
POLITECNICO DI TORINO
Master’s Degree in Communications and Computer

Networks Engineering

Master’s Degree Thesis

Machine Learning-Based Routing and
Wavelength Assignment in Optical

Networks

Supervisors
Prof. Andrea BIANCO

Prof. Cristina ROTTONDI

Candidate

Alessandro DE VITIS

April, 2021

Abstract

Recently, the wide area of Machine Learning (ML) has attracted the attention
of the networking community to address different optical networking problems.
Among these, the Routing and Wavelength Assignment (RWA) problem represents
a fundamental task for handling connection requests on-demand in real-time within
a dynamic network scenario. Given such problem belonging to the NP-complete
class, and hence being not optimally solvable in the case of large scenarios, this
thesis aims at applying innovative ML methods to address the RWA problem in
acceptable cmputational times.
In particular, Graph Neural Network (GNNs) are specifically tailored to solve
problems with a graph-based structure, and hence offer interesting alternatives
to face the RWA problem according to a new paradigm. We rely on a particular
GNN architecture, which is the Message-Passing Neural Network (MPNN), able
to exploit the data graph structure by following the message-passing principle.
When trained according to a supervised approach, i.e. when fed with labeled RWA
examples, results show that the MPNN is able to achieve excellent performances
within small and medium-large scenarios, with peak accuracies above 90%.

KEYWORDS: Machine Learning, Graph Neural Network, Routing and Wavelength
Assignment, Optical Networks

Acknowledgements

This thesis represents for me the end of a long journey lasted almost six years,
during which I have learned a lot and, most, I have changed a lot. Therefore, I
would like to say a huge "thank you" to Politecnico di Torino for the extraordinary
teachings and opportunities it has offered me during my university career. In
addition, I definitely would like to say "thank you" to Prof.Bianco and Prof.Rottondi
for having assigned me this project, for having believed in me and always supported
through the thesis development.
Last but not least, from the deep of my heart I say "thank you": to my parents,
which have allowed me to study without thinking at anything else; to all my friends
forever, because they have always supported my choices during these years and have
never run away; to all my class-mates, who have shared with me the happiest and
the most difficult moments; to the city of Poznań and all the people I met there,
because they have made my Erasmus experience unforgettable.

i

Table of Contents

List of Tables vi

List of Figures viii

Acronyms xii

1 Introduction 1
1.1 Background of the Project . 1
1.2 Motivation and Goals of the Project 2
1.3 Thesis Outline . 2

2 Background on Routing and Wavelength Assignment 3
2.1 Introduction to the RWA Problem 3
2.2 Static RWA Problem . 5
2.3 Dynamic RWA Problem . 7

2.3.1 DLE Scenario . 7
2.3.2 R Subproblem . 7
2.3.3 WA Subproblem . 10

3 Machine Learning Methods and Graph Neural Networks 12
3.1 Introduction . 12

3.1.1 The Increasing Interest in Machine Learning 12
3.1.2 Related Work . 13

3.2 Machine Learning Methods and Neural Networks 14
3.2.1 Machine Learning Approaches 14
3.2.2 Machine Learning Models 16

3.3 Graph Neural Networks . 19
3.3.1 A Multitude of Graph-Structured Tasks 19
3.3.2 Definition of Graph . 19
3.3.3 GN Block . 21

3.4 Design of a GNN Architecture . 24

iii

3.4.1 Graph Representation . 24
3.4.2 GN Block Configurations . 25
3.4.3 Composable Multi-Block Architectures 27

4 GNN Framework for the RWA Problem 29
4.1 Graphs Data Representation . 29

4.1.1 Input Graph Data . 29
4.1.2 Target Graph Data . 32
4.1.3 Calls Generation Process . 34

4.2 The MPNN Model . 36
4.2.1 Training Phase: a Supervised Approach 36
4.2.2 The MPNN Internal Structure 37
4.2.3 Loss Computation and Optimization 40
4.2.4 Hyperparameters . 40

4.3 Test Phase and Recovery Algorithm 43
4.3.1 Test Phase . 43
4.3.2 Recovery Algorithm . 43
4.3.3 Performance Metrics . 53
4.3.4 MPNN Implementation within a Network Scenario 54

4.4 Computational Complexity . 60

5 Results 63
5.1 Performance Analysis: 1st Experiment 64

5.1.1 Network Scenario . 64
5.1.2 Analysis Set-Up . 65
5.1.3 Numerical Results . 65

5.2 Performance Analysis: 2nd Experiment 68
5.2.1 Network Scenario and Analysis Set-Up 68
5.2.2 Numerical Results . 69

5.3 Performance Analysis: 3rd Experiment 71
5.3.1 Network Scenario and Analysis Set-Up 71
5.3.2 Numerical Results . 73

5.4 Performance Analysis: 4th Experiment 74
5.4.1 Network Scenario and Analysis Set-Up 74
5.4.2 Numerical Results . 75

5.5 Time Complexity Analysis . 76
5.5.1 Hyperparameters Time Analysis 77
5.5.2 Network Scenarios Time Analysis 79

iv

6 Conclusion 81
6.1 Final Considerations . 81
6.2 Future Works . 82

Bibliography 83

v

List of Tables

4.1 Nodes attributes of the input graph in Fig. 4.1. As turns out
from the attributes, Node 2 is the source node and Node 6 is the
destination node. 31

4.2 Edges attributes of the input graph in Fig. 4.1. As turns out from
the attributes: Edges (1,3) and (3,5) have all wavelengths available;
Edges (4,5) and (5,6) have wavelength λ1 which is allocated, all the
others available; Edges (2,3) and (2,4) have wavelength λ2 which is
allocated, all the others available. 32

4.3 Nodes labels for the solution of Fig. 4.2 34
4.4 Edges labels for the solution of Fig. 4.2 34
4.5 Example of calls sequence simulation for the graph in Fig. 4.1.

Notice that the 7th call has been blocked because on the link (3,2)
all the wavelengths are already allocated. 35

4.6 Example of MPNN’s node output labels for the solution of Fig 4.2. 39

5.1 Features of the Interroute network. 64
5.2 Iterations analysis - results for the Interroute network with 80 wave-

lengths. The confidence interval for the accuracies is negligible. . . . 66
5.3 Messaging steps analysis - results for the Interroute network with 80

wavelengths. The confidence interval for the accuracies is negligible. 66
5.4 Learning rate analysis - results for the Interroute network with 80

wavelengths. The confidence interval for the accuracies is negligible. 67
5.5 Batch size analysis - results for the Interroute network with 80

wavelengths. The confidence interval for the accuracies is negligible. 67
5.6 Iterations analysis - results for the Interroute network with 1 wave-

length. The confidence interval for the accuracies is negligible. . . . 69
5.7 Messaging steps analysis - results for the Interroute network with 1

wavelength. The confidence interval for the accuracies is negligible. 69
5.8 Learning rate analysis - results for the Interroute network with 1

wavelength. The confidence interval for the accuracies is negligible. 70

vi

5.9 Batch size analysis - results for the Interroute network with 1 wave-
length. The confidence interval for the accuracies is negligible. . . . 70

5.10 Features of the UUNET network. 72
5.11 Iterations analysis - results for the UUNET network with 80 wave-

lengths. The confidence interval for the accuracies is negligible. . . . 73
5.12 Messaging steps analysis - results for the UUNET network with 80

wavelengths. The confidence interval for the accuracies is negligible. 73
5.13 Learning rate analysis - results for the UUNET network with 80

wavelengths. The confidence interval for the accuracies is negligible. 74
5.14 Batch size analysis - results for the UUNET network with 80 wave-

lengths. The confidence interval for the accuracies is negligible. . . . 74
5.15 Iterations time analysis - results for the Interroute network with

80 wavelengths. The confidence interval for the execution times is
negligible. 77

5.16 Messaging steps time analysis - results for the Interroute network
with 80 wavelengths. The confidence interval for the execution times
is negligible. 78

5.17 Learning rate time analysis - results for the Interroute network with
80 wavelengths. The confidence interval for the execution times is
negligible. 78

5.18 Batch size time analysis - results for the Interroute network with
80 wavelengths. The confidence interval for the execution times is
negligible. 79

5.19 Network scenarios time analysis. The confidence interval for the
execution times is negligible. 80

vii

List of Figures

2.1 A WR network with lightpath connection [2]. 4
2.2 Fixed shortest-path route from Node 0 to Node 2 [2]. 8
2.3 Two alternate routes from Node 0 to Node 2 [2]. 8
2.4 Adaptive route from Node 0 to Node 2 [2]. 10

3.1 A simple artificial neural network. 16
3.2 A perceptron receiving three input values. xi is the input value

transmitted on the i− th edge, wi is the current weight of the i− th
edge, y is the perceptron output obtained by applying the activation
function to q

iwixi . 17
3.3 Graph representation according to the formal definition of [19]. . . . 20
3.4 Full GN Block [19]. 21
3.5 Updates in a GN block. Blue indicates the element that is being

updated, whereas black indicates other elements which are involved
in the update [19]. 22

3.6 Algorithm 1 [19]. 23
3.7 GN block configuration in a MPNN [19]. 26
3.8 Example of message-passing. Each row highlights the information

that diffuses through the graph starting from a particular node.
Notice that the information that a node has access to after m steps
of propagation is determined by the set of nodes and edges that are
at most m steps away [19]. 26

3.9 GN block configuration in a NLNN [19]. 27
3.10 Composition of GN blocks. [19]. 28
3.11 Encode-process-decode architecture [19]. 28

4.1 Graph representation of an input incoming connection request from
Node 2 to Node 6. Nodes and edges attributes can be respectively
found in Table 4.1. and Table 4.2 31

4.2 Dijkstra & First-Fit solution for the input graph of Fig.4.1. The
solution route is [(2,4),(4,5),(5,6)] with allocated wavelength λ1. . . 33

viii

4.3 Block diagram of the MPNN training phase for the RWA problem. . 36
4.4 Internal architecture of the MPNN block. 37
4.5 Fully connected MLP with 2 hidden layers, each consisting of 32

neurons. 38
4.6 Core block. 39
4.7 MPNN test: two possible scenarios. 44
4.8 MPNN test: if graphout is incorrect, it is given as input to the

recovery algorithm. 45
4.9 Recovery algorithm. 46
4.10 Example of routing check. Nodes labeled as part of the solution

are cyan, whereas edges labeled as part of the solution are coloured
according to the allocated wavelength. Although the output solution
is incorrect due to a wrong wavelength allocation, the detected
route is the same of the target solution: [(1,4),(4,5),(5,8)]. Then, by
applying a first-fit recovery, λ2 is allocated. 47

4.11 Example of nodes labels recovery. Nodes labeled as part of the
solution are cyan, whereas edges labeled as part of the solution are
coloured according to the allocated wavelength. Although the output
solution is incorrect, all the nodes labels are correct, and the target
route [(1,4),(4,5),(5,8)] can be reconstructed. Then, by applying a
first-fit recovery, λ2 is allocated. 48

4.12 Example of edges labels recovery. Nodes labeled as part of the
solution are cyan, whereas edges labeled as part of the solution
are coloured according to the allocated wavelength. Although the
output solution is incorrect, all the edges labels are correct, and the
target route [(1,4),(4,5),(5,8)] with allocated wavelength λ2 can be
reconstructed. 49

4.13 Example of edges labels recovery. Nodes labeled as part of the
solution are cyan, whereas edges labeled as part of the solution
are coloured according to the allocated wavelength. Although the
output solution is incorrect, all the edges labels are correct, and the
target route [(1,4),(4,5),(5,8)] can be reconstructed. However, the
wavelength allocation is incorrect, and, through a first-fit recovery,
λ2 is allocated. 50

4.14 Example of route validity check. Nodes labeled as part of the
solution are cyan, whereas edges labeled as part of the solution are
coloured according to the allocated wavelength. Although the output
solution is incorrect, by following the edges labels, a valid route from
source to destination is found: [(1,4),(4,2),(2,5),(5,8)]. Moreover, the
wavelength allocation with λ3 is feasible, and no first-fit recovery is
needed. 51

ix

4.15 MPNN implementation within a network scenario. Any MPNN’s
decision is subject to the feasibility algorithm, which establishes
whether such decision is either feasible or unfeasible. 55

4.16 Feasibility algorithm. 56

5.1 Interroute Network [24]. 64
5.2 Graphical performance results for the Interroute network with 80

wavelengths. 68
5.3 Graphical performance results for the Interroute network with 1

wavelength. 71
5.4 UUNET Network [24]. 72
5.5 Graphical performance results for the UUNET network with 80

wavelengths. 75
5.6 Graphical performance results for the UUNET network with 1 wave-

length. 76
5.7 Graphical hyperparameters time analysis results for the Interroute

network with 80 wavelengths. 79
5.8 Graphical network scenarios time analysis results. All the hyperpa-

rameters are set to the default values. 80

x

Acronyms

WDM
Wavelength Division Multiplexing

WR
Wavelength-Routed

RWA
Routing and Wavelength Assignment

ILP
Integer Linear Programming

ML
Machine Learning

AI
Artificial Intelligence

SDN
Software Defined Networking

SLE
Static Lightpath Establishment

DLE
Dynamic Lightpath Establishment

R
Routing

xii

WA
Wavelength Assignment

FF
First-Fit

RF
Random-Fit

LU
Least-Used

MU
Most-Used

SL
Supervised Learning

UL
Unsupervised Learning

RL
Reinforcement Learning

NN
Neural Network

ANN
Artificial Neural Network

CNN
Convolutional Neural Network

RNN
Recurrent Neural Network

GNN
Graph Neural Network

xiii

MLP
Multilayer Perceptrons

SVM
Support Vector Machines

GN Block
Graph Network Block

MPNN
Message-Passing Neural Network

NLNN
Non-Local Neural Network

SCE
Softmax Cross-Entropy

HPC
High Performance Computing

xiv

Chapter 1

Introduction

1.1 Background of the Project

Nowadays, worldwide society is largely based on the Internet. This is arguably
the most important and revolutionary engineering product in the human history,
and the contemporary world relies on the Internet for the great part of human
activities.
In such a more and more Internet-based world scenario, it is evident that the
increase of bandwidth demands of network users has become a critical challenge.
To handle the problem, among all the possible multiplexing techniques, Wavelength
Division Multiplexing (WDM) has been rapidly gaining acceptance as solution
means in optical fiber networks.
The implementation of such a multiplexing technique leads to what today is re-
ferred to as Wavelength-Routed (WR) optical WDM networks. In a WR network,
wavelengths are the key resource to route and switch information in the optical
domain. In particular, end users communicate with one another via all-optical
WDM channels, which are referred to as lightpaths.
In setting up a ligthpath between two users, a route must be selected and a wave-
length must be allocated to the lightpath. The problem of finding routes and
assigning wavelengths in a multi-user communication scenario in a WR network is
referred to as Routing and Wavelength Assignment (RWA) problem. Depending
on the network implementation, the problem might have different constraints to
satisfy, but the one to be always respected is that two lightpaths that span one
link in common cannot be allocated the same wavelength.
Given the objective of minimizing the usage of resources, or, in other words, to
maximize the users access to the network, the RWA problem has revealed from the
beginning not easy to solve due to its NP-completeness nature.

1

Introduction

1.2 Motivation and Goals of the Project
The above explained RWA problem, according to the operational research literature
and in particular in [1], has been proved to belong to the NP-complete class; this
means it can be optimally solved by exact Integer Linear Programming (ILP)
formulas, which, however, suffer from high computational complexity, requiring a
huge amount of time to solve medium-size and large-size network topologies. To
bypass the computational time problem, a large number of heuristic algorithms
have also been proposed in the literature, offering faster solutions than ILP but
rather sub-optimal.
Given these assumptions, the objective of this project is to explore a recently
developed area to solve computational challenges, which is Machine Learning (ML),
in order to solve the RWA problem in reasonable times and with enough acceptable
results.
Indeed, the interest in Artificial Intelligence (AI) and, more specifically, in the area
of ML has been increasing rapidly in the networking community in recent years.
Examples of ML implementations can be found in the currently being developed
Software Defined Networking (SDN) principle, on which 5G and future networks
will rely.
Therefore, the project has been launched in the belief that ML tools can turn
useful even in an important aspect of modern RW optical networks, which is the
RWA problem. In particular, a specific type of ML model, called Graph Neural
Network (GNN), is tested to understand whether this innovative area can offer an
alternative way to bypass RWA NP-hardness.

