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1 Introduction 
Attitude and trajectory control represents a challenging task when it comes to space 

applications, first of all because of the intrinsic properties of the scenario, possible source of a 

high number of disturbances. Additional difficulties can arise in case strict constraints are 

imposed by the problem’s requirements, as in the case of the project described in this thesis. 

The scope of this work is focused on the design of an attitude and trajectory control system for 

a small sized satellite, so-called CubeSat, involved in a Rendezvous & Docking procedure, in the 

framework of the SROC mission developed by CubeSat Team Polito.  

The approach employed to solve the problem is based on facing the main obstacles to be 

overcome, thus choosing among the best options in the design phase, in order to obtain the 

desired control performance and system behaviour. The said obstacles are, in detail: 

• small size of the vehicle; 

• high degree of required accuracy; 

• internal and external disturbances; 

• actuation. 
 

A small size of the vehicle implies the necessity to limit the computational effort required by the 

control strategy as much as possible. On the other hand, the high degree of accuracy and the 

presence of disturbances suggest to use a real time control solution. High accuracy is required 

especially in terms of final approach velocity and position of the spacecraft, in order to ensure a 

safe docking between the vehicles. Internal disturbances are mostly due to thruster 

misalignments and to fuel sloshing, while noises coming from exterior are the ones related to 

environment properties: gravity gradient, Earth magnetic field, atmospheric drag. Given these 
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conditions, it is necessary to find a trade-off between the possible options, in order to satisfy all 

of them. The last main obstacle is actuation: even though this may be considered an issue related 

to the small size of the vehicle, it was chosen to outline it separately to give it the right amount 

of importance, as it can be identified as a key factor in the problem. In fact actuators, especially 

in such conditions, are characterised by physical limits due to e.g. available space, 

misalignments. It is of prior importance to tune the controllers in the best way to optimize 

actuator’s actions.  

It is quite evident how the control problem treated as follows is not trivial at all. 

The thesis is articulated in four main chapters:  

• the first one presents the project from a theoretical point of view, in order to give a 
general overview of the main topics involved; 

• the second one describes both modelling phase (definition of plant, actuators, 
disturbances models) and controllers design. 

• the third one is focused on simulation results obtained by exploiting the final model in 
uncertainty-based scenarios. 

• The fourth one investigates the problem in off-nominal conditions, by considering a 
single failure scenario. 

 

1.1 Rendezvous & Docking 

Rendezvous & Docking (RVD) process consists of a sequence of phases, based on orbital 

manoeuvres and trajectories, allowing the chaser (active vehicle) to approach the target (passive 

vehicle), in order to gain structural connection between them. The chaser is equipped with a 

Guidance, Navigation & Control (GNC) system responsible of controlling the states of the vehicle 

in order to allow the entry into docking interface. 

RVD is a complex process whose execution depends on various constraints, such as: 

• launch and phasing trajectory strategy - the chaser must be brought to the same orbital 
plane of the target, which drifts with time, due to the oblateness of the Earth and 
multiple disturbances; 

• operations in the vicinity of the target station - there is the necessity to define safety 
zones, hold points, approach corridors that should be inherently safe or, in alternative, it 
should be possible to execute a collision avoidance manoeuvre; 

• onboard system requirements and constraints - requirements of sensors, antennas; 

• synchronisation with Sun illumination conditions and crew work cycle - a good 
illumination condition is important for monitoring the docking/berthing status; 

• communication link constraints. 
A RVD mission can be divided into different phases: 

• launch (and orbit injection); 
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• phasing (consists of reducing the phase angle between chaser and target, this kind of 
manoeuvres are usually controlled from ground and they end once an ‘initial aim point’ 
or a ‘trajectory gate’ are acquired); 

• far range rendezvous (also called ‘homing’, the most important tasks of this phase are 
the acquisition of target orbit, the reduction of approach velocity, the synchronisation of 
mission time-line with external events, such as Sun illumination); 

• close range rendezvous (divided in the closing phase and in the final approach subphase, 
where the tasks of the former are the reduction of range to the target and the acquisition 
of final approach corridor, while the scope of the latter is to achieve docking capture 
conditions from the point of view of velocity, position, relative attitude and angular rate. 
The GNC system must take count of the fact that actual docking axis will deviate from its 
nominal direction, due to disturbances such as bending of the target structure, attitude 
bias, so the chaser must acquire and follow the instantaneous docking axis. These 
conditions require strong GNC means, in particular the rendezvous sensor for the final 
approach must be able to measure axial and lateral position, but also the relative attitude 
between docking ports of target and chaser); 

• mating (actually corresponds to the docking action. This phase starts once the GNC of 
the chaser has managed to bring the capture interfaces of both chaser and targer into 
reception range. Mating has six main tasks: achievement of capture, attenuation of 
residual relative motion between the two vehicles, bringing interfaces of the structural 
latches into operational range, achievement of structural connection, achievement of 
gas-tight sealing of the connection of pressurised passage beteween vehicles, 
establishment of connection of data, power and, eventually, fluids). [1] 

 

Figure 1: RVD overview [1] 
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This thesis will focus on the two final phases of the manoeuvre: close range rendezvous and 

mating, for which an automated control system is required.  

1.2 Reference frame 

Local Vertical Local Horizontal (LVLH) reference frame is deputed to describing the motion of a 

body with respect to the centre of Earth. In particular it is possible to identify: 

• origin of the reference frame 𝑂𝑐 corresponding to the center of mass of the vehicle; 

• 𝑎1     :   𝑎1 = 𝑎2 × 𝑎3  along the same direction as the vector of orbital velocity, also called 
V-bar   

• 𝑎3  along the direction of the radius linking center of Earth and center of mass of the 
vehicle, also called R-bar 

• 𝑎2   completes the orthogonal triad and it is also called H-bar  [1]   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3 SmallSats and CubeSat definition 
Thanks to the late technological advancement in the fields of microelectronics, micro propulsion, 

long distance communications and the higher employment of commercial off the shelf (COTS) 

components, the development of small satellites, so called “SmallSats”, has been encouraged. 

The category of SmallSats includes, as the name suggests, satellites of small size and mass 

Figure 2: LVLH frame 
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(usually under 500 kg). Depending on mass, it is possible to identify several subcategories of 

small satellite as follows: 

• Minisatellite: 150 – 500 kg  

• Microsatellite: 10 – 150 kg  

• Nanosatellite: 1 – 10 kg  

• Picosatellite: 0.01 – 1 kg  

• Femtosatellite: 0.001 – 0.01 kg 
 

A CubeSat, in particular, is a cube-shaped satellite belonging to the category of SmallSats, with 

a modular structure, made up of one or more units. Each unit has dimensions of 10 cm × 10 cm 

× 10 cm and the current state of the art suggests availability of CubeSats ranging from 1U (one 

unit) to 24U (24 units).   

The CubeSat concept was proposed by Prof. Jordi Puig-Suari (California Polytechnic State 

University) and Prof. Bob Twiggs (Stanford University) in 1999 for educational purposes, in the 

first place. Lately space agencies and companies operating in the field have shown great interest 

into this technology, by investing in the development of CubeSat-based platforms.  

Many missions have taken place by means of CubeSats for in-orbit demonstration purposes. The 

European Space Agency (ESA), in particular, has been involved in missions such as: GOMX-3 and 

GOMX-4B led by Gomspace for telecommunication and propulsion demonstrative purposes, 

QARMAN, led by Von Karman Institute, a mission focused on a re-entry technology based on 

innovative heatshields, etc.  

CubeSats have even been exploited for an interplanetary mission developed by NASA, Mars Cube 

One (MarCO), for telecommunications support in the framework of InSight mission. 

As much as concerns the work described in this thesis, it was performed in collaboration with 

CubeSat Team Polito, a student team of Politecnico di Torino, involved in design and 

development of small platforms for scientific missions and in-orbit demonstration of novel 

technologies. The team was born in 2008 and has already launched two CubeSats into orbit: E-

ST@R-I in 2012 and E-ST@R-II in 2016. Furthermore, the activity which this essay is willing to 

describe was performed in the framework of Space Rider Observer Cube (SROC), one of the four 

projects CubeSat team is currently working on. SROC is a CubeSat mission aimed at performing 

in-situ observations of Space Rider, a new transportation system developed by Thales-Alenia for 

ESA. In particular the focus of this thesis is centred on the RVD manoeuvre that will be performed 

by SROC (a 12U CubeSat inheriting the name of the mission), in order to ensure its retrieval inside 

the cargo bay of Space Rider.    
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1.4 Problem parameters 
It is not possible to share detailed information on the specific components of SROC, due to the 

presence of a nondisclosure agreement between the parts involved in this project. It is anyway 

possible to describe some non neglectable features about the CubeSat, for the sake of a clear 

understanding of the control system design.  

Mass properties: 

Parameter Symbol Value 

mass  𝑚𝑐 20 𝑘𝑔 

ballistic coefficient 𝐶𝑏 0.001 

base b 0.226 𝑚 

height h 0.200 𝑚 

width w 0.366 𝑚 

resistance coefficient 𝐶𝑑 2 

inertia moment wrt x-axis 𝐼𝑥 0.152 𝑘𝑔 ∙ 𝑚2 

inertia moment wrt y-axis 𝐼𝑦 0.290 𝑘𝑔 ∙ 𝑚2 

inertia moment wrt z-axis 𝐼𝑧 0.308 𝑘𝑔 ∙ 𝑚2 
Table 1: mass properties 

 

Chaser orbital parameters: 

Parameter Symbol Value 

right ascension of the ascending node 𝑅𝐴𝐴𝑁 0  𝑟𝑎𝑑 

latitude of the pericentre 𝜔 0 𝑟𝑎𝑑 

orbit inclination iG 16 𝑟𝑎𝑑 

orbit eccentricity e 0 

mean anomaly MG 0 𝑟𝑎𝑑 

orbit altitude 𝑞 8.280 ∙ 105𝑚 

semi-major axis 𝑎 7.206 ∙ 106𝑚 

perigee altitude 𝑟𝑝 7.206 ∙ 106𝑚 

apogee altitude 𝑟𝑎 7.206 ∙ 106𝑚 

semi-minor axis 𝑏 7.206 ∙ 106𝑚 

orbital period P 6.088 ∙ 103𝑠 

average satellite velocity n 0.001 𝑚/𝑠 

number of daily orbits 𝑁 14 
Table 2: chaser orbital parameters 

Orbital parameters with respect to the target are the same as the ones related to the chaser so 

that the current setup is a cooperative-target scenario. Furthermore, the RVD procedure is 

intended to take place by means of the approach along V-bar. 
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1.5 State of the art 
In the following section, a State of the Art analysis will take place in order to evaluate the most 

used control strategies employed for RVD procedure, both from orbit and attitude point of view. 

For the ESA ORCSAT (On-line Reconfiguration Control System and Avionics Technologies) 

project, as outlined in Hartley, Trodden, Richards, Maciejowski, 2012 [3], a MPC control system 

was designed for being employed from target detection to capture. This project was developed 

as part of the Mars Sample Return mission, focused on the capturing of a Mars soil sample, 

enclosed into a passive container, performed by a chaser spacecraft. In the above mentioned 

paper it is highlighted how this control strategy is useful for fuel optimization which, in a space 

mission, represents a critical issue. Furthermore it is shown how MPC can be used both for 

trajectory and small-angle attitude control in order to ensure the target pointing.  

The Rendezvous is partitioned in three different sequences: intermediate range, short range and 

very short range. For the intermediate range, more specifically addressed as Orbit 

Synchronisation Translational Guidance (OSTG), a prediction model based on Gauss’ variational 

equalities is employed. The aim of this phase is to bring the chaser from a distance of about 300 

km to an orbit characterised by the same Keplerian orbital elements as the target (apart from 

the true anomaly parameter which should still ensure an in-track separation between 10 and 30 

km). The second phase, called Impulsive Nominal Translational Guidance (INTG), is aimed at 

performing passively safe impulsive manoeuvres between a sequence of hold points until 

reaching the distance of 100 meters from the target. The prediction model employed during this 

phase is based on the Yamanaka-Ankersen (2002) equations. There will be no further deepening 

about the two phases briefly described above as they are out of the scope of this thesis. The 

most important sequence for the sake of the thesis is the very short range, addressed as Forced 

Terminal Translational Guidance (FTTG) in the above mentioned paper. The internal model 

chosen for MPC optimization is once again based on Yamanaka-Ankersen equations for orbit 

control, while attitude control is performed by means of a quaternion-based model. The former 

model is a generalization of the Clohessy-Wiltshire-Hill (CWH) equations for an elliptical orbit 

and its biggest advantage is that it is numerically identical to CWH. Yamanaka-Andersen 

equations constitute a Linear Parameter Varying (LPV) model in terms of the true anomaly of 

the target but can be converted to a LTV model thanks to the assumption of passivity of the 

target. For attitude control also, a LTV model is used in order to take into account the rate of 

rotation between velocity orbital frame and inertial frame (Velocity orbital frame is a reference 

frame centred onto the target centre of mass, with x-axis aligned with V-bar direction, y-axis 

with the angular velocity direction of the orbit and z-axis completing the vector triad). This model 

derives from Euler’s moment linearised equations. In order to estimate disturbance, the 

difference between predicted state and estimated state by means of navigation is integrated for 

estimating unmeasured disturbances.  
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As regards the MPC settings, a shorter sampling time is employed during this phase, with respect 

to the whole manoeuvre, since a higher accuracy is required. The selection of smaller sampling 

intervals is linked to the presence of a higher navigation noise, whose effect is actually minimised 

by setting a quadratic cost function, which includes states (weighed by means of a Q matrix) and 

input variations (weighed by means of a R matrix). The choice of including the variation of inputs 

into the cost function, instead of absolute input commands, is due to the higher priority given to 

accuracy than minimum propellant consumption, in this final phase. Although a terminal cost is 

usually added in order to ensure stability of the closed loop system, in this case it is not possible 

to add it because the prediction model is LTV, so stability is verified experimentally. Sampling 

time of the controller is synchronised with the one of the thruster subsystem and thus equal to 

1 s, giving rise to computational availability constraints in terms of prediction horizon. On the 

other hand, with a too small horizon it resulted too difficult to avoid underdamping, thus a final 

selection of N = 15 was done. Thanks to the MPC formulation also the planning of a collision 

avoidance manoeuvre (CAM) resulted possible. However a new cost function is implemented for 

the CAM, by employing a linear programming formulation, resulting in an open loop control 

logic. The reason for this choice is relied to the need for a computation that was as fast as 

possible. In order to evaluate the possibility to apply this control strategy to the real-life case, a 

rough scaling of computation time was performed from a desktop pc to two different 

microcontrollers, one running at 80 MHz and the other one at 798 MHz. The latter one resulted 

the better, by displaying a worst case execution time resulting to be by far within the allowed 

ranges.  

From the point of view of simulation results, the main outcome is that MPC is much more 

advantageous with respect to carrying an extensively compiled library of optimal manoeuvres, 

in terms of time of convergence and propellant saving.  

