
Politecnico di Torino

Laurea Magistrale in Ingegneria Elettronica
indirizzo: Embedded Systems

Tesi di Laurea Magistrale

Implementation of a software interface layer

between model-based-design tool and

embedded graphic frameworks

Relatori: Candidate:

Prof. Luciano Lavagno, Lorenzo Rinaldi

Ing. Massimiliano Curti

April 16, 2021

Acknowledgements

The realization of this project was possible thanks to Teoresi Group.

First, I would like to thank my supervisor, prof. Luciano Lavagno, for

his availability and clarity about information concerning this fundamen-

tal step of my life.

Then, I would like to express my sincere gratitude to the Technology

Leader Massimiliano Curti, at Teoresi, for the great opportunity to do

my master thesis, in a continuously growing company, for his willingness

to help me, sharing his knowledge, experience and for his huge profes-

sionalism.

Moreover, I would like to thank Politecnico di Torino for these five years

spent between moments of fun and sacrifice, in which a learnt not only

technical but also human knowledge from many professors.

Vorrei ancora ringraziare tutta la mia famiglia, mamma, papà e Laura,

senza la quale tutto questo percorso non sarebbe stato possibile, perché

mi hanno permesso di portare a termine questo percorso e dato la fiducia

per superare ogni ostacolo postomisi davanti. Per aver creduto in me e

per essersi sacrificati permettendomi di arrivare fino a questo punto.

Infine, ovviamente non meno importante, vorrei ringraziare Federica, che

mi ha supportato, ma soprattutto, ha sopportato gli sbalzi d’umore e le

crisi durante le sessioni d’esame che a volte sembravano interminabili.

Tutti i rifiuti ad uscire perché dovevo studiare, ma mi auguro di poter

ripagare tutto il tempo perso, negli anni a venire.

Ringrazio tutti i miei amici, che per brevità non nominerò tutti, ma mi

rivolgo agli amici “dell’oratorio”, del liceo e dei “Lopez”. Tutti hanno

partecipato ai momenti di spensieratezza concedendomi, spesso senza

saperlo, gioia e relax, durante tutte le feste, partite ed occasioni che ci

hanno permesso di ridere insieme.

Grazie a tutti, per avermi accompagnato in questo percorso, GRAZIE!

Contents

1 Introduction 1

2 TouchGFX 5

2.1 TouchGFX Installation 5

2.2 TouchGFX Embedded Graphics 8

2.2.1 TouchGFX: Graphic Engine 12

2.2.2 Main Loop . 13

2.2.3 Handling Framebuffers 14

2.2.4 Memory Usage 15

2.3 TouchGFX Project Development 16

2.3.1 Abstraction Layer 18

2.3.2 User Interface Development 20

2.4 TouchGFX Designer . 23

2.4.1 Widgets and Containers 23

2.4.2 Images, Texts and Fonts 24

2.5 Compiling and Flashing 26

2.5.1 Compile for PC Simulator 26

2.5.2 Compiling for Target Hardware 26

2.6 TouchGFX PC Simulator 27

2.7 TouchGFX Backend Communication 28

2.7.1 Data from View to Model 28

2.7.2 Data from Model to View 29

2.7.3 External Event Sampling 29

2.8 Create a new project . 31

ii

Implementation of a Software Interface Layer iii

3 Software Interface Layer: Main Concepts 33

3.1 Interface Work on Target 37

3.1.1 Events Toward UI 37

3.1.2 Events Toward Backend 38

3.1.3 How To Integrate the Interface in the IDE 38

3.2 Interface work on PC Simulator 40

3.2.1 Inter-Process Communication for Interface 41

3.2.2 How To Integrate the Interface for Simulation . . 44

3.3 Software Interface Layer Test 45

4 Simulink Model 47

4.1 Stateflow . 47

4.2 S-Function . 51

5 Functions Documentation 53

5.1 Public General Functions 54

5.1.1 HmiUi QueueInit() 54

5.1.2 HmiUiTcp Init(const unsigned long addr, const un-

signed short port) 54

5.1.3 Hmi Init(const char* addr, const unsigned short

port) . 54

5.1.4 HmiUiTcp Connect() 55

5.1.5 HmiTcp CloseSocket() 55

5.1.6 HmiUiTcp SrvProcess() 55

5.2 Public Backend To Ui Functions 56

5.2.1 Hmi SendUiStateInt(const Hmi UserEvIdEnumType

evId, const Hmi StateIntType value) 56

5.2.2 Hmi SendUiStateTxt(const Hmi UserEvIdEnumType

evId, const char* text) 56

5.2.3 HmiUi GetUserEvtStatePending() 56

5.2.4 HmiUi ProcessEvents() 57

5.2.5 HmiUi IsFlushRequested() 57

5.2.6 Hmi Flush() . 57

5.3 Public Ui To Backend Functions 58

Implementation of a Software Interface Layer iv

5.3.1 HmiUi AddDblEvtToQueue(const Hmi UiEvIdEnumType

evId, const Hmi StateDblType value) 58

5.3.2 Hmi GetUiEvtStatePending() 58

5.3.3 Hmi GetUiNextEvtState(Hmi UiEvIdEnumType *evId,

Hmi StateDblType *evValue) 58

5.3.4 Hmi GetEvtCnt(Hmi UiEvIdEnumType evId) . . 58

5.3.5 Hmi ProcessEvent(const Hmi UiEvIdEnumType evId,

const Hmi StateDblType evValue) 59

6 Home Automation Example 60

6.1 Home Automation Project 62

7 Interface Generalisation 70

7.1 Embedded Wizard . 70

7.2 How to use Hmi for Target on EW 73

7.3 How to use Hmi for Prototyper on EW 75

7.4 MinGW . 77

8 Further Improvements 78

A HMI Function with double definition 82

B TouchGFX Code Modifications 83

B.1 HALSDL2: Main Loop modification 83

B.2 Model getInstance() function 84

B.3 Model Callback example 84

C Embedded Wizard DLL 85

C.1 EW Intrinsic Module Validation 85

C.2 Code to Export C Function 85

List of Figures

2.1 How to download the CubeMX package. 6

2.2 Help menu with evidenced option to select. 7

2.3 Pop-up window appearance. 8

2.4 Memory occupied by a simple application. 9

2.5 Enable memory available on the board. 10

2.6 Memory section with external flash. 10

2.7 Three section for external memory. 11

2.8 Memory occupied after that extrnal one is added. 11

2.9 Debug configuration selection. 12

2.10 TouchGFX project main components. 16

2.11 Model-View-Presenter structure. 21

3.1 Model of Software Interface Layer. 34

3.2 Filled user table example. 35

3.3 Example of table for GUI side. 35

4.1 Model settings configuration. 49

4.2 Chart properties configuration. 50

4.3 Libraries configuration of s-function builder. 52

4.4 Editor view of s-function builder. 52

6.1 Main steps to implement a project with hmi. 60

6.2 Screen implemented for Living Room. 63

6.3 Top level view of Simulink subsystem. 65

6.4 Internal structure of Simulink subsystem. 66

6.5 FSM that receives all events occurred on UI. 67

6.6 Send event state, for each input of subsystem. 67

v

Implementation of a Software Interface Layer vi

6.7 Flow of states to manage taken event. 68

CHAPTER 1

Introduction

In the last years electronics, but in particular embedded systems are in-

creasingly part of our life. They are also present where we do not think

about them.

Embedded products are used in a huge variety of applications: automo-

tive, aerospace, medicine, home automation and so on. Products have

to differ from each other for characteristics and dimensions, depending

on application field.

Nowadays, almost every device has a screen and a microcontroller to

perform actions described from developers. To satisfy users’ requests,

many products, but also many brands, are on the market, each with its

own innovative technology, structure or algorithm. Therefore, there is a

need to facilitate interaction with these products.

Briefly, the goal of the thesis project is to implement a Software Inter-

face Layer able to simplify interaction between a Model-Based-Design

(MBD) tool and an embedded graphic framework and also between their

users, providing a limited number of instructions easy to understand.

This Human Machine Interface (HMI) aims to allow a hardware devel-

oper to manage a Graphical User Interface (GUI) without knowing as it

is realised and also vice versa, allowing to an embedded graphical devel-

oper to handle peripherals, of a target hardware, without finding out its

structure.

The work, which thesis consists on, is the creation of an interface layer

between Graphical User Interface and target hardware. Implementation

1

Implementation of a Software Interface Layer 2

of Software Interface Layer begins by studying a diffused tool for cre-

ation of Graphical User Interface: TouchGFX, of STMicroelectronics.

First of all, Designer has been studied, with all widgets available, under-

standing their functioning and the architecture that GUI has when code

is automatically generated by the software. Then, with new information

available, it has been implemented an interface, which will simplify inter-

action between graphic application and surrounded system. Thus, the

structure of interface has been thought of. It has been chosen to use two

different queues to accumulate events directed in both directions: from

and to User Interface. After that, work proceeded with implementation

of public and private functions, necessary to transfer events from a side to

the other. Since, TouchGFX gives the possibility to simulate the entire

behaviour of GUI on PC, it is chosen to establish a connection, through

that interface, with a Model-Based-Design tool for a complete prototyp-

ing. In order to do this, it was studied a communication protocol to allow

a connection between simulator process, available on graphic tool and a

Model-Based-Design software, so, functions to establish connection are

created. Then, to demonstrate interaction with MBD software, it is cho-

sen to use Simulink, in particular Stateflow, of Mathworks. Stateflow is

studied and used to generate some clients, for example projects. After

that, a variety of tests are performed on Human Machine Interface, in

order to enhance functions and structure, to make it more reliable. At

the end, it is decided to prove that interface may be general purpose,

therefore, HMI is used on another graphic tool: Embedded Wizard. In

this case, it works properly, without any modification on target, while

for prototyper (simulator of EW), interface needs to be implemented in

a Dynamic-Link Library.

HMI is based on STMicroelectronics products, using the relatively new

graphic software framework, TouchGFX, optimized for STM32 micro-

controllers, thus it is used a STM32F429I-Evaluation board.

To realise the User Interface is used TouchGFX Designer, which gives

the opportunity to simulate the created GUI with a suitable simulator,

implemented reproducing the entire behaviour with the support of SDL

Implementation of a Software Interface Layer 3

library which is available on the web.

With the Hmi is given the possibility to simulate the full behaviour,

supporting TouchGFX with a model based design tool as Stateflow, em-

ulating interaction between target and GUI with a Transmission Control

Protocol(TCP) communication. Thus, allowing a complete simulation

without the need for target hardware, but producing a full project en-

tirely loadable in a microcontroller. This part is very important for

prototyping because it permits to try a new application on a Personal

Computer without having to buy the target, that during testing of an

application may prove to be unsuitable.

The Hmi manages interactions of UI with surrounding system. Com-

munication is acting in two directions from UI to external hardware and

viceversa. When an event, that has to interact with the hardware, occurs

it is putted in a queue. Then, event is taken by the other side (Backend)

and corresponding peripheral is updated. On the other hand, toward

UI, communication is based again on a queue, to which elements are

sent but not instantly processed. Events will only be processed when

the queue flush request is sent.

In the following chapters, necessary softwares for implementation of the

interface will be discovered and explained in their main functionalities,

as well as each step that lead to the creation of final interface and the

complete structure used to manage the communication will be described

in detail. Obviously, with final interface is intended the final version and

not the perfect version of it, because some improvements are always pos-

sible in terms of structure, algorithms and performance. Hereinafter, it

is reported a list, with brief description, of chapters that will be covered

in the text:

• In the second chapter, TouchGFX is explained in its structure and

organisation. Describing how data can be managed on User Inter-

face applications. A section of this chapter explains how to create

a simple graphical interface and how to use it with the CubeMX

package.

Implementation of a Software Interface Layer 4

• Next step tells about general concepts of Software Interface Layer.

Explaining how communication, between sides, is structured and

managed. Also principal actors of HMI are presented.

• Fourth chapter describe Model-Based-Design tool used to interface

graphic tool for a full prototyping. It explains how to implement a

simple client and how to generate code loadable on target.

• In the fifth chapter, there is the documentation of interface. Each

public function is explained in its behaviour, with necessary param-

eters and return value.

• Chapter number six reports a full example of Smart Home applica-

tion used to demonstrate how interface works and how events are

managed.

• In this part, generalisation of interface is proved. Testing it with

another software and explaining the necessary changes to make.

• Last chapter lists some improvements, that might be done to the

interface to increase performance and reliability.

