
 

Politecnico di Torino 

 

 

 

 

 

 
Master’s degree course in Mechatronic Engineering 

Master’s Degree Thesis 

 

 

Development of a ROS2 flight software 

framework & Attitude Determination 

application for nanosatellites 

 

 

Candidate:                 Supervisor: 

Marzani Nicolò                     Prof. Corpino Sabrina  

               Tutor: 

   Eng. Zanotti Andrea 

 
Academic year 2020/2021 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 
Ad A. e alla mia famiglia 



 

1 
 

TABLE OF CONTENTS 

 
1. INTRODUCTION ..................................................................................................................................................6 

1.1. Nanosatellites overview ................................................................................................................................6 

1.2. Thesis objective and context .......................................................................................................................7 

1.3. Structure of the thesis ....................................................................................................................................9 

2. SYSTEM ARCHITECTURE ............................................................................................................................. 11 

2.1. Project overview ........................................................................................................................................... 11 

2.2. Hardware configuration ............................................................................................................................. 11 

2.2.1. Temperature sensor AD7415 .............................................................................................................. 12 

2.2.2 AD7415 Testing ......................................................................................................................................... 14 

2.2.3 Magnetometer HMC5883L .................................................................................................................... 15 

2.2.4 HMC5883L Testing .................................................................................................................................. 17 

2.2.5 Sun sensor E910.86 ................................................................................................................................. 17 

2.2.6 E910.86 Testing......................................................................................................................................... 20 

2.2.7 Raspberry PI 3 B+ ..................................................................................................................................... 22 

2.3 Software configuration ............................................................................................................................... 23 

2.3.1 ROS2 overview and advantages .......................................................................................................... 24 

3 ROS2 FLIGHT SOFTWARE FRAMEWORK ............................................................................................ 28 

3.3 Watchdog node .............................................................................................................................................. 28 

3.3.1 Watchdog Testing ..................................................................................................................................... 31 

3.4 Sensors Bus node .......................................................................................................................................... 32 

3.4.1 I2C bus node ............................................................................................................................................... 34 

3.4.2 SPI bus node ............................................................................................................................................... 36 

3.5 Sensors Telemetry node ............................................................................................................................. 39 

3.5.1 Telemetry node testing .......................................................................................................................... 41 

4 ATTITUDE DETERMINATION .................................................................................................................... 42 

4.1 Rotation matrices and quaternions ....................................................................................................... 42 

4.2 Reference Frames ......................................................................................................................................... 45 

4.3 General overview of AD systems............................................................................................................. 48 

4.4 IGRF Earth magnetic field .......................................................................................................................... 49 

4.5 Sun position vector in ECEF frame ......................................................................................................... 51 

4.6 TRIAD algorithm............................................................................................................................................ 53 

4.7 Attitude determination node .................................................................................................................... 54 



 

2 
 

4.8 Attitude determination node testing ..................................................................................................... 59 

5 REAL-TIME MATLAB ANIMATION .......................................................................................................... 61 

5.1 Settings of ROS toolbox ............................................................................................................................... 61 

5.2 Real- time animation of a 3U satellite ................................................................................................... 62 

5.3 Tests of the real-time animation ............................................................................................................. 65 

5.4 Noise analysis of the attitude determination ..................................................................................... 66 

6 CONCLUSIONS ................................................................................................................................................... 68 

7 APPENDIX A: BUILDROOT .......................................................................................................................... 69 

8 APPENDIX B: ROS2 CODE ............................................................................................................................ 71 

8.1 Watchdog node code .................................................................................................................................... 71 

8.1.1 Watchdog launch file code .................................................................................................................... 74 

8.2 I2C reading node code ................................................................................................................................. 74 

8.3 SPI reading node code ................................................................................................................................. 78 

8.4 Sensors code ................................................................................................................................................... 81 

8.5 I2C Sensors telemetry node code ........................................................................................................... 88 

8.6 SPI sensors telemetry node code ............................................................................................................ 91 

8.7 Attitude determination node code ......................................................................................................... 94 

9 APPENDIX C: MATLAB CODE .................................................................................................................. 101 

9.1 Attitude callback ......................................................................................................................................... 101 

9.2 Animation ...................................................................................................................................................... 102 

 

 

 

 

 

 

 

 



 

3 
 

TABLE OF FIGURES 

 

Figure 1. 1: Tyvak's Commtrail Satellite (3U) ....................................................................................................6 

Figure 1. 2: V-Shaped Software flow ......................................................................................................................7 

 

Figure 2. 1: E910.86 MISO output voltages. Vdd=4.5V to 5.5V ................................................................ 12 

Figure 2. 2: Components connections circuit diagram ................................................................................ 12 

Figure 2. 3: AD7415 Register structure ............................................................................................................. 13 

Figure 2. 4: AD7415 Configuration register bits definition ....................................................................... 13 

Figure 2. 5: AD7415 Temperature value register readings output ........................................................ 13 

Figure 2. 6: AD7415 circuit diagram ................................................................................................................... 14 

Figure 2. 7: Constant output temperature ........................................................................................................ 14 

Figure 2. 8: Variable output temperature ......................................................................................................... 15 

Figure 2. 9: HMC5883L register list .................................................................................................................... 15 

Figure 2. 10: HMC5883L channel X data output registers A and B ......................................................... 16 

Figure 2. 11: HMC5883L circuit diagram .......................................................................................................... 16 

Figure 2. 12: Output values of the magnetometer ......................................................................................... 17 

Figure 2. 13: Physical model of Xn angles......................................................................................................... 18 

Figure 2. 14: E910.86 write and read commands used ............................................................................... 18 

Figure 2. 15: Digital output – angles relation .................................................................................................. 19 

Figure 2. 16: Sun vector model ............................................................................................................................. 19 

Figure 2. 17: E910.86 circuit diagram ................................................................................................................ 20 

Figure 2. 18: Setting of the Sun sensor testing ............................................................................................... 20 

Figure 2. 19: Xn and Yn equal to 90° test .......................................................................................................... 21 

Figure 2. 20: Xn changing test ............................................................................................................................... 21 

Figure 2. 21: Yn changing test ............................................................................................................................... 22 

Figure 2. 22: Raspberry Pi 3 B+ board and GPIO scheme........................................................................... 22 

Figure 2. 23: Final circuit with: Raspberry PI, logic level converter and sensor module .............. 23 

Figure 2. 24: ROS2 latest distributions and EOL dates ................................................................................ 25 

Figure 2. 25: Publisher “Node” sends a message over the topic “Topic” .............................................. 26 

Figure 2. 26: Call-and-response method implemented by the service .................................................. 26 

Figure 2. 27: rqt_graph of the official teleop turtle tutorial ....................................................................... 27 

 

Figure 3. 1: Mark-1 watchdog flow chart .......................................................................................................... 28 

Figure 3. 2: Watchdog class .................................................................................................................................... 29 

Figure 3. 3: ROS2 based watchdog flow chart ................................................................................................. 30 

Figure 3. 4: Watchdog config YAML file ............................................................................................................. 30 

Figure 3. 5: Watchdog test. All nodes present ................................................................................................. 31 

Figure 3. 6: Watchdog Test. SPI node missing ................................................................................................ 31 

Figure 3. 7: Watchdog test. Both nodes missing ............................................................................................ 32 

Figure 3. 8: SPI bus example with several identical sensors ..................................................................... 33 

Figure 3. 9: Realistic situation with many sensors on two different buses ......................................... 33 

Figure 3. 10: I2C protocol representation ........................................................................................................ 34 



 

4 
 

Figure 3. 11: Sensors custom message structure .......................................................................................... 35 

Figure 3. 12: I2C bus node flow chart ................................................................................................................. 35 

Figure 3. 13: I2C bus node class ........................................................................................................................... 36 

Figure 3. 14: I2C bus node YAML configuration file ..................................................................................... 36 

Figure 3. 15: SPI communication protocol example with a Master and three slaves ...................... 37 

Figure 3. 16: SPI_bus node class diagram ......................................................................................................... 38 

Figure 3. 17: SPI_bus node execution flowchart ............................................................................................ 38 

Figure 3. 18: SPI_bus node configuration file .................................................................................................. 38 

Figure 3. 19: I2C/SPI bus sensors telemetry class ........................................................................................ 39 

Figure 3. 20: I2C/SPI bus sensors telemetry class ........................................................................................ 40 

Figure 3. 21: Telemety node testing ................................................................................................................... 41 

Figure 3. 22: Reading Telemetry data ................................................................................................................ 41 

 

Figure 4. 1: F1, F2 reference frames and a generic particle ...................................................................... 42 

Figure 4. 2: Position of the particle with respect to F1, F2 ........................................................................ 42 

Figure 4. 3: R written in matrix form in function of (x,y,z) ........................................................................ 43 

Figure 4. 4: Quaternion equivalent notations ................................................................................................. 44 

Figure 4. 5: Algebra of quaternions ..................................................................................................................... 44 

Figure 4. 6: DCM ↔ Quaternions formulas ....................................................................................................... 45 

Figure 4. 7: Representation of ECEF frame ...................................................................................................... 46 

Figure 4. 8: ENU frame with respect to ECEF .................................................................................................. 47 

Figure 4. 9: Body frame used representation .................................................................................................. 47 

Figure 4. 10: Explanation of attitude determination .................................................................................... 48 

Figure 4. 11: Earth magnetic field representation ........................................................................................ 50 

Figure 4. 12: Geocentric and geodetic coordinates ....................................................................................... 50 

Figure 4. 13: M_ECEF coordinates ....................................................................................................................... 51 

Figure 4. 14: S_ECEF computation in Skyfield ................................................................................................ 52 

Figure 4. 15: S_ECEF coordinates ......................................................................................................................... 52 

Figure 4. 16: TRIAD algorithm reference frame ............................................................................................. 54 

Figure 4. 17: Attitude determination class diagram ..................................................................................... 54 

Figure 4. 18: Attitude determination flow chart ............................................................................................ 56 

Figure 4. 19: Representation of magnetometer and sun sensor reference frame ............................ 57 

Figure 4. 20: NED to ECEF frame ......................................................................................................................... 58 

Figure 4. 21: Architecture of the framework ................................................................................................... 59 

Figure 4. 22: Attitude determination testing ................................................................................................... 59 

 

Figure 5. 1: DEFAULT_FASTRTPS_PROFILES.xml file .................................................................................. 61 

Figure 5. 2: ros2genmsg operations ................................................................................................................... 62 

Figure 5. 3: Generation of attitude visualizer node ...................................................................................... 62 

Figure 5. 4: 3U satellite simulation ...................................................................................................................... 63 

Figure 5. 5: Rotation of the Matlab frame w.r.t body frame ...................................................................... 63 

Figure 5. 6: Rotation about Z axis ........................................................................................................................ 65 

Figure 5. 7: Rotation about Y axis ........................................................................................................................ 65 

Figure 5. 8: Rotation about X axis ........................................................................................................................ 66 



 

5 
 

Figure 5. 9: Attitude determination noise analysis ....................................................................................... 67 

 

Figure 7. 1: Buildroot 2020 menuconfig ........................................................................................................... 69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

6 
 

1.  INTRODUCTION 
 

1.1. Nanosatellites overview 

 
In recent years, space exploration has attracted a lot of social interest and economic investments 

by both public and private entities. The development of new technologies, that can be useful and 

applied in many fields, has allowed the foundation of many realities that are now leaders of the 

space industry.  In this context a particular implementation of these new technologies, that is 

becoming a very important part of the space exploration sector, is made up by the CubeSats.  

 

The first CubeSat was developed by the California Polytechnic State University and Stanford 

University in 1999 for educational purposes, then due to their low costs they have been adopted 

in space industry for many types of missions. These artificial satellites are small and light, 

normally with a mass below 500 kg, and they are instrumented with particular devices called 

payloads used for collecting data and in general for performing an assigned mission (data 

collection, science experiments, …). Depending on their masses, they can be classified in 

minisatellites (100~500Kg), microsatellites (10~100Kg) or nanosatellites (1~10Kg). In general 

the standard for CubeSats is the 1U (one unit) that has dimensions 10x10x10 cm, 1 𝑑𝑚3 volume 

and a weight not more than 1.33 Kg;  is also possible to have bigger ones with other 

configurations like 3U CubeSat with dimensions of 10x10x30 cm or 6U CubeSat 10x20x30cm 

and so on. 

 

 

Figure 1. 1: Tyvak's Commtrail Satellite (3U) 

They are widely employed because their production and launch costs are cheaper compared to 

a bigger standard satellite: in general the bigger is the satellite the bigger the rocket must be for 

reaching the desired orbit and, in addition, it is also possible to deploy more satellites with a 

single launch. Nowadays nanosatellites can be applied in many different fields that range from 

earth observation to space exploration and, in the near future, in planetary defence too with the 



 

7 
 

ESA Hera mission. Due to their small dimensions they can be easily employed in swarm for 

performing missions that could not be possible for single satellites: data collection about the 

same phenomenon from different positions, in-orbit inspection of bigger satellites and many 

others. Even if their concept is very simple since the body of these satellite is made up by cubes, 

they involve very complex technologies from both electronic/mechatronics (sensors, actuators, 

…) and software side for implementing all the required subsystems that the satellite needs. 

  

Among these subsystems there is the ADCS (attitude, determination and control system), 

intended for monitoring the attitude of the satellite and to autonomously perform control 

actions on the actuators for accomplishing several duties, for example the “detumbling” of the 

satellite when it is deployed in the orbit. This system in particular requires a software 

framework able to collect data from several sensors and to send the right control action to the 

mounted actuators, at a fixed rate (that can be very high). In order to simplify the software 

implementation and management, a framework like ROS2 (second version of the Robot 

Operating System) can take advantage for its simplicity and modularity. It’s strongly supported 

by the community and provides native functions that ranges from navigation services to 

graphical visualization for simulation and debugging. ROS2 it’s widely used in the robotic 

industry, but it can be easily applied to different fields due to the advantages listed before. 

 

1.2. Thesis objective and context 
 

This thesis work is an R&D (research and design) project which context takes place in the 

aerospace industry, particularly in the field of software engineering for nanosatellites. The 

design and the validation of a software framework is one of the most critical phases in the 

realization of a complex system like nanosatellites and it must follow a precise life cycle dictated 

by software engineering rules. The steps to achieve a good software realization can be described 

with a V-shaped process flow, presented in Figure 1. 2: 

 

 

Figure 1. 2: V-Shaped Software flow 



 

8 
 

The left part of the V-shaped flow includes the verification and design process of the system 

while the right part includes the validation process: 

 

 The first phase is the analysis of the system in terms of requirements. Based on the 

functionality of the system, the requirements can be classified in functional requirements 

(to describe how the system must respond to specific input and the list of the operations 

that the system must perform) and domain requirements (to specify the domain of 

interest of the system). This phase also incorporates the prediction of the cost of the 

system.  

 

 The second phase is the system design and it includes a first part concerning the 

architectural design, which defines which are the applications that must be implemented 

and how they communicate with each other. The second part is the detailed design and 

program specification, to define the deadlines for the development of the applications 

and how to implement them.  

 

 After that, the drawing up of the code can start and it results to be the core phase of the 

software development.  

 

 Once all the applications of the software are developed, the software needs to be 

validated. To do this, different kind of tests are performed to check that the system works 

properly. The first test to be performed is the unit testing which consists to test the single 

applications developed to check if bugs are present and if they realize the proper 

functionality. After that, the applications modules are integrated into subsystems and 

they are tested together as a group (integration testing). If in these two phases, all the 

functionalities are satisfied and the subsystems work properly, the whole system is 

integrated and tested (system testing) to check that all the functionalities are 

implemented and cooperate properly. 

 

 Finally, the software framework design can be considered completed and it is delivered 

to the clients, but it always needs to be maintained. 

 

The maintaining phase includes also the so-called “evolution” of the system, which incorporate 

bugs to be fixed, changes in the requirements, new updates and releases or new features to be 

added. All these operations are considered critical since they increase the cost of the 

development.  

To simplify these processes, new approaches to software engineering are considered. A first and 

widely adopted solution is MBSD (Model Based Software Design) which consists in realizing a 

model of the system in a simulation environment like Matlab/Simulink and auto-generate the 

C/C++ code, with provided toolboxes, for implementing control systems in suitable embedded 

systems. Considering nanosatellites as example, this solution can be a good choice for the 

development of the ADCS since the control laws are designed in Simulink and, once the 

simulations results are evaluated, the code can be directly obtained from these models. 

Another possible solution is to design the software framework with tools and libraries like ROS 



 

9 
 

(Robot operating system) or ROS2. These have taken hold mainly in robotics applications but 

they can be easily employed in the design of any kind of complex system, even nanosatellites, by 

providing a lot of APIs (Application programming interfaces) to implement common features for 

mechatronic systems. 

In this scenario takes place this thesis work, linked to a new R&D project started by Tyvak 

International and intended to demonstrate and realize a first implementation of an Italian flight 

software framework for nanosatellites using ROS2 and apply it to an attitude determination 

application to illustrate the proper functioning of the whole system. 

The main reason that convinced the software team of Tyvak International to start this new R&D 

project (named Phoenix) is related to the fact that Tyvak International is a start-up born by the 

American counterpart Tyvak Nanosatellites that provides technologies for the their satellites, 

including the software framework.  

For this reason Tyvak International does not hold its own flight software framework, and that 

could cause problems in managing the software, find bugs and realize patches to correct them. 

This means that, if there is an intention of implementing a new feature, a reverse engineering 

process has to be done to understand how to integrate that feature on the provided framework 

realized by Tyvak Nanosatellites. The flight software framework developed by Tyvak 

Nanosatellites (MK-2) is taken as starting point to understand what are the main applications 

that are needed for a real satellite to allow it to perform in-orbit operations. After that, the 

fundamental applications to realize a first implementation of the system to achieve an attitude 

determination (watchdog, reading sensors and telemetry) are implemented into ROS2 nodes 

and their structure will be described in the following chapters of the thesis. 

