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Abstract

Design and control with efficiency and performance are one of the most goals to
achieve in the robotics field, cranes or aerospace automation. The stability of the
system is essential and the non-linear effects create by motor reduce stability, like
maintain speed or position at set points. The position control of DC motor allows
it to move to a precise position and remain there even if an external force tries to
move it. Different techniques have been developed to perform the position control
of DC Motor, the most used are Proportional-Integral-Derivative(PID), Fuzzy Log-
ical Model(FLM) and Artificial Neural Network(ANN).

This thesis discusses the implementation and tuning steps of the Proportional
Integral Derivative (PID) controller for the position control of Brushed DC Motor.
Analysing three principal feedback (Rotation, Speed and Current), using STM-
Nucleo-G431RB microcontroller and monitoring the data in a GUI-Matlab, spe-
cially designed for this purpose based on UART communication protocol. Since
the system is stable, the performance of the system is analyzed and validation is
done in terms of robustness, time response and percentage of error.

In conclusion, Torque estimation has been carried out through a load cell, in
order to realize a function Torque-Current and monitoring how much Torque DC
Motor is producing at any given moment.
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Chapter 1

Introduction

Nowadays, industrial system and commercial system the DC Motors are widely
used, for example in cars, trains, sensor placement, elevator and robotics field.
This last field is used for the arm, changing the angle of the joint.
The robot field in the last decade is linked with the medical or educational appli-
cation. But to substitute the human work the robot behavior must be precise(high
accuracy), it must guarantee stability and robustness.
However, modeling a system which requires high accuracy some techniques are
taken into account to control the behavior, but the most used is the PID controller.

In this dissertation has been implemented a PI position controller, the tuning
and the stability have been performed with a STM32Nucleo Board for Brushed DC
Motor. The torque estimation has been developed in order to monitor the complete
behavior of the motor and how much torque it is generating.
The goal of this thesis is to present a torque PI controller and a graphical interface
design. The system is developed for robotic field or for sensor placement, using the
torque of DC Motor, in order to guarantee the correct pressure on the sensor.

1.1 Thesis overview

In the second chapter, an overview of the DC Motor is made in order to under-
stand the components that take part in the project and how it works. For example,
the functioning of the encoder or the calculation of the torque with mathematical
equations.
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1.1 – Thesis overview

After that, the third chapter will be illustrated the components that will take
part in the implementation of the project, both hardware and software. The IDE
and the components for the torque estimation.

In the fourth chapter the description of the system, the implementation of three
PI controller in cascade, the code used for the correct behavior of the system,
following the mathematical equations and the design of GUI-Matlab with UART
protocol communication.

Then, the next chapter is reserved for the tuning and stability of the system.
Firstly, the tuning part have been developed for the correct value of proportional
and integral gain of the three PI position controller. After that, the stability and
robustness of the system has been analyzed, implementing a motion profile.

In the last chapter of the thesis, a torque estimation was realized through a
load cell and the complete model of the system was monitored using a graphical
interface, plotting data in real-time.
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Chapter 2

Brushed DC Motor

2.1 Introduction

The Brushed DC motor was the first commercially important application of electric
power to driving mechanical energy, and the system was used for more than 100
years to operate motor in commercial and industrial buildings.

Thanks to the contribution played in the industrial and technological advance,
DC motor theory and practice were extensively analyzed by luminaries such as
Charles Steinmetz. This included detailed circuit, electromotive-force and magnetic-
field equations, performance (speed, torque, control and efficiency) and design. It
has been overshadowed by the brushless DC motor, but it remains the best choice
in terms of adequate performance, low cost and sufficient reliability.

2.2 Brushed DC Motor Basic

All motors depend on the interaction between an electromagnetic (EM) field on
the fixed body (the stator), the EM field on the rotating armature (the rotor) and
how these fields are controlled and changed induce magnetic attractive/repulsion
and thus motion.

The rotating field across the armature reacts with the stator magnetic field cre-
ating a force on the rotor winding (F = l× ~L∧ ~B). Using Fleming’s left-hand rule
is possible to determine the direction of the force and the rotation of the motor
(clockwise or counterclockwise).
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2 – Brushed DC Motor

Figure 2.1. Scheme of DC motor.

2.3 Components of Brushed DC Motor

2.3.1 Stator/Inductor

The stator generates a stationary magnetic field that surrounds the rotor. This
field is generated by either permanent magnets or electromagnetic windings. The
different types of BDC motors are distinguished by the construction of the stator
or the way the electromagnetic windings are connected to the power source.

2.3.2 Rotor/Armature

The rotor is made up of one or more windings. When these windings are energized
they produce a magnetic field. The magnetic poles of this rotor field will be at-
tracted to the opposite poles generated by the stator, causing the rotor to turn.
As the motor turns, the windings are constantly being energized in a different se-
quence so that the magnetic poles generated by the rotor do not overrun the poles
generated in the stator. This switching of the field in the rotor windings is called
commutation.
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2.3 – Components of Brushed DC Motor

2.3.3 Brushes and Commutator

Unlike other electric motor types (i.e., brushless DC, AC induction), BDC motors
do not require a controller to switch current in the motor windings. Instead, the
commutation of the windings of a BDC motor is done mechanically. A segmented
copper sleeve, called a commutator, resides on the axle of a BDC motor.