CHAPTER 2

TouchGFX

TouchGFX is a graphical tool that enables developers to easily create

a smartphone-like GUI to add on embedded devices. The software is

available in a package composed by three main parts, two tools and a

framework:

- Designer: an easy-to-use GUI builder in TouchGFX that lets you

create the visual appearance of your TouchGFX application.

- Generator: is a package plugin used to configure and generate custom

TouchGFX Abstraction Layer(AL) for STM32-based hardware.

- Engine: is a C++ framework capable of driving User Interface(UI) ap-

plications. It handles screen updates, user events and timing. Advanced

TouchGFX technology is optimized for STM32 microcontrollers, giving

maximum performance with minimum CPU load and memory usage.

2.1 TouchGFX Installation

Software CubeMX package can be downloaded by the official website

of STMicroelectronics and easily installed following the corresponding

guide section of TouchGFX documentation[1] or steps reported subse-

quently:

1. First of all, make sure to have an IDE on which Visual Studio C++

or GCC compilers can run. If it is not, it is possible to install the

5

Implementation of a Software Interface Layer 6

STM32CubeIDE that helps with implementation of GUI but also

with initialisation code to flash in the board.

2. Then, to install editor for GUI, download zipped package by clicking

on “Get Software”, as in fig.2.1,

at https://www.st.com/en/embedded-software/x-cube-touchgfx.html

and extract it.

Figure 2.1: How to download the CubeMX package.

3. In the extracted folder under path Utilities/PC software/TouchGFXDesigner

there is an installer with <software version number>.msi, double

click on it to start installation. Follow instructions to complete

successfully.

4. Then, to be able to flash the board other two tools can be necessary:

STM32CubeProgrammer and STM32 ST LINK Utility.

Download CubeProgrammer at link https://www.st.com/en/development-

tools/stm32cubeprog.html, unzip the file and launch the executable.

It has to be installed at default location to allow TouchGFX and

Makefiles to use programmer for flashing a board.

5. Now, download ST LINK Utility at https://www.st.com/en/development-

tools/stsw-link004.html, uncompress and execute the unique .exe file

Implementation of a Software Interface Layer 7

into folder. Again, install tool at default location for flashing target

hardware correctly, with TouchGFX Designer and Makefiles.

6. Finally, to install TouchGFX Generator open STM32CubeIDE, in-

stalled in the first step, in the “Help” palette click on “Manage

Embedded Software Packages” as shown in fig.2.2

Figure 2.2: Help menu with evidenced option to select.

7. A pop-up window opens, the one reported in fig.2.3. Click on re-

fresh to have an updated list of available packages, go to STMi-

croelectronics tab and scroll until X-CUBE-TOUCHGFX. Expand

it, check the white box for TouchGFX Generator and click on In-

stall Now. This will download the package and bring up the license

agreement, read and accept it, then click on finish to install the tool

in CubeMX.

Implementation of a Software Interface Layer 8

Figure 2.3: Pop-up window appearance.

2.2 TouchGFX Embedded Graphics

There are many interpretations pf Embedded Graphics terms, it spans

from oldest to most recent technologies. TouchGFX, with Embedded,

indicates any system based on an STM32 microcontroller, while Graph-

ics means an interactive application with user interface running at 60

frames per second, this is the meaning that software developers give.[2]

In an embedded systems, there are many components, but four are es-

sential for graphic representations:

• Microcontroller Unit(MCU)

• Random Access Memory(RAM)

• Display

• Flash Memory

The MCU takes images from flash memory, calculates resulting colour

merging images with a semi-transparent red text and save it into RAM.

Then, MCU transfers images from RAM to the display. Some micro-

controllers have specific capabilities to help realization of graphic like

Chrom-ART, LTDC and so on. The RAM is read and written any times

Implementation of a Software Interface Layer 9

a graphic update is necessary. Resulting images are stored, by default,

in RAM internal to the MCU, but if it is not feasible, an external RAM

can be added to the setup. Flash memory stores all static data: images,

texts and fonts. In some cases it may be necessary to add an external

flash to the setup. Next section will explain the complete procedure for

adding external storage. Display receives calculated images from RAM

and shows them to users, it is refreshed or updated at regular intervals.

How to add external flash memory For simple application with a limited

number of widgets and screens, internal flash is enough, but if three or

more screens are used and many images are stored in flash, it can be

rapidly exhausted.

By default, images, fonts and texts are charged into internal flash mem-

ory, which is not really large, for instance, in F4x9I-EVAL board (used

to test this tip), internal memory is of 2048 kB. For instance, creating

a simple application with two screens: one with a clock and second for

setting it, pretty half of memory is just used as showed in fig.2.4.

Figure 2.4: Memory occupied by a simple application.

STM boards can have different types of external memory: NOR flash,

QSPI, NAND flash and so on. Following steps describe how to enable

external memory to store data and use them. In these steps it is adding

a NOR Flash, but the procedure is similar for other memories, like the

one reported on a youtube video.[3]

First of all, open .ioc file in main folder of interested project, expand

connectivity tab and click on FMC. In the right panel enable the check-

box for a suitable memory, like in image below.

Implementation of a Software Interface Layer 10

Figure 2.5: Enable memory available on the board.

After that memory is selected, it has to be initialised. This step is done

automatically selecting “Generate Code” in CubeIDE but sometime er-

rors can occur, so function generated for initialisation must be checked.

In F4x9I-EVAL, board used to test this feature, CubeIDE generates code

correctly.

At this point, loader has to be configured to save data into external mem-

ory. Open loader file <board name> FLASH.ld and check that added

memory is present in ‘memory definition’ section.

Figure 2.6: Memory section with external flash.

Then, in the same file, go through, until added memory section loading

is described. There are three portions of the new memory: ExtFlash-

Section, FontFlashSection and TextFlashSection. Now, it is necessary

to uncomment the portion for which more space is needed. The first

part is for images, second for font and third for texts as names suggest.

For clock settings application, used to test this tip, only first section is

Implementation of a Software Interface Layer 11

uncommented. Resulting portion of the file is shown in fig.2.7.

Figure 2.7: Three section for external memory.

Once memory is correctly configured, project can be rebuilt and the

updated memory space observed, fig.2.8 reports the new percentage of

memory use.

Figure 2.8: Memory occupied after that extrnal one is added.

Adding an external flash, as a NOR FLASH available in F4x9I-EVAL,

memory space is much more!

Sometimes can happen that with the new configuration, when project is

run/debugged on a board, images are not shown. They have the right

position but they are displayed completely wasted. This is, probably be-

cause CubeIDE does not program the flash with ST tools, so images are

Implementation of a Software Interface Layer 12

loaded into memory addresses that are not the ones expected. To solve

this problem, it is possible to use the CubeProgrammer or ST-Link that

allow to program the external flash and attach the debugger. Otherwise,

an external loader can be set directly in CubeIDE to have it each time

a run/debug session needs. To set an external loader, go to run menu of

CubeIDE and choose Debug Configurations, fig.2.9.

Figure 2.9: Debug configuration selection.

In the main tab, in C/C++ Application insert the project .elf file with

its path. Into Project put the name of correspondent one and then go

into Debugger tab. At the end of this tab there are some white boxes,

select the one with external loader and press the ‘Scan’ button. It does

not select a correct loader, but gives a list of possible ones. Select the

right loader and then debug. Now, all images of the project will be

shown correctly on the display of your board.

2.2.1 TouchGFX: Graphic Engine

TouchGFX has a Retained Mode Graphic Engine. This type of engine

let the user to manipulate an abstract model that will be displayed with

correct drawing operations performed at right time.

Implementation of a Software Interface Layer 13

This approach has many benefits:

• It is easy to use because user operates, on component, invoking

methods of model without thinking in terms of actual drawing op-

erations.

• Increase performance allowing to draw only portions of visible

components, managing framebuffers and much more.

• State management: keeps track of which part of scene model is

active.

The main drawback, instead, is memory consumption. TouchGFX

reaches performance levels at 60 frames per second, analysing scene

model and optimizing the corresponding rendering done. Great efforts

are involved to reduce the amount of memory used by the scene model,

typically it is well below one kilobyte.

2.2.2 Main Loop

TouchGFX Graphic Engine can be thought as an infinite loop composed

by three main activities executed in a tick:

Collect Events In this phase, inputs like touches on the screen, pressures

of physical buttons, messages from backend and much more, are taken.

Raw touch events are translated into more specific ones like Click, Drag

or Gesture. Each event is forwarded to the User Interface elements which

are currently active. Also a tick event is forwarded to perform time-based

actions.

Update Scene Model This phase consists of reacting to input events,

updating positions, colour, animation and so on, of components in the

model. For instance, if a button on the screen is touched, it can modify

its image to a pressed state, this change is notified to the engine. When

a widget(UI element) needs a redraw, the area that it covers becomes

invalidated.

Implementation of a Software Interface Layer 14

Render Scene Model It takes the list of invalidated areas and redraw

parts of the model that has been updated and make them appear on the

display.

Wait This is not a real phase of the main loop, but it has a great impor-

tance in engine work. TouchGFX waits a signal before proceeding with

updating and rendering of next frame. This allows to synchronize ren-

dering operation with display, guaranteeing that framebuffer is updated

only after rendering of previous modification. Graphic engine waits for

a short time, after transmission is started, before rendering. Another

benefit of waiting is to have frames rendered at a fixed rate.

2.2.3 Handling Framebuffers

There are two different possibilities to update and render a display de-

pending on number of framebuffers available on the board. If there are

Two Framebuffers, graphic engine alternates between the two. While

one is drawing, the other is transferred and showed on the display. Some-

times can happen that a framebuffer is not modified so, there is nothing

to render, in this case the same framebuffer is transmitted in next frame.

If rendering time is higher than update frequency, the framebuffer is

sent again in next frame and collect and update phases wait. With One

Framebuffer, instead, process is forced to transmit the same buffer each

frame. This is very risky because can happen that the framebuffer is a

mix of previous and new frame. One possible solution is to hold back

the drawing until the transfer is complete and only draw during timeslot

before that transfer starts again. A drawback could be that incomplete

frames(tearing) might still occur if drawing is not complete when trans-

fer starts again. A more potential solution is to keep track of how much

of the framebuffer is already transmitted and then limit the rendering

to the appropriate part of the framebuffer. For more information about

framebuffer strategy consult the documentation.[4]

Implementation of a Software Interface Layer 15

2.2.4 Memory Usage

Typically, a TouchGFX application uses four types of memories: Inter-

nal and External RAM and Internal and External Flash. The

entire memory space used by an application is preallocated, none is al-

located at run time. This guarantees that if an application, initially,

fits the memory, then, it cannot run out. So, TouchGFX uses a Static

Memory Allocation.

If an application has multiple screens, only one at a time is allocated in

internal RAM, when a screen is deactivated its memory space is over-

written by new active screen and its widgets. TouchGFX libraries are

stored into RAM, only if used, for instance if a button is inserted, corre-

sponding class is allocated in memory. C++ compiler calculates the size

of largest screen and reserves memory space for classes which compose

that specific screen.

Implementation of a Software Interface Layer 16

2.3 TouchGFX Project Development

A TouchGFX project is composed by five main software and hardware

components:

• Display Board

• Board Initialisation Code

• TouchGFX Abstraction Layer

• TouchGFX Engine

• TouchGFX User Interface Application

Figure 2.10: TouchGFX project main components.

Each of these elements is given by a specific activity that make up the

entire project development process.

Starting point is TouchGFX engine, downloaded and installed along with

the whole package.

Hardware Selection Through this activity, the hardware, on which cre-

ated project will be executed, is selected. If project is not really defined,

it is possible to use an evaluation or a discovery kit offered by STM32,

otherwise the TouchGFX simulator can be used, running the project di-

rectly on the PC. They have several peripherals available to use, so when

all necessary hardware is known, a custom board can be used.

Implementation of a Software Interface Layer 17

Board Bring Up This step enables the TouchGFX project to run on a

board. The output of this step is Board Initialisation Code that ini-

tialise MCU and its peripherals. Using CubeMX it is possible to easily

configure hardware needed for an application. CubeMX allows to en-

able peripherals, setting mode for each pin of the board and many other

configurations just searching the component into a list and selecting pa-

rameters concerned. When the setup is completed, it needs to click on

Generate Code to get initialisation code. TouchGFX also provides many

Application Templates(AT) with their Board Initialisation Code, so if

an available kit is used, it is possible to copy the code of a template

without generating it.

