational EMD is a theoretical model that predicts the interactions
between two photoreceptors needed to perceive directional movement of the visual
scene.

From Optical Flow (OF) it is possible to retrieve several data that can be used
to create new motion primitives and TTT is one of those. Different studies propose
the idea that this quantity is computed in the animals’ visual cortex and that is
why it could be reasonable to use time-to-transit in steering control laws. From
bees’ flight analysis discussed in [1], Srinivasan et al. highlight that these animals,
when flying through a narrow passage, position themselves in order to experience
the same image velocity in both eyes. This is the concept behind the Tau Balancing
control law, introduced in [7] and further explained in [8], that can asymptotically

2

1.2 – State of the art

guide a vehicle onto the center line between two corridor walls.
In 2015, Paul Seebacher implemented in [9] a TTT estimator together with a

controller that exploited tau values as feedback signals on a Parrot ARDrone2,
demonstrating the effectiveness of the Tau Balancing control law for real-time
navigation. Three years later, Laura Corvese addressed in [10] the problem of
switching between different navigation strategies depending on the environment
characteristics. In her work, Corvese also introduced some limitations in the TTT
computation for nonholonomic robots, with particular attention to the role of
rotational motions. Taking inspiration from the fact that bees and flies separate
the rotational and translational components of optical flow via behaviour ([11]),
the idea of introducing a Sense-Perceive-Act cycle is proposed. This concept is
then further developed in [12] where a possible solution to obtain more robust tau
values from Lagrangian Optical Flow is presented.

Even if TTT seems to be an interesting quantity to be used in autonomous
navigation, other strategies have been explored. In [13] a bio-inspired sensing and
control scheme able to perform small-object detection and avoidance in unknown
environments is proposed and experimentally tested on a quadrotor vehicle. The
presented approach is based on the extraction of relative range and bearing of
small-field obstacles from planar Optical Flow in an environment with small and
wide-field obstacles.

Optical flow has two major limitations that are widely described in the literature
on bio-inspired robotics. First of all OF only provides coupled information on
distance and velocity and this makes more difficult for drones to adapt their
reactions when landing, inducing a continuous oscillation of the Micro Air Vehicle
(MAV). Another important drawback is that the optical flow field is very small in
the direction in which a robot is moving, making the information about frontal
obstacles coming from it quite poor. In a recently published article ([14]), these
limitations are avoided by exploiting oscillations and by proposing a solution in
which robots learn to estimate distances to objects by their visual appearance. The
results of the learning process presented in this work form a hypothesis on how
flying insects improve, over their lifetime, their navigational skills.

Since the above mentioned studies try to apply some bio-inspired techniques to
compute Optical Flow in order to emulate the natural ability of animals to safely
navigate in the environment on robotic systems, the need of having bio-inspired
sensors arose. In 2013, starting from behavioral, anatomical and electrophysiological
data from several species, G. Gremillion, J.S. Humbert and H.G. Krapp developed
and characterized a model of the ocellar visual system of flying insects and they
then fabricated a fully analog-printed circuit board sensor. Starting from the fact
that ocelli and compound eyes can guarantee flight stabilization, the results of
the work in [15] demonstrated stabilizing closed-loop feedback with analog ocellar
circuitry together with Optical Flow egomotion sensing on a micro-air vehicle.

3

Introduction

Bio-inspired robotics is a promising field and solutions for autonomous navigation
and obstacles avoidance taking inspiration from the animal kingdom are receiving
increasing attention. Despite several accomplishments, scientists and engineers
have a lot of research to do before being able to reproduce the sinuosity of animal
movements on robotic systems. The research activity can be conducted on different
levels starting from the observation of the macroscopic behavior of living beings
and the reproduction of these with already existing technologies, till the creation
of new sensors, actuators and algorithms that attempt to precisely copy biological
functions. It is unclear what level is better to focus on but certainly in the future
robotic systems’ abilities to replicate animal skills will largely exceed what is
possible today.

1.3 Thesis overview
This thesis deals with different contents, from theoretical aspects that allow a
better estimate of the time-to-transit and the development of a dictionary of
motion primitives to the simulation and the implementation of the control strategy
on a Clearpath Jackal UGV. The work is divided into 10 chapters organized as
follows:

• Chapter 2 covers the concept of Optical Flow, explaining the main charac-
teristics of this computer vision technique by introducing also the different
elements (detectors, descriptors and matchers) that allow to compute the
optical flow field.

• Chapter 3 introduces Time-to-transit, a quantity of paramount importance
for the development of the motion primitives. By explaining the difference
between Geometric TTT and Perceived TTT, the problems in computing the
latter are introduced, together with a possible solution.

• Chapter 4 is a general introduction of ROS and Gazebo, with particular
attention to the aspects needed for the development of the thesis. An overview
of the ROS architecture developed and used in this work is also provided.

• Chapter 5 illustrates the strategy adopted to estimate the optical flow field
in the Optical Flow node and it describes how the Tau Computation node
produces TTT values and it divides them in five regions of interest (ROIs).

• In Chapter 6 and Chapter 7 the different motion primitives used for the
control of the Jackal robot are presented, in particular a theoretical analysis
and the results obtained from Matlab simulations are provided.

• Chapter 8 discusses the different scenarios that the robot can face and how to
recognize them from the characteristics of TTT signals in the image. Moreover,

4

1.3 – Thesis overview

different simulation worlds created in Gazebo are presented, starting from
artificial environments to more realistic ones.

• Chapter 9 covers the implementation of the control system on the physical
Jackal robot and it provides the results of the tests and a comparison with
the simulations is made.

• Conclusions and further work are introduced in Chapter 10.

5

6

Chapter 2

Optical Flow

What does the world look like when we move through it? Many have tried to find an
answer to this question and such is the problem of representing the optical flow field.
Optical Flow (OF), or sometimes Optic Flow, is defined as the pattern of apparent
motion of image objects between two consecutive frames caused by movement. OF
was discussed in the ’40s by James Jerome Gibson ([16]), an American psychologist
who made many contributions to the field of visual perception, and there followed
many further developments in the late ’70s and early 80’s leading to major advances
by Horn and Schunck in [17], Lukas and Kanade ([18]) and Shi and Tomasi ([19]).

Figure 2.1: Sparse optical flow field for still sideways facing camera.

Optical Flow can be calculated in two forms: dense and sparse. Sparse OF
provides the flow vector of some features in the image while dense OF allows to

7

Optical Flow

obtain the flow all over the image. To better understand how the Optical Flow
relates to the real motion, the following equation is introduced:

φflow = v(t)
d(t) · sin(θ(t))− ω(t) (2.1)

where v(t) represents the object-observer relative velocity, d(t) the distance object-
observer, θ(t) the angle between the image plane and the direction of motion and
ω(t) the object-observer rotational relative velocity. It can be easily noted from
(2.1) that flow is larger for objects close to the camera (d(t) −→ 0) and very small
for far-away objects as it is shown in Figure 2.2.

Figure 2.2: Sparse optical flow field from drone footage. Close objects have a
larger OF field with respect to far-away ones.

Optical flow field, by its nature, is able to sense relative flow rates between
frames but it cannot be used to compute the velocity of the observer nor the
distance observer-objects in the scene without knowing some more information, e.g.
the exact size of one of those objects. Moreover, as it can be noted in Figure 2.3,
in a scenario with a moving observer and many moving elements, the resultant
OF field is given by the addition, through superposition, of the flow of the objects
and of the observer. That means that objects going towards the observer will
have a large flow while a small OF value will be associated to the items moving in
the observer’s direction. Despite such confounding effects, it will be shown in the
next chapter how Optical Flow provides a visual cue for navigation by means of a
perceived quantity called time-to-transit.

8

2.1 – Horn-Schunck method

Figure 2.3: Sparse optical flow field in the case of a moving observer and many
moving objects.

There are several techniques to compute Optical Flow and in the following
sections two classical methods are presented.

2.1 Horn-Schunck method
An early method to calculate Optical Flow was proposed by Horn and Schunck in
[17] which allows to produce a dense OF field. It can be applied considering images
to be continuously differentiable. The algorithm tries to minimize distortions in
the flow preferring the solutions that show more smoothness. As the pattern of
brightness moves with time, the brightness of a particular pixel in the pattern
remains constant, which means:

dI(x, y, t)
dt

= 0

Applying the chain rule, it can be obtained that:

∂I(x, y, t)
∂x

dx

dt
+ ∂I(x, y, t)

∂y

dy

dt
+ ∂I(x, y, t)

∂t
= 0 (2.2)

With the small motion constraint, it is possible to represent the motion in its first
order approximation:

dx

dt
= vx,

dy

dt
= vy (2.3)

9

Optical Flow

The problem is formulated as a variational one where the desired vector field is
defined as the minimizer of an energy function J given for two-dimensional image
streams as:

J =
ÚÚ è

(Ixvx + Iyvy + It)2 + α2(ë∇vxë2 + ë∇vyë2)
é

dxdy (2.4)

where Ix, Iy and It represent the derivatives of the image intensity values along
the x, y and time dimensions respectively. The parameter α is a regularization
constant that controls the weight of the smoothness term while ∇ is the Laplace
operator and vx and vy are components of the optical flow vector. In particular:

∇ = ∂2

∂x2 + ∂2

∂y2
−→
V =

C
vx(x, y)
vy(x, y)

D

Although this method allows the computation of a dense optical flow field with
velocity vectors for each pixel in the image, it is susceptible to noise and it is
computationally expensive. These characteristics make the Horn-Schunck method
not ideal for real-time applications. Another algorithm to estimate the optical flow
field in a more sparse manner is presented in the next section.

2.2 Lucas-Kanade method
An highly popular alternative method to estimate Optical Flow is the one developed
by Bruce D. Lucas and Takeo Kanade in [20]. This technique allows the computation
of a sparse optical flow field by optimizing an energy function at each given pixel
using predetermined feature points in the image. Local methods do not offer
information about the whole flow field but they are robust in the presence of
noise and they are less computationally expensive so they can be used in real-time
applications.

The Optical Flow equation can be written, after a first order Taylor expansion,
in its most popular form as in (2.2) where dx

dt
= vx and dy

dt
= vy are the horizontal

and vertical components of the OF velocities while I is the image intensity. The
Lucas-Kanade method assumes a small and approximately constant displacement
of the features in the image between two successive frames within a neighborhood
(of size n) of the considered point p. So, given this assumption, it is possible to
obtain the following set of equations:

∂I

∂x
(pi)vx + ∂I

∂y
(pi)vy + ∂I

∂t
(pi) = 0 | i = 1, ..., n

In order to try to determine the values of vx and vy deriving from this over
defined system in two unknowns, a least squares optimization is performed after

10

2.3 – Detectors, descriptors and matchers

the definition of the following quantities:

A =


∂I
∂x

(p1) ∂I
∂y

(p1)

... ...
∂I
∂x

(pn) ∂I
∂y

(pn)

 v =
vx

vy

 b =


∂I
∂t

(p1)

...
∂I
∂t

(pn)


It can be written that:

v = A+b

where A+ is the Moore-Penrose inverse of matrix A.
The Lucas-Kanade method, by its nature, works well for small movements but

it fails when large pixel motion occurs. A possible solution to this problem is
represented by the adoption of pyramids. Every level of the pyramid, starting from
its base, has a lower resolution with respect to the previous one. The tracking of
the features begins in the level with the lowest resolution where large pixel motion
is reduced to small motion and it goes on until convergence. This technique enables
the algorithm to perform well even when the displacement of features between two
frames is larger then the neighborhood size. In Figure 2.4 a diagram shows the
structure of a pyramid with three levels.

Figure 2.4: The pyramid method enables Lucas-Kanade algorithm to handle
large pixel motion. Source: https://www.mathworks.com

The comparison between the results obtained applying a sparse Optical Flow
estimation method such as the one proposed by Lucas and Kanade and a dense
OF estimation technique is presented in Figure 2.5.

2.3 Detectors, descriptors and matchers
In order to exploit Lucas-Kanade algorithm for the estimation of the optical flow
field, it is important to rely on good and robust feature points which have to be

11

https://www.mathworks.com/help/vision/ref/opticalflowfarneback.html;jsessionid=4b3554d7cb85befae29e886626a9

Optical Flow

Figure 2.5: Comparison between a sparse optical flow field computed using the
Lucas-Kanade algorithm on the left and a dense OF field on the right (Gunnar-
Farneback).

invariant to pose changes, distinctive and detectable even if there are modifications
in the viewing conditions.

The process used to obtain robust keypoints is composed of three steps: the first
is called features detection, the second features description and the last features
matching. Each phase can be implemented by different types of algorithms. Some
of them are more computationally efficient but less accurate, others are slower but
more precise and so the choice of which one is better really depends on the final
goal to achieve.

2.3.1 Features Detection and Features Description
Feature detection is performed by using algorithms, known as detectors, which
are typically able to detect only one type of feature. The final objective is to find
notable points in the image that can be divided in three main groups:

• Edges: areas in the image in which the gradient is high.
• Corners: areas in the image in which the gradient and the curvature are high.
• Blobs: areas in the image in which some properties are considered almost

constant.

Descriptors are necessary to identify feature points and to make the process of
finding them in the subsequent frames easier. Descriptors store local information
around a particular point and use them to uniquely identify that feature. These
data are also useful to guarantee the scale or rotation invariance. The choice of the
descriptor is crucial because they are computationally expensive and influence the
duration of the matching phase where the descriptors’ vectors are used to match
the different keypoints from frame to frame.

12

2.3 – Detectors, descriptors and matchers

Over the years, several algorithms have been implemented and they differ from
each other for repeatability, computational performance and speed. An overview of
the most common detectors and descriptors is now presented1:

1. Harris Corner Detector: an early attempt to detect corners in an image
was performed by Harris and Stephens in 1988 ([18]). This method consists
in finding the maximum difference in intensity for every pixel windows of a
predefined size. It is possible to define a change function E(∆x, ∆y) that has
to be maximized:

E(∆x, ∆y) =
Ø
x,y

w(x, y)[I(x + ∆x, y + ∆y)− I(x, y)]2 (2.5)

where w(x, y) is the window function, I(x + ∆x, y + ∆y) is the shifted in-
tensity and I(x, y) is the current intensity. Applying a Taylor expansion to
approximate I(x + ∆x, y + ∆y) and considering Ix and Iy as image derivatives
in x and y directions, it is possible to obtain an equation of the form:

E(∆x, ∆y) ≈
è
∆x ∆y

é
M

C
∆x
∆y

D
(2.6)

where M is a matrix with components related to Ix and Iy. Harris and Stephens
defined a score, that is an equation used to understand if a pixel window can
contain a corner:

R = det(M)− k(trace(M))2 (2.7)

Since R depends on the determinant and the trace of the matrix M, its
eigenvalues’ magnitude (λ1 and λ2) determines if a particular area is a corner
or a flat region, following these criteria:

• | R | small, when both λ1 and λ2 are small, means flat region
• | R | < 0, when λ1 º λ2 or viceversa, means edge region
• | R | large, when both λ1 and λ2 are large and λ1 ∼ λ2, means corner

region
The result of the Harris corner detection technique is a gray-scale image
with different scores. The application of a suitable threshold to these values
provides the corners in the image.

2. The Scale-Invariant Feature Transform (SIFT) Detector and De-
scriptor was proposed by Lowe ([21]) and it is an improvement of the Harris

1More complete information about detectors and descriptors can be found in the OpenCV
documentation: https://opencv.org.

13

https://opencv.org

Optical Flow

corner detector because it is scale and rotation invariant. The SIFT method
consists in extracting the keypoints and in computing their descriptors by
implementing four different steps. The first is represented by the scale space
creation in which, starting from the original image, the algorithm generates
several octaves (collection of images of the same size). Within each octave,
images are progressively blurred using a Gaussian blur operator by a certain
amount called scale (σ). The number of octaves and scales depends on the
size of the original image. Once the scale space has been created, a new set of
images has to be generated by using Difference of Gaussians (DoG) which is
an approximation of the Laplacian of Gaussians. The DoG are obtained by
subtracting two consecutive images in the same octave as shown in Figure 2.6
and they are scale-invariant.