1.3 Thesis Outline
The content of the thesis is organized in the following way.
Chapter 2 provides a detailed background on the RWA problem, discussing its
formal definition and the proposed algorithms from literature.
Chapter 3 introduces ML approaches and models, with a particular highlight on
GNNs and how these work.
Chapter 4 presents in detail our GNN framework, used during the thesis to apply
ML techniques to the RWA problem.
Chapter 5 reports performance and time complexity numerical results in different
networking scenarios, showing ML ability in solving the RWA problem and how
this varies depending on the choice of some input parameters.
Chapter 6 presents the project final considerations and possible future works.

2

Chapter 2

Background on Routing and
Wavelength Assignment

2.1 Introduction to the RWA Problem
In a WR network scenario, end users communicate with one another via all-optical
WDM channels, which are referred to as lightpaths (Fig. 2.1).

A lightpath is therefore a virtual circuit which exploits optical technology, and
in general spans one or more fiber links. Every lightpath is allocated a specific
wavelength on any link which is part of its route; in the absence of wavelength
converters, a lightpath must occupy the same wavelength all along its route. Such
a property is referred to as wavelength-continuity constraint, and will be held valid
through all the thesis. In Fig. 2.1, for example, one can observe one lightpath
which has been allocated the wavelength λ1, and another lightpath which has been
allocated the wavelength λ2.
Lightpaths are clearly an efficient end-to-end way to allow communication between
nodes, but suffer a fundamental technological constraint: two lightpaths which span
the same link cannot be allocated the same wavelength. Therefore, considering
wavelengths as precious network resources, routing lightpaths and assigning them
wavelengths in order to minimize the resources usage becomes a challenging task.
In particular, given a WR network and a set of connections to establish, as [2] states,
"the problem of setting up lightpaths by routing and assigning a wavelength to each
connection is called the Routing and Wavelength Assignment (RWA) problem".
Based on the nature of the connection requests, the RWA problem might assume
different forms. As one can read in [3], connection requests may be of three types:
static, incremental and dynamic.

3

Background on Routing and Wavelength Assignment

Figure 2.1: A WR network with lightpath connection [2].

• With static traffic, the entire set of connections is known in advance (often
by means of a Traffic Matrix), and the RWA problem consists in setting up
lightpaths for these connections in a global fashion while minimizing network
resources such as the number of used wavelengths. Alternatively, one may
attempt to set up as many of these connections as possible for a given fixed
number of wavelengths.
The RWA problem for static traffic is known as the Static Lightpath Estab-
lishment (SLE) problem, and will be analyzed in the next sections.

• In the incremental-traffic case, connection requests arrive sequentially, a
lightpath is established for each connection, and the lightpath remains in the
network indefinitely.
This case is not of our interest and will not be considered.

• For the case of dynamic traffic, a time window is considered in which a sequence
of connection requests arrives. If the connection (also known as call) request
is accepted, then a lightpath is allocated (and a wavelength is reserved on the
route) for all the connection duration, and is released, i.e. the wavelength is
made again available, at the end of it.
Given a set of available wavelengths, the objective is to set up lightpaths and

4

Background on Routing and Wavelength Assignment

assign wavelengths in a manner that minimizes the amount of connection block-
ing. Such a problem is referred to as the Dynamic Lightpath Establishment
(DLE) problem, and will be discussed in detail in the next sections.

The SLE problem can be formulated as a integer linear programming (ILP)
problem, which is NP-complete [3].
For what concerns the DLE case, instead, the problem is definitely more difficult to
solve due to the fact that connections are not known a-priori. Therefore, heuristics
methods are generally employed and every incoming call is treated as a RWA
problem to solve. As one can see deeper in the next sections, the heuristics methods
tend to partition the RWA problem in two independent subproblems: Routing and
Wavelength Assignment. Both the subproblems can be solved with several different
heuristics algorithms from literature [2].

2.2 Static RWA Problem
In the static RWA problem, also known as SLE, all the connection requests are
known in advance, and hence the problem can be solved in a global fashion off-line.
Given a physical topology and a set of lightpaths to be established, the objective is
to minimize the number of wavelengths needed to set up all the connections.
SLE, with the wavelength-continuity constraint (which is always kept valid), can
be formulated as an "ILP in which the objective function is to minimize the flow in
each link" [2]. Such a objective corresponds to minimizing the number of lightpaths
passing through a particular link, which, in turn, leads to minimizing the number
of needed wavelengths.
Let us define the following variables:

• λsdw: traffic (number of connection requests) from any source s to any destina-
tion d on any wavelength w; since we assume that, if two or more lightpaths
exist between the same source-destination pair, each of them must employ a
distinct wavelength, then it holds λsdw ≤ 1.

• F sdw
ij : traffic (number of connection requests) from source s to destination d

on link ij and wavelength w; since a wavelength on a link can be assigned to
only one path, it holds F sdw

ij ≤ 1.

• Λ: traffic matrix.

• Λsd: number of connections needed between source s and destination d.
Given a network physical topology and a set of wavelengths, the SLE problem

can be formulated by means of the following ILP problem:

5

Background on Routing and Wavelength Assignment

Minimize: Fmax

such that:

•Fmax ≥
q
s,d,w F

sdw
max ∀ij

•q
i F

sdw
ij −q

k F
sdw
jk =


-λsdw if s = j

λsdw if d = j

0 otherwise
(2.1)

•q
w λsdw = Λsd

•F sdw
ij = 0,1

•q
s,d F

sdw
ij ≤ 1

For a given number of wavelengths, one can apply the ILP to see if a solution
can be found. If a solution is not found, then a greater number of wavelengths is
attempted. This procedure is iterated until the minimum number of wavelengths is
found.
As already said in the previous section, the ILP formulation of the SLE problem has
been proved being NP-complete [4], and hence becomes computationally consuming
in case of medium-large size networks.
An interesting application of ML techniques to the SLE problem solved by the ILP
formulation can be found in [5].

6

Background on Routing and Wavelength Assignment

2.3 Dynamic RWA Problem
2.3.1 DLE Scenario
The DLE problem presents a scenario which is unarguably more realistic than the
SLE one. In fact, as it is observed in reality, the connection requests are not known
in advance, but rather it is considered a time window in which, at any time, a new
call request can arrive, and, at any time, an active call can terminate.
Based on the network occupation and the adopted algorithm, a call request could
either be accepted or be blocked. In the former case, a lightpath is set up for all
the call duration and released at the end of it. Therefore, in that time interval,
a specific wavelength is reserved for the call along its route. In case of blocking,
instead, no resource is allocated and the call is dropped.
As for SLE, it is assumed that two lightpaths sharing at least one link cannot be
allocated the same wavelength. The difference is that for the dynamic problem,
instead of attempting to minimize the number of wavelengths as in the static case,
we assume that the number of wavelengths is fixed, and we attempt to minimize
the number of blocked calls.
Given that dynamic RWA is more complex than static RWA, it must be the case
that dynamic RWA is also NP-complete [6]. Moreover, since it is not possible
to know in advance when and which call requests will occur, DLE cannot be
formulated as an ILP problem, but is rather decomposed in two subproblems:
Routing (R) and Wavelength Assignment (WA).
R and WA subproblems can be solved in sequence for any incoming call request.
The R subproblem outputs a route, which is given as input to the WA subproblem,
whose output determines whether the call has been either accepted (and on which
wavelength) or blocked.

2.3.2 R Subproblem
When a new connection request arrives, a route from source to destination must
be determined first. In the literature, one can find various approaches to routing
connection requests.

Fixed Routing

The most straightforward approach to routing a connection is to always choose the
same fixed route for a given source-destination pair. The most popular choice is
typically the shortest-path route, which can be computed by well-known algorithms
such as Dijkstra’s algorithm or Bellman-Ford algorithm.
The great advantage is that, given the network topology, a fixed route for any
source-destination pair can be computed off-line and kept stored in the nodes

7

Background on Routing and Wavelength Assignment

routing tables. Therefore, any connection request from source will be routed on
the pre-determined route from source to destination (Fig. 2.2).

Figure 2.2: Fixed shortest-path route from Node 0 to Node 2 [2].

This approach is unarguably simple, but might lead to a critical drawback. In
fact, if the topology presents a distance-wise convenient link, several pre-determined
routes will span this link, and this would lead to a high number of wavelengths in
usage, and hence to a potentially high blocking probability.

Fixed-Alternate Routing

The simplest routing approach that considers multiple routes is fixed-alternate
routing. Given a source-destination pair, two routes from source to destination are
said to be alternate if they do not share any link (Fig. 2.3).

Figure 2.3: Two alternate routes from Node 0 to Node 2 [2].

Therefore, in fixed-alternate routing, each node in the network is required to
maintain an own routing table containing an ordered list of off-line computed

8

Background on Routing and Wavelength Assignment

alternate routes to each destination node. The list could be made, for example, by
the shortest-path route, the shortest-path alternate route, the second shortest-path
alternate route, and so on.
When a connection request arrives, the source node attempt to establish the call
on each of the routes from the routing table in sequence, until a route with a valid
wavelength is found, according to the selected WA approach. If no available route
is found from the list, then the connection is blocked.
Although this approach presents the drawback of the routing tables storage and a
larger number of computations during the DLE window, the great advantage of
fixed-alternate routing is that it can significantly reduce the connection blocking
probability compared to fixed routing.

Adaptive Routing

In adaptive routing, the route from a source node to a destination is chosen
dynamically, depending on the network state, which is determined by the set of all
connections that are currently in progress.
The idea is to route an incoming connection not on a set of pre-determined routes,
but on a route which is not congested or close to being congested. A possible
implementation is adaptive shortest-cost-path routing: each link in the network
has a cost of k units, being k the number of lightpaths currently spanning that
link. When k becomes equal to the number of available wavelengths, the link
is congested and its cost is automatically set to ∞. Therefore, a minimum-cost
routing algorithm is implemented; if no finite-cost route is found, then the call is
blocked.
In Fig. 2.4, one can observe an adaptive route from Node 0 to Node 2: although
links (1,2) and (4,2) are congested, the adaptive-routing algorithm can still establish
a connection between Nodes 0 and 2, whereas the above mentioned approaches
would block the call.

Indeed, by exploring all the possible paths from any source to any destination,
adaptive routing results in a lower blocking probability than fixed and fixed-
alternate routing. The cost to be paid for such an advantage is that this dynamic
approach requires an extensive support from the control and management protocols
to continuously update the routing tables at the nodes. Moreover, the average
routes length will result larger compared to the other approaches, since longer
paths are considered in order to bypass links congestion.

Other Routing Approaches

The ones above explained are definitely the simplest and most popular approaches as
solution to the R supbroblem. However, more complex and sophisticated solutions

9

Background on Routing and Wavelength Assignment

Figure 2.4: Adaptive route from Node 0 to Node 2 [2].

have been proposed in the literature. One may be interested in reading about the
least-congested-path routing in [2] and the Generic Dijkstra algorithm in [7].

2.3.3 WA Subproblem
Once the R subproblem has been solved by returning a route for the incoming
connection request, this route is given as input to the WA subproblem. The WA
subproblem, given the route and the network current state (local or global) in
terms of links occupation, determines whether the connection has been accepted
(and which wavelength has been allocated), or blocked.
Since in the DLE scenario the connection requests are not known in advance,
heuristic methods must be used to assign wavelengths to lightpaths. Given a fixed
and ordered number of wavelengths, these heuristic methods attempt to minimize
connection blocking in a sub-optimal way.
Several heuristics have been proposed in the literature to solve the WA subproblem,
and this section aims at describing the most popular ones. All these heuristics are
implemented as on-line algorithms and can be combined with any of the discussed
routing schemes.

First-Fit WA

First-Fit (FF) is the simplest heuristic method for the WA subproblem. Given
the route and the ordered list of wavelengths, the FF scheme checks if the first
wavelength is available on the route. If yes, the call is accepted and the first
wavelength is allocated; else, the scheme checks if the second wavelength is available
on the route, and so on until an available wavelength is found. If no available
wavelength is found, then the request is blocked.
FF performs well in terms of blocking probability and fairness. Moreover, it does

10

Background on Routing and Wavelength Assignment

not introduce any communication overhead because no global knowledge is required,
and hence its complexity is low.

Random-Fit WA

Given the route and the list of wavelengths, Random-Fit (RF) checks if all the
wavelengths are available on the route, and therefore determines the list of feasible
wavelengths. Next, it chooses randomly (usually with uniform probability) one
wavelength among all the available ones.
RF does not require any global knowledge, but, compared to FF, the computation
cost of this scheme is higher because it searches the entire space of wavelengths
for every incoming call. Moreover, RF is outperformed by FF in terms of blocking
probability.

Least-Used WA

Given the route and the current network state, the Least-Used (LU) scheme always
selects the wavelengths that is the least used in the network. The LU performance
is worse than RF, while also introducing additional communication overhead since
global information is needed at every computation.

Most-Used WA

Most-Used (MU) is the opposite of LU since it attempts to select the most used
wavelength in the network. The communication overhead, storage and cost are all
similar to those in LU. However, MU significantly outperforms LU and slightly
outperforms FF.

These four heuristics are the simplest and most popular in the literature. The
summary is that, in terms of blocking probability, MU outperforms FF, which
outperforms RF, which outperforms LU. However, one should also consider compu-
tational costs and communication overhead, which are strongly larger in MU and
LU compared to FF and RF.
For a more detailed overview on heuristics results and complexity comparison, one
could refer to [2] and [8]. Also, if one is interested in studying more sophisticated
and complex methods to be implemented in multi-fiber networks, can still refer to
[2].

11

Chapter 3

Machine Learning Methods
and Graph Neural Networks

3.1 Introduction

3.1.1 The Increasing Interest in Machine Learning

The interest in Artificial Intelligence (AI) and, more specifically, in the area of
Machine Learning (ML) has been increasing rapidly in the networking community
in recent years. Much attention has been devoted to the question of whether/when
traditional network protocol design, which relies on the application of algorithmic
insights by human experts, can be replaced by a data-driven (i.e. ML) approach.
In fact, nowadays enormous amounts of data can be retrieved from telecommunica-
tion networks, for example provided by network telemetry, quality indicators of
physical signals, data traffic traces and logs, user profiling etc. Such an abundance
of data has recently lead to the belief that, by leveraging the methodologies of ML,
several complex networking tasks can be performed with high accuracy and with
limited human intervention.
Moreover, such an increasing interest in ML methods applied to telecommunication
networks is due to the research and development of a revolutionary networking
principle, which is Software Defined Networking (SDN). Indeed, SDN is finally
becoming a reality and offers the opportunity to re-think and build highly pro-
grammable networks. As [5] states, "thanks to SDN, global-view networked datasets
comprising forwarding, performance and configuration states can be gathered and
further exploited with ML/AI algorithms, offering a new range of possibilities to
continuously improve how network services are provided and network resources
allocated".
Therefore, SDN is a promising application field for the implementation of ML

12

Machine Learning Methods and Graph Neural Networks

algorithms. The main strength of this new paradigm is that different network opti-
mization algorithms can be implemented, each targeting a different cost function.
Moreover, thanks to the centrality of the control plane, it is possible to simulta-
neously train different ML algorithms in off-line mode, i.e. without implementing
the output in the network, and only after generalizing and testing the model, this
can be deployed. This procedure can be repeated any time the model needs to be
retrained, following the evolution of network behavior itself.
In conclusion, SDN enables intelligent control and configuration actions in a very
short time and, together with ML/AI, represents the fundamental feature of future
telecommunication networks.