TouchGFX Abstraction Layer Development This activity permits to the

engine to run on hardware. This is performed by TouchGFX Generator

which is a CubeMX plugin that gives the opportunity to configure and

generate most of the Abstraction Layer(AL) code. TouchGFX AL will

only work if MCU and all peripherals are correctly configured. This step

can also be supported with an available Application Template given by

the software. Important responsibilities of AL are:

• synchronize update of framebuffer and transfer to the display, en-

suring correctness of main loop;

• report physical and touch events;

• synchronize framebuffer access, protecting this portion of memory

and also, in two framebuffer setup, AL reports the area to update

next.

• perform render operations, for instance, when MCUs use Chrom-

ART graphics accelerator.

User Interface Application Primary tools for this activity are TouchGFX

Designer and an IDE or text editor. At this step, the User Interface code

will be created that will form the visible part of TouchGFX project. In

Implementation of a Software Interface Layer 18

the Designer, main parts of UI application are set up, designed and cre-

ated using C++ code. IDE or text editor is used for application logic,

the non-UI part that interacts with code generated by TouchGFX De-

signer, for instance by creating callbacks that are used to transfer data

through framework classes. This will be explained better in an appro-

priate section.

In each of the three software activities code will be generated by used

tools. It can run independently, but usually, user code must be inte-

grated to complete the application. For example, to take inputs from

board, user has to write a sample function or to have a specific output

on UART or other peripheral, the respective behaviour must be pro-

grammed. CubeMX toolchain helps in the configuration of device with

automatic generation of initialisation code. There are also many down-

loadable examples from ST official website.[5]

2.3.1 Abstraction Layer

Abstraction Layer Generation

Particular attention is focused on the Abstraction Layer due to its im-

portant role in the development chain. AL is created by Generator,

accordingly with the used board, previously set in CubeMX. Before be-

ing used, Generator has to be enabled in CubeMX. In CubeIDE open

the .ioc file, in the top light blue bar, select Software Packs and click on

Manage Software Packs, a pop-up window opens. Go into STMicroelec-

tronics tab and scroll until X-CUBE-TOUCHGFX, expand it and check

the whitebox near to TouchGFX Generator. After enabling, it will

appear in the left menu of .ioc file under ‘Additional Software’ and when

code will be generated a TouchGFX folder will appear in the current

project.

Generator identifies three groups in the user interface of CubeIDE:

1. Dependencies contain warnings and errors in the configuration.

Implementation of a Software Interface Layer 19

2. Display contains all characteristics about display of used board like

colour depth, height and width. These features are reflected on

the canvas inside TouchGFX Designer. This group configure also

interface of display like SPI, FMC or Parallel RGB, buffer strategy

and if necessary, also the buffer location.

3. Drivers related to tick source application(to drive application for-

ward), graphic accelerator and RTOS(Real-Time Operating Sys-

tem).

Abstraction Layer Architecture Responsibilities of this layer could be

implemented in the hardware part (Hardware AL) or with the part

synchronized with TouchGFX Engine via an RTOS. HAL is part of

TouchGFX framework and with generator, two generated classes are

obtained TouchGFXGeneratedHAL and TouchGFXHAL, which is the

only one that can be edited by user.

Synchronization between engine and display Main concept of this step is

to block Engine Main Loop when rendering is done, avoiding production

of further frames.

Rendering done is notified by an Engine hook, with same name, which

calls OSWrapper::waitForVSync() after rendering is complete, now AL

blocks the graphic until next frame is ready to be rendered, so when OS-

Wrapper::signalVSync() is called. Generally, this block is implemented

with a blocking read of a message queue. SignalVSync, usually, is called

with an interrupt from a display controller, from the display itself or

from a hardware timer.

Report touch and pyhsical button events Before rendering a new frame,

engine collects inputs from ButtonController and TouchController inter-

faces. Touch events are translated into click-, drag- or gesture events

and transferred to application.

Implementation of a Software Interface Layer 20

Touch events are collected in two different ways:

• sending a request to TouchController, to know the status of touch,

and polling for the result. This is done through I2C and takes about

1ms impacting on the overall render time;

• raising an interrupt regularly with a timer or when a touch hardware

occurs.

2.3.2 User Interface Development

TouchGFX User Interface follows the architectural pattern known as

Model-View-Presenter. Main benefits of this structure are: separation

of concerns which means that code is divided into independent parts,

making code simpler, reusable and easier to maintain; unit testing,

since logic is separated from visual layer, it is easier to test isolated

parts.

The structure of UI, reported in fig.2.11, is organized around three main

classes:

• Model: is always-alive singleton class. It stores data for UI, par-

ticularly that which are preserved across screen transitions. The

Model acts as an interface toward backend system, relying events

from and to the active screen.

• Presenter: acts as interface between model and view, it takes data

from model, formats and sends them to the view.

• View: is a passive interface to display data that arrive from the

model and routes user commands to the presenter to act upon that

data. It contains a setupScreen called when the screen is entered,

typically used to configure widgets. It has also a tearDownScreen

function executed when screen is exited. Framework automatically

sets up a pointer to the respective presenter to notify UI events.

Another important feature of model is to handle communication with

non-UI part, the so called backend system. Backend layer is a software

Implementation of a Software Interface Layer 21

component which receives events from UI and feeds others into UI.

For more information about abstraction layer development read proper

sections of documentation.[6]

Figure 2.11: Model-View-Presenter structure.

Screens

An important concept in TouchGFX is the Screen. It is a group of UI

elements and their associated business logic. Each screen has two classes:

a View with all widgets appearing on it and a Presenter with corre-

sponding business logic. There are no rules on how to divide screens, but

separation it is generally adopted for visually and functionally unrelated

widgets. For instance, in a clock application, it is possible to have two

screens: main one with the clock and second with settings.

As mentioned in a previous section, a portion of memory equal to the

largest screen is allocated in internal RAM, so no more than one screen

is active at a time. Likewise, received events from backend or hardware

peripherals are delegated to current visible screen. If a received event

wants to act on a non-visible widget it is simply “discarded”.

Code Structure

TouchGFX Designer like the other chain tools, allows a partial code gen-

eration. In the Designer, it is possible to create UI applications with a

Implementation of a Software Interface Layer 22

drag and drop approach and then, by clicking on Generate Code all base

classes are created in the project folder.

In this case, the code generated by Designer is completely separated

from user code. The entire generated base classes are placed in gener-

ated/gui generated folder and contain the initialisation code configured

in the Designer, these files are not editable. On the contrary, user code

will be placed in gui folder.

TouchGFX Designer application consists of three main layers of code:

• Engine: groups standard classes provided by TouchGFX. They are

the base for generated classes.

• Generated: classes and corresponding files are regenerated whenever

generate code, in the Designer, is clicked, therefore, this layer is no

manually editable because files are overwritten at each run of code

generator.

• User: these classes derive from generated ones and are intended for

handwritten code. Designer does not alter in any way this portion

of code.

Implementation of a Software Interface Layer 23

2.4 TouchGFX Designer

2.4.1 Widgets and Containers

TouchGFX Designer is the tool which is in charge to help the developer

generating user interface application. As said before, it uses a drag and

drop approach to simplify creation of screens.

This section will describe in detail how to use TouchGFX Designer to

implement an application. Any precise references will be to the version

4.15 of the tool .

Designer can create new projects, but also open existing ones or explor-

ing demo, available for different types of boards, accessible widgets and

for some typical hardware devices.

To create a new application needs to write a name and location of the

root folder. Then, two very important steps: first, select which board

the application will be for; second choose the starting point: initiating

from a blank user interface or with one already implemented. Last fields

are filled accordingly with the chosen application template. For instance,

for a STM32F429I-EVAL board, colour depth is 16 bits, width = 480

and height = 272.

After this initial configuration, TouchGFX Designer is ready to use. A

white rectangle appears in the window, which is the canvas, the appli-

cation screen. Everything inserted in will be shown on display.

Designer supplies a wide variety of widgets. Widgets are simply an

abstract definition of something that can be drawn on the screen and

interacted with, in other words they are objects that may be inserted

into screens and used to build a user interface, for the complete list it

is demanded to visit TouchGFX official documentation on “Ui compo-

nents” section[7]. There are boxes, images, text areas and many other

passive objects utilized to show something, but also interactive widgets

that user can modify to provide a value to the UI such as different type

of buttons, sliders, scroll wheel and so on. Of course, if necessary, new

widgets may be implemented from scratch or starting from a template.

Many of these input widgets can react to user event with a special ac-

Implementation of a Software Interface Layer 24

tion triggered whenever a specific event occurs. They are called inter-

actions.

Interactions are characterized by a Trigger, an event that initiate the

interaction and an Action which is what happen after the stimulation.

Many standard actions are available, they consent to move widgets,

switch screens, execute external code or call functions and many oth-

ers. Again, if UI needs of a special trigger or action, it can be created.

There is also another important widget category, the container which

can group child nodes as widgets or other containers. There are many

useful containers in Designer and also others can be designed by the user.

2.4.2 Images, Texts and Fonts

Designer gives the possibility to customize appearance of widgets and

screen backgrounds, by adding corresponding figures in the Images View.

For instance, a button can have different styles, choosing through the

available set of standard images, but it can be more personalised load-

ing a picture into Designer and selecting it for that button. Images are

part of the application Assets, they must be inserted as *.PNG files and

will then be converted by an ImageConverter to C++ language. Images

can be stored in RGB565, ARGB8888 and L8 formats. This allows to

send unchanged pictures to framebuffer. Direct Memory Access can be

used to partially save microcontroller load. It is not used when images

have an alpha channel, because it is necessary to merge pixels of image

with those of framebuffer (pixel blending), in this case DMA is used only

if board has a graphic accelerator like Chrom-ART/DMA2D.

Also texts used into UI are customizable, typographyc parameters can

be changed in Typographies menu. TouchGFX supports three differ-

ent types of alignment and writing like LTR(Left-to-Right), which is

the default one and RTL(Right-to-Left). When UI is built or simulator

launched, configuration of entire text database is reported in a spread-

sheet. After that, database is provided to textConverter which generates

a *.CPP file with texts converted into a format usable by TouchGFX.

Implementation of a Software Interface Layer 25

It supports all languages of Unicode Basic Multilingual Plane, but only

with RTL and LTR orientation, it is not feasible for top-down writings.

TouchGFX uses a 16-bit Unicode coding. Languages that require spe-

cial reordering or positioning are supported in a limited way, moreover,

TouchGFX has a set of rules for combining characters to represent con-

textual shaping words as reported from STM.[8]

Fonts follow the same procedure as texts.

These three conversions are carried out when building the user interface.

Implementation of a Software Interface Layer 26

2.5 Compiling and Flashing

Executing program is the goal of developer, so it needs to know, how to

compile and flash TouchGFX application in a specific setup.

Code can be compiled for PC simulator, to have a program running on

the PC or for target hardware to obtain code usable on a board.

2.5.1 Compile for PC Simulator

In this case, code is compiled with GCC or Visual Studio. Executing

the Makefile, automatically generated by Designer in the project folder,

with TouchGFX Environment, included when graphic tool is installed, a

simulator.exe file is created and then, it is possible to launch simulator.

These steps can be executed directly inside TouchGFX Designer clicking

on Run Simulator in the top right of window.

Instead, to compile code with Visual Studio, it is enough to open the so-

lution Application.sln, placed in <touchgfx project folder>/simulator/msvs/,

and run or debug the code.

2.5.2 Compiling for Target Hardware

Each application template generates projects for GCC, CubeIDE, IAR

and Keil. First of all, code has to be compiled in the same manner

that for PC simulator, by executing Makefile for target hardware in

TouchGFX Environment or by clicking on Generate Code into Designer.

CubeIDE, as many other IDEs, also compiles code for target.

Each built project generates a binary file that must be flashed into tar-

get with CubeProgrammer or ST-LINK. In previous sections is explained

the procedure to install them.

It is possible to write the internal flash, if large enough, significantly

reducing flash time, otherwise external flash must be enabled with the

procedure explained into section 2.2. Target can be flashed easily by

clicking on Run Target in Designer. Using CubeProgrammer it is possi-

ble to load memory also within the CubeIDE, simply putting the *.ELF

file in debug configurations.

Implementation of a Software Interface Layer 27

2.6 TouchGFX PC Simulator

According with documentation[9], creating a TouchGFX UI can lead to

a lot of difficulties to match UI specifications and also flashing a board

can require quite some time, so doing this, any time that a small change

is done on the application, it is very boring. The TouchGFX PC Simu-

lator is a great add-on tool to avoid these problems.

