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Abstract

Space debris orbiting around the Earth are becoming a major problem that
could impair the future of space exploration.

Among the different approaches to this problem that have been proposed
in the recent years, this work focuses on a possible solution consisting in an
autonomous spacecraft that performs a rendezvous maneuver, collects a debris
of unknown mass and then moves to a parking orbit.

When the spacecraft collects a debris of unknown mass, the dynamics of
the system may change substantially and this may affect the control stability
and performance of the spacecraft. In this study, a control system is designed,
capable of handling situations with time-varying and uncertain parameters, as
it occurs in space debris removal missions.

A control strategy based on an Adaptive Nonlinear Model Predictive Con-
trol (ANMPC) is developed. The unknown mass of the debris is treated as
an uncertain parameter and is estimated by means of two different methods
(Recursive Average and Extended Kalman Filter (EKF)). Then, the estimated
mass is used to update the internal model of the ANMPC, which later solves
an on-line optimization problem providing an optimal trajectory and control
action for reaching the debris and the parking orbit.

Simulations shows that the proposed control system is able to effectively
accomplish the requested task. The solutions coming from two different esti-
mation methods are compared and provide similar results. If a simple NMPC
strategy is employed without an estimation and adaptation process, the ob-
tained results do not diverge significantly from the other case, meaning that
NMPC is a control method that is intrinsically robust for this kind of applica-
tions. However, the mass estimation is useful in order to improve the overall
performance.

The adaptive algorithm has also the potential to be extended to other space
missions characterized by unknown parameters.
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Chapter 1

Introduction

Space debris orbiting around the Earth is becoming a major problem that could
impair operational space missions and the future of space exploration. More
than 15000 objects have been cataloged in orbit around the Earth at which
only the 6% are active satellites [1]. The pollution of debris would continue to
increase even if space launches are halted today. If a collision happens between
a debris and an active satellite or a large debris (e.g. derelict satellites) a cloud
of little objects could spread in Space. This was the case when the Iridium
satellites collided with a retired Russian satellite. That accident created over
1500 pieces of orbital debris. In recent years, the mitigation problem was take
care for the Space community and some steps were made towards a future
with a clean Space. The debris problem was formulated the first time in the
1960 by the scientist Willy Ley. Then, in the 1978 the scientist Donald J.
Kessler formulate a possible dystopian scenario that takes the name of Kessler
syndrome. In this dystopian future the Space pollution could be great enough
to make no more possible Space exploration.

In addressing this problem the UN stated some guidelines for Space Debris
Mitigation, but mitigation alone is not sufficient to solve the problem. For this
purpose several Active Debris Removal (ADR) methods were proposed in the
last decade. Space agencies (e.g. NASA, ESA) already started with the study
to their own programs for these kind of missions and in literature can be found
different methods to approach to the debris problem [1] [2]. By considering
how a debris can be removed a classification can be made:

• Collective Methods

• Laser-based Methods

• Ion-beam Shepherd-based Methods

• Tether-based Methods

• Sail-based Methods

• Dynamical Systems-based Methods



An important step was made in 2019. Indeed, in that year it was testing the
first ADR for LEO debris [3].

Differently from the approaches to this problem that have been proposed
in recent years, this thesis focuses on a possible solution exploiting an au-
tomated method in the most critical region for debris concentration. Similar
studies that dealing with automated method are already presented to the space
community. An important consideration has to be made on the basis of the
different control algorithms considered in these works.

In [4] a feedback linearization method is used to accomplish an autonomous
non-cooperative rendezvous maneuver. The equations used to describe the rel-
ative motion are a modified version of the HCW equations. The limitations of
the feedback linearization method do not make possible to consider constraints
and the dynamics equations must be written in affine form. As will be seen
later, constraints must be taken into account and the used equations are not
in affine form.

In [5] two CubeSats are provided with a Linear Quadratic Regulator (LQR).
The command input is calculated from an optimization problem and applied in
open-loop. Since the optimal sequence is applied in open-loop is not possible to
dealing with varying constraints and/or to counteract unexpected behaviours.

In [6] is analyzed the GNC problem for a ADR mission that exploits a
robotic arm as capture system. In this article two different controllers are
propose for Guidance and Control modules. A LQR is used for Guidance
purposes, while both a LQR and a PID controller are used for Control purposes.
An EKF and another version of the Kalman filter (the unscented KF) are used
in the Navigation module. Also in this case the possible problem coming from
the LQR are not taken into account.

The aim of this thesis is to develop a control algorithm that is able to
accomplish the Guidance and Control tasks for a wide range of ADR missions.
As will be seen later, in order to consider varying constraints and to dealing
with system equations that are not in affine form, an adaptive version of the
MPC will be developed. With this control method is also possible to obtain
optimal solutions and to solve in the same time Guidance and Control.

The critical region for debris concentration is found at orbital altitude
between 600 to 800 [km]. For this reason, the analysis is concentrated only on
the control system that has to be installed on a hypothetical Spacecraft (S/C)
that has to work in a LEO (that includes the critical region seen before). In
this way, the control algorithm could be extended to a wide range of ADR
missions that could use different collective methods: robotic arm, tentacle
system, harpoon, and nets.

However, recent analyzes found in literature focus their studies on two
different regions: LEO and GEO. But, it is worth to note that in the GEO
the debris density is much lower than in the LEO and possible collisions could
cause lower damages for the lower impact velocity [1].

One important challenge, for the automation of a ADR system, is that
when the space debris is collected by the S/C, its unknown mass will affect
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the dynamics of the whole system. In fact, this could be the case where
the information on the S/C dynamics alone is not sufficient to successfully
accomplish the different tasks of a space mission.

The control system that has to be developed must be capable of handling
situations where not all the parameters are known a priori or change in time.
These parameters are needed in order to accomplish the Guidance, Navigation
and Control (GNC) problem for the ADR mission.

For this purpose, a control strategy based on an adaptive version of the
Nonlinear Model Predictive Control (NMPC) is developed. This control ap-
proach is implemented ad-hoc in the debris removal space mission, where the
unknown debris mass, treated as a parameter in the control problem, is esti-
mated with two different methods (Recursive Average and Extended Kalman
Filter (EKF)) in order to obtain an optimal trajectory needed for the debris
successfully removal.

The models used by the controller and by the EKF are different from the
one used as plant. Inside this last one are considered also effects as the drag
force and other little perturbations. Another difference is that only in the
plant the propellant consumption is accounted for. Thanks to its feasible
and robustness properties the NMPC is able to optimally menage the the
constraints coming from the different maneuvers and also to counteract the
differences between the used models.

The mission is divided in five different maneuvers. In each one the controller
sets its parameter in a gain scheduling fashion. The scheduled parameters, as
the references and the sampling time, are selected thanks to some conditions.
In this way, the system understands when a specific maneuver has to start. The
mission start with two precision maneuvers: the Rendezvous and the Docking.
After the Docking the system becomes the fusion between the S/C and the
debris. The prediction model used by the controller in these maneuvers is based
on the HCW equations. Then, the Estimation maneuver stars and debris mass
is estimated online. After this estimation the system is driven on an empty
orbit. This is taken as starting point for the next maneuver: Orbit-Change.
In the estimation maneuver and in the Orbit-Change the prediction model is
based on the 2B equations. It is important to note that this last maneuver
is considered to bring debris with large size in an empty orbit by increasing
the apogee distance. Another possible solution in order to remove debris is to
burn them in the atmosphere by decreasing their orbit.

The adaptivity of the NMPC is in the estimation maneuver. The estimation
algorithm finds and feeds the controller with the estimation of the debris mass.
In this way, at each sampling time this value is updated and converges to the
real mass value.

The debris mass is considered equal to 550 [kg]. In this way it is possible
to extend the control approach also to systems that has to work with a large
debris size (like old S/C stages).
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Just to have an idea of the danger that a debris could represent, in the
following picture it is showed a test done by European Space Agency (ESA)
with a small debris (1.2 [cm]):

Figure 1.1: ESA Impact Test

The Kessler syndrome accounts for a possible scenario in which a lot of
objects orbit in Low-Earth Orbit (LEO). In this situation the space pollution
is high enough that collisions between objects could cause a cascade in which
each collision generates space debris that increases further collisions. One
important implication is that the distribution of debris in orbit could render
space activities and the use of satellites in specific orbital ranges difficult for
many generations.

Considering that, this problem will become more important, with the grow-
ing number of satellites, that will orbit around the Earth, the ADR missions
will be necessary in order to reach the clean Space condition.
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1.1 Thesis Outline

Chapter 2 investigates the theoretical background for the GNC problem. It
contains discussions on absolute and relative motion description, coordinate
frames, and finally controller comparison and estimation processes. Chapter
3 focuses on the powerful and flexible Nonlinear Model Predictive Control
(NMPC). Chapter 4 indicates the various maneuvers needed for the mission.
Then, it will be analyzed the whole control algorithm. Two different techniques
are compared for the estimation process. Then, in chapter 5 the simulation
results are shown and discussed. The work is closed by the conclusion chapter,
which provides suggestions for further works.
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Chapter 2

Theoretical Background

This chapter aims to introduce the essential basics needed by the reader to
understand this thesis work.

The first part focuses on arguments about orbital dynamics, on coordinate
frames, and on absolute and relative equations of motion. The second one,
concerns a control comparison. Then, the last part focuses on the the formula-
tion of the estimation process. The presented notions are taken from [10] and
[16].

2.1 Orbital Dynamics

A S/C can be described by a rigid body which moves with respect to (w.r.t.)
some inertial frame. Clearly, this is an approximate description (rigid body),
but in many cases it is fine. It can be used to develop many analysis and also
to design control systems.

However, the body motion is a combination of a translation of the body
Center of Mass (CoM) and a rotation of the body about an axis passing trough
its CoM.

By split the two motions, it is possible to analyze them separately. The
aim of this thesis is to develop a control algorithm able to accomplish various
mission tasks in the orbital dynamics field. For this reason, the analysis focuses
only on the translational motion of the S/C in some gravitational field.

In this section, the basic concepts of celestial mechanics will be analyzed.
In particular, the Kepler’s laws and the Newton’s laws are take into account.
Both these two analysis are very important from the point of view of modern
applications.

The Newton’s laws come from general physics and they imply the Kepler’s
laws (which are empirical).



2.1.1 Kepler’s Laws

Kepler formulated their three laws on the observation of planets orbits around
the Sun. The three laws modified the Copernicus heliocentric theory, by re-
placing circular with elliptical orbits, and explaining how planetary velocities
vary:

1. The orbit of a planet is an ellipse with the Sun at one of the two foci;

2. The radius vector, that links the Sun and a planet, sweeps out equal
areas during equal intervals of time. In other words, the area velocity is
constant;

3. Planetary period of revolution are proportional to r
3/2
m . Where rm is the

mean distance from the Sun;

2.1.2 Newton’s Laws

The Newton’s laws are more general. They can be divided into three laws of
motion and one law of gravitation. The first three describe the relationship
between the motion of an object and the forces acting on it. They are:

1. An object either remains at rest or continues to move at a constant ve-
locity, unless it is acted upon by an external force.

2. The rate of change of the linear momentum mv of an object is given by:

d

dt
(mv) = F

Where m is the object mass, v is the object velocity, F is the force acting

on the object.

For an object with constant mass, the net force on an object is equal to

the mass of that object multiplied by the acceleration a.

F = m
dv

dt
= ma

3. When one object exerts a force on a second object F12, that second object

exerts a force F21 that is equal in magnitude and opposite in direction on

the first object.

F21 = −F12

While, the Newton’s law of gravitation states:

Every point mass attracts every other point mass by a force acting along

the line intersecting the two points. The force is proportional to the
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product of the two masses, and inversely proportional to the square of

the distance between them.

F =
Gm1m2r

r3

In this last equation G = 6.67e − 11 [Nm2/kg2] is the Gravity universal con-
stant, m1 and m2 are the object masses. In order to indicate the direction
of F is used the previous notation with r/r3 (r3 is the cubic of the distance
magnitude).

2.1.3 The Two-Bodies (2B) Problem

In order to understand the orbital dynamics it is essential to start the analysis
from the forces that are acting on the space objects. For this reason, the
formulation of the Two-Bodies (2B) problem plays a crucial role.

Figure 2.1: 2B Problem General Setting

The simplest analysis that can be make is done by considering only two
point mass objects. As it can be see, there are two bodies located in two differ-
ent points P0 and P1 w.r.t. a given reference frame with origin O. The position
vectors from the reference frame are: r0 and r1. While, the relative position is
indicated with r. These two bodies have masses m0 and m1 respectively, with
m0 � m1.

By means of gravity force, the two bodies are attracted each other. The
big body m0 is attracted with F01 = Gm0m1r/r

3 towards the small body m1.
For the third Newton’s law of motion, the small body reacts with the same
force, but in opposite direction F10 = −F01.

In this situation, two external forces F0 and F1 acting on the two masses
respectively are also considered. It is worth to note that these forces are not
gravitational. They can be seen as the two resultants of the all external forces
applied to the two bodies.

It is possible to write the second Newton’s law on the two bodies. It is

8



assumed that the two masses are constants :

v̇0 =
1

m0

∑
F = Gm1

r

r3
+

1

m0

F0

v̇1 =
1

m1

∑
F = −Gm0

r

r3
+

1

m1

F1

(2.1)

These two equation describe the absolute motion of the two bodies w.r.t.
the inertial reference frame.
Now, considering:

• Relative Position:
r = r1 − r0

• Relative Velocity:
v = v1 − v0

• Relative Acceleration:
v̇ = v̇1 − v̇0

• CoM Position:
rc =

m0

m0 +m1

r0 +
m1

m0 +m1

r1

• CoM Velocity:

vc =
m0

m0 +m1

v0 +
m1

m0 +m1

v1

It is possible to write:

• Relative Motion:

v̇ = −G(m0 +m1)
r

r3
+

1

m1

(F1 −
m1

m0

F0)

• CoM Motion:

v̇c =
1

m1

F1 + F0

1 + (m0/m1)

The first equation describe the relative motion of the two bodies. The
second one describe the motion of the system CoM (the system is composed
by the union of the two bodies).

By considering the previous assumption m0 � m1, it is obtained the Re-
stricted 2B equation:

v̇ + µ
r

r3
= +

1

m1

F1 (2.2)

Where µ = Gm0 is the Gravitational Parameter. It is always associated with
the big body.

It is interesting to note that the acceleration of the system CoM becomes
zero v̇c = 0. This means that the CoM coincide with the center of the big
body. Moreover, this point can be chosen as the origin of an inertial reference
frame (it has null acceleration).
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In the following it is showed a table with some gravitational parameters
and accelerations:

Celestial Body m [kg] requatorial [m] µ [m3/s2] g [m/s2]

Sun 1.99e30 0.696e9 0.133e21 274

Earth 5.97e24 6.38e6 0.3986e15 9.78

Mars 0.642e24 3.40e6 0.0428e15 3.70

Moon 0.0755e24 1.74e6 4.90e12 1.62

Table 2.1: Some Celestial Parameters

If the external force F1 is equal to zero it is possible to write the restricted
Free Two-Bodies (FR2B):

F1 = 0, v̇ + µ
r

r3
= 0 (2.3)

Using this equation it is possible to prove that:

• The total mechanical energy ε of the FR2B system is conserved;

• The angular momentum h of the FR2B system is conserved;

• The free response of the FR2B equation occurs on a plane called Orbital
Plane;

It is also possible to derive a geometric description of the FR2B system orbits.

Energy Conservation

Taking the equation 2.3 and performing the dot product for v it is obtained:

v̇ · v + µ
r

r3
· v =

1

2

d

dt
(v · v) + µ

1

2r3
d

dt
(r · r) =

=
d

dt

v2

2
+ µ

1

2r3
d

dt
r2 =

d

dt

v2

2
+ µ

ṙ

r2
=

=
d

dt
(
v2

2
− µ

r
) = 0

(2.4)

The quantity (v
2

2
− µ

r
) = constant (since its derivative is equal to zero) is

the total mechanical energy ε per unit mass of the system. In this way, it is
proven the principle of energy conservation:

ε =
v2

2
− µ

r
= constant

Where v2

2
is the kinetic energy per unit mass and µ

r
is the potential energy per

unit mass.
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Solving the previous equation for v it is possible to see that for a given
total energy, the corresponding magnitude of the orbital velocity vector is:

v =

√
2(
µ

r
+ ε)

Conservation of the Angular Momentum and Planar Motion

Now, taking the equation 2.3 it is performed the cross product for r:

r× v̇ +
µ

r3
r× r = r× v̇ = v× v + r× v̇ =

=
d

dt
(r× v) = 0

Note:

d(a× b)
dt

= a× db

dt
+
da

dt
× b

(2.5)

The quantity r× v = constant (since its derivative is equal to zero) is the
angular momentum h per unit mass. In this way, it is proven the principle of
angular momentum conservation.