3.1.2 Related Work

As explained above, in the recent years the research community has applied ML
methods to different traditional networking problems.
One of the first and straightforward works about data-driven routing can be found
in [9]. [10] proposes an AI-based routing paradigm for Multi-Domain Optical
Networks, achieving excellent accuracies and significant signaling reduction. [11]
shows the interesting results achieved by a deep-reinforcement-model for routing,
modulation and spectrum assignment (Deep-RMSA) in elastic optical networks
(EONs). In [12], one can read about a ML-based Routing of QoS-constrained
connectivity services in optical transport networks (OTNs). [13] defines a Graph-
Aware Deep Learning (GADL) based intelligent routing strategy.
All the ones above mentioned are important references which have leveraged different
ML models in order to solve the routing problem. From the point of view of this
project, the most interesting related work can be found in [5], where Martìn et al.
propose a ML-based static RWA in SDNs. Their ML model turns to be capable of
solving the SLE problem by achieving high accuracies and reducing computational
time up to 93% in comparison to a traditional optimization approach based on ILP.
Their work can be taken as an important initial reference for ours, but it must be
considered that they have applied ML to the SLE in a very small network (5 nodes),
whereas, as the reader will see through this thesis, our work will be focused on
applying ML methods in order to solve the DLE problem in a way larger network,
thereby representing a more challenging task.
In particular, the ML methods of this project will be based on a particular type of
neural networks, which is Graph Neural Networks (GNNs). A detailed overview
on GNNs will be held in the next sections, but the reader can also find important
references in [14] and [15].

13

Machine Learning Methods and Graph Neural Networks

3.2 Machine Learning Methods and Neural Net-
works

In the wide area of the always-on-trend AI, the most popular and researched field
is definitely ML. To give a definition of such a vast discipline, ML is "the study
of computer algorithms that improve automatically through experience" [16]. In
fact, ML algorithms build in general a model based on sample data, known as
training data, in order to make predictions or decisions without being explicitly
programmed to do so.
The section presents a general overview on ML approaches and models, which will
turn useful through the thesis to understand how a particular ML model, called
Graph Neural Network (GNN), has been leveraged and applied to the dynamic
RWA problem.

3.2.1 Machine Learning Approaches
The discipline of ML employs various approaches to teach machines to accomplish
tasks where no fully satisfactory algorithm is available. ML approaches are tradi-
tionally divided into three broad categories, depending on the nature of the feedback
available to the learning system: supervised learning, unsupervised learning and
reinforcement learning [9].

Supervised Learning

The general idea of Supervised Learning (SL) is to "feed" the computer with some
example inputs and the corresponding desired outputs (called labels), and the goal
is to learn a general rule that maps any new input to the proper output. In other
words, SL is a formalization of the learning process through examples, i.e. in a
supervised way.
More in detail, SL algorithms build a mathematical model starting from a set of
data that contains both the inputs and the desired labels. The data is known
as training data, and consists of a set of training examples. Through iterative
optimization of a cost function, SL algorithms learn a function that can be used
to predict the output associated with new inputs. An optimal function will allow
the algorithm to correctly determine the output for inputs that were not part of
the training data, which is the general goal to achieve for any ML model. In fact,
an algorithm that improves the accuracy of its outputs over time is said to have
learned to perform that task, and hence is expected solve with the highest possible
accuracy unlabeled examples, known as test data.
Types of SL tasks include classification and regression. Classification algorithms are
used when the outputs are restricted to a limited set of values, whereas regression

14

Machine Learning Methods and Graph Neural Networks

algorithms are used when the outputs may have any numerical value within a range.
As the reader will see through the next chapters, the DLE problem will be treated
as a SL classification problem in which the goal is to correctly classify nodes and
edges belonging to the route from source to destination.
SL finds a vast usage in all the applications where a large set of data is available,
such as object and speech recognition, spam identification, face verification.

Unsupervised Learning

The Unsupervised Learning (UL) approach is exactly the opposite of SL, meaning
that no labels are given to the learning algorithm, leaving it on its own to find
structures in its input. The idea is to let the computer learn in absence of examples,
thereby in a unsupervised way.
More in detail, UL algorithms take a set of data that contains only inputs, and hence
have not been labeled, classified or categorized. The algorithm then tries to find
some structures in the data, like grouping or clustering of data points. Given the
absence of labeled targets and hence feedback, UL algorithms identify similarities
in the data and react based on the presence or absence of such similarities in each
new piece of data.
In general, UL can perform tasks that are more complex than the SL ones. Among
the most important ones, one can find data clustering, network analysis, market
research and density estimation.

Semi-supervised Learning

Semi-supervised Learning (Semi-SL) falls in the middle between SL and UL. In
fact, Semi-SL algorithms learn by means of a training data which is made in part
by labeled examples and in part by unlabeled examples.
Such an approach is useful when some of the training examples are missing their
labels. Moreover, evidence has shown that unlabeled data, when used in conjunction
with a small amount of labeled data, can produce a considerable improvement in
learning accuracy.

Reinforcement Learning

In Reinforcement Learning (RL), the ML algorithm relies on an agent program
which interacts with a dynamic environment in which it must perform a given
task. As it navigates its problem space, the program is provided feedback that’s
analogous to rewards, which it tries to maximize.
In particular, time is divided into discrete time slots. At the beginning of each
time slot, the agent observes the current state of the environment and selects an
action from a fixed set of actions. Once the agent chooses the action, the state of

15

Machine Learning Methods and Graph Neural Networks

the environment changes and the agent receives a reward signifying how good/bad
the action was. Time slot by time slot, the agent is supposed to learn by the
received rewards and regulate its actions depending on the current state in order
to maximize the final reward.
The RL approach can be used to perform tasks which can be learned by this
reinforcement procedure, such as driving a vehicle or playing a game against an
opponent.

Other Approaches

Other learning approaches different from these three categories are Self-Learning,
Feature Learning, Sparse, Dictionary Learning, Anomaly Detection, Robot Learning,
Association Rules Learning. The reader can find more about these approaches in
[17].

3.2.2 Machine Learning Models
Performing ML involves creating a model, which is first trained on some training
data and then can be tested on some test data. Although Neural Networks are
definitely the most popular model associated with ML, various types of models
have been researched and used for ML systems.

Artificial Neural Networks

Figure 3.1: A simple artificial neural network.

Artificial neural networks (ANNs), or simply neural networks (NNs), are a ML

16

Machine Learning Methods and Graph Neural Networks

computing model inspired by the biological neural networks that constitute human
and animal brains. Such systems turn out to be extremely reliable when it comes
to learn performing a new task not on the basis of some pre-programmed rules, but
just on the basis of some available data.
A NN is based on a collection of processing units called artificial neurons or per-
ceptrons. Such neurons are typically represented by nodes in a graph, and are
connected to each other via directed edges (Fig. 3.1). Each connection, like the
synapses in a biological brain, can transmit a signal (a real number) between
neurons. A neuron that receives a signal, processes it and can transmit it to other
neurons connected to it.
In particular, a neuron is generally connected to multiple neurons, and hence
receives multiple input values. Then, the neuron computes its output value by
means of a specific non-linear function, called activation function, of the weighted
sum of its inputs (Fig. 3.2).

Figure 3.2: A perceptron receiving three input values.
xi is the input value transmitted on the i − th edge, wi is the current weight of
the i − th edge, y is the perceptron output obtained by applying the activation
function to q

iwixi

Given a cost function representing the difference between NN output and target
labels, neurons and edges are assigned some initial weights, whose values change as
the learning phase proceeds in order to minimize such a cost function.
Typically, neurons are aggregated into layers. The first NN layer is called input
layer, whereas the last layer is called output layer. All the layers in the middle
are referred to as hidden layers. In Fig. 3.1 one can observe a NN made of four
layers. Therefore, during the training phase, signals travel from the input layer to
the output layer, possibly after traversing multiple hidden layers.
The output layer is the one which returns an output, a prediction or classification
based on the type of problem. Such a outcome is compared to the corresponding
target label and, through the so-called back-propagation algorithm [18], the NN

17

Machine Learning Methods and Graph Neural Networks

adjusts the nodes and edges weights in order to minimize the cost function, and
hence to increase the accuracy. Such a process is repeated iteratively until the
training phase is terminated.
Since the first researches about this still young AI field, NNs have been used on a
variety of tasks, including computer vision, speech recognition, machine translation,
social network filtering, playing board and video games and medical diagnosis.
Based on their internal architecture and learning algorithm, NNs can be classified
as belonging to various categories, such as deep NNs, convolutional NNs (CNNs),
recurrent NNs (RNNs) etc. In particular, a deep NN is a NN which consists of
multiple hidden layers and is sometimes referred to as Multilayer Perceptrons
(MLPs) network. For a deep insight on these different NNs structures, the reader
may refer to [18].
For the purposes of this project, the most important type of NN is a graph-structured
NN (GNN), which will be discussed in the next section.

Decision Trees

Decision tree is a predictive modeling approach used in ML. Such a model uses a
decision tree as a predictive model to go from observations about an item (repre-
sented in the branches) to conclusions about the item’s target value (represented
in the leaves).
A fundamental distinction is done. Tree models where the target variable can take
a discrete set of values are called classification trees; in these tree structures, leaves
represent class labels and branches represent conjunctions of features that lead to
those class labels. Decision trees where the target variable can take continuous
values are called regression trees.
The most remarkable application is decision analysis, where a decision tree can be
used to visually and explicitly represent decisions and decision making.

Support Vector Machines

Support Vector Machines (SVMs) are a set of related supervised learning methods
used for classification and regression. Given a set of training examples, each marked
as belonging to one of two categories, the SVM relies on a non-probabilistic, binary,
linear classifier training algorithm which builds a model that predicts whether a
new example falls into one category or the other.

Other ML models that can be found in the literature are regression analysis,
Bayesian networks and genetic algorithms [16].

18

Machine Learning Methods and Graph Neural Networks

3.3 Graph Neural Networks
3.3.1 A Multitude of Graph-Structured Tasks
Among all the real-world tasks, several of these are conveniently formulated as
tasks over graph-structured inputs, such as navigation, web search, protein folding,
and game-playing. Over the years, theoretical computer science has successfully
discovered effective and highly influential algorithms for many of these tasks, but
many problems are still considered intractable from this perspective. In fact,
although some problems can be easily solved by well-known polynomial time
algorithms such as shortest path and sorting, there exist more complex and non-
polynomially-solvable problems such as travelling salesman, boolean satisfability
and, as already explained, the RWA problem.
Despite classical ML methods have been applied to solve these graph-based tasks
over the years, it has been more recently that a new idea has become a trend in the
ML area. Such an idea consists of leveraging the problems’ graph-based structure
and hence building a graph-based ML model that could get advantages from it. In
fact, NNs that operate on graphs, and structure their computations accordingly,
have been developed and explored extensively in the last decade, and have grown
rapidly in scope and popularity. Such a new concept of NNs based on graphs are
referred to as Graph Neural Networks (GNNs). GNNs are proposed to collectively
aggregate information from a graph structure, and can model input and/or output
consisting of elements and their dependency.

3.3.2 Definition of Graph
Graphs are a kind of data structure which models a set of objects and their
relationships. Objects are represented by nodes, relationships are represented by
edges between nodes.
Although there is a universal agreement on the concept of graph, in the literature
there exist several formal definitions. Within this project, the definition provided by
[19] will be used as reference. Formally, a graph is defined as a 3-tuple G = (u, V, E),
where:

• u is the graph global attribute. In a networking context, for instance, u might
represent the network global utilization.

• V is the set of nodes and has cardinality N v; in particular, V = {vi}i=1:Nv ,
where each vi is a node’s attribute. In a networking scenario, for instance, V
might represent each router/switch with attributes for position.

• E is the set of edges and has cardinalityN e; in particular, E = {(ek, sk, rk)}k=1:Nv ,
where each ek is the edge’s attribute, rk is the index of the receiver node, and

19

Machine Learning Methods and Graph Neural Networks

sk is the index of the sender node. In a networking scenario, for instance, E
might represent the presence of links between routers/switches with attributes
for distance, available resources etc.

Figure 3.3: Graph representation according to the formal definition of [19].

In Fig. 3.3 one can observe a simple graph represented according to the formal
definition given above.
In general, here the term graph denotes a directed, attributed multi-graph with a
global attribute. To be more precise, these terms are defined as:

• Directed: one-way edges, from a sender node to a receiver node.

• Attribute: properties that can be encoded as a vector, set, or even another
graph.

• Attributed: edges and nodes have attributes associated with them.

• Global attribute: a graph-level attribute.

• Multi-graph: there can be more than one edge between nodes, including
self-edges.

The ones above are general properties, and, as the reader will see in the next
chapters, not all of them hold for our graph data.

20

Machine Learning Methods and Graph Neural Networks

3.3.3 GN Block
The main unit of computation in a GNN is the Graph Network Block (GN block).
The GN block is a graph-to-graph module which takes a graph as input, performs
computations over the structure, and returns a graph as output.
In the following, an insight about the internal structure of the GN block will be
presented, as well as the computational steps which are performed by it. Once
these topics are discussed, it will be easier to understand how the GN blocks
configuration can define a specific GNN architecture.

Internal Structure of a GN Block

A GN block contains three update functions, φ, and three aggregation functions, ρ.
Such functions are defined as:

• eÍ
k = φe(ek, vrk, vsk,u)

• eÍ
i = ρe→v(E Í

i)

• vÍ
i = φv(eÍ

i, vi,u)

• eÍ = ρe→u(E Í)

• uÍ = φu(eÍ, vÍ,u)

• vÍ = ρv→u(V Í)

where E Í
i = {(eÍ

k, rk, sk)}rk=i,k=1:Ne , V Í = {vÍ
i}1:Nv , and E Í = t

iE
Í
i =

= {(eÍ
k, rk, sk)}k=1:Ne .

Figure 3.4: Full GN Block [19].

21

Machine Learning Methods and Graph Neural Networks

More in detail, the φe function is mapped across all edges to compute per-edge
updates, the φv function is mapped across all the nodes to compute per-nodes
updates, and the φu function is applied once as the global update. Each of
the ρ function takes a set as input, and reduces it to a single element which
represents the aggregated information. Crucially, the ρ functions must be invariant
to permutations of their inputs, and should take as input variable numbers of
arguments. For instance, these can be element-wise summation, mean, maximum,
etc. For a graphic representation of the GN block internal structure, one can
observe Fig. 3.4, which shows a full GN block with its update and aggregation
functions.

Computational Steps within a GN Block

When a graph G is provided as input to a GN block, the computations proceed
from the edge, to the node, to the global level.
The computational process of a GN block is resumed in Algorithm 1 (Fig 3.6);
moreover, for a clearer insight on such algorithm one may refer to Fig. 3.5, which
graphically shows which graph elements are involved in each specific computation.

Figure 3.5: Updates in a GN block. Blue indicates the element that is being
updated, whereas black indicates other elements which are involved in the update
[19].

The computational steps of Algorithm 1 are sequentially described in detail as
follows:

1. Step 1 φe is applied per edge, with arguments (ek, vrk, vsk,u), and returns eÍ
k.

The set of resulting per-edge outputs for each node, i, is
E Í
i = {(eÍ

k, rk, sk)}rk=i,k=1:Ne . And E Í = t
iE

Í
i = {(eÍ

k, rk, sk)}k=1:Ne is the set
of all per-edge outputs.

2. Step 2 ρe→v is applied to E Í
i, and aggregates the edge updates for edges that

project to vertex i, into eÍ
i, which will be used in the next step.

22

Machine Learning Methods and Graph Neural Networks

Figure 3.6: Algorithm 1 [19].

3. Step 3 φv is applied to each node i to compute an updated node attribute vÍ
i.

The set of resulting per-node outputs is V Í = {vÍ
i}i=1:Nv .

4. Step 4 ρe→u is applied to E Í, and aggregates all the edge updates into eÍ,
which will be used in step 6.

5. Step 5 ρv→u is applied to V Í, and aggregates all the node updates into vÍ,
which will be used in step 6.

6. Step 6 φu is applied once per graph, and computes an update for the global
attribute u’.

The GN block is the fundamental computational unit of a GNN. Given its
structure and functionalities as assimilated, the next section will offer an overview
of how to design a specific GNN architecture starting from the GN block.

23

Machine Learning Methods and Graph Neural Networks

3.4 Design of a GNN Architecture
The GNN framework can be used to implement a wide variety of architectures,
each in accordance to the design principles which are discussed in this section.
In particular, for GNNs, three design principles are distinguished: flexible graph
representation, configurable GN block structure and composable multi-block archi-
tecture.
Based on the design choices, one can distinguish among various GNN architectures.
For the purposes of this project, the most relevant is the so-called Message-Passing
Neural Network (MPNN), which is explained in detail in subsection 3.4.2.

3.4.1 Graph Representation
GNNs support a flexible graph representation in two ways: first, in terms of the
representation of the attributes; second, in terms of the structure of the graph
itself.