Simulator, simply compiles the application for the PC and run it there.

Project can be tested entirely for UI part such as placements of widgets,

interactions, animations and so on, with the same accuracy that it might

have on the target hardware. Backend part, instead, cannot be verified

because Board Bring Up code and Abstraction Layer are made for the

PC and not for target.

It is even possible to easily debug the application with Visual Studio

or GCC compiler, which opens up to many other IDEs, but again per-

formance analysis and interactions, with real backend system, must be

done only with a board connected.

This drawback will be fixed with the Software Interface Layer which al-

lows to support simulator with a Model Based Design tool, but details

and full explanation will be given in next pages.

Implementation of a Software Interface Layer 28

2.7 TouchGFX Backend Communication

The structure of TouchGFX framework permits to dedicate the Model

class to interaction with the rest of embedded system. This is a very

useful aspect and it is used in many applications because this connection

allows to exchange data between UI and backend, interfacing hardware

and software or software modules, when communicating with Operating

System.

Model class is suitable to interface with surrounding hardware because:

• It has a tick() function, automatically called every frame by an

interrupt request of LCD, so it could be used to look for or react to

external events.

• Model has a pointer, of ModelListener class, to the currently

active presenter, that could be used to notify UI of incoming events.

Furthermore, model is utilized to store data, for instance to exchange

data between screens. Due to this is fundamental to understand the cor-

rect way to transfer data from model to a view of application and vice

versa.

2.7.1 Data from View to Model

For View to Model direction, communication is guaranteed by the Pre-

senter class, in fact, a pointer to the respective presenter is instantiated

by default, into view. Using this pointer, the View can call a method of

Presenter, passing, as argument, the value to transfer. Now, value is in

the middle, but as well as to view, also Presenter has a pointer(named

model) to the Model class to call its methods, passing relevant data and

saving them into Model. Therefore, data arrived in the singleton class

can then be accessed by other screens.

Implementation of a Software Interface Layer 29

2.7.2 Data from Model to View

In this case too, communication works with pointers. Model class has

a special class, ModelListener for interacting with Presenter, which in-

herits it. ModelListener has to implement all methods used in this type

of communication, but they are usually left empty to not transfer any

data when the method is called while screen, that has to receive data,

is not active. Instead, when screen is visible, the method definition into

ModelListener is bypassed, because of inheritance, the method is over-

ridden into Presenter. After that, Presenter class has a view pointer to

call methods for updating visual objects.

2.7.3 External Event Sampling

In many applications, data to be transferred from Model to View, comes

directly from backend. On target hardware there might be physical but-

ton presses, a switch state change or something else. All of these events

can be used to update UI, from a state to another.

To react to external events, Model will sample them. For this purpose,

two distinct ways may be followed.

The first method is a “quick and dirty” approach, usually intended for

prototyping. This first solution is very simple and consists in sampling

directly into the Model::tick() function. This method may be time con-

suming and also time crucial, sampling operation must be fast, typically

1ms or less, otherwise frame rate starts to suffer, since sampling is done

in the GUI task and it will delay the drawing frame.

Second approach is architecturally better, accordingly with STMicro-

electronics webinar[11], it allows to properly link the user interface with

the remaining components in a real-world application. This method is

based on a new Operating System task responsible for sampling events.

In this case, if sampling is time crucial, it is possible to set an higher

priority with respect to the GUI task. With higher priority, task will run

exactly with specified timing, but in this case if it is a CPU consuming

process, it affects the frame rate.

Implementation of a Software Interface Layer 30

For a large variety of applications, a lower priority is sufficient, because

GUI task spends much time for rendering and during this time, lower

priority tasks can be executed. To manage communication between tasks

may be implemented an inter-task messaging system, using the available

Real-Time Operating System, such as mailboxes or message queues.

This part is fundamental to understand implementation of the Software

Interface Layer, because it is based on the simplification of this type of

interaction from the point of view of graphical and hardware developers.

Implementation of a Software Interface Layer 31

2.8 Create a new project

At this point, it is very important to clarify a concept that has character-

ized the IDE. In this case, referenced IDE will be the CubeIDE of STMi-

croelectronics. This IDE has many tools plugged in, like CubeProgram-

mer which is briefly described in previous section, but also CubeMX,

this software allows board configuration, selecting the used board every

time that a new project begins. This part might be simple, but there

are at least two main ways that can be followed.

Probably, the clearest, but surely not the fastest is to open the project in

CubeIDE, configure all peripherals from scratch and generate code. At

this point board initialisation code is ready to be flashed, but GUI has to

be realised yet. Therefore, add the TouchGFX Generator to the project

and regenerate the code in order to have also a TouchGFX project inside

the root folder. Then, opening the TouchGFX file, into the folder with

the same name, realisation of GUI can start. With this method, the first

part is quite crucial because by selecting the board in CubeMX all pins

can be set to clear or default mode and this does not match at all the

configuration needed to run a GUI project. So, it is necessary to set up

all required hardware and it is not very easy, especially for memories.

Another approach is based on existing templates. This is the easiest and

probably the fastest way to follow when creating a new project. Also in

this case generate the new project within CudeIDE, selecting the board.

Then, create a new application into TouchGFX Designer, it is necessary

to select the same board chosen for CubeIDE, as application template

while Ui one can be empty. Then, click on “Generate Code” and proceed

with following steps that are not so difficult, but must be done precisely.

Rename the configuration file of TouchGFX template (*.ioc) with the

same name given to CubeIDE project, open it with a text editor. Going

through this file, some lines starting with ProjectManager need to be

modified:

• on ProjectFileName change the name of .ioc file to yours (e.g.

<myProject.ioc>);

Implementation of a Software Interface Layer 32

• again the same name, without extension, has to be set in the Pro-

jectName line;

• finally, UnderRoot line has to be set to true.

After these changes, save the file and replace the one already present in

the main folder of CubeIDE project. Open the configuration file within

IDE and, ensuring that full setup is correct and TouchGFX selected,

generate the code. Now, a TouchGFX folder is created in the root direc-

tory. Inside TouchGFX there is “ApplicationTemplate.touchgfx.part”

file, double click to launch it and then, UI may be implemented or left

blank for the moment, code must be generated to create all necessary

folders for the GUI application. At this point, it is necessary to copy and

replace, the flash loader, of previously created TouchGFX application,

with the homonymous one within CubeIDE. Then, from driver folder

copy the Board Support Package (BSP) directory from TouchGFX ap-

plication to CubeIDE project, again in the “Drivers” folder. After that,

compiler has to know that library, added before, needs to be linked.

Therefore, go into properties of project and in “Path and Symbols” un-

der C/C++ category, add for all languages the paths for Drivers, BSP,

Components and its four sub-folders. Now, touch has to be enabled,

in order to do this copy from “target” folder of TouchGFX template,

files dedicated to TouchController, both .cpp and .hpp. Files with same

name within CubeIDE project have to be replaced, they are located in

<root project folder>/TouchGFX/Target. Finally, the last file that has

to be copied is the main.c, inside Core folder of template to the Core

of project, then compile the project and all is configured. It’s time to

develop GUI and Firmware code. In order to better understand steps to

follow it is possible to see a tested video guide, which reports all these

steps.[10]

CHAPTER 3

Software Interface Layer: Main Concepts

With the graphic environment described in previous chapter, developing

a Graphical User Interface could reveal expensive, especially if using the

CubeMX toolchain, at some point in the design phases, board chosen

at the beginning becomes useless and there is a need to change it. Fur-

thermore, development is only partially completed because, using the

simulator with Visual Studio or other IDE, GUI part is fully checked,

but it is not possible to verify the hardware side, nor its interactions

with the GUI.

The implemented Software Interface Layer is required to solve these

problems. It aims to simplify the management of communication be-

tween two sides of an application as much as possible, at the eyes of

developers, by giving them a limited number of instructions easy to un-

derstand.

In addition, the Human Machine Interface(HMI) permits to support the

graphic environment with a Model-Based-Design tool such as Simulink,

allowing generation of a model to simulate what happens on the board

and producing, with another tool (Embedded Coder for Simulink), C

code, which can be flashed into board.

Each GUI application, as explained before, can be run directly on target

or on the PC simulator. In this two circumstances, the interface works

differently: on target, all code is loaded in the same chip, so code is fully

available and communication can be managed locally, instead, with PC

33

Implementation of a Software Interface Layer 34

Simulator transmission is handled through Transmission Control Pro-

tocol(TCP), where the server is the TouchGFX Simulator running on

Visual Studio, while client is the Simulink model, created specifically by

developer, to support the Simulator.

The idea behind the implementation is that, when an event occurs, it

takes place on a particular object (of backend or UI), this event is put

in a queue with its modification value. Then, the other side receives the

event and looks for it on a table indexed by event identifier. In same

position there is a value, linked to that identifier, which is modified with

the one received and then, through a function pointer(always stored in

table) modification is applied on target object.

In following pages, all steps of interface process are analysed for a better

comprehension of implementation.

The structure thought for the interface is reported below in fig.3.1.

Figure 3.1: Model of Software Interface Layer.

In the picture are highlighted the main blocks of interface, fully pro-

grammed in C language, to have suitable code for many types of target

hardware. An important block, represented in red in the image, is the

Table. It needs to store information relative to “interactive objects” of

both sides. There are two tables, one for UI and one for backend, each

with its particular structure:

• User Table, fig. 3.2, is more complex, it stores information about

events directed toward UI. Rows are indexed by event identifiers of

Implementation of a Software Interface Layer 35

hardware peripherals with four fields each. Two possible types of

event, integer and string, a section to store the function pointer and

at the end event type.

Figure 3.2: Filled user table example.

• UI Table, fig. 3.3, is simpler, it has only three fields, one for

modification value of double data type and a function pointer. Last

field is used to take into account a consecutive reception of events:

it is a counter checked when each event is received, in order to avoid

processing the same event more than once.

Figure 3.3: Example of table for GUI side.

The interface works differently depending on whether it is running with

PC simulator or on target. Communication is handled through two

queues, one for each direction. On sender side, events are pushed into

queue, the other side receives those events and with function pointer,

related to a specific event identifier, an action is performed on an object

of receiver. Tables are important for storing “actual” state of a widget

or peripheral. Each table with its fields, listed below, is filled in by

developers, copied into spreadsheet and then, provided to a Python script

which results in different files, that are the compiled version of tables.

Each spreadsheet must follow the same rule:

Implementation of a Software Interface Layer 36

1. The first row is occupied by name of fields of table structure;

2. other lines are for objects, one per line;

3. The first column is occupied by the event identifier used to create

the list of possible IDs;

4. Next columns are, in order: integer event value, text event, callback

and event type for table of events directed to UI side, while toward

user there are double event value and callback.

Implementation of a Software Interface Layer 37

3.1 Interface Work on Target

As explained in the previous chapter, a TouchGFX project can interact

following two direction: from UI to backend and on the contrary from

backend system to UI.

3.1.1 Events Toward UI

Events, directed to UI, are generated on surrounded system through

hardware peripherals like physical buttons, joystick, Serial Interface,

Controller Area Network(CAN) and so on. When event is triggered,

it has to be sent to UI through the UI Queue of Software Layer, there-

fore, a public function of HMI must be used: Hmi SendUiStateXY ,

where XY can be substituted with Int or Txt, based on type of value to

be transmitted, also inserting two parameters: identifier and value/text.

Using named instruction, a data structure is queued.

Queue is a simple array whose elements are of a data structure type

(HmiEv2UiType) similar to that used for table, but with fewer fields.

Each element in the queue has an identifier, to distinguish one event

from another, and an integer value or text string.

In this direction of communication, events can be pushed continuously

by filling the queue, only when the flush of queue is requested, with the

Hmi Flush command, the User Interface takes events, one at a time,

and processes them. When queue is full, it is no longer possible to store

events and excess ones are simply ignored.

From UI side an instruction of Hmi is called, to check a flag in polling,

this is done inside tick() method of Model class to execute the con-

trol regularly. When that flag assumes FLUSH STATE value, UI calls

HmiUi ProcessEvents, so it starts taking elements from queue, one

by one, with a private instruction. Each taken event is processed, again

with a local function, supported with information in the table. First, the

value received from queue, is used to update the corresponding one in

table, accordingly with event type, last field of table row. For text events

Implementation of a Software Interface Layer 38

it has been chosen to copy received string, into table, directly when event

is entered in the queue, to avoid heavy weight on queue. Then, respec-

tive function pointer is called to execute corresponding instruction. In

this case, pointed functions, which are implemented in C language, but

inside a C++ file, must be linked to method of Model class to activate

the transmission of data toward View, to modify a widget of the applica-

tion. Later in the text, how function calls method Model will be clarified.