Figure 2.6: Difference of Gaussians. Source: https://biomedpharmajournal.org

In these images it is necessary to locate the maxima and the minima
by iterating through each pixel and check its neighborhood. This check is
performed within the current image, but also with the one above and the
one below (notice that the lowermost and topmost scales are skipped because
there are not enough neighbors to do the comparison). If at the end of this
checking process the considered pixel is the smallest or the greatest of all its
neighbors, it is marked as keypoint, otherwise it is discarded (this could occur
also after few initial checks).

The second step of the SIFT algorithm has the goal of refining the location
of the keypoints that come from the previous step. To do that a second order
Taylor expansion of the image around the keypoints is used and the result is
a more accurate position called the subpixel keypoint location or extremum.
Since some of the found extrema lay on an edge or do not have enough contrast,
two thresholding methods are applied to get rid of them. The keypoints in
a subpixel location whose magnitude is lower than a certain threshold are

14

https://biomedpharmajournal.org/wp-content/uploads/2020/12/Vol13No4_Rob_Sai_fig3.jpg

2.3 – Detectors, descriptors and matchers

rejected while for the ones on the edges a strategy similar to the one used
by the Harris corner detector is adopted. A 2x2 Hessian matrix is used to
compute the principal curvature and, if the ratio of the eingenvalues of the
matrix is higher than a defined level, the keypoint is discarded. After this
filtering process, the points at subpixel locations that remain are considered
to be the strongest and the most interesting keypoints.

The third step is important for the rotation invariance and it consists in
assigning to each keypoint an orientation. A neighborhood, that depends on
the scale, is considered around a keypoint location and the gradient direction
and magnitude is computed for every pixel in that neighborhood. With the
obtained values a histogram is created and at the peak of the histogram
corresponds the orientation to be assigned at the keypoint. In some cases the
histogram could present more than one peak and this leads to the creation of
a new keypoint that has the same location and scale of the original one but
with the orientation specified by the second peak.

Finally, in the fourth step, the descriptor of each keypoint is defined. A
16x16 neighborhood around the point of interest is considered which is then
divided into 16 4x4 sub-blocks. For each sub-block, an 8 bin orientation
histogram is created. The keypoint descriptor is a vector representing the 128
normalized bin values available. In addition to this, several techniques are used
to improve robustness against rotation and illumination changes. Although
the SIFT detector and descriptor is really accurate, it is not suitable for
real-time applications because of the large amount of computation necessary
to determine the descriptor vector.

3. Features from Accelerated Segment Test (FAST) Detector was intro-
duced in 2006 by E. Rosten, R. Porter and T. Drummond ([22]) and it is one
of the most appropriate detection methods for real-time applications. The
algorithm starts by selecting a pixel p with intensity Ip from an image and
by choosing a threshold value t. In order to understand if the point p is a
corner or not, a circle of 16 pixels around p is considered and if there exists a
set of n (typically n=12) contiguous pixels (in the circle) that are all brighter
than Ip + t or all darker than Ip − t then the point of interest p is a corner.
In particular, this procedure is divided in two parts. The first one is called
high-speed test and it considers the pixels located at the four cardinal points of
the circle and if at least three of them are brighter or darker than p the point
is considered, otherwise it is immediately discarded. Then, to the surviving
candidates, the full segment test criterion in which all the pixels in the circle
are examined is applied.

This detection technique has some weaknesses that can be avoided by using
a machine learning approach and a non-maximum suppression technique. The
former selects a set of images for training and it applies to each of them the

15

Optical Flow

Figure 2.7: Pixels used by FAST detector. Source: https://medium.com

FAST algorithm. A vector P, that stores the values of the 16 pixels around
the feature points found, is created. A state is then associated to every pixel
x belonging to P in order to define three subsets called Pd, Ps, Pb. The three
states are the following:

S =


d, Ix ≤ Ip − t (darker)
s, Ip − t < Ix < Ip + t (similar)
b, Ip + t ≤ Ix (brighter)

(2.8)

This machine learning technique tries to extract the pixels that carry the
most information and the decision tree that is created during the training is
used for fast corner detection in other images. The non-maximum suppression
strategy is a post processing step used to avoid the detection of multiple
interest points in adjacent locations. It computes, for all the detected feature
points, a score function V which is the sum of the absolute difference between
p and 16 surrounding pixel values. When in presence of two adjacent keypoints,
the point with the lowest V value is rejected. The FAST detector is suitable
for real-time applications but it is sensitive to high levels of noise.

4. Binary Robust Independent Elementary Features (BRIEF) is a de-
scriptor, introduced by M. Calonder et al. in [23], that converts image patches,
containing all the pixels in the neighborhood of a keypoint, into binary feature
vectors. Before computing these quantities, a Gaussian Kernel is applied
to smooth the image and to make the feature descriptors stable and repeat-
able. From the smoothed patch, the algorithm defines a binary feature vector
obtained from the response of binary tests that consist in comparing the
intensities of the patches in the positions defined by two pixels of a random
pair (x, y). The number of tests to be performed is n which could be 128, 256
or 512 depending on the length of the binary feature vector.

16

https://medium.com/data-breach/introduction-to-fast-features-from-accelerated-segment-test-4ed33dde6d65

2.3 – Detectors, descriptors and matchers

The advantage of using a BRIEF descriptor is the fast matching procedure
(obtained if it is used the Hamming distance) with respect to other descriptors,
but this technique does not perform well when invariance to large in-plane
rotations is required.

5. Oriented FAST and Rotated BRIEF (ORB) Detector and Descrip-
tor. This algorithm was introduced in 2011 ([24]) and it takes the advantages
of two already known methods (FAST and BRIEF) but it improves them to
reduce some of their weaknesses. The FAST detector is enhanced by introduc-
ing multiscale feature detection and orientation components to the keypoints.
ORB uses a multiscale image pyramid, represented in Figure 2.8, in which
there is a sequence of the same image but with different resolutions. Once
the pyramid is created, the FAST algorithm runs on the images to detect
keypoints at different levels making ORB partially scale invariant.

Figure 2.8: Multiscale image pyramid used by the ORB algorithm. Source:
https://medium.com

After locating all the keypoints, the algorithm uses the intensity centroid
to evaluate changes in the intensity level around a feature point and it assigns
an orientation to the patch, thus obtaining some rotation-invariance. When
the detection phase is completed, the BRIEF descriptor computes the binary
feature vectors, but since it is not rotation invariant, an improvement has
been introduced which transforms the BRIEF in the Rotation-Aware BRIEF
(rBRIEF). For what regards the task of feature detection, the ORB algorithm

17

https://medium.com/data-breach/introduction-to-orb-oriented-fast-and-rotated-brief-4220e8ec40cf

Optical Flow

performs as well as SIFT while it is faster by almost two order of magnitudes.
Moreover, while SIFT and SURF are patented, ORB is open source and free
to use.

6. The Fast Retina Keypoint (FReaK) Descriptor was introduced in 2012
by A. Alani et al. ([25]). This algorithm takes inspiration from the analysis
of the human eye, in particular of the retina. The eye has a huge number of
ganglion cells, responsible for observing the region of focus, whose density is
not uniform, indeed in the neighborhood of the fovea it decays exponentially.
However, also less dense cells are important for retrieving information about
the orientation.

Figure 2.9: Density of the ganglion cells over the retina and retina areas. Source:
[25]

The sampling pattern of the FReaK descriptor, shown in Figure 2.10, is
composed of a number of individual circles, called receptor fields, whose density
is higher around the keypoint and decreases in the neighborhood. A sort of
redundancy is introduced by overlapping adjacent receptive fields and this
leads to a better efficiency and to a reduction in the number of circles.
The resulting descriptors are binary strings formed by a sequence of single
bits coming from the usage of Difference of Gaussians. These descriptors are
constructed by thresholding the difference between the intensities of pairs of
receptive fields, each one smoothed with a Gaussian kernel that has standard
deviation equal to the radius of the circle. To improve the efficiency of the
algorithm, a learning process is introduced to select the best pairs and this
leads to a coarse-to-fine ordering of these couples. The results show that
the first 512 pairs are sufficient to create a descriptor. Orientation is then
determined by applying a distance scaled weighted average to the result of
the Difference of Gaussians between two paired regions.

The FReaK algorithm is computationally-efficient and it requires a small

18

2.3 – Detectors, descriptors and matchers

Figure 2.10: FReaK sampling pattern. Source: [25]

amount of memory. Moreover, since it is a binary descriptor, the matching
phase takes less computation time (provided the usage of the Hamming
distance). All these aspects make this description method highly suited for
real time applications.

2.3.2 Features Matching
Once the feature points have been detected and described, the last stage, which
consists in matching them between different frames, takes place. Two main matching
techniques can be defined: library matching and cross image matching. The former
considers keypoints from an image database while the latter considers descriptors
coming from two images representing the same scene.

For what regards the second technique, the most common approach is Brute
Force which consists in taking the descriptor of one feature in the first image and
matching it with all the feature descriptors in the second one. This operation
returns the closest feature point. The matching is performed through distance
calculations based on L1 or L2 norms or the Hamming distance which is the favorite
in case of BRIEF or FReaK descriptors since it is more computational efficient.

2.3.3 Implementation Choices
Since the goal of the work is to develop a controller capable of running in real-time
on a robotic platform, advantages and disadvantages of the different detectors,

19

Optical Flow

descriptors and matchers and of the Optical Flow estimation techniques have been
considered.

The Lucas-Kanade method in its pyramidal form has been chosen as Optical
Flow estimation technique because it is fast and computational efficient since it
has to compute only a sparse optical flow field. The features for which the OF
vectors are estimated are selected using the ORB detector and descriptor because
it is open source and it is suitable for real-time applications.

20

Chapter 3

Time-to-transit

Time-to-transit (TTT), identified by τ (tau), is a quantity that expresses the
amount of time before which an object will cross the image plane of a moving
observer. This term was introduced in 2012 by K. Sebesta and J. Baillieul ([7])
and it comes from the concept of time-to-collision, a name coined by scientists
after several studies (e.g. [3], [4], [26]) that demonstrate its relevance in animals’
avoidance and tracking behaviors.

3.1 Geometric and Perceived Time-to-transit
Time-to-transit is a quantity that can be used in different control laws but, in order
to handle it properly, an important distinction between the geometric and the
perceived TTT has to be made. To fix ideas, a simple unicycle vehicle is considered
with kinematics: ẋ

ẏ

θ̇

 =

vcosθ
vsinθ

u

 (3.1)

where u is the turning rate, v is the forward speed in the direction of the body-
frame’s x-axis and θ is the heading of the vehicle.

The geometric time-to-transit is defined as the time it would take the vehicle
with v(t) and θ(t) held constant to cross a line intersecting the feature, located in
(xf , yf), and perpendicular to the current heading. In mathematical terms, looking
at Figure 3.1, it can be written as:

τg(t) = cosθ(t)(xf − x(t)) + sinθ(t)(yf − y(t))
v

(3.2)

Geometric τ is considered as a proxy for the actual distance from an object and
for this reason is taken as the ground-truth for visual depth estimation. However, as

21

Time-to-transit

it can be noticed in (3.2), it is not possible to evaluate τg without some information
on the geometry of the environment and on the features’ position, making this
quantity not suitable for navigation in unknown scenarios.

One of the most important data that can be retrieved from optical flow field
estimation is the perceived time-to-transit that can be evaluated only through
the pixels’ motion in the image plane and without any knowledge on the size of
the objects, the distance from them or the velocity of the observer. All these
advantages, together with the fact that it is probably a quantity used also by
animals, make perceived TTT a great candidate for exploitation in control laws.
The calculation of TTT for a moving observer approaching an object can be done
by solving a similar triangles problem. In Figure 3.1 point O is the feature, f is

Figure 3.1: A single camera moving forward with constant linear velocity.

the focal length, D is the real distance between the point O and the observer in
y-direction, x(t) is the distance from the camera to the object in the x-direction
and di(t) is the distance to the feature projected on the image plane. Considering
the similar triangles, this relation can be written as:

D

x
= di

f
(3.3)

In order to manage the fact that the movement of the observer leads to changes in

22

3.1 – Geometric and Perceived Time-to-transit

the scale of the object in the image plane, from (3.3) it is possible to develop the
following differential equation:

ḋi(t) = v

D · f
di(t)2 (3.4)

and, provided that the velocity v is kept constant, it is easy to derive the solution:

di(t) = D · f
x0 − vt

(3.5)

where x0 is the initial distance from the point O. To completely release the
computation of the perceived TTT from the knowledge of D, x0 or v it is possible
to manipulate (3.3):

D · f = di(t) · x(t) (3.6)

Then, under the assumption of constant velocity, by substituting di(t) with the
expression obtained in (3.5), perceived time-to-transit can be finally defined as:

τ = x0 − vt

v
= di(t)

ḋi(t)
(3.7)

Equation (3.7) shows that τ can be estimated by considering only the motion
of the pixels in the image plane (or on the retina if a moving animal). This
quantity captures mixed information about real world distances and velocities and
it can assume positive or negative values, if the feature associated to that τ is
approaching or retreating respectively. The fact that time-to-transit values can be
computed using only one sensor (a camera) and that they give an idea of how a
moving observer can perceive the real world makes the usage of TTT perfect in
feedback-control laws for vision-based systems.

However, it is of paramount importance to understand if perceived time-to-
transit is always a reliable signal to be used for navigation purposes. There are
several factors that can negatively affect the perception of the visual cues, making
perceived TTT different from the one considered as the ground truth (the geometric
TTT) and some of them are presented in the list below:

• Features that stay for a very short time in the field of view
• Too high sparsity of features that leads to flow uncertainty
• Discontinuities in the flow associated with boundaries that can be easily

confused with noise
• Moving objects that produce localized flow vectors that could be inconsistent

with the Optical Flow generated by self-motion
• Rotational motions of the observer

23

Time-to-transit

Regarding the last point, it is possible to notice how the rotational components of
the motion affect the perceived τ by analyzing the following equations, presented
by E. C. Hildreth et al. in [27]:

ẋ = −Tx + xTz
Z

+ Rxxy −Ry(x2 + 1) + Rzy

ẏ = −Ty + yTz
Z

+ Rx(y2 + 1)−Ryxy + Rzx

(3.8)

where (ẋ, ẏ) is the projected velocity of an image feature located in (x, y) in the
image plane, (Tx, Ty, Tz) and (Rx, Ry, Rz) are the components of translation and
rotation matrices and Z(x, y) is the depth of the surface point projecting to image
location (x, y). In (3.8), the presence of rotational components influences the
projected velocities by introducing additional terms to the one depending on Z
and this leads to the impossibility of considering the perceived TTT as a proxy for
depth.

In the following section, a possible solution is proposed with the goal of mitigating
the effect of rotational motions in order to make the perceived quantities more
similar to the geometric ones, giving them robustness and reliability for their usage
in steering control laws. Different simulation results will be then presented and,
in order to completely understand them, the difference between Eulerian and
Lagrangian Optical Flow sensing must be discussed. The former assumes that each
photoreceptor in the camera (or in the eye) can instantaneously detect in the image
the feature points and their velocities. The latter is the form of visual sensing on
which standard computer vision techniques are based and it consists in tracking
the keypoints as they move in the retina.

3.2 Path segmentation
Starting from the results presented in [12], an algorithm to mitigate the effects of
rotational components in the optical flow field on the estimation of time-to-transit
values is developed. The idea behind this method is simple and it consists in
the creation of a generic path by interleaving short straight lines with constant
curvature segments. This leads to the introduction of a Sense-Perceive-Act cycle in
which the sensing phase is performed when moving straight.

The duration of the sensing and of the acting must be chosen properly. Only
a correct balancing of the two phases allows the possibility of navigating in the
environment. An instantaneous sensing is possible only in an ideal scenario in
which noise is not present. In a real environment the sense phase must be long
enough to obtain a good estimation of time-to-transit values, but sensing for too
much time means not being able to detect instantaneous variations of the optical
flow field potentially losing important information coming from the environment.