The work of Pirat, Ankersen, Walker, Gass, 2019 [4] is one of the most relevant in literature since 

it addresses the problem of RVD from a control perspective and, more interestingly, in a 

CubeSat-based framework. In particular, the aim of this work is to describe the control system 

designed for a RVD between two 6U CubeSat. The control strategy is based on H-infinity and 𝜇-

synthesis, giving rise to a different perspective, based on Robust Stability and Robust 

Performance criteria fulfillment. A relative accuracy of 1 cm and 2° as requirements at docking, 

to be translated into frequency-dependent weights for the H-infinity controller design. A mixed 

sensitivity approach is used, in this case, in order to solve the optimization problem introduced 

by the H-infinity formulation, aiming to shape an output sensitivity function, a complementary 

sensitivity function and a gain sensitivity function. As much as concerns the plant model 

employed for simulations, it includes the relative rotational and translational dynamics of the 

chaser with respect to the target, coupled with a spring-mass-damper model, representing the 

sloshing phenomenon. The desired speed at docking, in the scenario proposed in this paper, is 1 

cm/s. The expected performance of the controller is set by choosing three weighting matrices, 
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𝑊1, 𝑊2,𝑊3, all three shaped by first order transfer functions, whose parameters are tunable in 

order to map the performance requirements. They respectively weight sensitivity S, 

complementary sensitivity T and gain sensitivity KS. The controller solving the optimization 

problem results to be of the 42th order, respects the accuracy requirements during docking and 

prevents noise amplification. The performed 𝜇-analysis shows that the system is particularly 

sensitive to the uncertainties associated with damping coefficient involved in the sloshing model 

and with the fuel’s sloshing natural frequency. Anyway, with two different setups (the first one 

including the H-infinity controller and the second one characterised by the 𝜇-synthesis based 

controller), both robust stability and robust performance conditions are verified. 600 Monte 

Carlo runs are performed, in both the setups below, by achieving an accuracy of 5-mm 

uncertainty on the final docking position.[4] 

The paper by Luke Walker, 2012 [5] evaluates the possibility of employing a control strategy 

based on LQR for a RVD procedure involving a small spacecraft. The formulation of the problem 

is very similar to that one of a MPC strategy, with the substantial difference that LQR has a quasi-

open loop nature: this condition sets the absolute necessity to decompose the trajectory into a 

wide series of orbital manoeuvres. To this aim, a solution is identified in employing a waypoint 

strategy, consisting of designing the LQR controller to guide the chaser spacecraft along small 

distances paths, marked by the so-called waypoints, until achieving the final position in 

correspondence of the target. Relative distance and frequency of waypoints comes as a result 

of a sensitivity analysis involving the estimation error caused by navigation. The control action 

provided by the LQR controller are fed directly to the actuation system, whose thrusters are 

activated by means of a PWM technique. 

The paper by Farbod Fahimi, 2018 [6] describes a control strategy based on Sliding Mode 

Control. Conventional control laws in this framework provide an asymptotic convergence of the 

pose vector. But in case this latter vector is subject to rapid changes in time, an unwanted 

consequence could be a non-neglectable phase lag, resulting in a worse robust performance. In 

order to ensure the finite-time convergence, in this paper, a Higher Order Sliding Model is 

employed. This control strategy is employed for both attitude and formation dynamics. Two 

uncertain parameters are defined, in order to account for the mismatch between nominal and 

actual system. Each uncertain parameter is bounded by a finite quantity and a Lyapunov function 

is defined, in order to set the gain of the final controller. Actuation is ensured by means of 

reaction wheels, one for each axis. This approach results to be very effective, as the control 

performance has a very good behaviour, with every angular component getting to steady-state 

value after just 15 seconds, even with a penalising initial condition. 

 From the works described above, as some of the most relevant examples of projects concerning 

attitude and orbit control, a trade-off analysis is performed, in order to evaluate which strategy 

could be most suitable for the aim of this thesis. From the point of view of orbit control, the 

choice falls on Model Predictive Control, due to its significant computational power. The State 
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of the Art clearly outlines how the said control strategy can be flexible, thanks to a high amount 

of weighting factors and versatile constraints, and reliable for many different situations, due to 

its real-time logic. From the attitude point of view, Sliding Mode Control is selected, because of 

its tuning simplicity and widely proven effectiveness.  

 

1.6 MPC theoretical foundations  
Model Predictive Control and Rendezvous & Docking do not constitute a very usual binomial. 

Traditionally this orbital manoeuvre, as much as concerns the optimal control perspective, has 

been faced in the H-infinity framework. However, in the latest years, MPC is gaining interest 

even for such kind of applications in the space field.  

 MPC is a control method consisting of solving a Quadratic Programme optimization problem, 

subject to a-priori imposed constraints. This problem is faced according to the Receding Horizon 

principle: an optimizing sequence of inputs, able to minimize a cost functional, is found for every 

sampling instant of the so-called Prediction Horizon; from this sequence, only the first control 

action is selected and fed to the actual system, the following ones are discarded (Figure 3). This 

procedure is repeated for every sampling instant until the one corresponding to the value of the 

Prediction Horizon is reached. In order to accomplice this control strategy, a whole new 

optimization problem must be solved for every sampling interval, giving rise to a real time 

closed-loop controller. 

 

 

Figure 3: receding horizon in MPC 

The optimization problem is formulated as follows: 
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min
𝑈(𝑘|𝑘)

∑ 𝑥𝑇(𝑘 + 𝑖 | 𝑘) 𝑄 𝑥(𝑘 + 𝑖 | 𝑘)

𝐻𝑝−1

𝑖=0

+ 𝑢𝑇(𝑘 + 𝑖 | 𝑘) 𝑅 𝑢(𝑘 + 𝑖 | 𝑘)

+ 𝑥𝑇(𝑘 + 𝐻𝑝| 𝑘) 𝑃 𝑥(𝑘 + 𝐻𝑝 | 𝑘) 

s.t.  𝐺 𝑈(𝑘 | 𝑘) ≤ ℎ 

                                                                                                                                                    𝑥 ∈ 𝕏 ⊂ ℝ𝑛 

𝑢 ∈ 𝕌 ⊂ ℝ𝑚 

𝑘 ∈ ℤ+ time instants: 𝑘 = 0, … , 𝑁 

The notation " | 𝑘 " outlines the dependence on an information up to the first time instant, i.e. 

k, as explained below. 

Q, R and P are the weighting matrices, necessary to tune the MPC controller and to set the 

priority of the elements to be optimized. In particular, Q weights the states form the first discrete 

time instant to the one immediately prior to the prediction horizon 𝐻𝑝, R weights the inputs and 

P is responsible of weighting the terminal state, i.e. the state corresponding to the last time 

instant of the prediction horizon. 

It is also important to outline that 

 

𝑄 = 𝑄′ ≥ 0 

𝑃 = 𝑃′ ≥ 0 

𝑅 = 𝑅′ > 0 

𝑟𝑎𝑛𝑘(𝑄) = 𝑛, 𝑟𝑎𝑛𝑘(𝑅) = 𝑚 

 

The expression 𝐺 𝑈(𝑘 | 𝑘) ≤ ℎ stands for the set of linear inequality constraints imposed on the 

variables of interest of the problem.  

The objective function to minimize can be proven to be a Lyapunov function, by assuming 

convexity of initial and terminal set of states and by imposing the weighting matrix P as solution 

of the Algebraic Riccati Equation, in order to provide both feasibility of the optimization problem 

and stability of the controlled system [3]. In particular, from a multi-parametric programming 

point of view, it is possible to define as compact polyhedral sets both 𝕏 and 𝕌. Furthermore, the 

N-step feasible set 𝕏𝑓
𝑁 ⊆ ℝ𝑛 can be defined as the set of initial states 𝑥(0) for which the 

constrained finite-time optimal control problem is feasible: 

 



21 
 

𝕏𝑓
𝑁 = {𝑥(0) ∈ ℝ𝑛 |∃(𝑢0, … , 𝑢𝑁−1) ∈ ℝ𝑁𝑚,  𝑥𝑘 ∈  𝕏,  𝑢𝑘−1 ∈  𝕌, ∀𝑘 ∈ {1,… ,𝑁} } 

 

where a more compact notation is employed to express the time dependence of variables, e.g. 

𝑥𝑘 stands for 𝑥(𝑘).   

By denoting 

 

𝑋(𝑘) =  [

𝑥(𝑘)
𝑥(𝑘 + 1)

⋮
𝑥(𝑘 +  𝐻𝑝)

],                         𝑈(𝑘) =  [

𝑢(𝑘)
𝑢(𝑘 + 1)

⋮
𝑢(𝑘 +  𝐻𝑝 − 1)

],       

 

                  A = [

𝐼
𝐴
⋮

𝐴 𝐻𝑝

]                                B = 

[
 
 
 
 
 

0 0 … 0
𝐵 0 … 0
𝐴𝐵 𝐵 … 0
⋮ ⋮ ⋮ ⋮

𝐴 𝐻𝑝−2𝐵 𝐴 𝐻𝑝−3𝐵 … 0
𝐴 𝐻𝑝−1𝐵 𝐴 𝐻𝑝−2𝐵 … 𝐵]

 
 
 
 
 

 

 

It is possible to define thus 

 

𝑋(𝑘) = A 𝑥(𝑘) + B 𝑈(𝑘) 

 

Since 

 

Q = [

𝑄 0 … 0
0 ⋱ 0 ⋮
⋮ ⋱ 𝑄 0
0 … 0 𝑃

] ∈  ℝ𝑛𝐻𝑝 x 𝑛𝐻𝑝 ,       R = [

𝑅 0 … 0
0 𝑅 0 ⋮
⋮ ⋱ ⋱ 0
0 … 0 𝑅

] ∈  ℝ𝑚𝐻𝑝 x 𝑚𝐻𝑝  

 

 

An alternative formulation of the cost function is provided: 

 

𝐽(𝑥(𝑘), 𝑈(𝑘)) =  𝑥𝑇(𝑘)A’QA 𝑥(𝑘) + 2𝑥𝑇(𝑘)A’QB 𝑈(𝑘) + 𝑈𝑇(𝑘)(B’QB + R )𝑈(𝑘) 
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where   

𝐻 =  2(B’QB + R ) 

𝐹 =  2A’QB 

𝐽 ̅= 𝑥𝑇(𝑘)A’QA 𝑥(𝑘) 

Note that 𝐻 > 0 is the Hessian matrix of the quadratic form and the solution to this optimization 

problem is  𝑈∗(𝑘|𝑘) =  −𝐻−1𝐹𝑇𝑥(𝑘|𝑘) . 

It is clear, from this formulation, that the problem depends only on the first state 𝑥(𝑘), so it can 

be solved as a multi-parametric program: by setting 𝑈∗(𝑘) as the optimizing input sequence and 

considering 𝑥(𝑘) as a parameter, a feedback solution is found such that 𝕏𝑓
𝑁 is convex, the 

optimizer 𝑈∗: 𝕏𝑓
𝑁 → ℝ𝑁𝑚 is continuous and piecewise affine and the optimal cost 𝐽∗ : 𝕏𝑓

𝑁 → ℝ 

is continuous, convex and piecewise affine. 

According to the multi-parametric programming framework, 𝕏𝑓
𝑁 is partitioned into R polytopic 

regions. The more numerous the regions, the computationally heavier the problem; 

unfortunately, the number of regions increases exponentially with the prediction horizon, so it 

is necessary to find a trade-off between complexity and performance of the closed loop control 

system [4]. 

The working principle of this method is clear to be depending on a simplified model of the plant 

to control and on an optimizer: this is why MPC is able to provide both a guidance and a control 

function. In fact, the plant model inside MPC Controller is a simple description of the trajectory 

as it should be, in this case, while the optimizer is deputed to finding the best sequence of inputs 

able to minimize the cost functional (Figure 4). [7] 

 

 

Figure 4: internal architecture of MPC 
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1.7 SMC theoretical foundations 
 

Referring to every Control Engineering problem, in general, a non neglectable issue is the 

mismatch between the ideal model of the system to be controlled, employed for the controller 

design phase, and the actual plant. In order to ensure robustness even when the latter 

discrepancy is relevant, an excellent choice is Sliding Mode Control (SMC). 

 SMC belongs to the class of variable structure control systems (VSCS), which have their roots 

into the work of Emel’yanov and Barbashin in the 1960s. The strategies related to VSCS involve 

changing the control law along the control process, depending on the states of the system.  

To summarize the purpose of SMC, first of all there is the definition of a sliding surface, i.e. a 

subset of the state-space on which the trajectory of the plant to be controlled is wanted to lie. 

Then a feedback control law is designed in order to ensure the latter condition is verified. 

If a SISO nonlinear system is considered: 

 

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢 

𝑦 = ℎ(𝑥) 

where 

 

𝑥 ∈ ℝ𝑛 is the state 

𝑢 ∈ ℝ is the input 

𝑦 ∈ ℝ are is the output   

𝑓, 𝑔, ℎ are smooth functions on ℝ𝑛𝑥. 

 
The normal form of the system is considered:  
 

�̇� =  [

𝜇2

⋮
𝜇γ

𝑎(𝑥) + 𝑏(𝑥)𝑢

]    

𝑎(𝑥)  ≡  𝑎(𝜇, 𝜓) =̇   𝐿𝑓
𝛾
 ℎ(𝑥) 

𝑏(𝑥)  ≡  𝑏(𝜇, 𝜓) =̇   𝐿𝑔𝐿𝑓
𝛾−1

 ℎ(𝑥) 
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where : 

𝛾 is the relative degree  

(𝜇, 𝜓) is the state 

𝜇 = (𝜇1, … , 𝜇𝛾)  =̇  (𝑦, �̇�, … , 𝑦(𝛾−1)) is the external dynamics  

 𝜓 ∈ ℝ𝑛−𝛾 is the internal dynamics assumed locally asymptotically stable 

𝐿𝑓
𝛾
 ℎ(𝑥) is the 𝛾-th order Lie derivative of ℎ(𝑥) with respect to 𝑓 

 

Given a reference signal  𝑟(𝑡) the desired behaviour of the system involves making the tracking 

error �̃� = 𝑟 − 𝑦 converge to zero. 

Given a sliding surface 

𝑆(𝑡) =̇ {𝑥 ∈ ℝ𝑛 ∶ 𝐬(𝑥, 𝑡) = 0} 

where  𝐬 ∶  ℝ𝑛+1 → ℝ is defined as 

𝑠(𝑥, 𝑡) = �̃�(𝛾−1) + 𝑘𝛾�̃�
(𝛾−2) + ⋯+ 𝑘2�̃� 

 𝑘𝑖 ∈ ℝ chosen in such way that all the roots of 𝑃(λ) =  𝜆𝛾−1 + 𝑘𝛾𝜆
𝛾−2 + ⋯+ 𝑘2 have negative 

real part. 
The design phase involves computing a control law able to ensure the sliding surface to be both 
attractive and an invariant set. 
In case n = 2 a phase portrait representing the system’s motion on the surface, i.e. the sliding 
mode would be: 
 

 
Figure 5: phase portrait of sliding mode 
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To ensure S to be an invariant set, it is necessary to set �̇� = 0, meaning: 

�̃�(𝛾) + 𝑘𝛾�̃�
(𝛾−1) + ⋯+ 𝑘2�̇̃� = 0 

where   �̃�(𝛾) = 𝑟(𝛾) − 𝑦(𝛾) = 𝑟(𝛾) − 𝑎(𝑥) − 𝑏(𝑥)𝑢 

and thus it is obtained that, in order to ensure S(t) to be invariant, the control law will be: 

𝑢𝑠 =
1

𝑏(𝑥)
 (𝑟(𝛾) − 𝑎(𝑥) + 𝑘𝛾�̃�

(𝛾−1) + ⋯+ 𝑘2�̇̃�) 

In order to make S attractive, a discontinuous term is usually added to 𝑢𝑠 multiplied by a constant 

term  𝑘1 > 0  (i.e. 𝑘1sign(𝐬(𝑥, 𝑡))) and, by setting 𝐬(𝑥, 𝑡)�̇�(𝑥, 𝑡) < 0 ∀𝑥, 𝑡  the attractiveness of 

S(t) is ensured. 

In order to avoid eventual chattering problems, it is necessary to introduce into the control law  
also a sigmoid function, whose behaviour is similar to the term  sign(𝐬(𝑥, 𝑡)) and depends on a 
third constant parameter η. A typical sigmoid function can be 𝑡𝑎𝑛ℎ (𝜂𝐬). [8] 
 

In the MIMO setup, the following formulation holds: 

 

[

𝑦1
(𝛾1)

⋮

𝑦𝑛𝑦

(𝛾𝑛𝑦)
]  =  [

𝐿𝑓
𝛾1ℎ1(𝑥)

⋮

𝐿
𝑓

𝑦𝑛𝑦ℎ𝑛𝑦
(𝑥)

]  + 𝐵(𝑥)𝑢,      𝐵(𝑥) ≐ [

𝐿𝑔𝐿𝑓
𝛾1−1

ℎ1(𝑥)

⋮

𝐿𝑔𝐿𝑓

𝑦𝑛𝑦−1
ℎ𝑛𝑦

(𝑥)

] 

where: 

𝛾𝑖 is the relative degree wrt 𝑦𝑖. 