3.1.2 Events Toward Backend

Opposite direction is in charge of transferring events, arising on UI,

toward backend, calling a final function to act on a specific target pe-

ripheral.

In this case, when a touch event occurs, it is propagated from View to

the Model via member methods and in the corresponding Model method

there is HmiUi AddDblEvtToQueue function to insert event into

User Queue. In the meanwhile, in the main loop of running target, queue

is polled to take events as soon as they are inserted. Similarly to other di-

rection, received events are extracted with Hmi GetUiNextEvtState

and then processed with Hmi ProcessEvent function. Event eval-

uation is done by replacing the double value received, into table, at

corresponding column of row indexed by event identifier and then, by

calling the instruction pointed, which can be implemented inside a C file

generated with python script or directly in the main file of target.

3.1.3 How To Integrate the Interface in the IDE

In order to integrate the interface in a project, it is necessary to follow

some steps:

1. First, in the project folder, create a directory in which all library

files are copied, to avoid confusion with other files;

2. Then, the folder must be added as additional include directory, in

the properties menu of current project. So, open the properties and

Implementation of a Software Interface Layer 39

in “C/C++ General” category, select “Path and Symbols”;

3. on the right side of panel click on ‘Add’ and for all languages

select the folder path of current workspace;

4. at this point, the interface is available for the project, it misses only

to include the header file where it needs.

Implementation of a Software Interface Layer 40

3.2 Interface work on PC Simulator

TouchGFX, as mentioned in previous chapter, has an important feature

like PC Simulator which allows to evaluate behaviour, of implemented

application, running it on your own PC. This functionality is improved

with the Software Interface Layer, because through this, the simulator

can interact with a Model-Based-Design tool to obtain and simulate the

full behaviour of developed project. To establish a communication be-

tween two different processes, queues used for target operation are not

sufficient. It needs an inter-process communication like UDP or TCP.

Inter-Process Communication Before proceeding, it is necessary to pro-

vide some knowledge on end-to-end connectivity, for more details it is

suggested to read the presentation by Professor Panagiota Fatourou[12].

In this case, it is a private network between two different processes run-

ning on the same pc. To allow a correct communication data must be

formatted, addressed, transmitted, routed and received at destination.

The address format used is the IPv4, which means that each one is

divided into four octets, first up to three can be used to identify the

network, while the other octets are used to recognise the node on the

network.

Most used protocols are Transmission Control Protocol(TCP) and User

Datagram Protocol(UDP). For this interface, it has been chosen to uti-

lize the TCP, because it has a reliable byte-stream channel which ensure

that all packets arrive in order without duplicates, it has a flow control, is

bidirectional and also connection-oriented. Hence, similar to UDP, TCP

uses port numbers as communication endpoints and 16-bit unsigned in-

tegers to provide transport. TCP is preferred for its higher load capacity

and it is more suitable for persistent connection.

Connection works between Berkley Sockets that is an abstraction through

which application may send and receive data. Sockets are uniquely iden-

tified by address, end-to-end protocol and port number.

Implementation of a Software Interface Layer 41

The simplest communication is with only two ends involved, usually,

one(Server) passively waits for and responds to other side(Client) which,

knowing address and port number of server socket, initiates communi-

cation.

For , Special functions are required to generate sockets and manage their

interaction, therefore, for this purpose Winsock library must be linked

to the project.

Communication Steps First of all, it is needed to create the server end-

point with Socket function which returns the generated socket identifier

of family, type and protocol passed as parameters. Then, with bind in-

struction, port, which will be used by socket, is associated and reserved.

After that, TCP server has to wait for a new socket connection, this is

performed by listen function which is a non-blocking one, that means

that returns immediately. Successively, server executes a blocking func-

tion necessary to accept a client connection. Then, on the other hand,

with exactly the same instruction used for server, client also creates its

socket and successively with connect function, a connection between the

two sockets is established. With this, server procedure is unlocked and

communication can start. Each socket can send or receive messages

through send and recv instructions. These two functions are generally

blocking, but they can be set as non-blocking by providing specific pa-

rameters to a particular function: ioctlsocket, this is particularly useful

when transmission is inserted into an application which has to run con-

tinuously, exactly like a GUI. When connection is no longer needed, it

is closed and socket deleted with close method.

3.2.1 Inter-Process Communication for Interface

Functions are implemented, in the interface to initialise sockets, for both

sides of communication. The User Interface is intended as a server, while

the client is the model created with a Model-Base-Design tool. The use

Implementation of a Software Interface Layer 42

of TCP communication is not demanded to specific functions and it is

totally transparent to developers. In this way, development approach

can be the same whether it is programming on target or on PC simula-

tor. This is possible with a directive already present inside TouchGFX

simulator. The SIMULATOR directive gives the possibility to write

code which will be used only in simulator mode, therefore, functions that

must have a different behaviour depending on running type, have a dou-

ble definition: that for simulator, specified by respective directive and

the other for target. An example is reported into Appendix A, in order

to clarify this concept. It shows implementation of target initialisation

function which sets the queue in target mode only, while for simulator,

it performs preliminary steps for TCP connection. Moreover, during

implementation of Software Layer it is chosen to use another directive:

CLIENT to allow a distinction among the two endpoints. This is par-

ticularly useful for table definition, because function pointers used on

server are not present on client and vice versa.

TCP communication is used to transfer events from server to client and

vice versa. For instance, when a widget is touched, into Model within

corresponding method, as for target, the HmiUi AddDblEvtToQueue func-

tion is called, but in this case event is pushed inside a TCP queue, used to

accumulate events, avoiding losing them when event generation is faster

than sending them to backend. Then, in the main loop of simulator, this

queue is continuously checked and when at least one element is present,

it is picked up, encoded and sent to the other socket. After that, on the

other side, a message is received, decoded and put into respective queue.

In the same way, on the opposite direction with Hmi SendUiStateXY

a message with occurred event is transmitted, then, received and pro-

cessed by UI simulator.

In order to receive messages correctly, it is necessary to modify main

loop, executed inside Simulator. To emulate target behaviour, simula-

tor is implemented using Simple DirectMedia Layer library[13]. It is

a Cross-Platform library designed to provide low level access to audio,

keyboard, mouse, joystick and graphics hardware. This freely usable

Implementation of a Software Interface Layer 43

library, written in C, also works with a variety of other programming

languages and it is supported by many Operating Systems.

The SDL library supports the implementation of Hardware Abstraction

Layer into simulator. In the taskEntry function, main loop is imple-

mented. Called from GUI task, it will wait for VSYNC signal and then

process next frame.

To support communication, in particular to create socket and exchange

messages, previously named function must be modified adding some line

to generate socket, establish a connection and to guarantee sending/re-

ceiving of messages. A final definition of taskEntry for TCP communi-

cation is given in appendix B.

At the beginning, there is HmiUiTcp Init instruction, to initialise the

Winsock library and to create Server endpoint and HmiUi QueueInit

to reset Ui queue. At the end, instead, there is HmiUiTcp SrvProcess

to send and receive events to/from backend system. Then, outside main

loop, there is the HmiTcp CloseSocket function to delete socket.

These three important public functions are composed of various internal

private instructions, not accessible by developers but very important to

allow the correct functioning of HMI.

On the other hand, client creation is quite similar, using the same func-

tions. For instance, by creating a Simulink model, it is possible to use

public functions available in the interface. Similar to what is done for

server, Hmi Init function is used to initialise the library and create client

socket. Then, in an endless state, there is a loop for sending events and

another for receiving them. As already mentioned, from the point of view

of developers used code must be the same, in fact, as reported for inter-

face running on target, the function Hmi GetUiEvtStatePending receives

event from network and push it into user queue returning the number of

elements inserted into that queue. Then, with Hmi GetUiNextEvtState,

event is extracted from user queue and processed with Hmi ProcessEvent.

The flow of instructions is identical to that used for target.

Implementation of a Software Interface Layer 44

3.2.2 How To Integrate the Interface for Simulation

To have interface functions available, for a Visual Studio solution, it is

necessary to perform some preliminary steps:

1. open solution menu right-clicking on project name, select ‘Add’ and

‘Existing element’. A window opens, there, all files to be added must

be selected;

2. enter their folder path as ‘additional include directory’ in the project

properties menu, under the ‘General’ tab of ‘C/C++’ category.

Now, hmi functions will be usable, but a few more steps are re-

quired;

3. to ensure correct behaviour of functions it is very important to

set some preprocessor directives, so, in the ‘Preprocessor’ tab of

‘C/C++’ category insert the directive SIMULATOR, if it is im-

plementing a client for TCP communication it is necessary to also

add the CLIENT directive;

4. Finally, it is necessary to link the library needed for TCP communi-

cation, so in the “Input” tab of ‘Linker’ category, add the Winsock

library (ws2 32.lib) as additional dependency.

Implementation of a Software Interface Layer 45

3.3 Software Interface Layer Test

Since functions, needed to manage communication between the two sys-

tem sides, are implemented for both modes of execution, it is time to

test interface and analyse its performance.

First of all, tests are performed on target. Initially, normal behaviour is

tested with a variety of projects, which have many widgets and a different

number of screens. Queues are proven to work, as expected, when fully

filled or not. Events sent, when queue is full, are discarded. When an

event arrives on the UI and a widget is not visible, it is maintained orig-

inal behaviour, that is to call, through Model, a ModelListener method

not overloaded by actual presenter, so no modification is directly done.

But anyway, it is possible to act on variables of model, for instance, it

is possible to use a variable to store state of widget and when it returns

visible it is read and widget will be shown in the new state.

If events with same identifier are sent, they are processed one by one,

for both target and UI side, calling the appropriate callback each time,

but not all modifications appear on GUI because screen is refreshed at

regular intervals and events are usually evaluated rapidly.

Additionally, different queue sizes are checked and queues work as ex-

pected. The case in which UI and backend events are interleaved is also

checked, resulting in all occurrences being managed: on target events

are processed immediately when received, one at a time, while on the

other side, processing starts after that flush is requested.

Same tests are performed also for Simulator proving that behaviour is

equal to one described for target. In this case, is verified also, that TCP

connection does not affect operation of the interface. Therefore, it is

verified the case in which a side sends some events, while connection is

ready and then it is disconnected, all events resulted correctly received

and processed. This is because TCP line acts as a queue, that accu-

mulates sent events until receiver extracts them with recv operation. It

is also tested that events are not accumulated, even when connection

between two sockets is not ready, so when only one socket is generated.

Implementation of a Software Interface Layer 46

This with TCP is possible, but for this interface, it is chosen to man-

age all events occurred when connection is ready for both parts, this is

achieved using a function to initialize tcp queue after that connection is

open.

CHAPTER 4

Simulink Model

Before proceeding with a complete documentation of functions available

in the interface, it is necessary to briefly describe some functionality

available in a Model-Based-Design tool such as Simulink: Stateflow and

the more general System Function.

4.1 Stateflow

Stateflow is a MathWorks software, which can support Matlab and

Simulink to describe how algorithms and models react to input signals,

events and time-based conditions.[14] With this tool it is possible to

model decisional, combinatorial and sequential logic by simulating them

as blocks in Simulink model or executed as Matlab objects. Graphic an-

imation allows to analyse and debug the logic while it is running. Modi-

fication time and runtime controls ensure consistency and completeness

of design prior to implementation.

Using the Hmi functions, it is possible to support a graphic simulator

with this powerful software, thanks to TCP connection. Permitting to

evaluate performance of sending/receiving events among hardware and

software. In a Stateflow block, it is possible to implement Finite State

Machine, Truth Table and other types of logic statement. For instance,

it is possible to create a simple Simulink model, with a Stateflow block

that, for some specific conditions, sends events to GUI and also can re-

ceive them from. When model is complete, with Embedded Coder is

47

Implementation of a Software Interface Layer 48

possible to generate C code which emulates model behaviour. This code

can be joined with GUI code, built and loaded on target. In this way,

the whole project, composed by GUI, implemented in C++ and model

written in C, can be easily compiled, loaded into a target hardware and

run. This permits a complete prototyping without the need to have a

board on which to test developed project.