 

1.3. Structure of the thesis 
 

The thesis is intended to explain the development process of some applications enabling the 

ROS2 flight software framework, by explaining the concept of each node and why the selected 

solution can be better compared to another one.  Finally, an application related to the Attitude 

Control system is studied and tested in MATLAB/Simulink. The thesis is structured as following: 

 

 Chapter 2: a brief explanation of both the hardware and software used for the project, 

starting from the sensor module to the Raspberry Pi 3 B+ embedded system, describing 

their usage and reporting the circuit diagram used as reference for building the final 

electronic circuit. Finally, an overview of ROS2 is presented, listing some peculiarities and 

advantages. 

 

 Chapter 3: description of the implemented nodes in ROS2, explaining the concept of each 

one and some architectural choices. Finally their functioning and the practical 

implementation in python. 

 

 Chapter 4: the general problem of attitude determination is presented within the TRIAD 

algorithm solution. Finally, the attitude determination node is explained in detail. 

 

 



 

10 
 

 Chapter 5: a MATLAB real-time animation is performed to test the system designed in 

ROS2. Particularly, a 3U satellite is simulated to visualize its attitude determination. The 

simulation uses ROS Toolbox that allows the integration of ROS / ROS2 with Matlab / 

Simulink. 

 

 Chapter 6: some personal conclusions about the project and suggestions for future 

improvements and developments. 

 

 Appendix A: general description of Buildroot and description of the first attempt to 

realize an image for a Tyvak custom board 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

11 
 

2.  SYSTEM ARCHITECTURE  
 

2.1. Project overview 
 

Since the objective of the thesis is to realize a first version of a new flight software framework, 

based on ROS2, and to study in details a possible application, a preliminary selection of 

fundamentals applications needed in a flight software is performed. To this aim the MK-2 flight 

software developed by Tyvak Nanosatellites is taken as example, for understand how a flight 

software is designed and which applications are needed for realizing a first implementation.  

Among the applications implemented in the MK-2 flight software, this combination of them has 

been preferred: 

 

 Watchdog: to check the status of other important applications. 

 

 Sensors reader: for enabling the sensor data reading over I2C/SPI buses. 

 

 Sensors telemetry: to store the collected data. 

 

The selection of these applications (detailed in the following sections) is not casual; indeed they 

can ensure the enabling of a first draft of a flight software framework that will be able to collect 

data from sensors, store them and to autonomously react to sudden crashes affecting its 

processes. Moreover this first version of flight software can be used for a simple ADCS 

application.   

In order to test the developed flight software the reference embedded system selected is the 

Raspberry Pi 3 B+. 

 

2.2. Hardware configuration 
 

This section is devoted to broadly introduce all the hardware needed for the thesis project, 

paying attention to the connections between all the components rather than describing in detail 

each one of them; this job will be performed in the following sections. 

The components used are: 

 

 Raspberry Pi 3 B+ as embedded system, used for managing the collected sensors data and 

executing all the ROS2 processes. 

 

 A custom sensor module, provided by Tyvak International, generally used for attitude 

determination purposes. It mounts an AD7415 temperature sensor, an HMC5883L 

magnetometer and a E910.86 sun sensor. 

 



 

12 
 

 A custom connector for interfacing with the sensor module. 

 

 A TXB0108 level shifter for properly connecting the sun sensor to the Raspberry. 

 

A level shifter is a very simple device that rescales a certain voltage, in this case the 5V voltage 

coming from the MISO output line of E910.86, to another desired voltage, in this case the 3.3V 

accepted by the Raspberry GPIO pins. 

The TXB0108 level shifter is mandatory for connecting the E910.86 sun sensor to the Raspberry 

Pi 3 B+ without damaging the board because, as can be seen in Figure 2. 1, the MISO output signal 

that would go from the sun sensor to the Raspberry pins works at voltages that are greater than 

the voltage tolerated by the Raspberry GPIO pins, that is 3.3V. 

 

 

Figure 2. 1: E910.86 MISO output voltages. Vdd=4.5V to 5.5V 

The connections between all the components are schematized in this circuit diagram: 

 

  

Figure 2. 2: Components connections circuit diagram 

2.2.1. Temperature sensor AD7415 
 

The AD7415 sensor is a standalone digital temperature sensor, widely used in several fields of 

applications, that is mounted in the provided sensor module. The serial interface is I2C and 

SMBus compatible, due to this the sensor can be easily interfaced with “smbus2” python library. 

The sensor requires a 2.7V to 5.5V power supply and so it can be used without any problems 

with a Raspberry PI 3 B+. A schematic representation of the sensor register structure is 

portrayed in the following figure: 

 



 

13 
 

 

Figure 2. 3: AD7415 Register structure 

 

To correctly initialize the AD7415 we must configure it by writing a particular byte in its 

configuration register at 0x01 address. 

 

 

Figure 2. 4: AD7415 Configuration register bits definition 
 

For the thesis purposes a very simple configuration has been selected by writing a “1” in the ONE 

SHOT bit of the configuration register. In this way the AD7415 is expected to power-up, perform 

a single conversion and then power down again automatically.  

Finally, the sensor is able to perform the temperature sensing and to store the result on the 

temperature register at 0x00 address. The temperature value register is a 10-bit, read-only 

register that stores the temperature reading from the ADC in twos complement format.  

Two reads are necessary to read the actual data from this register: 

 

 

Figure 2. 5: AD7415 Temperature value register readings output 

 

As written in Figure 2. 5. above, by reading the temperature value register twice, we will obtain 

two bytes containing the actual 10-bit data needed and other N/A bites that are neglectable. 

After extracting the raw digital value of the temperature in the 10-bit form from this row of bits 

(from D6 bit to D15 bit), is easy to retrieve the actual value of the temperature in °C since  the 



 

14 
 

temperature resolution of the ADC is 0.25 °C, which corresponds to 1 LSB of the ADC; so by 

applying the following function: 

 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒[°𝐶] =
𝑅𝑎𝑤_𝑑𝑖𝑔𝑖𝑡𝑎𝑙_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 [𝑑𝑒𝑐𝑖𝑚𝑎𝑙]

4
 

 
the value of the temperature in °C is obtained. 

The circuit diagram of the sensor is reported in Figure 2. 6 

 

 

Figure 2. 6: AD7415 circuit diagram 

 

2.2.2 AD7415 Testing 
 

The AD7415 sensor gives as output the temperature expressed in °C. In order to check the output 

results, a first test is to let the sensor measure a temperature and see if the value read is always 

the same. The resulting output (measured with a frequency of 0.5 Hz) can be seen in Figure 2. 7: 

 

Figure 2. 7: Constant output temperature 

As it can be seen, the temperature is correctly measured with an approximately error of 0.5 °C. 



 

15 
 

After that, the second test that is performed is to heat up the sensor module to check if the 

measured temperature increases with respect to the one measured above. The output obtained 

can be seen in Figure 2. 8: 

 

Figure 2. 8: Variable output temperature 

As it can be seen, considering an initial temperature of 23 °C as the one shown in Figure 2. 8, 

the measured temperature is correctly greater due to the heating of the sensor module. 

2.2.3 Magnetometer HMC5883L 
 

The HMC5883L sensor is a 3-axis magnetometer supported by a 12-bit ADC coupled with a Low 

noise AMR sensor that achieves a 5 milli-Gauss resolution in ± 8 Gauss fields. This enables a 1° 

to 2° compass heading accuracy that makes this sensor suitable for mobile phones and auto-

navigation systems. This magnetometer provides an I2C serial bus interface, just like the 

AD7415, and can be supplied with a voltage up to 3.6V. 

The device is controlled and configured via several on-chip registers, described in Figure 2. 9 

 

 

Figure 2. 9: HMC5883L register list 



 

16 
 

 

So in order to use the sensor we need to properly set the bits of the configuration register A and 

B, and the mode register. This can be easily done with a write operation on the proper address 

location. For our purposes a continuous-measurement mode is selected by writing all zeroes in 

the mode register: in continuous-measurement mode, the device continuously performs 

measurements and places the result in the data register. 

The result is stored in 3 channels (one for each axis): X, Y and Z channels; and each one of them 

is made up by two 8-bit output registers (A and B ) where we can find the desired measurement.  

 

 

Figure 2. 10: HMC5883L channel X data output registers A and B 

Taking for example the A and B output registers of the X channel in Figure 2. 10 is possible to see 

that each register contains 8-bit (the number in parenthesis indicates the default value of that 

bit), and in the specific: the A output register will contain the MSB of the measurement result 

while the B output register will contain the LSB. 

The value stored in these two registers is a 16-bit value in 2’s complement form, whose range is 

0xF800 to 0x07FF.  

The circuit diagram of the sensor is reported in Figure 2. 11  

 

 

Figure 2. 11: HMC5883L circuit diagram 

 

 

 

 

 

 



 

17 
 

2.2.4 HMC5883L Testing 
 

The output values of the magnetic field measured by the magnetometer are expressed in Gauss 

(G). To test it, the values measured on the three axes are printed with a frequency of 0.5 Hz. The 

results are shown in Figure 2. 12: 

 

Figure 2. 12: Output values of the magnetometer 

These values are expressed in the reference frame provided by the magnetometer with X axis 

pointing down, Z axis pointing out of the sensor and Y axis to complete a right-handed 

reference frame. 

2.2.5 Sun sensor E910.86 

 
The E910.86 is a two-axis digital sun sensor, manufactured by Elmos, that provides three sensing 

functions: 

 

 The angle of light incidence in both xz (Xn) and yz (Yn) plane 

 The light intensity for each of two different spectral range 

 

 The chip temperature 

 

The only output used for the purpose of this thesis is the first one. The physical representation 

of the Xn angle, with respect to the magnetometer reference frame, can be seen in Figure 2. 13 

 



 

18 
 

 

Figure 2. 13: Physical model of Xn angles 

The same model can be used for the Yn angle on the yz plane. 

These output values are accessible through the SPI protocol that uses a 16 bit word to 

communicate, composed by an address and a data section. Read commands start with a ‘00’ 

while write commands start with ‘10’. The SPI response always starts with ‘01’. 

According to the sensor datasheet, the commands used in order to initialize the sensor and read 

its result are: 

Command Operation SPI response Data 
10x100XXYYPSZDDD Write 

E910.86 
and analog 
output 
status 

011100XXYYPSZDDD E910.86 
and analog 
output 
status 

X0x000xxxxxxxxxx Read X and 
Y sensor 
angle data 

0100X5X4X3X2X1X0Y5Y4Y3Y2Y1Y0 X and Y 
sensor data 
Yn= angle 
yz-plane 
Xn=angle 
xz-plane 

 

Figure 2. 14: E910.86 write and read commands used 

 

The data section of the word is used to configure the pull diodes (XX and YY operating mode (Z 

and DDD bits). 

In order to communicate with the sensor using the SPI protocol, the Python SPIdev library is 

used. Once the initialization command is sent through the xfer2 SPIdev function, and the SPI 

mode and frequency are set, the sensor is ready to be read. 

Once the byte word (16 bits) is read, we can extract the bits referred to Xn and Yn data obtaining 

the following digital value: X5X4X3X2X1X0Y5Y4Y3Y2Y1Y0. 

The float value of the angles can be easily retrieved by using the following linear relation 

contained in the sensor datasheet and represented in Figure 2. 15. 

 



 

19 
 

𝑋𝑛𝑑𝑒𝑔
=

75∗𝑋𝑛𝑏𝑦𝑡𝑒 𝑤𝑜𝑟𝑑

27
+ 15       𝑌𝑛𝑑𝑒𝑔

=
75∗𝑌𝑛𝑏𝑦𝑡𝑒 𝑤𝑜𝑟𝑑

27
+ 15  

  

The angles value can span from 15° to 165° with a resolution of 2.7°. 

 

 

Figure 2. 15: Digital output – angles relation 

Once the conversions are computed, the resulting values are the Xn and Yn angles (in radians). 

Now that these angles are known, referring to Figure 2. 16, the sun vector can be computed. 

 

 

Figure 2. 16: Sun vector model 

Referring to the Figure 2. 13, the angle β can be computed as Xn-90°. In this way, when Xn is 

ranging from 15° (the minimum value that can be obtained from the sensor) to 90° the value of 

β is negative; instead, when Xn is ranging from 90° to 165° (the maximum value that can be 

obtained from the sensor), β is positive. The same model is used for the angle Yn, using angle α 

instead of β. 

In this way, using the values of α and β, and referring to the picture in Figure 2. 16, we can easily 

compute X, Y, Z coordinates of the sun vector, expressed in the sensor frame, by applying the 

following formula: 

 



 

20 
 

[

𝑋𝑆𝑏

𝑌𝑆𝑏

𝑍𝑆𝑏

] = [
𝑡𝑎𝑛𝛽
𝑡𝑎𝑛𝛼

1
] 

 

The vector obtained from this computation is then normalized. The circuit diagram of the sensor 

is reported in Figure 2. 17 

 

 

Figure 2. 17: E910.86 circuit diagram 

2.2.6 E910.86 Testing 
 

The output values provided by the Sun sensor are the XZ and YZ angles (respectively named Xn 

and Yn). A first test is performed in order to check if the sensor correctly measure an angle of 

90° on both XZ and YZ plane when a light is positioned in front of the sensor as it is shown in 

Figure 2. 18: 

 

Figure 2. 18: Setting of the Sun sensor testing 



 

21 
 

The outputs obtained from this experiment are presented in Figure 2. 19: 

 

Figure 2. 19: Xn and Yn equal to 90° test 

As it can be seen, the angles are correctly measured with a precision of 2.7° (due to the 

resolution of the sensor). 

A second test is performed by moving the light along the X axis of the Sun sensor reference 

frame and check that the Xn angle changes. The results are presented in Figure 2. 20: 

 

Figure 2. 20: Xn changing test 

The results obtained are correct since Xn values are changing. Yn angle it is correctly 

maintained to a value of approximately 90°. The precision is about 10° since the light is moved 

by hand and some errors occur during the movement.  

The same test is performed by moving the light along the Y axis to check if the Yn values 

change. The results are presented in Figure 2. 21: 



 

22 
 

 

Figure 2. 21: Yn changing test 

The results are correct and compatible with the ones obtained from the Xn moving test 

2.2.7 Raspberry PI 3 B+ 
 

The Raspberry Pi 3 B+ is a single-board computer of small dimensions that can be equipped with 

different Linux based operating systems (mainly Raspbian and Ubuntu). The board doesn’t have 

an integrated hard disk, so the installation of the operating system is done with the flashing from 

an SD card. 

Raspberry is often used for academic usage but also in companies for rapid prototyping as 

control unit in projects of all size and application fields, mainly because is a low-cost board, is 

simple to configure and to use and has an high efficiency in terms of CPU consumption. 

Considering the older models, Raspberry Pi 3 B+ has an extended GPIO (General Purpose 

Input/Output) with 40 pins. The board and its GPIO scheme can be seen in Figure 2. 22. 

 

 

Figure 2. 22: Raspberry Pi 3 B+ board and GPIO scheme 



 

23 
 

For the aim of this thesis work, the connection of the following pins is necessary: 

 

 Supply: Pins “1, 17” for the 3.3 V and pins “2, 4” for 5 V supply 

 

 SPI communication: Pins “19, 21, 23, 24” in order to communicate through SPI protocol 

with the sun sensor mounted on the sensor module 

 

 I2C communication: Pins “3, 5” in order to communicate through I2C protocol with the 

magnetometer and the temperature sensor mounted on the sensor module 

 

 GND: Pins “14, 30, 34” are used for ground connection 

 

These connections must be done like the representation in the schematic of Figure 2. 2 resulting 

in this real circuit presented in Figure 2. 23: 

 

 

Figure 2. 23: Final circuit with: Raspberry PI, logic level converter and sensor module 

2.3 Software configuration 
 

In the following section is presented the software configuration used for developing the thesis 

work. 

As presented in section 2.2.7, the used board for testing the ROS2 software  is the Raspberry Pi 

3 B+. The first step for starting to develop with an embedded system is to install an OS (operating 

system) suitable for the aim of the work. Generally, for what concerns embedded systems, there 

are two different possibilities for installing an OS: 

 

 The first one is realizing an image, generally composed by bootloader, kernel and rootFS, 

with an automatized toolbox, like Buildroot or YOCTO,  that generates embedded linux 

images and then flash it on the system following a certain procedure that may be different 



 

24 
 

from board to board .  

Buildroot provides a graphical user interface which allows to select on a menu the 

bootloader, kernel, rootFS, predefined or custom packages and everything that we would 

need on our board . It may be a hard procedure to obtain a working image (specially for 

customized boards), but some boards may need this solution because of their strong  

customization. 

 

 The second solution is to download an existing operating system (like Debian or Ubuntu) 

and then flash it on the board following the proper procedure. For example, with 

Raspberry is very easy since you can just upload the OS image on the SD and then insert 

it in the SD slot. 

 

Since the purpose of this thesis is to develop a software framework based on ROS2, an OS image 

that has ROS2 installed is necessary.  

To obtain this result, the first solution is not the preferred one since in order to have ROS2 on 

the image, according to ROS official installation page, the only available method is following the 

“build from source” procedure which means to download the ROS2 source code and then cross-

compile it for the Raspberry Pi processor, which can be a difficult procedure to do (and not so 

intuitive). 

Proceeding with the second solution because of its immediacy, once the operating system is 

downloaded and mounted on the SD card, is just a matter of following the procedure “Installing 

ROS2 via Debian Packages” described in the ROS official installation page. The only existing 

operating system that can support the last version of ROS2 (Foxy) is Ubuntu 20.04, so it’s the 

one used for this thesis work. 

 

2.3.1 ROS2 overview and advantages 
 

The Robot Operating System (ROS) is not a real operating system as the name may suggest, but 

a set of software libraries and tools, also called “middleware”, for building robot applications. 