24

3.2 – Path segmentation

Moreover, the sense-act interleaving must guarantee the stability of the control law
applied in the acting phase. From a practical point of view, the duration of the
two phases must be selected according to the specific application since it depends
on the velocity that the robot should track and on how quickly it can turn. On the
right in Figure 3.2, sensing (in black) and acting (in cyan) are correctly balanced
and the resultant trajectory approximates the behavior that can be obtained with
instantaneous sensing (on the left) while, in the center, a wrong balancing of the
duration of the sense and of the act phases prevents from achieving the desired
performance.

Figure 3.2: Resulting trajectories for act and sense phases with different duration.
In particular, on the left, sensing is instantaneous (Eulerian sensing).

Algorithm 1 explains how the Sense-Perceive-Act cycle is implemented. Once all
the relevant variables are set, a while cycle starts. The function RobotStatus()
returns False only in the case the robot must be stopped. The computation of
the TTT values is done by ComputeTTT() while the choice of the action to be
performed, a topic discussed later in this work, is taken by ChooseAction(). The
function GetTime() returns the time at which it has been called and all_TTT is a
collection containing time-to-transit values and information about their distribution.

25

Time-to-transit

Algorithm 1 Sense-Perceive-Act cycle implementation
1: function move(α, β)
2: sense← True
3: sense_duration← α
4: sense_counter ← 0
5: act← False
6: act_duration← β
7: act_counter ← 0
8: all_TTT.initialize()
9: ó Execution
10: while RobotStatus() do
11: if sense = True then
12: if sense_counter = 0 then
13: sense_start← GetTime()
14: else if GetTime() − sense_start >= sense_dur then
15: sense_counter ← 0
16: sense← False
17: act← True
18: continue
19: end if
20: action← straight
21: CommandRobot(action)
22: new_TTT ← ComputeTTT()
23: all_TTT.add(new_TTT)
24: sense_counter ← sense_counter + 1
25: else if act = True then
26: if act_counter = 0 then
27: act_start← GetTime()
28: action← ChooseAction(all_TTT)
29: else if GetTime() − act_start >= act_dur then
30: act_counter ← 0
31: act← False
32: all_TTT.deleteAllItems()
33: sense← True
34: continue
35: end if
36: CommandRobot(action)
37: act_counter ← act_counter + 1
38: end if
39: end while
40: end function 26

3.2 – Path segmentation

3.2.1 Simulation Results
In order to understand how the introduction of the Sense-Perceive-Act cycle affects
the estimation of time-to-transit values, some tests have been run in Gazebo1. A
sketch of the simulation environment is shown in Figure 3.3.

Figure 3.3: A representation of the simulation environment used.

A single feature, represented in the sketch by an asterisk, is inserted on the left
of a corridor, three different trajectories are performed and the geometric and the
perceived TTT values are computed in the case no Sense-Perceive-Act cycle is used.
For all the simulations presented in this section tau-based Optical-Flow sensing is
assumed to be Lagrangian and the forward linear velocity equal to 0.5m/s.

The results of the tests are summarized in Figure 3.4. When moving forward,
geometric and perceived time-to-transit are quite similar. When turning away from
the feature (rightward), it can be noted that geometric TTT tends to decrease
faster with respect to when moving forward. In this case, perceived time-to-transit
is very noisy and it differs a lot from the geometric one. An even worse scenario
arises when turning towards the feature (leftward). In this case perceived TTT
cannot be assumed as a proxy for the geometric τ anymore since the two curves
have nothing in common. Figure 3.5 represents the results already discussed in a
different way in order to facilitate the comparison between geometric and perceived
TTT during the three tests.

With the data obtained from these simulations, it is clear that a dictionary
of motion primitives based on perceived time-to-transit (as approximation of the

1More information about the Gazebo simulation environment can be found in Chapter 4.

27

Time-to-transit

Figure 3.4: Geometric TTT values on the left and perceived time-to-transit data
on the right (with interpolation functions).

Figure 3.5: Direct comparison between geometric and perceived time-to-transit
values during the three tests without the implementation of Algorithm 1.

geometric one) with the goal of guiding a robot in an unknown environment cannot
be developed if no Sense-Perceive-Act cycle is introduced. The results of the tests
run when the strategy summarized by Algorithm 1 was implemented are represented
in Figure 3.6.

28

3.2 – Path segmentation

Figure 3.6: Direct comparison between geometric and perceived time-to-transit
values during the three tests with the implementation of Algorithm 1. The straight
path segments are the results of the algorithm’s implementation of the Sense-
Perceive-Act cycle.

It can be easily noted that a great improvement in the estimation of time-to-
transit has been made. Experimentally, the best results are obtained when the
ratio α

β
is close to 1.5 (where α and β are the duration of the Sense and of the

Act phase respectively). In this case α=0.4s and β=0.25s and the forward linear
velocity v is constant and equals to 0.5m/s. Even if the two kinds of TTT are
still not coincident, the usage of perceived time-to-transit data as a proxy for the
geometric ones is now justified.

29

30

Chapter 4

ROS and Gazebo

In this work, two important tools have been exploited in order to achieve the final
objective: ROS and Gazebo. In ROS the software components of the navigation
system have been developed and, thanks to Gazebo, their performances have
been tested in different customized simulation worlds. In the following section,
a summary of the most important characteristics of the used tools is provided
focusing on the functionalities that have been exploited in this work.

4.1 Robot Operating System
The Robot Operating System (ROS) is an open-source, not real-time, meta-
operating system for writing robot software. It provides almost all the services
that a general operating system can offer and also a collection of tools, libraries
and conventions for obtaining, building, writing, and running code across multiple
computers in order to simplify the task of creating complex and robust behavior
across a wide variety of robotic platforms, as stated on the ROS official website
(https://www.ros.org/about-ros/). One of the main advantages of ROS is rep-
resented by the fact of being a distributed framework of processes (Nodes) that
can be designed independently and loosely coupled at runtime and this is in line
with the main goal of ROS that is to support code reuse in robotics research and
development (http://wiki.ros.org/ROS/Introduction).

The Robotic Operating System can be divided in three levels of concepts: ROS
Filesystem Level, ROS Computation Graph Level and ROS Community Level.

4.1.1 ROS Filesystem Level
This level includes all the ROS resources that are saved on the hard-disk, in
the list below a brief description of them is provided (for more details refer to

31

https://www.ros.org/about-ros/
http://wiki.ros.org/ROS/Introduction

ROS and Gazebo

http://wiki.ros.org/ROS/Concepts):

• Packages: they are used to organize software in ROS. A package usually
contains nodes, ROS-dependent libraries, datasets and configuration files.

• Metapackages: they are a particular type of package commonly used to
represent a group of related packages.

• Package Manifests: they contain the important data of a package, e.g name,
description, dependencies and other metadata.

• Repositories: a repository contains a collection of packages which share the
same version and can be released together.

• Message (msg) type: it defines the data structure of a particular message.
• Service (srv) type: considering a particular service, the service type defines

the data structure of the request and response related to that service.

4.1.2 ROS Computation Graph Level
The Computation Graph is the ROS computation network of the peer-to-peer type
that is used to exchange and process the data between the nodes that compose
the graph. The concepts in the Computation Graph are explained in http://
wiki.ros.org/ROS/Concepts and a summarized description of some of them is
now presented:

• Nodes: they are the processes in which the data are computed, a node can
be written in different programming languages but it is important to use the
ROS client library in order to make it usable in the ROS framework.

• Master : it is the core of the software, thanks to the master the nodes are
able to find each other, to exchange messages and invoke services. The ROS
master provides name registration and lookup to the rest of the nodes, it can
be run with the command roscore from the shell and, for a ROS network, the
master must be unique.

• Parameter server : it is part of the master and it allows data to be stored by
key in a central location.

• Messages: they are data structures with dedicated typed fields, the nodes use
messages to communicate with each other.

• Topics: in ROS the nodes cannot exchange data directly between each other
by using messages but they have to subscribe to or publish on a topic in order
to receive or to give information. Topics are a sort of message bus which the
processes can access and each topic has a specified name and a type defined
by the message that it transports. A single node can access to multiple topics

32

http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/ROS/Concepts

4.2 – Customized ROS Framework

and several processes can concur to publish or subscribe to the same topic,
provided that the messages’ type is the one supported by the topic. In this
last case the publishers and the subscribers are independent from each other.

• Services: they are used when a request/response interaction is needed. A
service has a name and it is defined by a pair of message structures, one for
the request and one for the response.

• Bags: they are an important mechanism used by ROS to store data. In
particular, when the tool rosbag is associated to a topic, it saves all the
messages that pass through that topic on a .bag file.

4.1.3 ROS Community Level
The concepts of this level are composed by all the resources that allow software and
knowledge exchange between different communities. Some examples of resources
are Repositories, ROS Wiki or Distributions.

4.2 Customized ROS Framework
In this work, exploiting the advantages of ROS, a customized framework has been
developed in order to achieve the final goal of autonomously guiding a mobile robot,
equipped with a single monocular camera, in unknown environments. The most
important parts of the ROS framework that have been created are Nodes, Topics
and Messages.

The Nodes are the fundamental units in which the data are computed and then
manipulated, in this work they are written in Python. The framework is composed
of three main nodes that are useful to achieve the final goal. Moreover, other less
important nodes have been implemented to record information from simulations,
to obtain a map of the keypoints in the image and to compute the histogram of
the optical flow field in different environments. The most important nodes are
the Optical flow, the Tau Computation and the Controller nodes. An accurate
description of the former two will be provided in Chapter 5 while the structure
of the latter is summarized in Algorithm 1 of Chapter 3. The control laws used
in the Controller are presented in Chapters 6 and 7 and the mechanism that it
implements for deciding which is the best motion primitive to apply is described in
Chapter 8.

Other important concepts in the ROS framework are topics and messages and,
as explained in the previous section, they are necessary for the data exchange
between different nodes. The messages used in this work are of the type "Image",
"Twist", "TauValuesMsg" and "OpticalFlowMsg" (all described in Chapter 5). The
first two are already existing types, while the latter have been created from scratch.

33

ROS and Gazebo

These messages are exchanged between nodes by using topics. In particular, the
topics that have been exploited are:

• /front/image_raw that is the topic to which the Optical Flow node subscribes
to obtain the images from the monocular camera. It accepts messages of the
type "Image".

• /optical_flow that is the topic on which the Optical Flow node publishes
the coordinates of the keypoints and to which the Tau Computation node
subscribes to receive them. It accepts messages of the type "OpticalFlowMsg".

• /tau_values that is the topic on which the Tau Computation node publishes
the time-to-transit average values related to each image’s ROIs and to which
the Controller node subscribes to receive them. It accepts messages of the
type "TauValuesMsg".

• /jackal_velocity_controller/cmd_vel that is the topic on which the Controller
node publishes the steering command for the Jackal robot. It accepts messages
of the type "Twist".

In Figure 4.1, an outline of the ROS framework developed in this work is
proposed with snapshots of the functionalities implemented in each node. In a

Figure 4.1: Graphical representation of the ROS framework developed in this
work.

previous version the framework was a little bit different from the one presented
in Figure 4.1. The operations performed in the Optical Flow and in the Tau

34

4.3 – Gazebo

Computation nodes were done in a single node which had to estimate the optical
flow field, to compute the time-to-transit values, to divide them in the different
ROIs and then to compute the average time-to-transit values for each ROI. All
these computations implemented in a single node lead to a code very difficult to be
analyzed and hardly reusable. The solution of dividing the OF estimation and the
TTT computation has been adopted in order to improve the reusability of the code
on various robotic platforms and to make the debug process easier if errors occur.

4.3 Gazebo
Simulations are of paramount importance when new algorithms have to be tested.
The creation of customized simulation environments allows us to verify the effec-
tiveness of the software components that have been developed and to observe the
behavior of the new software item without causing damages to objects or people.

Gazebo1 is a 3D simulator widely used in the robotic field because it can be
easily coupled with ROS, resulting in a powerful robot simulator. The Graphical
User Interface (GUI) is intuitive and it allows the users to add, to update and
to delete pre-existing or new models. Gazebo offers several options in order to
make the simulation scenarios as realistic as possible. One of the main technical
characteristics is the dynamic simulation of 3D robot models (performed through a
high performance physics engine) that can be further improved by adding advanced
3D graphic options such as high-quality lighting, textures or shadows. Moreover, it
is possible to simulate a large number of sensors (e.g. camera, GPS, radar, LIDAR)
on an equally wide number of robot models.

In this work, the Jackal robot model equipped with a PointGrey Flea3 monoc-
ular camera has been used. The Unified Robot Description Format (URDF) file
is provided by Clearpath Robotics. This .xml file is necessary to describe the
robot model and its mechanical specifications in order to correctly simulate the
Jackal UGV in Gazebo. Then, different simulation environments, with various
difficulties and geometries, have been created to finally test the performances of
the implemented controller.

4.3.1 Creation of virtual simulation environments
Gazebo offers the possibility of using already existing simulation environments
but it also allows the creation of new scenarios from scratch by adding objects to
build the desired world. These objects are defined by models that can be already

1Further information about the Gazebo simulation environment can be found at http://
gazebosim.org/

35

http://gazebosim.org/
http://gazebosim.org/

ROS and Gazebo

present in the Gazebo models’ database or they have to be created by using the
Model editor. In particular, in this work, two different types of environments can
be identified: realistic environments and artificial environments.

The artificial environments are simulation scenarios in which the walls have a
customized texture with a specific feature density fixed a priori. In Figure 4.2, some
examples of these textures which consist of Bernoulli distributions of a set of shapes
such as triangles, circles and squares are presented. The artificial environments have

Figure 4.2: Bernoulli distributions used as a texture for the walls in artificial
simulation environments.

been used in the first part of the simulation tests because they allow us to verify
the effectiveness of the software components in scenarios with a precise feature
density and so to test which are the situations in which the number of features
negatively affects the algorithm’s behavior. In Appendix A, a deeper analysis of
the effect of feature density on the different control laws is discussed.

However, the robot has to be able to navigate in the real world in which it is
not possible to define a fixed feature density because it can vary depending on the
scenario that the vehicle has to face. This is the reason that leads to the creation
of more realistic environments on Gazebo. These types of simulation scenarios
have been created through the usage of already existing models, e.g. trees, cars
and houses. Then, the performance of the implemented algorithm running on the

36

4.3 – Gazebo

Jackal robot has been observed. The results of these tests and some considerations
are presented in Chapter 8.

An example of an artificial and a real simulation environment is shown in Figure
4.3, more scenarios will be presented in Chapter 8.

Figure 4.3: On the left an artificial environment while on the right a realistic
environment. Both are implemented using the Gazebo simulation environment.

37

38

Chapter 5

Tau subdivision in Regions
of Interest

In Chapter 4 an introduction of the ROS framework developed in this work is
proposed and in the following sections a deeper analysis of the first two nodes
implemented is provided. The Optical Flow node is the one devoted to the
estimation of the optical flow field while the Tau Computation node receives
the pixel coordinates of the keypoints and their velocities and it computes the
associated time-to-transit values. Then, after some filtering process, the visual cues
are divided into five regions of interest (ROIs) to obtain a better understanding of
the environment.

5.1 The Optical Flow Node
The Optical Flow node is responsible for the optical flow field estimation. It
acquires a sequence of images from the camera mounted on the Jackal robot and
it extracts the relevant features to finally compute the optical flow vectors. The
node subscribes to the topic /camera_used/image_raw to get a camera frame
and, thanks to the CVBridge library, the ROS image is converted into a format
manageable by OpenCV. Then, on the gray-scale image, the keypoints have to
be found by using an ORB detector and descriptor. An important parameter to
be provided to the ORB algorithm is the maximum number of features to retain
(maxFeatures) and this has to be set properly. A first attempt was made with 600
features but, as can be noticed in the top image of Figure 5.2, all the points are
located in the peripheral parts of the image because they have a better definition
and so their edges are sharper.

However, for the scope of this work, it is important to have some information
also from the center area. In order to reach this objective, the original image is

39

Tau subdivision in Regions of Interest

divided into three equal parts and on each sub-image ORB is applied with different
values of maxFeatures (b,c). The division is shown in Figure 5.1.

Figure 5.1: The image from the camera is split in three sub-images, where b = 250
and c = 150.

The results, presented in Figure 5.2, reveal that the implemented strategy
successfully increases the presence of feature points in the center part of the
image. This approach tries to mimic the behavior of human eyes which, differently
from cameras, have an higher density of photoreceptors in the fovea centralis,
characteristic that leads to a great central vision.