Stateflow Client Stateflow permits to generate a simple client to send

events, through the interface, to UI application. It does not need many

states, essential ones are an initialisation state and another with Client

processing. The second state is the core of program and can have two

sub-states one for receiving events, usually in an endless loop and another

to send events.

In order to integrate the Software Layer in the Simulink model it has

to be properly configured. As first step, hmi files must be in the same

folder of model and then, it is necessary to configure the ‘Simulation

Target’ category of ‘Model Settings’. Inserting, in the panel shown in

figure 4.1, for custom C code:

1. source files, with declaration of global variables;

2. header files and external definition of global variables;

3. an initialisation function;

4. a terminate function.

While, as build information:

1. folder paths which contain useful files for the model;

2. source files of library;

3. necessary libraries, like Winsock for TCP communication and User32;

4. pre-processors directives, SIMULATOR and CLIENT to correctly

configure tables.

Implementation of a Software Interface Layer 49

Figure 4.1: Model settings configuration.

After that, the language used from Stateflow block must be set in the

‘Chart Properties’ selecting C code to use interface functions.4.2

When client is designed and its correctness verified, model can be built

with Embedded Coder, which generates C code. Before building, it is

necessary to set Simulink configuration for code generation in Model

Settings panel. First of all, select the system target file and output lan-

guage. Then, under code generation category, in “Custom Code” copy

the information about header and source files, initialize and terminate

functions, additional libraries and directories, or check the whitebox that

imports this, automatically, from configuration of simulation target.

After that, code is ready to be built. Once code has been generated,

behaviour of implemented system block is translated entirely into C lan-

guage. At this point, it is possible to create a client with visual studio

or another IDE and to use the three main functions made available in

block header file. The initialize function is to set up the model if it

needs, then, usually in an endless loop, variables, which correspond to

Implementation of a Software Interface Layer 50

Figure 4.2: Chart properties configuration.

system inputs, are updated with new values and step function is called.

This instruction simulates business logic computing the output results,

which could be used to achieve a final goal. At the end, when model has

to stop, thus terminate instruction is called, to deallocated resources or

free memory space.

Implementation of a Software Interface Layer 51

4.2 S-Function

After that, it has been chosen to test the HMI with a more generic

Simulink block, the System Function(S-Function).

It extends the capabilities of Simulink Environment by describing the

block with C, C++, Fortran or Matlab language. S-Functions are com-

piled as MEX files and dynamically linked subroutines that Matlab en-

gine can automatically load and execute.

S-Function defines how the block work within each simulation phase. At

each step corresponds a different function invoked by Simulink engine

to fulfill a specific task. As previously seen for Stateflow, s-function can

also be used to generate code through the Embedded Coder. Obtained

C code has three main functions:

• initialize executed in the first phase of model execution, to perform

primary operations needed by the block, like setting up user data

or initialising vectors;

• output which calculates values to assign at each block output port;

• terminate used to free memory space when simulation is finished or

when block is deleted from model;

Then, sometimes other two functions, update and derivative could be

implemented if the block has continuous or discrete states.

S-Function has been integrated in a client and tested with an example

GUI, then code is generated and tested on target hardware. Also in

this case, full code is loadable on board and Software Layer works as

expected.

There are a few steps to follow in order to use external code in an S-

function builder block:

• first, on top, assign a name to the s-function and select the language

to use;

• then, it is possible to insert, in the “Editor view”, the inclusion of

interface header file;

Implementation of a Software Interface Layer 52

• after that, it is necessary to list ports and parameters, which block

needs to function properly, in the homonymous tabs below;

• in the “Libraries” tab enter the names of source and library files,

one per line, then also SIMULATOR and CLIENT directives;

• if files, inserted with the previous step, are in a different folder with

respect to the Simulink model it is necessary to specify the path in

the same tab.

Figure 4.3: Libraries configuration of s-function builder.

Figure 4.4: Editor view of s-function builder.

CHAPTER 5

Functions Documentation

In this chapter, it is explained the behaviour of functions implemented

into Software Interface Layer, to better understand the idea behind and

how to use them.

Many functions have a double implementation, this is to allow a different

behaviour, depending on running mode. In this way developers can use

the same instructions either on target and in simulation, without being

aware of different instruction behaviour. In the interface it is possible to

distinguish between functions behaviour with a preprocessor directive.

In fact, developer, to ensure the correct approach, must define, on IDE,

the preprocessor directive: SIMULATOR when using the interface in

simulation or none when loading the project on target.

Also, another directive was used, for simulation, to distinguish table ini-

tialisation when the interface is working on client or server. The default

behaviour is for the server, thus Ui table is initialised with all function

pointers while the user’s one is only declared. On the other hand, spec-

ifying the CLIENT directive, for instance on Simulink, User table is

completely initialised, while the Ui table is only declared because the

callbacks are not known.

53

Implementation of a Software Interface Layer 54

5.1 Public General Functions

This section lists all functions available in the interface, to initialise

queues or configure TCP connection, to close sockets or handle events

on server. Each function suggests which side it should be called from.

Instructions for User Interface side have HmiUi as prefix while other side

and general functions have Hmi. Then, in some cases also Tcp is added,

referring to connection functions.

5.1.1 HmiUi QueueInit()

This function is used to initialise queue for events arriving from back-

end. In fact, as prefix suggests, the function must be called on the User

Interface side.

5.1.2 HmiUiTcp Init(const unsigned long addr, const unsigned

short port)

Following instruction, always for UI side, has a double implementation,

as the example reported in appendix A. For embedded target it simply

returns a zero while in simulator mode it aims to initialise Winsock li-

brary and to create Server socket. The function needs of two parameters:

address and port of socket to generate. In simulation, it returns a “-1”

when error occurs or “0” otherwise.

5.1.3 Hmi Init(const char* addr, const unsigned short port)

In this case, it is used a single function to initialise queue, in both run-

ning mode and to create the endpoint for connection on backend side,

suggested by Hmi prefix. It is possible to implement only one instruction

because the two internal function are always used in the same file, while

this does not happen for the Ui side. This function also accepts two

parameters for address and port of client socket. It returns “-1” in case

of error and “0” when nothing happens.

Implementation of a Software Interface Layer 55

5.1.4 HmiUiTcp Connect()

The Connect function is used by server to accept an incoming client

connection. It returns a “0” when connection is correctly established or

“-1” on error.

5.1.5 HmiTcp CloseSocket()

As name suggests, this function is used to close connection socket. This

is the only function where the prefix is not precisely referred to unique

side. Closure of socket is identical for both parts, therefore, prefix is

used in a more generic way. A “0” is returned when socket is closed,

“-1” otherwise.

5.1.6 HmiUiTcp SrvProcess()

This function is the core for sending and receiving messages, via TCP,

to and from backend system. It should be placed in the main loop of

server, to be frequently executed. It uses private functions to receive

TCP messages, decode and push them into queue processed by UI. On

the other direction, function takes events occurred on GUI, encode and

send them through TCP socket. Towards backend there is a queue to

store events if generation is faster than message sending.

Implementation of a Software Interface Layer 56

5.2 Public Backend To Ui Functions

In following sections will be listed and described functions that allow

backend system to send events and to user interface to take and process

them.

5.2.1 Hmi SendUiStateInt(const Hmi UserEvIdEnumType evId,

const Hmi StateIntType value)

This instruction, as its name indicates, sends integer events to user in-

terface. It is called by backend when a widget needs to be modified

consequently to a specific event on target. The instruction has a dif-

ferent behaviour dependently on running mode. In embedded mode(on

target) events are immediately pushed into queue directed to UI, while

in simulator mode events are sent to UI via TCP messages. Function

needs of two parameters: the event identifier, which is unique for each

“object” that generates a trigger for a widget modification and, the value

to modify corresponding UI object. If sending fails “-1” is returned, “0”

otherwise.

5.2.2 Hmi SendUiStateTxt(const Hmi UserEvIdEnumType evId,

const char* text)

Function Behaviour is the same of previous instruction for both modes of

execution, but in this case modification value is a text string, to modify

widgets that accept characters, like text areas. Again, “-1” is returned

in case of error and “0” otherwise.

5.2.3 HmiUi GetUserEvtStatePending()

It indicates whether there is at least one event inside UI queue. It returns

the number of elements stored or “0” when queue is empty.

Implementation of a Software Interface Layer 57

5.2.4 HmiUi ProcessEvents()

This functions checks if there is at least one element into user interface

queue, so it extracts and processes it, updating referenced value of table

and calling the corresponding callback to taken event.

5.2.5 HmiUi IsFlushRequested()

This statement controls if state variable, used to manage User Interface

queue, has FLUSH STATE value, in that case returns a “1”, otherwise

a “0”.

5.2.6 Hmi Flush()

Function behaviour depends, again, on running mode. If it is on target, it

sets the state variable of UI queue to FLUSH STATE to block the queue

until flush is finished. Against in simulator mode, a special message with

opcode “-1” is encoded and then sent to server to enable flush operation.

Implementation of a Software Interface Layer 58

5.3 Public Ui To Backend Functions

In this section, there are listed all functions needed to transfer events

occurred on User Interface toward backend system.

5.3.1 HmiUi AddDblEvtToQueue(const Hmi UiEvIdEnumType

evId, const Hmi StateDblType value)

As some other functions, it has a double behaviour: on target it pushes

UI events into queue directed to hardware, if it is not full; on simulator,

instead, pushes events to a TCP queue from which server will take ele-

ments, one by one, to successively send to client. This function needs of

event identifier and modification value as parameters, returning “-1” on

error and “0” otherwise.

5.3.2 Hmi GetUiEvtStatePending()

Equally to similar function used for reverse direction, this instruction on

target returns the number of items into queue directed toward backend,

“0” if nothing is stored. On simulator, instead, receives events from

TCP connection, if present, decodes and puts them into backend queue,

returning the number of elements in that queue.

5.3.3 Hmi GetUiNextEvtState(Hmi UiEvIdEnumType *evId,

Hmi StateDblType *evValue)

This instruction, as suggested by name, takes the first occurred event

from user’s queue, saving identifier and value into variables passed by

reference from user. It returns “0” if all is done correctly, “-1” when

error occurs.

5.3.4 Hmi GetEvtCnt(Hmi UiEvIdEnumType evId)

Following instruction is used to take the event counter assigned to a de-

termined event, whose identifier is given as parameter, to check whether

it proceeds or is always the same.

Implementation of a Software Interface Layer 59

5.3.5 Hmi ProcessEvent(const Hmi UiEvIdEnumType evId,

const Hmi StateDblType evValue)

This is the last function called by user to manage an occurred event, it

processes the event, updating corresponding value on table and calling

respective callback to make something from hardware point of view. It

receives event identifier and modification value as parameters.

CHAPTER 6

Home Automation Example

Before proceeding with the explanation of the example project, it is

essential to focus on the entire process of integrating and building an

application using the Software Interface Layer. The figure 6.1 helps to

understand the main steps of procedure.

Figure 6.1: Main steps to implement a project with hmi.

60

Implementation of a Software Interface Layer 61

First, it is necessary to create a new project in STM32CubeIDE by

selecting a board which can be used to implement the final application.

Then, generate the Board Initialisation Code to configure all necessary

components. Successively, it is possible to integrate the interface library

into the project and use it when programming the hardware and GUI

parts. Of course, the two sides can be programmed at different times.

After that events of a side have been outlined, the corresponding devel-

oper can fill in the related table. When both tables are ready, the Python

script was run twice, one per table, automatically producing all the files

needed to make the HMI working in the project. Only “mainClbk list.c”

and “Model C Clbk.cpp” should be completed with the callback imple-

mentation. At this point, the interface functions can be called correctly

within the project code. Therefore, application can be completed. Then,

when implementation is ended, the project can be tested by simulating

its behaviour with a Simulink client, suitably created with the integra-

tion of the interface. When the application is consistent, the C code can

be generated from the Simulink model and incorporated into the project.

Finally, the project can be fully loaded on target board.

Implementation of a Software Interface Layer 62

6.1 Home Automation Project

In this chapter, an example project is explained in detail to further clar-

ify how data are transmitted from View to Model, in TouchGFX and

how the interface works to manage interaction with hardware.