As the motor turns, carbon brushes slide over the commutator, coming in con-
tact with different segments of the commutator. The segments are attached to
different rotor windings, therefore, a dynamic magnetic field is generated inside the
motor when a voltage is applied across the brushes of the motor. It is important
to note that the brushes and commutator are the parts of a BDC motor that are
most prone to wear because they are sliding past each other.

Figure 2.2. Components of DC Motor.
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2 – Brushed DC Motor

2.4 Hall-effect sensor for Brushed DC Motor

A Hall-effect sensor (or simply Hall sensor) is a device to measure the magnitude
of a magnetic field. Its output voltage is directly proportional to the magnetic field
strength through it. The sensor type is named after the American physicist Edwin
Hall. In a Hall-effect sensor, a thin strip of metal has a current applied along it.
In the presence of a magnetic field, the electrons in the metal strip are deflected
toward one edge, producing a voltage gradient across the short side of the strip
(perpendicular to the feed current). Hall-effect sensors have an advantage over
inductive sensors in that, while inductive sensors respond to a changing magnetic
field that induces current in a coil of wire and produces voltage at its output,
Hall-effect sensors can detect static (non-changing) magnetic fields.

Figure 2.3. Magnetic encoder for DC Motor with the corresponding logic
states of the A and B signals.

2.5 Gearbox

Gearboxes are used to increase torque while reducing the speed of a prime mover
output shaft (e.g. a motor crankshaft). This means that the output shaft of a
gearbox rotates at a slower rate than the input shaft, and this reduction in speed
produces a mechanical advantage, increasing torque.

GR =
N1

N2
=

d2

d1
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2.6 – Torque

Figure 2.4. Single stage gear reducer.

2.6 Torque

A DC motor’s speed and torque characteristics vary according to three different
magnetization sources, separately excited field, self-excited field or permanent-field,
which are used selectively to control the motor over the mechanical load’s range.
Self-excited field motors can be series, shunt, or a compound wound connected to
the armature.

Figure 2.5. Brushed DC motor characteristics.
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2 – Brushed DC Motor

2.6.1 Counter EMF

The DC motor’s counter emf is proportional to the product of the machine’s total
flux strength and armature speed:

Eb[V ] = kbΦ[Wb]n[rpm]

where, Eb is the induced EMF, Φ is the machine’s total flux, n is the armature
frequency and kb is the counter EMF equation constant.

2.6.2 Voltage balance

The DC motor’s input voltage must overcome the counter emf as well as the voltage
drop created by the armature current across the motor resistance, that is, the
combined resistance across the brushes, armature winding and series field winding,
if any:

Vm[V ] = Eb[V ] + Rm[Ω]Ia[A]

where the Vm is the motor input voltage, Rm is the motor resistance and the Ia
is the armature current.

2.6.3 Torque equation

The DC motor’s torque is proportional to the product of the armature current and
the machine’s total flux strength:

T [Nm] =
1

2π
kbIa[A]Φ[Wb] = kT Ia[A]Φ[Wb]

where kT is the torque constant equation.

2.6.4 Speed

The speed rotation is calculated through the following equation:

n[rpm] =
Eb[V ]

kbΦ[Wb]

n[rpm] =
Vm[V ]−RmΩIa[A]

kbΦ[Wb]
= kn

Vm[V ]−RmΩIa[A]

Φ[Wb]

where kn is the speed equation constant.
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Chapter 3

Software and Hardware requirements

3.1 Introduction

This chapter aims to show which hardware and software are required in order to
perform the project, explaining the STM32 evaluation board, the shield used to
control DC Motor and the graphical interface.

3.2 Software

The Software section analysis all environment used for modeling, simulation and
measurement estimation.

• STM32CubeIDE: Software from STMicroeletronics (version 1.4.0). It is an
advanced C/C++ development platform with peripheral configuration, code
generation, code compilation, and debug features for STM32 microcontrollers
and microprocessors.

• Matlab/GUI: Software from MathWorks(2018a):Simulink, an add-on product
to MATLAB, provides an interactive, graphical environment for modeling,
simulating, and analyzing of dynamic systems. It enables rapid construction
of virtual prototypes to explore design concepts at any level of detail with
minimal effort.

• GUI-Matlab: Graphical user interfaces (GUIs), also known as apps, provide
point-and-click control of your software applications, eliminating the need for
others to learn a language or type commands in order to run the application.

19



3 – Software and Hardware requirements

Figure 3.1. GUI-Matlab

3.3 Hardware

The Hardware section analyses DC motor, board and Micro used for this project.

• STM-NucleoG431RB: Hardware from STMicroelectronics. The main features
of this microcontroller are:

– Arm® Cortex®-M4 at 170 MHz

– 128 KBytes of Flash memory and 32 Kbytes of SRAM

– 4 Channels for ADC with 12-bit

– 16 Timers for PWM

– 3 Operational Amplifier

– Uart communication. Baud Rate 150 Mbps

20



3.3 – Hardware

Figure 3.2. NUCLEO-G431RB

• X-NUCLEO-IHM13A1: The X-NUCLEO-IHM13A1 expansion board for STM32
Nucleo is based on the STSPIN250 low voltage brush DC motor driver. The
main features are:

– Low voltage range from 1.8 V to 10 V;

– Current up to 2.6 A r.m.s.;

– Full over-current and short circuit protection;

Figure 3.3. Shield X-NUCLEO-IHM13A1
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3 – Software and Hardware requirements

• DealMux DLM-B0792RPRD2 Motor: Brushed DC Motor with Optical En-
coder DC 12V 38RPM.