The ORB detector and descriptor finds all the points of interest in the im-
age, but then it is important to compare two subsequent frame in order to
find the same points and draw the optical flow vectors. This operation is per-
formed by the pyramidal Lucas-Kanade method through the OpenCV function
cv2.calcOpticalFlowPyrLK which receives as inputs the previous frame with
the related keypoints, the current frame and some parameters useful to set limits
in the pyramidal research1 such as the number of levels in the pyramid, the termi-
nation criteria of the iterative search algorithm and the quality level below which a
feature point cannot be considered. It is crucial to choose the right values for these

1More information about the pyramidal Lucas-Kanade method can be retrieved in Chapter 2

40

5.1 – The Optical Flow Node

Figure 5.2: Comparison between the features found before (on top) and after (on
the bottom) dividing the original image in sub-images.

parameters in order to reach an acceptable trade-off between speed and accuracy.
The function cv2.calcOpticalFlowPyrLK returns the position of the keypoints,
provided as input, in the current frame along with an attribute called status that
is 1 if the matching of a keypoint went well or status=0 otherwise. When all the
good points (status=1) are selected, the same points in the previous keypoints’
array have to be considered in order to draw the flow vectors and to obtain the
optical flow field, as shown in Figure 5.3.

Figure 5.3: Optical Flow Field.

Finally, the previous frame and the previous keypoints’ array are updated with
the current frame and the keypoints’ array found by applying the ORB algorithm.

41

Tau subdivision in Regions of Interest

In order to pass the data collected in this node to the Tau Computation node, a
ROS message, called /OpticalFlowMsg.msg, has been created with the structure
presented in Figure 5.4 where height and width are the frame’s dimensions, dt is
the time interval between the previous and the current frame, (x, y) are the good
points’ coordinates and (vx, vy) are their velocity components along the x and y
directions.

Figure 5.4: Structure of the /OpticalFlowMsg.msg.

5.2 The Tau Computation Node
The goal of the Tau Computation node is to analyze the array of keypoints with
their velocities packed in the Optical Flow message, to compute time-to-transit
values and to create the input signals to be provided to the controller.

The first operation that has to be done to achieve this goal is to transform the
data coming from the Optical Flow node in order to make them coherent with
the reference frame used to compute time-to-transit values which is fixed at the
center of the image as shown in Figure 5.5. In this position it should be located
at the Focus of Expansion (FOE), the point from where the optical flow field
expands. This is in principle not true, but the estimation of the FOE is generally a
computational-expensive operation, very sensitive to noise and, once its location is
known, no significant improvements are produced in the computation of the TTT.

The standard coordinate systems used in OpenCV place the origin of coordinates
in the upper lefthand corner of the image rectangle. If a forward-looking camera is
going to be used to generate a steering signal based on balancing Optical Flow on
left and right halves of the image, the most natural coordinate system is centered
at the point where the optical axis intersects the image plain. For rotation-free
motions aligned with the direction of the camera axis, this origin of coordinates
will be at the focus of expansion (FOE). We choose our coordinates in this way so

42

5.2 – The Tau Computation Node

as to have a natural balance between flow in the left and right halves of the image.

Figure 5.5: On the left, the reference frame used in the Optical Flow node.
On the right, the one utilized to compute the time-to-transit values in the Tau
Computation node.

Once all the data are expressed in the right reference frame, time-to-transit is
computed as follows:

|τi| =

ñ
x[i]2 + y[i]2ñ

vx[i]2 + vy[i]2

where x, y, vx and vy are the arrays packed in the Optical Flow message. The
next operation to be performed is crucial for the development of this work. The
fixed-size set of inputs that are provided to the controller must be defined and it
should be:

• as small as possible
• rich enough to correctly represent the environment

These two characteristics are in conflict and a trade-off must be found. In order to
take a decision, the distribution of the tau values in the image space and of the
optical flow field have been analyzed in different environments thanks to a ROS
node specifically built for this scope. In Figure 5.6 a graphical representation of
the distribution of TTT values in the image is shown.

Since the robot should be able to recognize straight corridors, corners and the
presence of an obstacle (also in the direction of motion), five inputs, representing
the average tau in five regions of the image, can be enough. A detailed description of
how these inputs can be used to understand the general geometry of the environment
in which the robot is moving is provided in Chapter 8. In Figure 5.7, the division of
the image in ROIs used in this work is presented. Clearly, the image can be divided
in many different ways and also the number of regions can be changed. More

43

Tau subdivision in Regions of Interest

Figure 5.6: On the left, an artificial environment created in Gazebo. On the right
what a moving robot perceives. Points, which represent the features, are colored
(from red to white) according to the magnitude of their associated TTT that can
be used as a proxy for distance.

Figure 5.7: The division of the image in five ROIs.

ROIs means additional complexity that has to be motivated by an improvement of
performance.

In order to obtain the five time-to-transit values, the average TTT starting from
all the values belonging to each region must be computed. A filtering operation
then is mandatory for many reasons. First of all, at the beginning of the sense
phase some residual rotational components can still affect the computation of TTT.
Moreover, glitches and noise are always present during the entire sensing. In this
work a simple but efficient filtering strategy is employed which consists in sorting
the array of time-to-transit values coming from a region and then discarding its
smallest and highest values as shown in the Code Listing 5.1 (Python language).
TTT values coming from a single region should be similar to each other. Since from
simulations it seems that at the beginning of the sense phase taus normally assume

44

5.2 – The Tau Computation Node

values that are quite different from the ones computed at the end of the sensing,
the objective of future work could be to set to an higher value the percentage of
discarded values during the first part of the sense phase. Moreover, noise and
wrong matches are other important sources of errors that persist and lead to
time-to-transit values very different from the average so even at the end of the
sensing phase the array of TTT values cannot be considered totally reliable.

1 import numpy as np
2

3 de f t a u_ f i l t e r i n g (array , percentage) :
4 dim = np . s i z e (array)
5 jump = in t (percentage ∗ dim)
6 array = np . s o r t (array)
7 array = np . d e l e t e (array , range (jump))
8 array = np . d e l e t e (array , range (dim − jump , dim))
9 re turn array

Listing 5.1: Filtering function in the Tau Computation ROS node.

When the filtering process comes to an end, for every region that has a residual
number of time-to-transit values higher than a predefined threshold, the average τ
is computed. If the quantity of the remaining TTT data is not high enough, a -1 is
attributed to the specific ROI.

A ROS message, called /TauValues.msg, is responsible for transmitting the five
inputs to the controller. The message is composed by an header, the height and
the width of the image used to collect the visual cues and the five τ inputs coming
from the different ROIs (depicted in Figure 5.7) as it is summarized in Figure 5.8.

Figure 5.8: Structure of the /TauValues.msg.

A visual representation of the TTT data coming from each Region of Interest of
the image is represented in Figure 5.9.

45

Tau subdivision in Regions of Interest

Figure 5.9: Visual representation of the inputs coming from the different ROIs of
the image.

46

Chapter 6

Tau Balancing control law

When flying through a narrow passage, bees position themselves in the center of it
in order to experience the same image velocity in both eyes. This characteristic of
bee’s flight has been highlighted by Srinivasan et al. in [1] and it represents the idea
behind the Tau Balancing control law discussed in this Chapter. Time-to-transit
is a concept that extends time-to-contact which is an idea that has been around
the perceptual psychology literature for a while. The idea of using it as a steering
signal is new and has been introduced in [7] and further explained in [8]. The goal
of Tau Balancing is to asymptotically guide a vehicle onto the center line between
two corridor walls. In this work, a slightly different version of this control law is
presented and used.

6.1 Stability Analysis
The simple kinematic model of planar motion introduced in Chapter 3 is considered:ẋ

ẏ

θ̇

 =

vcosθ
vsinθ

u


where u is the turning rate, v is the constant forward speed in the direction of
motion (v = 1) and θ is the heading of the vehicle. Referring to Figure 6.1, the
geometric time-to-transit can be written as:

τ(t) = cosθ(t)(xr − x(t)) + sinθ(t)(yr − y(t))
v

In this section the steps presented in [8] to prove the effectiveness of τ as a steering
signal are summarized. An idealized visual model based on two photoreceptors
one on each side of the center of focus will be considered. Values of τ(t) can be

47

Tau Balancing control law

determined since instantaneous detection of perfect features at both d(t) = ±1 and
their corresponding derivatives are available. A global reference frame located in
the center of an infinitely long corridor with the x-axis being perpendicular and
pointing to the right wall will be considered. Every point on the walls is a clear
and perfectly detectable feature.

Figure 6.1: A moving vehicle in an infinitely long corridor. Ol(xl, yl) and Or(xr, yr)
are the two features detected on the walls and tan(ϕ) = f which is the pinhole
camera focal length and θ = θ̃ + π

2 . Source: [8].

The Theorem 1 in [8] states that for any gain k > 0 there is an open neighborhood
U of (x, θ) = (0, π2), U ⊂ {(x, θ) : −R < x < R; ϕ < θ < π − ϕ} such that for all
initial conditions (x0, y0, θ0) with (x0, θ0) ∈ U , the Tau Balancing control law:

u(t) = k(τl − τr) (6.1)

asymptotically guides the vehicle, with the simple kinematic model of planar motion
(3.1), onto the center line between two walls.

Tedious calculations allow to compute the position in the global reference frame
of the detected left and the right feature as:

Ol =
A

−R

y + fsin(θ) + (R+x+fcos(θ))(cos(θ)+fsin(θ))
sin(θ)−fcos(θ)

B

Or =
A

R

y + fsin(θ) + (R−x−fcos(θ))(fsin(θ)−cos(θ))
fcos(θ)+sin(θ)

B

48

6.1 – Stability Analysis

and from these coordinates, the time-to-transit values related to the left and right
feature can be retrieved (considering v = 1):

τl = cos(θ)(−R− x) + sin(θ)
A

fsin(θ) + (fsin(θ) + cos(θ))(fcos(θ) + R + x)
sin(θ)− fcos(θ)

B

τr = cos(θ)(R− x) + sin(θ)
A

fsin(θ) + (fsin(θ)− cos(θ))(−fcos(θ) + R− x)
sin(θ) + fcos(θ)

B
With some additional computations u can be rewritten as:

u = k(τl − τr) = −2fk(fcos(θ)(sin(θ) + R) + xsin(θ))
f 2cos2(θ)− sin2(θ) (6.2)

From (6.2) it can be noticed that the following subsystem can be isolated:C
ẋ

θ̇

D
=
C

cosθ
k(τl − τr)

D
(6.3)

The system can be linearized about (x, θ) = (0, π2), which is also the only rest point
in the domain {(x, θ) : −R < x < R; ϕ < θ < π − ϕ}, obtaining:C

δẋ

δθ̇

D
=
C

0 −1
2fk −2(kf 2 + kRf 2)

D C
δx
δθ

D
The eigenvalues of the matrix representing the controlled system are:

λ1,2 = −f 2k(1 + R)±
ñ

fk[f 3k(1 + R)2 − 2]

Since they are always in the left plane, the system is asymptotically stable. Moreover,
if k > 2

f3(1+R)2 , the eingenvalues are real and negative meaning the vehicle will not
undergo oscillations aligning itself onto the center line. The requirement that the
initial condition must lie in the interval ϕ < θ0 < π−ϕ is necessary since otherwise
the right or the left feature will not be detected anymore and this problem is
illustrated in Figure 6.2.

Since in this work the time-to-transit values used as input for the controller are
five (as presented in Chapter 5) and four of them can be used to align the robot
onto the center line of a corridor, a slightly different version of the Tau Balancing
control law can be written:

u(t) = kf (τfl − τfr) + km(τl − τr) (6.4)

where τfl, τfr, τr and τl are the TTT values of the different ROIs of the image (the
central region of interest is not included since it is not useful to balance the robot’s
heading). The subsystem in (6.3) becomes then:C

ẋ

θ̇

D
=
C

cosθ
kf (τfl − τfr) + km(τl − τr)

D
(6.5)

49

Tau Balancing control law

Figure 6.2: The position of the robot when θ0 = π − ϕ on the left and when
θ0 = ϕ on the right. These angles are known as critical angles since one of the two
features cannot be detected anymore.

A modified version of Theorem 1 in [8] can be written since in this case for
any gain kf > 0 and km > 0 there is an open neighborhood U Í of (x, θ) = (0, π2),
U Í ⊂ {(x, θ) : −R < x < R; ϕ2 < θ < π − ϕ2} such that for all initial conditions
(x0, y0, θ0) with (x0, θ0) ∈ U Í, the Tau Balancing in (6.4) aligns the vehicle to the
center of the corridor. The angle ϕ2 is the one presented in Figure 6.3. It is clear

Figure 6.3: The Tau Balancing control law presented in (6.4) allows to take as
input the time-to-transit values coming from four different ROIs.

that the open neighborhood U Í has the same structure of U but since ϕ2 > ϕ1 = ϕ
(and in particular in this work ϕ2 ≈ 2 · ϕ1), U Í ⊂ U meaning that this new version

50

6.2 – Eulerian Simulation Results

of the control law allows to use more information coming from the environment (4
input are used instead of 2) but the initial condition (x0, θ0) must lie in a more
restricted area. When this is not true, the Tau Balancing control law as presented
in [8] is used considering ϕ = ϕ1.

It is possible to linearize the subsystem in (6.5) about the rest point (x, θ) = (0, π2)
obtaining:C

δẋ

δθ̇

D
=
C

0 −1
2(ffkf + fmkm) −2(kff 2

f + kmf 2
m + kfRf 2

f + kmRf 2
m)

D C
δx
δθ

D

with ff = tan(ϕ1) and fm = tan(ϕ2). In this case it is like using two pinhole
cameras with focal length ff and fm. The eigenvalues of the matrix representing
the controlled system are:

λ1,2 = −(f 2
f kf + f 2

mkf)(1 + R)±
ñ

(ffkf + fmkm)[(f 3
f kf + f 3

mkm)(1 + R)2 − 2]

It can be noticed that they are always in the left half plane, proving the coefficient
matrix is Hurvitz. Moreover, if the condition (f 3

f kf + f 3
mkm) > 2

(1+R)2 is met,
the eigenvalues are real and negative meaning that the robot will not experience
oscillations in aligning onto the center line.

6.2 Eulerian Simulation Results
In this section some Matlab simulations showing the behavior of the Tau Balancing
control law with Eulerian sensing are presented and discussed. Eulerian sensing, as
introduced in Chapter 3, means that each photoreceptor in the camera (or in the
eye) can instantaneously detect in the image the feature points and their velocities
while Lagrangian sensing is the form of visual sensing on which standard computer
vision techniques are based and it consists in tracking the keypoints as they move
in the retina.

In Figure 6.4, the motion primitive is used in its original form (6.1) and the vehicle
undergoes oscillations reaching the center line since the condition k > 2

f3(1+R)2 is
not respected. In Figure 6.5 the results of a simulation when k > 2

f3(1+R)2 allow
to see the effect of the real and negative eigenvalues of the controlled system’s
matrix. Moreover, it is possible to notice that, even starting quite far from the
rest point (x, θ) = (0, π2), the control law can align the vehicle onto the center line
of the corridor showing good robustness. A comparison between the behavior of
the Tau Balancing presented by Baillieul in [8] and its slightly modified version
(6.4) discussed in this work is made in Figure 6.6. It can be noticed that from the
theoretical point of view, no better performances are achieved but the advantage
brought by this modified version of Tau Balancing comes into play when dealing

51

Tau Balancing control law

Figure 6.4: Matlab simulation showing the behavior of the Tau Balancing control
law in (6.4) when k < 2

f3(1+R)2 .

Figure 6.5: Matlab simulation showing the behavior of the Tau Balancing control
law in (6.4) when k > 2

f3(1+R)2 .