The example is a Home Automation GUI with a variety of screens to

manage different rooms. In this application, there are four main areas

that could be part of a house. Living Room, Kitchen, Bedroom and Gar-

den, each occupying a screen of the application. Then, for living room,

kitchen and bedroom, which have objects to set more precisely, there is

a related screen for settings. When application is launched, home screen

immediately appears, showing a summary of current status of main ob-

jects, which can be set for each room. It has four pages, one for each

room and its widgets. From the Home Screen, with a simple tap, on the

room box, it is possible to access the chambers. Areas can be scanned

with a horizontal slide, while settings can be accessed, for rooms that

have it, with a vertical slide or by touching gear icon on top right corner.

When an object of a space is configured, it is possible to come back to the

Home Screen simply by waiting for a few seconds or touching the Home

icon. An image of living room implemented into application is reported

below, in fig.6.2. Then, for each widget, that can trigger an event, an

action is defined. For example, the shown room has six different types

of widget that can trigger an action. The two icons, in top corners,

are configured to change screen when touched, up and down arrows of

shutter, implemented with repeat buttons, make an animation on cor-

responding image, lowering or raising the shutter; to turn on stereo and

light are used toggle buttons. TouchGFX Designer gives the possibility

to initially configure the action that a widget has to execute when it is

touched, into “interactions” panel. If chosen action can be customized,

such as “call new virtual function”, the empty function is created into

base class, when application code is generated. Hence, the function has

to be inherited into user class and then defined by GUI developer. When

button has to transfer a data to another screen or to backend system,

Implementation of a Software Interface Layer 63

Figure 6.2: Screen implemented for Living Room.

the action triggered has to call a presenter function which user must

implement. After that, the Presenter itself, calls a Model function, in

which data can be stored. At this point, value may return to another

screen View, calling methods of classes through pointers explained in

chapter three, or it could be sent to hardware side. The Home Automa-

tion GUI makes many interactions between the two side of project, to

best demonstrate how the Software Interface Layer works. Therefore,

inside the Model method, called by Presenter, there is the HMI function

to send an event to backend. Then, on target, events are taken and

with respective C callback something happens. For instance, each light

of different rooms turn on a specified LED on target hardware. Other

functionalities that are not really implementable, like raising shutter,

send a message, with corresponding received value, on the serial inter-

face. To program properly peripherals behaviour it is necessary to use

the board user manual, in this case that for STM32F429I-EVAL.[15]

For opposite direction, having only two physical buttons available, it has

been chosen to use a button to send the flush and another to decide, with

number of pressures, to which room events are sent. Therefore, occur-

Implementation of a Software Interface Layer 64

rences are taken into Model, when flush is requested, and corresponding

callback flow executed, until modification is set on the View.

In order to perform the correct call of Model method, inside the file

Model C Clbk.cpp, automatically generated with a python script, func-

tions, pointed by pointers stored into table, must be implemented. To

make an example, in the Home Automation application, Model class

implements a function which returns the instance created when appli-

cation is started. In this way, it is possible to access from callback file,

to the correct model instance and execute the right method. Function

to get the model instance and an example of callback are reported into

appendix B.2 and B.3.

After that, UI has been correctly implemented, it needs to fill UI table

with all events identifier, accordingly to ones which will interact with

surrounded system. For this example, each widget that has the possibil-

ity to set a real physical object sends an event to the target. When table

is complete, it is supplied to the python script which generates files for

the compiled version of table.

Python Script The script is organised to generate code for User and Ui

tables in different moments, this is because the two sides of project might

be developed by different people at different times. It can be executed

from command line by entering as parameters file name of table and a

“-c” or “-a” if compiled table has to be created from scratch or it is only

needed to append information about the second part. After that, script

must be run and files are generated, developers should only implement

callbacks to link Model methods for the UI part or main functions for

target side.

As explained in previous sections, the Interface Layer makes inter-process

communication possible. Therefore, to demonstrate the use of interface

through the implemented TCP communication, it is created a Simulink

model to simulate management of received events on the hardware.

Client is created with a subsystem, that internally has different Finite

State Machines. Top level view of block is reported in figure 6.3.

Implementation of a Software Interface Layer 65

Figure 6.3: Top level view of Simulink subsystem.

Implementation of a Software Interface Layer 66

Figure 6.4: Internal structure of Simulink subsystem.

Internal structure is showed in the image above(fig.6.4), at the top

there is a FSM to receive all states from the User Interface. This chart

extracts all events occurred on UI from user queue, its structure is re-

ported in fig.6.5.

Implementation of a Software Interface Layer 67

Figure 6.5: FSM that receives all events occurred on UI.

Then, under this chart, there are many other FSMs, one for each in-

put and output, with different functions. Charts, on the left, manage

sending of events simply by calling up respective HMI function, as re-

ported in fig.6.6.

Figure 6.6: Send event state, for each input of subsystem.

Then, on the right, each output of system is set to received value pro-

vided by an FSM, when respective event is taken from queue. The whole

logic is implemented as figure 6.7 shows.

Implementation of a Software Interface Layer 68

Figure 6.7: Flow of states to manage taken event.

After that, Client is ready to interact with Server to simulate project

behaviour. It is verified that model runs correctly, without any error or

crash, then, it can be built with Embedded Coder. In this way, corre-

sponding C code is obtained and the whole application can be loaded on

target board. When model code is generated, Simulink provides three

main functions: initialize to configure the model, step which takes in-

puts of model and checks their values and, if necessary, processes them.

Generally, this function is placed in a main loop and finally, terminate

function is called to stop the execution of model.

These functions are called within main function, opened in an IDE, like

for instance STM32CubeIDE, to reproduce model behaviour on target,

after that memory board has been flashed. First of all, model must

be initialised, then in an endless loop, inputs, exported from Simulink

model with a particular data structure, are set. After that, calling step

Implementation of a Software Interface Layer 69

function, model inputs are collected and business logic, described on

Stateflow, is executed to obtain model outputs. In the example, when

an input signal is asserted corresponding event is sent to UI and, af-

ter flushing, proper widget is modified. Events towards target are also

managed.

CHAPTER 7

Interface Generalisation

When the interface is reliable enough, it is chosen to make it general

purpose. Therefore, to prove that, interface is used with another graph-

ical tool: Embedded Wizard. This software also has a drag and drop

approach to implement the interface. It has, like TouchGFX, the pos-

sibility to simulate the behaviour of a screen or entire User Interface

with the Prototyper. Therefore, it is perfect for demonstrating that the

interface does not depend on the structure of TouchGFX.

7.1 Embedded Wizard

Embedded Wizard is a technology that enables to create platform-independent

and high-performance Graphical User Interfaces (GUIs) for resource con-

strained embedded systems.

To develop the whole appearance of user interface and behaviour of a

GUI, the user-friendly tool: Embedded Wizard Studio can be used.

It allows to easily create GUI components from scratch or starting from

some templates.

It has an important feature, the Prototyper that simulates GUI ap-

pearance and its behaviour at every step of design, without the need to

configure target hardware. If written code does not behave as expected,

the built-in Debugger helps to find the cause of problem. Once the devel-

opment process is finished, Embedded Wizard Studio generates source

70

Implementation of a Software Interface Layer 71

code, with ANSI-C language, optimized for chosen hardware platform.

Depending on build environment, generated code is compiled into a bi-

nary file and then, executed on target system.

Embedded Wizard supports a wide range of target systems. Also, plat-

forms with hardware graphic accelerator may be used. Generally, prereq-

uisites to support certain targets are very limited. For the most common

targets, build environments with a ready-to-use display adaptation are

provided.

Embedded Wizard combines two approaches: composition the appear-

ance of GUI application with a GUI builder tool and separately the code

to implement the behaviour.

Embedded Wizard Studio allows to develop the GUI application with

drag and drop approach, putting all components into Composer win-

dow. In that window, there are elements that are needed by user to

implement the application, there is also a rectangle highlighted with a

blue border, the Canvas, which represents the display of target. Outside

of Canvas, bricks are inserted, representing non-graphical members of

application. Each member, once selected, can be configured in a panel

on the right: the Inspector.

This tool uses a special programming language Chora. It is universal,

target system independent, permitting to implement complete function-

ality of GUI applications without being reliant on any further develop-

ment tools.

Chora is largely based on C, C++ and Java programming languages. It is

object oriented, like its counterparts, supports classes, simple inheritance

and polymorphism. Open arrays and pointer arithmetic is completely

absent in Chora. It supports the concept of signals, observers and noti-

fications to better manage communication between GUI components.

The provided environment allows to develop a highly platform indepen-

dent GUI application. This abstraction is possible with Chora language

and Platform Package concept. The Platform Package consists of three

main blocks: Code Generator, Resource Converters, Graphics Engine

and Runtime Environment which guarantee that GUI can run on differ-

Implementation of a Software Interface Layer 72

ent hardware. Code Generator takes care of the right translation from

independent Chora code to valid code for target system. Actually, gener-

ated code can be in ANSI-C or JavaScript. Resource converters, instead,

translate bitmaps and fonts used in the application to format and code

valid for target system. Graphics Engine is a library to perform graph-

ical operations, it supports alpha-blending and, additionally, specified

colour or opacity gradient. With this library each graphic operation is

delegated to hardware or graphics API available on target. Finally, Run-

time Environment is a library that provides functions necessary to run

applications implemented in the Chora programming language, it acts

as an interface between generated code and surrounded system.

For more details relative to this software, visit the documentation.[16]

Implementation of a Software Interface Layer 73

7.2 How to use Hmi for Target on EW

First of all, it is tried to use the interface layer for communication be-

tween GUI and target hardware. A simple application is implemented

with Embedded Wizard Studio: it is composed of a screen, with a gauge,

which receives input values to update its indicator. Then, when neces-

sary, values shown by gauge can be saved pressing a Save button on the

screen. When it is pressed, value is sent to the system and also four

LEDs are turned on, accordingly to number of saved values, represented

in binary format. Since code for GUI objects must be Chora, but the

interface is implemented in C language, it is used the native statement.

This keyword encapsulates a piece of code, which is reported into gen-

erated code, exactly as it is written in the code editor. In this way,

Chora compiler does not check the correct syntax, but simply copies it

in the proper location. Native statement is used only for target, in fact,

it is not visible from prototyper and it is evidenced by a warning. To

avoid this warning, native statement has to be preceded by $if !$pro-

totyper directive. Therefore, to implement event management, a timer

is instantiated, in the composer of main screen, to periodically call a

function which checks if flush of UI queue is requested. During flushing,

events are taken from queue and processed, calling, via function pointer

a method implemented for the screen. In order to do this, ewmain file,

used to implement a generic framework for running Embedded Wizard

generated GUI applications on a dedicated target with or without the

usage of an operating system, is modified. Specifically, it is added a func-

tion to return the instance of implemented screen, permitting to pointed

function to call the correct method through that instance. After that,

called method will modify the proper widget.

On the other direction, communication is simpler, it needs to associate a

slot method to the save button, when it is pressed, instruction is called

and in its definition, the HMI function is inserted to send event, always

in native statement. Then, when code is generated, the whole project

might be opened in STM32CubeIDE and in GUI task, of main file, func-

Implementation of a Software Interface Layer 74

tion to check if at least one element is into user queue, is used. If an event

arrives, it is picked up and processed, exactly as it was for TouchGFX.

Implementation of a Software Interface Layer 75

7.3 How to use Hmi for Prototyper on EW

Embedded Wizard and in particular its Chora code, are platform inde-

pendent, but this also impacts on prototyping environment. While this

can be easily overcame on target, for prototyper it is not. Main problems

to achieve to use Hmi on prototyper is to use the Software Layer, im-

plemented in C language, into code editor of Embedded Wizard, which

accepts only Chora language. Native statement has also been discarded,

because it is not visible from prototyper, only the intrinsic module[17]

remains to extend EW by that specific functionality. From technical

point of view, intrinsic module is an ordinary Dynamic Loadable Li-

brary containing C functions of the Software Layer. EW recognizes and

loads this module automatically and then, functions can be used like any

other built-in function of Chora. These functions are called intrinsics.

DLL is written using Microsoft Visual Studio C++ 2019 and following

the example shown in Embedded Wizard documentation. Main steps

are reported for completeness.

Initially, a project based on available DLL template is created. Then,

access to properties menu of project to adjust few parameters. Into page

General change target extension to *.ewi, so that resulting DLL with

that extension is obtained, to be recognised as a valid intrinsic module

by Embedded Wizard. Then, add, to include directories, all paths of

necessary folders, where files to include are stored. At this point, config-

uration is complete and header and source files of Hmi can be added to

the DLL project. To implement the library, interface files must be mod-

ified to adapt them to the new software. First of all, it is included the

file with functionality common to all intrinsics: ewrte.h/.c located into

Chora/Sdk just below of EW installation directory. Then, data types of

function prototypes declared into Hmi must be translated to data types

available in Chora. Body function can remain the same as it has to run

on any other system. In other particular cases, like memory manage-

ment and use of strings, Runtime Environment function, provided into

headers previously included, must be used.