Since h is constant, another important implication is that r and v always
remain in the same plane. This plane is called Orbital Plane.

The result of the cross product between two vectors is always perpendicular
to the plane described by them. h constant implies that also the plane must
be constant. In this way, the motion of the small body occurs on a plane if
there aren’t external forces applied to it.

2.1.4 Orbit Equation

Taking the equation 2.3 it is performed the cross product for h:

v̇× h +
µ

r3
r× h = v̇× h + v× ḣ +

µ

r3
r× h =

= v̇× h +
µ

r3
r× h =

=
d

dt
(v× h− µ

r
r) = 0

Note:

d

dt
(−r

r
) =

ṙ

r2
r− 1

r
v =

1

2r3
(
d

dt
r2)r− 1

r
v =

1

2r3
[
d

dt
(r · r)]r− 1

r3
(r · r)v =

=
1

r3
[(r · v)r− (r · r)v] =

1

r3
r× (r× v) =

1

r3
r× h

(2.6)

The quantity v× h− µ
r
r = µe is constant. e is the eccentricity vector (its

magnitude |e| = e is called just eccentricity of the system).
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Taking this last equation is performed the dot product for r:

r · (v× h)− µ

r
r · r = µr · e

Considering the scalar triple product: r · (v× h) = (r× v) · h = h · h = h2

The previous equation becomes:

h2 − µ

r
r · r = h2 − µr = µre cos θ

Where θ is the true anomaly. It is the angle between the vectors r and e. This
angle is an important quantity used to describe the orbit of the small body
around the big one.

Considering p = h2

µ
= constant (that is the semilatus rectum also called

the parameter) and solving the previous equation for r, it is obtained the so
called Orbit Equation (ORE):

r =
p

1 + e cos θ
(2.7)

2.1.5 Orbit Geometry

The ORE, from standard analytical geometry, is the equation of a conic section
written in terms of polar coordinates r and θ. For θ ∈ [0; 2π], r describes a
conic.

A conic section (or just a conic) is a curve obtained as the intersection of
a cone with a plane:

Figure 2.2: Conics

Staring from the ORE (see equation: 2.7) it can be distinguished:

1. Circle If e = 0;

2. Ellipse If 0 < e <= 1;

3. Parabola If e = 1;

4. Hyperbola If e > 1;

12



The eccentricity is a very important parameter that determines the orbit shape.

From standard geometry the following properties hold:

• The origin is located at one focus;

• θ is measured from the point on the conic nearest to the focus;

• p determines the size. It depends on the angular momentum and on µ.
By considering the same big body µ doesn’t change, while p increase
with h.

• e determine the shape;

Ellipse

A circle can be see as an ellipse where the two foci are coincident and the
two semi-axes are equal. An ellipse is the locus of points the sum of whose
distances from two fixed points (called foci) is constant and equal to 2a.

Figure 2.3: Ellipse

In the upper figure: a is the semi-major axis, b is the semi-minor axis, p is
the semilatus rectum.

The two extreme points are called Apsides. One is the Periapsis and cor-
responding to θ = 0. The distance from the main focus is:

rp =
p

1 + e
(2.8)

The other one is called Apoapsis and corresponding to θ = π. The distance
from the main focus is:

rp =
p

1− e
(2.9)

In the case of planet orbiting around the Sun these two points take the names
of Perihelion and Aphelion respectively. While, in the case of a body orbiting
around the Earth they take the names of Perigee and Apogee.

Considering the ORE it is possible to write the main ellipses parameters:

13



• Semi-major axis:

a =
p

1− e2

• Semi-minor axis:
b = a

√
1− e2

• distance center-focus:
c = ae

The magnitude of the velocity can be expressed by the vis-viva equation.
Considering that the mechanical energy is constant, it can be written at the
Periapsis and at the Apoapsis:

ε =
v2p
2
− µ

rp
=
v2a
2
− µ

ra
= constant

Now, it is considered a reference frame focus-centered with an axis passing thru
the Periapsis, positive in the direction focus-periapsis, on the orbit plane. The
other axis is perpendicular and stays on the orbit plane, with direction taken
in order to have that the third one has the same direction of h. In this way,
the velocity and radius vectors are perpendicular at Periapsis and Apoapsis.
It is possible to write:

h = rpvp = rava = constant, vp =
ra
rp
va

Rearranging the previous equation and substituting with vp:

v2a
2
−
v2p
2

=
µ

ra
− µ

rp
,

1

2

r2p − r2a
r2p

v2a = µ
rp − ra
rarp

Solving w.r.t. the kinetic energy at the Apoapsis:

1

2
v2a = µ

rp
ra(ra + rp)

Considering that: rp + ra = 2a. It is possible to write:

1

2
v2a = µ

2a− ra
2ara

=
µ

ra
− µ

2a

Substituting this value in ε it obtained that the total mechanical energy is:

ε =
v2a
2
− µ

ra
= − µ

2a
= negative constant

While, the velocity is given by the vis-viva equation:

v =

√
2µ

r
+ 2ε =

√
2µ

r
− µ

a

In the case of circular orbit: e = 0, a = r and v =
√
µ/r.
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Parabola

A parabola is the locus of points whose distance from a fixed point (focus) is
equal to the distance from a fixed line (directrix ).

Figure 2.4: Parabola

As seen before, in this case e = 1. This implies:

• ra →∞

• a→∞

• ε = 0

Using the vis-viva equation, for any orbital position with radius r, the corre-
sponding velocity is:

vescape =

√
2µ

r

Where vescape is the escape velocity. It allows to leaving a closed orbit. If an
object is on an ellipsoidal orbit the velocity can be increased until vescape. Then
this limit the obit becomes no more closed and an open parabolic orbit it is
obtained.

Hyperbola

An hyperbola is the locus of points the difference of whose distances from two
fixed points (foci) is constant and equal to −2a.
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Figure 2.5: Hyperbola

In this case e > 1. This implies that the total energy is positive:

ε =
v2∞
2
> 0

It is possible to compute asymptotic quantities for r →∞:

• Angle θ:

θ∞ = arccos(−1

e
)

• Velocity:

v∞ =

√
µ

|a|

An interesting observation is that it is possible to increase the speed of
an object (S/C) using an hyperbolic orbit. A body passing close to a moving
planet is subject to a velocity increase, without being captured by the planet
gravity. This maneuver is called hyperbolic passage. It was adopted first by US
probe Mariner 10 (1973) to fly-by Venus (once) and Mercury (three times).

Orbit Geometry Considerations

Starting from the FR2B equation several conservation laws and the ORE were
found. The ORE describes the geometry of the orbit of a small body traveling
on an orbit around a big body. While, the FR2B describe the dynamics of
the same motion. Indeed, it is a differential equation and its solution is given
by integration starting from given initial conditions. The solution is r(t) in
function of the time.

As seen, the orbit is always on a plane, by assuming that this plane coincides
with an (x, y)-plane it is possible to write: z(0) = z(t) = ż = 0. In this way:
r(t) = (x(t), y(t), z(t) = 0) where x(t) and y(t) satisfy the ORE when they are
transformed as:

• (x, y) Cartesian coordinates:

r(t) =
√
x2(t) + y2(t)
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• (r, θ) Polar coordinates:

cos θ(t) =
x(t)√

x2(t) + y2(t)

While, the inverse transformation is given by:

x(t) = r cos θ(t)

x(t) = r sin θ(t)

z(t) = 0

2.1.6 Reference Frames

There are different types of reference frames that are used in the space field.
Here, only four of them are considered:

1. Local-Vertical Local-Horizontal (LVLH) Reference Frame:
Rl = {P1, l1, l2, l3}. It is a non-inertial frame;

2. Local-Orbital Reference Frame (LORF): Ro = {P1,o1,o2,o3}. It is a
non-inertial frame;

3. Perifocal (Perigee) Frame (PF): Rp = {P0,p1,p2,p3}. It is an inertial
frame;

4. Geocentric Equatorial (GE) Reference Frame: Rge = {P0, Î, Ĵ, K̂}. It is
an inertial frame;

The first three are more general and they are associated to an elliptic orbit.
The fourth one is associated with the Earth.

The position of the big body is associated to P0. While, the position of the
small one is associated to P1.

Local-Vertical Local-Horizontal Frame

The origin P1 moves with the small body on the orbit. The unit vectors of the
axes are:

Figure 2.6: LVLH
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• Local vertical l3: It is defined along the direction P0 → P1 on the orbit
plane;

• Local horizontal l1: It is perpendicular to l3 on the orbit plane. The sign
is concordant with the velocity;

• Orbit pole l1: It defined by the vector product: l2 = l3 × l1. It is
perpendicular to the orbit plane;

Local-Orbital Reference Frame

The origin P1 moves with the small body on the orbit. The unit vectors of the
axes are:

Figure 2.7: LORF

• o1: It has the same direction of the instantaneous normalized velocity.
It is on the orbit plane and it is tangent to the orbit;

• Orbit pole o2: It is perpendicular to the orbit plane;

• o3: It defined by the vector product: o3 = o1 × o2. It is on the orbit
plane;

Perifocal Frame

The origin P0 is fixed with the big body. This time the reference is inertial.
The unit vectors of the axes are:

Figure 2.8: PF
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• p1: It is defined along the direction of the eccentricity vector p1 = e/e.
This unit vector passes thru the periapsis on the orbit plane.

• Orbit pole p3: It is perpendicular to the orbit plane;

• p2: It defined by the vector product: p2 = p3 × p1. It is on the orbit
plane;

It is also called Perigee Frame when it is associated with the Earth.

It is worth to note that:

• P0 is one focus of the ellipse;

• When the elliptic orbit is reduced to a circular orbit the first two frames
coincide;

• The direction of the orbit pole is always the same and coincident with h;

Geocentric Equatorial Frame

This time, this reference frame is defined only for the Earth. The origin P0 is
coincident with its CoM. The axes Î and Ĵ are on the Equatorial Plane.

Î↔ Xε unit vector coincides with the vernal equinox direction: it is defined
as the Earth-Sun direction when the Earth is at the first day of spring (north
hemisphere). K̂ is coincident with the polar rotation axis, positive from the
Earth CoM towards the North pole. Ĵ is defined by the cross product: Ĵ =
K̂× Î and it leis on the equatorial plane.

Figure 2.9: GE

It is worth to note that this frame doesn’t rotate with the Earth and it is
independent from the small body orbit.

2.1.7 Orbital Elements

It is considered an elliptic orbit around the Earth. In this situation two planes
can be distinguished:
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1. Orbit Plane: That is the plane where the orbit lays;

2. Equatorial Plane: That is the plane that passes through the Earth’s
equator;

Figure 2.10: Elliptic Orbit around the Earth

A first important notion is the one of line of nodes. It is the intersection be-
tween these two planes. While, the angle between the two is called inclination
i.

For this elliptical orbit another important quantity is the ascending node. It
hold on the line of nodes and it is the point defined by the intersection between
the orbit and the equatorial plane. This intersection defines two points, but
it is considered only the point when the orbit goes from the lower side of the
equatorial plane to the upper side. In this way, it is possible to uniquely define
the ascending node.

Looking the following figure it is possible to found other important quan-
tities:

Figure 2.11: Orbital Elements Description

The angle from the unit vector Î to the ascending node is Ω and it is called
right ascension of the ascending node. The angle from the ascending node to
the perigee is ω and it is called argument of perigee. While, the angle ν is the
the true anomaly (already defined in section 2.1.4 ν = θ). It is defined as the
angle defined from the perigee to the S/C position.
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These quantities are a part of the so called six classical orbital elements.
They are five constant quantities (a, e,Ω, i, ω) plus the true anomaly ν, that
depends on the S/C position. Whit these six elements it is possible to uniquely
define a given orbit. Indeed, the first five elements define: the shape, the size,
and the features of the orbit. ν gives the position on that orbit (the position
is not fixed, but it changes in time).

Sometimes the perigee passage time is used instead of the true anomaly.

From Position and Velocity to Orbital Elements

The orbital elements are equivalent to position and velocity vectors of the
S/C. Indeed, once the orbit geometry is fully definite (by the constant orbital
elements) in the GE frame, it is possible, thru ν, to define completely the
motion of the S/C.

It is important to move from r and v to the six orbital element and vice-
versa.

Starting from r and v expressed in the GE frame it is possible to write the
following quantities:

h = r× v, e =
1

µ
v× h− r

r
, Î′ = K̂× h

h

a =
p

1− e2
=

h2

µ(1− e2)
, e = |e|, cos i = K̂ · h

h

cosω = Î′ · e
e
, cos Ω = Î · Î′, cos θ = r · e

re

(2.10)

Where Î′ is the unit vector from the Earth CoM to the ascending node.
Other useful parameters are the eccentric anomaly E and the Period P :

tan
E

2
=

√
1− e
1 + e

tan
θ

2
, P = 2π

√
a3

µ
(2.11)

From Orbital Elements to Position and Velocity

Supposing that the six orbital element are known it is possible to write the
position and the velocity of the S/C:

p = a(1− e2), r =
p

1 + e cos θ
(2.12)

r and v expressed in the PF are given by:

r =

r cos θ
r sin θ

0

 , v =

 −
√
µ/p sin θ√

µ/p (e+ cos θ)
0

 (2.13)
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In order to transform them in GE coordinates a Direction Cosine Matrix
(DCM) is needed. Remembering that the transformation is the inverse of
the rotation and exploiting the proper Euler angles 313. It is possible to write
the transformation matrices. The angles used are:

Transformation PF→GE: T313(Ω, i, ω)

Transformation GE→PF: T313(−ω,−i,−Ω)
(2.14)

2.1.8 HCW equations

In order to write the HCW equations it is considered a system composed by
three bodies with masses (m0,m1,m2) and m0 � m1,m2. The positions of
these bodies w.r.t. an inertial frame are (r0, r1, r2). Considering the same
assumption on the forces done for the 2B problem it is possible to write the
second Newton’s laws:

v̇i =
2∑
i 6=j

Gmj

r3ij
(rj − ri) +

Fi

mi

, i = 0, 1, 2

rji = |rj − ri|

v̇0 =
Gm1

r301
(r1 − r0) +

Gm2

r302
(r2 − r0) +

F0

m0

v̇1 =
µ

r310
(r0 − r1) +

Gm2

r312
(r2 − r1) +

F1

m1

v̇2 =
µ

r320
(r0 − r2) +

Gm1

r321
(r1 − r2) +

F2

m2

(2.15)

Similarly to the 2B problem, the CoM of this system can be considered
coincident with the center of the big body with mass m0. In this way: r0 = 0.
The gravity force contribution between the two small bodies is negligible w.r.t.
the one given by the the big body:∣∣∣∣Gm1m2

r321
(r1 − r2)

∣∣∣∣ =

∣∣∣∣Gm2m1

r312
(r2 − r1)

∣∣∣∣ ≈ 0

It is assumed that each small body is subjected to the central gravitational field
generated by the the big body, while the mutual gravity interaction between
the two is negligible.

In this way, the two small bodies obey to the restricted 2B equations,
written in a generic inertial frame (R = {P0, i1, i2, i3}) centered with the big
body:

v̇1 + µ
r1
r31

= +
1

m1

F1

v̇2 + µ
r2
r32

= +
1

m2

F2

(2.16)
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In several space applications, like rendezvous, it is of interest to describe
the relative motion of the two small bodies. For this purpose, it is considering
that they can be seen as: P1 is the point mass of a chief S/C, P2 is the point
mass of a deputy S/C that has to rendezvous with P1. While, P0 is the point
mass of the big body (it can be seen as the Earth).

Figure 2.12: References and Perturbed Orbits

Considering that the relative reference is chief-centered, and assuming that
the external force applied to it is zero F1 = 0, it is possible to write:

r = r2 − r1, r = |r|, F = F2

v̇2 = v̇1 − v̇ = − µ
r32

(r1 + r) +
F

m2

=

= − µ

|r1 + r|3
(r1 + r) +

F

m2

(2.17)

This equation describes the motion of P2 relative to P1 in a generic inertial
frame with origin at P0. In the following, the inertial frame that will be chosen
will be a PF build on the orbit of the chief S/C (as seen in section 2.1.6):
Rp = {P0,p1,p2,p3}. While, the non inertial frame chosen is the LVLH
frame build always on the chief S/C (this frame is also called Hill-Frame):
Rh = {P1,h1,h2,h3}.