Since ROS was started in 2007, a lot has changed in the robotics and ROS community. and the 

goal of the ROS2 project is to adapt to these changes leveraging what is great about ROS1 and 

improving what isn’t; the most interesting part of this updating procedure is that you can always 

connect the latest version of ROS2 in use with ROS1, with a mechanism called bridge, in order 

to not lose any functionality neither of one nor the other. 

ROS is heavily used in robotics, but it can be used in general for autonomous/semi-autonomous 

systems that may need to read sensors, have perception of their position and attitude in space 

and to control actuators. For these reasons it is a very good choice for developing a software 

framework also for aerospace applications, like nanosatellites.  

In this thesis project the latest version of ROS2 is used and it is called ROS2 Foxy Fitzroy. There 

are many versions of ROS2 and most of them are constantly updated and supported until their 

EOL date (End of life); the actual situation is portrayed in Figure 2. 24: 

 



 

25 
 

 

Figure 2. 24: ROS2 latest distributions and EOL dates 

Beyond the reasons explained above there are other benefits for using ROS:  

 

 It is totally open-source and constantly updated by developers all around the world for 

many application fields. 

 

 Creating truly robust, modular and efficient robot/mechatronics software is hard, so ROS 

provides plug-and-play solutions to common problems in developing software 

frameworks. 

 

 Is based on the DDS standard for the managing of data distribution for real-time systems, 

that provides an easy publish-subscribe paradigm. 

 

 Comes with many ready-to-use tools for debugging, data visualization and simulation. 

 Possibility to develop software in python and C++ and to get connected with 

Matlab/Simulink. 

 

Another great advantage of using ROS/ROS2 is the possibility to integrate a generic ROS system 

with MATLAB and Simulink by using the official ROS Toolbox. This feature is fundamental for 

the MBSD approach, addressed in the introduction, since the toolbox natively provides a function 

for autogenerating C++ code (with Simulink Coder), from Simulink models, for ROS/ROS2 nodes. 

The ROS Toolbox provides an interface able to connect MATLAB and Simulink with ROS and 

ROS2 enabling the creation of a distributed network of ROS/ROS2 nodes among the target 

embedded system, running the ROS software, and the local PC with MATLAB/Simulink.  

The toolbox includes MATLAB functions and Simulink blocks to import, analyze ROS/ROS2 

messages sent and received from specific topics. 

At the heart of any ROS 2 system is the ROS graph. The ROS graph refers to the network of nodes 

in a ROS system and the connections between them by which they communicate. This graph is 



 

26 
 

made up by the elementary concepts of ROS that are: 

 

 Nodes: are the smallest entities constituting every complex system. They can be seen as 

processes, intended for few and elementary operations, that can communicate with other 

nodes over topics. Each node can be a subscriber or a publisher of a certain topic. 

 

 Topics: each topic has a name and a specific kind of message that it can handle. They are 

the “hubs” where messages are collected, when sent by publisher nodes, and sent to 

subscriber nodes (ref. Figure 2. 25) 

 

 

Figure 2. 25: Publisher “Node” sends a message over the topic “Topic” 

 Services: another method of communication for nodes based on a call-and-response 

model. While topics allow nodes to subscribe to data streams and get continual updates, 

services only provide data when they are specifically called by a client. A representation 

of this system is presented in Figure 2. 26 

 

 

Figure 2. 26: Call-and-response method implemented by the service 

By means of these simple components we can establish really complex systems like robots or 

even nanosatellites. At the end of our development , including sensors reading, control of 

actuators and storing of useful data, it is really helpful for debugging and analysis to represent 

the overall system in its nodes and topics using the rqt_graph. A simple but clear example of this 

functionality is represented in Figure 2. 27 extracted from the official ROS2 tutorial. 



 

27 
 

 

 

Figure 2. 27: rqt_graph of the official teleop turtle tutorial 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

28 
 

3 ROS2 FLIGHT SOFTWARE FRAMEWORK 
 

In this chapter is described the proposed solution for the fundamental nodes implemented for a 

draft of ROS2 based flight software framework. As stated in the introduction the applications 

selected are related to the sensor data reading and storing and to a Watchdog for monitoring the 

overall system status. These applications will be implemented as ROS2 nodes; all the details are 

reported in the following sections. 

3.3 Watchdog node 
 

The watchdog is an electronic or software timer that is used to detect and recover from system 

malfunctions, in order to make the whole system running properly. Particularly, its main duty is 

to check if the applications that it has to monitor are active and properly running or not and, in 

case they are not, to re-start them again.  

In general a software watchdog is a process that perform these operations after being configured 

by reading the needed informations,  contained in a specific configuration file (written in YAML, 

JSON or other data-serialization language), that watchdog reads when it is launched.  

Is always a good safety precaution to have a software watchdog in an automatic system, but it is 

necessary in critical systems that must be active for a long period like nanosatellites since if a 

process crashes it’s necessary to immediately re-start it, to not compromise all the system. 

An example of watchdog application in a complex software framework is the one used on the 

MK-1 framework produced by Tyvak International. Its working flow is presented in Figure 3. 1. 

 

 

Figure 3. 1: Mark-1 watchdog flow chart 

 

When the watchdog application is started, it reads a configuration file (written in YAML) and 

stores informations about the applications that it has to control, among other settings regarding 

the timer period and so on. These executables are then launched by the watchdog itself. Each 

application then is intended to send an heartbeat/keep alive message with a specified frequency 

in order to signal to the watchdog that is running correctly. To check this, an infinite loop with 



 

29 
 

the operations described below is performed: 

 

 A watchdog timer with a specified frequency is set. 

 If the timer is greater than zero, the watchdog checks if all the “keep alive” messages has 

been collected from the applications to be guarded. If this doesn’t happen it decreases its 

timer, otherwise the timer is reset and the loop restarts. 

 If the watchdog timer is equal to zero, it means that one or more applications did not send 

the “keep alive” message. This could happen for many reasons, for example the 

applications could be stuck in an infinite loop or it could be crashed.  

The watchdog checks the missing applications and it sends a kill signal to those processes 

for safety reasons. After that, it restarts the missing applications and resets the watchdog 

timer. 

 

In the ROS2 developed framework, the working principle of the watchdog node is different since 

the desired application works mainly with pre-existent ROS2 API (Application programming 

interface). Since an API called “get_nodes_names”, which returns a list with the names of the 

active nodes, is already existent in ROS2, the usage of the “keep alive” messages became useless 

for detecting which nodes are alive or not.  

This gives an important advantage for the system communications because it reduces the 

amount of messages that a node has to send through topics. Moreover, in order to re-start the 

nodes that are not alive, the ROS2 launch file service is used. 

ROS2 launch files are Python scripts that allow to start up and configure a number of executables 

containing ROS2 nodes simultaneously. These files include the package name and the executable 

name of the node to be launched, and other parameters like the arguments to pass at the launch 

command. They must be contained in a suitable “launch” folder and they can be executed through 

the “ros2 launch” command from a shell, but there is also a provided API called 

“launch_a_launch_file” that allows to launch other nodes programmatically, by passing as 

argument the path to the correspondent launch file of the desired node. 

Attributes and methods of the Watchdog class are presented in Figure 3. 2:  

 

 

Figure 3. 2: Watchdog class 



 

30 
 

 

The flow chart of the developed ROS2 based watchdog is presented in Figure 3. 3: 

 

 

Figure 3. 3: ROS2 based watchdog flow chart 

 

When the watchdog node is started, it reads the configuration file (written in YAML) in which 

are stored the names of the nodes to be guarded and the path to their launch file, and it stores 

the names in “self.guarded_nodes” field of the class. An example of the YAML file is presented in 

Figure 3. 4: 

 

 

Figure 3. 4: Watchdog config YAML file 

 

The YAML file is organized as a dictionary with a key called “guarded_nodes”, which value is the 

list of the nodes to be guarded. Each node is a list itself that contains two keys: the name of the 

node and the path to its launch file. 

The core function of the watchdog node is the “watchdog callback” which is called with a 

frequency of 5 seconds. When the callback is called, the Watchdog stores the list of the active 

nodes into the specific list, using the method “create_active_nodes_name_list” and the API 

“get_nodes_name” presented above. Then, a method called “checking missing nodes” is executed 

in order to compare the guarded nodes list and the active nodes one. If one ore more nodes are 

not present, the “watchdog_launcher” method is executed through a subprocess call (present in 

the multiprocessing Python library). 

This method executes the launch file of the missing nodes using the API “launch_a_launch_file” 

presented above. Once these operations are done, the callback is called again after 5 s.  

The Watchdog node can be executed through the “ros2 run” command via shell. 

For the purpose of this thesis work, the nodes that are guarded by the watchdog are the sensors 

nodes presented in the following paragraphs.  

Considering its implementation, the realized watchdog node does not acts like a publisher or a 

subscriber node but it is like a stand-alone node which autonomously controls the status of other 

important nodes, needed for the correct working of the whole system. 

 



 

31 
 

3.3.1 Watchdog Testing 
 

In order to check the correct performances of the designed Watchdog node, some tests are 

performed. The first situation is the one in which the sensors nodes to be guarded are running, 

and the Watchdog needs only to print a message with a list of the active nodes. The results 

obtained from this scenario are presented in Figure 3. 5: 

 

Figure 3. 5: Watchdog test. All nodes present 

As it can be seen, Watchdog correctly print a list of the active nodes (including itself) and a 

message that shows that the sensors nodes are correctly running. 

The second situation is the one in which one of the two guarded nodes (for example the one 

that read data from the SPI bus) is not running. The Watchdog is in charge of start this node up. 

The results are presented in Figure 3. 6: 

 

Figure 3. 6: Watchdog Test. SPI node missing 

As it can be seen, when the Watchdog callback is called for the first time, the only node present 

in the active nodes list, except the Watchdog, is the one that read data from the I2C bus. For 

this reason, the Watchdog launches the SPI node and print an info message that contain the pid 

of the process started. After that, when the callback is called for the second time,  all the nodes 



 

32 
 

are present in the list of active nodes and the execution process proceed normally. 

The last scenario is the one in which both nodes are not present and Watchdog needs to start 

them up. This test is performed in order to check that the Watchdog can start more nodes 

simultaneously. The results are presented in Figure 3. 7: 

 

Figure 3. 7: Watchdog test. Both nodes missing 

The obtained results are pretty similar to the ones of the previous test. Firstly only the 

Watchdog node is present and the sensors nodes are missing. So, the Watchdog start them up 

and print two messages with their pid. When the callback is called for the second time, all the 

nodes are correctly present and the execution process proceed normally. 

3.4 Sensors Bus node 
 

When we have different digital devices that need to communicate one with another, there is 

always a communication system that enables this data exchange.  

In the case presented in this thesis there is a sensor module, instrumented with several sensors, 

that can communicate with an external device by means of dedicated buses, and in particular: 

the AD7415 temperature sensor and the HMC5883L magnetometer can be interfaced through 

an I2C bus, while the E910.86 sun sensor with an SPI bus. 

The detailed description of these two communication systems is reported in the successive 

sections while here only the architectural choice of how the ROS2 framework will handle the 

sensors, and why, is discussed.  

 

The first possible implementation that has been examined is also the most intuitive one: one 

ROS2 node for each sensor. 

In this way is possible to obtain a very easy to visualize system where each node is referred to 

one single sensor and so it can be also easy to handle each sensor in different ways. But there 

are also two significant problems with this implementation that made the second solution to be 



 

33 
 

the best one. 

Imagining a very usual situation like the one depicted in the following figure: 

 

 

Figure 3. 8: SPI bus example with several identical sensors 

where there are many identical sensors that have to perform exactly the same type of 

measurement and in the same manner, for example on a satellite we may have many sun sensors 

(such as in Figure 3. 8) or magnetometers collecting data for attitude determination; in cases like 

these the solution “one node one sensor” is not so optimal form the software engineer point of 

view because there will be many identical nodes performing exactly the same tasks and each one 

of them is implemented exactly in the same way. 

This totally goes against the efficiency and reusability philosophy of ROS2 and object 

programming in general. 

The second significant problem is related to the message traffic that our system would bear 

whenever each node, representing each sensor, have to send messages over topic, containing the 

collected data, at very high frequencies. 

 

The second implementation analysed solves these two issues in this way: each node represents 

a particular bus used by many sensors. 

Referring to the Figure 3. 8 in this implementation the node will represent the SPI bus and not 

each sensor attached to it, drastically reducing the redundancy of exactly the same piece of code. 

From the message traffic point of view the situation in improved because now the node 

representing the bus collects all the data from each sensor and then it works as an hub for sorting 

the messages and send them to the right topic, instead of having many nodes continuously 

sending messages at each collection of data. 

For fully understand the differences between the two approaches we can consider a more 

realistic situation, as the one presented in Figure 3. 9: 

 

 

Figure 3. 9: Realistic situation with many sensors on two different buses 



 

34 
 

 

The first presented method for handling sensors with ROS2 node, would lead to have 5 nodes 

for collecting data coming from the sensors connected to different buses, while with the second 

solution only two nodes will be created. 

 

3.4.1 I2C bus node 
 

I2C (Inter Integrated Circuit) is a serial communication system used in embedded systems. It’s a 

master/slave communication that normally have one master and one or more slaves. Each of 

them is recognizable by a unique hexadecimal address. The hardware protocol needs two serial 

lines for the communication: SDA (Serial data) for data and SCL (Serial Clock) for the clock 

(mandatory since I2C is a synchronous bus). Two other lines are used: one for the reference 

connection (called GND) and one for the voltage supply (typically 5 or 3.3 V). The hardware 

representation of the I2C protocol can be found in Figure 3. 10:  

 

Figure 3. 10: I2C protocol representation 

 

Considering the ROS2 based framework developed, one node for each I2C bus present on the 

used board is created. The node can be created with the command “ros2 run sensors 

sensors_reader_i2c busN” where N is the number of the bus that is wanted to be read. Raspberry 

Pi, used for this work, has only one I2C bus (bus 1) but other boards could have more than one 

bus so it’s necessary to specify which bus is wanted to be read. 

To handle the i2c communication, smbus2 python library is used. It is the commonly used library 

for this kind of communication and it provides several useful functions to open/close the 

communication with a specified bus and read/write data to a specific slave address. 

For what regard the purposes of this thesis work, two sensors communicate through I2C bus: an 

AD7415 temperature sensor and a HMC5883L magnetometer, both described in the previous 

paragraphers. 

Since the I2C bus node must acts like a publisher and send a message that contains the sensors 

data read on a dedicated topic, a custom message that can contain these informations must be 

created. All the custom messages created for this thesis work are contained in a suitable folder. 

The structure of sensors message is presented in Figure 3. 11: 

 



 

35 
 

 

Figure 3. 11: Sensors custom message structure 

In the “raw” fields of the message are contained the raw values returned by the related sensor 

without any kind of conversions (binary value). The other fields of the message contain the data 

values of the related sensors that can be used for computation for other nodes of the system. 

Since all the possible kinds of sensors are present in the message and some of them may 

communicate through SPI protocol (they will be present in the following paragraph), their fields 

will always be empty when considering an I2C bus node. Otherwise, the I2C bus sensors fields 

will be empty when an SPI node is created. 

Considering I2C bus node software, its flow chart is presented in Figure 3. 12:  

 

 

Figure 3. 12: I2C bus node flow chart 

 

 

Its attributes and methods are then presented in Figure 3. 13:  

 



 

36 
 

 

Figure 3. 13: I2C bus node class 

 

After the node is launched, it reads the configuration file (written in YAML) presented in Figure 

3. 14: 

 

 

Figure 3. 14: I2C bus node YAML configuration file  
 

Each bus is characterized by two keys: its number and a list of the sensors present on the bus. 

Each element of the list has two keys: the type of the sensor and its address on the I2C bus. The 

number of the bus and the list of sensors are stored in suitable python variables by scrolling the 

YAML file as a dictionary structure. The I2C bus is then initialized using the dedicated smbus2 

function and after that the node is created. 

In the constructor of the I2C bus node, an object list of sensors is created by scrolling the list 

retrieved from the YAML file and creating an object for each of them.  

The core function of the I2C bus node is the “sensor_reading” callback, called with a frequency of 

0.05 seconds. Every time that this function is called, a new sensors message is initialized. A for 

loop is performed by scrolling on the list of sensors objects created in the constructor.  The raw 

and data values are read and stored into the message related fields for each sensors. 

The message is then published on the topic and the callback is called again after 0.05 seconds. 

3.4.2 SPI bus node  
 

The SPI protocol (Serial peripheral interface) is a serial communication protocol used for 

establishing a connection between microcontrollers or in general digital devices and, just like 



 

37 
 

the I2C system, it uses a master-slave paradigm. In this communication system we don’t have an 

address for each slave, instead there is the chip/slave select signal that is used for identifying a 

slave among the others. 

The SPI protocol connection between master and slaves is performed by four signal lines: 

 

 SCLK: serial clock emitted by the master 

 MISO: Master input slave output, that is the signal collecting data by the master 

 MOSI: Master output slave input, like the MISO but in the inverse direction 

 SS: Slave select, that is the signal emitted by the master for selecting the slave it wants to 

communicate with 

 

The hardware representation of the SPI protocol is depicted in Figure 3. 15: 

 

Figure 3. 15: SPI communication protocol example with a Master and three slaves 

Just like the I2C bus node, the ROS2 framework can create a node representing a specific SPI bus. 

The node can be created with the command “ ros2 run sensors sensors_reader_spi busN ” where 

N is the number of the bus where there are sensors wanted to be read. For the Raspberry used 

in this project the SPI bus where the sun sensor is connected, is the number 0. 

In order to access via software the SPI interface, the spidev python library is used. 

For what concerns the message definition of the SPI bus node and the functional concept of the 

implementation, is possible to refer to the previous section (3.4.1 section) where all these details 

are presented and explained. 

Considering the SPI bus node implementation, its class diagram and flow chart are presented in 

Figure 3. 16 and Figure 3. 17 below.  