Attributes Representation

The edge, node and global attributes of a GN block can be represented according
to different formats. In deep learning applications, real-valued vectors and tensors
are the most common. However, other data structure such as sequences, sets, or
even graphs can be used.
For each GN block within a broader architecture, the edge and node outputs
typically correspond to lists of vectors or tensors, one per edge or node, and the
global vector output corresponds to a single vector or tensor. This allows a GN
block’s output to be passed to other deep learning building blocks such as MLPs,
CNNs, and RNNs.
The output of a GN block can also be focused on just one of the above-mentioned
attributes. In particular:

• An edge-focused GNN uses the edges attributes as output.

• A node-focused GNN uses the nodes attributes as output.

• A graph-focused GNN uses the global attribute as output.

A GNN can also belong to more than one of such categories, by using a mix-up
of different attributes as output. As it will be discussed in Chapter 4, our GNN
framework represents attributes as tensors and is both edge and node-focused.

24

Machine Learning Methods and Graph Neural Networks

Graph Structure

Beside the attributes, another important factor in the design of a GNN is the
input data graph structure. In fact, depending on the structure representation, two
scenarios might arise: in the first one, the input explicitly defines the relational
structure (e.g. social networks, physical systems, chemical graphs), whereas in the
second one, the relational structure is not explicit, but must be inferred or assumed
(e.g. visual scenes, text corpora, programming language source code).
As it will be discussed in Chapter 4, our GNN framework is tested with an input
graphs obtained from a real-world network, and hence belongs to the first scenario.

3.4.2 GN Block Configurations
The structure and functions within a GN block can be configured in different ways,
each building a specific GNN architecture. The GN block configuration offers
flexibility in what information is made available to its functions, as well as how
output edge, node and global updates are produced.
In particular, each update function φ must be implemented with a specific function,
whose argument signature determines what information in the space (E, V,u) it
requires as input. Typical implementations of φ functions are MLPs, CNNs and
RNNs. For what concerns the implementation of the ρ functions, instead, typical
choices are element-wise summation, average and max/min.
In the following, the reader can find an overview on the most popular GNNs
architectures.

Message-Passing Neural Network (MPNN)

A Message-Passing Neural Network (MPNN) is a particular implementation of
GNN that relies on an iterative message-passing algorithm to propagate information
between the nodes of the graph. The GN block configuration of a MPNN can be
observed in Fig. 3.7.

The model contains two phases, a message passing phase and a readout phase.
According to the GN block definition of the previous section, a MPNN bases its
computations on the following functions:

• The function φe does not take u as input and is called message function.

• the function ρe→v is implemented as an element-wise summation.

• the function φu, called readout function, does not take u or E Í as input, and
thus ρe→u is not required.

A visual representation of message-passing steps can be observed in Fig 3.8.

25

Machine Learning Methods and Graph Neural Networks

Figure 3.7: GN block configuration in a MPNN [19].

Figure 3.8: Example of message-passing. Each row highlights the information
that diffuses through the graph starting from a particular node. Notice that the
information that a node has access to after m steps of propagation is determined
by the set of nodes and edges that are at most m steps away [19].

Non-Local Neural Network (NLNN)

A Non-Local Neural Network (NLNN) is a particular model of GNN which is based
on the concept of non-local mean operation. A non-local operation computes the
response at a position as a weighted sum of the features at all positions. In fact, in
a NLNN each node update is based on a weighted sum of the node attributes of its
neighbors, where the weight between a node and one of its neighbors is computed
by a scalar pairwise function between their attributes. Therefore, a NLNN only

26

Machine Learning Methods and Graph Neural Networks

predicts node output attributes. The GN block configuration of a NLNN can be
observed in Fig. 3.9.

Figure 3.9: GN block configuration in a NLNN [19].

Other GNN Architectures

The flexibility given by the GN block configuration allows to model a wide variability
of GNN models. In the literature, one can find defined architectures such as Relation
networks, Deep sets, PointNet, CommNet, Interaction Networks and others. For
an overview on the ideas behind these models, the reader is invited to refer to [19]
and [15].

3.4.3 Composable Multi-Block Architectures
The third design principle of GNNs is the possibility of constructing complex
architectures by composing GN blocks.
In the previous section, the GN block has been defined as a computational unit
which takes a graph with edge, node and global attributes as input, and returns
a graph with the same constituent elements as output. This graph-to-graph
input/output interface makes possible that the output of one GN block can be
passed as input to another one, even if their internal configurations are different.
Formally, two GN blocks, GN1 and GN2, can be composed as GN1◦GN2 by passing
the output of the first as input to the second: GÍ = GN2(GN1(G)). In general,
an arbitrary number of GN blocks can be composed into the so-called GNcore, as
shown in Fig 3.10.

One of the most common GNN architecture design is the encode-process-decode
configuration, which is the one implemented in our framework (see Chapter 4).
Such an architecture can be observed in Fig. 3.11.

27

Machine Learning Methods and Graph Neural Networks

Figure 3.10: Composition of GN blocks. [19].

Figure 3.11: Encode-process-decode architecture [19].

In this configuration, an input graph Ginp is transformed into a latent represen-
tation G0 by an encoder block, GNenc. Next, a core block, GNcore is applied M
times to return GM , in an iterative way analogous to the message-passing principle.
Finally, GM is decoded by a decoding block, GNdec, which returns the final output
Gout.
Other common composed architectures from literature are the recurrent GN archi-
tecture and the graph skip connections configuration. For more details, the reader
is invited to refer to [19].

28

Chapter 4

GNN Framework for the
RWA Problem

The previous chapters have presented in detail the RWA background and an
overview on ML concepts, with a specific focus on GNNs. Now, it finally comes the
time to merge the two topics together, and hence try to leverage a GNN architecture
in order to solve the RWA problem.
This idea has proved achievable by means of the GNN framework for the RWA
problem, which is thoroughly presented in this chapter. Such a framework and
all the tools that have been implemented for the purposes of the project, have
been developed starting from the Graph Nets library released by [19]. This is an
open-source library that builds GNNs in Python/TensorFlow/Sonnet and allows
to train GNNs over graph-structured data. The software includes a demo on the
shortest path problem, which was used as starting point to build our RWA-solving
GNN-based framework.
If the reader is interested, the original Graph Nets library can be found at
github.com/deepmind/grap_nets.

4.1 Graphs Data Representation

4.1.1 Input Graph Data
The first step for the framework comprehension is a clear presentation of the input
graph data which are used to generate the RWA training and test data for the
GNN.
As deeply discussed in Chapter 2, given a network topology and a list of available
wavelengths, the DLE problem consists in finding a route and possibly assigning a
wavelength to any incoming connection request. Therefore, the fundamental input

29

GNN Framework for the RWA Problem

data unit for the RWA problem is the incoming connection request, simply defined
by a source-destination pair. However, since GNNs work on graph-structured
data, such a concept of call request must be moved to an input graph-based
representation.
Therefore, within this framework, an incoming connection request on a given
topology is represented by a graph data which is a 2-tuple G = (V,E), where V is
the set of nodes and E is the set of bidirectional edges. Notice that, according to
the general definition of graph given in the last chapter, the global attribute u is
missing, since meaningless in our context. Moreover, here edges are bidirectional,
but the representation is still coherent with the previous one because a bidirectional
edge can be seen as the union of two directed edges.
The available number of wavelengths initially available on any edge is W , and we
refer to an ordered list of available wavelengths [λ1, λ2, ..., λW].
In particular, every node v ∈ V is characterized by the following attributes:

• source: boolean equal to True if the node is the source of the connection
request, False otherwise.

• destination: boolean equal to True if the node is the destination of the
connection request, False otherwise.

In any graph data within this framework, no more than one node can be the
source and no more than one node can be the destination; moreover, no node can
be source and destination at the same time.
Every bidirectional edge e ∈ E is characterized by the following attributes:

• nodeA: a node a ∈ V , representing one of the two extremes of the edge.

• nodeB: node b ∈ V , representing the other extreme of the edge.

• distance: a real number representing the physical length of the edge.

• available wavelengths: an ordered list of the currently available wavelengths
on the edge. In detail, the list is a one-dimensional array of W + 1 binary
entries [0, λe1, ..., λeW] where:

– the 0-th entry is always equal to 0.
– the i-th entry λei is equal to 1 if the i-th wavelength λi is currently available
on the edge e, 0 otherwise.

The utility of the 0-th entry will be clearer in the next sections. Notice that,
since self-edges are not here considered, no edge can have attributes nodeA = nodeB.
Moreover, edges must be intended as bidirectional: the edge (a, b) enables direct

30

GNN Framework for the RWA Problem

communication between nodes a and b in a bidirectional fashion, and hence a and
b can be interchanged.
A graphical example of an incoming connection request on a small topology with
W = 4 initially available wavelengths can be observed in Fig. 4.1, whereas its
nodes and edges attributes can be respectively found in Table 4.1 and Table 4.2.

Figure 4.1: Graph representation of an input incoming connection request from
Node 2 to Node 6.
Nodes and edges attributes can be respectively found in Table 4.1. and Table 4.2

Node source attribute destination attribute
1 False False
2 True False
3 False False
4 False False
5 False False
6 False True

Table 4.1: Nodes attributes of the input graph in Fig. 4.1.
As turns out from the attributes, Node 2 is the source node and Node 6 is the
destination node.

31

GNN Framework for the RWA Problem

Edge nodeA nodeB distance available wavelengths

(1,3) 1 3 1.50 [0,1,1,1,1]
(2,3) 2 3 1.80 [0,1,0,1,1]
(2,4) 2 4 2.10 [0,1,0,1,1]
(3,5) 3 5 2.20 [0,1,1,1,1]
(4,5) 4 5 1.90 [0,0,1,1,1]
(5,6) 5 6 2.00 [0,0,1,1,1]

Table 4.2: Edges attributes of the input graph in Fig. 4.1.
As turns out from the attributes: Edges (1,3) and (3,5) have all wavelengths
available; Edges (4,5) and (5,6) have wavelength λ1 which is allocated, all the
others available; Edges (2,3) and (2,4) have wavelength λ2 which is allocated, all
the others available.

4.1.2 Target Graph Data
The input graph data representation has been just discussed. However, during
the training phase, our GNN model needs to be fed with some input data and
compare the predictions with the corresponding output data, also called labeled
data or target data. Therefore, given any input graph, a process that generates the
corresponding target graph is needed.
In particular, the framework uses a GNN which is both edge and node-focused,
i.e., it labels nodes and edges of the input graph depending on whether they are
either part of the solution or not. To find a solution for the input graph, the RWA
problem is decomposed in R subproblem and WA subproblem. The R subproblem
can be solved by any of the routing approaches discussed in Chapter 2, and the
WA subproblem can be solved by any of of the heuristics summarized in the same
chapter. Such a sequence of two algorithms can return:

• a route r made by p links and a wavelength λi allocated on r, if the call is ac-
cepted; in particular, r = [(s1, d1), ..., (sp, dp)], where si and di are respectively
the start and the end of the i-th link of the route.

• a boolean False, if the call is blocked.

If the call is accepted, all the nodes and edges forming the route are said to be
part of the solution; if the call is blocked, there are no nodes or edges included in
the solution.
For instance, if one chooses to solve the input graph of Fig. 4.1 by implementing
the fixed routing with Dijkstra’s algorithm followed by the First-Fit heuristics, the
solution route and wavelength can be observed in Fig 4.2.

32

GNN Framework for the RWA Problem

Figure 4.2: Dijkstra & First-Fit solution for the input graph of Fig.4.1. The
solution route is [(2,4),(4,5),(5,6)] with allocated wavelength λ1.

Next, once the solution nodes and edges are found, they must be labeled in
order to generate the target graph. Within this framework, nodes are labeled with
2-entries one-hot vectors and edges are labeled with (W +1)-entries one hot vectors.
In particular, any node v ∈ V is labeled:

• with label [1,0], if v is not part of the solution.

• with label [0,1], if v is part of the solution.

Any edge e ∈ E is labeled:

• with label [1,0,...,0], if e is not part of the solution.

• with label [0,...,1,...,0], if e is part of the solution with allocated wavelength
λi, where i is the index of the 1-entry.

The labels for nodes and edges of the solution shown in Fig. 4.2 can be
respectively observed in Table 4.3 and Table 4.4.
Notice that the length of the edge labels is the same of the input graph’s edge
attributes, due to the first entry being always equal to zero in the edges attributes,
as explained previously.

33

GNN Framework for the RWA Problem

Node Label
1 [1,0]
2 [0,1]
3 [1,0]
4 [0,1]
5 [0,1]
6 [0,1]

Table 4.3: Nodes labels for the solution of Fig. 4.2

Edge Label
(1,3) [1,0,0,0,0]
(2,3) [1,0,0,0,0]
(2,4) [0,1,0,0,0]
(3,5) [1,0,0,0,0]
(4,5) [0,1,0,0,0]
(5,6) [0,1,0,0,0]

Table 4.4: Edges labels for the solution of Fig. 4.2

4.1.3 Calls Generation Process

The last paragraphs have presented a detailed overview about the data representa-
tion of a single input graph and the corresponding target graph within the GNN
framework. However, in order to let the GNN perform the training phase, one
needs multiple data, i.e., a list of input graphs and a list of the corresponding
target graphs.
To generate such a multitude of data, the framework relies on a simulation arrival
process which generates calls requests arrivals during a time window T . In particu-
lar, if we fix the number of calls to generate as n, the process returns a list of n
calls [call1, call2, ..., calln], each in the form:

calli = (ti0, ti1, s, d)

where ti0 is the arrival time, ti1 is the termination time, s is the source node of
the connection, and d is the destination node of the connection. Therefore, during
the simulation window T , at any time a new call can arrive, or an active call can
terminate.
If the arriving call is accepted, it is allocated a route and a wavelength for all its
duration; if the arriving call is blocked, it is dropped and no resource is allocated.

34

GNN Framework for the RWA Problem

Such a generation process requires some constraints:

• No call with s = d can arrive.

• If a call with s = s1 and d = d1 is active, then, for all its duration, no other
call with s = s1 and d = d1 or s = d1 and d = s1 can arrive.

Within our framework, the calls arrival process is modeled by a Poisson process
with intensity λ, i.e., any new call is expected to arrive, on average, every 1

λ

time units. When the time for a new call arrival is determined, the source s and
destination d are uniformly chosen from V , always respecting the two constraints
above explained.
The call duration, instead, is modeled by an exponential distribution with parameter
µ, i.e., every accepted call is expected to last, on average, µ time units. Therefore,
if the time window is quite long and the blocking probability is negligible, the
network is expected to host, on average, λµ active calls at any time.
Therefore, by means of the methods explained previously, any incoming call in
the form calli = (ti0, ti1, s, d) can be moved to a graph representation and hence
generate an input graph; next, by means of the RWA algorithms, from the input
graph a target graph is obtained. In conclusion, to create a batch of n calls to
feed the GNN, the framework generates n input graphs and n corresponding target
graphs, representing the sequence of arriving calls in the simulation time window.
For instance, a simulation of arrival calls, modeled by λ = 5 and µ = 2, and
the corresponding solutions (Dijkstra & First-Fit) for the graph of Fig 4.1. (4
wavelengths initially available) can be observed in Table 4.5.

Call ID Call input data Solution
1 (0.05,3.21,2,6) [(2,4),(4,5),(5,6)], λ1
2 (0.33,2.89,1,6) [(1,3),(3,5),(5,6)], λ2
3 (0.41,4.01,1,4) [(1,3),(3,2),(2,4)], λ3
4 (0.86,1.65,2,1) [(2,3),(3,1)], λ1
5 (1.12,4.34,5,2) [(5,3),(3,2)], λ4
6 (1.36,3.18,4,3) [(4,2),(2,3)], λ2
7 (1.61,2.98,3,2) blocked

Table 4.5: Example of calls sequence simulation for the graph in Fig. 4.1.
Notice that the 7th call has been blocked because on the link (3,2) all the wavelengths
are already allocated.

