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1. INTRODUCTION

1.1. Nanosatellites overview

In recent years, space exploration has attracted a lot of social interest and economic investments
by both public and private entities. The development of new technologies, that can be useful and
applied in many fields, has allowed the foundation of many realities that are now leaders of the
space industry. In this context a particular implementation of these new technologies, that is
becoming a very important part of the space exploration sector, is made up by the CubeSats.

The first CubeSat was developed by the California Polytechnic State University and Stanford
University in 1999 for educational purposes, then due to their low costs they have been adopted
in space industry for many types of missions. These artificial satellites are small and light,
normally with a mass below 500 kg, and they are instrumented with particular devices called
payloads used for collecting data and in general for performing an assigned mission (data
collection, science experiments, ...). Depending on their masses, they can be classified in
minisatellites (100~500Kg), microsatellites (10~100Kg) or nanosatellites (1~10Kg). In general
the standard for CubeSats is the 1U (one unit) that has dimensions 10x10x10 cm, 1 dm3 volume
and a weight not more than 1.33 Kg; is also possible to have bigger ones with other
configurations like 3U CubeSat with dimensions of 10x10x30 cm or 6U CubeSat 10x20x30cm
and so on.

Figure 1. 1: Tyvak's Commtrail Satellite (3U)

They are widely employed because their production and launch costs are cheaper compared to
a bigger standard satellite: in general the bigger is the satellite the bigger the rocket must be for
reaching the desired orbit and, in addition, it is also possible to deploy more satellites with a
single launch. Nowadays nanosatellites can be applied in many different fields that range from
earth observation to space exploration and, in the near future, in planetary defence too with the



ESA Hera mission. Due to their small dimensions they can be easily employed in swarm for
performing missions that could not be possible for single satellites: data collection about the
same phenomenon from different positions, in-orbit inspection of bigger satellites and many
others. Even if their concept is very simple since the body of these satellite is made up by cubes,
they involve very complex technologies from both electronic/mechatronics (sensors, actuators,
...) and software side for implementing all the required subsystems that the satellite needs.

Among these subsystems there is the ADCS (attitude, determination and control system),
intended for monitoring the attitude of the satellite and to autonomously perform control
actions on the actuators for accomplishing several duties, for example the “detumbling” of the
satellite when it is deployed in the orbit. This system in particular requires a software
framework able to collect data from several sensors and to send the right control action to the
mounted actuators, at a fixed rate (that can be very high). In order to simplify the software
implementation and management, a framework like ROS2 (second version of the Robot
Operating System) can take advantage for its simplicity and modularity. It’s strongly supported
by the community and provides native functions that ranges from navigation services to
graphical visualization for simulation and debugging. ROS2 it’s widely used in the robotic
industry, but it can be easily applied to different fields due to the advantages listed before.

1.2. Thesis objective and context

This thesis work is an R&D (research and design) project which context takes place in the
aerospace industry, particularly in the field of software engineering for nanosatellites. The
design and the validation of a software framework is one of the most critical phases in the
realization of a complex system like nanosatellites and it must follow a precise life cycle dictated
by software engineering rules. The steps to achieve a good software realization can be described
with a V-shaped process flow, presented in Figure 1. 2:

Requirement Analysis

Program Specification

Figure 1. 2: V-Shaped Software flow



The left part of the V-shaped flow includes the verification and design process of the system
while the right part includes the validation process:

e The first phase is the analysis of the system in terms of requirements. Based on the
functionality of the system, the requirements can be classified in functional requirements
(to describe how the system must respond to specific input and the list of the operations
that the system must perform) and domain requirements (to specify the domain of
interest of the system). This phase also incorporates the prediction of the cost of the
system.

e The second phase is the system design and it includes a first part concerning the
architectural design, which defines which are the applications that must be implemented
and how they communicate with each other. The second part is the detailed design and
program specification, to define the deadlines for the development of the applications
and how to implement them.

e After that, the drawing up of the code can start and it results to be the core phase of the
software development.

e Once all the applications of the software are developed, the software needs to be
validated. To do this, different kind of tests are performed to check that the system works
properly. The first test to be performed is the unit testing which consists to test the single
applications developed to check if bugs are present and if they realize the proper
functionality. After that, the applications modules are integrated into subsystems and
they are tested together as a group (integration testing). If in these two phases, all the
functionalities are satisfied and the subsystems work properly, the whole system is
integrated and tested (system testing) to check that all the functionalities are
implemented and cooperate properly.