 



 

38 
 

 

Figure 3. 16: SPI_bus node class diagram 

 

 

Figure 3. 17: SPI_bus node execution flowchart 

As is possible to see the class diagram is the same as the I2C bus node and also the flowchart is 

actually very similar.  

The main difference between an I2C bus node and an SPI bus node is in its config file, where 

instead of having an “addr” section now there is a “cs” section representing the chip select signal 

of the slave: 

 

 

Figure 3. 18: SPI_bus node configuration file 



 

39 
 

3.5 Sensors Telemetry node  
 

The Telemetry is a technology that allows to measure and store informations of interest for the 

designer or operators who want to know relevant data of the system. Telemetry data can be sent 

in real-time, but they can also be collected in a suitable file (for example a binary file) and sent 

once the file has reached a defined size of after a certain amount of time. Telemetry is widely 

used in complex systems like nanosatellites for monitoring the status of its subsystems. In this 

way, they can send the most critical data (downlink) to ground operators who know how to 

interpret them.  

For what concerns the ROS2-based software developed, the data that must be stored using 

telemetry are those that come from the sensors nodes described in the previous paragraphs. 

A Telemetry node is created for each I2C or SPI bus to store all the sensors data that are present 

in that bus both in raw and interpreted form. When a predefined number of messages has been 

collected, a new telemetry file is created. All the sensors telemetry files are collected inside a 

folder called “sensors_log” inside the “src” folder of the telemetry package.  

The files in which the data are stored can be created with different extensions. For what concerns 

this thesis work, two different approaches were implemented. The results are compared by 

means of the size of the produced files and then the smaller one is selected as the suitable one. 

 

The first attempt was done by using database (db3) files that can be easily read by using a 

software that supports SQL files. The advantage of this kind of files is that they can be easily read 

by an operator since the data are organized in database tables. On the other hand, the produced 

files have a big size and, if the amount of data is large, the folder in which those files are contained 

can became very large. 

 

The second attempt was done by writing the data on binary (bin) files. These files are not easy 

to read and the structure of the written data must be known a-priori, but they are compact and 

their size is almost the half of a db3 file so this choice was the used one. The name of the binary 

files is composed by the type of the bus (I2C or SPI), the number of the bus and a timestamp with 

date and creation time. The structure of an I2C or SPI bus telemetry node is the same; the only 

thing that changes are the sensors that are present on the bus and so the kind of data stored. The 

attributes and methods of an I2C or SPI bus telemetry node are presented in Figure 3. 19:  

 

 

Figure 3. 19: I2C/SPI bus sensors telemetry class 



 

40 
 

 

The flow chart of an I2C/SPI bus telemetry node is shown in Figure 3. 20:  

 

 

Figure 3. 20: I2C/SPI bus sensors telemetry class 

A telemetry node can be created by using the shell command “ros2 run telemetry 

sensors_telemetry_i2c/spi busN” to start recording data of the sensors present on the I2C or SPI 

specified bus. 

The created node acts like a subscriber on the topic where the specified bus publishes its data. 

Once the node is created and the subscription to the topic has been done, a boolean variable 

“recording” is initialized to check if the desired topic is already recorded. Particularly, if the 

variable is set to False the topic is not recorded, otherwise it is recorded. Another variable “ind” 

is initialized to zero and it is used to count the number of messages arrived. 

The “sensors_telemetry_callback” is called every time a new message is published on the desired 

topic by the related sensors node. When the callback is called, a variable “N_max” is set to define 

the maximum number of messages to collect inside a binary file and, once this number of 

messages is reached, a new binary file is created.  

The operations performed when the callback is called are:  

 

 Checking if the actual value of “ind” is equal to “N_max”. If yes, it means that the maximum 

number for a binary file is reached so the binary file is closed. 

 Checking if “ind” is greater than “N_max” -1 or if the topic is already recorded by using the 

variable “recording”. If yes is necessary to: create a new binary file, set the recording value 

to true and reset “ind” to zero 

 The message received is then written inside the binary file using the Python library 

“struct”. 

 

After that, the “ind” variable is increased by 1 and the callback is called again when a new 

message arrives on the topic. 



 

41 
 

3.5.1 Telemetry node testing 
 

Since the behaviour is the same for both I2C and SPI nodes, only the I2C telemetry node is 

presented in this paragraph. In order to check that a new file is created every time that the 

maximum number of messages is reached, the “N_MAX” variable is set to 5 in order to rapidly 

check the correct behaviour. The output obtained is presented in Figure 3. 21: 

 

Figure 3. 21: Telemety node testing 

The first line shows the creation of the first file in which the data of the I2C sensors are stored. 

After that, a “Recording…” message is printed every time a new message is stored in the file. Once 

the “N_MAX” number of messages is reached, a new file is correctly created and filled with the 

new messages. 

In order to demonstrate that the data are stored correctly, a Python file is prepared to read the 

created binary files. This script uses the “unpack” function of the “Struct” Python library. 

The data read from the script are presented in Figure 3. 22: 

 

Figure 3. 22: Reading Telemetry data 



 

42 
 

4  ATTITUDE DETERMINATION  
 

When a spacecraft or in general an autonomous system must perform some actions and interact 

with an environment, there is always the problem of determining its position in the space and 

its attitude. These two informations are fundamental and need to be mathematically defined 

with respect to a well-defined reference frame.  

In this thesis only the attitude information is needed for performing the attitude determination, 

so the position in space of our system is neglected. 

In the following sections the mathematical tools for determining the attitude of our spacecraft 

are presented. 

 

4.1 Rotation matrices and quaternions 
 

Let’s suppose that we are in a situation like the one depicted in Figure 4. 1: 

 

 

Figure 4. 1: F1, F2 reference frames and a generic particle 

 

There is a generic particle (in red in the figure) and two reference frames (F1, F2) that are 

translated and not aligned, so a mathematical tool for representing the relative position and 

attitude between them is needed. 

To this aim is possible to analyze the situation by representing the position of the particle with 

respect to the two reference frames: 

 

 

Figure 4. 2: Position of the particle with respect to F1, F2 

 

 



 

43 
 

The mathematical tool needed is such that it can represent the relationship between the 

coordinates (X,Y,Z) and (x,y,z). To this aim is possible to rewrite each coordinate of R in this way: 

 

 

Figure 4. 3: R written in matrix form in function of (x,y,z) 

 

As is possible to see from the relation above (Figure 4. 3), each element of the T matrix is a dot 

product between the F1 and F2 versors, that are called the direction cosines. These elements 

represent the orientation of each axis of one frame with respect to each axis of the other one, 

and due to this the T matrix is usually called Direction Cosine Matrix (DCM). An interesting 

feature deriving from this analysis is that is possible to split the problems of translation and 

rotation and to treat them independently, since the T matrix is referred only to the rotation while 

the 𝑅0 vector is only referred to the translation between the reference frames. 

The DCM T can be interpreted in two ways, and is fundamental to understand which 

interpretation is being used: 

 

 Alias: is referred to the transformation of coordinates. For example T can be interpreted 

as a coordinate transformation  𝐹2 → 𝐹1. 
 Alibi: is referred to the rotations. For example T can be interpreted as the rotation matrix 

such that  𝐹1 → 𝐹2. 
 

The rotation matrices are a minimal and useful mathematical tool that can be easily employed 

for representing the attitude of a spacecraft, but their affected by a well known and dangerous 

limitation. Since matrices are used for representing the actual attitude of a generic system, it 

happens that in certain configurations the matrix loses a degree of freedom. In these situations, 

there is a singularity corresponding to the loss of an information, and that’s exactly what happens 

when the so called Gimbal-lock occurs. This problem can be overcome by using non-minimal 

representations of the attitude. 

A possible alternative to the DCM is the quaternions. They are mathematical objects used as a 

generalization of complex numbers to a 3D space, but they can also be used for representing 

rotations. They’re based on the Euler’s theorem and the elements of the quaternion are four 

variables called Euler parameters, that are used for describing a rotation around a specific axis. 

The advantages with respect to other representations are: 

 Efficiency from a computational point of view 



 

44 
 

 Less sensitive to rounding errors 

 Gimbal-lock avoided since it is a non-minimal representation 

A quaternion can be written using these notations that are equivalent: 

 

 

Figure 4. 4: Quaternion equivalent notations 

The 𝑞0 is the real part of the quaternion while the q is its imaginary part, when the real part is 

null the quaternion is said to be pure. The u and β  are respectively the axis of rotation and the 

angle around the body is rotating, that can be found by applying the Euler’s theorem computing 

the eigenvalues and eigenvectors of the rotation matrix describing the rotation. 

Let’s now introduce some properties and algebra related to quaternions: 

 

 The null quaternion is such that its real and imaginary part are null 

The identity quaternion is such that the real part is 𝑞0 = 1 while the imaginary part 

is null. 

 The complex conjugate of a quaternion is just like the quaternion but with the 

imaginary part sign inverted:  𝐪𝑐𝑜𝑛𝑗 =  −𝐪𝑖𝑛𝑖𝑡 . 
 The products involving quaternions are the following: 

 

 

Figure 4. 5: Algebra of quaternions 

 



 

45 
 

 Given a rotation defined by a quaternion, is possible to represent the inverse of the 

rotation by computing the conjugate of the quaternion. 

 

With the properties listed above, quaternions are a suitable non-minimal representation of 

rotations that are widely adopted nowadays for defining the attitude of complex systems like 

robots, spacecrafts and so on. 

Is also possible to pass from a representation to the other by using the proper formulas: 

 

 

Figure 4. 6: DCM ↔ Quaternions formulas 

 

4.2 Reference Frames 
 

A reference frame is specified by an ordered set of three mutually orthogonal, possibly time 

dependent, unit-length direction vectors. In order to describe the orbital motion of satellites 

around the Earth, there exist a set of standardized coordinate reference frames that can be used. 

The most relevant ones are: 

 

 ECEF (Earth Centred Earth Fixed): also known as conventional terrestrial system, the 

point (0, 0, 0) denotes the centre of the Earth. X-Y plane is coincident with the equatorial 

plane and its versors point in the directions of longitude 0° and 90° while the Z axis is 

orthogonal to them and points in direction of the true North Pole. The ECEF frame is 

presented in Figure 4. 7:  



 

46 
 

 

Figure 4. 7: Representation of ECEF frame 

 

This frame rotates tied with the Earth so rotate with respect to the stars. It is a non 

inertial, accelerated frame. It is commonly used to describe motion of objects on Earth 

surface. 

 

 ECI (Earth Centred Inertial) frame: has its origin at the centre of mass of Earth like the 

ECEF frame and its axis lays on the same plane of the ECEF frame but it is fixed with 

respect to the stars and inertial (non accelerated). An equinox occurs when the earth is 

at a position in its orbit such that a vector from the earth toward the sun points to where 

the ecliptic intersects the celestial equator. The equinox that occurs near the first day of 

spring is called the vernal equinox. It can be used as a principal direction for ECI frame. It 

is useful to describe the motion of celestial bodies and spacecraft. The location of an 

object can be defined by using right ascension and declination (spherical coordinates like 

longitude and latitude) or using Cartesian coordinates. One commonly used ECI frame is 

defined with the Earth’s Mean Equator and Equinox at 12:00 Terrestrial time on 1 January 

2000 and is called J2000. The x-axis is aligned with the mean equinox and z-axis is aligned 

with the Earth’s rotation axis. 

 

 LVLH (Local vertical, local horizontal coordinates) are a geographical coordinate system 

based on local vertical direction and Earth’s axis of rotation. The axes are positioned as 

follows: one axis is on the northern axis, one along the local eastern axis and on 

represents the vertical position. If the third axis is positive when it points up the frame is 

called ENU (East North Up), otherwise is called NED (North East Down). These frames are 

used to represent state vectors (set of data that describe where an object is located in 

space). A representation of an ENU frame with respect to the ECEF is presented in Figure 

4. 8:  

 

 



 

47 
 

 

Figure 4. 8: ENU frame with respect to ECEF 

 

 

 Body-fixed frames are tied to a named body and rotate with it. The axes can be placed as 

wanted. Considering the system of this thesis work, the body frame considered is the one 

used by the sun sensor E910.86 to provide the sun coordinates and it is presented in 

Figure 4. 9. 

 

 

 

Figure 4. 9: Body frame used representation 

 

The z-axis is pointing out of the sensor body, the y-axis points up with respect to it and x-

axis is orthogonal to them. 

 

 

 

 

 



 

48 
 

4.3 General overview of AD systems 
 

The attitude determination is one of the fundamental problem of an aerospace system and the 

first step that is needed to realize and ADCS application. 

Determine the attitude of a spacecraft means identify its orientation in space with respect to a 

specific reference frame (normally ECEF or an ECI frame) by using the measurements obtained 

from suitable sensors mounted on the spacecraft in order to know its orientation with respect 

to relevant objects in the space like the Earth, the Sun or relevant star constellations. Particularly,  

the objective is determine the attitude matrix A that describes the rotation from the considered 

frame (normally ECEF or ECI) to the body frame of the spacecraft. 

To obtain the attitude determination of an object in the space, many kinds of sensors can be 

employed. The most commonly used are star trackers, magnetometers and sun sensors. These 

sensors are widely used since they express the position of the body frame with respect to 

relevant objects in space like the Earth magnetic field , the Sun or star constellations positions.  

Attitude determination problem can be divided in two main categories: 

 Static attitude determination: all measurements are taken at the same time. The 

problem becomes up of optimally solving the geometry of the measurements. 

 Dynamic attitude determination: measurements are taken over time. Is a much 

harder problem since the informations collected need to be blended together by using 

mathematical tools like Kalman filter. 

For the lack of simplicity, since the objective of this thesis work is to demonstrate that a ROS2 

framework can be applied to nanosatellite using an attitude determination application, static 

attitude determination is considered. 

The first problem to obtain an attitude determination is to determine how many measurements 

(unit direction vectors) are needed to identify the orientation. Unit vectors are considered since 

the length of the measurements do not provide any useful information. 

If a 2D attitude problem is considered as starting point, the answer is that only one unit direction 

vector (with the unit length constraints) provides all the required information to determine the 

orientation. 

Considering the 3D problem, one measurement is no more sufficient so, a minimum of two 

observation vectors are required. With only one measurement, a rotation about that axis cannot 

be sensed. Measuring a second direction fix the complete three dimension orientation in space. 

To demonstrate this consider the example in Figure 4. 10: 

 

Figure 4. 10: Explanation of attitude determination 



 

49 
 

Suppose that the sun position is measured using a sun vector and it is expressed in the body 

frame by the unit direction vector Sb. Knowing only this information is not sufficient since an 

infinite number of orientations around this axis are possible solutions for the attitude problem. 

Considering the example of Figure 4. 10, the blue and the green frame can be both solution of 

attitude problem since they can express the same sun position vector with different orientations. 

Two unit vectors measurements determine the attitude matrix but, in fact, they overdetermine 

it. That’s because the spacecraft attitude is represented by a 3x3 orthogonal matrix A such that 

ATA = I and det(A)=1. This means that A is a rotation matrix and so an element of the three-

parameter group SO(3).  

Euler’s theorem states that the general motion of a rigid body with one fixed point is a rotation 

about some axis. This shows that SO(3) is a three-parameters group (the three parameters can 

be taken as the rotation angle) and two parameters specifying a unit vector along the rotation 

axis. 

To obtain a complete attitude determination, it is also necessary to know the components of the 

two measured vectors in some reference frame like ECEF or ECI. 

In this thesis work, the measurements used are the ones provided by a sun vector and a 

magnetometer to respectively obtain the informations about Earth magnetic field and Sun 

position. The attitude problem considered is to determine the orientation of the spacecraft with 

respect to the ECEF frame, so the corresponded informations about the Earth magnetic field and 

Sun position expressed in this frame are taken into account and they will be explained in the 

following paragraphers. 

The following notation will be used: 

 Sb: sun unit vector expressed in the body frame 

 

 mb: Earth magnetic field unit vector expressed in the body frame 

 

 SECEF: sun unit vector expressed in the ECEF frame 

 

 mECEF: Earth magnetic field unit vector expressed in the ECEF frame 

 

4.4  IGRF Earth magnetic field 
The Earth magnetic field is a magnetic dipole with the magnetic field S pole coincident with the 

Earth geographic north pole and the magnetic field N coincident with the Earth geographic south 

pole. Its representation is presented in Figure 4. 11: 



 

50 
 

 

Figure 4. 11: Earth magnetic field representation 

The magnitude of the Earth magnetic field at its surface ranges from 25 to 65 μT and it is mostly 

caused by electric currents in the liquid outer core. 

The currents that create the magnetic field started up millions years ago. Magnetometers can 

detect minute deviations in the magnetic field caused by iron artifacts, some kind of stone 

structures and archaeological geophysics. 

In order to represent the Earth magnetic field and its secular variations, different kind of 

mathematical models are proposed. The used one for this thesis work is the International 

Geomagnetic Reference Field (IGRF). This model was obtained by combining data and 

informations from many satellites and research institutes from all around the world. The last 

version released is the 13th generation and it is provided by the International Association of 

Geomagnetism and Aeronomy (IAGA). The magnetic field can be calculated as the negative 

gradient of a scalar potential V which can be represented by a truncated series expansion: 

𝑉(𝑟, 𝜗, 𝛷, 𝑡) = 𝑎 ∑ ∑ (
𝑎

𝑟
)𝑛+1[𝑔𝑛

𝑚(𝑡) cos(𝑚𝛷) + ℎ𝑛
𝑚(𝑡) sin(𝑚𝛷)]𝑃𝑛

𝑚cos (𝜗)

𝑛

𝑚=0

𝑁

𝑛=1

 

Where a is the mean radius of the Earth (approximately 6371,2 km), 𝑔𝑛
𝑚 and ℎ𝑛

𝑚 are the Gauss 

coefficients (available in tabular form), 𝑟, 𝜗, 𝛷 are the spherical coordinates of the observation 

point and 𝑃𝑛
𝑚cos (𝜗) is the Legendre associated function of order n and m. 