The sliding surface is defined as in the description above, apart from the following 

considerations: 

𝐬 ∶  ℝ𝑛+1 → ℝ𝑛𝑦  

𝑘𝑖 ∈  ℝ𝑛𝑦 × 𝑛𝑦  

 

and thus the control law becomes (𝐵(𝑥) assumed invertible): 

 

𝑢 = 𝐵(𝑥)−1 (𝑟(𝛾) − 𝑎(𝑥) + 𝑘𝛾𝜇𝛾 + ⋯+ 𝑘2𝜇2 + 𝑘1𝜎(𝜂𝐬)) 

 

 



26 
 

 

 

 

 

 

 

 

 

 

 

2 Modelling and control design 
The final strategy chosen for controlling the motion of the CubeSat involved in the RVD 

manoeuvre is based on a Nonlinear Model Predictive Control, as regards trajectory, Sliding Mode 

Control, for attitude. 

The following schematic illustrates the work logic of the orbit control strategy: after a selection 

of the mathematical model internal to the MPC, in order to perform prediction and optimization, 

a controller must be designed. The following step consists of performing some iterations, by 

means of a trial and error procedure, in order to obtain the best system behaviour with the 

chosen MPC tuning. 

After this initial procedure, based on strongly ideal assumptions, there is a second macro-phase, 

starting with the design of a complex plant intended to represent a much more realistic scenario, 

including actuators and disturbances, both internal and external to the system. After the design 

of a more detailed system intended for realistic simulations, the same controller designed before 

must be applied to this setup and, by means of the same trial and error procedure described 

before, a second iteration takes place to obtain the best solution.  

The design of the detailed system takes place in an increasing complexity fashion: once a first 

realistic model is designed, the controller is tuned; then, more realistic elements are gradually 

added to the system with a consequent tuning of the previous controller, in order to adapt its 

settings to the new scenario. This progressive addition of details is the key of this project, 

because the final system employed for simulations has a significant complexity and the 

controller must be gradually adapted to this setup, in order to avoid unexpected outcomes and 

waste of time.  
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Concerning the attitude control, the procedure is different since the control strategy is radically 

different, as it does not count on a predictive logic. Thus the adaptation of the controller to the 

detailed model of the RVD procedure is straightforward and the tuning of the Sliding Mode 

Control is directly performed in the more complex simulating scenario. 

 

 

Schematic 1: work logic of trajectory control design 

 

 

2.1 Trajectory control – ideal conditions 
As it is possible to outline from Schematic 1, the first step consists of selecting a mathematical 

model able to ideally describe the translational motion involved in the RVD manoeuvre. 

This choice falls on the Clohessy-Wiltshire-Hill equations [9]. According to this model, the 

position of the target vehicle is identified as the origin of the Hill’s frame, whose x-axis is found 

along the orbital radius, y-axis is orthogonal to x-axis and lies on the orbital plane, z-axis is 

orthogonal to the orbital plane. In order to exploit this model, the target is assumed to be on a 

circular orbit. 

The position of the chaser vehicle with respect to the centre of Earth is equal to 

 

�⃑� = �⃑� 0 +  𝛿𝑝  
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where �⃑� 0 is the nominal orbital position of the target and 𝛿𝑝  is the relative position vector of 

the chaser with respect to the target. 

 

 

 

Figure 6: CWH schematic 

 

If 𝛿𝑝  << �⃑�  it is possible to approximate the model by means of the Clohessy-Wiltshire-Hill 

equations: 

 

�̈� − 3𝑛2𝑥 − 2𝑛�̇� =  
𝐹𝑥
𝑚𝑐

 

�̈� + 2𝑛�̇� =  
𝐹𝑦

𝑚𝑐
 

�̈� + 𝑛2𝑧 =  
𝐹𝑧
𝑚𝑐

 

where 𝐹𝑥, 𝐹𝑦 and 𝐹𝑧 are the three components of external force acting respectively on the x, y 

and z direction,  𝑚𝑐 is the mass of the chaser and 𝑛 =  √
µ

𝑃0
3   (µ is the gravitational constant).  

In order to employ a Model Predictive Control strategy, a state-space form of the model must 

be provided. 

(1) 
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The state vector 𝑥 is defined as  

 

𝑥 = [
𝛿𝑝
𝛿𝑣

] 

 

where 𝛿𝑝 = [
 𝑥 
 𝑦 
 𝑧 

] is the relative position of the chaser along the three axis and 𝛿𝑣 =  [
 𝑥 ̇
 𝑦 ̇
 𝑧 ̇

]  is the 

relative velocity of the chaser, as well as the first order time derivative of 𝛿𝑝. 

In state-space form, the characteristic matrices of the system are the following ones [2]: 

 

 

A = 

[
 
 
 
 
 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3𝑛2 0 0 0 2𝑛 0
0 0 0 −2𝑛 0 0
0 0 −𝑛2 0 0 0]

 
 
 
 
 

        B = 

[
 
 
 
 
 
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1]

 
 
 
 
 

        C = 

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

        D = 0 

 

 

By means of the latter matrices, it is possible to compute state and output time responses 

 

�̇�(𝑡) = 𝐴 𝑥(𝑡) + 𝐵 𝑢(𝑡) 

𝑦(𝑡) = 𝐶 𝑥(𝑡) + 𝐷 𝑢(𝑡) 

𝑥(𝑡) ∈ ℝ6x1  

𝑦(𝑡) ∈ ℝ6x1 

𝑢(𝑡)  ∈ ℝ3x1 

 

In this model, outputs 𝑦(𝑡) coincide with states 𝑥(𝑡) (C is in fact an identity matrix), inputs 𝑢(𝑡) 

represent the control actions fed to the system (i.e. force provided by actuators).  

In order to adapt the model to the Model Predictive Control framework, it is necessary to 

consider its discretized version, whose state and output equations are: 
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𝑥(𝑘 + 1) = 𝐴𝑑  𝑥(𝑘) + 𝐵𝑑 𝑢(𝑘) 

𝑦(𝑘) = 𝐶𝑑 𝑥(𝑘) + 𝐷𝑑  𝑢(𝑘) 

                                                                                                                                                    𝑥 ∈ 𝕏 ⊂ ℝ𝑛 

                                                                                                                                                    𝑦 ∈ 𝕐 ⊂ ℝ𝑛 

                                                                                                                                                    𝑢 ∈ 𝕌 ⊂ ℝ𝑚 

𝑘 ∈ ℤ+ time instants: 𝑘 = 0, … , 𝑁 

 

CWH equations are selected for the internal model of the MPC, in order to predict the behaviour 

of the system.  

After this initial step, a trade-off takes place between various software tools useful for designing 

the controller.  In particular the evaluated options were: 

• ACADO Toolbox 

• Multi-Parametric Toolbox 

• Custom Matab function 
 

Simulations are performed by means of the first two toolboxes. As much as concerns the first 

one, its most appealing features are the possibility of solving optimal control problems, of 

course, but also multi-objective problems, C++ programming as well as an user-friendly MATLAB 

interface. Unfortunately the documentation about this toolbox is not exhaustive enough from 

the point of view of Simulink usage, which has a prior relevance in this project.  

The second one among the listed options above is a very valid choice for designing explicit MPC 

controllers, it is in general very focused on reducing the computational load relied to predictive 

control-based calculations but it is not the optimal choice for this kind of problem, where a very 

high degree of accuracy is required.  

Even though the first two software tools below are absolutely cutting edge choices for 

constrained optimal control systems, a custom MATLAB function, for the aim of this thesis, is the 

best choice, since it can be tailored specifically for the requirements imposed by this particular 

problem. The chosen solution is different with respect to the options previously listed, also 

because it offers the possibility of designing a Nonlinear MPC, which is basically an ordinary MPC 

including nonlinear constraints. This custom tool allows to set and tune the following 

parameters: 
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1. 𝑇𝑠 sampling time; 
2. 𝑇𝑝prediction horizon; 

3. 𝑄 weighting matrix; 
4. 𝑃 weighting matrix; 
5. 𝑅 weighting matrix; 
6. upper and lower bounds on control inputs; 
7. nonlinear constraint. 

 

In this first design phase, the simulation setup appears evident in Figure 7. It is an ideal scenario, 

where the plant to be controlled by NMPC is identical to the internal model employed by the 

controller for prediction and optimization problem solution. In the same figure it is possible to 

see that a column vector of zeros is provided to the controller as reference, as it corresponds to 

the condition of docking in terms of position and velocity.  

An initial condition equal to 𝑥0 = [ 0   0  -30   0   0   0  ]𝑇  is set, thus imposing a distance along 

the z-axis (V-bar in LVLH frame) of 30 m.  

 

Figure 7: block schematic of the ideal closed loop system 

In this scenario the tuning of MPC parameters is straightforward, since there is no model 

mismatch, so the settings are: 

Parameter Chosen value 

𝑇𝑠 0.5 s 

𝑇𝑝 0.5 s 

 
 
 

𝑄 

 

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 106]
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𝑃 

 

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

 

 
 

𝑅 

 

[
0.1 0 0
0 0.1 0
0 0 0.1

] 

𝑢𝑚𝑖𝑛 [−0.7 − 0.7 − 0.7] 
𝑢𝑚𝑎𝑥  [0.7        0.7        0.7] 

Table 3: MPC settings – ideal setup 

As seen from the settings listed above, a prediction horizon equal to the sampling time is chosen 

for solving this optimization problem. By performing multiple simulations, with different values 

of prediction horizon, it appears more convenient to select such parameter to be as low as 

possible, in order to avoid waste of computational power and numerical conflicts. In fact, results 

obtained with this prediction horizon are significantly better than the ones arisen from a higher 

𝑇𝑝.  

Input constraints are due to the actuation limit of 35 mN. Considering the equations (1) of the 

prediction model, on the right-hand side there is the term  
𝐹

𝑚
 , so the control inputs to be fed to 

the system are equal to 𝐹 ∙ 𝑚.  

That is the reason why along all three coordinate axes: 

 𝑢𝑚𝑎𝑥 = 𝐹𝑚𝑎𝑥 ∙ 𝑚 = 0.035 ∙ 20 [𝑁 ∙ 𝑘𝑔] = 0.700 [𝑁 ∙ 𝑘𝑔] 

 𝑢𝑚𝑖𝑛 = 𝐹𝑚𝑖𝑛 ∙ 𝑚 = −0.035 ∙ 20 [𝑁 ∙ 𝑘𝑔] = −0.700 [𝑁 ∙ 𝑘𝑔] 

The applied method for setting weighting matrices is to choose each one equal to identity 

matrices, at the beginning and then, whether any values are not able to satisfy the expected 

outcome, the tuning procedure takes place by means of a trial & error procedure. With the initial 

setup, the requirements imposed by the problems are not respected and docking cannot be 

achieved because of a too high approach velocity on the z-axis. Additionally, input control 

actions result too high, because of the high velocity, in particular concerning the term 𝑢𝑧. For 

this reason an intervention on weighting factors is required: 𝑄 matrix is chosen equal to an 

identity matrix apart from the last diagonal term, responsible of weighting the velocity along z-

axis, which appears to be the most critical quantity in this problem. Furthermore  elements of 𝑅 

matrix are decreased of one order of magnitude, to give higher importance to state minimization 

at the expense of actuation.  
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In this scenario it is not necessary to set a nonlinear constraint, since there are not particularly 

strict requirements due to the strongly ideal nature of the formulation. 

In Figure 8 the state time response is represented: it is possible to see that the states converge 

to zero after just 0.5 seconds. In Figure 9 and Figure 10 the relative position of the chaser with 

respect to the target is represented, on zx-axes in the former, on zy-axes in the latter.  

The scale on the ordinates’ axis is of 10−6 order of magnitude (could even be lower) just to show 

that the misalignment on x and y axes is null.  

From Figure 11 it is clear that velocity diverge from zero on all three axes but the order of 

magnitude is equal to 10−4 so it can be considered neglectable. The same applies to input time 

response in Figure 12: while 𝑢𝑥 and 𝑢𝑦 converge to zero, 𝑢𝑧 diverges concluding the sequence 

to a value of -1.7 ∙ 10−4, which is neglectable. Additionally, input values are very much within 

upper and lower bounds, so requirements are very well satisfied. 

 

 

 

Figure 8: state time response – ideal setup 
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Figure 9: zx relative position – ideal setup 

 

 

Figure 10: zy relative position – ideal setup 
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Figure 11: relative velocity – ideal setup 

 

 

Figure 12: input time response – ideal setup 
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2.2 Realistic model design 
The setting of a more realistic simulation scenario takes place, as explained at the beginning of 

this chapter, in a progressive fashion. In particular, this part is divided into three main phases: 

1) design of translational and rotational dynamic models on Simulink which constitute the plant 
and inclusion of the external disturbances in the model, with a consequential application and 
tuning of attitude and orbit controllers; 

2) design of actuator models in order to achieve a more realistic condition, thus controller 
tuning;  

3) design of a model simulating sloshing phenomenon and disturbance associated to it. 
 

As it is outlined in Figure 13 the whole model is presented as a closed loop system where the 

light blue block called Dynamics and Kinematics  includes the actual plant and the external 

disturbances acting on it, while the yellow block GNC is a subsystem containing only the 

controllers, in this phase.  

 

 

Figure 13: block schematic of the realistic closed loop system  
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2.2.1 Plant, external disturbances and controllers design 

2.2.1.1 Dynamics and kinematics 

The plant of the system can be divided in two main parts, which are translational and rotational 

dynamics/kinematics.  

As much as concerns the part of the plant deputed to modelling translational dynamics and 

kinematics, Clohessy-Wiltshire equations are used, as in the prediction model of MPC.  

As regards rotational motion, it is necessary to define a set of dynamic equations describing a 
system from the torque M to the angular velocity ω and a set of kinematic equations related to 
a system from ω to q (attitude expressed in quaternion). The overall system results into the one 
in Figure 14 with M as input torque applied to the body and q as output to control [8]. 
 
 

 

Figure 14: block schematic - rotational motion 

 

Given a rigid body in rotating motion with respect to an inertial frame with angular velocity   

𝝎 =  𝜔1 𝒃𝟏 +  𝜔2 𝒃𝟐 +  𝜔3 𝒃𝟑  it is possible thus to define the said inertial frame as a frame 

moving at constant velocity, with 𝒊𝟏, 𝒊𝟐, 𝒊𝟑 as unit vectors and axes X, Y, Z. Furthermore it is 

necessary to define a body frame whose origin is the centre of mass (CoM) of the body, with unit 

vectors 𝒃𝟏, 𝒃𝟐, 𝒃𝟑 and axes x, y, z.  

Given the torque M acting on the body and the inertia matrix of the body 𝑱, the Euler moment 

equation is: 

 

𝑴 = 𝐽�̇� + 𝝎 × 𝑱𝝎 

 

which can be  implemented as the following block diagram: 
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Figure 15: block schematic - Euler moment equations 

 

The aim of rotational kinematics is to represent the time evolution of the quaternion in function 

of the angular velocity. At the time instant 𝑡 + ∆𝑡 attitude expression is obtained from the 

Hamilton product between the quaternion at time 𝑡 and the quaternion variation occurred from 

time 𝑡 and time 𝑡 + ∆𝑡, i.e.: 

 

𝒒(𝑡 + ∆𝑡) = 𝒒(𝑡) ⊗ ∆𝒒(𝑡) 

 

Given ω the magnitude of the angular speed vector ω, for a small time variation ∆𝑡 the rotation 

angle can be expressed as ω∆𝑡. Being u the rotation axis, when |u| = 1, ω = ωu. 