35

GNN Framework for the RWA Problem

4.2 The MPNN Model
4.2.1 Training Phase: a Supervised Approach
The GNN framework builds a particular architecture of GNNs, the MPNN, which
has been thoroughly discussed in the previous chapter. Before seeing how the
MPNN is internally structured, it is more relevant to understand the general
approach of our framework.
In fact, the framework builds a MPNN which is trained following a SL approach.
As deeply explained in Chapter 3, the idea of SL is to teach the NN how to perform
a new task by providing various labeled examples. By iteratively comparing its
predictions with the labels, the NN adjusts its weights in order to minimize a cost
function and becomes better and better in performing the assigned task.
The MPNN that tries to learn how to solve the RWA problem is trained according
to this principle. In particular, Fig. 4.3 shows the block diagram of one iteration
of training for our MPNN.

Figure 4.3: Block diagram of the MPNN training phase for the RWA problem.

As one can see, the first step is having an incoming connection request. This is
transformed in the input graph representation seen in last section, and is given as
input to the MPNN. In parallel, the input graph is solved by a specific choice of
R algorithm followed by a WA heuristic. Such a sequence of algorithms is called
training algorithm. The result is the corresponding target graph, with nodes and
edges labeled according to the format discussed in the last section.
When the MPNN terminates its computations, it returns a labeled output graph.
Such an output graph is compared with the corresponding target graph in order to

36

GNN Framework for the RWA Problem

compute the loss: if the two graphs are labeled in a similar way, the loss is small,
i.e. the MPNN returned a good prediction; id the two graphs are labeled in a non
similar way, the loss is large, i.e. the MPNN returned a bad prediction. The loss
computation is needed to adjust the MPNN’s weights in order to minimize its cost
function. As such a cost function decreases, the MPNN is improving the "quality"
of its output graphs, and hence is getting better in solving the RWA problem. Such
a training process is repeated for every iteration of the training phase.
The one above explained is the training phase of one single iteration on one
single input graph. However, every iteration typically works on a batch of input
graphs, as later explained. Moreover, the training process can be regulated by a
set of hyperparameters, including the batch size. All the building blocks and the
hyperparameters are discussed in the following.

4.2.2 The MPNN Internal Structure
Since the previous section has already presented a detailed overview about the call
requests generation, the input graphs and the target graphs, the first block of the
Fig 4.3 to be analyzed is the MPNN.
The MPNN within our framework is implemented according to an Encode-process-
decode architecture. This means that the model is composed by three blocks in
sequence, which are encoder, core, and decoder, followed by a simple post-processing
phase (Fig. 4.4).

Figure 4.4: Internal architecture of the MPNN block.

The first three blocks have the following functionalities:

• Encoder: takes the input graph and encodes the nodes and edges attributes
independently. This is possible due to two independent MLPs, the first
encoding the nodes and the second encoding the edges. Both the MLPs
present 2 fully-connected hidden layers with 32 neurons each (fig. 4.5), and
return outputs in the form of 32-entries vectors.

37

GNN Framework for the RWA Problem

• Core: takes as input the concatenation of the Encoder’s output and the
previous output of the Core, and performs the message-passing steps (Fig.
4.6). It is composed by three independent MLPs with 2 fully-connected hidden
layers and 32 neurons each (Fig. 4.5), respectively responsible for edge features
update, node features update and global feature update, according to the
computational steps explained in Chapter 3.

• Decoder: decodes the edges and nodes attributes independently on each
message-passing step, returning a labeled output graph. The Decoder is
composed by two MLPs identical to the Encoder ones; the first is responsible
for edges decoding and the second for nodes decoding.

Figure 4.5: Fully connected MLP with 2 hidden layers, each consisting of 32
neurons.

Finally, after a prefixed number of message-passing steps, the decoder returns
an output graph, which presents nodes and edges labeled by means of vectors of
the same dimension of the target labels (2-entries vectors for nodes, (W + 1)-entries
vectors for edges). These labels represent the MPNN’s solution to the input RWA
problem: based on their labels, some nodes and edges will be considered as part of
the solution and all the others as not part of the solution.
However, such output labels are not one-hot vectors as the target ones, but present
entries which are real numbers. Therefore, a simple post-processing phase is applied
to the decoder output in order to transform the output labels in one-hot vectors,

38

GNN Framework for the RWA Problem

Figure 4.6: Core block.

and hence make the comparison with the target graph possible.
To explain such a post-processing computation, nodes labels are considered for
simplicity, but the same concept holds for the edges labels. Given a node v ∈ V and
its output label [v1, v2], with v1 and v2 real numbers, the index classv is computed
as:

classv = argmax([v1, v2]) (4.1)

Therefore, classv will be equal to the index of the maximum value of v’s output
label. Since nodes labels have two entries, classv can either be 0 or 1. For edges,
instead, such an index can assume values between 0 and W .
Next, v’s resulting label will be a one-hot vector of 2 entries, in which the entry
at index classv is set to 1. Considering the solution of Fig. 4.2, an example of
MPNN’s correct node labels prediction can be found in Table 4.6.

Node Node label classv Final output label Solution
1 [5.0436,-2.3348] 0 [1,0] No
2 [-4.1893,3.1344] 1 [0,1] Yes
3 [1.4254,-1.1662] 0 [1,0] No
4 [-2.1921,1.9847] 1 [0,1] Yes
5 [-0.9093,0.4524] 1 [0,1] Yes
6 [-4.6837,3.1179] 1 [0,1] Yes

Table 4.6: Example of MPNN’s node output labels for the solution of Fig 4.2.

In conclusion, by applying this procedure to every node and edge label, the
final output graph will present nodes labels which are 2-entries one-hot vectors
and edge labels which are (W + 1)-entries one-hot vectors. Using the same labels
format of the target graphs, all the nodes with label [0,1] and all the edges with

39

GNN Framework for the RWA Problem

label different from [1,0,..,0] are considered as part of the solution, which is the
final answer of the MPNN when queried with the considered input graph.

4.2.3 Loss Computation and Optimization
At this point of the training iteration, there is an output graph, returned by the
MPNN, and a target graph, obtained through the training algorithm. In order
to understand how good is the quality of the MPNN’s prediction, the output
graph must be compared with the target graph. Such a comparison is called loss
computation.
Within our framework, the loss computation is performed by means of a particular
type of loss (or cost) function, which is the Softmax Cross-Entropy (SCE) function.
The idea of such a loss function is that every input (nodes and edges in our case)
can belong to one and only one class. Therefore, the SCE function returns the
output values in the form of probability distribution.
In general, the SCE loss function takes as input a C-dimensional vector z and
returns a C-dimensional vector y of real values between 0 and 1, representing
the estimated probability distribution. In particular, every yc, for c = 1, ..., C, is
computed as an exponential normalization:

yc = ezcqC
k=1 e

zk
for c = 1, ..., C (4.2)

The denominator qC
k=1 e

zk acts as a regularizer to make sure that qC
c=1 yc = 1.

More details about the SCE loss function can be found at [20].
After the loss computation, the resulting SCE must be optimized, in order to allow
the MPNN to adjust its weights and hence return better and better predictions.
Within our framework, the optimization process is performed by means of the
TensorFlow’s ADAM optimizer. Such an optimizer implements the ADAM opti-
mization algorithm, which is an extension of the stochastic gradient descent. For
more details about ADAM, the reader is invited to refer to [21].

4.2.4 Hyperparameters
The previous paragraphs have provided a thorough overview about the process of
one single training iteration. Of course, such a process is repeated for the entire
training phase duration, in the hope that the MPNN finally learns how to perform
the assigned task.
However, given a topology on which the RWA problem is performed for multiple
requests, and given our framework, the MPNN can be trained and hence learn how
to solve the RWA problem in several different ways. In fact, a training phase is
regulated by a set of hyperparameters. If the training data are always the same,

40

GNN Framework for the RWA Problem

then any combination of hyperparameters leads to a unique and repeatable training
phase for the MPNN.
All the hyperparameters that can be set-up within our framework are explained as
follows.

Number of Iterations

The most intuitive hyperparameter is the number of iterations, ntrain. It simply
sets-up the total number of iterations that must be executed for the training phase.
Within this framework, typical values of ntrain are in the order of 104.

Batch Size

The batch size hyperparameter, batchtrain, represents the number of input graphs
which feed the MPNN at every iteration. This means that the total number of
input graphs which are generated for the training phase is ntrainbatchtrain. The
first iteration uses the first batchtrain graphs, the second iteration uses the second
batchtrain graphs, and so on. Notice that the total ntrainbatchtrain input graphs
represent the sequence of calls during the time window, and hence every batch
immediately follows the previous one along the timeline.
If batchtrain > 1, it means that at every iteration the MPNN is fed with more
than one input graph, and hence the loss computation is performed on the average
comparison between input and corresponding target graphs.
Within this frameworks, typical values of batchtrain are in the order of 101-102.

Number of Messaging Steps

The number of messaging steps, nsteps, indicates the number of message-passing
steps performed by the MPNN on every input graph. Within this framework,
typical values of nsteps are between 6 and 20.

Learning Rate

The learning rate, lrate, is the hyperparameter that regulates the speed of the opti-
mization process. In fact, at the end of every training iteration, the loss function is
moved towards its minimum. The value of lrate represents the magnitude of the
moving step.
The learning rate is always a trade-off between the learning time and the perfor-
mance. Indeed, a small lrate allows to perform short steps along the trajectory
of the loss function, but the training will take more time. A large lrate, instead,
reduces significantly the training time, but due to larger steps there is the risk of

41

GNN Framework for the RWA Problem

skipping some local minima of the function.
Within this framework, typical values of lrate are between 10−4 and 10−1.

42

GNN Framework for the RWA Problem

4.3 Test Phase and Recovery Algorithm

4.3.1 Test Phase
Once the training phase is over, the MPNN is expected to have learned how to
perform the assigned task, which is solving the RWA problem on the given network
topology. In order to quantitatively measure the performance of the trained MPNN,
a test phase is performed.
The test phase consists in generating a batch of N input graphs and give them as
input to the MPNN. For any of these input graphs, the MPNN returns a prediction,
i.e., an output graph. Differently from the training phase, where the output
graph is compared to the corresponding target graph for the loss computation and
optimization, here the comparison is done just to see if the MPNN’s prediction to
the input graph is either correct or incorrect. Due to the absence of optimization,
the MPNN’s weights are fixed, and hence, given an input graph, the corresponding
output graph will be always the same.
For the law of large numbers, it has been proved that, if N is large enough, for
any possible combination of input graphs the test results always converge to the
same point. Therefore, such test results represent the absolute performance of the
MPNN in solving the RWA problem on the given topology.
All the test performance metrics are defined at the end of this section. Moreover,
our framework implements a recovery algorithm with the objective of recovering,
if possible and by means of light weight operations, the outputs of queries which
have not been solved correctly by the MPNN. Such an algorithm is discussed in
detail in the following paragraph.

4.3.2 Recovery Algorithm
Let’s consider one single input graph graphin, picked from the test batch of N input
graphs. When the MPNN test is performed on graphin, two possible scenarios may
arise (Fig. 4.7): either the MPNN has correctly solved graphin returning a correct
output graph graphout; or the MPNN has not correctly solved graphin, returning
a incorrect output graph graphout. It is important to highlight that by incorrect
graphout we mean an output graph which has been solved differently from the
target one, but still it might be a feasible solution, as the reader will see through
the algorithm description.
If graphout is correct, the MPNN has correctly solved the input RWA problem

and there is nothing more to do. If graphout is incorrect, instead, it is given as
input to the recovery algorithm (Fig 4.8).
The recovery algorithm is a post-processing algorithm implemented within our
framework and has the objective of recovering, if possible, an incorrect output

43

GNN Framework for the RWA Problem

Figure 4.7: MPNN test: two possible scenarios.

graph by means of light weight operations. By light weight operations, we mean
operations which are not computationally expensive. Therefore, at the end of the
recovery algorithm, there are some chances that the incorrect graphout has been
recovered, and hence has become correct. Applied to all the incorrect graphs of
the test size, such a process significantly increases the test performances, as will be
observed in the Chapter 5.
The recovery algorithm is straightforward and its flow chart can be observed in
Fig. 4.9. Every step of the algorithm is discussed in detail in the following.

44

GNN Framework for the RWA Problem

Figure 4.8: MPNN test: if graphout is incorrect, it is given as input to the recovery
algorithm.

45

GNN Framework for the RWA Problem

Figure 4.9: Recovery algorithm.
46

GNN Framework for the RWA Problem

Step 1 - Routing Check

The first step of the recovery algorithm is to check whether the detected route is
correct by considering nodes and edges labels, without looking at the allocated
wavelength (Fig 4.10). If the route is correct, then also the wavelength allocation

Figure 4.10: Example of routing check. Nodes labeled as part of the solution are
cyan, whereas edges labeled as part of the solution are coloured according to the
allocated wavelength.
Although the output solution is incorrect due to a wrong wavelength allocation,
the detected route is the same of the target solution: [(1,4),(4,5),(5,8)]. Then, by
applying a first-fit recovery, λ2 is allocated.

on every edge of the route is considered. There are two possible scenarios:

1. the wavelength allocation is different from the target one, but still the allocated
wavelength is feasible. In such a case, no recovery is needed, and graphout is
automatically considered as recovered.

2. the wavelength allocation is different from the target one, and the allocated
wavelength is unfeasible or two or more wavelengths have been allocated
(note that such allocation is not possible due to the wavelength continuity
constraint, see Chapter 2). In this case, the first-fit recovery is applied:
the algorithm considers the set of edges of the route and allocates the first

47

GNN Framework for the RWA Problem

available wavelength from the list of wavelengths, following a first-fit approach.
Therefore, graphout is now considered as recovered.

Instead, if the detected route is not correct, the algorithm goes to Step 2.

Step 2 - Nodes Labels Recovery

The second step tries to recover graphout by only considering the nodes labels. In
fact, since the route is incorrect, it must be that at least one among the set of
nodes labels and the set of edges labels is incorrect. Therefore, this step leverages
the nodes labels to recover all the graphs whose set of nodes labels is correct and
set of edges labels is incorrect.
By considering the set of nodes labeled as part of the solution, if these are correct,
it happens that starting from the source node and following the sequence of labeled
nodes, the destination is reached. Hence, the target route is reconstructed by means
of a nodes labels recovery (Fig. 4.11). At this point, only the edges which connect

Figure 4.11: Example of nodes labels recovery. Nodes labeled as part of the
solution are cyan, whereas edges labeled as part of the solution are coloured
according to the allocated wavelength.
Although the output solution is incorrect, all the nodes labels are correct, and the
target route [(1,4),(4,5),(5,8)] can be reconstructed. Then, by applying a first-fit
recovery, λ2 is allocated.

48

GNN Framework for the RWA Problem

the route nodes are considered, and a first-fit algorithm is applied to allocate a
proper wavelength. graphout is then considered as recovered.
Instead, if the nodes labels recovery does not work, the algorithm goes to Step 3.

Step 3 - Edges Labels Recovery

Step 3 tries to use an opposite approach to Step 2. In fact, since the nodes labels
are for sure incorrect, edges labels recovery leverages the edges labels to recover all
the graphs whose set of nodes labels is incorrect and set of edges labels is correct.
By considering only the set of labeled edges, if these are correct, the target route is
reconstructed by simply labeling as part of the solution only the nodes that are
extremes of such edges (Fig. 4.12). However, it can also happen that the set of

Figure 4.12: Example of edges labels recovery. Nodes labeled as part of the
solution are cyan, whereas edges labeled as part of the solution are coloured
according to the allocated wavelength.
Although the output solution is incorrect, all the edges labels are correct, and the
target route [(1,4),(4,5),(5,8)] with allocated wavelength λ2 can be reconstructed.

labeled edges form the target route with a wrong wavelength allocation. In this
case, a first-fit recovery is applied and then, again, only nodes that are extremes of
such edges are labeled as part of the solution (Fig. 4.13).
In both cases, graphout is considered as recovered. Instead, if the edges labels

49

GNN Framework for the RWA Problem

Figure 4.13: Example of edges labels recovery. Nodes labeled as part of the
solution are cyan, whereas edges labeled as part of the solution are coloured
according to the allocated wavelength.
Although the output solution is incorrect, all the edges labels are correct, and
the target route [(1,4),(4,5),(5,8)] can be reconstructed. However, the wavelength
allocation is incorrect, and, through a first-fit recovery, λ2 is allocated.

recovery does not work, the algorithm goes to Step 4.