52

6.2 – Eulerian Simulation Results

Figure 6.6: Matlab simulation showing that the vehicle undergoes oscillations
when using u = k(τl − τr) with k = 0.14 while a smoother behavior is obtained
when u = kf(τfl − τfr) + km(τl − τr) with kf < k and km < k (in particular
kf = km = 0.12).

with its implementation on a real platform and when Lagrangian sensing is used.
In order to avoid oscillations, the condition (f 3

f kf + f 3
mkm) > 2

(1+R)2 must be met
instead of the one presented in [8] which can be rewritten (considering f = ff)
as f 3

f k > 2
(1+R)2 . This means that |kf | and |km| can satisfy the condition and be

smaller than |k| so it is possible to give less weight to each ROI to achieve the same
goal.

This can be important since the time-to-transit values coming from the different
areas of the image are always affected by an error. Having the possibility to rely
on four ROIs instead of two can lead to better performances and to increased
robustness.

53

54

Chapter 7

Single Wall control law

The Tau Balancing control law presented in Chapter 6 is a simple and useful
steering law, but it requires the presence of feature points in both right and left
image sides. This is a weakness in environments which present sparsity of features.
In order to cope with this problem, a new control law has been introduced called
Single Wall strategy that exploits visual cues coming only from the left or the right
side of the environment.

In the following sections the control law is presented and theoretical considera-
tions about its stability are made in the case in which the Sense-Perceive-Act cycle
is not applied, then Eulerian simulations are performed to show the effectiveness of
this motion primitive. Finally, some considerations on the effects of introducing
the Sense-Perceive-Act cycle on the stability of the controlled system are discussed.

7.1 The problem of distance maintenance using
Optical Flow

When a mobile robot equipped with a monocular camera moves in an unknown
environment, it has to face the situation in which the feature density on the right
or on the left side of the image it acquires is not sufficiently high to produce
an acceptable estimate of the TTT. In this case the Tau Balancing control law
cannot be used to move in the environment. Considering Figure 7.1, the problem
of navigating using visual cues coming only from one side of the environment can
be managed by aligning the vehicle to the line that connects features O1 and O2.

A possible solution has been proposed by Kong et al. in [5] observing the
behavior of a species of bats, the Myotis Velifer, in their natural habitat near
Johnson City in Texas. The trajectories of these animals follow the edge of a
wooded area thanks to the maximization of the difference in time-to-transit of
features along the boundaries. This is the idea behind the formulation of the

55

Single Wall control law

Figure 7.1: A moving vehicle has to align its line of travel to the line that
intersects features O1 and O2. Source: [5].

following motion primitive:

u(t) = k[τ Í
2(θ(t))− τ Í

1(θ(t))] (7.1)

introduced in Theorem 4.1 in [5] which states that for any k > 0, the steering
control law, where τ Í

j(θ) = ∂τj

∂θ
, asymptotically aligns the vehicle with the semi-

infinite line directed from O1 to O2 provided that the initial orientation θ0 is such
that τ2 > τ1 and v = 1.

In the case in which the vehicle has the possibility to retrieve its orientation in
space and the coordinates (x1, y1) and (x2, y2) of the features in a world-frame, the
control law in (7.1) could be written as:

u(t) = k[−sin(θ)(x2 − x1) + cos(θ)(y2 − y1)] (7.2)

Since the goal of this work is to use only visual cues coming from a monocular
camera and there is no possibility to access the global configuration information,
the control law in (7.2) cannot be exploited. On the contrary, the motion primitive
in (7.1), also known as Tau Difference Maximizing, could be of interest. However,
taking into account the fact that time-to-transit estimation is already in itself quite
susceptible to noise, the computation of its derivative is generally quite poor and
this makes it difficult to obtain the desired control action when the steering control
law is used on a real platform. An alternative approach to align a mobile robot

56

7.2 – Stability Analysis

to the line that connects O1 to O2 using only data coming from Optical Flow is
presented in the following section.

7.2 Stability Analysis
Starting from the assumptions made in Section 6.1 about the kinematic model
of the unicycle and the definition of the geometric time-to-transit, also for the
Single Wall strategy it is possible to follow the reasoning presented in [8], but
with an important difference that deals with the sparsity of the features. In [8]
it is considered an idealized visual model based on two photoreceptors and the
τ(t) values are computed by considering an instantaneous detection of features at
d(t) = ±1. In situations in which sparsity of features occurs, the visual cues coming
from one of the two sides (with respect to the focus of expansion) are not available
and it is important to continue the navigation with only one feature detected at
d(t) = 1 or d(t) = −1 and its derivative.

The situation considered is shown in Figure 7.2, it represents a vehicle which is
moving forward with constant velocity v = 1 and, on the right, an infinitely long
wall in which each point is a perfectly detectable feature. The global reference
frame is located at a distance R from the wall with the x-axis pointing on the right
and perpendicular to the wall. The coordinates of the detected feature point Or

are expressed in the global reference frame and they are:

Or =
A

xr
yr

B
=
A

R

y + fsin(θ) + (R−x−fcos(θ))(fsin(θ)−cos(θ))
fcos(θ)+sin(θ)

B

By substituting the coordinates’ values in the definition of the geometric time-to-
transit, the τr expression becomes:

τr = cos(θ)(R− x) + sin(θ)
A

fsin(θ) + (fsin(θ)− cos(θ))(−fcos(θ) + R− x)
sin(θ) + fcos(θ)

B

The Single Wall control law can then be written as:

u(t) = −k(τr − c) (7.3)

The objective is to reset the difference between τr and c, if τr is bigger than c the
control law has to provide a steering action that leads to reduce the τr and so the
difference τr − c. If τr > c the vehicle has to turn right, but since the turning rate
is considered positive counter clock-wise, in order to provide the correct control
action a negative u(t) is necessary. Moreover, if τr < c the difference becomes
negative and the steering action provided is positive and turns the robot on the left.

57

Single Wall control law

Figure 7.2: A moving vehicle and an infinitely long wall on the right. Or(xr, yr)
is the feature detected on the wall and tan(ϕ) = f which is the pinhole camera
focal length.

Considering (7.3), by substituting the τr equation, the control law can be written
as:

u = −k

Acosθ(R− x) + sinθ

A
fsinθ + (fsinθ − cosθ)(R− x− fcosθ)

fcosθ + sinθ

BB
− c


and with some further algebra:

u = −k

A
f(R− x + sin(θ))
sin(θ) + fcos(θ) − c

B

Observing the equation already computed, the following subsystem can be isolated:C
ẋ

θ̇

D
=
C

cosθ
−k(τr − c)

D
(7.4)

In the range of variables of interest, the only equilibrium point for the subsystem is
(x, θ) = (f+fR−c

f
, π2) and it is possible to demonstrate that it exists a neighborhood U

58

7.2 – Stability Analysis

of this point such that for all initial conditions (x0, y0, θ0) with (x0, θ0) ∈ U the Single
Wall strategy asymptotically guides the vehicle (with kinematic model 3.1) onto the
line with x-coordinate constant and equals to the one of the rest point. The interval
U , for any gain k > 0, can be chosen as U ⊂ {(x, θ) : x < R; π2 − ϕ < θ < π − ϕ}.
The constraint θ < π − ϕ is necessary because otherwise the camera is not able
to detect the feature anymore. In Figure 7.3 all the possible scenarios in which
the Single Wall strategy is used in this work are considered. In order to study

Figure 7.3: A moving vehicle and an infinitely long wall. In the first two
scenarios, the wall is on the right, Or(xr, yr) is the detected feature, tan(ϕ1) = f1
and tan(ϕ2) = f2. In the last two scenarios, the wall is on the left, Ol(xl, yl) is the
detected feature, tan(ϕ1) = f1 and tan(ϕ2) = f2. Depending on the position of the
available feature, f is chosen to be f = f1 or f = f2.

the stability of this motion primitive, the subsystem (7.4) is linearized around
the equilibrium point (x, θ) = (f+fR−c

f
, π2), which is also the only rest point in the

interval U , obtaining: C
δẋ

δθ̇

D
=
C

0 −1
fk −kfc

D C
δx
δθ

D
The eigenvalues of the matrix representing the controlled system are:

λ1,2 = −kfc

2 ±

ñ
kf(kfc2 − 4)

2 (7.5)

Both of them are always in the left plane and for this reason the system is

59

Single Wall control law

asymptotically stable. It is important to notice that if k < 4
fc2 the eigenvalues

become complex numbers and this introduces oscillations in the system.
The same considerations apply to the study of the equilibrium point and of the

stability of the control law with the feature point detected only on the left. The
Single Wall control law becomes:

u(t) = k(τl − c) (7.6)

In this case, if τl > c the difference is positive and the robot has to turn on the left
to minimize it, while if τl < c the difference is negative and the vehicle has to turn
on the right. Moreover, by substituting the coordinates’ value of the left feature
(presented in 6.1) in the geometric definition of the TTT the following expression
is obtained:

τl = cos(θ)(−R− x) + sin(θ)
A

fsin(θ) + (fsin(θ) + cos(θ))(fcos(θ) + R + x)
sin(θ)− fcos(θ)

B

and, by using it in (7.6), it can be defined:

u = k

A
f(R + x + sin(θ))
sin(θ)− fcos(θ) − c

B

It is then possible to isolate the following subsystem:C
ẋ

θ̇

D
=
C

cosθ
k(τr − c)

D

and compute the rest point that, in this case, is (x, θ) = (c−fR−f
f

, π2). The open
neighborhood of the rest point is U ⊂ {(x, θ) : −R < x; ϕ < θ < π

2 + ϕ}. To
compute the eigenvalues, the system is linearized around the equilibrium point
resulting again in: C

δẋ

δθ̇

D
=
C

0 −1
fk −kfc

D C
δx
δθ

D
The eigenvalues of the matrix representing the controlled system are the same
presented in (7.5), this means that the conclusions about the stability remain the
ones expressed above.

The two versions of the Single Wall control law presented in (7.3) and (7.6)
depend on the time-to-transit but also on a parameter called c that has to be
chosen properly because it defines the equilibrium point and so it determines where
the vehicle is asymptotically guided for every initial conditions (x0, y0, θ0) with
(x0, θ0) ∈ U . The c is a constant value that can be selected according to two
different procedures which are presented in the following section and Eulerian
simulations (with instantaneous sensing), performed on Matlab, are shown for both
cases.

60

7.3 – Eulerian Simulation Results

7.3 Eulerian Simulation Results
1. c as constant value fixed a priori: in this situation the term c is defined

as a constant value fixed a priori and it remains the same for all the time in
which the robot moves through the environment. The simulations presented
in Figure 7.4 show possible trajectories generated by the Single Wall control
law with different initial conditions (x0, y0, θ0). As it can be noticed, in the

Figure 7.4: Possible trajectories obtained with the Single Wall control law u(t) =
−k(τr − c) with c = 1.8. On the left the proportional gain has been set to respect
k > 4

fc2 and so there are no oscillations, on the right k has been chosen such that
k < 4

fc2 and the system undergoes oscillations.

left image there are no oscillations in the trajectories because the proportional
gain k has been chosen in order to avoid complex eigenvalues, while in the
right image what happens if the k value does not respect the condition
k > 4

fc2 is represented. However also in this situation the linearized system is
asymptotically stable, and the simulation shows asymptotic approach of the
vehicle to a straight path parallel to the wall.

2. c as constant value changed dynamically: in this situation the term c is
still defined as a constant but it is equal to τ(t0), where t0 is the time at which
the Single Wall strategy starts to be applied. Since this motion primitive aims
to support the navigation when the Tau Balancing control law cannot be used
because of feature sparsity, every time a switch between the Tau Balancing
and the Single Wall strategy occurs the c value has to be redefined. Figure
7.5 shows a possible trajectory generated by the Single Wall control law with
initial condition (x0, y0, θ0) = (1, 0, 2π

3) and on the left image there are real,
negative eigenvalues since the proportional gain is k > 4

fc2 . On the right image

61

Single Wall control law

k < 4
fc2 and the eigenvalues are negative but complex.

Figure 7.5: Possible trajectories obtained with the Single Wall control law u(t) =
−k(τr − c) where c = τ(t0) and (x0, y0, θ0) = (1, 0, 2π

3). On the left there are no
oscillations because k > 4

fc2 , on the right there are oscillations because k < 4
fc2 .

The methods presented above for the choice of the c value in the Single wall
strategy are both valid and they lead to the desired control action. However, even
if from a theoretical point of view there is no difference in choosing one method
with respect to the other, from tests on the real Jackal robot (refer to Chapter 9 for
more details) it has been noticed that the second approach is not always reliable
when used on a real platform. Since this method selects c = τ(t0), it is important
to have a good estimate of the time-to-transit values. The introduction of the
Sense-Perceive-Act cycle leads to a generally improved estimate of TTT values,
but this does not guarantee that at the end of every sense phase the perceived
time-to-transit is equal to the geometric one also because rotational motions are
not the only source of error in the TTT estimation. A wrong time-to-transit value
at t0 means a bad choice of c and so an unwanted behavior of the control strategy.
This is the reason why, in this work, it has been decided to use the first method
and to select the c term as a constant, fixed a priori, for all the time in which the
robot is moving through the environment.

7.4 Effects of the Sense-Perceive-Act cycle
In order to understand which are the effects of introducing the Sense-Perceive-Act
cycle on the stability of the controlled system, a simplified situation in which
Eulerian sensing is used will be analyzed. According to the approach presented in

62

7.4 – Effects of the Sense-Perceive-Act cycle

Theorem 2 by Baillieul and Kang in [12], a sample-and-hold version of the Single
Wall steering law (with detected feature on the right) can be defined as follows:

u(t) = −k[τr(x(ti), θ(ti))− c], ti ≤ t < ti+1 (7.7)

where the sampling instants are spaced with ti+1 − ti = h > 0. It is possible to
prove that, also in this case, there exists a range of gain k > 0 that asymptotically
guides the vehicle onto the line x = f+fR−c

f
for any sufficiently small sampling

interval h.
Considering v = 1, f = 1 and taking φ = θ− π

2 , since θ̇ = u, the angular velocity
becomes:

φ̇ = −k
5
τr

3
x(ti), φ(ti) + π

2

4
− c

6
, ti ≤ t < ti+1

Exploiting the equation describing τr, the discrete time evolution of φ can be then
expressed as:

φ(ti+1) = φ(ti)− hk

A
R− x + cosφ(ti)

cosφ(ti)− sinφ(ti)
− c

B
which means that the discrete time evolution of the heading can be retrieved by
iterating the following x-dependent mapping:

g(φ) = φ− hk

A
R− x + cosφ

cosφ− sinφ
− c

B

In particular:

gÍ(φ) = 1− hk

A
1 + (R− x)(cosφ + sinφ)

(cosφ− sinφ)2

B
It can be noticed that the denominator is always positive, while the numerator is
positive in the parameter range of interest x < R and −π

4 < φ < 3π
4 . This leads

to the possibility of choosing a k sufficiently small to make g a contraction on
these intervals, as a consequence φ converges to 0. Since ẋ = −sinφ, it is true that
the sample-and-hold version of the Single Wall strategy (with detected feature on
the right), presented in (7.7), can asymptotically guide the vehicle onto the line
x = f+fR−c

f
.

The same reasoning can be applied to the Single Wall strategy with detected
feature on the left, obtaining the same results. In this case:

g(φ) = φ + hk

A
R + x + cosφ

cosφ + sinφ
− c

B

gÍ(φ) = 1− hk

A
1 + (R + x)(cosφ− sinφ)

(cosφ + sinφ)2

B
In the parameter range of interest x > −R and −3π

4 < φ < π
4 , the sample-and-hold

version of the steering control law aligns the vehicle to the line x = c−f−fR
f

.

63

64

Chapter 8

Spatial Awareness and
Simulation Results

In this chapter a detailed description of how a mobile robot can understand its
position and the general geometry of the environment in which it is moving is
provided. In particular, in the following sections, the characteristics of the visual
cues coming from four different scenarios are analyzed and some simulations, run
in Gazebo using Lagrangian sensing, are used to show the behavior of a mobile
robot safely navigating in these environments.

8.1 Straight Corridors
Straight corridors represent the easiest environment in which the mobile robot
used in this work can navigate. In this scenario the classical distribution of the
OF field in the image is the one shown in Figure 8.1. When moving in a straight
corridor the τ values generally come from every region of interest but the central
ROI (whose time-to-transit is not available or very high) and they are continuous
in time. These are clear indicators that the environment is a straight corridor.
Moreover, since in this case the control law used by the robot to navigate in the
environment is the following1:

u(t) = kf (τfl − τfr) + km(τl − τr) (8.1)

a balanced (symmetrical) distribution of the OF field is expected because this is
a straightforward consequence of the application of the steering law which keeps
the differences τfl − τfr and τf − τr as close as possible to 0. Smaller values in

1Chapter 6 provides more information about this version of the Tau Balancing control law.