Thus for small ∆𝑡, 

∆𝒒 ≅ [
cos

𝜔∆𝑡

2

𝐮 𝑠𝑖𝑛
𝜔∆𝑡

2

] ≅ [
1

𝐮
𝜔∆𝑡

2

] = [
1

𝝎∆𝑡

2

] 

Which means that  

 

�̇� = lim
∆𝑡→0

𝒒(𝑡 + ∆𝑡) − 𝒒(𝑡)

∆𝑡
= lim

∆𝑡→0

𝒒 ⊗ ∆𝒒 − 𝒒

∆𝑡
 

 

= lim
∆𝑡→0

𝒒 ⊗ (∆𝒒 − (1,0,0,0))

∆𝑡
= lim

∆𝑡→0

𝒒 ⊗ ((1,
𝝎∆𝑡
2 ) − (1,0,0,0))

∆𝑡
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= lim
∆𝑡→0

𝒒 ⊗ (0,
𝝎∆𝑡
2 )

∆𝑡
= 

1

2
𝒒 ⊗ (0,𝝎) =

1

2
 𝛀 𝒒 

 

Where 𝛀 is the following skew-symmetric matrix: 

 

𝛀 ≐ [

0
 𝜔1

  −𝜔1

   0

  −𝜔2

     𝜔3

  −𝜔3

  −𝜔2

𝜔2

 𝜔3

  −𝜔1

   𝜔2

      0   
−𝜔1

−𝜔1

 0

] 

2.2.1.2 External disturbances 

The main disturbances acting on the CubeSat are, in this design phase, coming from the external 

environment. The causes of these disturbing elements are the gravitational and magnetic field 

and atmospheric drag [10].  

By making an a-priori assumption that the satellite is affected only by the Earth’s gravitational 

field, the intensity of the latter on the chaser can be computed by means of the Newton’s law of 

gravitation: 

�̅� = −
𝐺𝑀

𝑟2
�̂� 

 

                                                                                         G: gravitational constant 

 r: distance from the center of mass 

                                                                                  M: mass of the body 

 

The parts of the vehicle, finding itself inside the gravitational field, which happen to be closer to 

the body generating the said field, are subject to a higher attraction force. This phenomenon 

generates an offset between the forces applied to different parts of the satellite, resulting in a 

disturbing torque trying to align the major axis of the spacecraft with the local vertical one. The 

expression of the disturbance torque is: 

�̅�𝑔 = −3𝜔2�̂� × 𝑱 ∙ �̂� 

 

The second source of external disturbance is the interaction between the residual magnetic field 

of the satellite and the Earth’s magnetic field. Along its orbit, in fact, the CubeSat is included in 
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the Earth’s magnetosphere whose greatest advantage is the protection of the spacecraft from 

the cosmic radiation. The satellite’s residual magnetic field is due to electrical currents and 

hysteresis noise produced by on board electronics and ferromagnetic materials. The outcome of 

this phenomenon is a disturbing torque expressed as follows: 

�̅�𝑚𝑟 = �̅�𝑟 × �̅� 

 

                                                                                                                  �̅�𝑟: residual magnetic dipole 

associated to the CubeSat 

                                                                                                                 �̅�: 𝐸𝑎𝑟𝑡ℎ′𝑠 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 

The phenomenon of atmospheric drag is due to the collision between atmospheric molecules 

and the CubeSat’s surface, resulting into a slight perturbation in the attitude and in the height 

of the orbit too. The drag force is obtained as follows: 

𝐹𝐷 =
1

2
𝐶𝐷𝐴𝜌𝑉2 

 

                                                                        𝐶𝐷: ballistic coefficient 

                                                                𝐴: reference area 

                                                                              𝜌: density of atmosphere 

𝑉: velocity of the flow wrt the CubeSat 

 

The resulting disturbance torque has a nonzero value only if the centre of mass and the 

centre of pressure of the spacecraft do not coincide; it can be expressed as:  

�̅�𝐷 = �̅�𝑐𝑝 × �̅�𝐷 

 

�̅�𝑐𝑝: distance vector between center of 

                                                                                                    mass and centre of pressure 

  

The product between the drag force �̅�𝐷 and the rotation matrix resulting from the chaser’s 

attitude is fed to the part of the plant modelling the translational motion: this makes the 

atmospheric drag a disturbance for both linear and rotational motion of the satellite. 
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2.2.1.3 Orbit controller 

The first step consists of applying the controller described in chapter 2.1, employed for the 

ideal simulation setup, to the more realistic scenario previously presented, taking into 

account external disturbances.  

By maintaining the same settings displayed in Table 3, the outcome is a poor control 

performance, due to the non-ideality of the scenario. A more refined control design is 

necessary, in this case, following two main steps: 

1. Definition of an acceptance cone constraint 
2. Refinement of MPC’s weighting factors and settings 

 
The acceptance cone constraint sets a varying upper and lower bound along the simulated 

sequence, in order to guarantee a more and more narrow approach corridor with the 

increase of simulating time.  In Figure 16 the region of space allowed by the constraint is 

outlined in red, while the angle between slant side and height of the cone is α = 15°. 

 

 

Figure 16: acceptance cone constraint 

 

The chosen MPC parameters are listed in Table 4. The main changes with respect to the ideal 

scenario concern the prediction horizon, whose value is lower than before. Actually, by adopting 

the usual trial & error approach, the choice of a smaller prediction horizon resulted in a better 

overall performance, at the expense of a significantly slower response of the system. Although 

this latter consequence does not necessarily have to be considered a drawback: if a suitable 

trade off is found between speed of the system and satisfaction of constraints, a slower system 
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results to be easier to handle, in terms of overshoots and abrupt variation of parameters. This 

characteristic is particularly valuable for the purpose of a soft docking. Also from the point of 

view of the computational effort, a smaller prediction horizon means a smaller number of 

regions of the optimizing polytope, resulting in a shorter computing time. With a higher 

prediction horizon, larger values in terms of final relative position and velocity of the chaser 

spacecraft are obtained, because of numerical conflict due to the complexity of the optimization 

problem. To this end, also the sampling time of the whole model is decreased with respect to 

the previous case. 

Parameters belonging to Q matrix are chosen in such a way that a higher weight is assigned to 

the first two states, the ones responsible for the largest overshoot. A lower weight wrt the other 

ones is given to the third state, i.e. relative position of the chaser along the approach axis, in 

order to slow down the response of the system, to avoid an undesired overshoot in terms of 

velocity along the approach axis. All three velocities along the different axes are weighted with 

a medium value among the used ones, i.e. 100, because it results to be a good trade-off between 

tracking performance and speed of convergence. Elements of P matrix are chosen with smaller 

values than the ones of Q matrix, since the latter is able to guarantee a satisfying performance 

and thus there is no need to waste computational power, in this case, by assigning higher 

weights also in this matrix.  

The elements of R matrix are chosen extremely close to zero (they cannot be equal to zero 

because, for intrinsic requirements of the MPC formulation, R must be positive definite) in order 

to drive all the computational effort towards the optimization of states and to exploit all the 

available actuation, which is a key element in this phase of the manoeuvre. 

Upper and lower bounds are absolutely identical to the ideal scenario, since the requirements 

imposed to the problem are the same, from the point of view of input constraints. 

 

Parameter Chosen value 

𝑇𝑠 0.1 s 

𝑇𝑝 0.2 s 

 
 
 

𝑄 

 

[
 
 
 
 
 
500 0 0 0 0 0
0 500 0 0 0 0
0 0 20 0 0 0
0 0 0 100 0 0
0 0 0 0 100 0
0 0 0 0 0 100]
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𝑃 

 

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 10 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 100]

 
 
 
 
 

 

 
 

𝑅 

 

[
10−50 0 0

0 10−50 0
0 0 10−50

] 

𝑢𝑚𝑖𝑛 [−0.7 − 0.7 − 0.7] 
𝑢𝑚𝑎𝑥  [0.7        0.7        0.7] 

Table 4: MPC settings - realistic scenario 1 

 

2.2.1.4 Attitude controller 

A Sliding Mode controller is employed for attitude. The selected control law is:  

 

u = k1q̃ ∙ sign(q̃0) − k2ω (1 − q̃)T ∙ q̃ 

 

q̃: vector part of the quaternion  

                                                                                                   tracking error  q̃ = q−1 ⊗ qr 

                                                                                     qr: reference quaternion 

                                                                                               q̃0: real part of the quaternion  

                                                                                tracking error 

                                                                                        k1, k2: tuning parameters 

 

k1 is chosen equal to 15, while k2 is equal to 10 in this scenario. They are respectively 

deputed to weighting tracking performance and to minimize disturbance’s action on 

attitude.  
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2.2.1.5 Results from simulations – realistic scenario 1 

 

Figure 17: zx relative position - realistic scenario 1 

 

 

Figure 18: zx relative position (proximity detail) - realistic scenario 1 
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Figure 19: zy relative position - realistic scenario 1 

 

 

Figure 20: zy relative position (proximity detail) - realistic scenario 1 
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Figure 21: relative position 3d and acceptance cone – realistic scenario 1 

 

 

Figure 22: input time response - realistic scenario 1 
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Figure 23: relative velocity time response - realistic scenario 1 

 

 

Figure 24: angular velocity time response - realistic scenario 1 
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Figure 25: quaternions time response - realistic scenario 1 

 

 

Figure 26: Drag torque time response - realistic scenario 1 
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Figure 27: Drag force time response - realistic scenario 1 

 

 

Figure 28: Magnetic field torque time response - realistic scenario 1 
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Figure 29: Gravity gradient torque time response - realistic scenario 1 

 

The manoeuvre described in the plots above is slightly different with respect to the one related 

to the ideal scenario, since the offset distance on the z-axis (V-bar) is increased up to -50 m. In 

fact, from mission analysis-related simulations, performed by other members of CubeSat team, 

it results most likely to have a hold point at 50 meters distance from the target. So, for the sake 

of a more realistic scenario, the initial condition along V-bar is modified. 

As it is possible to see in the plots reported from Figure 17 to Figure 21, acceptance cone 

constraint is fully respected (the final relative position on all three axes has an error with 106 

order of magnitude).  

Regarding Figure 22 it is clear how, after an initial push bringing control inputs along the 

approach axis to saturation to the upper bound, the values rapidly decrease. MPC is able to 

automatically optimize the control input sequence and shows, especially in input time response, 

how suitable it is for this kind of applications.  

In Figure 23 velocity time response is presented, mirroring what is above written about input 

time response: after an initial increase of speed along the approach axis, the parameters’ values 

rapidly decrease and then converge to zero. 
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From Figure 24 and 25 it is clear how attitude is not affected by any perturbations: a straight line 

manoeuvre is described, in this particular scenario, so attitude control does not play a major role 

in this first case, it is only deputed to ensure tracking performance. 

From Figure 26 to Figure 29 the time response of external disturbances is described. As it results 

clear from the orders of magnitude, they are quite neglectable with respect to the overall 

dynamics of the system, apart from the magnetic field torque.  

In this simulating scenario all the problem requirements are satisfied, the system reacts well to 

disturbances, thus the chosen control strategy is able to guarantee a robust performance. 

 

2.2.2 Actuator models 
Actuators’ design is articulated in two different phases, referring to the main employed 

actuation systems: 

1. Thrusters; 
2. Reaction wheels. 

 
The first ones are intended to provide translational actuation, while the second ones are 

deputed to attitude actuation. While in the first scenario the two dynamics, translational and 

rotational, were independent one from the other, in the setup proposed below, this ideality is 

removed. In fact, even though the propulsion system is not responsible for attitude actuation, 

in this model, it is also true that thruster misalignment causes an unexpected disturbing torque 

which must be taken into account. 

2.2.2.1 Thrusters 
The CubeSat is equipped with eight thrusters [11], whose each one is made up of a valve couple 

with a nozzle. Each valve is represented in Figure 30 as the vertices of the squares abcd and efgh. 

Depending on the control actions [𝐹𝑥, 𝐹𝑦,𝐹𝑧] provided by the controller, the valves are activated 

according to the following table: 

Control 
action 

𝑉𝑎𝑙𝑣𝑒𝑎 𝑉𝑎𝑙𝑣𝑒𝑏 𝑉𝑎𝑙𝑣𝑒𝑐 𝑉𝑎𝑙𝑣𝑒𝑑 𝑉𝑎𝑙𝑣𝑒𝑒 𝑉𝑎𝑙𝑣𝑒𝑓 𝑉𝑎𝑙𝑣𝑒𝑔 𝑉𝑎𝑙𝑣𝑒ℎ 

𝐹𝑥 > 0 OFF ON OFF ON OFF ON OFF  ON 

𝐹𝑥 < 0 ON OFF ON OFF ON OFF ON OFF 

𝐹𝑦 > 0 OFF OFF ON ON OFF OFF ON ON 

𝐹𝑦 < 0 ON ON OFF OFF ON ON OFF OFF 

𝐹𝑧 > 0 OFF OFF OFF OFF ON ON ON ON 

𝐹𝑧 < 0 ON ON ON ON OFF OFF OFF OFF 
Table 5: Valves activation criterion 
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Every nozzle is inclined with respect to the body reference frame (outlined in Figure 30 and 

whose origin is the CoM of the spacecraft) of the angles 

• 𝛼 =
𝜋

4
  with respect to x-axis; 

• 𝛽 =
𝜋

6
 with respect to z-axis.  

 

In the two following tables the position of each valve is expressed in the three cartesian 

coordinates, also referred to the body reference frame.   

Parameter Value Parameter Value Parameter Value Parameter Value 
𝑎𝑥 -0.0375 𝑏𝑥 -0.0375 𝑐𝑥 0.0375 𝑑𝑥 0.0375 

𝑎𝑦 -0.0375 𝑏𝑦 0.0375 𝑐𝑦 0.0375 𝑑𝑦 -0.0375 

𝑎𝑧 -0.1130 𝑏𝑧 -0.1130 𝑐𝑧 -0.1130 𝑑𝑧 -0.1130 
Table 6: thrusters position abcd 

Parameter Value Parameter Value Parameter Value Parameter Value 

𝑒𝑥 -0.0375 𝑓𝑥 -0.0375 𝑔𝑥 0.0375 ℎ𝑥 0.0375 

𝑒𝑦 -0.0375 𝑓𝑦 0.0375 𝑔𝑦 0.0375 ℎ𝑦 -0.0375 

𝑒𝑧 0.1130 𝑓𝑧 0.1130 𝑔𝑧 0.1130 ℎ𝑧 0.1130 

Table 7: thrusters position efgh 

 

Figure 30: Thrusters position 
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From specifics of the propulsion system, it is known that the maximum thrust which the 

propulsion system is able to provide is equal to 35 mN, meaning that the maximum force 

provided by each thruster is 8.75 mN (vector norm).  

For each thruster the following set of equations holds: 

 

𝑓𝑥 = 𝑓 ∙ sin (𝛽) 

𝑓𝑦 = 𝑓 ∙ sin (𝛼) ∙ cos (𝛽) 

𝑓𝑧 = 𝑓 ∙ cos (𝛼) ∙ cos (𝛽) 

 

The propulsion system is designed in two different setups: 

1. the first one, simpler, by employing PWM modulation; 
2. the second one, more refined, by modelling the opening of each valve in a more realistic 

way. 
 

Additionally, in order to obtain a higher degree of precision and to get closer to a more realistic 

setup, the effective thrust produced by the thrusters is multiplied by a rotation matrix expressing 

the relative attitude of the chaser with respect to the target. In this way it is possible to couple 

the two dynamics (translational and rotational) and to make them interdependent.  

 

First setup – PWM modulation 

 

Figure 31: Thrusters setup 1 - block schematic 

 

In order to better visualize the working principle of the first thrusters model, a block schematic 

is presented in Figure 31. The designed system has control actions provided by the Model 

Predictive Controller as inputs and the effective thrust produced by propulsion system as output, 

together with a disturbance torque obtained from the misalignment of the nozzles. Those 

(2) 
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outputs are going to be fed to the actual plant of the overall system. This whole model cuts off 

another strong ideality, which is the straightforward link between controller and plant. Actually, 

in real life conditions, the physical limits of thrusters must be taken into account. 

The block Duty cycle computation, as its name clearly suggests, is intended to compute the 

quantity  
 𝐹𝑐𝑜𝑛𝑡𝑟𝑜𝑙

 𝐹𝑚𝑎𝑥
  where  𝐹𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is the control action provided by MPC and  𝐹𝑚𝑎𝑥 = 8.75 𝑚𝑁. 