Step 4 - Route Validity Check

If the algorithm comes to this step, it means that both the set of nodes labels and
the set of edges labels are incorrect. However, it may happen that the set of nodes
labels and/or edges labels form a route different from the target one, but which is
still a valid path from source to destination. Therefore, in order to check whether
the reconstructed route is still a valid route, Step 4 leverages, in order, first both
nodes and edges labels, then eventually only nodes labels, and finally eventually
only edges labels (Fig. 4.14).
If the route is valid, two possible scenarios may arise:

1. the wavelength allocation is feasible, and graphout is automatically considered
as recovered.

50

GNN Framework for the RWA Problem

Figure 4.14: Example of route validity check. Nodes labeled as part of the solution
are cyan, whereas edges labeled as part of the solution are coloured according to
the allocated wavelength.
Although the output solution is incorrect, by following the edges labels, a valid
route from source to destination is found: [(1,4),(4,2),(2,5),(5,8)]. Moreover, the
wavelength allocation with λ3 is feasible, and no first-fit recovery is needed.

2. the wavelength allocation is unfeasible or two or more wavelengths have been
allocated. In this case, a first-fit recovery is applied and then graphout is
considered as recovered.

If no valid route is found by Step 4 mechanisms, the recovery algorithm is
terminated and graphout is definitely considered as not recoverable.

The whole procedure of the recovery algorithm is reported under form of pseudo-
code in Algorithm 2.

51

GNN Framework for the RWA Problem

Algorithm 2 Recovery algorithm
1: procedure Recovery(graphout)
2: check route only
3: if route = correct then
4: wavelength feasibility check
5: if wavelength = feasible then
6: graphout is recovered
7: STOP
8: else
9: first-fit recovery

10: graphout is recovered
11: STOP
12: end if
13: else
14: nodes labels check
15: if nodeslabels = correct then
16: nodes-labels recovery & first-fit recovery
17: graphout is recovered
18: STOP
19: else
20: edges labels check
21: if edgeslabels = correct then
22: edges-labels recovery
23: wavelength feasibility check
24: if wavelength = feasible then
25: graphout is recovered
26: STOP
27: else
28: first-fit recovery
29: graphout is recovered
30: STOP
31: end if
32: else
33: route validity check
34: if route = valid then
35: if wavelength = feasible then
36: graphout is recovered
37: STOP
38: else
39: first-fit recovery
40: graphout is recovered
41: STOP
42: end if
43: else
44: graphout is not recoverable
45: STOP
46: end if
47: end if
48: end if
49: end if
50: end procedure

52

GNN Framework for the RWA Problem

4.3.3 Performance Metrics
In the previous paragraphs, we have explained that a test must be performed in
order to evaluate the MPNN’s performance in solving the RWA problem. We have
said that a test considers N input graphs, and that the MPNN returns an output
graph for each of these input graphs. Next, in a post-processing phase, all the
incorrect output graphs are subject to the recovery algorithm. Once the recovery
phase is done, the test is terminated, and, by using the statistics collected during
all these phases, the performance metrics for the MPNN can be computed.
First, let’s define the following variables:

• N : total number of test graphs.

• graphsRWA: number of output graphs correctly solved by the MPNN according
to the RWA definition, and hence not subject to the recovery algorithm.

• graphsR: number of incorrect output graphs whose route has been detected
correctly by the routing check phase of the recovery algorithm.

• graphsNOT recoverable: number of incorrect output graphs that have not been
recovered by the recovery algorithm.

The first performance metric is the RWA accuracy, which is defined as:

RWAaccuracy = graphsRWA

N
(4.3)

and represents the percentage of test graphs correctly solved by the MPNN.
The second performance metric is the routing accuracy, which is defined as:

Raccuracy = graphsRWA + graphsR
N

(4.4)

and represents the percentage of test graphs whose route has been detected correctly
by the MPNN.
The third performance metric is the final accuracy, which is defined as:

finalaccuracy = N − graphsNOT recoverable
N

(4.5)

and represents the percentage of test graphs which have been solved correctly by
the MPNN or have been recovered by the recovered algorithm.
Of course, it holds: RWAaccuracy ≤ Raccuracy ≤ finalaccuracy. Moreover, it has been
proved that, if N is large enough (i.e. the order of 104-105) all these accuracies
converge to the same value for any test set, and hence represent the absolute
performance of the MPNN in solving the RWA problem.

53

GNN Framework for the RWA Problem

4.3.4 MPNN Implementation within a Network Scenario
Summarizing, once the MPNN is built and trained, it is tested to measure its
performances in solving the RWA problem. If the final performances have not
reached a satisfactory level, the MPNN can be re-trained in a different way in order
to increase such final performances. Else, in case the achieved performances are
satisfactory, the MPNN can be implemented within a realistic network scenario.
In fact the MPNN can be implemented within the network on which has been
trained, and used on-demand as on-line solving tool to compute routes and allocate
wavelengths for any incoming call request. Notice that the training phase and
the test phase are performed off-line, and hence the MPNN can be provided by
input graphs and corresponding target graphs during these phases. In a realistic
implementation, instead, the MPNN works in an on-line fashion, which means
the incoming call request must be allocated immediately, and no target graph is
provided to compare the MPNN’s output.
Therefore, when used on-line, the MPNN takes as input an incoming connection
request and returns a decision for such request. Since the correctness of the decision
is unknown due to the absence of target solution, the only thing that can be checked
about the decision is its feasibility. In fact, it makes sense that the MPNN’s decision
is actually implemented if and only if such decision is feasible.
The feasibility of any MPNN’s decision is established by the feasibility algorithm.
This is a fast post-processing algorithm which works by leveraging some of the
mechanisms used by the recovery algorithm during the test phase. When the
feasibility algorithm is applied to a MPNN’s decision, two possible scenarios may
arise (Fig. 4.15):

1. the MPNN’s decision is feasible, and can be implemented in the network, i.e.,
a route and a wavelength can actually be allocated for the incoming call, if
this is accepted.

2. the MPNN’s decision is unfeasible, and cannot be implemented in the net-
work. In such a case, the decision is discarded and the network must rely on
alternative tools able to take a feasible decision for the incoming call request.

54

GNN Framework for the RWA Problem

Figure 4.15: MPNN implementation within a network scenario. Any MPNN’s
decision is subject to the feasibility algorithm, which establishes whether such
decision is either feasible or unfeasible.

55

GNN Framework for the RWA Problem

As said above, the feasibility algorithm relies on the same mechanisms of the
recovery algorithm and its flow chart can be observed in Fig. 4.16.
In the following, every step is briefly discussed.

Figure 4.16: Feasibility algorithm.

56

GNN Framework for the RWA Problem

Step 1 - Route Validity Check

The first step of the feasibility algorithm is to check whether the route is a valid
path from source to destination. If the route is valid, then also the wavelength
assignment is considered:

• If the wavelength assignment is feasible, then the MPNN’s decision is consid-
ered feasible, and the algorithm is stopped.

• If the wavelength assignment is unfeasible, then a first-fit recovery is needed.
After that, the MPNN’s decision is considered feasible, and the algorithm is
stopped.

Notice that there is no way to establish whether the valid route is the optimal one,
due to the absence of target solution.
Instead, if the route is not a valid path from source to destination, the algorithm
goes to Step 2.

Step 2 - Nodes Labels Recovery

This step considers only the nodes labels. If nodes labeled as part of the solution
form a valid path from source to destination, then a nodes labels recovery is
performed, meaning that the new route is built by labeling all the edges which
connect the solution nodes. Next, a first-fit recovery is applied on such edges in
order to allocate a feasible wavelength. The MPNN’s decision is then considered
feasible, and the algorithm is stopped.
Instead, if the nodes labels do not form a valid path from source to destination,
the algorithm goes to Step 3.

Step 3 - Edges Labels Recovery

This step follows an opposite approach compared to the previous one, and considers
only the edges labeled as part of the solution. If these form a valid path from
source to destination, then a edges labels recovery is performed, meaning that the
new route is built by labeling all the nodes which are extremes of the solution
edges. Next, the wavelength assignment is considered:

• If the wavelength assignment is feasible, then the MPNN’s decision is consid-
ered feasible, and the algorithm is stopped.

• If the wavelength assignment is unfeasible, then a first-fit recovery is needed.
After that, the MPNN’s decision is considered feasible, and the algorithm is
stopped.

57

GNN Framework for the RWA Problem

Instead, if the edges labels do not form a valid path from source to destina-
tion, the MPNN’s decision is definitely considered unfeasible, and the algorithm is
stopped. In such a case, the network must rely on different approaches from the
MPNN to take a decision on the incoming call request.

The whole procedure of the feasibility algorithm is reported under form of
pseudo-code in Algorithm 3.

58

GNN Framework for the RWA Problem

Algorithm 2 Feasibility algorithm
1: procedure Feasibility(decisionMPNN)
2: route validity check
3: if route = valid then
4: wavelength feasibility check
5: if wavelength = feasible then
6: decisionMPNN is feasible
7: STOP
8: else
9: first-fit recovery

10: decisionMPNN is feasible
11: STOP
12: end if
13: else
14: route validity check through nodes labels
15: if routenodes = valid then
16: nodes-labels recovery
17: first-fit recovery
18: decisionMPNN is feasible
19: STOP
20: else
21: route validity check through edges labels
22: if routeedges = valid then
23: edges-labels recovery
24: wavelength feasibility check
25: if wavelength = feasible then
26: decisionMPNN is feasible
27: STOP
28: else
29: first-fit recovery
30: decisionMPNN is feasible
31: STOP
32: end if
33: else
34: decisionMPNN is unfeasible
35: STOP
36: end if
37: end if
38: end if
39: end procedure

59

GNN Framework for the RWA Problem

4.4 Computational Complexity
This chapter has thoroughly presented how our GNN framework for the RWA
problem works. First, a GNN with a particular architecture is built, which is
the MPNN. This is trained, tested, and eventually implemented within a realistic
network scenario to deal with the on-line connection requests. The purpose of this
section is to analyze the computational complexity of such a powerful framework.
The computational complexity is first computed separately for each fundamental
block of the framework, and then, by merging the blocks together, the final
complexity is obtained. Let’s also remind the following notation from the previous
sections:

• |V |: number of nodes in the network topology.

• |E|: number of edges in the network topology.

• |W |: number of initially available wavelengths on every edge in the network
topology.

MPNN Complexity

In [22], it has been proved that the MPNN complexity for the shortest path problem
is O(|V |+ |E|). Since in our framework every edge is encoded with two attributes, a
real value for the distance and a (W +1)-entries vector for the available wavelengths,
the MPNN complexity becomes:

CMPNN = O(|V |+ |W + 1||E|) = O(|V |+ |W ||E|) (4.6)

Recovery Algorithm Complexity

The complexity of the recovery algorithm is equal to the worst among the worst-case
complexities for every possible final branch of the algorithm (refer to Fig 4.9).
Step 1 checks whether the route is correct (O(|V |+ |E|)) and, if it is, performs a
wavelength feasibility check and eventually a first-fit recovery (O(|W ||E|)), and
the algorithm terminates with complexity:

C1 = O(|V |+ |E|)+O(|W ||E|) = O(|V |+ |E|+ |W ||E|) = O(|V |+ |W ||E|) (4.7)

If the route is incorrect, a nodes-labels check (O(|V |)) is performed; if the
node labels are correct, a nodes-labels recovery (O(|W ||E|)) is performed, and the
algorithm terminates with complexity:

C2 = O(|V |+ |E|) +O(|V |) +O(|W ||E|) = O(|V |+ |W ||E|) (4.8)

60

GNN Framework for the RWA Problem

If the node labels are incorrect, an edges labels check (O(|E|)) is performed; if the
edges labels are correct, an edges labels recovery with wavelength feasibility check
is performed (O(|V |+ |W |||E|)), and the algorithm terminates with complexity:

C3 = O(|V |+ |E|)+O(|V |)+O(|E|)+O(|V |+ |W |||E|) = O(|V |+ |W ||E|) (4.9)

If the edges labels are incorrect, a route validity check is performed (O(|V |+|E|));
if the route is a valid path from source to destination, a wavelength feasibility check
and eventually first-fit recovery are performed (O(|W ||E|)), and the algorithm
terminates with complexity:

C4 = O(|V |+ |E|)+O(|V |)+O(|E|)+O(|V |+ |E|)+O(|W ||E|) = O(|V |+ |W ||E|)
(4.10)

Finally, if the route is not valid, the algorithm terminates with complexity:

C5 = O(|V |+ |E|) +O(|V |) +O(|E|) +O(|V |+ |E|) = O(|V |+ |E|) (4.11)

The worst-case complexities are hence C1, C2, C3, C4; notice that the best-case
complexity is C5 which represents the case of unrecoverable graph. Therefore, the
recovery algorithm complexity is:

Crecovery = O(|V |+ |W ||E|) (4.12)

Feasibility Algorithm Complexity

By simply following the same procedure of the recovery algorithm, the complexity
of the feasibility algorithm is:

Cfeasibility = O(|V |+ |W ||E|) (4.13)

Final Complexity

By combining the previously computed complexities, we can conclude that the test
complexity is:

Ctest = CMPNN +Crecovery = O(|V |+ |W ||E|)+O(|V |+ |W ||E|) = O(|V |+ |W ||E|)
(4.14)

whereas the MPNN implemented in a network scenario has complexity:

Cimplementation = CMPNN+Cfeasibility = O(|V |+|W ||E|)+O(|V |+|W ||E|) = O(|V |+|W ||E|)
(4.15)

61

GNN Framework for the RWA Problem

Therefore, any usage of the MPNN for the RWA problem has complexity
O(|V|+|W||E|).

62

Chapter 5

Results

Having introduced and described in detail, in Chapter 4, the GNN framework
for the RWA problem, it is finally time to report the numerical results that are
achievable by such framework.
Four different experiments have been performed, each one considering a specific
network scenario. Hence, this Chapter reports the numerical results regarding
MPNN’s performances in terms of achieved accuracies for each experiment, and an
additional analysis regarding the time complexity in terms of execution times.
All the experiments have been performed by relying on the computational re-
sources provided by the High Performance Computing (HPC) cluster [23], sited in
Politecnico di Torino.

63

Results

5.1 Performance Analysis: 1st Experiment

5.1.1 Network Scenario
The 1st experiment has been run on a medium-large-size network, which is the
Interroute network (Fig. 5.1), whose structure has been provided by [24].

Figure 5.1: Interroute Network [24].

The network is connected and composed by 96 nodes, and all its features are
reported in Table 5.1.

Network feature Value
number of nodes 96
number of edges 119

density 0.03
average degree 2.47
average distance 7.91

diameter 21
clustering 0.08

Table 5.1: Features of the Interroute network.

In this experiment, every link of the network has been initially allocated 80
available wavelengths. In order to train and test the MPNN within a network
traffic scenario with negligible blocking probability, a low-traffic load must be set-up
within the network.
To find such a proper set-up, a simulation of call requests with specific values for
the traffic regulator parameters, i.e. λ and µ, has been run a-priori. All the requests

64

Results

are solved accordingly to the fixed-routing approach implemented with Dijkstra’s
algorithm, followed by the First-Fit WA, and the final blocking probability is
computed. If the blocking probability is not the desired one, the simulation is
re-run until a satisfactory set of values for λ and µ is found.
In particular, for the Interroute network with 80 available wavelengths it has been
chosen to set λ and µ in such a way that λµ = 155, which corresponds to a network
load of 13.49% and a blocking probability equal to 1.35 · 10−3 in the long-run.

5.1.2 Analysis Set-Up
Given the above defined network scenario, the MPNN must be trained and finally
tested in order to obtain a quantitative measure of how confident is the MPNN in
solving the RWA problem in such a scenario.
The training algorithm is the fixed-routing approach implemented with Dijkstra’s
algorithm, followed by the First-Fit WA. Since the training phase is regulated by
the set-up of the hyperparameters described in Chapter 4, the analysis has been
performed over the variation of such hyperparameters.
In particular, the following default hyperparameters have been chosen:

• ntrain = 20.000

• batchtrain = 75

• nsteps = 18

• lrate = 10−2

Therefore, every analysis on a specific hyperparameter has been performed by
varying such hyperparameter and by keeping all the others fixed to the default
values. Then, after the training phase, the MPNN is tested over a batch of 100.000
call requests, fixed for any analysis. Moreover, every analysis has been run 10 times
with different seeds, and all the presented results have been obtained by averaging.