¢ Finally, the software framework design can be considered completed and it is delivered
to the clients, but it always needs to be maintained.

The maintaining phase includes also the so-called “evolution” of the system, which incorporate
bugs to be fixed, changes in the requirements, new updates and releases or new features to be
added. All these operations are considered critical since they increase the cost of the
development.

To simplify these processes, new approaches to software engineering are considered. A first and
widely adopted solution is MBSD (Model Based Software Design) which consists in realizing a
model of the system in a simulation environment like Matlab/Simulink and auto-generate the
C/C++ code, with provided toolboxes, for implementing control systems in suitable embedded
systems. Considering nanosatellites as example, this solution can be a good choice for the
development of the ADCS since the control laws are designed in Simulink and, once the
simulations results are evaluated, the code can be directly obtained from these models.
Another possible solution is to design the software framework with tools and libraries like ROS



(Robot operating system) or ROS2. These have taken hold mainly in robotics applications but
they can be easily employed in the design of any kind of complex system, even nanosatellites, by
providing a lot of APIs (Application programming interfaces) to implement common features for
mechatronic systems.

In this scenario takes place this thesis work, linked to a new R&D project started by Tyvak
International and intended to demonstrate and realize a first implementation of an Italian flight
software framework for nanosatellites using ROS2 and apply it to an attitude determination
application to illustrate the proper functioning of the whole system.

The main reason that convinced the software team of Tyvak International to start this new R&D
project (named Phoenix) is related to the fact that Tyvak International is a start-up born by the
American counterpart Tyvak Nanosatellites that provides technologies for the their satellites,
including the software framework.

For this reason Tyvak International does not hold its own flight software framework, and that
could cause problems in managing the software, find bugs and realize patches to correct them.
This means that, if there is an intention of implementing a new feature, a reverse engineering
process has to be done to understand how to integrate that feature on the provided framework
realized by Tyvak Nanosatellites. The flight software framework developed by Tyvak
Nanosatellites (MK-2) is taken as starting point to understand what are the main applications
that are needed for a real satellite to allow it to perform in-orbit operations. After that, the
fundamental applications to realize a first implementation of the system to achieve an attitude
determination (watchdog, reading sensors and telemetry) are implemented into ROS2 nodes
and their structure will be described in the following chapters of the thesis.

1.3. Structure of the thesis

The thesis is intended to explain the development process of some applications enabling the
ROS2 flight software framework, by explaining the concept of each node and why the selected
solution can be better compared to another one. Finally, an application related to the Attitude
Control system is studied and tested in MATLAB/Simulink. The thesis is structured as following:

e Chapter 2: a brief explanation of both the hardware and software used for the project,
starting from the sensor module to the Raspberry Pi 3 B+ embedded system, describing
their usage and reporting the circuit diagram used as reference for building the final
electronic circuit. Finally, an overview of ROS2 is presented, listing some peculiarities and
advantages.

e Chapter 3: description of the implemented nodes in ROS2, explaining the concept of each
one and some architectural choices. Finally their functioning and the practical
implementation in python.

e Chapter 4: the general problem of attitude determination is presented within the TRIAD
algorithm solution. Finally, the attitude determination node is explained in detail.



e Chapter 5: a MATLAB real-time animation is performed to test the system designed in
ROS2. Particularly, a 3U satellite is simulated to visualize its attitude determination. The
simulation uses ROS Toolbox that allows the integration of ROS / ROS2 with Matlab /
Simulink.

e Chapter 6: some personal conclusions about the project and suggestions for future
improvements and developments.

e Appendix A: general description of Buildroot and description of the first attempt to
realize an image for a Tyvak custom board

10



2. SYSTEM ARCHITECTURE

2.1. Project overview

Since the objective of the thesis is to realize a first version of a new flight software framework,
based on ROS2, and to study in details a possible application, a preliminary selection of
fundamentals applications needed in a flight software is performed. To this aim the MK-2 flight
software developed by Tyvak Nanosatellites is taken as example, for understand how a flight
software is designed and which applications are needed for realizing a first implementation.
Among the applications implemented in the MK-2 flight software, this combination of them has
been preferred:

e Watchdog: to check the status of other important applications.
e Sensors reader: for enabling the sensor data reading over 12C/SPI buses.

e Sensors telemetry: to store the collected data.