To easily compute in Python the value of the Earth magnetic field, a library named “pyIGRF” is 

provided by IAGA. Particularly, this function “pyIGRF.igrf_value” requires as input the latitude, 

the longitude and the altitude of the observation point and the current date. The latitude and the 

longitude are expressed in geocentric coordinates. Taking as reference Figure 4. 12: 

 

Figure 4. 12: Geocentric and geodetic coordinates 



 

51 
 

The considered latitude and longitude are expressed as geocentric coordinates i.e. their angles 

are measured with respect to the centre of the Earth. 

The “pyIGRF.igrf_value” function provides as output: 

 D: declination (positive east) i.e. the angle between the magnetic north and the true 

north 

 

 I: inclination (positive down) i.e. the angle between the horizontal plane and the total 

field vector 

 

 H: horizontal intensity 

 

 X: north component expressed in NED coordinates 

 

 Y: east component expressed in NED coordinates 

 

 Z: vertical component (positive down) expressed in NED coordinates 

 

 F: total intensity unit in nT 

 

The informations about the X, Y and Z coordinates with respect to NED frame are the one used 

for the realization of attitude determination and their usage will be explained in the next 

paragraph.  

The output results of the Earth magnetic field coordinates (i.e. MECEF vector) are presented in 

Figure 4. 13: 

 

 

Figure 4. 13: M_ECEF coordinates 

4.5 Sun position vector in ECEF frame 
 

In order to retrieve the informations about the sun position with respect to the ECEF frame (i.e. 

SECEF) to achieve the attitude determination, the Skyfield Python library is used. 

Skyfield is a library developed by Rhodes Mill and it is widely used to computes positions for the 

stars, planets and satellites in orbit around the Earth.  



 

52 
 

The first step to compute the sun position is to obtain the Sun and Earth ephemeris. These are 

tables that contain values, computed in a particular range of time, of different astronomical 

quantities like magnitudes, orbital parameters, coordinates or distances from planets. 

That can be easily done in Skyfield by downloading the “de421.bsp” file released by the JPL’s 

Guidance, Navigation and Control section. This file contains the main ephemeris of all the planets 

of the Solar system and it can be easily loaded in a python script by using the “load_file” function 

provided by Skyfield. The output of this function is a dictionary structure. For example, if the 

earth ephemeris are needed, and the output of the “load_file” function is stored in the dictionary 

named “planets”, the result can be easily obtained as “earth = planets ['earth']”. 

The computation of the sun vector need also the informations about the actual date-time 

expressed in UTC. Conventionally, in the astronomic field, the date-time is expressed using the 

Julian date (which express the number of days spent from 1st January 4713 a.C.). 

The Timescale object returned by “load.timescale” function in Skyfield, manages the conversions 

between different time scales. The supported ones are UTC, UT1 (Universal time), TA1 

(International Atomic Time), TT (Terrestrial time) and TDB (Barycentric Dynamical Time). By 

using the “now” function Skyfield can retrieve the current Julian date expressed in UTC. 

Once these informations are known, the Sun position expressed in ECEF frame can be easily 

retrieved with a few lines of Python code presented in Figure 4. 14: 

 

Figure 4. 14: S_ECEF computation in Skyfield 

The first line of code computes the Earth position with respect to the Sun position using the 

functions “at” to compute the Barycentric position at the specified Julian date and “apparent” to 

compute the apparent position. The result is in geocentric coordinates i.e. with respect to the 

centre of the Earth. 

The second line set the reference frame as ITRS (International Terrestrial Reference Frame). 

The obtained results are expressed in au (Astronomical unit) and are stored into an array by 

using the “numpy” library. 

The output results of the Sun position coordinates (i.e. SECEF vector) are presented in Figure 4. 

15: 

 

Figure 4. 15: S_ECEF coordinates 

 



 

53 
 

4.6 TRIAD algorithm 
 

With the knowing measuremnt Sb, mb, SECEF and mECEF, the attitude problem can be resolved by 

considering the TRIAD (three-axis attitude determination) algorithm. TRIAD algorithm is one of 

the simplest attitude algorithm and it can provide good results and solve the Wahba’s problem 

which is intended to find a rotation matrix (particularly an orthogonal matrix) between two 

coordinate systems from a set of vector observations. 

The algorithm considers that one vector measurement is more accurate than the other one. Since 

the sun vector is more precise than the Earth magnetic field vector, it is taken as the more 

reliable one. The result of TRIAD algorithm is the attitude matrix A that computes the rotation 

from the ECEF frame to the body frame of the nanosatellite. 

The algorithm is intended to computes two matrices tb and ti that represent two support 

reference frames that combined allow to obtain the attitude matrix.  

The operations to obtain the column vectors of these matrices is presented below: 

 The first column vector of the two matrices is equal to the more accurate measurement, 

in this case the sun vector. In this case:  

𝑡1
𝑏 =  𝑆𝑏 𝑡1

𝑖 =  𝑆𝐸𝐶𝐸𝐹  

 

 The second column vector of the two matrices is chosen to be perpendicular to both 

measured vectors. In this case: 

𝑡2
𝑏 =  

𝑆𝑏 × 𝑚𝑏

‖𝑆𝑏 × 𝑚𝑏‖
 𝑡2

𝑖 =  
𝑆𝐸𝐶𝐸𝐹 × 𝑚𝐸𝐶𝐸𝐹

‖𝑆𝐸𝐶𝐸𝐹 × 𝑚𝐸𝐶𝐸𝐹‖
 

 

 The third column vector of the matrices is computed as: 

𝑡3
𝑏 = 𝑡2

𝑏  ×   𝑡1
𝑏  𝑡3

𝑖 = 𝑡2
𝑖  ×   𝑡1

𝑖   

 

Finally, the two 3x3 computed matrices are: 

𝑡𝑏 = [𝑡1
𝑏 𝑡2

𝑏  𝑡3
𝑏] 𝑡𝑖 = [𝑡1

𝑖  𝑡2
𝑖  𝑡3

𝑖 ] 

By noting that [𝑡1
𝑏  𝑡2

𝑏 𝑡3
𝑏] = 𝐴3×3[𝑡1

𝑖  𝑡2
𝑖  𝑡3

𝑖 ], the attitude matrix can be computed as:  

𝐴3×3 = [𝑡1
𝑏 𝑡2

𝑏  𝑡3
𝑏] [𝑡1

𝑖  𝑡2
𝑖  𝑡3

𝑖 ]𝑇 

The attitude matrix A is in the form of a DCM (direct cosine matrix). After that, it can be easily 

convered into a quaternion due to their advantages presented in the paragraph 4.1. 

A graphical representation of tb is presented in Figure 4. 16 to better clarify the physical meaning 

of the constructed frames. 



 

54 
 

 

Figure 4. 16: TRIAD algorithm reference frame 

The same representation can be obtained for the frame ti by considering SECEF and mECEF 

instead of Sb and mb. 

4.7 Attitude determination node 
 

In this paragraph, the realization of the attitude determination using the TRIAD algorithm 

explained in the previous sections is implemented into a ROS2 node. 

The basic principle is the same as the other ROS2 nodes described in the chapter dedicated to 

the flight software framework. The realized attitude determination node acts like a subscriber 

to the topics where the sensors data of the I2C/SPI buses are published but it also acts like a 

publisher on a dedicated topic where it publish the attitude quaternion that describe the rotation 

from the ECEF frame to the body frame at each time that the callback is called. These data are 

needed to realize the Matlab real-time simulation that will be presented in the next chapter. 

The class diagram that contains the attributes and methods of the node is presented in Figure 4. 

17: 

 

Figure 4. 17: Attitude determination class diagram 



 

55 
 

The attributes that are necessary for the implementation of the node are:  

 integer “timer_period” to set the frequency of the attitude determination callback (which 

is set to 2 Hz i.e. 0.5 seconds)  

 

 float array of three elements to store the Earth magnetic field vector coordinates 

provided by the magnetometer (expressed in its reference frame) each time that a new 

sensor data is published 

 

 float array of dimension two to store the XZ and YZ angles provided by the Sun sensor 

(expressed in the body frame) each time that a new sensor data is published. 

The methods that have been implemented are: 

 i2c_mag_callback() and spi_sun_callback() to store the last data published from the 

magnetometer and the sun sensor in the related topics into the attributes mag and sun. 

 

 sun_mag_vectors_ECEF() and sun_mag_vectors_BODY() to calculate the sun vector and the 

Earth magnetic field vector in both ECEF and body frame. 

 

 TRIAD_attitude_determination() to compute the attitude determination through TRIAD 

algorithm using the informations of the sun and Earth magnetic field vectors both 

expressed in ECEF and body frame. 

 

The flow chart of the ROS2 node realization is presented in Figure 4. 18: 



 

56 
 

 

Figure 4. 18: Attitude determination flow chart 

After that, the attitude determination callback is called with the specified frequency. The first 

step is to check if self.mag or self.sun are not empty. If at least one of them is empty, the attitude 

determination cannot be performed since one information from the sensors is not present yet. 

Otherwise, all the informations have been collected and the computations can start.  

The first step is to compute the sun vector Sb and the Earth magnetic field vector mb (both 

expressed in the body frame) by calling the method sun_mag_vectors_BODY(). The operations 

performed by this method are presented in Figure 4. 18 colored in yellow. 

The value of the XZ-plane and YZ-plane angles provided by the sun vectors are stored into two 

variables (named a and b). The coordinates of the sun vector Sb are retrieved from these two 

angles with the method proposed in paragraph 2.2.5. 

For what concerns the Earth magnetic field vector mb, it must be noted that this measurement 

provided by the magnetometer and Sb of the Sun position provided by the Sun sensor are not 

expressed in the same reference frame. The representation of the two reference frames is 

presented in Figure 4. 19: 

 



 

57 
 

 

Figure 4. 19: Representation of magnetometer and sun sensor reference frame 

Since the sun sensor frame (represented in green in Figure 4. 19) is chosen as body frame, the 

measurement of the magnetometer (which reference frame is represented in red in Figure 4. 19) 

needs to be expressed in this frame. In order to do this, two rotations are performed: 

 A rotation around the Z axis of the magnetometer reference frame of 90° to align the X 

axis of this frame with the one of the body frame 

 After that a rotation around the X axis of the obtained frame of 180° is performed to 

align the obtained frame with the body frame 

The resulting rotation matrix that represents the rotation from magnetometer frame to body 

frame is: 

𝑅𝑚𝑎𝑔_𝑓𝑟𝑎𝑚𝑒
𝑏𝑜𝑑𝑦_𝑓𝑟𝑎𝑚𝑒

= 𝑅𝑜𝑡𝑥(180°)𝑅𝑜𝑡𝑧(90°) = [
1 0 0
0 −1 0
0 0 −1

] [
0 −1 0
1 0 0
0 0 1

] = [
0 −1 0

−1 0 0
0 0 −1

] 

Since a transformation of coordinates is performed (and not a rotation) the transposed resulting 

matrix is applied. Finally, the Earth magnetic field vector expressed in body frame coordinates 

can be easily computed as: 

𝑚𝑏 = 𝑅𝑚𝑎𝑔_𝑓𝑟𝑎𝑚𝑒
𝑏𝑜𝑑𝑦_𝑓𝑟𝑎𝑚𝑒𝑇

𝑚𝑚𝑎𝑔_𝑓𝑟𝑎𝑚𝑒 

Once Sb and mb are computed, the resulting vectors are normalized. 

After that, the computation of the corresponding Earth magnetic field and sun vector expressed 

in ECEF frame is performed using the realized method sun_mag_vectors_ECEF(). The operations 

performed in this method correspond to the green blocks of the attitude determination flow 

chart. The first step is to define the variables needed for the computation. The computation of 

the Earth magnetic field require the knowledge of the altitude, the latitude and the longitude (for 

this work is used the coordinate of Tyvak International offices, otherwise the in-orbit 

coordinates are needed if the nanosatellite is flying) while the Sun vector requires the current 

time (expressed in UTC) and date.  



 

58 
 

After that, the NED coordinates of the Earth magnetic field (expressed in nT) are computed using 

the library pyIGRF as explained in paragraph 4.4. These coordinates need to be converted into 

ECEF coordinates. The NED and ECEF frames are presented in Figure 4. 20: 

 

Figure 4. 20: NED to ECEF frame 

The angle Φ represents the latitude while the angle λ represents the longitude. In order to 

convert the NED coordinates of the Earth magnetic field into ECEF coordinates the following 

rotations are performed: 

 A rotation around the E axis of the NED frame of an angle Φ+90° in order to align the N 

axis with the ECEF frame 

 

 A rotation around the N axis of the obtained frame of an angle – λ in order to align the 

frame obtained from the previous rotation with the ECEF frame 

 

The resulting matrix that represents the rotation from NED frame to ECEF frame is: 

𝑅𝑁𝐸𝐷_𝑓𝑟𝑎𝑚𝑒
𝐸𝐶𝐸𝐹_𝑓𝑟𝑎𝑚𝑒

= 𝑅𝑜𝑡𝑁(− λ)𝑅𝑜𝑡𝐸(Φ + 90°) =

= [
cos (− λ) sin (− λ) 0

−sin (− λ) cos (− λ) 0
0 0 1

] [
cos (Φ + 90°) 0 −sin (Φ + 90°)

0 1 0
sin (Φ + 90°) 0 cos (Φ + 90°)

] 

Since a transformation of coordinates is performed (and not a rotation) the transposed resulting 

matrix is applied. Finally, the Earth magnetic field vector expressed in ECEF frame coordinates 

can be easily computed as: 

𝑚𝐸𝐶𝐸𝐹 = 𝑅𝑁𝐸𝐷_𝑓𝑟𝑎𝑚𝑒
𝐸𝐶𝐸𝐹_𝑓𝑟𝑎𝑚𝑒𝑇

𝑚𝑁𝐸𝐷_𝑓𝑟𝑎𝑚𝑒 

The sun vector coordinates SECEF can be easily computed with Skyfield as explained in 

paragraph 4.5. Finally, mECEF and SECEF vectors are normalized. 

After that, all the informations to obtain the attitude determination through TRIAD algorithm 



 

59 
 

are achieved so the method TRIAD_attitude_determination() can be called by passing as 

arguments Sb, mb, SECEF and mECEF. 

The operations performed by this method are just those explained in the paragraph 4.6 related 

to the TRIAD algorithm and are represented by the red blocks in the attitude determination 

flow chart. The output of this function is the attitude matrix in DCM form. 

Once the DCM attitude matrix is obtained, it is converted into an attitude quaternion by using 

the dcm2quat function provided by the navpy Python library. 

Finally, the results is published on the dedicated topic and it will be retrieved by Matlab as it 

will be explained in the next chapter. 

4.8 Attitude determination node testing 
 

The attitude determination application require the informations from both I2C and SPI sensors 

to achieve a result using TRIAD as it is presented in Figure 4. 21, that shows the architecture of 

the designed framework using rqt graph. 

 

Figure 4. 21: Architecture of the framework 

Once the two nodes that read the sensors data on the SPI and I2C buses are started, the attitude 

determination application can compute the quaternion (from ECEF frame to body frame). 

The results obtained are presented in Figure 4. 22: 

 

Figure 4. 22: Attitude determination testing 



 

60 
 

As it can be seen, in the first two shells of the picture are present the nodes that are intended to 

read sensors data while, in the third shell, is performed the attitude determination. Once the 

node is started, a message is printed to confirm that the node has been created. Until both data 

from magnetometer and sun sensor are not present, a “Wait for sensors data…” message is 

printed. Once at least one message is received from the sensors, the attitude determination is 

performed and the quaternion is correctly printed and published on a dedicated topic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

61 
 

5 REAL-TIME MATLAB ANIMATION 
 

In this chapter of the thesis is presented a real-time animation that represent the attitude 

determination of a 3U satellite. This result is achieved through ROS toolbox that allows the 

communication between ROS / ROS2 and Matlab/Simulink. The simulation is performed by 

running the designed attitude determination application (and the sensors nodes) on the 

Raspberry Pi  and the Matlab scripts on a computer. 

5.1 Settings of ROS toolbox 
 

In order to allow the communication between the ROS2 nodes designed for the flight software 

framework and Matlab, the usage of ROS toolbox is taken into account. The ROS2 nodes are run 

on the Raspberry Pi (that can be accessed from a PC using ssh protocol) while Matlab with ROS 

toolbox is run on a PC. In order to let the two machines see each other, a xml file named 

“DEFAULT_FASTRTPS_PROFILES” has to be inserted both in the ROS2 workspace folder on the 

Raspberry Pi and in the Matlab folder in which are present the script for the animation. The 

xml file is structured as presented in Figure 5. 1: 

 

Figure 5. 1: DEFAULT_FASTRTPS_PROFILES.xml file 

The two devices communicate through Ethernet cable and they must belong to the same subnet. 

Their IP addresses (192.168.10.1 for the PC and 192.168.10.2 for the Raspberry Pi) must be 



 

62 
 

present in both Matlab and ROS2 xml files. 

The first step that is necessary to realize the real-time animation is to generate a suitable custom 

message that is able to handle the data of the received quaternions. In order to do this, a file 

named “AttitudeDetermination.msg”, that contain the structure of the message to be received (an 

array of float with dimension four), is generated. After that, the ROS Toolbox function 

“ros2genmsg” is able to generate the specified custom message by passing as argument the path 

to the “AttitudeDetermination.msg” file. The operations performed by this function are presented 

in Figure 5. 2: 

 

Figure 5. 2: ros2genmsg operations 

To allow the generation of custom messages, Visual Studio 2017 with is related cross-compiler 

for C++ applications must be installed on the used machine.  