– Rated voltage 12 V

– Voltage range 6-24 V

– Speed 38 rpm

– Rated Torque 9 kg.cm

– Reduction ratio 1:131

– Rated Current 0.45 mA

Figure 3.4. DealMux DC Motor with encoder

• ARCELI Aluminum Alloy Scale Weighing Sensor Load Cell: This straight
bar load cell (sometimes called a strain gauge) can translate up to 5kg of
pressure (force) into an electrical signal.

– Measurement range 0-5 kg

– Voltage excitation 5-10 V

– Four strain gauges that are hooked up in a Wheatstone bridge formation

22



3.3 – Hardware

Figure 3.5. ARCELI Load Cell.

• Beam made with 3D-Printer for calculating the torque.

– Length 10 cm

– 100% Infill density

Figure 3.6. Beam using a 3D-Printer
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Chapter 4

System Design

4.1 Introduction

A typical structure of a PI is shown in Figure 4.1. The equation of a PI controller
is:

u(t) = Kpe(t) + Ki

R
e(t)dt

where the e(t) is the error e(t) = y(t)−u(t) between output y(t) and the input u(t)

of the system, but for microcontroller this formula is write in discrete time.

Figure 4.1. PI Controller

To increase the accuracy and the control of DC Motor, this equation was de-
veloped for three PI controller, as shown in Figure 4.2. The first was a PI current
loop, the second was a PI velocity loop and the third a PI position loop.

To achieve the complete PI position control with three feedback, the system
design was split into three main part, in order to analyze each feedback separately.
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4 – System Design

Figure 4.2. Position controller: three loop cascade

4.2 PI current controller

4.2.1 Implantation

To control a DC Motor the PWM frequency has been set equal to 70kHz and to
measure the current a jumper wire was welded to the Rsense which is connected
between ground and lower p-Mosfets of the H-Bridge, as shown in Figure 4.3

Figure 4.3. Welding
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4.2 – PI current controller

The slow decay created a ripple voltage, because when the PWM is off, the
lower Mosfets of the H-Bridge were ON and no current flow into Rsense.

Figure 4.4. Phase of slow decay: Normal Operation, Dead Time, Slow Decay

The voltage on Rsense has been measured using an ADC2 with Synchronous
clock mode at 60MHz, 640,5 cycle for sample time and 12bits for high resolution.
The error in terms of voltage was calculated by multiplying the number of LSBs
by the voltage corresponding to 1LSB (1LSB = VREF ÷ 212), where VREF = 3.3V .
However, the ADC did not measure the Root Mean Square, but the instantaneous
voltage and the ripple were functions of the Duty Cycle. To obtain the Root Mean
Square voltage an active low pass filter has been designed (Figure 4.5), in order to
cut di high frequencies.

fcut =
1

2πCR
=

1

2π5kΩ100nF
= 318,47Hz
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Figure 4.5. Active Low Pass Filter with fc = 318Hz

Figure 4.6. Voltage measured using oscilloscope with low pass filter [Yellow] and
without low pass filter [Blue] fc = 318Hz

After that, due to maximum voltage on Rsense which is equal to 300mV Opera-
tion Amplifier was used in mode PGA internally Connected with PGA gain equal
to 8, in order to maximize the resolution of the ADC(0V ÷ 3.3V ). The equations
below show the calculation for the current measurement.

Vi[V ] =
3.3V

4096[LSB]
ADC[LSB]

Vrms[V ] =

r
1

N

P
V 2
i [V ]

IDC_Motor[mA] =
Vrms[V ]

330mΩ

1000[mA]

[A]
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4.2 – PI current controller

4.2.2 Code

The code implemented in the Microcontroller show the code of current measure-
ment, using ADC and generate an RMS voltage by software.

1 /* Get ADC value */
2 /* Slow decay create 0 V */
3 for(uint8_t j=0; j <100; j++)
4 {
5 /*ADC Start the conversation */
6 HAL_ADC_Start (&hadc2);
7 HAL_ADC_PollForConversion (&hadc2 , HAL_MAX_DELAY);
8 value = HAL_ADC_GetValue (& hadc2);
9

10 /* The value of ADC is converted in Volt */
11 /* 3.3V/4096 */
12 value = (value)/1240;
13 value = value*value;
14 rms = rms + value;
15 }
16 voltage = sqrt(rms)/10;
17 /* 375 = 3.03 * 1000 / 8 */
18 current_read = (voltage * 375);

Listing 4.1. Current measurement in C code

The PI current controller design for the microcontroller, as shown below, was
in discrete time.

1 /* Current error between current target and real current of the
system */

2 error_current = current_target - current_read;
3

4 /*Error for integral part*/
5 Integral_error_current += error_current*elapsed_time;
6

7 /* Sum proportional and integral part*/
8 pulse += Kp_current*error_current + Ki_current*

Integral_error_current;
9

10 /* Saturation for duty cycle */
11 if(pulse >2150) {
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12 pulse = 2200;
13 }
14 if(pulse < -2150) {
15 pulse = -2200;
16 }

Listing 4.2. PI controller in C code

4.3 PI speed controller

The PI speed controller was the second feedback developed to control the DC Motor
in position control.