The inertial acceleration can be written as [9]:

v̇ = v̇h + 2 ω1 × vh + ω1 × (ω1 × r) + ω̇1 × r (2.18)

Where v̇h and vh are the acceleration and velocity vectors in the Hill frame,
ω̇1 and ω1 are the acceleration and angular velocity vectors of P1 seen from
the generic inertial frame R. Considering that the Hill frame is constructed as
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Rh = {P1,h1 = r1/r1,h2,h3 = ω1/|ω1|}, it can be written:

r1 = r1h1, rh = r = xh1 + yh2 + zh3 = Rr′

vh = ẋh1 + ẏh2 + żh3 = Rṙ′

v̇h = ẍh1 + ÿh2 + z̈h3 = Rr̈′

Fh = F1h1 + F2h2 + F3h3 = RF′

(2.19)

It is worth to note that the same physical vector (linear combination of the
unit vectors) has different representations (coordinate vectors) depending in
which frame it is written. The second members of the previous equations are
the products between r′ = [x, y, z] which are the coordinates of P2 seen in the
Hill frame, while R = [h1 h2 h3] is the matrix that contains the unit vectors
of the Hill frame. This can be seen as a matrix that can be constructed from
the P1 position components in the inertial frame, and it can be used as DCM
to transform the coordinates from a frame to another (this will be used in the
next chapter 4). Indeed, the i-th unit vector hi can be seen has the linear
combination of the inertial frame unit vectors.

Considering that the chief orbit is described by the FR2B equation (h is
constant and it lays along the orbit pole h3). Then, taking the equations 2.16,
2.17, and the previous ones. It is possible to write:

r1 = r1h1, v̇1 = v̇1h1 = − µ
r21

h1

v̇2 = − µ
r32

r2 +
F

m2

= − µ
r32

(r1 + r) +
F

m2

=

= − µ
r32

((r1 + x)h1 + yh2 + zh3) +
F1

m2

h1 +
F2

m2

h2 +
F3

m2

h3

ω1 = |ω1|h3, ω̇1 = |ω̇1|h3

(2.20)

Now, replacing the results in 2.18 and after doing some simplifications, the
nonlinear differential equations of the relative motion are found to be (consid-
ering that h1 × h2 = h3, h2 × h1 = −h3, and so on) :

v̇ = v̇2 − v̇1 = − µ
r32

((r1 + x)h1 + yh2 + zh3)

+
F1

m2

h1 +
F2

m2

h2 +
F3

m2

h3 +
µ

r31
r1h1 =

= v̇h + 2 ω1 × vh + ω1 × (ω1 × r) + ω̇1 × r =

= ẍh1 + ÿh2 + z̈h3 + 2|ω1|ẋh2 − 2|ω1|ẏh1 + |ω1|h3 × (|ω1|xh2 − |ω1|yh1)

+ |ω̇1|xh2 − |ω̇1|xh1 =

= ẍh1 + ÿh2 + z̈h3 + 2|ω1|ẋh2 − 2|ω1|ẏh1

− |ω1|2xh1 − |ω1|2yh2 + |ω̇1|xh2 − |ω̇1|xh1

(2.21)
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Rearranging along the unit vectors directions and writing in function

of the relative accelerations:

ẍ = 2ω1ẏ + ω̇1y + ω2
1x+

µ

r31
r1 −

µ

r32
(r1 + x) +

F1

m2

ÿ = −2ω1ẋ− ω̇1x+ ω2
1y −

µ

r32
y +

F2

m2

z̈ = − µ
r32
z +

F3

m2

(2.22)

They can only be solved by numerical integration.

The previous equations can be linearized for a small separation between
the chief and deputy satellite, therefore for: r = |r2 − r1| � r1. Using the
binomial theorem it is possible to write:

µ

r32
≈ µ

r31

(
1− 3

x

r1

)

Now, Considering:

v1 = ω1 × r1 at the apsides: v1 =
√
µ/a, r1 = a

=⇒ ω1 =
√
µ/a3 ≈

√
µ/r31 = constant

ω = ω1, ω̇ = 0

(2.23)

It is worth to note that:
√
µ/a3 ≈

√
µ/r31 only when e ≈ 0. Replacing the

previous results it is possible to obtain the HCW equations:

ẍ = 2ωẏ + 3ω2x+
F1

m2

ÿ = −2ωẋ+
F2

m2

z̈ = −2ω2z +
F3

m2

(2.24)

2.2 Controller Comparison

There are different types of control methods. In this section will be mentioned,
without entering in details, some of them in order to select the better controller
(for the writer) for the considered space mission.

Since the equation that describe the dynamics of the system are nonlinear
(note that also the HCW equations become nonlinear if the S/C mass is not
constant), the research is concentrated in those methods used for controlling
nonlinear systems.
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2.2.1 General Requirements

When a controller has to be designed there are some important requirements
that it has to satisfy:

• Stability: In many application it is required to obtain a stable system
(either in a local or in global sense). Indeed, if some state variable
diverges to infinity it can damage the plant to control (zero dynamics
problem). In general, the stability is studied with: Lyapunov Direct
Method and Linearization Method. In the second one, the system is
linearized around a given Equilibrium Point and it is possible to obtain
only local results. The first one is more general, but it requires to find
a Lyapunov function. In some control methods it is not possible to
obtain analytical solution for understanding if the stability properties
are satisfied globally.

• Accuracy and speed response: The output should converge in a quick way
to the reference and it must track very precisely the reference. In this
way, it is possible to understand whether the system works properly.

• Constraints fulfillment: In many applications there can be present ex-
ternal constraints on the state variables or on the outputs. There can be
also internal constraints e.g. for the input. They can be static or varying
in time. In any case, what is important is that the controller must be
take into account that constraints.

• Robustness: It is a very important skill that the control system has to
have in order to behave correctly also when there are system variations.
In real system there are always present: disturbances, noises, neglected
dynamics, and uncertainties of various nature. The control system must
work even if all all these factors are not considered, but they are present.

2.2.2 Nonlinear Control Design Methods

Most common methods used for nonlinear system are:

1. Methods based on linearization e.g. Gain Scheduling: These methods are
based on the linearization of the system around a given working point
(made with the jacobians). In this way, it is possible to control the sys-
tem in a neighborhood of the considered point with a linear controller.
In the Gain Scheduling approach, it is possible to linearize the system
in different points and, thanks to the scheduling of a variable, to con-
trol it by different linear controllers (one for each point in which the
linearization is made).

2. Feedback Linearization: The nonlinear plant is transformed into a linear
system by means of some (nonlinear) state transformation realized via
feedback. This linearization is not local and it is exact.
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3. Sliding Mode Control: This is based on the concept of sliding surface.
This is a subset of the state space, with some features, where the tra-
jectory of the plant is desired to lay. The sliding surface is designed in
order to obtain the desired behavior of the plant.

4. Nonlinear Model Predictive Control: This technique will be analyzed in
the next chapter 3.

5. Embedded Model Control: This approach is based on linear control, but
the nonlinearities, uncertainties, and noises are treated as disturbances.
The idea is to build an extended state observer able to estimate all the
quantities considered as disturbances. Then, a control law is designed
considering a state feedback linear term plus another term that is used
to cancel the estimated disturbances. In this way, the sources that create
problems are eliminated.

6. Adaptive Control: The key point of this method is parameter estimation.
An adaptive controller is a controller with adjustment parameters and
a mechanism for adjusting the parameters. It does not need apriori
information about the bounds on uncertain or time-varying parameters.
It is concerned with control law changing itself.

2.2.3 Controller Choice

Among the mentioned methodologies it is chosen an adaptive version of the
NMPC. This choice is done for several reasons:

1. The system equations are not in affine form in u. This form is needed
in the Feedback Linearization (FBL) and in the Sliding Mode Control
(SMC);

2. There are constraint that must be accounted for.

3. It is not possible to use a Gain Scheduling (GS) approach because the
predictable variation of the parameters is unknown.

4. The NMPC works in closed-loop.

5. The NMPC is able to do Guidance and Control in the same time. This
is due to the fact that the controller calculates an optimal trajectory on
the basis of the constraints accounted for. In the same time it gives to
the system the control law needed to follow this optimal trajectory.

Thanks to these features the NMPC can be seen as a step forward in au-
tonomous guidance and control. In order to make adaptive the NMPC an
estimation algorithm is needed.
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2.2.4 Adaptive NMPC

The construction of an adaptive controller contains the following steps:

1. Characterize the desired behavior of the closed-loop system;

2. Determine a suitable control law with adjustable parameters;

3. Finding a mechanism for adjusting the parameters;

4. Implement the control law;

The general structure is composed by two loops: one loop is a normal feedback
with the process and the controller the other one is a parameter adjusting loop
[16]. Adaptive control is different from robust control in that it does not need a
priori information about the bounds on uncertain or time-varying parameters;
robust control guarantees that if the changes are within given bounds the
control law need not be changed, while adaptive control is concerned with
control law changing itself.

The key idea in this work is to combine the robust Model Predictive Con-
trol (MPC) method with an adaptive parameter estimation method. The
development of adaptive-type MPC schemes is one of the research issues for
control of constrained systems. One of the main reasons is the difficulty to
guarantee the fulfillment of constraints in the presence of an adaptive mecha-
nism. In order to overcome this problem, the future behavior of the real system
must be predicted while updating the system parameters on-line. In addition,
it seems extremely difficult to guarantee both feasibility and stability theoret-
ically whenever an adaptive approach to MPC is adopted. Anyway there are
works that propose attractive ways to handle with this controller [17]-[20].

2.3 Estimation Process

The estimation problem refers to the empirical evaluation of an uncertain
variable, like an unknown characteristic parameter or a remote signal, on the
basis of observations and experimental measurements of the phenomenon under
investigation. There are two main kind of approaches to estimate variable:

• Using mathematical formulations in order to obtain an estimated variable
that recursively converges to the real value. An algorithm based on this
is, for example, the Recursive Least Square Estimator.

• Estimate variables with an observer (filter). The parameters are treated
as states in these filters. The identification problem becomes an estima-
tion problem of the state in this way. An example of this is the Extended
Kalman Filter (EKF).

Among the huge number of possible estimation algorithm, in this work it
will be considered only two methods. One for each of the two main methods.
The algorithms will be discussed deeply later, in the proper sections. The first
algorithm is based on a recursive estimation. While the second one is based
on the EKF.
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Chapter 3

Model Predictive Control

This chapter deals with on one of the most powerful and flexible control ap-
proach available today: the MPC and its nonlinear version NMPC, more gen-
eral than the previous one.

The MPC could be compared to a chess player. A good chess player chooses
a move by projecting in the future the game scenario and by trying to predict
how the opponent will answer to a sequence of moves. If the opponent replies in
an unexpected way, to counteract the effect of the new move a game scenario
rescheduling is needed. In the same way the MPC adjusts its behavior to
perform in the best way under a varying scenario. As bibliographic references,
see [7], [11], [12], [13], [14], and [15].

3.1 Introduction

The most general case to discuss is the NMPC. This flexible approach can be
employed to control nonlinear systems and it allows to deal with constraints.

These can be on the command input u, on the state x, on the output y.
Moreover they can be used to systematically manage the trade-off between
performance and command activity.

In order to increase performances, in general, it is needed an high command
activity. This, in real applications, implies high energy consumption (imagine
to require from a car an high acceleration, this high acceleration implies an
high fuel consumption). The MPC is able to do an efficient management of
the trade-off between the energy consumption and the performances finding
the best command activity to this task.

The MPC approach is based on two fundamental operations, that are com-
puted at each sampling time:

• Prediction over a finite time horizon;

• Optimization.



In the Prediction step the Controller uses a model of the plant to predict
the future behavior of the system. On the basis of the predicted behavior,
the algorithm chooses the best input sequence to be provided to the system
(on-line Optimization).

3.2 Theoretical formulation

To formulate the NMPC, in a theoretical sense, a Multiple Input - Multiple-
Output (MIMO) nonlinear system is considered:

ẋ = f(x, u), y = h(x, u) (3.1)

where: x ∈ Rn is the state vector, u ∈ Rnu is the command input vector, and
y =∈ Rny is the output vector.

Differently to other formulations (like FBL and SMC) here a more general
case is considered. Indeed, the system is a MIMO system, and the state
equations are not written in affine form.

For formulation purposes, it is assumed that the state of the system is
measured (in real applications if it isn’t possible to measure all the states,
then observers can be used to accomplish this task). The measurements are
collected at each sampling time (Ts), so they are updated in real-time:

x(tk), tk = Tsk (3.2)

with: k = 0, 1, 2, . . .

It is worth to note that x(tk) is the measurement of the state vector taken
at tk time, that is a discrete time.

3.2.1 Prediction

At each time t = tk the NMPC uses a model to make a prediction of the system
behavior over a given time interval [t, t + Tp] (so from the present time t to a
future time t + Tp). This Tp is the prediction horizon and it must be always
bigger (or at least equal) than the sampling time Tp ≥ Ts.

The used model, that is in the form 3.1, is composed by the state equation
(that is in differential form) and by the output equation. To make the pre-
diction, the controller integrate the state equations, that describe the system,
starting from the initial conditions given by the current state at time t. Then,
the output y is obtained by considering the output equation. The following
notation is used for the predicted output :

ŷ(τ) ≡ ŷ(τ, x(t), u(t : τ)) (3.3)

where: τ ∈ [t, t+ Tp]
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ŷ(τ) is a function of the time τ , of the initial state x(t), and also of the
command signal u(t : τ). When the prediction is made, the initial state is the
state at time t = tk, this time is the starting time for the prediction that is
used to define the initial conditions for the state vector. The notation used for
the command input signal indicates that it is the signal applied from time t to
time τ . So, u(t : τ) denotes the input signal in the interval [t, τ ].

One important observation is that in the time interval [t, t + Tp], u(τ) is
an open-loop input in the sense that it doesn’t depend on x(τ) (please note
that u(τ) is a vector, while u(t : τ) is a signal). At the general time instant τ
(inside the whole time interval), the predicted state x̂ does not depend on the
value of u at the same time. While, it depends on the u(t : τ) signal and on
the initial conditions at time t. To explain better this concept the following
picture 3.1 is presented:

Figure 3.1: (x, t) and (u, t) plots

At time t the time interval [t, t+Tp] is defined. The general input u(t : τ) is
a signal in this interval. Starting from the model a given predicted state signal
x̂ is obtained (for simplicity the behavior of just one state variable is shown in
3.1) for a given input signal u. Clearly, if u changes in the time interval, also
the behavior of the x̂ changes, and in cascade also the behavior of ŷ changes.
So, anytime u changes also x̂ and ŷ signals change over the whole time interval,
because they depend on the signal u.

The idea of Predictive Control is to search, thanks to an optimization algo-
rithm, for an input signal such that the output will have the desired behavior.
Among the various input signals that can be applied to the system, the optimal
input signal that gives the optimal desired behavior of the output is denoted
with u∗(t : τ).

At each sampling time, the NMPC researches the optimal input signal
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(applied in open-loop), such that the prediction

ŷ(τ, x(t), u∗(t : τ)) ≡ ŷ(u∗(t : τ)) (3.4)

has the desired behavior for τ ∈ [t, t+ Tp].
Differently to the MPC, where the optimal input is always global (because

the optimization algorithm works with linear functions and can work only with
convex constraints), in the NMPC case, the optimal input can be local. This
will be discussed deeply later.

3.2.2 Optimization

In order to formalize the concept of desired behavior for the output, it is
defined what is called Objective Function (or Cost Function):

J(u(t : t+ Tp))=̇

∫ t+Tp

t

(‖ỹp(τ)‖2Q + ‖u(τ)‖2R) dτ + ‖ỹp(t+ Tp)‖2P (3.5)

Where: ỹp(τ)=̇ r(τ)− ˆy(τ) is the predicted tracking error, in which r(τ) ∈ Rny

is the reference to track.
The first two norms inside the cost function are weighted vector norms and

theirs integral are (square) signal norms. Indeed, if one signal is considered
at a given time this can be seen as a vector. The last term is the predicted
tracking error at the final time of the interval (that is a square weighted vector
norm).