Once this operations are performed, the Matlab environment is ready to receive data from the 

nodes of the ROS2 framework. After that, the lines presented in Figure 5. 3 are executed: 

 

Figure 5. 3: Generation of attitude visualizer node 

With the command “ros2node” is possible to generate a new ROS2 node (named attitude 

visualizer) to handle the data of the computed quaternion. After that, with the command 

“ros2subscriber” the generated attitude visualizer node is subscribed to the topic “attitude” (in 

which the attitude quaternion data are published) by defining that the messages that will be 

received are the same type of “AttitudeQuaternion” messages. The Matlab file that handle the 

operations to be performed when a new message arrives on the topic is “att_callback”. 

Finally the produced files to realize the real-time animation are: 

 “att_callback” to perform the operations to rotate the 3U satellite. This file is called 

every time a new quaternion is published on the “attitude” topic. The operations 

performed will be described in the following paragraph 

 

 “animation” to define the 3U satellite object to be plotted 

 

5.2 Real- time animation of a 3U satellite 
 

Using the ROS Toolbox as presented before, the data of the quaternion (or the equivalent 

rotation matrix) computed by the designed ROS2 application, can be collected in a Matlab script 

to animate in real-time a 3U satellite.  So, once a new rotation data is published on its specific 

topic, a specific Matlab callback is called and it stores the attitude information to use it to rotate 



 

63 
 

a 3U satellite simulated by creating a hypercube. This object is defined by its vertices collected 

into an array. The obtained object is presented in Figure 5. 4. 

 

Figure 5. 4: 3U satellite simulation 

In the presented Matlab plot are present the 3U satellite and its related body frame 

(correspondent with the magnetometer location on the satellite) with Y axis pointing up, Z axis 

pointing out and X axis to complete the right hand reference frame. The face of the satellite in 

which lays the body frame is colored in red.  

Since the realized function to visualize the real-time animation uses rotation matrices, the first 

step to perferm is to convert the received quaternion, using the “dcmtoqua” function, to obtain 

the related rotation matrix. Once the simulation is started, the first quaternion received, its 

related rotation matrix and their conjugates are stored into suitable variables (respectively q0 

and R0). This is done in order to visualize the rotation with respect to the first collected 

quaternion. For how the object is drawn, there is the problem that the body reference frame of 

the satellite is not aligned with the Matlab reference frame as it is shown in Figure 5. 5: 

 

Figure 5. 5: Rotation of the Matlab frame w.r.t body frame 



 

64 
 

This cause that, for example, if a rotation around the Y axis of the body frame (indicated as YB in 

the figure) is intended, Matlab perform a rotation around its Z axis (indicated with ZM in the 

figure). To fix this problem, each time that the callback is called, a rotation of -90° around the X 

axis is performed to align the satellite body frame with the Matlab frame. 

Basically, each time that the callback is called, these operations are performed: 

 The quaternion received from the ROS2 node is stored and converted into its related 

rotation matrix. 

 

 If it is the first message received, the quaternion is stored in q0 and the rotation matrix 

in R0 and the conjugate of the quaternion is computed and stored into q0_conj. From 

this, it is retrieved the rotation matrix from the body frame to the ECEF frame using the 

qua2dcm function and it is stored into R0_conj. 

 

 The rotation from the body frame to the Matlab frame is defined as: 

𝑅𝑀𝑎𝑡𝑙𝑎𝑏
𝑏𝑜𝑑𝑦

= 𝑅𝑜𝑡𝑋(−90°) = [
1 0 0
0 0 1
0 −1 0

] 

 

 The rotation matrix to be applied to the satellite is finally computed as follows: 

𝑅 = 𝑅𝑐𝑜𝑛𝑗 ∗ 𝑅𝑏𝑜𝑑𝑦
𝐸𝐶𝐸𝐹 ∗ 𝑅𝑀𝑎𝑡𝑙𝑎𝑏

𝑏𝑜𝑑𝑦
 

 

 Finally, the “animation_rot_R” function is called to rotate the satellite with a rotation 

correspondent to the computed matrix R. This function just requires as argument the 

satellite object and the computed rotation matrix R. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

65 
 

5.3 Tests of the real-time animation 
 

In order to test the realized real-time application, some animation can be performed to test the 

performances of the attitude determination. Particularly, the sensor module (that simulates the 

behaviour of a 3U satellite) is rotated around its three axes of its body reference frame. The 

obtained results are shown in the following figures. 

 

Rotation about Z axis: 

  

Figure 5. 6: Rotation about Z axis 

Rotation about Y axis: 

 

Figure 5. 7: Rotation about Y axis 

 



 

66 
 

Rotation about X axis: 

 

Figure 5. 8: Rotation about X axis 

As it is reported in the above pictures the results are pretty good, even if some errors (due to 

some light reflections and noise of the sensors measurements) occurs. To take account of the 

entity of these errors, an analysis of the noise of the attitude determination is performed in the 

next paragraph. 

5.4 Noise analysis of the attitude determination 
 

The realized attitude determination application is subject to some imprecision in the 

determination of the orientation. This is due to different factors that influence the performance. 

In the first place, TRIAD is not the optimal algorithm to determine the attitude and some 

computation error may occur. Moreover, sensors are subject to some noise that affect the 

collected measurements. For this reason, an analysis to measure the order of magnitude of the 

noise that affect the attitude determination measurements is performed. 

To do this, the attitude determination application is ran while the sensor module is hold fixed in 

a position. The following operations are so performed into the callback of the Matlab script: 

 If it is the first iteration, the quaternion received is stored into the variable q0. 

Otherwise it is stored into the variable qbody. 

 

 The conjugate of the quaternion received is computed and stored into a variable 

q_body_conj 

 

 To compute the noise that occur in the attitude determination, it can be computed the 

rotation: 

𝑞𝑒𝑟𝑟𝑜𝑟 = 𝑞0 ∗ 𝑞𝑏𝑜𝑑𝑦 𝑐𝑜𝑛𝑗  



 

67 
 

The considered product is the quaternion Hamilton product. By doing this operation, it is 

computed the error that occurs between the first collected measurement q0 and the 

current measurement quaternion q_body (i.e. the noise of the attitude determination) 

 

 The current time and q_error are finally stored into suitable arrays to plot them in a 

graph 

Since the sensor module is hold fixed, the expected result is that no rotation occurs and that 

q_error is equal to the identity quaternion (i.e. [1 0 0 0]). The collected results are plotted and 

are presented in Figure 5. 9. 

 

Figure 5. 9: Attitude determination noise analysis 

The blue lines in the plot represented the collected values of qerror for each component of the 

quaternion. The dotted red lines represents the mean values of the measurements for each 

components of the quaternion computed as:  

𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒(𝑞𝑥) =
∑ 𝑞𝑥𝑖

𝑁
𝑖=1

𝑁
    

Where N is the number of the measurements and qx is one of the four quaternion components. 

It is noted that the proposed attitude determination present good performances with very small 

error in both real and imaginary part of the quaternion. The decrease of the real part and the 

increase of the q4 component over time is due to the movement of the Earth with respect to the 

Sun that causes small changes in the SECEF vector in the attitude determination algorithm. Beside 

that, the noise error is approximately in the order of 10-3. 



 

68 
 

6  CONCLUSIONS 
 

In this thesis work it was demonstrated that ROS2 can be a good choice for the design of software 

framework for complex systems like nanosatellites. Particularly, thanks to its modularity, it is 

easily possible to let different applications to communicate and exchange messages through 

topics. 

Moreover, the integration of ROS2 with Matlab and Simulink using the ROS toolbox allows to 

apply the Model based software design philosophy by designing and simulating different control 

strategies and auto generate the C++ code of the ROS2 nodes using tools like embedded coder. 

Since the aim of this thesis was to design a first implementation of the flight software framework, 

different applications can be implemented in the future in order to complete the realization of 

the nanosatellite architecture. Particularly: 

 A node that is able to manage different kind of actuators like magnetorquers or reaction 

wheels to realize the required action computed by the controller 

 

 Nodes that contain the control laws for different scenarios like detumbling manoeuvre 

or Earth pointing control in order to complete the design of a full Attitude 

determination and Control system. Particularly, these nodes can be auto generated 

directly from Matlab / Simulink. 

 

 Nodes that handle all the communications, particularly the radio communications and 

the uplink or downlink of the data.  

 

Moreover, this realization of the framework was performed on a standard board like a Raspberry 

Pi. Since Tyvak develop its own custom electronic boards, the framework will be ported into 

them. In order to do this, a suitable image that contain ROS2 and all the designed packages can 

be generated by using a suitable tool like Buildroot.  

Once all the applications are designed and the system is ported into a custom board, the software 

framework can be considered completed and the integration testing phase will start. 

 

 

 

 

 

 

 

 



 

69 
 

7  APPENDIX A: BUILDROOT 
 

Nowadays, many companies prefer to design their own customized electronic boards instead of 

using standard ones. Even if it can be an hard process in terms of R&D, it guarantees many 

advantages in terms of hardware since different combinations of devices can be mounted on it 

to achieve better performances for the desired task. On the other hand, it is necessary to realize 

a suitable image to properly communicate with the board. For this reason, different tools like 

Buildroot or Yocto have been realized to easily realize images for embedded boards.  

Buildroot is a tool that is used in order to generate embedded Linux images for different types 

of boards using cross-compilations. It provides as outputs the root filesystem, the kernel, the 

bootloader and all the files that are needed for a specific board to build correctly an embedded 

Linux image. Moreover, Buildroot provides a lists of configurations files with a great number of 

boards and processors that are available on the market (for examples Raspberry Pi and SAM 

processor) that allow to build working images for that devices. 

Buildroot allows the configuration of the images through and easy user interface called 

“menuconfig” that is presented in Figure 7. 1: 

 

Figure 7. 1: Buildroot 2020 menuconfig 

Analysing the available options of the menuconfig: 

 Target options: it allows to set the architecture of the target CPU by choosing from a list 

of the most commonly used ones (like Intel or ARM architecture) 

 Build options: it allows to configure the setting for the build like how many jobs to run 

simultaneously, enable the compiler cache, set the location of the download and host 

directory and optimization tools for the gcc compiler 

 Toolchain: it allows to choose between a Buildroot or an external toolchain. Moreover, it 

is possible to configure the kernel headers, the version of the gcc cross-compiler, the 

options for uClibc (C libraries), activate the WCHAR support and enable the support to 

programming languages like C++ or Fortran 



 

70 
 

 System configuration: it allows to configure the whole system settings like the 

hostname, the system banner, activate the login with password, set the root password, 

set the path to the permission tables, activate timezones info and run custom scripts 

before or after the creation of the filesystem or inside the fakeroot environment 

 Kernel: it allows to configure the kernel options like its version, patches and eventually 

a defconfig file, the output format of the kernel (the considered one is zImage), if a 

compression of the kernel is necessary, if it is necessary a Device Tree Blob (DTB) or if 

install the kernel in the “/boot” folder of the target 

 Target Packages: all the packages that are present in Buildroot and that can be installed 

on the target like audio and video, compressors and decompressors for files, debug 

tools, graphical libraries, support for programming languages (Python, C++, PHP ecc…), 

tool for hardware support (i2c-detect, spidev ecc…) or text editors. In this section, it can 

be inserted custom packages. 

 Filesystem Images: it allows to choose the output format of the generated filesystem 

(cpio, tar, jffs2 ecc…) and if it is necessary a compression. Moreover, it allows to 

integrate it as initramfs inside the kernel 

 Bootloader: it allows to choose the desired bootloader (like U-boot) from a list and 

manage its configurations 

 Host utilities: it allows to configure support tools for the host 

 Legacy config options: packages that were present in older Buildroot versions 

The original intention of this thesis project was to realize an image with Buildroot, that had ROS2 

installed on it and to flash it on a custom board developed by Tyvak (called EAB) that mount an 

ATSAM9G20 processor.  

Tyvak provided a working image for the EAB realized with Buildroot 2012 to take it as starting 

point to understand which components are necessary to realize the new image using Buildroot 

2020.  

The first attempt was to realize an embedded linux image using standard files that are natively 

present in Buildroot. In the list of the supported boards of Buildroot 2020 is natively present the 

AT91SAM9G20-EK (that mount an ATSAM9G20 processor) board. By using the command “make 

atsam9g20dfc_defconfig”, the configuration described by this file is set in the options of the 

menuconfig and it can be built to produce a standard embedded Linux image that is compatible 

with this processor. To flash an image on the EAB, Tyvak uses a customized version of a tool 

named Sam-ba, which is commonly used to flash images on the SAM boards. The main problem 

is that, using the image produced by Buildroot, the flashing procedure is successful but the board 

does not boot up. 

Analysing the image produced by Tyvak, it can be noted that all its component (kernel, filesystem 

and bootstrap) and some features in the settings are customized. In order to boot up, the EAB 

requires all those files and, if one or more of them are replaced with standard files produced by 

Buildroot, the booting procedure always fails. 

For the reasons explained above and since the objective of this thesis was to demonstrate the 

feasibility of the design of a flight software in ROS2, the realization of the framework was moved, 

as explained in the related chapters, to a Raspberry Pi that mount Ubuntu 20.04 as operating 

system. 

 



 

71 
 

8  APPENDIX B: ROS2 CODE 
 

In this chapter is presented the realized code for the ROS2 flight software. . The code was realized 

with Python 3.8. 

8.1 Watchdog node code 
 

###################################################################

## 

# 

#                           WATCHDOG NODE 

# 

###################################################################

## 

 

import rclpy 

import time 

import os 

import yaml 

 

from rclpy.node import Node 

from custom_msg.msg import Wdmsg 

from ros2launch.api import *        # for launch_a_launch_file 

function 

from ros2node.api import *          # for get_node_names function 

from multiprocessing import Process # for relaunching nodes with 

Process() 

 

# WATCHDOG FUNCTIONALITIES 

# 

# The provided Watchdog checks if the nodes provided by the yaml 

configuration file and stored in a suitable dictionary, are active. 

# This is done through the API provided by ROS2 "get_node_names". 

If a node of the guarded list is not present, a suitable ROS2 API 



 

72 
 

# "launch_a_launch_file" is called by using the node unique ID, in 

order to re-launch the node. 

 

class Watchdog(Node): 

 

def __init__(self, guarded_nodes): 

super().__init__('watchdog') 

watchdog_freq=5.0 # sec. Frequency of the watchdog callback 

self.tmr_wd=self.create_timer(watchdog_freq, 

self.watchdog_callback) 

self.guarded_nodes=guarded_nodes # controlled by watchdog 

 

def watchdog_launcher(self, launch_path): # Launch the missing node 

launch file 

launch_a_launch_file(launch_file_path=launch_path,launch_file_argum

ents="") 

 

def create_active_nodes_names_list(self): # retrieving the list of 

active nodes 

self.active_node_names_list=[] 

with NodeStrategy(self) as node: 

node_list = get_node_names(node=node, include_hidden_nodes=False) 

i=0 

while(i<len(node_list)): 

self.active_node_names_list.append(node_list[i].name) 

i+=1 

 

def checking_missing_nodes(self): # missing nodes checking 

for node in self.guarded_nodes.values(): 

node_check=False 

for j in range(0,len(self.active_node_names_list)): 

if(node['name']==self.active_node_names_list[j]): 



 

73 
 

print("Node ",node['name']," present") 

node_check=True 

if(not node_check): 

print('Launching missing node: ', node['name']) 

p=Process(target=self.watchdog_launcher,args=(node['launch_path'],)

) 

p.start() 

 

def watchdog_callback(self): # Watchdog core 

self.create_active_nodes_names_list() 

print('Active nodes: ', self.active_node_names_list) 

self.checking_missing_nodes() 

 

def main(args=None): 

 

rclpy.init(args=args) 

 

# collecting Bus informations from Yaml file 

stream=open('/home/ubuntu/ros2_ws/src/watchdog/watchdog/watchdog_cf

g.yaml', 'r') 

cfg=yaml.load(stream, Loader=yaml.FullLoader) 

 

guarded_nodes=cfg['guarded_nodes'] 

 

watchdog = Watchdog(guarded_nodes) # initialize watchdog 

 

rclpy.spin(watchdog) 

 

# Destroy the node explicitly 

# (optional - otherwise it will be done automatically 

# when the garbage collector destroys the node object) 



 

74 
 

watchdog.destroy_node() 

rclpy.shutdown() 

 

if __name__ == '__main__': 

main() 

 

8.1.1 Watchdog launch file code 
 

from launch import LaunchDescription 

from launch_ros.actions import Node 

 

def generate_launch_description(): 

    return LaunchDescription([ 

        Node( 

            package='talker', 

            executable='talker' 

        ), 

        Node( 

            package='listener', 

            executable='listener' 

        ) 

    ]) 

8.2 I2C reading node code 
 

###################################################################

## 

# 

#                    I2C BUS SENSORS READER NODE 

# 

###################################################################

### 



 

75 
 

 

import rclpy 

import os 

import smbus2 

import yaml 

import sys 

 

from . import Sensors 

from rclpy.node import Node 

from custom_msg.msg import SensorsMsg 

from multiprocessing import Process     # for launching nodes with 

Process() 

 

global requested_bus # to change node name corresponding to the 

specified bus (n=busN) 

 

# I2C SENSORS READER FUNCTIONALITIES 

# 

# The provided node is intended for reading sensors attached to a 

specific i2c bus. Using the command "ros2 run sensors 

sensors_reader_i2c bus1/bus2/.../busN" is possible to launch 

# a node for each specified i2c bus to handle, using the associated 

YAML configuration file. Each I2C bus node creates a sensor object 

for each sensor and reads the collected data. 

# These data are published on a specific topic called 

"i2c_sensors_data". 

 

class I2C_bus(Node): 

 

def __init__(self, bus, sensors_info, n_bus): 

super().__init__('i2c_'+requested_bus) 

self.bus=bus 

self.sensors_info=sensors_info 



 

76 
 

self.n_bus=n_bus 

self.sens=[]        # for storing sensors objects 

 

print("Reading data from I2C",sys.argv[1],"...") 