4.3.1 Implementation

A magnetic rotary encoder on the motor shaft was used to read the correct DC
motor speed. One phase of the encoder has been connected to pin TIM3 of the
microcontroller, which is enabled as a direct input acquisition mode. Input capture
is used to capture the input signal given to the microcontroller and measures its
frequency and pulse width. The frequency of the Micro is 170MHz and by setting
the prescaler to 170 the frequency of TIM3 in the interrupt capture was 1MHz and
the counter was set in hexadecimal 0xFFFF (65536). The Interrupt was enabled
on both the high and low edges. The highest frequency increased the resolution to
detect the speed of DC Motor.
These equations explain how the DC motor speed in RPM could be read and
implemented for the PI speed controller.

fTIM3[Hz] = 1MHz

fhall[Hz] =
fTIM3[Hz]

(RISINGedge − FALLINGedge)

vread[RPM ] =
fhall[Hz]

HallencoderRatioGearBox

60[RPM ]

[Hz]

The frequency can be calculated by first finding the difference between these two
captured values RISINGedge and FALLINGedge and then dividing the timer clock
by this difference. Hallencoder is a dimensionless number equal to 32, it represents
how many edges are present into the encoder. While the RatioGearBox is equal to
131.
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4.3 – PI speed controller

Thanks to the gearbox the error is minimum because the error read by the encoder
is divided by 131.

4.3.2 Code

The code implemented in the Microcontroller for speed measurement is shown be-
low.

1 void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
2 {
3 ....
4 uwFrequency = 1000000/ uwDiffCapture;
5 RPM_read = (uwFrequency *60) /(32*131);
6 /* This if change the sign of RPM_read for real -time data in GUI -

Matlab */
7 if(negative_flag == 1)
8 {
9 RPM_read = RPM_read *(-1);

10 }
11 ...
12 }

Listing 4.3. Speed measurement in C code

The PI speed controller design for the microcontroller, as shown below, was in
discrete time.

1 /* Speed error between speed target and real speed of the system */
2 error_RPM = RPM_target - RPM_read;
3

4 /* Error for ingeral part */
5 Integral_error_RPM += error_RPM*elapsed_time;
6

7 /* Sum proportional and integral part */
8 current_target += Kp_RPM*error_RPM + Ki_RPM*Integral_error_RPM;

Listing 4.4. PI controller in C code
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4.4 PI position controller

The last feedback was a PI position controller. This feedback is the most important
feedback to develop because the project is in position control and it monitors the
degrees of rotation.

4.4.1 Implementation

To measure the position of the DC Motor, the two phases of the encoder was were
taken in input. Phase A was analyzed above for the PI speed controller, while phase
B was set as GPIO_PIN_0 input. The two halls are out of phase by 90 degrees.
When an interrupt function created for the speed controller has invoked the en-
coder position variable increase or decrease the value. Phase A and phase B were
analyzed to determine the correct rotation of the Encoder, when phase A is high if
phase B is low the motor rotates clockwise (Figure 4.7), otherwise it rotates coun-
terclockwise(Figure 4.8).
The gearbox creates an opposite rotation between Encoder and the output shaft,
in the code, it was taken into account, so the logic is reversed.

Figure 4.7. Enocder rotating in Clockwise
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4.4 – PI position controller

Figure 4.8. Enocder rotating in Counter-Clockwise

4.4.2 Code

The PI position controller design for the microcontroller, as shown below, was in
discrete time. The function is the same for speed because the comparison occurs
when the interrupt is invoked.

1 if(HAL_GPIO_ReadPin(GPIOB , GPIO_PIN_0) == HAL_GPIO_ReadPin(GPIOA ,
GPIO_PIN_4))

2 {
3 /* Clockwise */
4 Encoder_position ++;
5 }
6 else
7 {
8 /* Counterclockwise */
9 Encoder_position --;

10 negative_flag = 1;
11 }

Listing 4.5. PI position in C code
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4.5 UART communication by STM32G431RB

4.5.1 Implementation

The channels used for Low Power Universal Asynchronous Receiver-Transmitter(LPUART)
were the pin PA2 for the transmitter communication and the pin PA3 for the re-
ceiver communication using a wizard interface integrated into STM32CubeIDE, as
shown in the Figure 4.9. The parameters selected for a robust and speed commu-
nication were the following:

- Baud Rate 115200Bits/s

- Word Length 9Bits (including Parity)

- Parity Even

- Stop bit 1

Figure 4.9. Pin used for UART communication
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The communication of the micro has been set with an interrupt for the reception,
so as not to remain to wait by subtracting time from the processor to execute more
important instructions, such as controlling the PI. While the transmission takes
place in polling because every time the data is updated in the cycle, such as speed
or current, it will be transmitted to the GUI-Matlab for real-time control.

4.5.2 Code

Transmission

The code below shows the data sent from the Microcontroller in a polling mode to
Matlab, using two control characters "b" and "e", in order to guarantee a correct
transmission.

1 while (1)
2

3 /* Transmission begin sending a char b */
4 if(HAL_UART_Transmit (&hlpuart1 , &b, 1, 1000) != HAL_OK){
5 /* Transfer error in transmission process */
6 Error_Handler ();
7 }
8

9 /* Send Current of DC Motor */
10 if(HAL_UART_Transmit (&hlpuart1 , &current_read , 2, 1000)!= HAL_OK){
11 /* Transfer error in transmission process */
12 Error_Handler ();
13 }
14

15 /* Send Chosen Position */
16 if(HAL_UART_Transmit (&hlpuart1 , &Position_target , 2, 1000)!= HAL_OK

){
17 /* Transfer error in transmission process */
18 Error_Handler ();
19 }
20

21 /* Send the Real Position */
22 if(HAL_UART_Transmit (&hlpuart1 , &Position_read , 2, 1000)!= HAL_OK){
23 /* Transfer error in transmission process */
24 Error_Handler ();
25 }
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26

27 /* Send the Speed Read through Encoder */
28 if(HAL_UART_Transmit (&hlpuart1 , &RPM_read , 2, 1000)!= HAL_OK){
29 /* Transfer error in transmission process */
30 Error_Handler ();
31 }
32

33 /* Transmission ends up sending a char e */
34 if(HAL_UART_Transmit (&hlpuart1 , &e, 1, 1000) != HAL_OK){
35 /* Transfer error in transmission process */
36 Error_Handler ();
37 }
38 }

Listing 4.6. Polling mode for UART TX

Reception

The code below shows the data received by the micro in interrupt mode.