It is important to note that J is a function only of the whole signal u(t :
t + Tp), because the all terms inside the cost function depend only by u(τ),
with τ that goes from t to t+ Tp.

The optimization problem is to minimize the cost function w.r.t. the com-
mand input u. The signal u∗(t : t+Tp) is chosen as the minimizer of objective
function J(u(t : t+Tp)). Minimize J means minimizing the tracking error, the
norm of the input signal (so the command activity), and also the tracking error
at the end of the time interval. In this way, the desired behavior is obtained.
The NMPC repeat the optimization at each time tk (look 3.2) finding the best
open-loop input signal for the whole interval [tk, tk + Tp].

• The fist term inside J is the integral, in the whole time interval, of the
predicted tracking error square weighted norm ‖ỹp(τ)‖2Q. This means
that this quantity is minimized not only at a given time, but along the
complete time interval.

• The same considerations hold for the second term ‖u(τ)‖2R. This term
allows to manage the trade-off between performance and command ac-
tivity.

• The last term gives further importance to the final tracking error.

In order to obtain the desired behavior the designer chooses (by trial and
error procedures) the coefficients of the weight matrices Q, R, and P .
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Constraints

Once the optimization problem is defined, it needs to be determined not only
the cost function, but also the constraints for this problem.

One important constraint is that ŷ(τ) must satisfy the model equations.
Indeed, it is obtained from that equations by integration. ŷ depends on x̂,
that depends on u, so ŷ is obtained from u through the model equations. The
minimization of J is thus subject to this constraint:

˙̂x(τ) = f(x̂(τ), u(τ)), x̂(t) = x(t), τ ∈ [t, t+ Tp], ŷ(τ) = h(x̂(τ), u(τ))
(3.6)

Where the second one tells that the initial condition of the predicted state is
the measured state at the initial time t.

Imagine to be at time t, the state is measured ad updated as initial condi-
tion. The NMPC integrates the differential equation from t to t+ Tp and find

the signal ˆx(τ). Then, by using the output equation, also the value of ŷ(τ)
is obtained and used to construct the predicted tracking error inside the cost
function.

When the optimization problem is formulated a relevant constraint to be
taken into account is that the differential and the output equations of the
model describing the system must be satisfied. In other words, ŷ(τ) and u(τ)
are not independent. These two variables must be consistent with the system
dynamics.

In the optimization problem there may be other constraints. For example
can be of interest to have constraints on the state, on the output, and on the
input:

• x̂(τ) ∈ Xc, ŷ(τ) ∈ Yc, τ ∈ [t, t+Tp] (example: collision avoidance)

• u(τ) ∈ Uc, τ ∈ [t, t+ Tp] (example: input saturation)

Where Xc, Yc, and Uc are sets that provide the constraints of the variables
(typically these sets are described by inequalities).

Feasibility

An optimization problem is feasible if there exist at least one solution satisfying
all the constraints. Sometimes, when there are a lot of constraints it may be
difficult to see if they are all feasible together. Testing the feasibility of the
problem is significant in many situations.

Local Vs Global Minima

Only in simple situations it is possible to find analytical solution of the opti-
mization problem: if there is a large number of variables the problem may be
extremely difficult, in this situation an analytical solution is impossible to be
found and the alternative is to proceed with a numerical solution.
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There are many algorithms that can be used on this purpose. The working
principle is almost the same for all of them. Thanks to an iterative process the
algorithm start from an initial point x0. Then, by using the gradient function
(that gives the direction of maximum variation), it elaborates the points in
the neighborhood of x0 until a minimum is found. There are several stopping
criteria, but the algorithm is able to find them when there is no more significant
variation. In fact, it stops to work and provides the value of the minimum.

A fundamental problem of this kind of solution is that typically it is not
possible to be sure that the found minimum is local or global. This depend on
the starting point x0. This issue does not depend on the employed algorithm,
but it is a mathematical problem. Finding the solution of a multivariate non-
linear function is difficult and usually the complexity of the problem grows
exponentially with the dimension of the decision variable vector.

A particular class of functions, for which is always possible to find a global
minimum, is the class of convex functions. For these functions every local
minimum is global and if a suitable numerical algorithm is used it is possible
to be sure that the found minimum is the global one. In these functions
whatever is the starting point the algorithm always converges to the global
minimum.

A function is convex if its levels curves define a convex set.

The convex set can be defined starting from a closed level curve. Taken
any couple of points inside the curve if the linear connection between them
remains inside the curve the set is convex otherwise it is a Non-convex set.

It is possible that some constraints are defined with non-convex sets. In
this way, although the starting problem is convex it becomes non-convex.

Anyway, also in the case of non-convex functions with local minima it is
possible to find a good solution for the optimization problem.

3.2.3 Receding Horizon Principle

The NMPC works in real-time and in closed-loop and also it can be work with
varying constraint. This thanks to the Receding Horizon (RH) Principle that
makes the controller flexible and able to adapt to many working conditions.

As said before, the result of the optimization problem is the optimal input
signal u∗(t : t+ Tp), that minimize the cost function. This signal is applied in
open-loop to the system, because it is computed by using only the informa-
tion about the state at the time in which the optimization is made as initial
conditions x(t) (it doesn’t use x(τ) with τ > t).

The optimal input is calculated in the whole time interval [t, t + Tp] and
applied to the system, but after a sampling time the optimization is repeated
without waiting for the whole time horizon Tp.

This repeating procedure (that is the RH principle) produces a closed-loop
system that is able to increase precision, to reduce errors and disturbances,
and to adapt to the varying scenario.
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The NMPC calculates at each sampling time the optimal input and in this
way, with the new information on the the state (taken always as initial condi-
tions), it decides again what is the best input that solve the new optimization
problem. In summary:

1. At a given time t = tk the optimal input signal is computed via opti-
mization in the whole time interval;

2. The optimal input signal is applied in open-loop to the system;

3. The same operation is repeated for t = tk+1, tk+2, . . . , so after each sam-
ple time;

4. The controller in this way works in closed-loop and is able to react to
any possible change;

3.3 Mathematical Formulation

In this section a general mathematical formulation of the NMPC is given. This
will be the basis for the algorithm’s design.

At each time step t = tk for τ ∈ [t, t + Tp] the NMPC solves the following
optimization problem:

u∗(t : t+ Tp) = arg min
u(·)

J(u(t : t+ Tp))

Subject to the following constraints:

˙̂x(τ) = f(x̂(τ), u(τ)), x̂(t) = x(t)

ŷ(τ) = h(x̂(τ), u(τ))

x̂(τ) ∈ Xc, ŷ(τ) ∈ Yc, u(τ) ∈ Uc
u(τ) = u(t+ Tc), τ ∈ [t+ Tc, t+ Tp]

(3.7)

The time is denoted with t, while tk indicates the time instant at which
the measurement of the state is collected. As seen before, for each t = tk the
optimization problem is solved, in this way the cost function J , subjected to
some constraints, is minimized.

The first constraints tells that the model equations must be satisfied, then
additional constraints can be on the state, on the output, and on the input.

The last constraint u(τ) = u(t+Tc) is used to reduce computational effort.
Indeed, the command input is assumed to be constant for all the times that
go from t+ Tc to t+ Tp with τ ∈ [t+ Tc, t+ Tp].

The Tc is called control time and Tp ≥ Tc ≥ Ts ≥ 0. In this way from t to
t+ Tc the controller optimize the input, then from t+ Tc onwards the input is
constant.
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3.3.1 Features of the Optimization Problem

The optimization problem is non-convex, in general. The main reason is that,
in general, J is a non-convex function. This means that there can be several
minima and the NMPC optimization algorithm cannot guarantee if the found
minimum is global or not.

The other reason (for the non-convexity) is that the sets: Xc, Yc, and Uc
can be also non-convex.

In general, in the end the NMPC woks with a non-convex optimization
problem.

Another feature of the optimization problem is that it must be solved on-
line at each sampling time.

The key point in the NMPC is to have an efficient optimization algorithm
in order to solve the problem in a time that is not too large. Moreover, for
the non-convexity, the algorithm must be good enough to guarantee that the
found minimum is quite good to accomplish the control task (local minimum
value close to the global one).

3.3.2 Features of the Objective Function

The cost function J is a functional (a function of function), since it depends
on the input signal u, that is defined in the prediction time interval.

An important point is that the decision variable of the optimization prob-
lem is a signal. A signal can be seen as a vector with an infinite number of
elements and, as a consequence, the optimization is made w.r.t. an infinite
number of decision variables. The idea to overcome this hard problem is to do
a signal parameterization.

3.3.3 Input Parameterization

The input signal can be parameterized in such a way that the infinite dimen-
sional optimization problem becomes a finite dimensional problem. Here two
solutions are proposed:

(a) Piece-wise constant input:

u(τ) = up(τ) = ci for

{
τ ∈ (t+ (i− 1)Ts, t+ iTs]

i = 1, . . . ,m ≡ Tc
Ts

(3.8)

The input signal is assumed to be constant and equal to ci for each sub-
interval indicated in the curly bracket. In this way, the interval [t, t+Tp]
is partitioned in sub-intervals and it is assumed that in each of them the
input is constant.
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(b) Polynomial parameterization:

u(τ) = up(τ) =
m∑
i=1

ci(τ − t)i−1 (3.9)

The input is written as a linear combination of polynomials. The re-
sult is a polynomial representation of the input. The ci coefficients are
polynomial coefficients.

When i = 1, c1 is constant, when i = 2, c2(τ − t) is a linear term,
and so on. By selecting a given m (must be an integer number) the
parameterization is stopped and in this way the optimization is made
not over the complete signal (that is of infinite dimension), but it is
performed only w.r.t. these coefficients ci.

In both parameterizations the optimization is performed w.r.t. the finite
dimension matrix c = [c1, . . . , cm] ∈ Rnu×m.

The designer has to choose m. He has to decide when stopping the param-
eterization. Typically no large values of m are needed to have good results. A
strategy is to begin with m = 1 and then growing this number if it is necessary.

With m = 1 the command input is constant for the whole prediction inter-
val.

In the first case where m = Tc/Ts the designer can select the near integer
number to this ratio, or (better) can select Tc as a multiple of Ts.

3.4 MPC Algorithm and Design

In this section a general NMPC algorithm with a possible control scheme is
analyzed, in the first part. In the second one, the design parameters are treated
in order to have a global point of view on this control approach.

3.4.1 MPC Algorithm

The general working principle of the NMPC algorithm can be divided into two
consequently steps:

1. At time t = tk for τ ∈ [t, t + Tp] the algorithm solve the following opti-
mization problem:

c∗ = arg min
c∈Rnu×m

J(c)

Subject to:

˙̂x(τ) = f(x̂(τ), u(τ)), x̂(t) = x(t)

ŷ(τ) = h(x̂(τ), u(τ))

u(τ) = up(τ)

x̂(τ) ∈ Xc, ŷ(τ) ∈ Yc, u(τ) ∈ Uc
u(τ) = u(t+ Tc), τ ∈ [t+ Tc, t+ Tp]

(3.10)
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Where c is the parameterized input.

• Open-loop optimization input: u∗(τ) = u∗p(τ)

• Closed-loop control law: u(τ) = u∗p(tk), ∀τ ∈ [tk, tk+1]

2. Repeat step 1 for t = tk+1, tk+2, . . .

Control Scheme

In the following picture the general control scheme made with MATLAB is
showed:

Figure 3.2: Control Scheme

• In the Plant block there are the equations that describe the system in
the form:

ẋ = f(x, u), y = h(x, u)

• In the NMPC law block there is the algorithm seen previously. It contains
a model of the plant that it is used for prediction. The prediction model
is in the form:

˙̂x = f̂(x̂, u), ŷ = ĥ(x̂, u)

If the model uses the true functions: f̂ = f and ĥ = h

• r and y are respectively the reference signal and the output signal.

3.4.2 MPC Design

The design of a good NMPC algorithm stand on the specific application in
which it must be used. The proper parameters are selected by the designer,
almost the time, by trial and error procedure. In the following, some indica-
tions about the choice of the fundamental parameters is given.

38



Choice of Parameters

1. Sampling Time Ts: In many situations, it is given by the specific appli-
cation in which the NMPC has to be employed. Otherwise, it is chosen
by trial and error procedure, considering that it should be: sufficiently
small to deal with plant dynamics (Nyquist-Shannon sampling theorem),
and not too small to avoid numerical problems and slow computation.

2. Prediction Horizon Tp: It can be chosen through trial and error procedure
by considering that: a large Tp increases the robustness, increases the
closed-loop stability proprieties, and a too large Tp may reduce the short-
time tracking accuracy.

3. Control Time Tc: Small values of Tc reduce the computational time,
without often reducing the performance. In many application Tc is set
equal to Ts (this means m = 1), in that applications satisfactory perfor-
mance can be obtained.

4. m: In many cases a low number of parameters is enough to obtain a
satisfactory control performance. Choosing m = 1 works in many situa-
tions.

Choice of Weighted Matrices

As seen in the optimization problem there are three weighted matrices to be
chosen: Q, P , and R. Where the first is related to the predicted tracking error
ŷp in the whole time interval, the second one is also related on the predicted
tracking error, but this time on the value at the final time of the prediction,
and the last one is related to the input signal.

It is always convenient to choose these matrices as diagonal. The idea to
choose their diagonal coefficients is to start with a reasonable choice and then
by using trial and error procedure adjust the values in order to optimize the
behavior of the controller.

A possible initial choice can be:

Qii =

{
1 in the presence of requirements on yi

0 otherwise

Pii =

{
1 in the presence of requirements on yi

0 otherwise

Rii =

{
1 in the presence of requirements on ui

0 otherwise

It is worth to note that the matrices are related to the signal norms and that
the norms are related to the energy. Changing the diagonal coefficients means
changing the energy of the associated signals. If the weight of a coefficient is
increased the energy associated with that signal will be decreased. Increasing
the weight means giving more importance to the terms that contain these
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weights. The algorithm minimize these variables more than the others because
the weight is large.

Increasing Qii and Pii reduce oscillations and converging time. Increasing
Rii reducing command effort and fuel consumption.

3.5 MPC Properties

In the following section Stability and Robustness properties are treated.

Stability

A typical approach to enforce closed-loop stability in the NMPC controller is
to add what is called terminal region constraint in the optimization problem:

x̂(t+ Tp) ∈ Ω with: Ω ∈ Rn (3.11)

Basically, this constraint enforce the final predicted state x̂ (taken at time
t+ Tp) to belong to a given region Ω that is a bounded, closed, and connected
set.

If this constraint is added to the optimization problem, then the stability
of the closed-loop is guaranteed. Typically, it is not required, because if the
designer choose correctly the parameters then what is obtained is a controller
that stabilizes by itself the closed-loop. Hence, only in particular situations
this can be useful.

Under some particular conditions, it is possible to give a theoretical proof of
stability and also convergence for the NMPC, but it is more difficult than other
control methods. The terminal region approach is more general and flexible
but it is difficult to provide theoretical results. In any case these kind of results
can be found in literature and they are not really useful from a practical point
of view.

Robustness

In many applications the exact model of the plant is seldom known. What is
used as model, for control design purposes, is an approximated one. Instead
of the true model f and h the controller uses f̂ and ĥ. Several robust version
of the NMPC have been proposed to guarantee stability and/or performance
when the model is not exactly known. Assuming that ‖f − f̂‖ is bounded in
some norm the following NMPC robust methods can be used:

• min-max NMPC

• H∞-like NMPC

• parametrized controller NMPC
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Can be shown that if the difference between the system and the model functions
is bounded in some norm, then stability or other kind of performance can be
guarantee.

The first two techniques may be too conservative. While all the three,
typically, require an high computational effort. Thus, they cannot be applied
to problems where a small Ts is required.

In any case, thanks to the RH strategy, standard NMPC is in general
characterized by good robustness properties.

3.6 Advantages and Drawbacks

In this section is given a list of advantages and drawbacks of the NMPC.