65

Spatial Awareness and Simulation Results

Figure 8.1: Averaged optical flow field distribution in the image typical of a
straight corridor when 8 (at the top) or 5 (at the bottom) ROIs are considered.

the optical flow field on the right of the image mean the robot is located on the
left with respect to the center of the corridor and vice versa. Another important
thing to notice in Figure 8.1 is the fact that eight ROIs can be useful to obtain
a more refined idea of the geometry of the environment, but five are enough to
distinguish a straight corridor from alternative scenarios taken into account in this
work and this will be more and more evident going through the chapter. In the
case only time-to-transit values coming from the far left and far right or from the
left and the right regions of the image are available, the classical version of the Tau
Balancing control law is used in one of this two forms:

u(t) = kf (τfl − τfr)

u(t) = km(τl − τr)

8.1.1 Lagrangian simulations results
In this section, results obtained from simulations run in the Gazebo simulation
environment2 are shown and discussed. With respect to the ones obtained using

2More information about ROS and Gazebo are provided in Chapter 4.

66

8.1 – Straight Corridors

Matlab, in this case Lagrangian sensing and a real model of the Jackal robot (the
platform on which the control strategy implemented in this work will be tested)
are used. The behavior of the UGV in artificial environments with fixed a priori
feature density and in real scenarios (in which feature density is not constant)
will be analyzed. On the left of Figure 8.2, an artificial straight corridor in which
feature density on the walls is a Bernoulli distribution with p = 0.05 is represented.
On the right, it is instead possible to observe the trajectory of the Jackal robot

Figure 8.2: On the left, an artificial straight corridor while, on the right, the
trajectory of the Jackal robot moving in it is represented.

which is using the Tau Balancing control law in (8.1) to move to the center of the
corridor. An initial overshoot is present, but then the center line is stably reached
and the robot undergoes only minor oscillations, probably due to residual noise
in the estimation of time-to-transit. Clearly, if we lower the feature density, more
oscillations can be observed and a discussion on the relation between feature density
and control error is made in Appendix A. Looking at what happens when using
Eulerian sensing (see Figure 6.5), it can be noticed that, even if the eigenvalues of
the system are real and negative, when using Lagrangian sensing in combination
with the Sense-Perceive-Act cycle, overshoot and oscillations are present. The main
reason behind the presence of a so evident overshoot can be hidden in the delays
that the introduction of sense and act phases entails but a theoretical analysis of
why this happens is the goal of further work.

Since the final objective is to test the control strategy developed on a real
platform, simulations in environments that present no a priori defined density of
features must be run. In Figure 8.3, the result of one of these tests is shown. In
this case, the performance is even better (in terms of overshoot) with respect to
when testing in the artificial corridor. This can be the consequence of the fact that
the tree-lined avenue contains a lot of detectable features making the estimation of
time-to-transit values more accurate. In any case, this result shows the difficulty of

67

Spatial Awareness and Simulation Results

Figure 8.3: On the left, a tree-lined avenue is represented while, on the right, it
is shown the trajectory of the Jackal robot moving in the environment.

studying, from a theoretical point of view, what are the effects of using Lagrangian
sensing in combination with the Sense-Perceive-Act cycle.

8.2 Turns
Turns represent a challenge for vision-based navigation using Optical Flow and in
this section some of their distinctive characteristics will be analyzed. In Figure 8.4,
a typical distribution of the optical flow field captured by a mobile robot ready to
turn is represented.

The presence of a turn can be detected by the control strategy implemented in
this work by looking at the appearance of a suddenly unbalanced optical flow field
and of a small time-to-transit value coming from the central ROI (of the order of
some seconds). The reason behind the discontinuity of the τ signal is graphically
represented in Figure 8.5. This sudden change in the time-to-transit signal has to
be handled properly otherwise it can lead to severe stability issues.

First of all, some aspects of how to ideally handle a turn are taken into account
and all the considerations in this section will be made assuming the linear velocity
v = 1 that means the vehicle path is parameterized by arc length. Considering W
as the corridor width, to successfully cover a 90◦ arc the vehicle turning rate u(t)
must be able to exceed a minimum value umin defined as follows:

umin =
√

2− 1√
2W

(8.2)

This comes from considering an ideal vehicle (that can be represented by a point)
starting with heading θ0 = π

2 from the far right part of the corridor. Timing is

68

8.2 – Turns

Figure 8.4: Averaged optical flow field distribution in the image typical of a turn
when 8 (at the top) or 5 (at the bottom) ROIs are considered.

Figure 8.5: A mobile robot approaching a turn. The time-to-transit associated to
the feature detected on the left changes suddenly when the feature OÍ

l is detected.

essential when dealing with a turn since turning too soon will end up hitting the
left wall of the vertical segment while turning too late will make the mobile robot
crash into the right wall of the horizontal segment. In order to understand when it
is possible to start turning from a purely theoretical point of view, some Matlab

69

Spatial Awareness and Simulation Results

simulations have been run for different initial conditions (x0, θ0).

Figure 8.6: On the left, it is shown the line from where it is possible to start
turning when the initial heading is θ0 = 72◦ (with some possible trajectories). On
the right the full area (in the case θ0 = 72◦) from where a mobile robot can start
turning and the relative minimum constant curvature that must be guaranteed to
make the turn is represented.

In this work, the mobile robot can perform a turn combining the following two
motion primitives:

u(t) = kÍ
f (τfl − τfr)

u(t) = −k(τr − c) or u(t) = k(τl − c)
The Tau Balancing control law (where kÍ

f > kf in (8.1) to balance more rapidly
the optical flow field) can exploit the discontinuity of the time-to-transit signal to
make the vehicle start turning while the Single Wall strategy handles the situation,
that typically occurs when aligning with the new corridor at the end of the turning
procedure, in which no features in the left (when turning left) or in the right
(when turning right) ROIs are detected. In this scenario the introduction of the
Sense-Perceice-Act cycle is of paramount importance because the rotational effects
discussed in Chapter 3 severely confounds the accuracy of tau estimation and the
usage of averaged time-to-transit values allows to avoid (or at least to handle) the
destabilizing effect due to τ discontinuity. In order to understand the behavior
of the Jackal robot in different environments, some Gazebo simulations using
Lagrangian sensing are introduced.

70

8.2 – Turns

8.2.1 Lagrangian simulations results
A first simulation tries to highlight the behavior of the Tau Balancing control law
when small right and left turns are present. In Figure 8.7, the artificial environment
where the feature density is given by a Bernoulli distribution with p = 0.03 and the
trajectory of the mobile robot moving in it are presented. Even if the robot starts

Figure 8.7: On the left, the artificial simulation environment created in Gazebo
is shown while, on the right, the Jackal trajectory is represented.

on the left part of the corridor, it is able to stably reach its center. The timing
chosen by the UGV to start turning is correct since it allows the vehicle to end
the turning procedure without hitting or getting too close to the wall. In Figure
8.8, a more challenging scenario represented by a corridor with an L turn with
feature density given by a Bernoulli distribution with p = 0.05 is shown. Also in
this case, even if the environment is more challenging since it presents a 90◦ turn,
the robot successfully moves from the vertical to the horizontal corridor. Some
oscillations are present, but they are probably linked to residual noise in the optical
flow field which leads to inaccuracies in the time-to-transit estimation. Moreover,
when reaching the end of the horizontal corridor, the number of features that the
Jackal robot can detect decreases and this means wider oscillations.

The results of a simulation in a real environment (with feature density not
defined a priori) are presented in Figure 8.9. In this case the absence of features
on the left ROIs obliges the mobile robot to completely trust the right regions of
interest and a safe distance from trees is maintained. When the UGV perceives
the presence of a corridor (a bridge, in this case), it properly aligns itself to the
center of it.

Another important aspect that must be taken into account to obtain good
results is the width of the horizontal field of view (hFOV) of the camera that the

71

Spatial Awareness and Simulation Results

Figure 8.8: On the left an artificial L turn is shown while, on the right, the Jackal
trajectory is represented.

Figure 8.9: On the left a challenging realistic environment while, on the right,
the trajectory followed by the Jackal is presented.

mobile robot uses to acquire data. Since, as it has already been discussed, timing
is essential when dealing with turns, a small hFOV can let the robot perceive the
turn too early and this can lead to a crash. A comparison between Figure 8.10 and
Figure 8.5 can be made to better understand the issue.

In the next section a more detailed description, supported by simulations using
Lagrangian sensing, of when and how the Single Wall strategy works is presented.

72

8.3 – Single walls

Figure 8.10: A too small hFOV can let the robot perceive the turn too early and
it forces the vehicle to abandon the Tau Balancing control law used in straight
corridors.

8.3 Single walls
Single walls is an expression that wants to describe all the scenarios in which
features are detected only in one side of the environment (or, more generally,
when only one side has enough features to permit the computation of acceptable
TTT values). The typical distribution of the optical flow field of these kind of
environments is graphically represented in Figure 8.11. To deal with feature sparsity
the control law used to guide the mobile robot is the Single wall strategy presented
in Chapter 7. In the case in which all the ROIs on the left or on the right allow
the estimation of time-to-transit, only the TTT value coming from the far left (or
far right) region is used. The reason behind this choice is that normally the optical
flow field is more accurate in these areas since pixel motion is higher.

The results of a simulation in an artificial environment are summarized in Figure
8.12. Also in this case the feature density on the wall is given by a Bernoulli
distribution with p = 0.05. The UGV can explore the environment even if no
features are detected on the right side of the image it acquires. Some oscillations
were expected since the motion primitive used relies just on a single time-to-transit
value. It is also good to keep in mind that the Single wall strategy aims to support
the navigation only when Tau Balancing cannot be exploited.

In order to show that the motion primitive used to deal with sparsity of features
can be helpful even during turns, a more complex artificial environment, shown

73

Spatial Awareness and Simulation Results

Figure 8.11: Averaged optical flow field distribution in the image with features
detected only on the right side when 8 (at the top) or 5 (at the bottom) ROIs are
considered.

Figure 8.12: On the left an artificial wall while, on the right, the trajectory
followed by the Jackal robot.

in Figure 8.13, has been created. The feature density of the walls is represented,
also in this case, by a Bernoulli distribution with p = 0.05. In Figure 8.13 not
only the Single Wall strategy, but all the motion primitives presented are used and
the Jackal is able to correctly explore the environment keeping a safety distance
from every wall. An even more promising result is shown in Figure 8.14, when the

74

8.4 – Obstacles in the central ROI

Figure 8.13: On the left a complex artificial environment to highlight the possible
usage of the Single Wall strategy even when dealing with turns while, on the right,
the trajectory of the Jackal is represented.

scenario is realistic and the feature density has not been chosen a priori.

Figure 8.14: On the left a complex realistic environment in which all the motion
primitives presented in this work are used while, on the right, the trajectory followed
by the Jackal robot is shown.

8.4 Obstacles in the central ROI
One of the weaknesses of the estimation of time-to-transit from Optical Flow with
a monocular camera is the fact that in the center of the image, near the focus of

75

Spatial Awareness and Simulation Results

expansion, only small pixel motion is present and this leads to poor estimation
precision. This can be a real problem when there is the need of detecting the
presence of an object to be avoided in the central region of interest and in order
to solve this issue a lot of work has still to be done. In Figure 8.15, the expected
optical flow field that the robot should perceive when in such a scenario. The

Figure 8.15: Averaged optical flow field distribution when a central object is
present in the case 8 (at the top) or 5 (at the bottom) ROIs are considered.

central region can be an instrument to detect the presence of an obstacle, but
the TTT value coming from it is not accurate and it cannot give a precise idea
on the remaining time before which the robot would crash into the object if no
steering action is performed. If the object is not in the center of the image, the Tau
Balancing control law used in this work can easily avoid the collision while, in the
case in which the obstacle is in the middle of a corridor and the robot is already
perfectly aligned to the center of it, this motion primitive alone is not enough to
quickly steer the vehicle and avoid the collision.

From a theoretical point of view, it could be possible to properly combine the
Tau Balancing control law and the Single Wall strategy, as depicted in Figure
8.16, to solve the problem. Following this idea, the Single Wall strategy should be
activated according to a specific timing based on the time-to-transit coming from
the central ROI and its only goal would be to slightly move the robot from the
center of the corridor to the left or to the right to create an unbalanced optical flow
field that the Tau Balancing control law can then balance again driving the UGV
around the obstacle. This is in practice not easily implementable for many reasons,

76

8.4 – Obstacles in the central ROI

Figure 8.16: The combination of two motion primitives could help to avoid an
obstacle in the center ROI.

some of which already discussed. The main problem of this approach is that the
time-to-transit coming from the central region of interest is very noisy and so it
can be used as an indicator of obstacle ahead of the vehicle but its value cannot be
used as a reliable steering signal. In this work no solution to solve the problem will
be presented since it will be subject of further work. What is important to notice
is that, in general, it is theoretically possible for a looming obstacle to avoid being
detected if the overall optical flow field of the environment is highly symmetric,
but such symmetry is improbable in natural scenes.

77

78

Chapter 9

Tests on a Real Platform

When new software components are developed, after the verification of the algo-
rithms’ effectiveness through simulations, it is important to test them on a real
platform. Thanks to the availability of the PoliTo Interdepartmental Centre for
Service Robotics (PIC4SeR) and to their collaboration, the software presented in
this work have been deployed and tested on a Jackal UGV equipped with a MYNT
EYE S1030 camera.

A brief description of the real platform and of the sensors that have been used
is now provided, then the results of the tests are presented.

9.1 Jackal UGV
The Jackal UGV is a small, fast and easy to use robotic platform developed
by Clearpath Robotics. It has an onboard computer, an IMU and a GPS fully
integrated with ROS. It is possible to equip the Jackal robot with a wide number
of accessories by simply connecting cables to the internal onboard computer. This
UGV is waterproof and it can be used on different types of terrain. In Figure 9.1
the Jackal robot is shown.

9.1.1 Mathematical modeling
The mechanical configuration of the Jackal UGV is composed by two pairs of fixed
wheels, a pair for each side, that can be differentially driven to perform curved
trajectories. The Jackal robot, because of its configuration, belongs to the category
of the skid-steering mobile robots (SSMR) in which a lateral skidding is necessary
to follow curved paths. Obviously this type of mobile robot presents velocity
constraints that differ from the ones of vehicles in which the skidding is not used.
Models of both the kinematics and dynamics of SSMRs have been described in [28],

79

Tests on a Real Platform

Figure 9.1: Jackal UGV. Source: https://clearpathrobotics.com

and key features of the models are presented in Appendix B.
Even if the kinematic model of a SSMR is different from the one of the unicycle,

which has been used in this work to demonstrate the stability of the presented vision-
based steering laws, the extent of the violation of the nonholonomic constraints is
considered small enough to still safely use the Tau Balancing control law and the
Single Wall strategy.

9.2 Sensors
The final objective of this work is to safely guide a mobile robot in unknown
environments exploiting only the data coming from a single camera mounted on
it. This goal has been achieved using only one sensor, a camera. The camera that
has been used in this work is the MYNT EYE S1030 stereo camera, but before it
another type of camera, the Intel RealSense D435i stereo camera, has been tested.
A summary of the characteristics of both cameras is now presented, focusing on
the reason why the MYNT EYE S1030 has been chosen.

9.2.1 Intel RealSense D435i
The Intel RealSense D435i is a depth camera with an integrated Inertial Measure-
ment Unit (IMU) which is used for the detection of movement and rotations and it
has 6 degrees of freedom. The camera is shown in Figure 9.2 and it is composed

80

https://clearpathrobotics.com

9.2 – Sensors

of a D430 module and an RGB camera. The former is used for depth estimation
while the latter is used to acquire RGB images. Since, considering the scope of this

Figure 9.2: Intel RealSense D435i stereo camera. More information can be found
at https://www.intelrealsense.com

work, the important part of the camera is the RGB monocular camera, in Table
9.1 a description of its main characteristics is provided.