1 void UART_Error_Callback(void)
2 {
3 __IO uint32_t isr_reg;
4

5 /* Disable USARTx_IRQn */
6 NVIC_DisableIRQ(LPUART1_IRQn);
7

8 /* Error handling example :
9 - Read USART ISR register to identify flag that leads to IT raising

10 - Perform corresponding error handling treatment according to flag
*/

11 isr_reg = LL_USART_ReadReg(LPUART1 , ISR);
12 if (isr_reg & LL_USART_ISR_NE)
13 {
14 /* Turn LED2 on: Transfer error in reception/transmission process

*/
15 BSP_LED_On(LED2);
16 }
17 else
18 {
19 /* Turn LED2 on: Transfer error in reception/transmission process

*/
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20 BSP_LED_On(LED2);
21 }
22 }

Listing 4.7. Interrupt Function for UART RX

4.6 UART communication by GUI-Matlab

4.6.1 Implementation

The parameters that have been used for the Matlab serial are the same as for the
microcontroller.

Matlab read the serial as file .txt and the data read in polling mode have been
plotted in real-time on the GUI. Data have been sent through a Push Button spe-
cially designed to increase or decrease the position of 20 degrees, as shown in Figure
4.10 or to allow the DC Motor to rotate clockwise or counterclockwise, as shown
in Figure 4.11. Two Push Button Start and Stop have been implemented to begin
or, for safekeeping, to stop immediately the rotation of the motor even if it has not
reached the target position (Figure 4.12).

Figure 4.10. Push Button used for increase or decrease the DC Motor to 45°

Figure 4.11. Push Button used for clockwise or counterclockwise rotation
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Figure 4.12. Push Button used to Start and Stop the DC Motor

4.6.2 Code

Transmission

The code below shows the data sent from Matlab in a polling mode to Microcon-
troller, using two control characters "b" and "e", in order to guarantee a correct
transmission.

1 while (1)
2 % True when Push Button of Decrease 45 is pressed
3 if(handles.tx_dec ==true)
4 fopen(s);
5 fwrite(s,’d’);
6 fclose(s);
7 handles.tx_dec=false;
8 guidata(hObject ,handles)
9 end

10

11 % True when Push Button of Increase 45 is pressed
12 if(handles.tx_inc ==true)
13 fopen(s)
14 fwrite(s,’i’);
15 fclose(s)
16 handles.tx_inc=false
17 guidata(hObject ,handles);
18 end
19
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20 % True when Push Button of Counterclockwise is pressed
21 if(handles.counterclockwise ==true)
22 fopen(s)
23 fwrite(s,’k’);
24 fclose(s)
25 handles.counterclockwise =false
26 guidata(hObject ,handles);
27 end
28

29 % True when Push Button of Clockwise is pressed
30 if(handles.clockwise ==true)
31 fopen(s)
32 fwrite(s,’c’);
33 fclose(s)
34 handles.clockwise=false
35 guidata(hObject ,handles);
36 end
37

38 % True when Push Button of Stop is pressed
39 if(handles.stop==true)
40 fopen(s)
41 fwrite(s,’x’);
42 fclose(s)
43 fopen(s)
44 fwrite(s,’x’);
45 fclose(s)
46 fopen(s)
47 fwrite(s,’x’);
48 fclose(s)
49 handles.tx_inc=false
50 guidata(hObject ,handles);
51 break;
52 end
53 end

Listing 4.8. Tx data with GUI-Matlab
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Reception

1 while (1)
2 % Read UART communication
3 fopen(s);
4 start = fread(s,1,’char’);
5

6 % Char control
7 if(start == ’b’)
8 % Read on UART Current , Velocity , Position Target and Position read
9 data(i,:) = fread(s,4,’int16’);

10

11 % Trasmission finished whit char ’e’
12 ended = fread(s,1,’char’);
13 if(ended == ’e’)
14 % Print ok for debug
15 disp(’ok’)
16

17 % Plot Current data on GUI -Matlab
18 axes(handles.Current)
19 plot(data_position (:,1),’r’);
20 grid on, hold on
21

22 % Plot Position data on GUI -Matlab
23 axes(handles.Position)
24 plot(data_position (:,2),’g’);
25 grid on, hold on
26 axes(handles.Position)
27 plot(data_position (:,3)/24,’r’);
28

29 % Plot Torque data on GUI -Matlab
30 axes(handles.Torque)
31 plot(data_position (:,4),’r’);
32 grid on, hold on
33 i = i+1;
34 end
35 end
36

37 % Close UART communication
38 fclose(s);

Listing 4.9. Rx data with GUI-Matlab
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Chapter 5

Tuning and Stability

5.1 Introduction

After the implementation part, the study of PI system was performed in terms of
the overshoot, settling time and the error criterion.