• Advantages:

1. General and flexible approach: The formulation is given starting
from a complex MIMO system, without considering the affine form
(needed in other approaches);

2. Intuitive formulation: That is based on optimal concepts;

3. Constraints and input saturation accounted for: These can be also
time-varying;

4. Efficient management of performance/input activity trade-off ;

5. Optimal trajectories (over a finite time interval);

6. Unified computation of optimal trajectory and control law: The con-
troller is able to do both these operations together. Indeed, it not
only gives the control law, but also designs a some optimal trajec-
tory;

• Drawbacks:

1. High on-line computational cost: At each sampling time the NMPC
has to solve the optimization problem. In order to work properly, it
is needed to have an hardware and enough amount of energy that
are more expensive than other controllers;

2. Possible local minima in the optimization problem;

3. Problems in the case of unstable zero-dynamics (like all methods);

3.7 Comparison between NMPC and linear MPC

In general the MPC is easier than its nonlinear version and it requires a lower
computational effort. If the system to be controlled is Linear Time Invariant
(LTI), with convex constraints, the MPC gives an optimal solution that is
always global. While, with the NMPC only local optima can be found in
general.
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The MPC can be used to control nonlinear systems only if a lineariza-
tion of the plant is made around a given working point along the trajectory.
This, in case of tracking problems, can be very complicated and obviously, the
computational effort increases.

The MPC requires that all the constraints are convex sets. If they are not
a convexification can be made, but also this is a quite complicated.

On the contrary, the NMPC can be used directly to control nonlinear plants
and the used constraints can be simply written by inequalities.
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Chapter 4

Space Mission and Control

Algorithm

A very important sector in space engineering is called GNC. These are three
operations that must be execute in space missions. The goal is to control the
motion of the S/C in order to accomplish given tasks of a mission. Guidance
consists in planning an optimal trajectory that must be tracked by the S/C.
Navigation consists in measuring and/or estimating all the state variables of
the S/C that are important for the control task. Control is finalized to bring
the S/C state close to the planned trajectory.

In this chapter, first the maneuvers needed for the mission are treated.
Then, the specific control algorithm is designed in order to accomplish the
various tasks.

4.1 Space Mission

As seen in the previous chapter (2), there are several reference frames that
can be used to specify the position of an object in the space. Depending on
the specific mission/maneuver is convenient to choose properly these frames.
Since, another important think (always related to the used frame) is that the
equations of motion are different.

In the years, humanity have launched a lot of satellites, that orbit around
the Earth. Lot of them, especially the oldest ones, become obsolete, or worst
they broke after collisions or because technical damages. In these last cases,
there be an unpredicted waste of money.

In this way, these satellites become debris an they (or parts of them) can
damage others. Other times, since in the space near to Earth surface the
atmosphere is not so dense to burn little rocks, they can be attracted by the
gravity and remain in orbit. In both cases, a collision orbit with other satellites
can be very dangerous.



By considering this problem, the selected space mission has to solve in an
autonomous way the problem of debris around the Earth, that will become very
serious because the increasing number of satellites (currently 2787 satellites
orbiting Earth [8]).

4.1.1 Mission Maneuvers

This debris removal mission is composed by several orbital maneuver. By
considering the starting position of the debris and of the S/C, the following
maneuvers have to be done in order to complete that mission:

1. Rendezvous maneuver: the S/C approaches the debris;

2. Docking maneuver: the S/C gets in contact with the debris;

3. Estimation maneuver: the unknown mass of the debris is estimated;

4. Second Rendezvous maneuver: the system (composed by S/C and debris)
goes near to a specific starting point for the other maneuver. This ma-
neuver is not necessary, but may be convenient to have a known starting
point, or also to start the orbit-change maneuver from an empty orbit;

5. Orbit-Change maneuver: the S/C brings the debris in an another orbit
to avoid collisions problem.

These maneuver are treated deeply in the following.

Rendezvous Maneuver

In this maneuver two objects (most of the time S/Cs) approach to a very close
distance. The S/C, that has to move in order to enter in contact with the
second object, is called Chaser. While, the object that is moving in its own
orbit (it has not propulsion) is called Target [10].

The Chaser moves by considering a specific final point near to the Target.
The side on which the two bodies have to be, at the final, is very important. In
order to considering this think and to avoid collision problems between them,
specific constraints on the state (or on the output) must be accounted for.

Another important constraint is on the input. Since this maneuver is preci-
sion, too high values of the input signal may cause wrong approach trajectories,
or worst collisions. For this reason, also a saturation constraint on the input
must be considered.
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Figure 4.1: Rendezvous 2D trajectory

The equations used to describe the relative motion between the two objects
are the HCW equations (see section 2.1.8). They describe the dynamics of the
Chaser in a neighborhood of the Target:

z̈1 = 3ω2z1 + 2ωż2 +
u1
m1

z̈2 = −2ωż1 +
u2
m1

z̈3 = −ω2z3 +
u3
m1

(4.1)

Where zi are the coordinates of the Chaser in a Target-centered reference
frame, ui are the components of the input along the reference axes (they rep-
resent the components of force given by the thrusters), m1 is the Chaser mass,
ω is the angular velocity of the Target (so of the relative frame) w.r.t. an in-
ertial frame (note that in a neighborhood of the target the angular velocities
of the two bodies can be considered equal ω1 ≈ ω2 ≈ ω).

An important observation is that if the variation of the Chaser mass (due
to the fuel consumption) is not considered, these equation are LTI. Since, ω
and m1 are constant parameters.

However, the control problem becomes nonlinear and non-convex because
the constraints.

If the LTI equations are rewritten in matrix form, it can be seen that
the equations are describing an unstable system. Indeed, the state matrix A
contains a double null eigenvalue.

Docking Maneuver

Similarly to the Rendezvous, the Docking is a precision maneuver. It consists
in a rigid and stable contact with two objects. After this maneuver the two
bodies can be seen and treated as an unique object.
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Figure 4.2: Demo-1 Crew Dragon Docking with the ISS

This maneuver always starts after the Rendezvous, but it has more strin-
gent constraints. While the Chaser approaches the Target in the docking point,
the maneuver space is reducing. This constraint is implemented by means of a
conic constraint on the state (or also in this case, as output constraint). The
hardness of the constraint w.r.t. the Rendezvous is also on the input: the rel-
ative velocity between the two bodies must converge to zero in order to avoid
collisions and damages.

Also in this case the equations that describe the motion are the HCW
equations.

Estimation Maneuver

This maneuver is execute in this specific mission in order to estimate the
mass of the debris. In [21],[22], and [23] can be seen that an higher estimate
precision is obtained by moving the system randomly in a given region. More
the behavior of the system diverges from the expected one, more the estimation
will be efficient.

By means of some estimation algorithm the mass is estimated and then the
maneuver is completed.

Orbit-Change Maneuver

Differently from the precision maneuvers, that use the HCW equations, this
kind of maneuvers are done by considering the inertial GE frame. In this way,
the used equations are the ones given by the 2B problem:

ṙ = v, v̇ = −µ r

|r|3
+

1

m
u, (4.2)
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This maneuver consists to change the orbit of the debris. There are different
types of maneuvers of this kind. The principal ones can be execute by consid-
ering some orbit elements. The changing can be: on the eccentricity e, on the
inclination i angle, on the semi-major axis a, or on a combination of them.

Considering this specific mission, it is propose an orbit-change maneuver by
increasing the semi-major axis. The S/C brings the debris faraway, in another
orbit that is empty, in order to avoid collision problems with other satellites.
Another possibility is to bring the debris in a very low orbit, near to the Earth
surface. By the effect of the drag force, the debris slows down its velocity
(consequently the semi-major axis is reduced) and then it falls and burns in
the atmosphere.

4.2 Control Algorithm

Once the mission and the various maneuvers are specified, an efficient control
algorithm is needed in order to accomplish the tasks.

In this work, the control method used is the NMPC in an adaptive way.
This is chosen for several reasons:

• The modified equations of the motion appear in a form that is not affine;

• It can be used to account for static and varying constraints;

• It is flexible and robust to system variation. In this way, an optimal
trajectory can be almost always found;

• The adaptability is in the estimation maneuver. Thanks to a specific
estimation algorithm, the estimated value of the mass is update on-line
to the controller. The controller is able to adjust its behaviour at each
step time and to find a different value of the mass that converge, towards
infinity, to the real value. In this way, the controller is able to bring the
behavior of the system near to the planned one.

In the following the control algorithm and setting are specified for each
maneuver. It will see that a scheduling is needed in order to understand when
a specific maneuver has to start. But first, the system model and the control
model are treated.

4.2.1 System Model

The equations describing the motion of the system are not the same of the real
system: they are always an approximation. Indeed, when a model is designed
there can be:

• Dynamics approximations: They don’t consider (or consider in an ap-
proximate way) some aspect that changes not considerably the dynamics
of the system;
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• Parameter approximations: They are based on the fact that is not pos-
sible to have an exact value for a parameter. Indeed, there will be a
tolerance range in which the real value is present.

In the space field, there are a lot of disturbances/perturbations that can affect
the dynamics of the system. Examples of them are: drag force, different
Earth’s mass distribution that corresponds to a different gravity potential,
effects due to the gravity of other celestial bodies (like the Moon, and the
Sun), solar/cosmic radiations, thermal radiations, and so on.

To construct the system model is considered only the biggest perturbation
effect: the Drag Force due to residual of atmosphere in LEO. Indeed, the
contribution of the Atmospheric Drag is significant in the motion of a body
on a LEO. The following approximate formulation is considered to taking into
account this effect:

Fd = −1

2
ρ CDS|vrel|vrel (4.3)

Where ρ is the local atmospheric density, CD is the drag coefficient, S is the
S/C area projected along the direction of motion, vrel is the relative velocity
of the S/C w.r.t. the atmosphere.

Assuming a negligible atmospheric velocity: vrel = v. Fd has the same
direction of vrel, while its intensity is proportional to the square of vrel. CD is
a coefficient that depends on the shape of the S/C. A possible model for ρ is
the following:

ρ(r) = ρ0e
− r−r0

H (4.4)

In this model the density is a function of r (distance from the Earth’s CoM,
that corresponds to the altitude), ρ0 and r0 are reference density and height,
while H is a scale height coefficient.

An important observation is that this density is described by a negative
exponential model. The density decrease exponentially with the altitude r−r0.

This model is very simple, but for simulation purposes it is good enough.
The other perturbations are neglected, because some of them don’t have a
quite strong effect, and they are not so easy to model. However, by using a
random noise generator, it is possible to taking into account also them in an
approximate way.

The equations that describe the motion of the S/C are 2B equations (see
section 2.1.3). In this way the S/C orbital dynamics equations are:

ṙ = v, v̇ = −µ r

|r|3
+

1

m
(Fd + d+ u),

Fd = −1

2
ρ CDS|v|v, ρ = ρ0e

− r−r0
H

u = 0 if m ≤ mb

ṁ =

{
0 if u = 0

− |u|
ve

if u 6= 0

(4.5)
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Where d is a disturbance that takes into account all the small perturbation
effects, mb is the S/C mass without the fuel, m is the total mass considering
also the fuel, ṁ is the mass variation due to the fuel consumption and it is
related to the command input u by the Tsiolkovsky rocket equation, ve is the
engine exhaust velocity.

By considering the components of r and v along the reference frame chosen,
the state vector can be written as:

x = (x1, x2, x3, x4, x5, x6, x7) = (r1, r2, r3, v1, v2, v3,m)

In this way it is possible to write the state equations. The subscripts specify
the components along the GE frame.

The equations that describe the motion of the debris are the FR2B equation
(see section 2.1.3):

ṙ = v, v̇ = −µ r

|r|3 (4.6)

Also in this case by considering x = (x1, x2, x3, x4, x5, x6) = (r1, r2, r3, v1, v2, v3)
the equations can be rewritten in state form.

In the debris orbit, it is not considered any perturbation. This is done
because two principal reasons:

1. If it is considered the atmospheric drag, it can be seen that it is propor-
tional to S. In the debris case this is assumed to be more lower than the
S/C case;

2. It is supposed that the first two maneuvers (Rendezvous and Docking)
happen too quick to appreciate the effect of small perturbations on the
debris orbit.

Inside the plant there are both the equations that describe the motion of
the S/C and of the debris. The controller uses the information given by the
solutions of these equations in order to accomplish the mission tasks.

The following simulink scheme is used to describe the system plant:
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Figure 4.3: System plant scheme

Where inside S/C dynamics and debris orbit blocks there are the the pre-
vious equations, animation function is a function used to plot the two trajec-
tories, while, the use of the outputs p and v will be explained later.

However, it is worth to note that the system model is not the same used
inside the NMPC.

4.2.2 Prediction Models

Depending on the specific maneuver, that has to be done, the model used by
the NMPC changes.

As seen in the previous chapter (see subsection 3.4.1) the controller uses a
prediction model that most of the times is not the same of the plant. Indeed,
the behavior of the system is not exactly known and, for this reason, the
functions that describe the system behavior are approximated.

The precision maneuvers required a model that takes into account the
relative motion between the S/C and the debris. For this purpose the HCW
equations are used. While, the model used for the Orbit-Change maneuver is
the one given by the 2B equations. In this work the 2B equations are also used
for describing the model in the estimation maneuver, but this is a choice of
the designer.
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The model based on the HCW equation is:

ẋ1 = x4, ẋ2 = x5, ẋ3 = x6

ẋ4 = 3ω2x1 + 2ωx5 +
u1
x7

ẋ5 = −2ωx4 +
u2
x7

ẋ6 = −ω2x3 +
u3
x7

ẋ7 = 0

h = x

(4.7)

Where x is the state: x = (x1, x2, x3, x4, x5, x6, x7) = (z1, z2, z3, ż1, ż2, ż3,m).
While, the function h is used to define the output equation. In this case, the
output coincide with the state.

In this modified version the total mass m is supposed to remain constant
in the prediction interval. Indeed, its derivative is equal to zero. It will see
that after the estimation maneuver, for finding the debris mass, the estimated
value will enter in this model.

The model based on the 2B equation is:

ẋ1 = x4, ẋ2 = x5, ẋ3 = x6

ẋ4 = −µx1
r3

+
u1

x7 +m2 est

ẋ5 = −µx2
r3

+
u2

x7 +m2 est

ẋ6 = −µx3
r3

+
u3

x7 +m2 est

ẋ7 = 0

h = x

(4.8)

Where r3 is the euclidean norm of the first three state components (it cor-
respond to cube of the distance from the CoM of the Earth), m2 est is the
estimated value of the debris mass.

This model, as said before, is used in the last maneuver once the mass is
estimated. It will see later that a similar model is considered in the estimation
process by adding as state the estimate value of the debris mass.

4.2.3 General Settings

In order to accomplish the various mission maneuvers a schedule method is
needed. The controller is always the same, but what is changing are: the used
setting parameters (like x0, u0, Tp, Ts, Q and so on), the constraints (on the
input and on the state), the final points given by the reference values, and the
approximate model used by the controller.

51



To obtain an algorithm that changes its setting is considered a for-cycle,
that uses the time as variable. In this way, the total simulation time (that
coincides with the total mission time) is divided in small period. For each of
them, thanks to specific flags and conditions, it is possible to run only the part
related to a given maneuver.

A specific maneuver starts when the previous one is completed. By con-
sidering the reference signals, that give the relative final points in the first two
maneuvers and in the third one, it is possible to run the algorithm until a
certain precision is achieved. This precision has the meaning of a tolerance on
the S/C final point. In other words, for each condition, the algorithm run a
specific part until the specific condition remains satisfied. The conditions for
these maneuvers are in the following form:

|(|rrel| − r0)| − tol1 ≥ 0

|(|vrel| − v0)| − tol2 ≥ 0
(4.9)

Where rrel and vrel are the relative position and velocity of the S/C seen from
the relative LVLH frame centered with the debris CoM, r0 and v0 are the
position and the velocity given the reference signal, while tol1 and tol2 are two
tolerances.

When both these two conditions are no more satisfied, the algorithm sets
the parameters needed for the next maneuver that will start.

To obtain a good algorithm, some flags are inserted to understand when a
maneuver is completed. Thanks to them, the algorithm automatically avoids
to repeat paths (so to restart maneuvers already done) inside the cycle.

Another important consideration is on the unit measures that, obviously
must be consistent in the whole algorithm.

To initialize the algorithm the following parameters are considered:

• Gravitational Parameter: µ = 0.3986e15 [m
3

s2
];

• Equatorial Radius: re = 6.38e6 [m];

• Partial Simulation Time: tstep = 50 [s];

• Simulation Time: ttotal = 8e3 [s];

• S/C Mass: m1 = 1000 [kg];

• Fuel Mass: mfuel = 10e3 [kg];

• Debris Mass: m2 = 550 [kg];

• Engine Exhaust Velocity: ve = 4.4e3 [m/s];

• Debris Radius: a = re + 400e3 [m];
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• Debris Angular velocity: ω =
√

µ
a3

[ rad
s

];

• Debris Starting Conditions: xd0 = [a; 0; 0; 0;
√

µ
a
; 0;m2];

• S/C Starting Conditions: x0 = [200 + a; 0; 0; 0;
√

µ
200+a

; 0;m1 +mfuel];

• Input Initial Conditions: u0 = [0; 0; 0] [N ];

It is worth to note that both the S/C and the debris at the initial time are
at the perigee and in an equatorial circular orbit (|e| = 0, cos i = 1). Indeed,
the initial conditions are written w.r.t. the GE frame.