The block Valves activation takes into account the instructions listed in Table 5 and, (2) by setting  

𝑓 = 𝐹𝑚𝑎𝑥, computes the force components along the three axes for all the activated valves. 

The green block PWM takes as input the duty cycle and produces as output a square wave signal 

whose amplitude is included in the interval [-1,1], with period equal to 0.1 seconds and sample 

time of 0.05 seconds (in order to achieve a sufficiently high resolution). 

The block Overall thrust and torque misalignment computation receives as inputs the pulse 

width modulated signal and the maximum force produced by each one of the activated valves. 

The aim of this block is to multiply the two inputs, in order to apply PWM modulation to the 

actually produced thrust, which is the first output of the whole model. Furthermore, this block 

is intended to compute the cross product between the thrust produced by each valve and the 

distance vector of each thruster from the CoM of the CubeSat. The result of this latter 

computation is the misalignment torque described above, seen as a disturbance from the plant.  

In this particular setup, misalignment torque is null during the whole simulating sequence 

because of the ideality introduced by PWM: according to this technique, in fact, the opening of 

the valves is instantaneous so, even though there is an offset between each thruster, the force 

is simultaneously provided by every activated nozzle and then no undesired perturbation of 

attitude is obtained. 

In order to obtain a more realistic scenario, also this ideality is removed in the following 

simulating setup, by introducing a delay in the valves’ opening. 

In the following figure (Figure 32) it is possible to see the Simulink scope of the effective thrust 

produced by the PWM-based setup multiplied times the mass of the spacecraft (1). 
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Figure 32: Simulink scope - thrust · mass [N·kg] in PWM-based setup 

 

 

Second setup – realistic valves opening 

 

Figure 33: Thrusters setup 2 - block schematic 

 

The first two blocks, Duty cycle computation and Valves activation are the same described above, 

in the previous paragraph. A multiplication takes place between those outputs, in order to 

compute the actual contribution provided by each activated valve. The resulting signals are fed 

to the next block, whose inputs are the forces produced by each thruster. Every input is fed to a 

negative feedback system, where the forward loop contains an integrator. This expedient is 

useful to simulate the behaviour of a quick-opening valve’s characteristic (Figure 34). 
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Figure 34: Valves characteristics 

 

In the following Simulink scope extract, the thrust time response is shown with respect to z-axis. 

As it is possible to see, in particular from the blue curve at the beginning of the sequence, the 

starting behaviour is parabolic until saturation to the desired thrust value.  

 

 

Figure 35: Simulink scope- realistic valve's behaviour (z-axis) 

 

Figure 36 is a screenshot of the scope representing misalignment torque time response: the 

order of magnitude of this disturbance makes it neglectable with respect to the overall dynamics 

of the system. 
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Figure 36: Simulink scope - misalignment torque [Nm] 

2.2.2.2 Reaction wheels  
In order achieve a realistic condition, in terms of attitude actuation, a model of reaction wheels 

is designed.  

The working principle of reaction wheels is based on a well defined architecture: an electric 

motor (usually a brushless one) attached to the CubeSat is intended to drive a wheel, free to 

rotate. According to the chosen model, three wheels are necessary because, the axis of rotation 

of each one must be aligned with the axes of the body reference frame of the spacecraft. 

The control torque provided by the Sliding Mode Controller is fed to the electric motor which 

replicates it, in order to correct the error on attitude by means of the reaction wheel’s rotation. 

In this model [13], reaction wheels are in torque command mode. The main parameters of the 

system are listed in the following table and are employed for the design of the block schematic 

presented in Figure 37: 

Parameter Name Value 
𝑅𝑡𝑒𝑟𝑚 Terminal resistance 22 Ω 

 
𝐾𝑡 

 
Torque constant 

 

3.64 ∙ 10−3
𝑁𝑚

𝐴
 

 
𝐾𝑣 

 
Back EMF Constant 

 

0.36 ∙ 10−4
𝑉

𝑟𝑎𝑑/𝑠
 

 
𝑅𝑊𝑓 

 
Dynamic friction torque 

 

2.48 ∙ 10−8
𝑁𝑚

𝑟𝑎𝑑/𝑠
 

𝑅𝑊𝐽 Flywheel inertia 5.73 ∙ 10−6𝑘𝑔 ∙ 𝑚2 

[ 𝐼𝑥  𝐼𝑦  𝐼𝑧 ] CubeSat inertia [0.152  0.290  0.308 ] 𝑘𝑔 ∙ 𝑚2 
Table 8: Reaction wheel parameters 
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The parameters listed in the previous table are the same for all the reaction wheels’ models, 

apart from the inertia moment vector, whose each element is applied to the related axis. The 

block schematic shown below is an example of the reaction wheel referred to y-axis. 

The parameter K , included inside the green block in Figure 37, is the forward gain of the model. 

It must be chosen by means of a trial and error procedure, as it is an empirical parameter. In 

order to avoid an excessive mismatch between control torque and effective torque produced by 

actuation, the selected value for the said parameter is 1000. 

 

 

Figure 37: reaction wheel model – y-axis example 

 

2.2.3 Sloshing model 
In order to optimize the employment of the size of spacecrafts, especially in the small satellites 

framework, it is more and more common to use liquid propellant for CubeSat-based missions. A 

crucial aspect related to this choice is the predictability of the fluid’s motion, the so-called 

sloshing. 

Sloshing phenomenon has a very complex dynamics and, due to its significant nonlinearity, it is 

not easy to take into account such contribution to the overall system. From experimental 

evidences, slosh dynamics is mostly characterised by oscillating modes depending on the tank 

shape, fluid’s properties and axial acceleration of the tank. Normally even the parameter of 

gravity acceleration is a key element but, in the case investigated for the sake of this thesis, as 

well as for all space applications, i.e. low-gravity conditions, it is not considered. 

At this level of approximation, in a simulation environment as the one presented here, an 

actually very good degree of precision can be obtained by representing sloshing as an equivalent 

mechanical model [15]. In literature many variants of this kind of models are available but, in 

this case, a custom solution is employed, by worsening disturbance conditions in order to be 

𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

𝑇𝑟𝑒𝑎𝑙 

K 
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prepared for the worst-case scenario and to test the robustness guaranteed by the chosen 

control strategy. 

The employed model is based on a torsional spring – mass – torsional damper architecture, 

constituting a second order dynamic autonomous system: 

 

𝑑2𝜓

𝑑𝑡2
+ 2𝛾𝜔𝑛

𝑑𝜓

𝑑𝑡
+ 𝜔𝑛

2𝜓 = 0 

𝑇𝑠 = −𝑐𝜓 − 𝑘𝜓 

 

𝑐 = 2𝛾𝜔𝑛𝑚𝑙2  

                                                                                                                                             𝑘 = 𝜔𝑛
2𝑚𝑙2 

 

The second order system described by the equations (3) above is represented in the form of a 

block schematic in Figure 39. 𝜓 is a three-dimensional column vector whose elements are the 

angular deviations with respect to x, y and z axis of the slosh mass 𝑚𝑠 (Figure 38). This latter 

parameter represents the mass of propellant in motion. 𝑇𝑠is the output of the system and 

corresponds to the slosh torque, the actual disturbance caused by sloshing.  

Equations (3) represent a linear time varying system whose parameters change along the 

simulating sequence. In particular 𝛾 is the damping value and 𝜔𝑛 is the natural frequency 

associated to the liquid propellant. These elements are computed by means of experimentally 

found relations [14] and on the basis of a priori assumptions. In detail, it is assumed that the 

shape of the tank is cylindrical and its centre of mass coincides with the one of the whole 

spacecraft (this assumption is important to justify condition *). 

 In order to be able to compute the said parameters figuring in (3), it is necessary to compute 

the Bond number Bo, a dimensionless index typical of fluid dynamics systems, useful for 

determining the dominant regime regulating the flow of the liquid: 

𝐵𝑜 =
𝜌𝑎𝑅𝑡

2

𝜎
 

 

                                                                                            𝜌: density of the fluid 

𝑎: acceleration of the fluid in the  

                                                                                                                   body frame (i.e. acceleration  

(3) 
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                                                                                                         of the CubeSat*) 

                                                                                                     𝑅𝑡: radius of the tank 

                                                                                                                    𝜎: surface tension of the fluid 

 

The following table lists the main dimensions and parameters regarding tank and fluid: 

 

Parameter Name Value 
𝑅𝑡 Tank radius 0.04 m 

𝐻𝑡 Tank height 0.14 m 

𝑚𝑠0 Initial fluid mass 1 kg 

𝑚𝑠𝑓 Final fluid mass 0.964 kg 

ℎ𝑠0 Initial fluid height 0.046 m 

ℎ𝑠𝑓 Final fluid height 0.045 m 
Table 9: Tank and fluid parameters 

 

As propellant, the choice falls on the refrigerant gas R134a. According to experimental evidence, 

given that ℎ < 3𝑅𝑡, it follows that 

 

𝜔1 = 1.61 (
𝜎

𝜌𝑅𝑡
2 (1 + 0.798𝐵𝑜))

1
2

∙ 𝑡𝑎𝑛ℎ (
1.841ℎ

𝑅𝑡
) 

  

where ℎ is the fluid height, varying along the simulating sequence between the interval 

[ℎ𝑠0, ℎ𝑠𝑓]. 

𝜔1is the only natural frequency employed, in this setup, since it is relied to the oscillating mode 

including most of the mass of the fluid and the longest period of fluid motion. These 

considerations hold on the assumption of a 0° contact angle. 

Given that, for the whole simulation, 0 ≤ 𝐵𝑜 ≤ 1 it is possible to compute the damping as 

𝛾 = 4.47√
𝑣

𝜔1𝑅𝑡
2 

where 𝑣 is the kinematic viscosity of the fluid. 
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Figure 38: sloshing mechanical model 

 

Figure 39: Sloshing model - block schematic 

 

In the following scope extract (Figure 40) it is possible to outline the slosh disturbance torque 

time response, by setting an initial condition equal to 0.1 rad on the fluid mass angle wrt all three 

axis.  
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Figure 40: Slosh disturbance torque [Nm] - Simulink scope 

 

2.2.4 Results from simulations – realistic scenario 2 

The settings of both orbit and attitude controllers are identical to the setup previously discussed 

in the paragraphs 2.2.1.3 and 2.2.1.4, related to realistic scenario 1. It does not result necessary 

to perform any changes, which means that the control strategy is already well optimized and 

able to ensure a robust behaviour, as it is possible to see from the following plots. 

 

Figure 41: zx relative position - realistic scenario 2 
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Figure 42: zx relative position (proximity detail) - realistic scenario 2 

 

 

Figure 43: zy relative position - realistic scenario 2 
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Figure 44: zy relative position (proximity detail) - realistic scenario 2 

 

 

Figure 45: relative position 3d and acceptance cone – realistic scenario 2 
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In the plots presented from Figure 41 to Figure 45 it appears very clear how the acceptance cone 

constraint is respected even in this case. From the point of view of the translational motion, the 

described trajectory is a straight line, without any deviation or perturbation. 

In terms of input actions, the same considerations expressed with respect to the first simulation 

scenario hold: in correspondence of the peak control action, there is the highest value of relative 

velocity of the chaser with an impulsive-like manoeuvre (Figure 46 and 47). 

 

 

 

Figure 46: input time response - realistic scenario 2 
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Figure 47: relative velocity time response - realistic scenario 2 

 

 

Figure 48: angular velocity time response - realistic scenario 2 
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Figure 49: quaternions time response - realistic scenario 2 

 

 

Figure 50: quaternions time response – overshoot 
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Figure 51: angular velocity time response – overshoot 

 

 

The main difference with respect to the previous realistic setup, in terms of simulation results, 

is outlined on the attitude response of the system. In fact, as seen from the time response of the 

disturbances introduced in this phase of the design, the most invasive one is caused by sloshing 

phenomenon, creating an undesired torque interfering with attitude control actions. The result 

of this disturbance is evident from Figure 48 to 51, in particular in the last two it is possible to 

see an overshoot of both quaternions and angular velocity time response. It is not a significant 

perturbation (from the point of view of quaternions, the peak of the overshoot is -0.008, instead 

as regards angular velocity it is -0.04 rad/s) and it is immediately compensated by the action of 

SMC, thus proven to be effective, as both parameters are brought to steady state value after 10 

seconds. 
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3. Robustness analysis 
Apart from the external and internal disturbances discussed in the previous chapter, it is of 

primal importance to take into account the system’s behaviour in presence of uncertainties on 

initial conditions of several fundamental parameters, corresponding to the CubeSat’s mass 

(causing also a significant uncertainty on inertia matrix of the chaser), relative position, angular 

velocity and quaternions. In order to evaluate control performance in an uncertainty-based 

scenario, random disturbances are added in the simulation phase. This particular setup allows 

to perform a robustness analysis with respect to the above-mentioned parameters and to 

different kinds of manoeuvres, by gradually increasing the amplitude of uncertainties on the 

involved variables. 

Since in nominal conditions the settings selected for both attitude and trajectory controllers 

result to be effective, as it is outlined by the obtained results described in the previous chapter, 

for the sake of a fair analysis those very same settings must be maintained without any change. 

Only in this way it is possible to demonstrate robustness of the closed loop control system; on 

the contrary, any adaptive change of the controllers’ tuning in this phase may undermine the 

purpose of the considerations which are about to be made.  

For the sake of this analysis, two main situations are investigated, complying with SROC mission 

options: 

• V-bar approach  

• R-bar approach 
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The first setup is the one analysed until now, the most used in RVD-based manoeuvre. However, 

according to mission analysis evaluations performed by the rest of CubeSat team, it may be 

necessary to switch, in the SROC framework, to a R-bar approach. For the sake of the mission 

also this condition must be studied. In case of a V-bar approach the starting point of the 

manoeuvre is [0, 0, -50] with respect to the target reference frame, meaning 50 meters behind 

Space Rider. In case of an R-bar approach, the relative distance of the chaser wrt. to the target 

at the beginning of the RVD procedure is [50, 0, 0], i.e. 50 meters above the target. 

 

3.1 Montecarlo simulations 
In both above-mentioned scenarios, Montecarlo simulations are performed, in order to evaluate 

the reaction of the system to uncertainties in a large amount of manoeuvres, with randomly 

different initial conditions.  

This approach involves performing a total of 300 simulations with a more and more increasing 

error on the uncertain parameters. In particular the simulations are divided in 10 steps of 30 

simulations each. Each step is characterised by random uncertainties with a predefined 

magnitude on the initial conditions of the so-called uncertain parameters (mass, relative 

position, quaternions and angular velocity). As follows, the chosen setup on uncertainties is 

described for every step, from the first one to the tenth one: 

1. 30 simulations with  

a. random disturbance of amplitude 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
b. random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c. random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d. random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 

 
2. 30 simulations with  

a. random disturbance of amplitude 𝟐 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three 
axes); 

b. random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c. random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d. random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 

 
3. 30 simulations with  

a. random disturbance of amplitude 𝟑 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three 
axes); 

b. random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c. random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d. random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 

 
4. 30 simulations with  



71 
 

a. random disturbance of amplitude 𝟒 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three 
axes); 

b. random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c. random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d. random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 

 
5. 30 simulations with  

a. random disturbance of amplitude 𝟓 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three 
axes); 

b. random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c. random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d. random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 

 
6. 30 simulations with  

a. random disturbance of amplitude 𝟔 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three 
axes); 

b. random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c. random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d. random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 

 
7. 30 simulations with  

a. random disturbance of amplitude 𝟕 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three 
axes); 

b. random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c. random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d. random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 

 
8. 30 simulations with  

a. random disturbance of amplitude 𝟖 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three 
axes); 

b. random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c. random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d. random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 

 
9. 30 simulations with  

a. random disturbance of amplitude 𝟗 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three 
axes); 

b. random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c. random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d. random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 

 
10. 30 simulations with  

a. random disturbance of amplitude 𝟐. 𝟓 𝒎 on relative position (all three axes); 
b. random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c. random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d. random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 
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A tolerance band is selected equal to [ −2 ∙ 10−3, 2 ∙ 10−3 ] and it is referred to relative position. 