Tuning a control loop is the adjustment of its control parameters to the optimum
values for the desired control response. Stability (no unbounded oscillation) is
a basic requirement, but beyond that, different systems have different behavior,
different applications have different requirements, and requirements may conflict
with one another.

5.2 Tuning

Designing and tuning a PI controller appears to be conceptually intuitive, but can
be hard in practice, if multiple (and often conflicting) objectives such as short tran-
sient and high stability are to be achieved. PI controllers often provide acceptable
control using default tuning, but performance can generally be improved by careful
tuning, and performance may be unacceptable with poor tuning.

If the system must remain online, one tuning method is to first set Ki value to
zero. Increase the Kp until the output of the loop oscillates, then the Kp should
be set to approximately half of that value for a "quarter amplitude decay" type
response. Then increase Ki until any offset is corrected in sufficient time for the
process. However, too much Ki will cause instability.

In this phase, the correct parameters have been performed setting a different
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gain for PI position controller, PI speed controller and PI current controller.

5.2.1 Test

First test

The fist value for gain variables were:

- Kpp = 1

- Kip = 0

- Kps = 1

- Kis = 0

- Kpc = 1

- Kic = 0

How shown in Figure 5.1 when all Integrative Gain was set to zero there was
an overshot and is important for the position control, but the output oscillated
without reach a target position. This system was unstable.

Figure 5.1. System with Kpp = 1, Kip = 1,Kps = 1, Kis = 1, Kpc = 1, Kic = 1
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Second test

The second test was performed setting the integrative part equal to 0.2 and see
how this parameter contributed to the system.

- Kpp = 1

- Kip = 0.2

- Kps = 1

- Kis = 0.2

- Kpc = 1

- Kic = 0.2

How shown in Figure 5.2 the system was unstable, the rise time was not conforme
of the specific of the system.

Figure 5.2. System with Kpp = 1, Kip = 0.2, Kps = 1, Kis = 0.2, Kpc = 1, Kic = 0.2
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Third test

The third test was performed setting the proportional parameter equal to 2, in
order to saw the output of the system.

- Kpp = 2

- Kip = 0.2

- Kps = 2

- Kis = 0.2

- Kpc = 2

- Kic = 0.2

How shown in Figure 5.3 the real position was 0, it did not follow the target
position.

Figure 5.3. System with Kpp = 2, Kip = 0.2, Kps = 2, Kis = 0.2, Kpc = 1, Kic = 0.2
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Fourth test

In this fourth test, the integrative parameters were changed divided by 10 the
previous value.

- Kpp = 2

- Kip = 0.03

- Kps = 2

- Kis = 0.02

- Kpc = 2

- Kic = 0.02

How shown in Figure 5.4 the output followed the target position. The system
was fast(rise time), but there was a high overshoot when the system changed the
target position. The system was defined unstable because for the controller position
the real position should not exceed the target position.

Figure 5.4. System with Kpp = 2, Kip = 0.03, Kps = 2, Kis = 0.02,
Kpc = 2, Kic = 0.02
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Fifth test

In the fifth test, the proportional gains were increased and the system was per-
formed.

- Kpp = 3

- Kip = 0.03

- Kps = 2

- Kis = 0.02

- Kpc = 4

- Kic = 0.02

How shown in Figure 5.5 the system reached the desired position but the rise
time was slow and there were too overshoot when the position was changed. The
settling time was not reached. The system was defined as unstable.

Figure 5.5. System with Kpp = 3, Kip = 0.03, Kps = 2, Kis = 0.02,
Kpc = 4, Kic = 0.02

46



5.2 – Tuning

Sixth test

In this last test, the parameters of proportional gain were increased in order to reach
the 90% of the target position with fast rising time and the integrative gain were
decreased, one-tenth of the previous ones, so as not to have a very large settling.

- Kpp = 7

- Kip = 0.003

- Kps = 8

- Kis = 0.002

- Kpc = 6

- Kic = 0.001

How shown in Figure 5.8 the system is stable, there was no overshoot when the
position was changed and the rising time was fast.

Figure 5.6. System with Kpp = 7, Kip = 0.003, Kps = 8, Kis = 0.002,
Kpc = 6, Kic = 0.001
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5.3 Stability

If the PID controller parameters (the gains of the proportional, integral and deriva-
tive terms) are chosen incorrectly, the controlled process input can be unstable, i.e.,
its output diverges, with or without oscillation, and is limited only by saturation
or mechanical breakage. Instability is caused by excess gain, particularly in the
presence of significant lag.

Generally, stabilization of response is required and the process must not oscil-
late for any combination of process conditions and set-points, though sometimes
marginal stability (bounded oscillation) is acceptable or desired.

5.3.1 Motion Profile

To improve the system a position profile has been developed, in order to reach
the target position without or small peak overshoot, limiting the power of the DC
Motor in case it has high inertia.

The position profile was done through the error between target position and
real position, as shown in the Figure 5.7.

Figure 5.7. Motion Profile
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Figure 5.8. System with Kpp = 7, Kip = 0.003,Kps = 8, Kis = 0.002,
Kpc = 6, Kic = 0.001
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Chapter 6

Torque estimation

6.1 Introduction

The final step of the thesis was focused on torque estimation using a 3D-beam
specially designed for motor shaft and a load cell to measure weight.