4.2.4 Maneuvers Settings

In this section are analyzed the various maneuvers settings. It will be seen
that, depending on the specific task, the controller adapts itself to bring the
system in the optimal (or almost optimal) trajectory needed.

At each partial simulation time, the controller reads the output values
(given by simulation) and on the basis of them, and on the basis of the imposed
previous conditions and flags, it understand what is the maneuver that has to
be executed.

First Rendezvous Maneuver

The first maneuver is the Rendezvous. If the S/C is too far from the debris
may be useful to have another maneuver (of the Orbit-Change kind) before
this one, in order to bring the S/C near to the debris (in a field where the
HCW equations are valid).

In this work this maneuver is already considered. For this reason the first
one of interest is the Rendezvous.

In order to adapt the two models (system and control models), that work
with two different reference frames, a function that calculates the components
of the relative frame is needed. The axes of the LVLH frame are constructed
by considering:

• The debris CoM as origin ( O′);

• The Local-Vertical axis is defined along the direction ¯OO′ on the orbit
plane (where O is the Earth CoM);

• The Local-Horizontal axis is perpendicular to the local vertical, it is on
the orbit plane, and the sign is concordant with the orbital velocity;

• The Orbit Pole axis is given by the vector product of the first two axes
and it is perpendicular to the orbit plane;
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On the basis of these considerations, it is possible to write the unit vectors of
the three axes and to find the relation between the two frames (by means of
rotation matrix):

ex =
r0
‖r0‖

ez =
r0 × v0
‖r0 × v0‖

ey = ez × ex
R = [ex ey ez]

T

(4.10)

Where r0 and v0 are respectively the position vector and the velocity vector of
the debris seen in the GE frame.

In this way, by considering the differences p (for the position vectors) and
v (for the velocity vectors) between the S/C and the of the debris, it is pos-
sible to write the S/C components seen in the LVLH frame, and to write the
components of the command input vector in the GE frame:

p = x(1 : 3)− xd(1 : 3), v = x(4 : 6)− xd(4 : 6),

xrel(1 : 3) = Rp, xrel(4 : 6) = Rv + xrel(1 : 3)× ω,
u = R′urel

(4.11)

Where x is the state vector of the S/C, xd is the state vector of the debris, ω
is the angular velocity of the debris, xrel is the state of the S/C in the LVLH
frame.

It is worth to note that R is the DCM. It is an orthonormal matrix:
R′ = RT .

Considering a final position point for the S/C, near to the debris, a constant
reference signal is need. It is specified on the LVLH frame:

r1 = [20; 0; 0; 0; 0; 0]

Where the first three components are the reference values for the relative
position, while the last three are the references values for the relative velocity.

The algorithm conditions for this maneuver are:

tol = tol1 = tol2

|(‖xrel(end, 1 : 3)T‖ − ‖r1(1 : 3)‖)| − tol ≥ 0

|(‖xrel(end, 4 : 6)T‖ − ‖r1(4 : 6)‖)| − tol ≥ 0

(4.12)

By means of simulation, the algorithm collect at each partial simulation
time the values of the relative state xrel (it is composed by N samples with
N = (tstep/tsampling)). The last collected values are used to understand if the
final point is reached with a given tolerance. If this point is not reached, the
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algorithm rerun the piece of code relative to this maneuver until the previous
conditions are no more satisfied.

The NMPC uses an inequality that gives to it the constraints on the state
(see section 3.3). In this maneuver a collision path with the debris must
be avoid. For this reason a spherical constraint debris-centered, with radius
equal to 10, is considered. It is important to note that if it is seen from the
inertial GE frame, it is a varying constraint, because it moves with the debris.
Instead, considering the LVLH frame the same constraint becomes static. The
mathematical formulation is the following:

F = 10− ‖x(1 : 3, :)‖ (4.13)

Where F is interpreted by the NMPC as F ≤ 0. The norm on the S/C position
(indices from 1 to 3) is a L2 signal norm.

It can be seen that the signal, that contains the values of the components of
a general vector at each sampling time, if it is written as a vector, resulting as
output from simulation (see equation 4.12 for example), it is transpose w.r.t.
the same signal used inside the matlab functions for simulation purposes (see
equation 4.13 for example).

The following NMPC settings are considered for this maneuver (they were
found by means of trial and error procedure as seen in the section 3.4.2):

• Model Functions: It is in the same form of the model seen in 4.7. Since,
it is written as a matlab function (then used inside simulink), this is
rewritten as follows:

ẋ(1 : 3, :) = x(4 : 6, :)

ẋ(4, :) = 3ω2x(1, :) + 2ωx(5, :) +
u(1, :)

x(7, :)

ẋ(5, :) = −2ωx(4, :) +
u(2, :)

x(7, :)

ẋ(6, :) = −ω2x(3, :) +
u(3, :)

x(7, :)

ẋ(7, :) = 0

y = x(1 : 6, :)

(4.14)

• State Constraints: It is the function seen previously;

• Sampling Time: Ts = 1 [s];

• Prediction Time: Tp = 200 [s];

• System Order: n = 7;

• Q-matrix: Q = zeros(6);
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• P-matrix: P = 10 eye(6);

• R-matrix: R = 0.1 ones(3, 1);

• Input Saturation Constraints: |u| ≤ 10e3 ones(3, 1) [N ];

• Used Flags: j = 0, g = 0, and q = 0. They are used as adding conditions,
as said before, to avoid wrong repeating paths inside the for-cycle;

The used simulink control scheme for this maneuver is the following:

Figure 4.4: First Rendezvous maneuver control scheme

Where inside the System Plant block there are the system equation (written
in the GE frame), inside the NMPC law block there is the control law that
uses the previous settings, while inside the Coordinate changing block there
are the equation needed to change the coordinate from a frame to the other,
while the reference signal is: r = r1.

Docking Maneuver

The Docking maneuver takes place when the Rendezvous is completed. The
controller, also in this case, uses as model the HCW equations. The only
things that change are the setting used, the reference signal, and the constraint
function. Since this maneuver is more precise than the first one, the controller
must have more stringent constraints on the state and on the input. In order
to give more importance to the final reached point, higher coefficients of the
weight matrix P are chosen (as seen in 3.4.2 this matrix is related to the final
predicted error, if P coefficients increase the algorithm takes care to minimize
more these variables than others).

The final point that the S/C has to reach is the following, given by the
constant reference signal:

r2 = [0; 0; 0; 0; 0; 0]
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The algorithm condition are in the same form of the ones seen in 4.12. The
only thing that changes is the reference that in this case is r2:

tol = tol1 = tol2

|(‖xrel(end, 1 : 3)T‖ − ‖r2(1 : 3)‖)| − tol ≥ 0

|(‖xrel(end, 4 : 6)T‖ − ‖r2(4 : 6)‖)| − tol ≥ 0

(4.15)

The constraint function in this case has the shape of a cone. Indeed, while
the S/C approaches the debris the space in which it can move is reducing.
The considered function is a cone with vertex coincident with the debris CoM,
height equal to the first component of the final point given by the Rendezvous
maneuver and equal to the base radius. In other words, at the initial point,
the height of cone is coincident with the distances between the S/C and the
debris, the radius of the base circumference is equal to that distance. While
the S/C approaches to the debris, the distance is reducing (hence the height)
as well as the base radius (that remains equal to the height in the considered
point). The mathematical formulation is the following (remember that F ≤ 0
as seen before):

if 0 <= x(1, :) <= r1(1) + tol

F = ‖x(2 : 3, :)‖ − ‖x(1, :)‖
else

F = [ ]

end

(4.16)

As can be seen this constraint is implemented by considering an initial con-
dition. If the distance between the S/C and the debris is inside the cone the
constraint is given, otherwise there are not constraints. The else condition is
not really needed, because the initial point of the docking maneuver is inside
the if condition and the S/C moves towards the docking point. In order to
avoid possible collision problems (maybe due to some computational trajectory
error), it is possible to give a constraint also in this else condition (a possibility
can be to use the constraint considered in the Rendezvous maneuver).

The cone constraint is simple, the S/C has to move inside the space de-
scribed by the function. The radius of the base circumference ‖x(2 : 3, :)‖ is
equal to the distance ‖x(1, :)‖. In this way, rewriting this as inequality it is
possible to obtain the constraint.

The following NMPC settings are considered for this maneuver (they were
found by means of trial and error procedure as seen in the section 3.4.2):

• Model Functions: It is the same model seen in the Rendezvous maneuver;

• State Constraints: It is the function seen previously;

• Sampling Time: Ts = 1 [s];

• Prediction Time: Tp = 100 [s];
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• System Order: n = 7;

• Q-matrix: Q = 10 eye(6);

• P-matrix: P = 1e3 eye(6);

• R-matrix: R = 0 ones(3, 1);

• Input Saturation Constraints: |u| ≤ 5e3 ones(3, 1) [N ];

• Used Flags: g = 0, and q = 0;

• Setted Flags: j = 1. The first time when the algorithm run this piece
of code it set j = 1 in order to avoid to repeat the (already done)
Rendezvous maneuver;

The used simulink control scheme for this maneuver is the same of before.
The only things that change are: the used reference signal r = r2, and the
NMPC control law, that this time uses the seen settings.

Estimation Maneuver

The estimation maneuver is the heart of this work. Thanks to the on-line
estimation of the debris mass it is possible to complete optimally the GNC
problem. The NMPC adapts its behavior on the basis of this estimation.

As seen in section 2.3, there are two main methods to estimate some vari-
able: recursive algorithms and filters (observers). In this work three algorithms
are tested to accomplish this task. The first two are recursive algorithms, while
the third one is an observer:

• Recursive Least Squares (RLS) Algorithm: It will see that it is not pos-
sible to use this method in order to obtain a good estimation;

• Recursive Average Algorithm: It works by collecting the solutions of
some equations, at each sampling time. Then, in a recursive way, it
makes an average on these values and gives the estimated mass value to
the controller;

• EKF: It is an observer and by means of an internal mathematical model
it is able to give the values of the state of the system. Contrary to a
simple model (that uses only the information of the inputs), it works
with both the inputs and the outputs. The outputs are used to correct
the estimated values of the state;

These work on-line, hence, at each sampling time they updates the estimated
debris-mass variable.

Once the Docking maneuver is complete, there is a rigid connection between
the S/C and the debris. The system that has to be controlled becomes the
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fusion of the two bodies. In this way, the previous model that describe the
dynamics of the S/C is not more valid. The real value of the debris mass must
be considered in these equations. The new model, that takes into account this
connection, is a modified model of the one seen before (see the equation 4.5):

ẋ(1 : 3, :) = x(4 : 6, :)

ẋ(4 : 6, :) = −µ x(1 : 3, :)

‖x(1 : 3, :)‖3
+

1

x(7, :) +m2

(Fd + d+ u)

u = 0 if x(7, :) ≤ mb

ẋ(7, :) =

{
0 if u = 0

− |u|
ve

if u 6= 0

Fd = −1

2
ρ CDS|v|v, ρ = ρ0e

− r−r0
H

(4.17)

In this case also the model used by the NMPC is changed. Indeed, the used
equations are the ones written according to the 2B problem, and the estimated
value of the mass enter as a state variable. In this way, it is possible to obtain
an adaptive NMPC:

ẋ(1 : 3, :) = x(4 : 6, :)

ẋ(4 : 6, :) = −µ x(1 : 6, :)

‖x(1 : 3, :)‖3
+

u

x(7, :) + x(8, :)

ẋ(7, :) = 0

ẋ(8, :) = 0

y = x(1 : 6, :)

(4.18)

From now on, the two recursive algorithms are discussed. Then, it is pre-
sented the EKF.

An important consideration, that must be done, is that the controller gives
to the system a command input u that it is calculated, as the optimal one
for the planned trajectory, on the basis of the estimated value (x8) of the real
debris mass (m2). The system, by using this command input, reacts according
to the equations that describe its dynamics. If u is too small it is not possible
to appreciate a divergent trajectory from the planned one. Considering this
point, it is needed a condition that reject estimated values when u is below a
certain limit.

The average recursive algorithm is build by considering the equations that
describe the system motion. Indeed, it is possible to rewrite them in function
of the unknown mass. In this way, it is possible to have three equations (one
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for each direction) on which collect data:

if |u(1, :)| ≥ ut

m2 1 =
u(1, :)

ẋ(4, :) + (µx(1, :)/‖x(1 : 3, :)‖3)
− x(7, :)

else

m2 1 = 0

end

if |u(2, :)| ≥ ut

m2 2 =
u(2, :)

ẋ(5, :) + (µx(2, :)/‖x(1 : 3, :)‖3)
− x(7, :)

else

m2 2 = 0

end

if |u(3, :)| ≥ ut

m2 3 =
u(3, :)

ẋ(6, :) + (µx(3, :)/‖x(1 : 3, :)‖3)
− x(7, :)

else

m2 3 = 0

end

(4.19)

Where ut is a given threshold used to discard wrong estimated values (if
u→ 0 =⇒ m2 i → 0).

How it is possible to see, only the estimated values of the mass, correspond-
ing to a given command input (greater than a given threshold), are considered.

The algorithm first, on the basis of the results of these three equations,
calculates the average of them at the specific time. Then, it takes all these
average values (one for each sampling time) and starting from the first until
the value given at the present time, recursively, it calculates the average of
them. The output value (that is updated at each sampling time), given by
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this last step, is applied to the controller as state variable (x8):

if m2 1 > 0 ∧m2 2 > 0 ∧m2 3 > 0)

m2 partial =
1

3
(m2 1 +m2 2 +m2 3)

elseif (m2 1 6= m2 2 ∧m2 2 6= m2 1) ∧ (m2 1 = 0 ∨m2 2 = 0 ∨m2 3 = 0)

m2 partial =
1

2
(m2 1 +m2 2 +m2 3)

else

m2 partial = (m2 1 +m2 2 +m2 3)

end

for i = 1 : size(m2 partial)

m2 est(i, :) =
1

i

∑
m2 partial(i, :)

end

(4.20)

Where i is the i-th present time. It contains all the previous collected
values. At the same time the following relation is true: m2 est(i, :) = x(8, :).

Another approach based on RLS method for the estimation problem is at-
tempted. But, it will be seen that this method is not applicable. However, the
mathematical formulation (found only for the 4-th equation of the dynamics
model) of the problem is the following:

• The problem is to find θ from:

y = Aθ =⇒ θ = (ATA)−1ATy

• Measured Output:

y(1) = ẋ(4, 1) +
µx(1, 1)

‖x(1 : 3, 1)‖3
= x(4, 2) +

µx(1, 1)

‖x(1 : 3, 1)‖3

y(2) = ẋ(4, 2) +
µx(1, 2)

‖x(1 : 3, 2)‖3
= x(4, 3) +

µx(1, 2)

‖x(1 : 3, 2)‖3
...

y(N − 1) = ẋ(4, N − 1) +
µx(1, N − 1)

‖x(1 : 3, N − 1)‖3
= x(4, N) +

µx(1, N − 1)

‖x(1 : 3, N − 1)‖3

y = [y(1); y(2); . . . ; y(N − 1)]

• Regressor A:

A(1) = u(1, 1), A(2) = u(1, 2), . . . A(N − 1) = u(1, N − 1)

A = [A(1);A(2); . . . ;A(N − 1)]
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• Solution:

θ = constant = (ATA)−1ATy =
y(1)

u(1, 1)
+

y(2)

u(1, 2)
+ · · ·+ y(N − 1)

u(1, N − 1)

• Since in θ there is x(7, :) (that depends on the fuel consumption) it can
not be a constant and diverges at each step-time:

θ(1) =
1

x(7, 1) +m2

, θ(2) =
1

x(7, 2) +m2

, . . . θ(N − 1) =
1

x(7, N − 1) +m2

θ = [θ(1); θ(2); . . . ; θ(N − 1)]

As it can be seen, it is not possible to estimate the debris mass with the RLS
method. However, a possible solution is to consider constant x(7, :) in a certain
range and then apply the algorithm in sufficiently small number of samples.
By repeating this procedure, every N samples (in which x(7, :) = constant it
is considered), it is possible to find different values of θ (by a simple equation
m2 est = (1 − mconstθ)/θ) and then by considering a recursive average it is
possible to refine the estimated value of the mass. Another possibility is to
reduce the input saturation constraint and obtain a small mass consumption.
In this case, the small divergence can be seen as error on the measured output.
Also in this case a sufficiently small number of samples are needed in order to
avoid strong variations. Moreover, as seen before, if u is too small there can
be wrong estimated values.