If the final relative position states are included in the said tolerance band for the last 20 sampling 

instants of simulation, the latter simulation is considered successful. This criterion is used to 

define a success rate of Montecarlo simulations for each one of the above listed steps.  

 

3.1.1 Montecarlo simulations: V-bar approach 

3.1.1.1           Step 1 

a) random disturbance of amplitude 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 

 

 

In these first 30 simulations the success rate results to be of 100% in fact, as it is possible to see 

from Figure 52, the acceptance cone constraint is always satisfied and the behaviour in terms of 

time responses (Figure 53) is absolutely comparable with the one obtained in the realistic 

scenario 2 whose the second chapter talks about. The plots representing control efforts and 

effective thrust are absolutely identical apart from a scaling factor given by the mass of the 

chaser. The response is oscillating for the first 200 seconds of simulation, given the introduced 

uncertainties which must be compensated, but the values always are included into the 

Figure 52: Relative position V-bar approach - Montecarlo 1 
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prescribed bounds. In terms of angular velocity and attitude, the results are comparable with 

the nominal case: there is a minimal overshoot at the beginning of the manoeuvre mainly due 

to sloshing disturbance which is immediately cancelled by the control system. The same 

considerations expressed on input actions hold for relative velocity time response: all the 

elements of the velocity vector have an oscillating behaviour for the first 200 seconds, getting 

to the peak value after 40 seconds of simulations and then rapidly decreasing to reference. 

 

 

Figure 53: Time response plots in V-bar approach - Montecarlo 1 
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3.1.1.2           Step 2 

a) random disturbance of amplitude 𝟐 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 

 
 

 
 

Also in this second step the success rate is 100% and there is no significant variation in terms of 

time responses. It is possible to see from Figure 54 and 55 that there is a worsening in 

uncertainties on initial conditions and this phenomenon causes a slightly higher effort in terms 

of the required and provided thrust. Additionally there is a small general increase of velocity. In 

general it is clear how the system’s behaviour is a bit more perturbed, with a slightly more 

oscillating time response in the starting phase of simulations. Anyway all the parameters are 

brought to steady state after few seconds. 

In terms of attitude, no significant differences arise with respect to the previous case: the same 

overshoots are encountered at the beginning of the sequence but they are cancelled without 

any problems after few seconds. Control inputs and effective thrust time responses, instead, 

have a highly oscillating behaviour until 200 seconds of simulation, due to the higher amount of 

uncertainties introduced in this case. The same considerations hold as much as concerns velocity 

Figure 54: Relative position V-bar approach - Montecarlo 2 
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time response, whose behaviour is oscillating for the first 200 seconds of simulation and whose 

peak value never exceeds 0.8 m/s, as in the previous simulations. 

 

 

 

 

Figure 55: Time response plots in V-bar approach - Montecarlo 2 
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3.1.1.3           Step 3 

a) random disturbance of amplitude 𝟑 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 

 
 

 

Also in this case the success rate is of 100% and the same considerations exerted in the previous 

step hold. The transient behaviours of time responses plotted in Figure 57 are completely 

extinguished after 230 seconds. 

From Figure 56 it is clear how the acceptance cone constraint is satisfied in this case, given a 

smooth trajectory fixed onto reference values in the last meters of the approach to the target 

spacecraft. What appears different with respect to the previous cases is a more oscillating 

characteristic in the relative position at further distance from the arrival point, along x and y 

axes, due to the higher degree of uncertainty on initial conditions. It is thus possible to say that 

the first part of the manoeuvre appears to be the most sensitive to a variation of the nominal 

conditions, even though the deviations from reference values are always found within the bound 

of 0.7 meters, along both x and y axes. 

This behaviour results in a more oscillating characteristic even in the time responses 

representing the variation of input parameters, effective thrust and relative velocity.  

Figure 56: Relative position V-bar approach - Montecarlo 3 
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Once again control inputs and effective thrust are the same, apart from a scaling factor due to 

the mass of the CubeSat. However, the consequences of a more uncertain setup on initial 

conditions reflects on the more clustered area created by the oscillations in the above 

mentioned time response plots. All values are anyway within the prescribed bounds.  

There is no significant variation in terms of attitude parameters, also in this case. 

 

Figure 57: Time response plots in V-bar approach - Montecarlo 3 
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3.1.1.4           Step 4 

a) random disturbance of amplitude 𝟒 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 

 

 

 

The success rate is 100% also in this step. The effects of a higher uncertainty are visible in this 

case, especially regarding input time response and effective thrust, brought to saturation values 

for a longer amount of time, with respect to the previous cases. Additionally the overshoot on 

angular velocity time response is slightly higher. 

A neglectable perturbation arises at the end of the sequence in one simulation only, in terms of 

input and effective thrust time response. This is most likely due to numerical conflicts that may 

take place due to the computational effort of the control strategy but they are absolutely non 

significant and do not compromise the final outcome of the simulations, in fact the success rate 

of this step is 100%. 

From Figure 58 it is possible to see that the situation is more critical than before, in terms of 

oscillations: their amplitude and frequency have a significant value until the chaser gets at 20 

Figure 58: Relative position V-bar approach - Montecarlo 4 
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meters distance from the target, even though the overall bound never exceeds 0.8 meters along 

x and y axes.  

The increasing trend of a more clustered input, effective thrust and velocity time responses is 

visible in Figure 59. In particular in this case, for the first time, relative velocity peak value gets 

to 0.8 m/s. 

 

 

 

 

 

Figure 59: Time response plots in V-bar approach – Montecarlo 4 
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3.1.1.5           Step 5 

a) random disturbance of amplitude 𝟓 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 

 

 

Even in this case the success rate is 100% and the same considerations expressed on Step 4 are 

valid. Transient time, especially in terms of angular velocity, input and effective thrust time 

responses, is slightly longer but in every case is extinguished completely after 250 seconds. 

In this scenario the upper and lower bounds of relative position along x and y axes never exceed 

1 meter and oscillations remain significant until the chaser gets at 10 meters distance from the 

target.  Despite this behaviour, in very close proximity of the arrival point, the chaser respects 

acceptance cone constraint and follows a straight line trajectory fixed onto reference values with 

no perturbations at all. 

The perturbed characteristic on relative position is reflected directly on time responses in Figure 

61, where it is clear how control inputs, effective thrust and relative velocity are very much 

affected by the higher amount of uncertainties a-priori imposed in this setup.  

Figure 60: Relative position V-bar approach - Montecarlo 5 
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Even though the above-mentioned plots manifest a more clustered characteristic, brought to 

saturation in case of thrust-related parameters for the first 80 seconds straight of simulations, 

their values are always bounded by the physical limitations of the system. Relative velocity has 

a higher peak value as much as concerns both positive and negative overshoots. In terms of 

attitude there is no significant change with respect to the previous results. 

 

Figure 61: Time response plots in V-bar approach - Montecarlo 5 
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3.1.1.6           Step 6 

a) random disturbance of amplitude 𝟔 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 
 

 

 

Success rate is equal to 100% also in this step, even though the uncertainties on initial position 

are much larger (Figure 62). Transient time and time responses’ overshoots slightly increase 

because of the more invasive disturbances but steady state conditions are always ensured after 

250 seconds. 

It appears clear how, in this scenario, oscillation on relative position along x and y axes remain 

significant in terms of both frequency and amplitude until the chaser gets at 10 meters distance 

from the target. Perturbations on relative position are bounded by the quantity of 1.5 meters 

and the acceptance cone constraint satisfaction is always guaranteed even in this situation. 

In terms of time responses (Figure 63) the trend analysed before is maintained: control inputs, 

effective thrust and relative velocity values are brought to saturation for a longer time span; 

additionally the time responses remain perturbed for a slightly longer time than before. 

Figure 62: Relative position V-bar approach - Montecarlo 6 
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However there is no change in peak values, thus the upper and lower bounds remain the same 

as in the previous setup. 

There is no significant variation in terms of attitude, overshoot are limited to the very beginning 

of the sequence and do not constitute a critical factor for the sake of the success of simulations. 

 

 

 

 

Figure 63: Time response plots in V-bar approach - Montecarlo 6 
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3.1.1.7           Step 7 

a) random disturbance of amplitude 𝟕 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 
 

 

 

Success rate is equal to 100%, like in the previous chunks of simulation. Additionally, due to the 

higher uncertainties, it is possible to see that in only one case there is a small residual transient 

until 300 seconds of simulation in input and effective thrust time responses. 

Also in this situation both amplitude and frequency of perturbations in terms of trajectory 

(Figure 64) slightly increase with respect to the previous set of simulations but never 

compromise the final outcome of the manoeuvre, which is brought to completion with success. 

The last meters in very close proximity to the target are described by a straight line fixed onto 

reference values, ensuring satisfaction of acceptance cone constraint. Even in this case there is 

no change in the attitude-related time responses, which are always subject to the same set of 

uncertainties. In terms of input, effective thrust and relative velocity time responses, the 

perturbations increase, as linear actuation and velocity need to compensate the higher amount 

of uncertainties on initial position. In this case the characteristic of the input time response, and 

Figure 64: Relative position V-bar approach - Montecarlo 7 
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thus of effective thrust, remain fixed to saturation values almost until 100 seconds of simulation. 

Relative velocity exceeds the negative bound of -0.2 m/s in the first meters of the manoeuvre. 

In general the time responses related to linear motion appear to be more disturbed but, in the 

long run, able to get to steady state values anyway, thus ensuring the success of the manoeuvre. 

 

 

 

 

 

Figure 65: Time response plots in V-bar approach - Montecarlo 7 
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3.1.1.8           Step 8 

a) random disturbance of amplitude 𝟖 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 

 
 

 

 

 

Success rate is equal to 100% and, as well as in the seventh step, residual transients extinguish 

after 300 seconds in this case, as much as concerns input and effective thrust time responses. 

In this case, the perturbed situation becomes even more critical, since oscillations on x and y 

axes, as much as concerns relative position, are shown also inside the acceptance cone, i.e. until 

the chaser gets at 4 meters distance from the arrival point. Amplitude bounds of oscillation start 

to get closer to 2 meters in the peak values but the acceptance cone constraint is always 

respected, once again. 

Saturation of values in input time response and, consequently, in effective thrust time response, 

overcomes the bound of 100 seconds, due to the higher control effort required to cancel the 

unexpected uncertainty.  

Figure 66: Relative position V-bar approach - Montecarlo 8 
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The behaviour of attitude-related time responses does not change as neither uncertainties 

associated to quaternions and angular velocity change.  

In terms of relative velocity time response, the behaviour does not differ much from the previous 

case, apart from a slightly more clustered characteristic at the beginning of the sequence. 

 

 

 

 

 

Figure 67: Time response plots in V-bar approach - Montecarlo 8 
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3.1.1.9           Step 9 

a) random disturbance of amplitude 𝟗 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 
 

 

 

Even in this case the success rate is 100% and the same observations on residual transients 

made in the previous paragraph hold. 

Upper and lower bounds of oscillations in relative positions slightly increase both on x and y axes 

but the parameters varying the most about these perturbations is frequency, which notably 

increases with respect to previous cases. Despite that, from the point of view of acceptance cone 

constraint, the manoeuvre is successful. 

In terms of time responses, the increasing trend of a more and more clustered characteristic, in 

the starting phases of simulations, is confirmed even here. Saturated values of input actions and 

effective thrust are maintained until 120 seconds, showing a more severe condition to 

compensate, in terms of uncertainties.  

Figure 68: Relative position V-bar approach - Montecarlo 9 
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The same considerations hold as much as concerns relative velocity time response, which 

becomes a bit more perturbed. 

As before, no changes in the attitude behaviour can be identified, as there is no further 

uncertainty added to the dynamics in this case with respect to the previous ones.  

 

 

 

 

Figure 69: Time response plots in V-bar approach - Montecarlo 9 
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3.1.1.10 Step 10 

a) random disturbance of amplitude 𝟐. 𝟓 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 

 
 

 

 

Even in the worst case scenario, step 10, the success rate results to be 100%. In this case residual 

transients overcome 300 seconds of simulation but from 400 seconds to the end of each 

sequence, steady state values are ensured for each time response, apart from a small 

perturbation in one only case due to numerical conflicts. Even in the latter case, however, the 

success of simulation is ensured by respecting the tolerance band of ±2 mm on the last 20 states. 

In this case it is possible to see that input values are stuck to saturation levels for 160 seconds 

straight, showing that linear actuation is particularly affected by the imposed uncertainties: the 

propulsion system’s availability must be fully exploited to correct the trajectory and reach 

reference values.  

Figure 70: Relative position V-bar approach - Montecarlo 10 
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In terms of attitude, once again, there is no significant observation to add, as the behaviour is 

identical to the one observed in the previous cases. 

Relative velocity time response appears more disturbed as much as concerns each element of 

the states vector, as a significant uncertainty must be compensated on relative position in this 

case, i.e. the worst case scenario. 

 

 

Figure 71: Time response plots in V-bar approach - Montecarlo 10 
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3.1.2 Montecarlo simulations: R-bar approach 
In this scenario it is necessary to take into account a higher contribution of atmospheric drag. 

Since, in this case, the chaser finds itself 50 meters above the target and there is a significant 

difference between the so-called wet surface of the CubeSat and Space Rider, at the end of the 

manoeuvre there is going to be an offset along the z-axis. This phenomenon is modelled by 

increasing the drag force disturbance (2.2.1.2) of two orders of magnitude, once the chaser gets 

at 10 meters distance from the target.  

3.1.2.1           Step 1 

a) random disturbance of amplitude 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 

 

In these first 30 simulations the success rate results to be of 100% in fact, as it is possible to see 

from Figure 72, the acceptance cone constraint is always satisfied. Control effort and effective 

thrust time responses only differ of a scaling factor given by the mass of the chaser.  

It is clear how time responses of input actions and effective thrust have an oscillating trend for 

the first 200 seconds of simulation, given the introduced uncertainties which must be 

compensated, but the values are always included into the prescribed bounds. In terms of angular 

velocity and attitude, the results are the same obtained in the nominal case: there is a minimal 

Figure 72:  Relative position R-bar approach - Montecarlo 1 
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overshoot at the beginning of the manoeuvre mainly due to sloshing disturbance which is 

immediately cancelled by the control system. The same considerations expressed on input 

actions hold for relative velocity time response: all the elements of the velocity vector have an 

oscillating behaviour for the first 200 seconds, getting to the peak value after 40 seconds of 

simulations and then rapidly decreasing to reference. 

 

 

 

 

 

Figure 73: Time response plots in R-bar approach - Montecarlo 1 
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3.1.2.2           Step 2 

a) random disturbance of amplitude 𝟐 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 
 

 

In this second step the success rate is 100%. It is possible to see from Figure 74 and 75 that there 

is a worsening situation in uncertainties on initial conditions and this phenomenon causes a 

slightly higher effort in terms of the required and provided thrust.  

In general it is clear how the system’s behaviour is more perturbed, with a slightly more 

oscillating time response in the starting phase of simulations even though all the parameters are 

brought to steady state after few seconds. 

In terms of attitude, no significant differences arise with respect to the previous case: the same 

overshoots are encountered at the beginning of the sequence but they are cancelled without 

any problems after few seconds. Control inputs and effective thrust time responses, instead, 

have a highly oscillating behaviour until 200 seconds of simulation, due to the higher amount of 

uncertainties introduced in this case.  

Figure 74:  Relative position R-bar approach - Montecarlo 2 
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The same considerations hold as much as concerns velocity time response, whose behaviour is 

oscillating for the first 200 seconds of simulation and whose peak value never exceeds -0.8 m/s, 

as in the previous simulations. 

 

 

 

Figure 75: Time response plots in R-bar approach - Montecarlo 2 
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3.1.2.3           Step 3 

e) random disturbance of amplitude 𝟑 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
f) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
g) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
h) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 
 

 

Success rate is equal to 100 % also in this step: from Figure 76 it is clear how the acceptance 

cone constraint is satisfied, given a smooth trajectory fixed onto reference values in the last 

meters of the approach to the target spacecraft. However there is a more oscillating 

characteristic in the relative position at further distance from the arrival point, along z and y 

axes, due to the higher degree of uncertainty on initial conditions. Also in this scenario, as in 

the V-bar approach, it is clear that the first part of the manoeuvre appears to be the most 

sensitive to a variation of the nominal conditions, even though the deviations from reference 

values are always found within the bound of 0.7 meters, along both z and y axes. 