5.1.3 Numerical Results
Iterations Analysis

The analysis on the number of iterations has been performed by varying ntrain over
the values: 10.000, 20.000, 30.000, 40.000. The results in terms of test accuracies
are resumed in Table 5.2, and can be graphically observed in Fig. 5.2(A).

The first observation one can have is that all the accuracies for the RWA problem
are extremely low. This is due to the large amount of available wavelengths, and
hence to the fact that the First-Fit approach initially teaches the MPNN to use

65

Results

Accuracy ntrain = 10.000 ntrain = 20.000 ntrain = 30.000 ntrain = 40.000
RWAaccuracy 3.74% 4.87% 5.12% 5.05%
Raccuracy 32.78% 66.51% 67.67% 78.97%

finalaccuracy 68.69% 91.47% 94.83% 94.84%

Table 5.2: Iterations analysis - results for the Interroute network with 80 wave-
lengths. The confidence interval for the accuracies is negligible.

only the first wavelengths in the list.
For what concerns the other metrics, instead, it is clear that 10.000 iterations are
not enough for a satisfactory MPNN’s learning. In particular, the routing accuracy
increases as the number of iterations increases, but all the cases
ntrain = 20.000, 30.000, 40.000 similarly achieve an excellent final accuracy. In con-
clusion, 30.000 iterations should represent a good compromise between performance
and training time (see Section 5.5.1).
In general, these results are the first evidence that the recovery algorithm is able to
drastically improve the MPNN’s performances, and hence represents a fundamental
post-processing phase for the framework.

Messaging Steps Analysis

The analysis on the number of messaging steps has been performed by varying
nsteps over the values: 14, 16, 18, 20, 22. The results in terms of test accuracies are
resumed in Table 5.3, and can be graphically observed in Fig. 5.2(B).

Accuracy nsteps = 14 nsteps = 16 nsteps = 18 nsteps = 20 nsteps = 22
RWAaccuracy 5.38% 4.86% 4.87% 5.06% 3.60%
Raccuracy 70.58% 68.16% 66.51% 26.59% 30.79%

finalaccuracy 93.89% 91.61% 91.47% 48.43% 58.00%

Table 5.3: Messaging steps analysis - results for the Interroute network with 80
wavelengths. The confidence interval for the accuracies is negligible.

By looking at the results, it looks clear that performing 14 rounds of messaging
steps is enough for achieving excellent performances for what concerns routing and
final accuracies, but the cases nsteps = 16,18 achieve satisfactory results as well.
Instead, the cases nsteps = 20,22 see their performances significantly drop, probably
due to an overfitting effect given by the massive number of messaging steps.

66

Results

Learning Rate Analysis

The analysis on the learning rate has been performed by varying lrate over the
values: 10−1, 10−2, 10−3, 10−4. The results in terms of test accuracies are resumed
in Table 5.4, and can be graphically observed in Fig. 5.2(C).

Accuracy lrate = 10−1 lrate = 10−2 lrate = 10−3 lrate = 10−4

RWAaccuracy 1.29% 4.87% 5.10% 1.15%
Raccuracy 10.65% 66.51% 61.42% 3.58%

finalaccuracy 20.46% 91.47% 90.73% 18.02%

Table 5.4: Learning rate analysis - results for the Interroute network with 80
wavelengths. The confidence interval for the accuracies is negligible.

The results clearly show that the learning rate trade-off is achieved for values
between 10−3 and 10−2, corresponding to excellent routing and final accuracies.
The other two cases, instead, lead to poor performances: the case 10−4 probably
due to a too small rate, and hence a not sufficient amount of learning time; the
case 10−1 probably due to a too large rate and hence the skip of some local minima
of the loss function.

Batch Size Analysis

The analysis on the batch size has been performed by varying batchtrain over the
values: 25, 50, 75, 100. The results in terms of test accuracies are resumed in Table
5.5, and can be graphically observed in Fig. 5.2(D).

Accuracy batchtrain = 25 batchtrain = 50 batchtrain = 75 batchtrain = 100
RWAaccuracy 4.24% 4.25% 4.87% 4.31%
Raccuracy 37.81% 40.12% 66.51% 62.98%

finalaccuracy 78.47% 75.78% 91.47% 77.87%

Table 5.5: Batch size analysis - results for the Interroute network with 80 wave-
lengths. The confidence interval for the accuracies is negligible.

The results demonstrate that every value of batch size is able to achieve quite
good performances, but the case batchtrain = 75 represent the best compromise
and achieves excellent results. The cases batchtrain = 25, 50 do not probably
include a large enough number of training data in every iteration, whereas the case
batchtrain = 100 leads to a too large batch and hence to a worse ability for the
MPNN to adjust its weights.

67

Results

Figure 5.2: Graphical performance results for the Interroute network with 80
wavelengths.

5.2 Performance Analysis: 2nd Experiment

5.2.1 Network Scenario and Analysis Set-Up

The 1st experiment has proven that, in a network with a large number of available
wavelengths, the MPNN is not able to learn how to solve the RWA problem without
relying on the recovery algorithm. Therefore, the 2nd experiment aims at observing
whether the RWA accuracy can increase by simply reducing wavelengths space.
The network scenario is still composed by the Interroute network, with the WA
sub-problem reduced to the extreme case of 1 available wavelength on every link.
In order to keep the blocking probability negligible, the traffic arrival process has
been adapted to obtain a similar network load as the previous experiment. Since
the available resources have been drastically reduced, the traffic load has been set
up with parameters λµ = 1

200 , which corresponds to a network load of 0.03% and a
blocking probability equal to 1.73 · 10−3 in the long-run.
The same analysis of the 1st experiment with identical methods has been repeated.

68

Results

5.2.2 Numerical Results
Iterations Analysis

The analysis on the number of iterations has been again performed by varying
ntrain over the values: 10.000, 20.000, 30.000, 40.000. The results in terms of test
accuracies are resumed in Table 5.6, and can be graphically observed in Fig. 5.3(A).

Accuracy ntrain = 10.000 ntrain = 20.000 ntrain = 30.000 ntrain = 40.000
RWAaccuracy 13.20% 32.73% 45.03% 72.18%
Raccuracy 14.41% 33.84% 45.78% 72.71%

finalaccuracy 26.91% 49.58% 62.20% 82.04%

Table 5.6: Iterations analysis - results for the Interroute network with 1 wavelength.
The confidence interval for the accuracies is negligible.

These first results immediately show that the drastic reduction of the wavelengths
space has lead to a significant improvement of the RWA accuracy, even achieving
excellent values with 40.000 iterations.
In case of 1 available wavelength, the routing accuracy is not exactly equal to the
RWA one, but is always slightly better. This is due to the fact that, in case of
blocked call, the RWA problem is considered corrected if and only if the output is
a blocked call, whereas the routing sub-problem is considered correct if the output
route is anyway correct. Finally, one can observe that the recovery algorithm is not
able to achieve the same excellent performances of the 1st experiment, probably
due to the fact that with only one available wavelength there is no first-fit recovery
to apply.

Messaging Steps Analysis

The analysis on the number of messaging steps has been again performed by varying
nsteps over the values: 14, 16, 18, 20, 22. The results in terms of test accuracies are
resumed in Table 5.7, and can be graphically observed in Fig. 5.3(B).

Accuracy nsteps = 14 nsteps = 16 nsteps = 18 nsteps = 20 nsteps = 22
RWAaccuracy 70.00% 34.21% 32.73% 36.05% 4.91%
Raccuracy 70.51% 35.38% 33.84% 36.63% 5.20%

finalaccuracy 86.71% 58.89% 49.58% 55.37% 16.96%

Table 5.7: Messaging steps analysis - results for the Interroute network with 1
wavelength. The confidence interval for the accuracies is negligible.

69

Results

Again, the RWA accuracies have increased significantly with respect to the 1st
experiment. The best performances are sharply achieved by the case nsteps = 14,
meaning that with only one wavelength less rounds of messaging steps are needed.
In fact, all the other cases do not achieve good results, and the case nsteps = 22 is
even extremely unsatisfactory.

Learning Rate Analysis

The analysis on the learning rate has been again performed by varying lrate over the
values: 10−1, 10−2, 10−3, 10−4. The results in terms of test accuracies are resumed
in Table 5.8, and can be graphically observed in Fig. 5.3(C).

Accuracy lrate = 10−1 lrate = 10−2 lrate = 10−3 lrate = 10−4

RWAaccuracy 4.49% 32.73% 58.69% 3.05%
Raccuracy 4.81% 33.84% 68.60% 5.34%

finalaccuracy 9.74% 49.58% 82.14% 13.61%

Table 5.8: Learning rate analysis - results for the Interroute network with 1
wavelength. The confidence interval for the accuracies is negligible.

As for the previous experiment, the extreme cases lrate = 10−1 and lrate = 10−4

are completely inappropriate. The other two cases achieve a good RWA accuracy,
but this time the case lrate = 10−3 is significantly better than lrate = 10−2, meaning
that with only one wavelength a smaller rate is more suited.

Batch Size Analysis

The analysis on the batch size has been again performed by varying batchtrain over
the values: 25, 50, 75, 100. The results in terms of test accuracies are resumed in
Table 5.9, and can be graphically observed in Fig. 5.3(D).

Accuracy batchtrain = 25 batchtrain = 50 batchtrain = 75 batchtrain = 100
RWAaccuracy 11.56% 16.46% 32.73% 31.16%
Raccuracy 12.32% 17.02% 33.84% 32.37%

finalaccuracy 29.04% 36.80% 49.58% 57.66%

Table 5.9: Batch size analysis - results for the Interroute network with 1 wave-
length. The confidence interval for the accuracies is negligible.

Again, it seems that the cases batchtrain = 25, 50 do not include enough training
data to achieve satisfactory results. The other two cases are more acceptable, but

70

Results

lead to significantly worse performances with respect to the case of 80 wavelengths,
highlighting again the worse effectiveness of the recovery algorithm.

Figure 5.3: Graphical performance results for the Interroute network with 1
wavelength.

5.3 Performance Analysis: 3rd Experiment
5.3.1 Network Scenario and Analysis Set-Up
The previous sections have reported the numerical results of the MPNN’s perfor-
mances in solving the RWA problem in a medium-large-size network. It turns out
that, for some specific hyperparameters set-up, the achieved performance in terms
of accuracies can reach very high values.
Now, the 3rd experiment aims at testing the MPNN over the same hyperparameters
range but within a smaller network scenario, in order to see whether the perfor-
mances can even increase by reducing the network size. Therefore, this experiment
has been run on a small-size network, which is the UUNET network (Fig. 5.4),
whose structure has been provided by [24].

The features of such a network have been computed and reported in Table 5.10.
In particular, one can notice that such a network has a nodes cardinality which is

71

Results

Figure 5.4: UUNET Network [24].

approximately a half of that of the Interroute Network.

Network feature Value
number of nodes 42
number of edges 76

density 0.08
average degree 1.81
average distance 3.26

diameter 8
clustering 0.19

Table 5.10: Features of the UUNET network.

Every link of the network has been initially allocated 80 wavelengths. To keep
a similar traffic load as the Interroute network, the calls request arrival process
has been set with parameters λµ = 400, which corresponds to a network load of
21.01% and a blocking probability equal to 1.11 · 10−3 in the long-run.
Given a new defined scenario, the same analysis of the 1st experiment with identical
methods has been repeated.

72

Results

5.3.2 Numerical Results
Iterations Analysis

The analysis on the number of iterations has been again performed by varying
ntrain over the values: 10.000, 20.000, 30.000, 40.000. The results in terms of
test accuracies are resumed in Table 5.11, and can be graphically observed in Fig.
5.5(A).

Accuracy ntrain = 10.000 ntrain = 20.000 ntrain = 30.000 ntrain = 40.000
RWAaccuracy 5.30% 5.57% 5.51% 5.48%
Raccuracy 21.81% 31.99% 37.65% 39.71%

finalaccuracy 63.81% 74.44% 74.86% 80.36%

Table 5.11: Iterations analysis - results for the UUNET network with 80 wave-
lengths. The confidence interval for the accuracies is negligible.

Except for the case of 10.000 iterations, which are not enough for this network
either, all the other cases achieve similarly good performances. However, it is
evident that the general curves level is lower with respect to the Interroute network,
probably due to the fact that 18 rounds of messaging steps are excessive for a
smaller network, as it is highlighted by the next analysis.

Messaging Steps Analysis

The analysis on the number of messaging steps has been again performed by varying
nsteps over the values: 14, 16, 18, 20, 22. The results in terms of test accuracies are
resumed in Table 5.12, and can be graphically observed in Fig. 5.5(B).

Accuracy nsteps = 14 nsteps = 16 nsteps = 18 nsteps = 20 nsteps = 22
RWAaccuracy 5.76% 5.65% 5.57% 5.67% 5.49%
Raccuracy 51.02% 39.02% 31.99% 30.25% 35.60%

finalaccuracy 90.15% 77.17% 74.44% 70.06% 72.29%

Table 5.12: Messaging steps analysis - results for the UUNET network with 80
wavelengths. The confidence interval for the accuracies is negligible.

As already anticipated in the iterations analysis, the only case able to achieve
excellent performances as is nsteps = 14, meaning that the smaller the network
the fewer the messaging steps needed by the MPNN in the learning process, as
expected from the GNN framework theory of Chapter 4.

73

Results

Learning Rate Analysis

The analysis on the learning rate has been again performed by varying lrate over the
values: 10−1, 10−2, 10−3, 10−4. The results in terms of test accuracies are resumed
in Table 5.13, and can be graphically observed in Fig. 5.5(C).

Accuracy lrate = 10−1 lrate = 10−2 lrate = 10−3 lrate = 10−4

RWAaccuracy 3.00% 5.57% 5.30% 4.46%
Raccuracy 13.26% 31.99% 37.40% 11.43%

finalaccuracy 33.06% 74.44% 81.55% 38.65%

Table 5.13: Learning rate analysis - results for the UUNET network with 80
wavelengths. The confidence interval for the accuracies is negligible.

The results show again that the cases lrate = 10−3, 10−2 represent the best
trade-off to achieve good performances. However,again all the curves appear lower
due to the reason explained in the previous analysis.

Batch Size Analysis

The analysis on the batch size has been again performed by varying batchtrain over
the values: 25, 50, 75, 100. The results in terms of test accuracies are resumed in
Table 5.14, and can be graphically observed in Fig. 5.5(D).

Accuracy batchtrain = 25 batchtrain = 50 batchtrain = 75 batchtrain = 100
RWAaccuracy 5.51% 5.59% 5.57% 5.72%
Raccuracy 26.77% 43.85% 31.99% 39.32%

finalaccuracy 70.77% 82.34% 74.44% 75.43%

Table 5.14: Batch size analysis - results for the UUNET network with 80 wave-
lengths. The confidence interval for the accuracies is negligible.

Whereas the best trade-off was represented by batchtrain = 75 for the Interroute
network, here the highest performances are achieved by batchtrain = 50, meaning
that for a smaller network fewer training data are needed in every iteration.

5.4 Performance Analysis: 4th Experiment
5.4.1 Network Scenario and Analysis Set-Up
Given that, even by reducing the network size, the MPNN has revealed incapable of
solving the RWA problem without relying on the recovery algorithm, this experiment

74

Results

Figure 5.5: Graphical performance results for the UUNET network with 80
wavelengths.

aims at testing the MPNN within the UUNET network with only one available
wavelength on every link.
The traffic load has been set up with parameters λµ = 1

195 , which corresponds
to a network load of 0.02% and a blocking probability equal to 1.16 · 10−3 in the
long-run.
The same identical analysis of the 3rd experiment with the same identical methods
have been repeated.

5.4.2 Numerical Results
For this last experiments, the results are only reported under graphical form and
can be observed in Fig. 5.6.
As already happened for the Interroute network moving from the 1st to the 2nd
experiment, the reduction of the wavelength space from 80 to 1 has drastically
increased the RWA accuracy for any hyperparameters set-up. As usual, there are
some hyperparameters values which sharply represent the best trade-off in terms
of accuracies, as for instance nsteps = 16, lrate = 10−3 or batchsize = 75.
Moreover, by comparing such curves with the ones of the 2nd experiment, it looks

75

Results

clear that all the curves are significantly higher, with some peaks even above 90%
for the final accuracy. This might lead to the conclusion that adopting a small-size
network with a poor wavelength space makes extremely easier for the MPNN the
task of learning how to solve the RWA problem.