6.2 Differential Amplifier

Firstly, for a high accuracy a differential amplifier was designed for load cell(Figure
6.1), because the smallest detectable incremental change in voltage of the ADC in
terms of LSBs is

1LSB = V ref/4096 = 805,6µV

and the sensibility of the load cell is the order of milliVolt.

This time, the operational amplifier has been used in mode STANDALONE,
because the gain is equal to 1000 and the maximum amplification using an op-
erational amplifier in PGA internally connected is equal to 32. The value of the
differential amplifier are:

V out = G(V 1− V 2)

G = R1/R3

R3 = R2

R1 = R4
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where R1 = 100kΩ, R2 = 100Ω and the gain G = 1000. With this gain, the
resolution of the ADC is guaranteed. For the correct torque estimation, because a
variation voltage caused by noise is amplified by the gain of differential amplifier
was make by software through an iteration of measurement, calculating the mean
value force, as shown with the code below. The calibration of load cell generates a
relationship between weight and ADC equal to 2.95 gr.cm/LSB.

Figure 6.1. Differential Amplifier for torque estimation

Code

1 \* Iteretion for mean value of force *\
2 for(uint8_t i=0; i<20; i++)
3 {
4 HAL_Delay (1);
5 HAL_ADC_Start (&hadc1);
6 HAL_ADC_PollForConversion (&hadc1 , HAL_MAX_DELAY);
7 raw = HAL_ADC_GetValue (&hadc1);
8 Torque = voltage + raw;
9 }

10

11 \* Torque[gr.cm] = Voltage[LSB ]*2.95[ gr.cm/LSB] *\
12 Torque = (voltage /20) *2.95;

Listing 6.1. Mean value of load cell
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The Figure 6.2 shown three functions estimation, which are Torque[kg.cm] -
Current[mA], Torque[kg.cm] - Duty Cycle[%] and Current[mA] - Duty Cycle[%] in
order to monitoring the data in real-time.

Figure 6.2. Real-Time data using GUI-Matlab for torque estimation

6.3 Estimation

The data of torque and current has been saved in Matlab workspace and the T (I)

function was calculated in order to monitor how much Torque the DC Motor is
producing at any given moment. The function T (I) has been linearized using the
Ordinary Least Square calculating the torque constant (kt) of DC Motor, as shown
in the Figure 6.3. The coefficient has been calculated by the function polyval in
Matlab and the torque constant ()kt) was equal to 0.0035[kg.cm/mA].

The equation used for the torque function (T(I)) is:

T (I)[kg.cm] = kt[
kg.cm

mA
]I[mA] = 0.0035[

kg.cm

mA
]I[mA]

To measure the torque, an ad hoc project had to be created, blocking the load
cell on the wood on one side and the motor on the other side. The implementation
took place with a calibration of the screws on the load cell, while for the motor a
wooden thickness had to be added to ensure that the force exerted on the meter
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Figure 6.3. Workspace Matlab of torque(blue) and linear regression(red).

is perfectly perpendicular, so as to have an angle of 90 degrees and make null the
value of sen in the vector product.

In Figure 6.4 is shown the measurement of the toque whit load cell, arranged
at a distance of 10 cm and perfectly perpendicular to the force of the arm, using
the following equations:

~T = ~F~r

T = Frsin(θ), with θ = 90°
T = Fr

where T is the torque, F is the force and r is the distance between load cell and
motor shaft.

Figure 6.4. Torque estimation using a load cell and 3D-Beam.
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6.4 Final Model

After the torque estimation and having reached the stability of the system by
choosing the correct proportional(Kp) and integral(Ki) variables, the final project
is shown in the Figure 6.5. The data of Position, Speed, Current and Torque were
plotted in real-time.

In the Position graph, we can see in red the real position of DC Motor and in
green the target position send by the push-button at the bottom-left. When the
bar was blocked by an obstacle, the DC Motor tried to reach the target position
and it increased the torque, as shown in the picture below.
At 60 data transmitted, the position was not reached and in torque plot, as well
as in the current plot, there was a peak. Otherwise, in speed graph the velocity is
zero.
When the target position was decreased, in order to rotate in the opposite direction
to the obstacle, the revolution was in a nominal operating point.

Figure 6.5. GUI-Matlab monitoring torque estimation in closed-loop
position controller.
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Chapter 7

Conclusion

7.1 Summary of the results and Future work

In this thesis was designed PI position controller for Brushed DC Motor and a
torque estimation in closed loop.
A STM32-G431RB Nucleo Board and Shield X-Nucleo-IHM13A1 to control the
motor and a graphical interface was used to monitoring the data.

The results of the experiment show that the system is efficient in terms of sta-
bility and robustness. Several tests were carried out by perturbing the system, in
the first tests we wanted to analyze only each PI individually, in order to evaluate
the correct functioning and implementation with external hardware, such as the
welding of a jumper wires on the shield and an active low pass filter in order to
filter the voltage ripples caused by slow decay. The velocity and position PIs were
then analyzed respectively. The position control was the last feedback as it is the
most important for the calibration of the position between that of target and that
of position, in fact a motion profile had to be created, in order to never exceed
the desired position if the DC motor had a larger self inertia. The estimate of the
torque was carried out with a load cell, using a differential amplifier because the
variation was of the order of milliVolts and the results obtained were satisfactory
because there was no linearity for the calculation of the toque constant, as ex-
pected, but through the linearization of the data obtained it was possible to obtain
a good estimate of the torque constant. Finally, torque control has been introduced
throughout the system, in order to have an accurate estimate of how much torque
is being produced at any given moment.