 

# creating objects for each sensor 

for sensor in self.sensors_info.values(): 

if(sensor['type']=='temp'): 

# sensor AD7415 object 

self.sens.append(Sensors.AD7415(self.bus,sensor['addr'],None)) 

if(sensor['type']=='mag'): 

# sensor HMC5883L object 

self.sens.append(Sensors.HMC5883L(self.bus,sensor['addr'],None)) 

self.sens[-1].initialize() 

 

self.publisher_ = self.create_publisher(SensorsMsg, 

'i2c_sensors_data_'+requested_bus, 10) 

timer_period = 0.001  # seconds 

self.timer = self.create_timer(timer_period, self.sensor_reading) 

 

def sensor_reading(self): 

msg = SensorsMsg() 

for i in range(len(self.sens)): 

# reading sensors 

if(self.sens[i].name=='AD7415'):                #Temperature sensor 

msg.temp_raw=self.sens[i].read_sensor_raw() 

msg.temp=self.sens[i].read_sensor() 

if(self.sens[i].name=='HMC5883L'):             #Magnetometer sensor 

msg.mag_raw=self.sens[i].read_sensor_raw() 

msg.mag=self.sens[i].read_sensor() 

# print(msg.mag)             #just for debug 



 

77 
 

self.publisher_.publish(msg) 

 

def main(args=None): 

 

rclpy.init(args=args) 

 

common_path='/home/ubuntu/ros2_ws/src/sensors/sensors/' 

 

global requested_bus 

requested_bus=sys.argv[1] 

 

# collecting Bus informations from Yaml file 

stream=open(common_path+'i2c_'+requested_bus+'_cfg.yaml', 'r') 

cfg=yaml.load(stream, Loader=yaml.FullLoader) 

sensors_info=cfg['sensors'] 

 

# create and launch the node 

bus_i2c=smbus2.SMBus(cfg['n_bus'])    # initializing the bus with 

smbus2 

i2c_bus = I2C_bus(bus_i2c,sensors_info,cfg['n_bus']) # creating bus 

node 

#p=Process(target=rclpy.spin, args=(i2c_bus,)) 

#p.start() 

rclpy.spin(i2c_bus) 

 

# Destroy the node explicitly 

# (optional - otherwise it will be done automatically 

# when the garbage collector destroys the node object) 

i2c_bus.destroy_node() 

rclpy.shutdown() 

 



 

78 
 

 

if __name__ == '__main__': 

main() 

8.3 SPI reading node code 
 

###################################################################

## 

# 

#                    SPI BUS SENSORS READER NODE 

# 

###################################################################

### 

 

import rclpy 

import os 

import spidev 

import math 

import yaml 

import sys 

 

from . import Sensors 

from rclpy.node import Node 

from custom_msg.msg import SensorsMsg 

from multiprocessing import Process     # for launching nodes with 

Process() 

 

global requested_bus # to change node name corresponding to the 

specified bus (n=busN) 

 

# SPI SENSORS READER FUNCTIONALITIES 

# 



 

79 
 

# The provided node is intended for reading sensors attached to a 

specific SPI bus. Using the command "ros2 run sensors 

sensors_reader_spi bus0/bus1/.../busN" is possible to launch 

# a node for each specified SPI bus to handle, using the associated 

YAML configuration file. Each SPI bus node creates a sensor object 

for each sensor and reads the collected data. 

# These data are published on a specific topic called 

"spi_sensors_data". 

 

class SPI_bus(Node): 

 

def __init__(self, bus, sensors_info, n_bus): 

super().__init__('spi_'+requested_bus) 

self.bus=bus 

self.sensors_info=sensors_info 

self.n_bus=n_bus 

self.sens=[]        # for storing sensors objects 

 

print("Reading data from SPI",sys.argv[1],"...") 

 

# creating objects for each sensor 

for sensor in self.sensors_info.values(): 

if(sensor['type']=='sun'): 

# sensor E91086 object 

self.sens.append(Sensors.E91086(self.bus,None,sensor['cs'])) 

 

self.publisher_ = self.create_publisher(SensorsMsg, 

'spi_sensors_data_'+requested_bus, 10) 

timer_period = 0.001 

self.timer = self.create_timer(timer_period, self.sensor_reading) 

 

def sensor_reading(self): 

msg = SensorsMsg() 



 

80 
 

for i in range(len(self.sens)): 

# reading sensors 

if(self.sens[i].name=='E91086'):                #Sun sensor 

self.bus.open(self.n_bus,self.sens[i].cs) 

self.sens[i].initialize() 

msg.sun_raw=self.sens[i].read_sensor_raw() 

msg.sun=self.sens[i].read_sensor() 

# print(msg.sun)             #just for debug 

# print("MAG_X: ",msg.sun[0],"[G]"," MAG_Y: 

",msg.sun[1],"[G]","MAG_Z: ",msg.sun[2],"[G]") 

self.publisher_.publish(msg) 

self.bus.close() 

 

def main(args=None): 

 

rclpy.init(args=args) 

 

common_path='/home/ubuntu/ros2_ws/src/sensors/sensors/' 

 

global requested_bus 

requested_bus=sys.argv[1] 

 

# collecting Bus informations from Yaml file 

stream=open(common_path+'spi_'+requested_bus+'_cfg.yaml', 'r') 

cfg=yaml.load(stream, Loader=yaml.FullLoader) 

sensors_info=cfg['sensors'] 

 

# create and launch the node 

spi = spidev.SpiDev()                   # initializing the bus with 

spidev 

spi_bus = SPI_bus(spi,sensors_info,cfg['n_bus']) # creating bus 

node 



 

81 
 

rclpy.spin(spi_bus) 

 

# Destroy the node explicitly 

# (optional - otherwise it will be done automatically 

# when the garbage collector destroys the node object) 

spi_bus.destroy_node() 

rclpy.shutdown() 

 

 

if __name__ == '__main__': 

main() 

8.4 Sensors code 
 

import math 

 

def word2bytearray(word): 

array = [word >> 8, word & 0x00FF] 

return array 

 

class Sensors(): 

 

def __init__(self,bus,addr=None,cs=None):   # default none values 

for addr and cs because we could have both I2C and SPI devices 

self.bus=bus 

self.addr=addr   # in case of I2C bus sensors 

self.cs=cs       # in case of SPI bus sensors 

 

def read_sensor_raw(self): 

raise NotImplemented 

 

def read_sensor(self): 



 

82 
 

raise NotImplemented 

 

class AD7415(Sensors): 

""" Analog Devices AD7415 Temperature Sensor. 

 

Please refer to the datasheet (Rev. F) for further information. 

""" 

# Name 

name='AD7415' 

 

# Registers 

REG_TEMP = 0x00 

REG_CONFIG = 0x01 

 

# Values 

VAL_TRIGGER = 0x04 

VAL_MSB_POSITION_SHIFTED = 0x02 

VAL_SIGN_EXTEND_MASK = 0xFC 

 

def read_sensor_raw(self): 

# Reads inputs 

raw = self.bus.read_byte_data(self.addr, self.REG_CONFIG) 

self.bus.write_byte_data(self.addr, 

self.REG_CONFIG, raw | self.VAL_TRIGGER) 

temp_raw = self.bus.read_i2c_block_data(self.addr, self.REG_TEMP, 

2) 

return temp_raw 

 

def read_sensor(self): 

raw=self.read_sensor_raw() 

# Purge low 6 bits 



 

83 
 

temp = (int.from_bytes(raw, byteorder='big', signed=False) >> 6) 

temp_raw = word2bytearray(temp) 

if temp_raw[0] & self.VAL_MSB_POSITION_SHIFTED: 

temp_raw[0] = temp_raw[0] | self.VAL_SIGN_EXTEND_MASK 

temp = (int.from_bytes(temp_raw, byteorder='big', signed=True))/4.  

# 0.25 degC/LSB 

return temp 

 

class MMC5883MA(Sensors):     #NOTA CHE IL SENSORE USA LITTLE 

ENDIAN 

""" Memsic MMC5883MA 3-Axis Magnetometer. 

 

Please refer to the datasheet (Rev. C) for further information. 

""" 

# Name 

name='MMC5883MA' 

 

# Registers 

REG_DATA_OUT = 0x00 

REG_CONTROL_0 = 0x08 

 

# Values 

VAL_TRIGGER_MAG = 0x01 

 

def read_sensor_raw(self): 

self.bus.write_byte_data(self.addr, self.REG_CONTROL_0, 

self.VAL_TRIGGER_MAG) 

field_raw = self.bus.read_i2c_block_data(self.addr, 

self.REG_DATA_OUT, 6) 

return field_raw 

 

def read_sensor(self): 



 

84 
 

raw=self.read_sensor_raw() 

# swapping positions because it works in Little Endian 

rawX = [raw[1], raw[0]] 

rawY = [raw[3], raw[2]] 

rawZ = [raw[5], raw[4]] 

field = [(int.from_bytes(rawX, byteorder='big', signed=False)-

32768)/4096., 

(int.from_bytes(rawY, byteorder='big', signed=False)-32768)/4096., 

(int.from_bytes(rawZ, byteorder='big', signed=False)-32768)/4096.] 

return field 

 

class HMC5883L(Sensors): 

""" Honeywell HMC5883L 3-Axis Magnetometer. 

 

Please refer to the datasheet (#ref?) for further information. 

""" 

 

name='HMC5883L' 

 

# Settings 

DEF_MA = 0b11 

DEF_DO = 0b100 

DEF_MS = 0b00 

DEF_GN = 0b001 

DEF_HS = 0b0 

DEF_MD = 0b00 

 

# Registers 

REG_CONFIG_A = 0x00 

REG_CONFIG_B = 0x01 

REG_MODE = 0x02 



 

85 
 

REG_DATA_X_MSB = 0x03 

REG_DATA_X_LSB = 0x04 

REG_DATA_Y_MSB = 0x05 

REG_DATA_Y_LSB = 0x06 

REG_DATA_Z_MSB = 0x07 

REG_DATA_Z_LSB = 0x08 

 

# Values 

VAL_GAIN = {0b000: 1370, 

0b001: 1090, 

0b010: 820, 

0b011: 660, 

0b100: 440, 

0b101: 390, 

0b110: 330, 

0b111: 230} 

 

def initialize(self): 

# Apply default configs, then the user can change them when they 

want 

# Don't initialize at object creation so we can temporally separate 

# object creation and object existence on the bus (sometimes 

needed) 

self.configure() 

 

def configure(self, ma=DEF_MA, do=DEF_DO, ms=DEF_MS, gn=DEF_GN, 

hs=DEF_HS, md=DEF_MD): 

# CONFIG A 

# MSb <   X    X    X    X    X    X    X    X   > LSb 

#         0    MA1  MA0  DO2  DO1  DO0  MS1  MS0 

self.configA = ((0b00000011 & (ms << 0)) | 



 

86 
 

(0b00011100 & (do << 2)) | 

(0b01100000 & (ma << 5))) 

# CONFIG B 

# MSb <   X    X    X    X    X    X    X    X   > LSb 

#         GN2  GN1  GN0  0    0    0    0    0 

self.configB = 0b11100000 & (gn << 5) 

# MODE 

# MSb <   X    X    X    X    X    X    X    X   > LSb 

#         HS   0    0    0    0    0    MD1  MD0 

self.mode = ((0b10000000 & (hs << 7)) | 

(0b00000011 & (md << 0))) 

self.gain = self.VAL_GAIN[(0b111 & gn)] 

self.bus.write_byte_data(self.addr, self.REG_CONFIG_A, 

self.configA) 

self.bus.write_byte_data(self.addr, self.REG_CONFIG_B, 

self.configB) 

self.bus.write_byte_data(self.addr, self.REG_MODE, self.mode) 

 

def read_sensor_raw(self): 

rawX = [self.bus.read_byte_data(self.addr, self.REG_DATA_X_MSB), 

self.bus.read_byte_data(self.addr, self.REG_DATA_X_LSB)] 

rawY = [self.bus.read_byte_data(self.addr, self.REG_DATA_Y_MSB), 

self.bus.read_byte_data(self.addr, self.REG_DATA_Y_LSB)] 

rawZ = [self.bus.read_byte_data(self.addr, self.REG_DATA_Z_MSB), 

self.bus.read_byte_data(self.addr, self.REG_DATA_Z_LSB)] 

field_raw=[rawX[0], rawX[1], rawY[0], rawY[1], rawZ[0], rawZ[1]] 

return field_raw 

 

def read_sensor(self): 

raw=self.read_sensor_raw() 

field = [float((int.from_bytes([raw[0],raw[1]], byteorder='big', 

signed=True)))/self.gain, 



 

87 
 

float((int.from_bytes([raw[2],raw[3]], byteorder='big', 

signed=True)))/self.gain, 

float((int.from_bytes([raw[4],raw[5]], byteorder='big', 

signed=True)))/self.gain] 

return field 

 

class E91086(Sensors): 

""" E910.86 Sun Sensor. 

 

Please refer to the datasheet for further information. 

""" 

# Name 

name='E91086' 

 

def initialize(self): 

self.bus.mode = 0 # set SPI mode 

self.bus.max_speed_hz = 500000 # set the frequency 

 

self.bus.xfer2([0x90,0x18]) # command 1001000000011000 for 

configuration (datasheet for more details) 

self.bus.xfer2([0x00,0x00]) 

 

def read_sensor_raw(self): 

ret=self.bus.xfer2([0x00,0x00]) # command for reading sensors 

tmp = (ret[0]<<8 | ret[1])  & 0x3FFF  # concatenate the two 

returned bytes since the output is 0100XXXXXXYYYYYY and set to 0 

everything but the data XY 

return tmp 

 

def read_sensor(self): 

tmp=self.read_sensor_raw() 

Xdata = tmp >> 6 



 

88 
 

Ydata = tmp & 0x3F 

 

Xn_deg=75*Xdata/27+15 

Yn_deg=75*Ydata/27+15 

 

# print("Degrees: ",Xn_deg,Yn_deg) 

 

Xn_rad=Xn_deg*math.pi/180 

Yn_rad=Yn_deg*math.pi/180 

 

sun_angles=[Xn_rad, Yn_rad] 

return sun_angles 

 

 

8.5 I2C Sensors telemetry node code 
 

###################################################################

## 

# 

#                      I2C SENSORS TELEMETRY NODE 

# 

###################################################################

## 

 

import rclpy 

import os 

import struct 

import sys 

 

from rclpy.node import Node 

from custom_msg.msg import SensorsMsg 



 

89 
 

from datetime import datetime 

 

global requested_bus 

 

# I2C SENSORS TELEMETRY FUNCTIONALITIES 

# 

# The provided node is intended for logging the data coming from 

i2c sensors in a suitable binary file. It splits the log files 

# whenever a predefined threshold for the max number of messages 

stored is exceeded. So a new binary log file is created, if 

# the threshold is exceeded or if the topic is not recorded yet, 

and stored in a predefined directory within its timestamp 

 

class SensorsTelemetryI2C(Node): 

 

def __init__(self): 

super().__init__('i2c_sensors_telemetry_'+requested_bus) 

self.subscription_i2c = self.create_subscription( 

SensorsMsg, 

'i2c_sensors_data_'+requested_bus, 

self.sensors_telemetry_callback, 

10) 

self.subscription_i2c  # prevent unused variable warning 

self.recording=False # to check if the log file is already created 

self.ind=0 # to count the messages recorded 

 

def create_binary(self):     # Create the log file in the 

sensors_log folder 

path="/home/ubuntu/ros2_ws/src/telemetry/sensors_log/i2c_"+requeste

d_bus 

if not os.path.exists(path): # If the folder is not present, it'll 

be created 

os.mkdir(path) 



 

90 
 

name_db=path+"/i2c_"+requested_bus+"_sensors_data-

"+str(datetime.now().strftime("%m-%d-%Y-%H:%M:%S"))+".bin" # 

timestamp log file creation 

print('Logging data in: '+name_db) 

self.recording=True # log file created flag 

self.file=open(name_db,'wb') 

self.ind=0 # messages number reset 

 

def insert_data(self, msg): # Insert the sensors data into the log 

file created 

if(self.ind< self.n_max): 

tmp=struct.pack('ffffffffffff', 

msg.temp_raw[0],msg.temp_raw[1], 

msg.temp, 

msg.mag_raw[0],msg.mag_raw[1],msg.mag_raw[2],msg.mag_raw[3],msg.mag

_raw[4],msg.mag_raw[5], 

msg.mag[0],msg.mag[1],msg.mag[2] 

) 

self.file.write(tmp) 

self.ind+=1 

 

def sensors_telemetry_callback(self, msg): 

self.n_max=1000 

if(self.ind == self.n_max): 

self.file.close() 

if(not self.recording or self.ind > self.n_max-1): 

self.create_binary() 

self.insert_data(msg) 

print("RECORDING...") 