The EKF works in discrete time. In order to formalize the theoretical prob-
lem, general system equations (that describe the system plant) are considered
and they have the following form:

xk+1 = f(xk, uk) + dk, yk = h(xk) + dyk

Where k is the time index, dk is a disturbance, and dyk is a measurement noise.
The measurements are only on the input uk and on the output yy. The goal is
to using current and past values of these measurement to obtain an accurate
estimate x̂k of xk.

The formulation used starts by defining two fundamental steps:

1. Prediction: The algorithm computes a prediction xpk on the state xk using
a model of the system:

xpk = f̂(x̂k−1, uk−1) (4.21)

Where f̂ is a known model of the system. f is the exact model used to
describe the dynamics of the plant and in general it is different from f̂
(that it can be more general).

2. Correction: The measurements on the output are used to improve the
prediction and obtain a better state estimate:

x̂k = xpk +Kk∆yk (4.22)
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Where xk is the estimate of the state at time k. It is an improvement
of the prediction obtained in the previous step. Kk is a suitable ma-
trix multiplied by the innovation ∆yk. The innovation is defined as the
measured output minus the predicted output: ∆yk = yk − h(xpk).

The EKF works with the jacobians of the system computed along the trajec-
tory:

Fk =
∂f̂

∂x
(xk, uk), Hk =

∂h

∂x
(xk)

Other relevant quantities, needed for formulation purposes, are the following
covariance matrices:

Pk = E[(xk − x̂k)(xk − x̂k)T ], Rd = E[dyk(d
y
k)
T ], Qd = E[dk(dk)

T ]

Where the Pk is the covarince matrix of the estimation error. In the linear
Kalman filter the matrix Kk is chosen in order to minimize this error. Rd

and Qd are respectively the covariance matrices of dyk and dk. These last two
matrices are chosen by trial and error procedure. While Pk at the initial time
P0 is chosen on the information of the initial state x0. The on-line operations
that are made by the algorithm are:

1. Prediction:

xpk = f̂(x̂k−1, uk−1), P p
k = Fk−1Pk − 1Fk − 1T +Qd (4.23)

2. Correction:

Sk = HkP
p
kH

T
k +Rd, Kk = P p

kH
T
k S
−
k 1, ∆yk = yk − h(xk)

x̂k = xpk +Kk∆yk, Pk = (I −KkHk)P
p
k

(4.24)

In the prediction step the covarince matrix P must be also predicted.

In this application the following mathematical model and settings are cho-
sen:

• Used EKF model: It corresponds to a discretization of the model used by
the controller. The discretization is made using Euler forward method:

xp(1, :) = x(4, :)τ + x(1, :)

xp(2, :) = x(5, :)τ + x(2, :)

xp(3, :) = x(6, :)τ + x(3, :)

xp(4, :) =

(
−x(1, :)µ

r3
+

u(1, :)

x(7, :) + x(8, :)

)
τ + x(4, :)

xp(5, :) =

(
−x(2, :)µ

r3
+

u(2, :)

x(7, :) + x(8, :)

)
τ + x(5, :)

xp(6, :) =

(
−x(3, :)µ

r3
+

u(3, :)

x(7, :) + x(8, :)

)
τ + x(6, :)

xp(7, :) = x(7, :)

xp(8, :) = x(8, :)

y = x(1 : 7, :)

(4.25)
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• Covarince Matrices:

P0 = eye(8)[1e− 6 ones(7, 1); 5e6]

Qd = eye(8)[1e− 3 ones(7, 1); 1e− 9]

Rd = eye(7)1e2

(4.26)

It can be seen that the values of P0 take care of having good information
on the first seven state variables at the initial time, while the information
on the eighth state variable (that corresponds to the debris mass) are not
so good. Taking Rd high means that the measured outputs that enter
in the equations have an high spread. While, Qd is considering that the
disturbances given by the solutions of the model equations are not so
high (the spread is almost equal to the one setted for the disturbances,
coming from the sensors, in the simulink model). Since m2 is a constant
value the corresponding coefficient in Qd is considered more stringent.

In this work are considered only the estimation processes done with the
recursive average method and with the EKF. The first one is simple, it don’t
require any additive computational effort, or to modify the system, the con-
vergence towards the real value is higher than the one given by the EKF, and
the estimation result is good enough.

The EKF can be used in whose applications that require an high precision
on the measurements. Indeed, it is possible to use multiple sensors combined
with the EKF in order to increase the precision. This is called sensor fusion.

The time, in which the estimation takes place, is not so high. This is done
in order to avoid fuel consumption. If a long time interval is considered the
EKF will be the best choice. Because in recursive average the errors coming
from the first solutions always will affect the last estimated value of the debris-
mass. While, with the EKF the estimation error will converge exactly to zero
thanks to the correction step.

Another important consideration is if one of the two estimation algorithm is
maintained also in the future maneuvers (without having thrusters saturation)
a better estimation can be obtained. It will be seen that this is not required
since the mass estimation will be near to the real value. Anyway, as seen
before, in order to increase the accuracy of the sensors the EKF could be used.

To obtain the saturation of the command input u, in order to avoid bad
estimated values, a far point as reference is considered. If it is considered the
previous average function, it can be seen that there isn’t a rejecting condition
to discard the values of m2 partial = 0. Considering the recursion of the problem
this can cause estimation problem. A possible choice, for the discard condition,
can be implemented holding the precedent value of m2 partial 6= 0 in all the
subsequent samples in which m2 partial = 0. In this work, this condition is not
considered, because the thrusters work in saturation. In this way, m2 partial 6= 0
is always satisfied. Indeed, before starting, the algorithm of this maneuver sets
the inputs equal to the saturated values.

This time the constant reference signal is specified in the GE frame. In
this way, the problem has the meaning of set-point maneuver.
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It is worth to note that the system doesn’t reach this reference. Since, the
estimation maneuver takes place only in a finite period equal to the Partial
Simulation Time. For this reason the algorithm conditions, to repeat this ma-
neuver, are not needed. There are only flags to understand when the maneuver
is made.

r3 = [1e10; 1e10; 1e10; 0; 0; 0]

The considered state constraint is related to the Earth. The planned tra-
jectory can not pass near to the Earth surface, or worst it can not be planned
as a collision trajectory. The constraint has the following form:

F = 1.05 re − ‖x(1 : 3, :)‖ (4.27)

Where re is the, already seen, Earth’s radius.

The following NMPC settings are considered for this maneuver (they were
found by means of trial and error procedure as seen in the section 3.4.2):

• Model Functions: They are the ones described in 4.18;

• State Constraints: It is the function seen previously;

• Sampling Time: Ts = 0.01 [s];

• Prediction Time: Tp = 100 [s];

• System Order: n = 8;

• Q-matrix: Q = zeros(6);

• P-matrix: P = zeros(6);

• R-matrix: R = 0.1 ones(3, 1);

• Input Saturation Constraints: |u| ≤ 10e3 ones(3, 1) [N ];

• Used Flags: oc = 0, q = 0;

• Setted Flags: g = 1, q = 1. The first is used to avoid to repeat the
Docking maneuver. The second one is used to compute the estimation
value only in a partial simulation time. In this way, the number of
samples are N = (tstep/Ts) + 1 = 5001, with tstep = 50 [s], Ts = 0.01 [s],
while the +1 takes into account the initial value.

The used simulink control scheme is the following:
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Figure 4.5: Estimation maneuver control scheme

As it can be seen, there is also the RLS block to calculate m2 est with the
RLS method (applied only in the forth system equation). But, the estimation,
as already seen, is not correct. The Random number blocks are disturbance
that take into account measurement errors and small perturbations. The Re-
cursive average block contains the equations seen before and written with
simulink blocks and functions. While, inside the EKF block there is the algo-
rithm that works with the previous model and matrices. In the following there
are the three estimation blocks:

Figure 4.6: Recursive average block
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Figure 4.7: RLS block

Figure 4.8: EKF block

Second Rendezvous Maneuver

This maneuver is not really needed. It is considered only to have a convenient
initial starting point, for the Orbit-Change maneuver. The mission task of
this work is to bring the debris faraway in another orbit. It maybe conve-
nient to start from a point that is on an empty orbit, or that minimizes the
planned trajectory without considering constraints due to the presence of other
satellites.

This type of maneuver is Rendezvous/Docking-like. In the sense, that a
final point in a relative frame is considered as reference. This time, there are
not objects to approach and for this reason the constraints can be considered
less stringent than in the first two precision maneuvers.

The system plant remains the same of before. While, once the estimation
process is completed, the final value of the debris mass is applied as a constant
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parameter into the controller model:

ẋ(1 : 3, :) = x(4 : 6, :)

ẋ(4, :) = 3ω2x(1, :) + 2ωx(5, :) +
u(1, :)

x(7, :) +m2 est

ẋ(5, :) = −2ωx(4, :) +
u(2, :)

x(7, :) +m2 est

ẋ(6, :) = −ω2x(3, :) +
u(3, :)

x(7, :) +m2 est

ẋ(7, :) = 0

y = x(1 : 6, :)

(4.28)

For simplicity reasons, the final point of this maneuver is considered equal
to the one that would have the CoM of the debris in its previous orbit. The
constant reference signal and the conditions algorithm are equal to the second
one:

r4 = r2 = [0; 0; 0; 0; 0; 0]

tol = tol1 = tol2

|(‖xrel(end, 1 : 3)T‖ − ‖r4(1 : 3)‖)| − tol ≥ 0

|(‖xrel(end, 4 : 6)T‖ − ‖r4(4 : 6)‖)| − tol ≥ 0

The considered state constraint function takes into account that the planned
trajectory can not pass near to the Earth’s surface, like the 4.27, but this time
it is written in the LVLH frame:

F = 1.05 re − ‖[x(1, :)− re + a, x(2, :), x(3, :)]‖ (4.29)

Where a is the previous debris radius.

The following NMPC settings are considered for this maneuver (they were
found by means of trial and error procedure as seen in the section 3.4.2):

• Model Functions: They are the ones described in 4.28;

• State Constraints: It is the function seen previously;

• Sampling Time: Ts = 1 [s];

• Prediction Time: Tp = 100 [s];

• System Order: n = 7;

• Q-matrix: Q = zeros(6);

• P-matrix: P = 1 eye(6);

• R-matrix: R = zeros(3, 1);
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• Input Saturation Constraints: |u| ≤ 10e3 ones(3, 1) [N ];

• Used Flags: oc = 0, q = 1;

The used simulink control scheme is the same of the one seen in the first
two maneuvers (see figure:4.4). The only things that change are: the used
functions for the model and the controller, the new reference, and the new
settings used by the NMPC.

Orbit-Change Maneuver

The last maneuver, to accomplish the mission task, is the Orbit-Change ma-
neuver. As seen before, it consists to increase the major-semi axis of the debris
orbit.

Also in this case, the system plant remains the same. While, the model
used by the controller is written in the GE frame:

ẋ(1 : 3, :) = x(4 : 6, :)

ẋ(4 : 6, :) = −µ x(1 : 6, :)

‖x(1 : 3, :)‖3
+

u

x(7, :) +m2 est

ẋ(7, :) = 0

y = rv2oe(x)

(4.30)

Where the output y is expressed in orbital-elements thanks to the rv2oe
function.

Since y is expressed in orbital-elements, also the constant reference signal
to be tracked is in the same form:

r = [ar; er1; er2; er3; (cos i)r] = [re + 900e3; 0; 0; 0; 0; 1]

Where ar is the semi-major axis reference, eri are the components of the eccen-
tricity vector, and (cos i)r is the cosine of the inclination angle. The reference
orbit, in this way, is circular, equatorial (since er = 0 and (cos i)r = 1), and it
is at distance ar from the Earth’s CoM.

The state constraint in this case is equal to the one seen in the estimation
maneuver (see equation 4.27). If there are other objects (like satellites or
debris) their position must be take into account as state constraint functions.
For simplicity reasons, the consider space between the initial orbit to the final
one is considered empty. The considered constraint is the only one due to the
Earth.

The following NMPC settings are considered for this maneuver (they were
found by means of trial and error procedure as seen in the section 3.4.2):

• Model Functions: They are the ones described in 4.30;

• State Constraints: It is the function 4.27;
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• Sampling Time: Ts = 5 [s];

• Prediction Time: Tp = 100 [s];

• System Order: n = 7;

• Q-matrix: Q = zeros(5);

• P-matrix: P = diag([1, 1e6, 1e6, 1e6, 1e7]);

• R-matrix: R = zeros(3, 1);

• Input Saturation Constraints: |u| ≤ 132e3 ones(3, 1) [N ];

• Setted Flags: oc = 1. It is used to avoid to repeat the second Rendezvous
maneuver;

The simulink block diagram is the following:

Figure 4.9: Orbit-Change control scheme
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Chapter 5

Simulation Results

5.1 Simulation Results

By the means of matlab and simulink simulation, in this chapter will be seen
the obtained results. First, the solutions of each maneuver are treated in terms
of: obtained trajectories, fuel consumption, and if the constraints are satisfied.
Then, It will make a comparison without estimating the debris mass.

The simulink solvers used, in all the first four maneuvers, are a variable-
step solver ODE-45. While, the solver used in the Orbit-Change is ODE-3,
that is a fixed-step solver (with fixed-step size equal to stsize = 5).

5.2 Rendezvous Maneuver

The considered simulation parameters are:

• Drag force parameters: CD = 1, S = 12 [m2], ρ0 = 1.22 [kg/m3],
H = 8e3 [m];

• Other Perturbations/Disturbances: std(d(t)) = 1 [N ];

• Condition tolerances: tol1 = 0.5 [m], tol2 = 0.05 [m/s];

5.2.1 Time and Delta-V

The reference point is reached after:

t = 1100 [s] ≈ 18 [min]

While the Delta-V is:

∆V1 = |Vfinal − Vstart| = 0.1203 [m/s]



5.2.2 Command Input, Position, and Velocity

Figure 5.1: Relative and Absolute Command Input Vs Time

The constraints on the input are expressed in the LVLH frame. As it can be
seen they are satisfied.

In the following the relative and absolute plots of the position and velocity
are given:

Figure 5.2: Relative and Absolute Position Vs Time
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Figure 5.3: Relative and Absolute Velocity Vs Time

5.2.3 Trajectory

The relative and absolute trajectories, for this maneuver, are now presented. In
the relative ones, it can be seen that, the constraints on the state are satisfied.

Figure 5.4: Relative position between the S/C and the debris

The red ball indicates the constraint function used in this maneuver (the
red cone is used for the next Docking maneuver, but for simplicity reasons it
is plotted together with the rendezvous constraint).

In the following is reported the trajectory in a 2-D plane:
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Figure 5.5: Relative position between the S/C and the debris in a 2D plane

Here, the absolute trajectory seen in a 3-D space and in a 2-D plane:

Figure 5.6: Absolute position between the S/C and the debris in a 3D space
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Figure 5.7: Absolute position between the S/C and the debris in a 2D plane

The initial position between the S/C and the debris is too small to ap-
preciate a difference between the two trajectories. However, in the end, when
a comparison without the estimation process it will make, it is presented a
zoomed plot in a specific point. In that case it is possible to see that the two
trajectories are separated.

5.2.4 Fuel Consumption

The total fuel’s mass used is:

mlost = 2.96 ≈ 3 [kg]

Figure 5.8: Total Mass Vs Time
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It is not too much. Indeed, this maneuver is a precision one. There is not
needed to have high command activity.