57



7 – Conclusion

The project is versatile for other Brushed DC motor, which they use different
voltage supplies, because the code has been written using define variables and the
transmission in UART protocol and the GUI-Matlab could be used for other project
without dependency of Brushed DC Motor, the transmission takes place following
the protocol write in Matlab and the data will be plot directly on the graphical
interface.

In the future we will try to improve the torque measurement, so that it is not
in step and therefore we will not use the linear regression, but we will directly have
a torque constant from the estimate. Finally, we will try to develop a code for a
customized board in which a Brushless DC motor will be controlled without the
use of a shield, directly driving the six MOSFETs of a three-phase inverter.While
the graphics in which to monitor the data in real time will be developed in ROS
interface.

1 while (1)
2 {
3 if (uwStep == 0)
4 {
5 // Safety step. All OFF!
6 HAL_TIM_PWM_Stop (&htim1 , TIM_CHANNEL_1);
7 HAL_TIMEx_OCN_Stop (&htim1 , TIM_CHANNEL_1);
8

9 HAL_TIM_PWM_Stop (&htim1 , TIM_CHANNEL_2);
10 HAL_TIMEx_OCN_Stop (&htim1 , TIM_CHANNEL_2);
11

12 HAL_TIM_PWM_Stop (&htim1 , TIM_CHANNEL_3);
13 HAL_TIMEx_OCN_Stop (&htim1 , TIM_CHANNEL_3);
14

15 HAL_Delay (100);
16 uwStep = 1;
17 }
18 if (uwStep == 1)
19 {
20 /* Next step: Step 2 Configuration ---------------- */
21

22 __HAL_TIM_SET_COMPARE (&htim1 , TIM_CHANNEL_1 , uPWM);
23 HAL_TIM_PWM_Start (&htim1 , TIM_CHANNEL_1);
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24 HAL_TIMEx_OCN_Stop (&htim1 , TIM_CHANNEL_1);
25

26 __HAL_TIM_SET_COMPARE (&htim1 , TIM_CHANNEL_2 , 4249);
27 HAL_TIM_PWM_Stop (&htim1 , TIM_CHANNEL_2);
28 HAL_TIMEx_OCN_Start (&htim1 , TIM_CHANNEL_2);
29

30 __HAL_TIM_SET_COMPARE (&htim1 , TIM_CHANNEL_3 , uPWM);
31 HAL_TIM_PWM_Stop (&htim1 , TIM_CHANNEL_3);
32 HAL_TIMEx_OCN_Stop (&htim1 , TIM_CHANNEL_3);
33

34 HAL_Delay (100);
35 uwStep ++;
36 }
37

38 if (uwStep == 2)
39 {
40 /* Next step: Step 2 Configuration

-------------------------------------- */
41

42 __HAL_TIM_SET_COMPARE (&htim1 , TIM_CHANNEL_1 , uPWM);
43 HAL_TIM_PWM_Stop (&htim1 , TIM_CHANNEL_1);
44 HAL_TIMEx_OCN_Stop (&htim1 , TIM_CHANNEL_1);
45

46 __HAL_TIM_SET_COMPARE (&htim1 , TIM_CHANNEL_2 , 4249);
47 HAL_TIM_PWM_Stop (&htim1 , TIM_CHANNEL_2);
48 HAL_TIMEx_OCN_Start (&htim1 , TIM_CHANNEL_2);
49

50 __HAL_TIM_SET_COMPARE (&htim1 , TIM_CHANNEL_3 , uPWM);
51 HAL_TIM_PWM_Start (&htim1 , TIM_CHANNEL_3);
52 HAL_TIMEx_OCN_Stop (&htim1 , TIM_CHANNEL_3);
53

54 HAL_Delay (100);
55

56 uwStep ++;
57 }
58 else
59 {
60 /* Next step: Step 1 Configuration --------------------- */
61 //Do nothing;
62 HAL_Delay (100);
63 uwStep = 0;
64 }
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7 – Conclusion

65 /* USER CODE END WHILE */
66

67 /* USER CODE BEGIN 3 */
68 }
69 /* USER CODE END 3 */
70 }

Listing 7.1. C code for Brushess DC
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Chapter 9

Appendix

STM32CubeIDE

TIM16 PWM

Timer 16 was used to create PWM for motor power control. Frequency has been
set to 170MHz, Prescaler has been set 0 and Counter has been set 2200.

Figure 9.1. TIM16- PWM DC Motor
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9 – Appendix

TIM3 PWM

Timer 3 has been set on channel 2 as input capture to calculate the encorder speed.
Frequency has been set to 170MHz, Prescaler has been set to 170 and the Counter
has been set 0xffff .

Figure 9.2. TIM3 - Input Capture Encoder

64



9 – Appendix

ADC2 and OPAMP3

ADC2 was internally connected with OPAMP3 for amplification and measurement
of current. ADC2 has been set as indipindent mode and resolution equal to 4096,
while the amplification of operation amplifier has been set to 8.

Figure 9.3. GUI-Matlab

Figure 9.4. ADC2 and OPAMP3 for current measurement
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9 – Appendix

GPIO

Four pins have been used in GPIO mode for the following functions:

• GPIO_PA10: Used in Output mode to ENABLE the shield;

• GPIO_PB0: Used in Input mode to calculate the encoder position;

• GPIO_PB10: Used in Output mode to reset the shield;

• GPIO_PC7: Used in Output mode to set the direction of the motor.

Figure 9.5. GPIO Pin
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