RGB frame resolution: 1920x1080
RGB frame rate: 30 fps
RGB sensor technology: Rolling Shutter
RGB sensor FOV (H × V × D): 64° × 41° × 77° (±3°)
RGB sensor resolution: 2 MP

Table 9.1: Main characteristics of the RGB camera of the Intel RealSense D435i.

Even if the resolution and the frame rate of the RGB camera are suitable for
the purposes of this work, a relevant limitation is represented by the horizontal
field of view (hFOV) of the sensor that has to be wide enough to recognize, with
the proper timing (as discussed in Chapter 8), specific characteristics of the visual
cues, e.g. discontinuities of the time-to-transit signal in environments containing
turns.

9.2.2 MYNT EYE S1030
The need of a large horizontal FOV has led us to discard the Intel RealSense D435i
in favor of the MYNT EYE S1030 stereo camera, presented in Figure 9.3. It is a
depth and an infrared camera with an integrated IMU and it gives the possibility
to retrieve the monochromatic images from both the single cameras.

81

https://www.intelrealsense.com/depth-camera-d435i/

Tests on a Real Platform

Figure 9.3: The MYNT EYE S1030 stereo camera mounted on the Jackal robot.
Source: https://www.mynteye.com/

Some of the main characteristics of this stereo camera are summarized in Table
9.2 and, as it can be noticed, the horizontal FOV is more or less two times larger
than the one of the Intel RealSense stereo camera. Since, as discussed before, a
wide horizontal field of view is a strong requirement in this work, the MYNT EYE
S1030 has been chosen as the suitable sensor for performing the tests.

Frame resolution: 725x480
Frame rate: 60 fps
Sensor FOV (H × V × D): 122° × 76° × 146°
Sensor Range: 0.5 ~18 meters +

Table 9.2: Main characteristics of the MYNT EYE S1030.

The stereo camera has been mounted on the Jackal UGV, as shown in Figure
9.4, with the right camera centered with respect to the vehicle. Then, during the
tests, only the images coming from the right camera have been used to respect the
constraint of using a monocular camera to guide the robot. The characteristics of
the robot and of the camera exploited during experiments at PIC4SeR are very
close to the ones of the material used at Boston University. People in Boston use a
Jackal UGV equipped with various sensors such as a LIDAR, a PTZ camera and a
ZED 2 stereo camera which has an hFOV very close to the one of the MYNT EYE
S1030. In Figure 9.5, the Jackal configuration belonging to Boston University is
shown. Since the platform used in this work and the one at Boston University are
similar, it will be possible to exchange code and perform more tests in different
environments but this will be objective of future work.

82

https://www.mynteye.com/products/mynt-eye-stereo-camera

9.3 – Tests Results

Figure 9.4: Jackal setup for tests in the PIC4SeR laboratory.

Figure 9.5: Jackal setup at Boston University.

9.3 Tests Results

The effectiveness of the entire algorithm has been tested by observing the behavior
of the Jackal robot moving through different environments which have been set
up at PIC4SeR and at the Boston University Robotics Lab. For each scenario the
data referring to the position of the Jackal have been collected in order to plot
the trajectories on Matlab. To retrieve this information a particular node, called
ekf, has been used in which the Odometry and the IMU data are considered to

83

Tests on a Real Platform

compute the position of the robot with respect to a coordinates’ frame that has
the origin where the Jackal is powered on for the first time. The results of the tests
are now presented and the boundaries in the Matlab simulations are an accurate
representation of the geometry of the environments created in the laboratory.

The first test has been conducted on a straight corridor, the features are
represented by the edges and the corners of the post-it notes on the right and left
walls. In Figure 9.6 a picture of the scenario and the trajectories of the vehicle
starting from different points are shown. As it can be noticed, in both situations

Figure 9.6: On the left the straight corridor created in the laboratory while, on
the right, two trajectories followed by the Jackal robot for two different starting
points.

the robot is able to reach the center of the corridor and the performances are very
close to the ones performed in the Gazebo simulation environment presented in
Chapter 8.

The second test has been run on a scenario characterized by a turn of almost
90◦, here the features are represented by the edges and the corners of the post-it
notes but also symbols on several boxes. The result is shown in Figure 9.7. The
timing to perform the turn is correct and the results show a good behavior of the
robot. The fact that at the end of the corridor the Jackal is not yet in the center
of it is due to the short length of the environment after the turn. A longer corridor
would allow the UGV to reach the center.

The third test concerns the single wall scenario in which the Single Wall control
strategy u(t) = −k(τr − c) is used. In this case two tests are performed, one with
the parameter c as a constant fixed a priori and the second with the c as the TTT
value recorded the first instant in which the Single Wall control law is applied

84

9.3 – Tests Results

Figure 9.7: On the left the turn of almost 90◦ created in the laboratory while, on
the right, the trajectory followed by the Jackal robot.

(refer to Chapter 7 for more details about this motion primitive). The resulting
trajectories are shown in Figure 9.8. Both trajectories show the ability of the robot

Figure 9.8: On the left the single wall environment created in the laboratory
while, on the right, the trajectories followed by the Jackal robot: in blue the
trajectory with c = constant fixed a priori, in green the trajectory with c = τ(t0)
where t0 is the first instant in which the single wall control law is applied.

to maintain a certain distance from the wall, as already highlighted in Gazebo
simulations presented in Chapter 8. However, due to the sparsity of features in the

85

Tests on a Real Platform

real environment and to the fact that the single wall control law relies on a single
TTT value, the results of the tests present some oscillations. Nevertheless, stability
seems to be always guaranteed and zero crashes into the walls have been registered.

Finally, the most complicated test consists in performing a curve with a U shape,
in this scenario both the control laws described in Chapter 6 and 7 have to be
applied and this leads to test also the switching mechanism described in Chapter 8.
Figure 9.9 shows the environment setup and the resulting trajectory of the mobile
vehicle. The UGV is able to successfully perform the turn. Also in this scenario it

Figure 9.9: On the left the U turn created in the laboratory while, on the right,
the trajectory followed by the Jackal robot.

can be noticed that at the end of the turning procedure, the path is too short to
allow the vehicle to perfectly align to the center of the environment. Future work
should focus on larger and more complex spaces.

In general, the similarity between real tests and the simulations presented in
Chapter 8 confirms the validity of the choice of using Gazebo as a simulation
platform.

86

Chapter 10

Conclusions and Future
work

In this chapter, final considerations are made and an analysis of the advantages
that the use of the developed algorithms can introduce is provided. Moreover, some
remaining open questions are also presented together with possible improvements
and related further work.

10.1 Conclusions
The algorithm developed in this work has been tested in simulation environments
and on a real platform. Both the testing phases have produced good results, as
discussed in Chapter 8 and Chapter 9, indeed the robot is able to safely navigate
in unknown environments using only visual information coming from a monocular
camera. Neither in simulations nor in real tests crashes were observed. The obtained
results are a sign of the effectiveness of the control strategy implemented.

The developed algorithm presents several advantages, one of them is its simplicity
that makes it easily implementable on a wide variety of robotic platforms for real-
time applications. The control strategy can be useful to support navigation in
different situations such as exploration of dangerous environments (e.g. tunnel
inspections) or when GPS is not available or not sufficiently precise (e.g. in cluttered
environments, underground). Moreover, it could be also employed when GPS signal
is available but it is necessary to avoid unexpected obstacles during the navigation.

However, an open question for the implemented algorithm is represented by its
possible behavior when moving objects are present in the environment since it has
only been evaluated in static scenarios. This and others open questions will be
addressed in future work.

87

Conclusions and Future work

10.2 Future work
The effectiveness of the control strategy implemented in this work has been shown
and discussed in the previous chapters and in the previous section, however there
are some additional considerations that can be made to improve the analysis of
certain concepts. Possible improvements that can be done are now described.

From a theoretical point of view, it is necessary to perform a new stability
analysis to find theoretical basis to justify the stability of the system when Sense-
Perceive-Act cycles are introduced. Indeed, by observing simulation results it is
possible to see that also in the case in which the cycles are present the system
response remains stable. The only difference is that it is delayed and it requires
more time to reach the steady-state value. For what regards the practical aspect,
there will be the possibility of performing more tests in real scenarios thanks to
the collaboration with the Boston University. The robotic platform that will be
used is the Jackal UGV and this allows an exchange of code and the collection of
more experimental results.

Moreover, one of the open question that the algorithm presents is related to
a problem in the optical flow field because the optical flow vectors around the
FOE are too small to obtain a good estimate of the time-to-transit. This leads
to the impossibility of correctly detecting and avoiding obstacles right in front of
the vehicle and, even if this is not a common situation, a strategy to manage it
has to be implemented. A possible approach that could be investigated consists in
recognizing changes in the optical flow field without estimating the time-to-transit
coming from the central ROI and applying a little steering action (with sign that
depends on the general optical flow field distribution) when a change in the central
part of the image is detected. By doing so, the object to be avoided is no more
centered in the image and the control strategy presented in this work should be
able to avoid the crash.

In the control strategy developed the distribution of the optical flow field gives
an idea of the geometry of the environment which is used to select the proper
control action. In this case the optical flow field is computed at every sensing
phase. The mobile robot does not have a memory of past experiences that would
be useful to improve its navigation when moving in already visited scenarios and it
is not able to predict future actions which is something that humans and animals
always do. Predictive coding ([29]), which is a complex theory that suggests the
brain is constantly generating and updating a model of the environment, can be
considered to improve what is presented in this work. Deep learning ([30]), that is
a powerful class of machine learning algorithms, could be considered to implement
some predictive actions taking also in considerations past experiences to cope with
the remaining open questions of the control strategy implemented.

The controller developed can be also adapted to other autonomous vehicles such

88

10.2 – Future work

as the aerial vehicles. In this case it is important to consider also the vertical
displacement and a similar control strategy using TTT can be used by considering
the values coming from the upper and lower part of the image.

89

90

Appendix A

Effect of feature density on
control action

A brief discussion on how feature density can affect the control action will be
provided in this Appendix. Let’s start considering an environment like the one
presented in Figure A.1. The geometric time-to-transit related to a single feature is

Figure A.1: A corridor composed of many strips each of them containing a fixed
amount of features (identified by ∗).

estimated through the computation of the perceived TTT and this is possible once
the sparse optical flow field of the image is retrieved. With respect to the geometric
quantity, the perceive time-to-transit is negatively affected by many factors among
which is how precisely the optical flow field is estimated. The τ associated to

91

Effect of feature density on control action

every feature will be considered as a random variable represented by a Normal
Distribution with mean τ0 which corresponds to the geometric time-to-transit value
for the specific feature as depicted in Figure A.2. Since time-to-transit is a proxy

Figure A.2: Representation of the perceived time-to-transit as a Gaussian random
variable with mean τ0.

for distance, a vehicle equipped with a monocular camera to better estimate its
distance from a wall can rely on more features computing an averaged TTT using
all the features in a wall strip. To simplify the computations, the assumption that
the left and the right strip in Figure A.1 contain both N features is considered.
It is possible to define τl and τr as random variables with mean µ0 = τ0 but with
variance proportional to N as depicted in Figure A.3. In mathematical therms, it

Figure A.3: Increasing the number of features in a wall strip will lead to a better
estimation of τl and τr.

92

Effect of feature density on control action

can be written that:

τi ∼ N (µ0, σ2
0) τl ∼ N (µ0,

1
N

σ2
0) τr ∼ N (µ0,

1
N

σ2
0)

At this point, it is important to take into account how the optical flow field
is computed. In particular, features are matched frame by frame and the feature
density can affect the ability to correctly track them. The characteristic of a
matcher with respect to the feature density is not easy to determine but some
considerations can be made. Suppose that similar features (with similar descriptors)
are present in the same wall strip. It is reasonable to think that the bigger the
number of features, the more difficult will be to distinguish one from another.
Assuming Nmax = 100 as the maximum number of features that can be contained
in a wall strip, the probability to wrongly match a feature between two frames
can be graphically represented as in Figure A.41. No assumptions will be made on
ξ(N) in the development of the following computations except that 0 ≤ ξ(N) ≤ 1
for every N.

Figure A.4: Probability ξ(N) of a wrong match with respect to the number of
features in a wall strip described by different smooth-step functions.

Considering the Tau Balancing control law, it can be written that the effect of
feature density on the control action when perceived time-to-transit instead of the

1More information about Ken Perlin smoothstep function can be found at https://en.
wikipedia.org/wiki/Smoothstep

93

https://en.wikipedia.org/wiki/Smoothstep
https://en.wikipedia.org/wiki/Smoothstep

Effect of feature density on control action

geometric TTT is used, is represented by the error ÔTb(N):

ÔTb(N) = u∗ − u = k(τ ∗
l − τ ∗

r)− k(τl − τr) = k(τ ∗
l − τ ∗

r − τl + τr)

and considering the worst case:

ÔTb(N) = k(µl − µr − (µl ± 3σ2
l (N)) + (µr ± 3σ2

r(N))) = k(3σ2
l (N) + 3σ2

r(N))

Since σ2
l = σ2

r = σ:

ÔTb(N) = 6kσ2(N) = 6kσ2
0

N

This still does not take into account the effect of using a real matcher that cannot
guarantee zero wrong matches. This can be modeled writing:

ÔTb(N) = 6kσ2(N) = 6kσ2
0

1
N −N · ξ(N)

By knowing the probability of wrong matches with respect to the number of features
in a single wall strip, it is possible to understand where the error is minimized:

dÔTb(N)
dN

= 6kσ2
0
−1(1− (ξ(N) + N · ξÍ(N))

(N −N · ξ(N))2

and since 0 < N < Nmax:

dÔTb(N)
dN

= 0 ⇒ ξ(N) + N · ξÍ(N)− 1 = 0

Similar results can be retrieved considering the Single Wall strategy. In particular:

ÔSw(N) = u∗ − u = k(τ ∗ − c)− k(τ − c) = k(τ ∗ − τ)

and in the worst case:

ÔSw(N) = k(µ− (µ± 3σ2(N))) = 3kσ2
0

N

Considering the probability of wrong matches, it is finally obtained that, in this
case:

ÔSw(N) = 3kσ2(N) = 3kσ2
0

1
N −N · ξ(N)

In Figure A.5, the behavior of Ô(N) is plotted for different values of k and the
same would happen changing the variance σ2

0. The plot is obtained with ξ(N)
represented by a smooth-step function. As it can be noticed, the control error
increases when k or σ2

0 increases while the range of N that leads to an acceptable

94

Effect of feature density on control action

Figure A.5: The behavior of Ô(N) for different values of k is shown.

control error tightens. It is clear that feature density is not something that can
be chosen a priori in a real environment, but to understand how this can affect
the control action can be useful. The ideal scenario would be the one in which
the number of features does not worsen the effect of the control action. From
a practical point of view this is not possible, but it is of paramount importance
to know what can make visual navigation in unknown environments unfeasible.
Surely it will be subject of a further work a detailed study about the performance
of different types of matchers with respect to feature density. How Ô(N) can vary
when the function ξ(N) changes is shown in Figure A.6. The control error remains
the same for different ξ(N) when N is sufficiently small while the range of N that
leads to an acceptable control error changes.

95

Effect of feature density on control action

Figure A.6: The behavior of Ô(N) for different ξ(N) is shown.

96

Appendix B

Mathematical modeling of
the Jackal UGV

In 2004, K. Kozłowski and D. Pazderski presented the kinematic and the dynamic
model of a SSMR in [28]. A summary of what they found is now provided,
considering the vehicle moving on a planar surface.