Due to the higher uncertainty, there is a more oscillating characteristic even in the time 

responses representing the variation of input parameters, effective thrust and relative velocity.  

Control inputs and effective thrust are the same, apart from a scaling factor due to the mass of 

the CubeSat. However the consequences of a more uncertain setup on initial conditions reflects 

Figure 76:  Relative position R-bar approach - Montecarlo 3 
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on the more clustered area created by the oscillations in the above mentioned time response 

plots. All values are anyway within the prescribed bounds.  

There is no significant variation in terms of attitude parameters, also in this case. 

 

 

 

 

Figure 77: Time response plots in R-bar approach - Montecarlo 3 
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3.1.2.4           Step 4 

a) random disturbance of amplitude 𝟒 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 
 

 

The success rate is 100% also in this step. It is clear how a more uncertain setup causes input 

time response and effective thrust to be brought to saturation values for a longer amount of 

time, with respect to the previous cases. Additionally the overshoot on angular velocity time 

response is slightly higher. 

A small deviation takes place from reference at the end of the sequence in one simulation only, 

in terms of input and effective thrust time response, because of numerical conflicts happening 

due to the computational effort of the control strategy but they are absolutely non significant 

and do not compromise the final outcome of the simulations, in fact the success rate of this step 

is 100%. 

From Figure 78 it is possible to see that the situation is slightly worse than before, in terms of 

oscillations in the trajectory: amplitude and frequency of perturbations have a significant value 

until the chaser gets at 20 meters distance from the target, even though the overall bound never 

exceeds -0.8 meters along z and y axes.  

Figure 78:  Relative position R-bar approach - Montecarlo 4 
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Control inputs, effective thrust and velocity time responses have a more clustered behaviour 

(Figure 79). As much as concerns linear actuation, time responses are brought to saturation 

values until 65 seconds.   

 

 

 

 

Figure 79: Time response plots in R-bar approach - Montecarlo 4 
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3.1.2.5           Step 5 

a) random disturbance of amplitude 𝟓 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 
 

 

In this chunk of simulations the success rate is 100%. Transient time, especially in terms of 

angular velocity, input and effective thrust time responses, is slightly longer but in every case is 

extinguished completely after 250 seconds. 

Upper and lower bounds of relative position along z and y axes never exceed 1 meter and 

oscillations remain significant until the chaser gets at 10 meters distance from the target.  The 

chaser respects acceptance cone constraint and follows a straight line trajectory fixed onto 

reference values (Figure 80). 

It is clear from Figure 81 how control inputs, effective thrust and relative velocity time responses 

are influenced by the newly introduced uncertainties, with a more perturbed behaviour.  

Thrust-related parameters saturate to upper and lower bounds for the first 80 seconds straight 

of simulations. Relative velocity has a higher peak value as much as concerns both positive and 

negative overshoots.  

Figure 80:  Relative position R-bar approach - Montecarlo 5 
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In terms of attitude there is no significant change with respect to the previous results. 

 

 

 

 

 

Figure 81: Time response plots in R-bar approach - Montecarlo 5 
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3.1.2.6           Step 6 

a) random disturbance of amplitude 𝟔 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 
 

 

  

Success rate is equal to 100% also in this step, even though the uncertainties on initial position 

are much larger (Figure 82). Overshoots on relative position increase because of the more 

invasive disturbances but steady state conditions are always ensured after 250 seconds. 

Oscillations on relative position along z and y axes have a higher values in frequency and 

amplitude until the chaser gets at 10 meters distance from the target. Perturbations on relative 

position are bounded by the quantity of 1.5 meters and the acceptance cone constraint 

satisfaction is always guaranteed even in this situation. 

Figure 83 shows that the trend of increasingly clustered time responses is confirmed, as regards 

control inputs, effective thrust and relative velocity. Their values are brought to saturation for a 

longer time, in this step; additionally they remain perturbed for a slightly longer time than 

before. However there is no change in peak values, thus the upper and lower bounds remain the 

Figure 82:  Relative position R-bar approach - Montecarlo 6 
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same as in the previous setup, apart from relative velocity, whose upper bound slightly exceeds 

0.2 m/s. 

Nothing changes in terms of attitude, overshoot are related only to the very beginning of the 

sequence and do not constitute a critical factor for the sake of the success of simulations. 

 

 

 

 

 

Figure 83: Time response plots in R-bar approach - Montecarlo 6 
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3.1.2.7           Step 7 

a) random disturbance of amplitude 𝟕 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 
 

 

Success rate is equal to 100%. In this step, due to the higher uncertainties, it is possible to see 

that in only one case there is a small residual transient until 250 seconds of simulation in input 

and effective thrust time responses. 

Amplitude and frequency of perturbations in terms of trajectory (Figure 84) slightly increase but 

never affect the success of the manoeuvre, which is completed without difficulties. In fact, once 

inside the acceptance cone, the trajectory is a straight line remaining onto reference values.  

Furthermore, no variation is found in attitude with respect to previous steps, as both 

quaternions and angular velocity are always subject to the same set of uncertainties. Oscillations 

increase in linear actuation and velocity, as they need to compensate the higher amount of 

uncertainties on initial position. In this case the characteristic of the input time response, and 

thus of effective thrust, remain fixed to saturation values almost until 80 seconds of simulation. 

Relative velocity slightly exceeds the upper bound of 0.2 m/s in the first meters of the 

manoeuvre, but remains within the lower bound of -0.8 m/s.  

Figure 84:  Relative position R-bar approach - Montecarlo 7 
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As in the steps analysed in the previous sections,  time responses related to linear motion appear 

to be more disturbed but, in the long run, able to get to steady state values anyway, thus 

ensuring the success of the manoeuvre. 

 

 

 

 

 

 

Figure 85: Time response plots in R-bar approach - Montecarlo 7 
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3.1.2.8           Step 8 

a) random disturbance of amplitude 𝟖 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 
 

 

Success rate is equal to 100% and, as well as in the seventh step, residual transients extinguish 

after 300 seconds in this case, as much as concerns input, effective thrust and relative velocity 

time responses. Oscillations become even more critical, both on z and y axes, as much as 

concerns relative position, as they are visible, especially on y axis, also inside the acceptance 

cone, i.e. until the chaser gets at 5 meters distance from the arrival point. Upper and lower 

bounds of oscillation never get to reach the value of 2 meters and the acceptance cone 

constraint is always respected, once again, despite perturbations. 

Saturation of values in input time response and, consequently, in effective thrust time response, 

is found even after 100 seconds of simulation, due to the higher control effort required to cancel 

the unexpected uncertainty.  

Overshoots in attitude remain identical to the other steps, as neither uncertainties associated to 

quaternions and angular velocity change.  

Figure 86:  Relative position R-bar approach - Montecarlo 8 
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In terms of relative velocity time response, the upper bound of 0.2 m/s is abundantly overcome, 

this time and, in general the behaviour is more disturbed, concerning the second and the third 

elements of the velocity states vector (velocity along y and z axes). The negative peak gets closer 

to -0.8 m/s and it is related to velocity along x-axis. 

 

 

 

 

 

Figure 87: Time response plots in R-bar approach - Montecarlo 8 
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3.1.2.9           Step 9 

a) random disturbance of amplitude 𝟗 ∙ 𝟐. 𝟓 ∙ 𝟏𝟎−𝟏 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 
 

Even in this case the success rate is 100% and the same observations on residual transients 

made in the previous paragraph hold. Amplitude and frequency of oscillations in relative 

positions increase both on z and y axes. The perturbations are visible also inside the 

acceptance cone, until 4 meters distance from the arrival point (Figure 88). Despite that, from 

the point of view of acceptance cone constraint, the manoeuvre is successful. 

Increasingly more clustered characteristics of time responses, in the starting phases of 

simulations, is confirmed even here. Saturated values of input actions and effective thrust are 

maintained until 120 seconds, showing a more severe condition to compensate, in terms of 

uncertainties.  

Relative velocity time response does not differs much with respect to the one observed in the 

precious step, it only becomes a bit more perturbed. 

Figure 88:  Relative position R-bar approach - Montecarlo 9 
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As before, no changes in the attitude behaviour can be identified, as there is no further 

uncertainty added to the dynamics in this case with respect to the previous ones. 

 

 

 

 

 

 

Figure 89: Time response plots in R-bar approach - Montecarlo 9 
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3.1.2.10 Step 10 

a) random disturbance of amplitude 𝟐. 𝟓 𝒎 on relative position (all three axes); 
b) random disturbance of amplitude 𝟐 𝒌𝒈 on the mass; 
c) random disturbance of amplitude 𝟏𝟎° on all three attitude angles; 
d) random disturbance of amplitude 𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 
 

 

 

 

 

 

The success rate results to be 100%. In this case residual transients do not overcome 260 seconds 

of simulation and from that instant to the end of each sequence, steady state values are ensured 

for each time response.  

In this case it is possible to see that input values are stuck to saturation levels for 160 seconds 

straight, showing that linear actuation is particularly affected by the imposed uncertainties: the 

propulsion system’s availability must be fully exploited to correct the trajectory and reach 

reference values.  

There is no significant change in quaternion and angular velocity time response, as the behaviour 

is identical to the one observed in the previous cases. 

Figure 90:  Relative position R-bar approach - Montecarlo 10 
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Relative velocity time response appears more disturbed as much as concerns each element of 

the states vector. Additionally, the upper bound of 0.2 m/s is exceeded by relative velocity in the 

first part of the simulation, while the lower bound of -0.8 m/s is not overcome. 

 

 

 

 

 

Figure 91: Time response plots in R-bar approach - Montecarlo 10 
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3.2 Controller refinement 
From the above-discussed Montecarlo simulations, it is clear how the system can be considered 

robust to even invasive uncertainties. Although there is still room for improvement, from the 

control performance point of view. The aim of this section is to describe the employed strategy 

to avoid excessive oscillations and overshoots outlined in the worst case scenario’s simulations, 

concerning relative position (Figure 70 and Figure 90). Even though the only constraint imposed 

on MPC settings, in the previous setup, is the one on the acceptance cone, always respected, a 

higher attention must be paid to the starting phases of the manoeuvre. In the worst case 

scenarios (from the point of view of uncertainties) the upper and lower bounds of relative 

position even exceed 2 meters. At a distance from the target spanning from 50 to 10 meters, 

both frequency and amplitude of oscillations is not negligible. From a pure control system 

perspective, the behaviour of the system is optimal but, if considering the manoeuvre with a 

real-life problem approach, this behaviour can be source of many problems. These many 

oscillations can cause a huge number of errors from the point of view of navigation: this is why, 

ideally, a straight line trajectory is always preferred.  

Due to this inconvenience, a refinement of the trajectory control strategy is necessary, at this 

point. This very same refinement consists of choosing to employ two different MPC controllers, 

one acting from 50 to 15 meters distance from the target (MPC 1), while the other one is used 

for the final phases of the manoeuvre, from 15 meters to docking (MPC 2). 

 

Parameter Chosen value 

𝑇𝑠 0.1 s 

𝑇𝑝 0.1 s 

 
 
 

𝑄 

 

[
 
 
 
 
 
500 0 0 0 0 0
0 500 0 0 0 0
0 0 20 0 0 0
0 0 0 100 0 0
0 0 0 0 100 0
0 0 0 0 0 20]

 
 
 
 
 

 

 
 
 

𝑃 

 

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 10 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 100]
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𝑅 

 

[
10−50 0 0

0 10−50 0
0 0 10−50

] 

𝑢𝑚𝑖𝑛 [−0.7 − 0.7 − 0.7] 
𝑢𝑚𝑎𝑥  [0.7        0.7        0.7] 

Table 10: MPC 1 settings 

 

 

Parameter Chosen value 

𝑇𝑠 0.1 s 

𝑇𝑝 0.2 s 

 
 
 

𝑄 

 

[
 
 
 
 
 
500 0 0 0 0 0
0 500 0 0 0 0
0 0 20 0 0 0
0 0 0 100 0 0
0 0 0 0 100 0
0 0 0 0 0 100]

 
 
 
 
 

 

 
 
 

𝑃 

 

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 10 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 100]

 
 
 
 
 

 

 
 

𝑅 

 

[
10−50 0 0

0 10−50 0
0 0 10−50

] 

𝑢𝑚𝑖𝑛 [−0.7 − 0.7 − 0.7] 
𝑢𝑚𝑎𝑥  [0.7        0.7        0.7] 

Table 11: MPC 2 settings 

 

The main differences between the two controllers is related only to two elements, how it is 

possible to see from Table 10 and 11: prediction horizon and sixth diagonal parameters of the Q 

matrix. MPC 2 is identical to the one employed in the previous simulations, as it always resulted 

more than effective in the final phase of the manoeuvre. However, for MPC 1, the choice of a 

smaller prediction horizon and a sensitively smaller weight on the velocity with respect to the 

approach axis results optimal. The main consequence of a smaller prediction horizon is a slower 
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response of the system, but also the absence of overshoots and undesired behaviours. In this 

case, in particular, the prediction horizon is equal to the sampling time, thus the predictive 

capability of the MPC is reduced to minimum. In spite of this, the results are absolutely satisfying. 

The weight on velocity is lowered to 20 in order to force the relative positions to get faster to 

reference values, and to avoid a too long transient and too invasive oscillations. 

After applying these changes to the control strategy, the simulation setup is chosen: the worst 

case scenario is imposed in terms of uncertainties on initial conditions, by applying  

a) +𝟐. 𝟓 𝒎 on relative position (all three axes); 
b) +𝟐 𝒌𝒈 on the mass; 
c) +𝟏𝟎° on all three attitude angles; 
d) +𝟎. 𝟐 𝒓𝒂𝒅/𝒔 on angular velocity (all three axes). 
 

Simulations are performed both for V-bar and R-bar approach, outlining the very same results in 

both cases. In Figures from 92 to 96 and from 99 to 103 it is clear how the system behaves in the 

expected way as much as concerns relative position: there are no overshoots in the initial phase 

of the manoeuvre, the parameters converge to reference values after less than 5 meters along 

the approach axis. Acceptance cone constraint is respected in both cases and, additionally, there 

is no need to introduce a further hold point in the manoeuvre, in correspondence of the change 

between MPC 1 and MPC 2 which results smooth and homogeneous. In Figures 97, 98, 104, 105 

input and velocity time responses are described in order to outline that there are no significant 

changes in terms of control efforts and speed of the chaser with respect to the previous 

simulations.  

 

Figure 92: zx relative position - worst case scenario 
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Figure 93: zx relative position (detail) - worst case scenario 

 

 

 

 

Figure 94: zy relative position - worst case scenario 
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Figure 95: zy relative position (detail) - worst case scenario 

 

 

 

 

 

Figure 96: relative position 3d and acceptance cone on V_bar - worst case scenario 
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Figure 97: input time response on V_bar - worst case scenario 

 

 

 

 

Figure 98: relative velocity time response on V_bar - worst case scenario 
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Figure 99: xz relative position - worst case scenario 

 

 

 

 

Figure 100: xz relative position (detail) - worst case scenario 
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Figure 101: xy relative position - worst case scenario 

 

 

 

 

 

Figure 102: xy relative position (detail) - worst case scenario 
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Figure 103: relative position 3d and acceptance cone on R_bar - worst case scenario 

 

 

 

 

 

Figure 104: input time response on R_bar - worst case scenario 
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Figure 105: relative velocity time response on R_bar - worst case scenario 
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4. Off nominal conditions 
In order to deepen the topic of safety, which is a crucial condition in such applications as space 

missions, a scenario of fault tolerance is investigated, as much as concerns the thrusters. In 

particular, random uncertainty with 0.1° amplitude is introduced in the inclination of each one 

of the eight nozzles involved in the propulsion system (α and β angles introduced in 2.2.2.1). This 

is, in fact, a reasonable disturbance due to construction errors which can actually occur in a real-

life scenario.  