Figure 5.6: Graphical performance results for the UUNET network with 1 wave-
length.

5.5 Time Complexity Analysis
In this last section of Chapter 5, a detailed overview on the framework’s time
complexity is presented. In particular, since the the test time is independent from
the hyperparameters set-up, only the MPNN’s training time is considered.
To offer a more precise analysis, the total training time for the MPNN, timetotal, is
divided into three main components, which are:

• timedata: the data generation time, which is the time needed to generate the
input graphs, computing the corresponding target graphs by means of the
training algorithm, and transform these data into the format suited for the
framework.

76

Results

• timeheuristic: the heuristic time, which is the time needed by the training
algorithm to solve the RWA problem on every input graph.

• timeMPNN : the MPNN training time, which is the time needed by the MPNN
to perform its total training process, as taking input data, returning an output,
compute the loss, adjust the weights, etc.

Therefore, it holds: timetotal = timedata + timeheuristic + timeMPNN .
In the following, two different time analyses are proposed. The first one aims
at comparing, for a fixed network scenario, the training time depending on the
hyperparameters set-up to understand how these affect the speed of the training
phase; instead, the second one aims at comparing, for a fixed hyperparameters
set-up, the training time for all the different network scenarios of the previous
experiments to understand how the network dimension and the wavelengths space
affect the speed of the learning process.

5.5.1 Hyperparameters Time Analysis

Here, the analysis of the 1st experiment has been considered.

Iterations Analysis

For this analysis, the results in terms of execution times are resumed in Table 5.15,
and can be graphically observed in Fig. 5.7(A).

Time ntrain = 10.000 ntrain = 20.000 ntrain = 30.000 ntrain = 40.000
timetotal 8h 51m 17h 53m 28h 32m 35h 37m
timedata 5h 22m 10h 50m 17h 24m 21h 46m

timeheuristic 1h 36m 3h 04m 5h 15m 5h 50m
timeMPNN 1h 53m 3h 50m 5h 50m 8h 01m

Table 5.15: Iterations time analysis - results for the Interroute network with 80
wavelengths. The confidence interval for the execution times is negligible.

As expected, the training time is perfectly linear versus the number of iterations.
Moreover, one can also notice that the predominant component of the training
time is dedicated to data generation (61%), whereas the other two components are
approximately equivalent and around 20%. This percentage sub-division holds true
in general for all the following time analyses.

77

Results

Messaging Steps Analysis

For this analysis, the results in terms of execution times are resumed in Table 5.16,
and can be graphically observed in Fig. 5.7(B).

Time nsteps = 14 nsteps = 16 nsteps = 18 nsteps = 20 nsteps = 22
timetotal 17h 01m 17h 16m 17h 53m 18h 03m 18h 24m
timedata 10h 50m 10h 50m 10h 50m 10h 50m 10h 50m

timeheuristic 3h 04m 3h 04m 3h 04m 3h 04m 3h 04m
timeMPNN 3h 06m 3h 21m 3h 50m 4h 08m 4h 29m

Table 5.16: Messaging steps time analysis - results for the Interroute network
with 80 wavelengths. The confidence interval for the execution times is negligible.

As expected, the only component which is affected by the number of messaging
steps is timeMPNN , which slightly increases as nsteps increases.

Learning Rate Analysis

For this analysis, the results in terms of execution times are resumed in Table 5.17,
and can be graphically observed in Fig. 5.7(C).

Time lrate = 10−1 lrate = 10−2 lrate = 10−3 lrate = 10−4

timetotal 17h 37m 17h 53m 17h 44m 17h 47m
timedata 10h 50m 10h 50m 10h 50m 10h 50m

timeheuristic 3h 04m 3h 04m 3h 04m 3h 04m
timeMPNN 3h 34m 3h 50m 3h 41m 3h 44m

Table 5.17: Learning rate time analysis - results for the Interroute network with
80 wavelengths. The confidence interval for the execution times is negligible.

Again, the only component affected by the lrate is timeMPNN , although the
times are similar for any value of such hyperparameter.

Batch Size Analysis

For this analysis, the results in terms of execution times are resumed in Table 5.18,
and can be graphically observed in Fig. 5.7(D).

As for the iterations case, the training time looks perfectly linear versus the
batch size, as expected.

78

Results

Time batchtrain = 25 batchtrain = 50 batchtrain = 75 batchtrain = 100
timetotal 6h 28m 13h 00m 17h 53m 24h 37m
timedata 3h 51m 7h 43m 10h 50m 14h 53m

timeheuristic 1h 07m 2h 04m 3h 04m 4h 00m
timeMPNN 1h 30m 3h 13m 3h 50m 5h 44m

Table 5.18: Batch size time analysis - results for the Interroute network with 80
wavelengths. The confidence interval for the execution times is negligible.

Figure 5.7: Graphical hyperparameters time analysis results for the Interroute
network with 80 wavelengths.

5.5.2 Network Scenarios Time Analysis
Here, the analysis with the all the hyperparameters set to the default values have
been considered for each of the four network scenarios. The results are resumed in
Table 5.19, and can be graphically observed in Fig. 5.8.

The results highlight that the MPNN’s training time, for a fixed set of hyperpa-
rameters, is strongly related to both the network size and the number of considered
wavelengths. In fact, by moving from a medium-large-size network as the Interroute
to a small-size network as the UUNET, the training time decreases by 38%, due to

79

Results

Time UUNET#1 UUNET#80 Interroute#1 Interroute#80
timetotal 6h 05m 11h 13m 9h 31m 17h 53m
timedata 3h 42m 6h 48m 6h 18m 10h 50m

timeheuristic 0h 28m 1h 57m 0h 46m 3h 04m
timeMPNN 1h 55m 2h 28m 2h 27m 3h 50m

Table 5.19: Network scenarios time analysis. The confidence interval for the
execution times is negligible.

the fact that the possible routes are and shorter and in lower amount. Moreover,
given the same network, reducing the wavelength space from 80 to 1 leads to a
training time which is almost half of the original one, due to the faster wavelength
search.
In conclusion, one can firmly state that the MPNN’s training time for the RWA
problem varies linearly as the network dimension and the wavelength resources
vary.

Figure 5.8: Graphical network scenarios time analysis results. All the hyperpa-
rameters are set to the default values.

80

Chapter 6

Conclusion

6.1 Final Considerations

The thesis project, entitled Machine Learning-Based Routing and Wavelength As-
signment in Optical Networks, has been developed with the purpose of applying the
methods of an innovative AI area, which is ML GNNs, to a traditional networking
problem, which is RWA.
Having introduced the RWA problem and how this can be optimally solved by an
ILP formulation, in case of SLE, or sub-optimally solved by heuristic approaches, in
case of DLE, it has been discussed that such problem belongs to the NP-complete
class.
Therefore, the starting point of the project has been investigating whether the
NP-complete nature of the RWA problem could be bypassed by leveraging a non-
traditional paradigm. A paradigm which does not require any human-developed
rules, but finds the rules itself by simply analyzing the available labeled data. Such
an innovative idea has been implemented by means of GNNs, a particular type of
NNs able to exploit graph-based problems’ structures. In fact the whole project
has been focused on a powerful framework able to build a particular type of GNN,
which is the MPNN. This new architecture has been trained to learn how to solve
the RWA problem within a specific network scenario, and finally tested to obtain
quantitative measures of the achievable performances.
The results have shown that it is possible to find the proper MPNN’s parameters
set-up and hence achieving excellent performances, with accuracies even above 90%.
Therefore, when the results are satisfactory, the MPNN could hypothetically be
implemented within a realistic network scenario, and offer a reliable alternative
to traditional algorithms for the RWA problem. In conclusion, such results have
demonstrated that the networking area is definitely suited to face some of its
problems by means of ML methods able to offer performances, flexibility and

81

Conclusion

scalability.

6.2 Future Works
The thesis has offered interesting results, but has unarguably been limited in the
amount of computational resources. Therefore, it can be relevant to let the reader
reason about some future works that could explore the whole potential of this
project.
First, extending the analysis to an even larger set of hyperparmeters could lead
to even higher performances than the achieved ones. For instance, it would be
interesting to find a precise relationship between the network size and the number
of messaging steps required. In addition, future works could consist in performing
these analysis on very large networks with a large wavelengths space in order to
see how scalable the framework is. Moreover, it would be worth to try adopting
different training algorithms, such as an adaptive routing followed by a different
WA heuristic than the First-Fit. Finally, the GNNs represent in general a powerful
tool to work on graph-based structures, and hence different architectures from the
MPNN could be tested for the RWA problem.

82

Bibliography

[1] Thomas Erlebach and Klaus Jansen. «The complexity of Path Coloring and
Call Scheduling». In: Theoretical Computer Science 255 33–50 (2001) (cit. on
p. 2).

[2] Hui Zang, Jason P. Jue, and Biswanath Mukherjee. «A Review of Routing and
Wavelength Assignment Approaches for Wavelength-Routed Optical WDM
Networks». In: OPTICAL NETWORKS MAGAZINE (January 2000) (cit. on
pp. 3–5, 8, 10, 11).

[3] Ori Gerstel and Shay Kutten. «Dynamic Wavelength Allocation in All-optical
Ring Networks». In: Proc., IEEE ICC ’97 (June 1997) (cit. on pp. 3, 5).

[4] S. Even, A. Itai, and A. Shamir. «On the Complexity of Timetable and
Multicommodity Flow Problems». In: SIAM Journal of Computing (1976)
(cit. on p. 6).

[5] I. Martìn, S. Troia, J.A. Hernàndez, A. Rodrìguez, F. Musumeci, G. Maier,
R. Alvizu, and O. Gonzàlez de Dios. «Machine Learning-Based Routing and
Wavelength Assignment in Software-Defined Optical Networks». In: IEEE
Transactions on Network and Service Management (2019) (cit. on pp. 6, 12,
13).

[6] Wikipedia contributors. Routing and Wavelength Assignment — Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/wiki/Routing_and_
wavelength_assignment. [Online; accessed 9-February-2021]. 2021 (cit. on
p. 7).

[7] I. Szczesniak, A. Jajszczyk, and B. Wozna-Szczesniak. «Generic Dijkstra for
Optical Networks». In: Journal of Optical Communications and Networking
(2019) (cit. on p. 10).

[8] R. Ramaswami and K. Sivarajan. «Routing and Wavelength Assignment in All-
Optical Networks». In: IEEE/ACM TRANSACTIONS ON NETWORKING
(1995) (cit. on p. 11).

83

https://en.wikipedia.org/wiki/Routing_and_wavelength_assignment
https://en.wikipedia.org/wiki/Routing_and_wavelength_assignment

BIBLIOGRAPHY

[9] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar. «A
Machine Learning Approach to Routing». In: arXiv:1708.030747 (2017) (cit.
on pp. 13, 14).

[10] Zhizhen Zhong, Nan Hua, Zhigang Yuan, Yanhe Li, and Xiaoping Zheng.
«Routing without Routing Algorithms: An AI-Based Routing Paradigm for
Multi-Domain Optical Networks». In: OFC 2019 (2019) (cit. on p. 13).

[11] Xiaoliang Chen, Jiannan Guo, Zuqing Zhu, Roberto Proietti, Alberto Castro,
and S. J. B. Yoo. «Deep-RMSA: A Deep-Reinforcement-Learning Routing,
Modulation and Spectrum Assignment Agent for Elastic Optical Networks».
In: OFC 2018 (2018) (cit. on p. 13).

[12] C. Natalino, M.R. Raza, P. Ohlen, P. Batista, M. Santos, L. Wosinska, and
P. Monti. «Machine Learning based Routing of QoS Constrained Connectivity
Services in Optical Networks». In: OSA 2018 (2018) (cit. on p. 13).

[13] Zirui Zhuang, Jingyu Wang, Qi Qi, Haifeng Sun, and Jianxin Liao. «Graph-
Aware Deep Learning Based Intelligent Routing Strategy». In: IEEE 43rd
Conference on Local Computer Networks (2018) (cit. on p. 13).

[14] Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles
Blundell. «Neural Execution of Graph Algorithms». In: 33rd Conference on
Neural Information Processing Systems (2019) (cit. on p. 13).

[15] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. «Graph Neural Networks: A Review
of Methods and Applications». In: arXiv:1812.08434 (2019) (cit. on pp. 13,
27).

[16] Wikipedia contributors. Machine Learning — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/wiki/Machine_learning#Machine_
learning_approaches. [Online; accessed 15-February-2021]. 2021 (cit. on
pp. 14, 18).

[17] Ravil Muhamedyev. «Machine LEarning Methods: An Overview». In: COM-
PUTER MODELLING NEW TECHNOLOGIES (2015) (cit. on p. 16).

[18] Vladislav Skorpil and Jiri Stastny. «Neural Networks and Back Propagation
Algorithm». In: ELECTRONICS’ 2006 (2006) (cit. on pp. 17, 18).

[19] Peter W. Battaglia et al. «Relational inductive biases, deep learning, and
graph networks». In: arXiv:1806.01261 (2018) (cit. on pp. 19–23, 26–29).

[20] Peter Roelant. Softmax classification with cross-entropy. https://peterr
oelants.github.io/posts/cross-entropy-softmax/. [Online; accessed
26-February-2021]. 2019 (cit. on p. 40).

[21] Diederik Kingma and Jimmy Ba. «Adam: A Method for Stochastic Optimiza-
tion». In: arXiv:1412.6980 (2015) (cit. on p. 40).

84

https://en.wikipedia.org/wiki/Machine_learning##Machine_learning_approaches
https://en.wikipedia.org/wiki/Machine_learning##Machine_learning_approaches
https://peterroelants.github.io/posts/cross-entropy-softmax/
https://peterroelants.github.io/posts/cross-entropy-softmax/

BIBLIOGRAPHY

[22] Youkabed Sadri. «Fast and scalable routing in large telecommunication net-
works». In: Politecnico di Torino, Master Degree Thesis (2020) (cit. on p. 60).

[23] Computational resources provided by HPC@POLITO, which is a project
of Academic Computing within the Department of Control and Computer
Engineering at the Politecnico di Torino. http://www.hpc.polito.it.
[Online]. 2021 (cit. on p. 63).

[24] The Internet Topology Zoo. http://www.topology-zoo.org/index.html.
[Online]. 2021 (cit. on pp. 64, 71, 72).

85

http://www.hpc.polito.it
http://www.topology-zoo.org/index.html

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background of the Project
	Motivation and Goals of the Project
	Thesis Outline

	Background on Routing and Wavelength Assignment
	Introduction to the RWA Problem
	Static RWA Problem
	Dynamic RWA Problem
	DLE Scenario
	R Subproblem
	WA Subproblem

	Machine Learning Methods and Graph Neural Networks
	Introduction
	The Increasing Interest in Machine Learning
	Related Work

	Machine Learning Methods and Neural Networks
	Machine Learning Approaches
	Machine Learning Models

	Graph Neural Networks
	A Multitude of Graph-Structured Tasks
	Definition of Graph
	GN Block

	Design of a GNN Architecture
	Graph Representation
	GN Block Configurations
	Composable Multi-Block Architectures

	GNN Framework for the RWA Problem
	Graphs Data Representation
	Input Graph Data
	Target Graph Data
	Calls Generation Process

	The MPNN Model
	Training Phase: a Supervised Approach
	The MPNN Internal Structure
	Loss Computation and Optimization
	Hyperparameters

	Test Phase and Recovery Algorithm
	Test Phase
	Recovery Algorithm
	Performance Metrics
	MPNN Implementation within a Network Scenario

	Computational Complexity

	Results
	Performance Analysis: 1st Experiment
	Network Scenario
	Analysis Set-Up
	Numerical Results

	Performance Analysis: 2nd Experiment
	Network Scenario and Analysis Set-Up
	Numerical Results

	Performance Analysis: 3rd Experiment
	Network Scenario and Analysis Set-Up
	Numerical Results

	Performance Analysis: 4th Experiment
	Network Scenario and Analysis Set-Up
	Numerical Results

	Time Complexity Analysis
	Hyperparameters Time Analysis
	Network Scenarios Time Analysis

	Conclusion
	Final Considerations
	Future Works

	Bibliography