 

 

def main(args=None): 



 

91 
 

 

rclpy.init(args=args) 

 

global requested_bus 

requested_bus=sys.argv[1] 

 

sensors_telemetry_i2c = SensorsTelemetryI2C() 

 

rclpy.spin(sensors_telemetry_i2c) 

 

# Destroy the node explicitly 

# (optional - otherwise it will be done automatically 

# when the garbage collector destroys the node object) 

sensors_telemetry_i2c.destroy_node() 

rclpy.shutdown() 

 

 

if __name__ == '__main__': 

main() 

8.6 SPI sensors telemetry node code 
 

###################################################################

## 

# 

#                      SPI SENSORS TELEMETRY NODE 

# 

###################################################################

## 

 

import rclpy 

import os 



 

92 
 

import struct 

import sys 

 

from rclpy.node import Node 

from custom_msg.msg import SensorsMsg 

from datetime import datetime 

 

global requested_bus 

 

# SPI SENSORS TELEMETRY FUNCTIONALITIES 

# 

# The provided node is intended for logging the data coming from 

spi sensors in a suitable binary file. It splits the log files 

# whenever a predefined threshold for the max number of messages 

stored is exceeded. So a new binary log file is created, if 

# the threshold is exceeded or if the topic is not recorded yet, 

and stored in a predefined directory within its timestamp 

 

class SensorsTelemetrySPI(Node): 

 

def __init__(self): 

super().__init__('spi_sensors_telemetry_'+requested_bus) 

self.subscription_spi = self.create_subscription( 

SensorsMsg, 

'spi_sensors_data_'+requested_bus, 

self.sensors_telemetry_callback, 

10) 

self.subscription_spi  # prevent unused variable warning 

self.recording=False # to check if the log file is already created 

self.ind=0 # to count the messages recorded 

 



 

93 
 

def create_binary(self):     # Create the log file in the 

sensors_log folder 

path="/home/ubuntu/ros2_ws/src/telemetry/sensors_log/spi_"+requeste

d_bus 

if not os.path.exists(path): # If the folder is not present, it'll 

be created 

os.mkdir(path) 

name_db=path+"/spi_"+requested_bus+"_sensors_data-

"+str(datetime.now().strftime("%m-%d-%Y-%H:%M:%S"))+".bin" # 

timestamp log file creation 

print('Logging data in: '+name_db) 

self.recording=True # log file created flag 

self.file=open(name_db,'wb') 

self.ind=0 # messages number reset 

 

def insert_data(self, msg): # Insert the sensors data into the log 

file created 

if(self.ind< self.n_max): 

tmp=struct.pack('fff', 

msg.sun_raw, 

msg.sun[0],msg.sun[1] 

) 

self.file.write(tmp) 

self.ind+=1 

 

def sensors_telemetry_callback(self, msg): 

self.n_max=1000 

if(self.ind == self.n_max): 

self.file.close() 

if(not self.recording or self.ind > self.n_max-1): 

self.create_binary() 

self.insert_data(msg) 

print("RECORDING...") 



 

94 
 

 

 

def main(args=None): 

 

rclpy.init(args=args) 

 

global requested_bus 

requested_bus=sys.argv[1] 

 

sensors_telemetry_spi = SensorsTelemetrySPI() 

 

rclpy.spin(sensors_telemetry_spi) 

 

# Destroy the node explicitly 

# (optional - otherwise it will be done automatically 

# when the garbage collector destroys the node object) 

sensors_telemetry_spi.destroy_node() 

rclpy.shutdown() 

 

 

if __name__ == '__main__': 

main() 

8.7 Attitude determination node code 
 

import rclpy 

import os 

import numpy 

import math 

import pyIGRF 

import datetime 

import navpy 



 

95 
 

 

from rclpy.node import Node 

from custom_msg.msg import SensorsMsg 

from custom_msg.msg import AttitudeQuaternion 

from PyAstronomy import pyasl 

from skyfield import framelib 

from skyfield.api import load_file 

from skyfield.api import load 

 

class AttitudeDetermination(Node): 

 

def __init__(self): 

super().__init__('attitude_determination') 

self.sun = None 

# self.sun_safe_b= 1.61927769490585 # 92.7° (or 1.522314958683943 

for 87.3° ) 

# self.sun_safe_a= 1.61927769490585 # 92.7° (or 1.522314958683943 

for 87.3° ) 

self.mag = None 

self.subscription_i2c = self.create_subscription( 

SensorsMsg, 

'i2c_sensors_data_bus1', 

self.i2c_mag_callback, 

10) 

self.subscription_spi = self.create_subscription( 

SensorsMsg, 

'spi_sensors_data_bus0', 

self.spi_sun_callback, 

10) 

self.quat_publisher = self.create_publisher(AttitudeQuaternion, 

'attitude', 10) 

print("Starting Attitude Determination...") 



 

96 
 

self.subscription_i2c  # prevent unused variable warning 

self.subscription_spi  # prevent unused variable warning 

timer_period=0.01       # 10 Hz 

self.AD_timer = self.create_timer(timer_period, 

self.AD_timer_callback) 

 

def i2c_mag_callback(self, msg):     # callback collecting mag 

sensor data 

self.mag=msg.mag 

 

def spi_sun_callback(self, msg):     # callback collecting sun 

sensor data 

self.sun=msg.sun 

 

def sun_mag_vectors_ECEF(self):      # method computing ECEF frame 

vectors 

# Variables needed for M_ECEF vector computation 

lat_deg=45.09221603086248 

lon_deg=7.670356843569824 

lat_rad=lat_deg*math.pi/180 

lon_rad=lon_deg*math.pi/180 

alt=0.239               #km 

date=pyasl.decimalYear(datetime.datetime.now()) 

# Variables needed for S_ECEF vector computation 

ts = load.timescale() 

t = ts.now()            # Julian date hour expressed in UT (-1h wrt 

Italy) 

planets = 

load_file('/home/ubuntu/ros2_ws/src/attitude_determination/attitude

_determination/ephemeris/de421.bsp') 

sun = planets['sun'] 

earth = planets['earth'] 

# M_NED, M_ECEF computation 



 

97 
 

mag_info=pyIGRF.igrf_value(lat_deg, lon_deg, alt, date) 

M_NED=numpy.array([mag_info[3],mag_info[4],mag_info[5]])    #nT 

(North,East,Down coordinates) 

M_NED=M_NED/(numpy.linalg.norm(M_NED))                        # 

normalization 

a=lat_rad+math.pi/2 

b=-lon_rad 

Ry=numpy.array([[math.cos(a),0,-

math.sin(a)],[0,1,0],[math.sin(a),0,math.cos(a)]]) 

Rz=numpy.array([[math.cos(b),math.sin(b),0],[-

math.sin(b),math.cos(b),0],[0,0,1]]) 

R=numpy.dot(Rz,Ry)                                                 

# rotation matrix: NED FRAME -> ECEF FRAME 

R=R.T                                                       # 

transformation matrix from NED frame -> ECEF FRAME 

M_ECEF=numpy.dot(R,M_NED) 

# S_ECEF computation 

apparent = earth.at(t).observe(sun).apparent() 

sun_info = apparent.frame_xyz(framelib.itrs) 

S_ECEF=numpy.array(sun_info.au) 

S_ECEF=S_ECEF/(numpy.linalg.norm(S_ECEF)) 

ret=[M_ECEF,S_ECEF] 

return ret 

 

def sun_mag_vectors_BODY(self):      # method computing BODY frame 

vectors 

# Sb computation 

b=self.sun[0]-math.pi/2 # angle XZ-plane 

a=self.sun[1]-math.pi/2 # angle YZ-plane 

# if (abs(b-math.pi/2)<0.047): 

#     b=self.sun_safe_b 

# self.sun_safe_b=b 

# if (abs(a-math.pi/2)<0.047): 



 

98 
 

#     a=self.sun_safe_a 

# self.sun_safe_a=a 

# print("beta: ",b) 

# print("alpha: ",a) 

S_B=numpy.array([math.tan(b),math.tan(a),1])       # general 

relation for 2-axis digital sun sensors 

#print("S_B non normalizzato: ",S_B) 

# Mb computation 

R=numpy.array([[0,-1,0],[-1,0,0],[0,0,-1]])  # rotation matrix: MAG 

sensor FRAME -> SUN sensor FRAME 

R=R.T                                        # transformation 

matrix: MAG sensor FRAME -> SUN sensor FRAME 

M_B=R.dot(numpy.array(self.mag)) 

# normalize vectors 

S_B=S_B/(numpy.linalg.norm(S_B)) 

M_B=M_B/(numpy.linalg.norm(M_B)) 

ret=[M_B,S_B] 

return ret 

 

def TRIAD_attitude_determination(self,S_B,M_B,S_ECEF,M_ECEF): 

# creating the triads: USING S_B as "best" measure 

# 1st components 

t1b=S_B 

t1i=S_ECEF 

# 2nd components 

tmp=numpy.cross(S_B, M_B) 

t2b=tmp/(numpy.linalg.norm(tmp)) 

tmp=numpy.cross(S_ECEF, M_ECEF) 

t2i=tmp/(numpy.linalg.norm(tmp)) 

# 3rd components 

t3b=numpy.cross(t1b, t2b) 

t3i=numpy.cross(t1i, t2i) 



 

99 
 

# attitude matrix computation 

Rbt=(numpy.array([t1b,t2b,t3b])).T   # rotation matrix: BODY FRAME 

-> TRIAD FRAME 

Rti=numpy.array([t1i,t2i,t3i])    # rotation matrix: TRIAD FRAME -> 

ECEF FRAME 

DCM_attitude=numpy.dot(Rbt,Rti) 

return DCM_attitude 

 

def AD_timer_callback(self):         # Timed callback computing 

attitude (refer to "timer_period") via TRIAD algorithm 

if (self.sun is not None and self.mag is not None): 

# store body frame vectors 

v=self.sun_mag_vectors_BODY() 

M_B=v[0] 

S_B=v[1] 

# store ECEF frame vectors 

v=self.sun_mag_vectors_ECEF() 

M_ECEF=v[0] 

S_ECEF=v[1] 

# print("S_B: ",S_B) 

# print("\n") 

# print("M_B: ",M_B) 

# print("S_ECEF: ",S_ECEF) 

# print("M_ECEF: ",M_ECEF) 

# TRIAD ALGORITHM 

DCM_attitude=self.TRIAD_attitude_determination(S_B,M_B,S_ECEF,M_ECE

F) 

q0,qvec=navpy.dcm2quat(DCM_attitude) 

q_attitude=[q0, qvec[0], qvec[1], qvec[2]] 

# print("Attitude DCM Matrix: ") 

# print(DCM_attitude) 

# print("Attitude quaternion: ") 



 

100 
 

# print(q_attitude) 

# print("\n") 

msg = AttitudeQuaternion() 

msg.quat=q_attitude 

msg.r1=DCM_attitude[0] 

msg.r2=DCM_attitude[1] 

msg.r3=DCM_attitude[2] 

self.quat_publisher.publish(msg) 

 

def main(args=None): 

rclpy.init(args=args) 

 

attitude_determination = AttitudeDetermination() 

 

rclpy.spin(attitude_determination) 

 

# Destroy the node explicitly 

# (optional - otherwise it will be done automatically 

# when the garbage collector destroys the node object) 

attitude_determination.destroy_node() 

rclpy.shutdown() 

 

 

if __name__ == '__main__': 

main() 

 

 

 

 

 

 



 

101 
 

9  APPENDIX C: MATLAB CODE  
 

In this chapter is presented the Matlab code used in order to realize the real-time animation of 

the attitude determination of a 3U satellite. As described in the previous chapters, the code takes 

usage of the ROS toolbox to allow the communication between Matlab and ROS2. 

9.1 Attitude callback 
 

function att_callback(msg) 

global sat 

global bodyf 

global q0 

global q0_conj 

global R0_conj 

global q_stored 

global R_stored 

global t 

global time 

global check 

  

%Satellite animation 

q_body=(msg.quat)'; 

R_body=[msg.r1; msg.r2; msg.r3]; 

  

if (check==0) 

    q0_conj=[q_body(1); -q_body(2:end)]; 

    q0=q_body; 

     

%     R0_conj=(quat2dcm(q_body'))'; 

     

    check=check+1; 

end 

% ROTATING OUR QUATERNION/MATRIX ATTITUDE WITH A ROTATION OF -

90° WRT X AXIS 

q_btom=[0.7071, -0.7071, 0, 0]; % for aligning bf to matlab 

frame 

q_tmp=quatprod(q0_conj,q_btom');  

q=quatprod(q_body,q_tmp); 

% animation_rot_q(sat,bodyf,q) 

  

%for evaluating q error 

q_body_conj=[q_body(1); -q_body(2:end)]; 

q_err=quatprod(q0,q_body_conj); 

  

R_btom=[1 0 0; 0 0 1; 0 -1 0]; % for aligning bf to matlab frame 

R_tmp=R0_conj*R_btom; 

R=R_body*R_tmp; 

animation_rot_R(sat,bodyf,R)   



 

102 
 

  

% quaternion plot 

t=t+0.5; 

time=[time, t]; 

q_stored=[q_stored,q_err]; 

% R_stored=[R_stored; R]; 

  

end 

 

9.2 Animation 
 

clc; clear; 

  

  

%% Initial Satellite (3U) 

global sat 

global bodyf 

global q_stored 

global R_stored 

global time 

global t 

global check 

global q_conj 

global R0_conj 

global q0 

  

q0=[]; 

q_conj=[]; 

R0_conj=[]; 

q_stored=[]; 

R_stored=[]; 

sat=[]; 

time=[]; 

t=0; 

check=0; 

  

% 3U Satellite definition and body reference frame model 

for i=0:2 

    U=[-0.5 -0.5  0.5  0.5 -0.5 -0.5 -0.5  0.5  0.5 -0.5  0.5  0.5  

0.5  0.5 -0.5 -0.5 -0.5 -0.5;  

        0.5 -0.5 -0.5  0.5  0.5  0.5 -0.5 -0.5  0.5  0.5  0.5  0.5 

-0.5 -0.5 -0.5 -0.5 -0.5  0.5; 

       -1.5 -1.5 -1.5 -1.5 -1.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -1.5 

-1.5 -0.5 -0.5 -1.5 -0.5 -0.5 ]; 

    U(3,:)=U(3,:)+i; 

    sat=[sat, U];     

end 

% Body frame definition (same of Sun Sensor): BF->MATLAB=ROTATION -

90° WRT X AXIS OF BODY FRAME  



 

103 
 

% WRT X AXIS 

bodyf_origin=[0; -0.5; 0]; 

bodyf_z=[0; -1; 0]; 

bodyf_x=[0.5; -0.5; 0]; 

bodyf_y=[0; -0.5; 0.5]; 

bodyf=[bodyf_origin, bodyf_z, bodyf_origin,bodyf_x, bodyf_origin, 

bodyf_y, bodyf_origin]; 

  

% plotting initial conditions 

% figure(1); grid on; hold on; 

% daspect([1 1 1]) 

% view(30,20) 

% fs1=20; 

% l1=2; 

% xlim([-l1 l1]) 

% ylim([-l1 l1]) 

% zlim([-l1 l1]) 

% xlabel('$X$','interpreter','latex','fontsize',fs1) 

% ylabel('$Y$','interpreter','latex','fontsize',fs1) 

% zlabel('$Z$','interpreter','latex','fontsize',fs1) 

% fac=[17 21 26 25]; 

% 

plot3(bodyf(1,:),bodyf(2,:),bodyf(3,:),'color','b','tag','initial',

'linewidth',1.2); hold on; grid on; 

% 

plot3(sat(1,:),sat(2,:),sat(3,:),'color','g','tag','initial','linew

idth',1.2); 

% 

patch('Vertices',sat','Faces',fac,'FaceVertexCData',hsv(1),'FaceCol

or','flat') 

  

%% Rotating Satellite  

% declaring a subscribe to attitude topic 

attitude_visualizer=ros2node("/attitude_visualizer"); 

att_sub=ros2subscriber(attitude_visualizer,"/attitude","custom_msg/

AttitudeQuaternion",@att_callback); 

  

% figure(2); 

% subplot(411); hold on; grid on; 

% plot(t,q_stored(1,:),'b'); 

% subplot(412); hold on; grid on; 

% plot(t,q_stored(2,:),'k'); 

% subplot(413); hold on; grid on; 

% plot(t,q_stored(3,:),'r'); 

% subplot(414); hold on; grid on; 

% plot(t,q_stored(4,:),'m'); 

  

%% for evaluating q_error 

figure(3); 

subplot(221); hold on; grid on; title('q_1'); xlim([0,500]); 

plot(time,q_stored(1,:)); 



 

104 
 

subplot(222); hold on; grid on; title('q_2'); xlim([0,500]); 

plot(time,q_stored(2,:)); 

subplot(223); hold on; grid on; title('q_3'); xlim([0,500]); 

plot(time,q_stored(3,:)); 

subplot(224); hold on; grid on; title('q_4'); xlim([0,500]); 

plot(time,q_stored(4,:)); 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

105 
 

10. Bibliography and Sitography 

 

Attitude Determination using Two measurements. (s.d.). Tratto da ReaserchGate: 

https://www.researchgate.net/publication/4706531_Attitude_Determination_Using_T

wo_Vector_Measurements 

Buildroot, Presentation Slides. (s.d.). Tratto da Buildroot: 

https://bootlin.com/doc/training/buildroot/buildroot-slides.pdf 

CubeSat. (s.d.). Tratto da Wikipedia: https://it.wikipedia.org/wiki/CubeSat 

Earth's Magnetic Field. (s.d.). Tratto da Earth's Magnetic Field: 

https://web.ua.es/docivis/magnet/earths_magnetic_field2.html 

International Geomagnetic Reference Field. (s.d.). Tratto da National Center for Environment 

Informations: https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html 

International Geomagnetic Reference Field. (s.d.). Tratto da Wikipedia: 

https://it.wikipedia.org/wiki/International_Geomagnetic_Reference_Field 

Novara, C. (2020). Course Slides, "Nonlinear Control and Aerospace Applications". Politecnico di 

Torino. 

Novara, C., Canuto, E., Montenegro, C. P., Massotti, L., & Carlucci, D. (2018). Spacecraft Dynamics 

and Control: The Embedded Model.  

ROS2 Foxy. (s.d.). Tratto da ROS Index: https://docs.ros.org/en/foxy/index.html 

Satellite Miniaturizzato. (s.d.). Tratto da Wikipedia: 

https://it.wikipedia.org/wiki/Satellite_miniaturizzato 

Schaub, H. (s.d.). Spacecraft Dynamics and Control Specialization. Tratto da Coursera: 

https://www.coursera.org/specializations/spacecraft-dynamics-control 

Skyfield. (s.d.). Tratto da Rhodes Mill: https://rhodesmill.org/skyfield/ 

TRIAD Algorithm. (s.d.). Tratto da Satellite Wiki: 

https://www.aero.iitb.ac.in/satelliteWiki/index.php/Triad_Algorithm 

Tyvak International Website. (s.d.). Tratto da Tyvak International: https://www.tyvak.eu/ 

Wertz, J. R. (1978). Spacecraft Attitude Determination and Control.  

 