5.3 Docking Maneuver

The considered simulation parameters are:

• Drag force parameters: CD = 1, S = 12 [m2], ρ0 = 1.22 [kg/m3],
H = 8e3 [m];

• Other Perturbations/Disturbances: std(d(t)) = 1 [N ];

• Condition tolerances: tol1 = 0.5 [m], tol2 = 0.05 [m/s]. In order to have
a smooth docking, a stringent condition is considered on the relative
velocity;

5.3.1 Time and Delta-V

The reference point is reached after:

t = 1550 [s] ≈ 26 [min]

While the maneuver time is:

t = 1550− 1100 = 450 [s] = 7.5 [min]

The Delta-V is:
∆V2 = 0.0080 [m/s]

5.3.2 Command Input, Position, and Velocity

Figure 5.9: Relative and Absolute Command Input Vs Time
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The constraints on the input are expressed in the LVLH frame. As it can be
seen they are satisfied.

In the following the relative and absolute plots of the position and velocity
are given:

Figure 5.10: Relative and Absolute Position Vs Time

Figure 5.11: Relative and Absolute Velocity Vs Time

5.3.3 Trajectory

The relative and absolute trajectories, for this maneuver, are now presented. In
the relative ones, it can be seen that, the constraints on the state are satisfied.
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Figure 5.12: Relative position between the S/C and the debris

the red cone is used to indicate the constraint in this maneuver.

In the following is reported the trajectory in a 2-D plane:

Figure 5.13: Relative position between the S/C and the debris in a 2D plane

Here, the absolute trajectory seen in a 3-D space and in a 2-D plane:
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Figure 5.14: Absolute position between the S/C and the debris in a 3D space

Figure 5.15: Absolute position between the S/C and the debris in a 2D plane

5.3.4 Fuel Consumption

As it can be seen from the following plot, the total fuel’s mass used is:

mlost = 3.76 ≈ 3.80 [kg]

While, the fuel used in this maneuver is:

mlost = 3.76− 2.96 = 0.80 [kg]
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Figure 5.16: Total Mass Vs Time

It is not too much. Indeed, this maneuver is a precision one. There is not
needed to have high command activity.

5.4 Estimation Maneuver

The considered simulation parameters are:

• Drag force parameters: CD = 1, S = 12 [m2], ρ0 = 1.22 [kg/m3],
H = 8e3 [m];

• Perturbations/Disturbances: std(d(t)) = 1 [N ];

• Measurements Errors:
std(w(t)) = [ones(3, 1) [m]; 1e− 1 ∗ ones(3, 1) [m/s]; 1e− 3 [kg]],
std(dx(t)) = [ones(3, 1) [m]; 1e− 1 ∗ ones(3, 1) [m/s]; 1e− 3 [kg]],
std(dẋ(t)) = 1e−4∗ones(7, 1) [ones(3, 1)[m/s]; ones(3, 1)[m/s2]; [kg/s]],
std(du(t)) = 1e− 1 ∗ ones(3, 1) [N ]
They are considered in order to see how much good is the estimation
process;

5.4.1 Time and Delta-V

The estimation process is complete after 50 [s]. The total time is:

t = 1600 [s] ≈ 26.5 [min]

As seen before, in this maneuver, the reference is not reached. It is used only
to have thrusters saturation.
The Delta-V is:

∆V3 = 52.5443 [m/s]
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5.4.2 Command Input, Position, and Velocity

Figure 5.17: Relative and Absolute Command Input Vs Time

The constraints on the input, this time, are expressed in the GE frame. As it
can be seen, the thrusters are in saturation conditions.

In the following the relative and absolute plots of the position and velocity
are given:

Figure 5.18: Relative and Absolute Position Vs Time
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Figure 5.19: Relative and Absolute Velocity Vs Time

5.4.3 Trajectory

The relative and absolute trajectories, for this maneuver, are now presented. In
the absolute ones, it can be seen that, the constraint on the state are satisfied.

Figure 5.20: Relative position between the S/C and the debris

In the following is reported the trajectory in a 2-D plane:
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Figure 5.21: Relative position between the S/C and the debris in a 2D plane

Here, the absolute trajectory seen in a 3-D space and in a 2-D plane:

Figure 5.22: Absolute position between the S/C and the debris in a 3D space
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Figure 5.23: Absolute position between the S/C and the debris in a 2D plane

5.4.4 Fuel Consumption

After the Docking maneuver, the system becomes the fusion of the two bodies.
For this reason the total mass of the system is increased. The total fuel used
is:

mlost = 200.58 ≈ 200.6 [kg]

While, the fuel used in this maneuver is:

mlost = 200.58− 3.76 = 196.82 [kg]

Figure 5.24: Total Mass Vs Time
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5.4.5 Estimation Process

In the following plots can be seen:

• The results given at each sampling time of the three equations used to
estimate the debris mass (one for each direction);

• The result of the recursive average;

• The result of the EKF estimation;

• The Estimation errors ;

Figure 5.25: Estimated Mass Vs Time

Figure 5.26: Estimated Mass Vs Time
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The final estimated values of the mass are:

m2 av est = 552.03 [kg], m2 ekf est = 549.07 [kg], m2 est = m2 av est,

Figure 5.27: Estimation Error Vs Time

The final errors are:

|eav final| = |m2 −m2 av est| = 2.03 [kg], |eekf final| = 0.92 [kg]

It can be also seen that, the errors slowly converges to zero.

In this work are considered only the estimation processes done via the
recursive average method and via the EKF. The first one is simple, the con-
vergence towards the real value is higher than the one given by the EKF, and
the estimation result is good enough.

The EKF can be used in whose applications that require an high precision
on the measurements. Indeed, it is possible to use multiple sensors combined
with the EKF in order to increase the precision. This is called sensor fusion.

The time, in which the estimation takes place, is not so high. This is done
in order to avoid fuel consumption. If a long time interval is considered the
EKF will be the best choice. Because in recursive average the errors coming
from the first solutions always will affect the last estimated value of the debris-
mass. While, with the EKF the estimation error will converge exactly to zero
thanks to the correction step.

Another important consideration is if one of the two estimation algorithm is
maintained also in the future maneuvers (without having thrusters saturation)
a better estimation can be obtained. This is not really required since the mass
estimation is near to the real value. Anyway, as seen before, in order to increase
the accuracy of the sensors and of the estimation the EKF could be considered
in the whole mission.
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5.5 Second Rendezvous Maneuver

The considered simulation parameters are:

• Drag force parameters: CD = 1, S = 12 [m2], ρ0 = 1.22 [kg/m3],
H = 8e3 [m];

• Other Perturbations/Disturbances: std(d(t)) = 1 [N ];

• Condition tolerances: tol1 = 0.5 [m], tol2 = 0.5 [m/s]. This time the
condition on the velocity is less stringent than before. In the point to
be reached there are not objects. As seen before, this maneuver is done
only to have a good starting point for the Orbit-Change maneuver.

5.5.1 Time and Delta-V

The reference point is reached after:

t = 2500 [s] ≈ 41.5 [min]

While, the maneuver time is:

t = 2500− 1600 = 900 [s] = 15 [min]

The Delta-V is:
∆V4 = 52.5663 [m/s]

5.5.2 Command Input, Position, and Velocity

Figure 5.28: Relative and Absolute Command Input Vs Time
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The constraints on the input are expressed in the LVLH frame. As it can be
seen they are satisfied.

In the following the relative and absolute plots of the position and velocity
are given:

Figure 5.29: Relative and Absolute Position Vs Time

Figure 5.30: Relative and Absolute Velocity Vs Time

5.5.3 Trajectory

The relative and absolute trajectories, for this maneuver, are now presented.
In the absolute ones, it can be seen that, the constraints on the state are
satisfied.
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Figure 5.31: Relative position between the S/C and the debris

the red cone is used to indicate the constraint in this maneuver.

In the following is reported the trajectory in a 2-D plane:

Figure 5.32: Relative position between the S/C and the debris in a 2D plane

Here, the absolute trajectory seen in a 3-D space and in a 2-D plane:
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Figure 5.33: Absolute position between the S/C and the debris in a 3D space

Figure 5.34: Absolute position between the S/C and the debris in a 2D plane

5.5.4 Fuel Consumption

As it can be seen from the following plot, the total fuel’s mass used is:

mlost = 545.01 ≈ 545 [kg]

While, the fuel used in this maneuver is:

mlost = 545.01− 200.58 = 344.43 [kg]
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Figure 5.35: Total Mass Vs Time

5.6 Orbit-Change Maneuver

The considered simulation parameters are:

• Drag force parameters: CD = 1, S = 12 [m2], ρ0 = 1.22 [kg/m3],
H = 8e3 [m];

• Other Perturbations/Disturbances: std(d(t)) = 1 [N ];

5.6.1 Time and Delta-V

The reference point is reached after:

t = 5000 [s] ≈ 1 : 23 [h : min]

While, the maneuver time is:

t = 5000− 2500 = 2500 [s] = 41.5 [min]

∆V5 = 267.6127 [m/s]

While the total Delta-V needed for the complete mission is:

∆V =
∑

∆Vi = 372.8515 [m/s] = 0.3728 [km/s]
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5.6.2 Command Input, Position, and Velocity

Figure 5.36: Relative and Absolute Command Input Vs Time

The constraints on the input are expressed in the GE frame. As it can be seen
they are satisfied.

In the following the relative and absolute plots of the position and velocity
are given:

Figure 5.37: Relative and Absolute Position Vs Time
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Figure 5.38: Relative and Absolute Velocity Vs Time

5.6.3 Trajectory

The relative and absolute trajectories, for this maneuver, are now presented.
In the absolute ones, it can be seen that, the constraints on the state are
satisfied.

Figure 5.39: Relative position between the S/C and the debris

In the following is reported the trajectory in a 2-D plane:
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Figure 5.40: Relative position between the S/C and the debris in a 2D plane

Here, the absolute trajectory seen in a 3-D space and in a 2-D plane:

Figure 5.41: Absolute position between the S/C and the debris in a 3D space

94



Figure 5.42: Absolute position between the S/C and the debris in a 2D plane

5.6.4 Fuel Consumption

As it can be seen from the following plot, the total fuel’s mass used is:

mlost = 9312.1 ≈ 9312 [kg]

While, the fuel used in this maneuver is:

mlost = 9312− 545 = 8767 [kg]

Figure 5.43: Total Mass Vs Time
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5.7 Comparison Without Estimating m2

Thanks to its flexibility, the NMPC is able to find a solution (very near to the
optimal one) also in the presence of unknown estimation of the debris mass.
As discussed in the previous chapter (3), the NMPC is very robust to system
variations, though it is not simple to make an analytical analysis. The results
taking into account are the ones related to the trajectories of the maneuver
that takes place after the estimation process.

The final point is reached at the same time t = 2500 [s].

Figure 5.44: Zoomed Absolute Trajectory with m2 Estimation

Figure 5.45: Zoomed Absolute Trajectory without m2 Estimation
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Figure 5.46: Zoomed Relative Trajectory with m2 Estimation

Figure 5.47: Zoomed Relative Trajectory without m2 Estimation

The solution without the estimate value of the debris mass, inside the
control model, doesn’t diverges significantly from the one in which it is is
considered.

Thanks to this robustness feature, the controller can be applied also when
it is not possible to have a precise mass estimation. This is very important
in that debris removal mission where the debris masses are too small (m2 ≈
0.1÷ 100 [kg]).

In any case, if an estimation algorithm is considered the solutions converge
faster and there is a better management of the trade-off between performance
and command activity. In all the cases where an high precision is needed, it
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is almost mandatory to use an estimation process in order to increase it and
consequently avoid possible collisions with other objects. It is also possible,
thanks to these considerations, to save fuel and consequently money.
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Chapter 6

Conclusion

The used control methodology is seen to be good enough. Thanks to the
obtained results in the space mission simulation, it is possible to see that the
controller works also without an estimation process. In this way, it is always
possible to obtain good trajectories. This last result shows that the robustness
of this control method is high. Anyway, the mass estimation could be useful in
order to increase precision and performances. The Delta-V calculated for each
maneuver are found to be equal to: ∆V1 = 0.1203 [m/s], ∆V2 = 0.0080 [m/s],
∆V3 = 52.5443 [m/s], ∆V4 = 52.5663 [m/s], ∆V5 = 267.6127 [m/s]. While
the total Delta-V needed for the complete mission is: ∆V = 372.8515 [m/s] =
0.3728 [km/s]. It is possible to note that the Delta-V associated to the obit-
change from the debris position to an orbit with altitude at 900 [km] is not high
if compared with other Space missions. Anyway, this value could be reduced
if it is considered a de-orbit maneuver for the debris.

If an estimation algorithm is considered the solutions converge faster and
there is a better management of the trade-off between performance and com-
mand activity. In all the cases where an high precision is needed, it is almost
mandatory to use an estimation process in order to increase it. It is also pos-
sible, thanks to these considerations, to save fuel and consequently money.
The analyzed estimation solutions are similar, but depending on the specific
mission in which the controller has to be used, it is possible to select an ad hoc
estimation algorithm in order to minimize possible estimation errors (coming
from different type of estimators). Indeed, sometimes the estimation can be
execute for interval much grater than the one used in the estimation maneuver
of this mission. For this reason a more efficient estimator, that works well in
long time intervals, can be chosen.

The EKF has the advantage to be an optimal observer. Indeed, it uses
the measured outputs to correct all the estimated values. By using it, it is
possible to increase the precision of the sensors used to collects all the state
measurements. Another important consideration is that when the EKF is
used, the debris mass enters in the problem as a state variable. In this way,
the whole algorithm is also able to fully accomplish the GNC. While with the
recursive average the mass is estimated as parameter (it is not considered as



state variable).

Many approximations are made in order to construct the considered mission
problem. Some of them are in the model used as plant by means of neglecting
dynamics coming from different perturbation sources. The debris orbit was
considered kleperian (described by the FR2B equations) without any type of
perturbations. While, the equations used inside the controller for the precision
maneuvers are an approximate version of the HCW equations. However, in
this last case, the approximation can be considered good enough, since the the
debris orbit was considered circular e = 0 (see section 2.1.8). A possible future
work can be the one to modify these models and study the controller results.

6.1 Further Works

Further works can be on the using of this adaptive NMPC on different missions
or also in different engineering fields. By considering both the debris mass and
how it is distributed inside the volume, it is possible completely describe the
system (composed by debris and S/C) in the space. In this way, an estimate
of the inertial matrix is needed in order to track a desired attitude this prob-
lem is related to the so called Attitude and Orbit Control Systems (AOCS).
Considering that a common problem with the debris may be on the rotation
of the debris itself around a rotation axis, possible works could be done on
the non-cooperative maneuvers. A possible solution could be to estimate the
position of the rotation axis and keeping the debris with a robotic arm on this
direction (possibly with the same, or almost the same, angular velocity of the
debris). Another possible mission can be the one in which the atmospheric
density is not exactly known. By means of estimation processes this value can
be implemented inside the controller in order to develop a good De-Orbiting
mission. In these years studies, like [24], are made forward detection algo-
rithm and optimal trajectories to multiple targets. These studies can be used
for debris detection purposes and to find the optimal path in order to remove
multiple debris.

However, the scope of this thesis is reached. The found control algorithm
can be extended in flexible way in a great number of applications.
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seloupe, Daniel Tyef, Cesar Bernalg, François Chaumetteh, Alexandre
Pollinii, Willem H. Steynj, The active space debris removal mission Re-
moveDebris, Acta Astronautica 168, 293-309, 2020;

[4] Weilin Wang, Lei Chen, Kebo Li, Yongjun Lei, One active debris removal
control system design and error analysis, Acta Astronautica 128, 499–512,
2016;

[5] Camille Pirat, Muriel Richard-Noca, Christophe Paccolat, Federico Belloni,
Reto Wiesendanger, Daniel Courtney, Roger Walker, Volker Gass, Mission
design and GNC for In-Orbit Demonstration of Active Debris Removal tech-
nologies with CubeSats, Acta Astronautica 130, 114-127, 2017;

[6] Marko Jankovic, Jan Paul, Frank Kirchner, GNC architecture for au-
tonomous robotic capture of a non-cooperative target: Preliminary concept
design, Advances in Space Research 57, 1715-1736, 2016;

[7] Alberto Bemporad, Francesco Borrelli, Manfred Morari Predictive Control
for Linear and Hybrid Systems, Cambridge University Press, 2017;

[8] UCS Satellite Database, https://www.ucsusa.org/resources/satellite-
database;

[9] Mazzoldi, Nigro, Voci, Fisica 1, Edises, Moti Relativi, 72-90;

[10] E. Canuto, C. Novara, L. Massotti, C. Perez Montenegro and D. Car-
lucci, Spacecraft dynamics and control. The embedded model control ap-
proach, Butterworth-Heinemann, 2018;
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