Implementation of a Software Interface Layer 76

After that, in order to be recognised as a valid intrinsic module it

has to implement EW MODULE(...) section reported into appendix

C.1. Then, Hmi functions have to be exported, so they can be seen

from the Embedded Wizard prototyping environment. For this pur-

pose, it is necessary to enhance implementation of the intrinsics module

by an EW DEFINE INTRINSICS...EW END OF INTRINSICS table.

This table references all affected C functions and provides information

about their parameters and return values. Knowing this, Embedded

Wizard can find and invoke functions. For each exported function an

EW INTRINSIC section is needed and each one expects six parame-

ters:

1. literal string with name of intrinsic function, which will be called

inside Chora editor;

2. literal string with Chora data types of value returned by function;

3. an integer number indicating parameters expected from intrinsic;

4. literal string containing a comma separated list of Chora data types

matching parameters of respective C function;

5. literal string with comma separated list of parameter names accord-

ing to declaration of C function;

6. C function associated to intrinsic.

An example of exported function with that statement is reported into

appendix C.2.

Finally, project can be built and the DLL with *.ewi extension can be

copied into EW project folder. When project is opened a message asks

to load the intrinsic module.

For the example mentioned before, Hmi is used for prototyper only to

manage communication from Ui to backend, testing it through a simple

Simulink model. Designed model receives event occurred whenever but-

ton, to save speed value, is pressed. For the opposite direction, Hmi is

Implementation of a Software Interface Layer 77

intended to send speed values to UI gauge, but in order to do this, call-

back pointed by table must call a method within the instance of screen.

Accessing that instance is not that easy for prototyper. Initially, it is

tried to get instance as it was for target, but in this case calling the

wrapper method, available into generated code, to modify proper wid-

get. At the end, it has been chosen to use “brute force” by implementing

a new function HmiUi GetEvents, which returns event identifier and in-

teger value from queue items, one by one, while method call is demanded

to user implementation. Therefore, graphic developer has to recognise

which event is extracted and then call the proper method.

7.4 MinGW

Another generalisation is based on compiler. In fact, the entire Software

Interface Layer can be built with the free MinGW compiler. This feature

is tested, for example, with CLion of JetBrains. It is tried creating a new

project either in C99 and C11 languages. It generates a warning, where

strcpy s or sprintf s, security enhanced version of homonymous functions

without suffix “ s”, are used, but it works correctly. This important

feature opens to a large variety of IDEs because GCC compiler is free

on the web.

CHAPTER 8

Further Improvements

After that, idea and structure of Software Interface Layer have been de-

scribed and understood, some space is left for possible improvements,

which can upgrade performance of implemented interface.

A possible enhancement to speed up the flush, for instance, is to use two

different queues. While one is flushed the other is being pushed by new

events. Another approach could be to save index position, when flush

is requested and perform event extraction up to that position, in the

meanwhile, new occurred events are inserted into next array locations.

Another improvement is oriented to use different encodings. Through

a typedef it is possible to set a custom type for char data, in order to

manage a Unicode coding, for instance.

Hence, the interface can be further generalised by testing it on a wide

variety of graphics software, but also on different hardware board fami-

lies.

Another improvement is, of course, working on Embedded Wizard, to

have a more general Prototyper behaviour and similar to the approach

used for TouchGFX. Understanding how to modify the DLL allowing to

call User Interface methods to update visible widgets.

78

Bibliography

[1] TouchGFX Documentation, rev. Dec. 2020, Installation

https://support.touchgfx.com/docs/introduction/installation

[2] TouchGFX Documentation, Embedded Graphics

https://support.touchgfx.com/docs/basic-concepts/embedded-

graphics

[3] embryonic.dk, Sept. 2019, Configuring QSPI for TouchGFX and

CubeIDE on the STM32F746G-DISCO board

https://www.youtube.com/watch?v=237lPdMsDZs&feature=youtu.be

[4] TouchGFX Documentation, rev. Dec. 2020, Framebuffer

https://support.touchgfx.com/docs/basic-concepts/framebuffer

[5] ST Official Website, STM32F4 example package

https://www.st.com/en/embedded-software/stm32cubef4.html

[6] TouchGFX Documentation, TouchGFX AL Development

https://support.touchgfx.com/docs/development/touchgfx-hal-

development/touchgfx-al-development-introduction

[7] TouchGFX Documentation, UI Development, UI Components

https://support.touchgfx.com/docs/development/ui-

development/ui-development-introduction

79

Implementation of a Software Interface Layer 80

[8] TouchGFX Documentation, TouchGFX Engine Features,

Languages and Characters

https://support.touchgfx.com/docs/development/ui-

development/touchgfx-engine-features/languages-and-characters

[9] TouchGFX Documentation, Working with TouchGFX,

Simulator

https://support.touchgfx.com/docs/development/ui-

development/working-with-touchgfx/simulator

[10] EE by Karl, Jan. 2020, STM32CubeIDE 1.2.1 and TouchGFX

4.13.0 with STM32F746G-DISC0 kit

https://www.youtube.com/watch?v=12KXreXaLp0&t=613s

[11] TouchGFX, STMicroelectronics, July 2018, Hardware

integration on STM32F769 with TouchGFX - Webinar

https://www.youtube.com/watch?v=jQO7zhX0e0Q&t=557s

[12] Prof. Fatourou Panagiota, May 2012, Introduction to Sockets

Programming in C using TCP/IP

https://www.csd.uoc.gr/ hy556/material/tutorials/cs556-3rd-

tutorial.pdf

[13] SDL Library Website

https://www.libsdl.org/

[14] Mathworks Official Website, Stateflow

https://it.mathworks.com/products/stateflow.html

[15] STM32F429I-EVAL User Manual, March 2015

https://www.st.com/resource/en/user manual/dm00093451-

stm32429ieval-evaluation-board-for-the-stm32f429-line-

stmicroelectronics.pdf

[16] Embedded Wizard Documentation, rev. 10.0, Embedded

Wizard

https://doc.embedded-wizard.de/

Implementation of a Software Interface Layer 81

[17] Embedded Wizard Documentation, rev. 10.0, Platform

Integration Aspects, Implementing Prototyper intrinsics

https://doc.embedded-wizard.de/implement-intrinsics?v=10.00

APPENDIX A

HMI Function with double definition

/∗
∗ I n i t i a l i s e s backend .

∗/
int Hmi Init (const char∗ addr , const unsigned short port)

{
#i f n d e f SIMULATOR

lock Hmi QueueIn i t () ;

return 0 ;

#else

int retVal = 0 ;

retVal = lock Tcp CommInit () ;

i f (port != 0)

{
retVal = lock Tcp Cl i en tCrea teSocke t (addr , port) ;

}
else

{
retVal = −1;

}
l ock Hmi QueueIn i t () ;

return retVal ;

#end i f

}

82

APPENDIX B

TouchGFX Code Modifications

B.1 HALSDL2: Main Loop modification

void HALSDL2 : : taskEntry ()

{
u in t 32 t l a s tT i ck = SDL GetTicks () ;

SDL AddTimer (1 , myTimerCallback2 , 0) ; // S ta r t t imer

SDL Event event ;

bool c l i e n t c onn e c t ed = 0 ;

// I n i t i a l i s a t i o n winsock l i b r a r y and c rea t i on o f s o c k e t s e r v e r

i f (HmiUiTcp Init (SERVERADDR, SERVER PORT) == −1)
e x i t (EXIT FAILURE) ;

// I n i t i a l i s a t i o n o f Ui −> User queue

HmiUi QueueInit () ;

while (SDL WaitEvent(&event) && i sA l i v e)

{
switch (event . type)

{
case SDL USEREVENT:

{
u in t 32 t th i sT i ck = SDL GetTicks () ;

[. . .]

// Check i f a c l i e n t i s a v a i l a b l e f o r connect ion

i f (c l i e n t c onn e c t ed == 0 && HmiUiTcp Connect () == 0)

{
// To accep t on ly one c l i e n t

83

Implementation of a Software Interface Layer 84

c l i e n t c onn e c t ed = 1 ;

}
break ;

}
[. . .]

}

i f (c l i e n t c onn e c t ed == 1)

{
c l i e n t c onn e c t ed = HmiUiTcp SrvProcess () ;

}
}

HmiTcp CloseSocket () ;

}

B.2 Model getInstance() function

// Function to re turn the in s tance o f Model Class t ha t c a l l s i t

stat ic Model∗ ge t In s tance ()

{
return i n s t anc e ;

}

B.3 Model Callback example

// Function to turn on/ o f f the s t e r e o

extern ”C” void c l b k c t o g g l e S t e r e o (void ∗ value)
{

return Model : : g e t In s tance ()−> t o gg l eS t e r e o (∗ ((int ∗) va lue)) ;
}

APPENDIX C

Embedded Wizard DLL

C.1 EW Intrinsic Module Validation

EWMODULE

(

INTRINSICS IFC VERSION ,

L” In t r i n s i c sModu l e ” ,

L”This i s an i n t r i n s i c module to in c lude Software I n t e r f a c e Layer in to EW prototyper ”

)

C.2 Code to Export C Function

EW DEFINE INTRINSICS

EW INTRINSIC

(

L” Int r in s i cHmiUiTcp In i t ” ,

L” int32 ” ,

2 ,

L”handle , u int16 ” ,

L”addr , port ” ,

HmiUiTcp Init

)

[. . .]

EW END OF INTRINSICS

85

	Introduction
	TouchGFX
	TouchGFX Installation
	TouchGFX Embedded Graphics
	TouchGFX: Graphic Engine
	Main Loop
	Handling Framebuffers
	Memory Usage

	TouchGFX Project Development
	Abstraction Layer
	User Interface Development

	TouchGFX Designer
	Widgets and Containers
	Images, Texts and Fonts

	Compiling and Flashing
	Compile for PC Simulator
	Compiling for Target Hardware

	TouchGFX PC Simulator
	TouchGFX Backend Communication
	Data from View to Model
	Data from Model to View
	External Event Sampling

	Create a new project

	Software Interface Layer: Main Concepts
	Interface Work on Target
	Events Toward UI
	Events Toward Backend
	How To Integrate the Interface in the IDE

	Interface work on PC Simulator
	Inter-Process Communication for Interface
	How To Integrate the Interface for Simulation

	Software Interface Layer Test

	Simulink Model
	Stateflow
	S-Function

	Functions Documentation
	Public General Functions
	HmiUi_QueueInit()
	HmiUiTcp_Init(const unsigned long addr, const unsigned short port)
	Hmi_Init(const char* addr, const unsigned short port)
	HmiUiTcp_Connect()
	HmiTcp_CloseSocket()
	HmiUiTcp_SrvProcess()

	Public Backend To Ui Functions
	Hmi_SendUiStateInt(const Hmi_UserEvIdEnumType evId, const Hmi_StateIntType value)
	Hmi_SendUiStateTxt(const Hmi_UserEvIdEnumType evId, const char* text)
	HmiUi_GetUserEvtStatePending()
	HmiUi_ProcessEvents()
	HmiUi_IsFlushRequested()
	Hmi_Flush()

	Public Ui To Backend Functions
	HmiUi_AddDblEvtToQueue(const Hmi_UiEvIdEnumType evId, const Hmi_StateDblType value)
	Hmi_GetUiEvtStatePending()
	Hmi_GetUiNextEvtState(Hmi_UiEvIdEnumType *evId, Hmi_StateDblType *evValue)
	Hmi_GetEvtCnt(Hmi_UiEvIdEnumType evId)
	Hmi_ProcessEvent(const Hmi_UiEvIdEnumType evId, const Hmi_StateDblType evValue)

	Home Automation Example
	Home Automation Project

	Interface Generalisation
	Embedded Wizard
	How to use Hmi for Target on EW
	How to use Hmi for Prototyper on EW
	MinGW

	Further Improvements
	HMI Function with double definition
	TouchGFX Code Modifications
	HALSDL2: Main Loop modification
	Model getInstance() function
	Model Callback example

	Embedded Wizard DLL
	EW Intrinsic Module Validation
	Code to Export C Function