However, the most critical condition studied for the sake of this thesis is the breakdown of a 

thruster valve, in a single failure framework. The most common scenario consists of the total 

opening or total closing of a valve, along the whole studied manoeuvre. In the former case 

hence, one of the eight thrusters produces the maximum amount of thrust which is available per 

each nozzle. In the latter case, one of the eight nozzles is practically shut down and does not 

produce any force. Due to the peculiar disposition of the nozzles on the spacecraft (Figure 30), 

the failure on every different thruster causes different reactions on the whole manoeuvre, thus 

resulting in a not at all trivial problem.  In this part, the above discussed scenario is described, 

by means of the results obtained from simulations performed in both V-bar and R-bar approach 

conditions. Each simulation is developed with one valve closed/open at a time, outlining a total 

of 16 different cases (referring to Figure 30 for thrusters’ identification, valve a closed, valve a 

open, valve b closed, valve b open, …, valve h open). Only the plots which result effective for the 

sake of the discussion are reported in the following paragraphs: that is why angular velocity and 

quaternion time responses are not present. Even though these parameters are fundamental for 

the purpose of the manoeuvre and have always been outlined in the previous analysis, in this 
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part of the work no significant variations are encountered in them with respect to the nominal 

case, so they are excluded from further considerations. 

4.1 Valve a closed  
 

 

 

Figure 106: relative position - valve a closed 
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Figure 107: time responses - valve a closed 

 

It is clear from Figure 106 (four upper plots related to V-bar approach, the four lower ones 

referred to R-bar) how, in this case, acceptance cone constraint is not satisfied, apart from the 

zy relative position case. The manoeuvre, in this case, lasts less than 90 seconds, since the lack 

of actuation causes the inability to well balance the thrust, bringing thus the chaser to mating 

too soon. This results in a too high final velocity.  

In Figure 107, representing time responses, it is possible to outline how, both in V-bar and R-bar 

(respectively on the left and on the right) approaches, input actions are included in the 

prescribed bound, although for the whole sequence they are brought to saturation values. 

Disturbance torque caused by thruster misalignment has a significant value, with respect to the 

nominal case (2.2.2.1), in both kinds of approach. Velocities along V-bar and R-bar have a 

comparable time response, similar to the nominal case but truncated right after the peak value 

of the overshoot. 
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4.2 Valve a open  
 

 

Figure 108: relative position - valve a open 
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Figure 109: time responses - valve a open 

 

In this case, as much as concerns V-bar approach, the chaser is not even able to complete the 

manoeuvre and never reaches the target (four upper plots in Figure 108), basically remaining 

fixed at the same point (approximately at 3 meters from the docking point) for most of the 

simulating sequence, because of the invasive disturbance introduced by the above-said failure. 

As regards R-bar, it is clear from the four lower plots in Figure 108 how the acceptance cone 

constraint is not satisfied even in this case.  

Concerning time responses (Figure 109, left V-bar, right R-bar), input actions never exceed the 

prescribed bound values. The main difference in terms of input actions with respect to the 

nominal case is that the behaviour is not impulsive (i.e. peak value at the beginning of the 

sequence, then decreasing and converging to zero) but remains close to saturation values (at 

least for two elements of the input vector) for the whole simulation. This phenomenon is due to 

the attempt of the system to compensate the undesired action of the thruster caused by the 

failure and happens in both V-bar and R-bar cases. 

Torque due to thruster misalignment is even higher than before, gaining an order of magnitude 

with respect to the “valve a closed” case. The overall velocity of the chaser decreases because 

of the conflict in the actuation system due to the said failure. This lower velocity causes the 

impossibility to conclude the manoeuvre, along V-bar, and the deviation from the docking point 

with violation of acceptance cone constraint, along R-bar.  
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4.3 Valve b closed  
 

 

 

 

Figure 110: relative position - valve b closed 
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Figure 111: time responses - valve b closed 

 

In Figure 110 it is possible to outline that the R-bar approach, in this case, is successful: 

acceptance cone constraint is satisfied and no particular anomalies emerge from the behaviour 

of the system. As regards V-bar approach, along the x-axis there is an error on the final position 

of the chaser equal to 2 cm at approximately 5 cm distance from the arrival point, thus the 

acceptance cone constraint is not satisfied.  

It is possible to see, from time response plots in Figure 111, that in the V-bar approach scenario 

the simulation lasts less than 100 seconds, resulting in a too high approach velocity, just like in 

the case of a valve’s failure (fully closed). This happens, once again, because the propulsion 

system is not able to well balance the necessary thrust and the spacecraft cannot slow down 

properly. In this case, in fact, control efforts are saturated for the whole sequence since the 

system is attempting to correct the failure without success. As regards the R-bar approach, 

instead, there are no significant differences with respect to the nominal case, so it is fair to say 

that this kind of failure does not affect the success of the R-bar RVD manoeuvre at all. 
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4.4 Valve b open  
 

 

 

 

Figure 112: relative position - valve b open 
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Figure 113: time responses - valve b open 

 

Both in V-bar and R-bar approaches the acceptance cone constraint is not satisfied (Figure 112). 

From time responses (Figure 113) it is clear how the torque due to thruster misalignment has a 

relevant value, in this case. In the V-bar approach the manoeuvre lasts more than the usual, with 

an overall velocity lower than nominal case and input values trying to compensate the unwanted 

thrust caused by the failure. In the R-bar case what happens is very similar to the previous failure 

related to V-bar approach: the chaser gets to the target too soon, because of the excess of 

actuation due to the opening of the valve, resulting in a too high approach velocity, whose time 

response is truncated right after the peak of its overshoot. In this case, in fact, control inputs are 

brought to saturation for the whole sequence. 
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4.5 Valve c closed  
 

 

 

 

Figure 114: relative position - valve c closed 
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Figure 115: time responses - valve c closed 

 

 

In this case the behaviour of the system is the same as the one described in 4.1 (valve a closed): 

in both V-bar and R-bar approaches the manoeuvre ends too soon because of the inability to 

slow down caused by the lack of actuation. All the plots described in Figure 114 and 115 are 

almost identical to the ones in 4.1, so the same considerations hold. 
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4.6 Valve c open  
 

 

 

 

Figure 116: relative position - valve c open 
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Figure 117: time responses - valve c open 

 

 

In this case the behaviour of the system is the same as the one described in 4.2 (valve a open): 

while in V-bar approach the manoeuvre cannot be brought to completion, in the R-bar case the 

chaser deviates from the docking point, exiting acceptance cone boundaries. All the plots 

described in Figure 116 and 117 are almost identical to the ones in 4.2, so the same 

considerations hold. 
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4.7 Valve d closed  
 

 

 

 

Figure 118: relative position - valve d closed 
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Figure 119: time responses - valve d closed 

 

 

In this case the behaviour of the system is the same as the one described in 4.3 (valve b closed): 

while in V-bar approach acceptance cone boundaries are not respected, R-bar manoeuvre 

proceeds smoothy with acceptance cone satisfaction. All the plots described in Figure 118 and 

119 are almost identical to the ones in 4.2, so the same considerations hold. 
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4.8 Valve d open  
 

 

 

 

Figure 120: relative position - valve d open 
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Figure 121: time responses - valve d open 

 

 

From Figure 120 it is clear how the acceptance cone constraint is not satisfied in both kinds of 

approach, so the manoeuvre does not result successful in both scenarios.  

In terms of time responses (Figure 121) the control actions are always included within the 

prescribed bounds: in the V-bar case it is evident how the controller tries to compensate the 

undesired thrust caused by the failure, while in the R-bar approach input values are brought to 

saturation for the whole sequence. In the V-bar case, the manoeuvre lasts much longer than the 

nominal case, the overall velocity is lower than the nominal scenario; in the R-bar approach, 

although, the simulation ends after just 80 seconds, resulting in the situation largely described 

in the previous paragraphs: too high approach velocity, whose time response is truncated after 

the peak value. Torque induced by thruster misalignment is comparable in both cases, with the 

same order of magnitude. 
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4.9 Valve e closed  
 

 

 

 

Figure 122: relative position - valve e closed 
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Figure 123: time responses - valve e closed 

 

 

In the manoeuvre along V-bar, the acceptance cone constraint is satisfied, while in the R-bar 

case it is not (Figure 122). The procedure along R-bar ends after 85 seconds, with the same 

features discussed before in case of a too brief simulation (high approach velocity, saturated 

input actions). V-bar parameters are the same as the one obtained in nominal conditions, apart 

from the torque resulting from thruster misalignment, so the manoeuvre along V-bar is 

successful. 
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4.10 Valve e open  
 

 

 

 

Figure 124: relative position - valve e open 
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Figure 125: time responses - valve e open 

 

 

In this case, Figure 124 shows how acceptance cone constraint is not satisfied in anyone of the 

two studied cases. From Figure 125 it is possible to see that simulation along V-bar lasts less than 

80 seconds, showing all the same features observed, in the previous cases, in such a short-timed 

simulation: saturated input values, too high approach velocity. In the R-bar case, the peak 

velocity of the chaser is much lower with respect to the nominal case. Additionally, input 

commands do not have the behaviour which is typical of nominal conditions, since they are 

trying to compensate the unwanted action of the faulty thruster. This phenomenon causes the 

inability to get to docking point because of the impossibility to well balance the overall thrust. 

In both scenarios, misalignment torque has a significant value. 
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4.11 Valve f closed  
 

 

 

 

Figure 126: relative position - valve f closed 
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Figure 127: time responses - valve f closed 

 

 

 

While in the R-bar approach Figure 126 shows that the acceptance cone constraint is respected, 

in the case of the simulation along V-bar, this requirement is not satisfied.  

Time responses described by the plots in Figure 127 outline a close to nominal behaviour 

concerning R-bar approach, apart from misalignment torque which has a non negligible value, 

as usual. In the case of V-bar approach, the simulations lasts less than 250 seconds and, thus, is 

not able to guarantee an optimal performance. 
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4.12 Valve f open  
 

 

 

 

Figure 128: relative position - valve f open 
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Figure 129: time responses - valve f open 

 

 

 

Figure 128 shows how no simulation results successful in this case, for both the approaches. 

From Figure 129 it results clear how the simulations are completed in a too short time, causing 

the main problems already outlined above in similar cases, resulting in an unsuccessful 

manoeuvres with this kind of failure. 
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4.13 Valve g closed  
 

 

 

Figure 130: relative position - valve g closed 
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Figure 131: time responses - valve g closed 

 

 

 

In this case, plots described in Figures 130 and 131 show that this scenario is absolutely 

analogous to the one discussed in 4.9 (valve e closed). Manoeuvre along V-bar results effective, 

thanks to the satisfaction of cone constraint and, furthermore, time response plots do not show 

any anomaly. However the manoeuvre along R-bar is completed after less than 100 seconds, 

resulting in an undesired condition already analysed before. 
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4.14 Valve g open  
 

 

 

 

Figure 132: relative position - valve g open 
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Figure 133: time responses - valve g open 

 

In this case, plots described in Figures 132 and 133 show that this scenario is absolutely 

analogous to the one discussed in 4.10 (valve e open). Both manoeuvres result unsuccessful, as 

shown by the fact that acceptance cone constraint is not satisfied. Particular attention can be 

paid to time responses which, in the V-bar case, outline a short duration of the simulation (high 

final velocity truncated after its peak value, saturated inputs for the whole sequence). In the R-

bar approach, instead, the control action tries to compensate the undesired thrust resulting 

from the failure without succeeding: the outcome is a too low velocity and the inability to reach 

the docking point. 
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4.15 Valve h closed  
 

 

 

 

Figure 134: relative position - valve h closed 
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Figure 135: time responses - valve h closed 

 

 

 

In this case, as shown by Figure 134, acceptance cone constraint is satisfied in both kinds of 

approaches. This is reflected also on the time response plot described in Figure 135 which do 

not outline any anomalies with respect to the nominal case, apart from the torque produced by 

thruster misalignment. 
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4.16 Valve h open  
 

 

 

 

Figure 136: relative position - valve h open 
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Figure 137: time responses - valve h open 

 

 

In both scenarios investigated in this case, none of the manoeuvres is successful as the 

acceptance cone constraints are not satisfied (Figure 136). From Figure 137 it is clear how both 

simulations end after less than 80 seconds, causing the widely discussed problems typical of this 

phenomenon.  

In order to sum up the outcomes of this study in off-nominal conditions, it is very clear how the 

failure in actuation system (in particular thrusters) is responsible of heavily affecting the success 

of the mission. There are some similarities in the consequences exerted on the manoeuvres 

across different failures: when a and c valves result faulty, the results on simulations are almost 

identical. The same holds for e and g valves and for the case in which d valve is fully closed and 

b valve is shut down as well.  

In order to be able to evaluate the success rate of the simulations in each one of the investigated 

conditions, the following table is made: 
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Valve V-bar R-bar 

a closed Fail Fail 

a open Fail Fail 

b closed Fail Success 

b open Fail Fail 

c closed Fail Fail 

c open Fail Fail 

d closed Fail Success 

d open Fail Fail 

e closed Success Fail 

e open Fail Fail 

f closed Fail Success 

f open Fail Fail 

g closed Success Fail 

g open Fail Fail 

h closed Success Success 

h open Fail Fail 
Table 12: success rate - off nominal conditions 
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5. Conclusions 
A control strategy based on Model Predictive Control and on Sliding Mode Control is designed 

for a 12 U CubeSat involved in a Rendezvous and Docking manoeuvre. By means of a progressive 

refinement of the model employed for simulations, on MATLAB and Simulink, it results possible 

to obtain a more and more precise degree of approximation, recreating a scenario as realistic as 

possible thanks to disturbance modelling. The addition of further disturbing elements to the 

overall system is performed concurrently with adaptive tuning of controllers, in a progressive 

fashion, in order to gradually increase the complexity of the closed loop control system. Once 

concluded the design phase, the effectiveness of the final control strategy is proven. 

In the following section, 20 sets of 600 total Montecarlo simulations are performed, in different 

scenarios, by adding weak to strong uncertainties to the initial conditions of the main 

parameters involved in the problem formulation. This procedure is developed for the sake of a 

robustness analysis, in order to take into account the most common sources of errors in the 

studied application. After verifying the robustness of the closed loop control system, a further 

refinement of the orbit controller results necessary, in order to obtain a more convenient 

trajectory and to avoid excessive overshoots.  

In the last part of the work, an analysis of off-nominal conditions is performed, in a single failure 

framework concerning the propulsion system of the spacecraft, whose contingent breakdown, 

in most cases, would irreversibly affect the outcome of the mission.  

As much as concerns nominal conditions, even in a setup including worst case scenario 

uncertainties and disturbances, the designed control strategy results very effective, with a 100% 

success rate of each performed simulation. 
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7. Appendix – STK simulations 
In order to provide a better overview of the outcome of the manoeuvre, the results obtained by 

means of MATLAB/Simulink simulations are plotted on STK, a Multiphysics software application 

employed for mission analysis. The RVD procedure is plotted both for V-bar and R-bar 

approaches, in nominal conditions. 

In Figures 138 and 139 the RVD manoeuvre along V-bar is represented. It is clear from Figure 

138 how V-bar coincides with z-axis according to LVLH reference frame. The starting point of the 

manoeuvre corresponds to the one where the red caption SROC is found, while the trajectory 

described by the chaser is the one in green and appears to be a straight line fixed onto reference 

values, as simulation results suggest in the previous sections of this work. LVLH frame is 

represented in yellow and its origin corresponds with the centre of mass of Space Rider. The 

dashed blue lines represent the boundary of Space Rider’s keep out sphere. 

 

 

Figure 138: V-bar approach - LVLH frame 
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Figure 139: V-bar approach - zoom on SROC 

 

In the following two pictures (Figures 140 and 141) the R-bar approach is visualized. As in the V-

bar case, the trajectory has a straight-line shape and no perturbations occur along the 

manoeuvre. 

 

 

Figure 140: R-bar approach 
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Figure 141: R-bar approach - zoom 