B.1 Kinematic model

Consider a robot on a plane surface, as depicted in Figure B.1, it is possible to
define an inertial orthonormal basis (Xg, Yg, Zg) and a local coordinates frame
(xl, yl, zl) located at the center of mass (COM) of the robot. The coordinates
of the COM in the inertial basis are (X, Y, Z) but, since only the plane motion
is considered, Z = constant. The linear and the angular velocities in the local
reference frame can be written as:

v =

vx
vy
0

 ω =

0
0
ω


then, a state vector q which expresses the generalized coordinates of the robot can
be defined as follows:

q =

X
Y
θ


97

Mathematical modeling of the Jackal UGV

Figure B.1: The SSMR model in the Inertial basis. Source: [28]

where θ is the orientation of the local reference frame with respect to the inertial
one. The q vector can be derived to obtain the vector of the generalized velocity:

q̇ =

Ẋ
Ẏ

θ̇


By observing image (b) of Figure B.1, it can be noticed that the relation between
the velocities of the COM in the inertial reference frame and its velocities in the
local reference frame is expressed by:C

Ẋ
Ẏ

D
=
C
cos θ − sin θ
sin θ cos θ

D C
vx
vy

D
(B.1)

and, because of planar motion, it possible to say that θ̇ = ω.
Equation B.1 describes the free-body kinematics of the Jackal, but it is necessary

to analyze also the relationship between the wheels and the robot velocities to
understand the restrictions to which the SSMR plane movement is subjected.
Suppose that the wheel is in contact with the plane only in a point Pi, in this case
ωi(t) is the angular velocity of the ith wheel. Moreover, the lateral velocity viy of
the wheel has to be taken into account because it introduces the lateral skidding if
the SSMR vehicle changes its orientation. The above considerations lead to the fact
that the wheel i is tangent to the path only if the vehicle is moving on a straight
line and so when ω = 0.

98

B.1 – Kinematic model

In order to simplify the computations, a simple case in which the longitudinal
slip between the wheels and the surface is neglected can be considered. In this
situation the longitudinal component of the wheel velocity, expressed in the local
reference frame, is the following:

vix = riωi (B.2)

where ri is the effective rolling radius of the ith wheel.

Figure B.2: Graphical representation of the Jackal’s wheels velocities. Source:
[28]

To develop a kinematic model, all the wheels have to be considered together.
Looking at Figure B.2, two quantities can be defined: d = [dix, diy]T and dC =
[dCx, dCy]T . These are the radius vectors of the ith wheel and of the COM respec-
tively, expressed with respect to the local reference frame from the instantaneous
center of rotation (ICR). After some geometrical considerations, it is possible to
state that:

vix
−diy

= vx
−dCy

= viy
dix

= vy
dCx

= ω (B.3)

Considering Figure B.2 and image (b) of Figure B.1, the following equations can

99

Mathematical modeling of the Jackal UGV

be retrieved:
d1y = d2y = dCy + c

d3y = d4y = dCy − c

d1x = d4x = dCx − a

d2x = d3x = dCx + b

(B.4)

and, by combining (B.3) and (B.4), the relationships between the wheels velocities
are obtained:

vL = v1x = v2x

vR = v3x = v4x

vF = v2y = v3y

vB = v1y = v4y

(B.5)

where vL and vR are the longitudinal velocities components of the left and right
wheels, while vF and vB are the lateral coordinates of the velocities of the front
and rear wheels.

An additional passage that can be made is to rewrite the equation (B.3)
by introducing the definition of the coordinates of the ICR in the local frame
ICR=[xICR, yICR] = [−dxC ,−dyC]:

vx
yICR

= −vy
xICR

= ω

It is possible to retrieve the relations between the velocities of the wheels and
the robot velocity by looking at equations (B.2), (B.3) and (B.5):

vL
vR
vF
vB

 =


1 −c
1 c
0 −xICR + b
0 −xICR − a


C
vx
ω

D

ωw =
C
ωL
ωR

D
= 1

r

C
vL
vR

D

In the second formula ωL and ωR are the angular velocities of the left and right
wheels and r = ri for each wheel.

Finally, by combining the equations above, the approximated relations between
the robot velocities and the wheel velocities can be defined as:

η =
C
vx
ω

D
= r

C
wL+wR

2−wL+wR

2c

D
(B.6)

where η is a new control input introduced at kinematic level. The accuracy of
equation (B.6) can be considered valid only if the longitudinal slip is not dominant.

100

B.2 – Dynamic model

Moreover, to ensure an high validity to the relation, the parameters c and r must
be identified experimentally.

To complete the kinematic model of the SSMR, an additional constraint on the
velocity has to be considered:

vy + xICRθ̇ = 0 (B.7)

and, since this constraint is not integrable, it consists in a nonholonomic constraint
that can be rewritten in Pfaffian form as follows:è

− sin θ cos θ xICR
é è

Ẋ Ẏ θ̇
éT

= A(q)q̇ = 0

by observing that q̇ is always in the null space of A it is possible to write the
equation that describes the kinematic of the robot, which is a nonholonomic and
underactuated system, as:

q̇ = S(q)η

where,
S(q)TA(q)T = 0

and

S(q) =

cos θ xICR sin θ
sin θ −xICR cos θ

0 1



B.2 Dynamic model
For what regards the main theme of the work, the nonholonomic dynamics is of little
importance but a brief introduction of it is provided for the sake of completeness.
The dynamic model is computed by following the steps presented in [28]. To
obtain the dynamic equation of a SSMR the Lagrange-Euler formula with Lagrange
multipliers, to include the nonholonomic constraint (B.7), has to be considered.

Since only a planar motion is performed, the potential energy of the robot is
zero and so it is possible to state that the Lagrangian of the system equals the
kinetic energy:

L(q, q̇) = T (q, q̇)

To simplify the calculations, the energy of the rotation wheels can be neglected and
the mass distribution can be considered homogeneous. These assumptions allow to
write the kinetic energy, after some mathematical computations, as follows:

Ek = T = 1
2m(Ẋ2 + Ẏ 2) + 1

2Iθ̇2

101

Mathematical modeling of the Jackal UGV

where m is the mass of the robot and I is its moment of inertia about the COM.
The inertial forces can be obtained by calculating the partial derivative of the
kinetic energy and then deriving again by the time:

d

dt

A
∂Ek

∂q̇

B
=

mẌ
mŸ

Iθ̈

 = Mq̈ (B.8)

where M is a diagonal matrix.
To define the generalized resistive forces the following vector can be introduced:

R(q̇) =
è
Frx(q̇) Fry(q̇) Mr(q̇)

éT
(B.9)

in which Frx and Fry are the forces that cause dissipation of energy expressed in
the inertial frame, while Mr is the resistant moment around the COM. It is possible
to define also a vector for the active forces:

F =
è
Fx Fy M

éT
(B.10)

in which Fx and Fy are the forces generated by the actuator, while M is the active
torque around the COM. In Figure B.3 a graphical representation of the resistive
and active forces is shown.

Figure B.3: Graphical representation of the resistive and active forces acting on
the Jackal UGV. Source: [28]

102

B.2 – Dynamic model

After some mathematical computations and considering the explicit expressions
of the vector components in (B.10), the generalize active forces can be rewritten as
follows:

F = B(q)τ (B.11)

where,

τ =
C
τL
τR

D
=
C
τ1 + τ2
τ3 + τ4

D
and

B(q) = 1
r

cos θ cos θ
sin θ sin θ

c −c


τL and τR are the torques produced by the wheels on the left and right sides of the
robot, B is an input trasformation matrix, r is the radius of each wheel and c is a
geometric parameter represented in Figure B.1.

The free-body dynamic equation can be found by combining equations (B.8),
(B.9) and (B.11) and it can be expressed as follows:

M(q)q̈ +R(q̇) = B(q)τ (B.12)

and with the introduction of the Lagrange multiplier λ that takes into account
the nonholonomic constraint, the complete dynamical model of a SSMR is the
following:

M(q)q̈ +R(q̇) = B(q)τ +A(q)Tλ

103

104

Bibliography

[1] M. V. Srinivasan, R. J. D. Moore, S. Thurrowgood, D. Soccol, and D. Bland.
«From biology to engineering : insect vision and applications to robotics».
In: Frontiers in Sensing: From Biology to Engineering. Ed. by F. G. Barth,
J. A. C. Humphrey, and M. V. Srinivasan. Vienna, AT: Springer, 2012 (cit. on
pp. 2, 47).

[2] J. J. Gibson. «Visually controlled locomotion and visual orientation in ani-
mals». In: British Journal of Psychology 49 (Aug. 1958), pp. 182–194 (cit. on
p. 2).

[3] D. N. Lee. «A theory of visual control of braking based on information about
time-to-collision». In: Perception 5 (Dec. 1976), pp. 437–459 (cit. on pp. 2,
21).

[4] Y. Wang and B. J. Frost. «Time To Collision is Signalled by Neurons in
the Nucleus Rotundus of Pigeons». In: Nature 356 (Mar. 1992), pp. 236–238
(cit. on pp. 2, 21).

[5] Z. Kong, K. Özcimder, N. Fuller, A. Greco, D. Theriault, Z. Wu, T. Kunz,
M. Betke, and J. Baillieul. «Optical Flow Sensing and the Inverse Perception
Problem for Flying Bats». In: Proceeding of the 52nd IEEE Conference on
Decision and Control (CDC). Florence, Italy, Dec. 2013, pp. 1608–1615 (cit.
on pp. 2, 55, 56).

[6] P. A. Shoemaker, A. M. Hyslop, and J. S. Humbert. «Optic Flow Estimation
on Trajectories Generated by Bio-Inspired Closed-Loop Flight». In: Biological
Cybernetics 104(4-5) (May 2011), pp. 339–350 (cit. on p. 2).

[7] K. Sebesta and J. Baillieul. «Animal-Inspired Agile Flight Using Optical
Flow Sensing». In: Proceeding of the 51st IEEE Conference on Decision and
Control (CDC). Maui, Hawaii, Dec. 2012, pp. 3727–3721 (cit. on pp. 2, 21,
47).

[8] J. Baillieul. «Perceptual Control with Large Feature and Actuator Networks».
In: Proceeding of the 58th IEEE Conference on Decision and Control (CDC).
Nice, France, Dec. 2019, pp. 3819–3826 (cit. on pp. 2, 47, 48, 50, 51, 53, 57).

105

BIBLIOGRAPHY

[9] P. J. Seebacher. «Motion control using optical flow of sparse image features».
Master Thesis. Boston: Boston University, 2015 (cit. on p. 3).

[10] L. Corvese. «Perceptual aliasing in vision-based robot navigation». Master
Thesis. Boston: Boston University, 2018 (cit. on p. 3).

[11] D. Eckmeier, B. R. H. Geurten, D. Kress, M. Mertes, R. Kern, M. Egelhaaf,
and et al. «Gaze Strategy in the Free Flying Zebra Finch (Taeniopygia
guttata)». In: PLOS One 3(12) (Dec. 2008) (cit. on p. 3).

[12] J. Baillieul and F. Kang. «Visual Navigation with a 2-pixel Camera–Possibilities
and Limitations». In: IFAC 2020, Virtual World Congress. Berlin, Germany.
Extended version available at: http://arxiv.org/abs/2103.00285, July
2020 (cit. on pp. 3, 24, 63).

[13] H. D. Escobar-Alvarez, M. Ohradzansky, J. Keshavan, B. N. Ranganathan,
and J. S. Humbert. «Bioinspired Approaches for Autonomous Small-Object
Detection and Avoidance». In: IEEE Transactions on Robotics 35(5) (Oct.
2019), pp. 1220–1232 (cit. on p. 3).

[14] G. C. H. E. de Croon, C. De Wagter, and T. Seidl. «Enhancing optical-flow-
based control by learning visual appearance cues for flying robots». In: Nature
Machine Intelligence 3(1) (Jan. 2021) (cit. on p. 3).

[15] G. Gremillion, J. S. Humbert, and H. G. Krapp. «Bio-inspired modeling and
implementation of the ocelli visual system of flying insects». In: Biological
Cybernetics 108(6) (Sept. 2014), pp. 735–746 (cit. on p. 3).

[16] J. J. Gibson. The perception of the visual world. Boston: Hooughton Mifflin,
1950 (cit. on p. 7).

[17] B. K. Horn and B. G. Schunck. «Determining optical flow». In: Technical
Symposium East, International Society for Optics and Photonics 181 (1981),
pp. 319–331 (cit. on pp. 7, 9).

[18] C. G. Harris and M. Stephens. «A Combined Corner and Edge Detector».
In: Proceedings of the Alvey Vision Conference. Manchester, UK, Sept. 1988,
pp. 147–152 (cit. on pp. 7, 13).

[19] J. Shi and C. Tomasi. «Good features to track». In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Manchester, UK, June 1994, pp. 593–600 (cit. on p. 7).

[20] B. D. Lucas and T. Kanade. «An iterative image registration technique
with an application to stereo vision». In: IJCAI’81: Proceedings of the 7th
International Joint Conference on Artificial intelligence 2 (Aug. 1981), pp. 674–
679 (cit. on p. 10).

106

http://arxiv.org/abs/2103.00285

BIBLIOGRAPHY

[21] D. Lowe. «Distinctive image features from scale-invariant keypoints». In:
International Journal of Computer Vision 60(2) (2004), pp. 91–110 (cit. on
p. 13).

[22] E. Rosten, R. Porter, and T. Drummond. «FASTER and better: A Machine
Learning Approach to Corner Detection». In: IEEE Transactions on Software
Engineering 32(1) (Jan. 2010), pp. 105–119 (cit. on p. 15).

[23] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. «BRIEF: Binary Robust
Independent Elementary Features». In: European Conference on Computer
Vision-ECCV 2010. Heraklion, Greece, Sept. 2010, pp. 778–792 (cit. on p. 16).

[24] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. «ORB: an efficient alter-
native to SIFT or SURF». In: IEEE International Conference on Computer
Vision (ICCV). Barcelona, Spain, Nov. 2011, pp. 2564–2571 (cit. on p. 17).

[25] A. Alani, R. Ortiz, and P. Vandergheynst. «FREAK:Fast Retina Keypoint».
In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR). Providence, USA, June 2012, pp. 510–517 (cit. on pp. 18,
19).

[26] D. N. Lee and P. E. Reddish. «Plummeting gannets: a paradigm of ecological
optics». In: Nature 293 (1981), pp. 293–294 (cit. on p. 21).

[27] E. C. Hildreth, H. B. Barlow, and H. C. Longuet-Higgins. «Recovering Heading
for Visually Guided Navigation in the Presence of Self-Moving Objects».
In: Philosophical Transactions: Biological Sciences 337(1281) (Sept. 1992),
pp. 305–313 (cit. on p. 24).

[28] K. Kozłowski and D. Pazderski. «Modeling and control of a 4-wheel skid-
steering mobile robot». In: International Journal of Applied Mathematics and
Computer Science 14(4) (Jan. 2004), pp. 477–496 (cit. on pp. 79, 97–99, 101,
102).

[29] R. P. N. Rao and D. H. Ballard. «Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects». In:
Nature Neuroscience 2(1) (Jan. 1999), pp. 79–87 (cit. on p. 88).

[30] Y. LeCun, Y. Bengio, and G. Hinton. «Deep learning». In: Nature 521(7553)
(May 2015), pp. 436–444 (cit. on p. 88).

107

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation
	State of the art
	Thesis overview

	Optical Flow
	Horn-Schunck method
	Lucas-Kanade method
	Detectors, descriptors and matchers
	Features Detection and Features Description
	Features Matching
	Implementation Choices

	Time-to-transit
	Geometric and Perceived Time-to-transit
	Path segmentation
	Simulation Results

	ROS and Gazebo
	Robot Operating System
	ROS Filesystem Level
	ROS Computation Graph Level
	ROS Community Level

	Customized ROS Framework
	Gazebo
	Creation of virtual simulation environments

	Tau subdivision in Regions of Interest
	The Optical Flow Node
	The Tau Computation Node

	Tau Balancing control law
	Stability Analysis
	Eulerian Simulation Results

	Single Wall control law
	The problem of distance maintenance using Optical Flow
	Stability Analysis
	Eulerian Simulation Results
	Effects of the Sense-Perceive-Act cycle

	Spatial Awareness and Simulation Results
	Straight Corridors
	Lagrangian simulations results

	Turns
	Lagrangian simulations results

	Single walls
	Obstacles in the central ROI

	Tests on a Real Platform
	Jackal UGV
	Mathematical modeling

	Sensors
	Intel RealSense D435i
	MYNT EYE S1030

	Tests Results

	Conclusions and Future work
	Conclusions
	Future work

	Effect of feature density on control action
	Mathematical modeling of the Jackal UGV
	Kinematic model
	Dynamic model

	Bibliography