The selection of these applications (detailed in the following sections) is not casual; indeed they
can ensure the enabling of a first draft of a flight software framework that will be able to collect
data from sensors, store them and to autonomously react to sudden crashes affecting its
processes. Moreover this first version of flight software can be used for a simple ADCS

application.
In order to test the developed flight software the reference embedded system selected is the

Raspberry Pi 3 B+.

2.2. Hardware configuration

This section is devoted to broadly introduce all the hardware needed for the thesis project,
paying attention to the connections between all the components rather than describing in detail
each one of them; this job will be performed in the following sections.

The components used are:

e Raspberry Pi 3 B+ as embedded system, used for managing the collected sensors data and
executing all the ROS2 processes.

e A custom sensor module, provided by Tyvak International, generally used for attitude

determination purposes. It mounts an AD7415 temperature sensor, an HMC5883L
magnetometer and a E910.86 sun sensor.

11



e A custom connector for interfacing with the sensor module.

e A TXB0108 level shifter for properly connecting the sun sensor to the Raspberry.

A level shifter is a very simple device that rescales a certain voltage, in this case the 5V voltage
coming from the MISO output line of E910.86, to another desired voltage, in this case the 3.3V
accepted by the Raspberry GPIO pins.

The TXB0108 level shifter is mandatory for connecting the E910.86 sun sensor to the Raspberry
Pi 3 B+ without damaging the board because, as can be seen in Figure 2. 1, the MISO output signal
that would go from the sun sensor to the Raspberry pins works at voltages that are greater than
the voltage tolerated by the Raspberry GPIO pins, that is 3.3V.

No. | Parameter | Condition I Symbol | Min. | Typ. | Max. Unit
SPI DC Characteristics, output terminal MISO
1 | Outputvoltage low I=0.5mA — 04
2 | Outputvoltage high I=-0.2mA SO V- 04 v

Figure 2. 1: E910.86 MISO output voltages. Vdd=4.5V to 5.5V

The connections between all the components are schematized in this circuit diagram:

Raspberry Pi 3 B+

29 o}
32}: ggg g\\'{ 411 Sensors Module ConnectoJ
3.3V SDA 5.0V
l%ﬂTXO 3.3vHL ol 4
Q1 RxT 2 MOSI 6
SDA : MISO 8
3%_ GP12 SCL 5 TXB0108 Level Shifter SCLK 3.3 Vi
31GP13 MOST %‘i Lv1 HV1 /Cs 2
21 Gp16 MISQ -5 vz Hv2 113 14
cPle 2 | scikjed LV3 HV3 GND GND
CE1 CEO Lva HVA4 GND GND
te (B, B
P cp17 GP26 |- —{1V5 HVS "
2 1 GP18# V6 HV6 3
2 1Gp22 GND:%‘ LV7 HV7 Ghl
%} GP23 GND [, V8 HV8
GP24 GNng
21 GP25 GND |2 -
%GDN GNDIE®  GND
GND
%é‘:ID_SDJ; GND (22
ID_SC GND |2

Figure 2. 2: Components connections circuit diagram

2.2.1. Temperature sensor AD7415

The AD7415 sensor is a standalone digital temperature sensor, widely used in several fields of
applications, that is mounted in the provided sensor module. The serial interface is I12C and
SMBus compatible, due to this the sensor can be easily interfaced with “smbus2” python library.
The sensor requires a 2.7V to 5.5V power supply and so it can be used without any problems
with a Raspberry PI 3 B+. A schematic representation of the sensor register structure is
portrayed in the following figure:

12



TEMPERATURE
- VALUE

Y

REGISTER
ADDRESS D
POINTER A
REGISTER -
\ »|CONFIGURATION |, | A
1 REGISTER
- SDA
-— SCL

Figure 2. 3: AD7415 Register structure

To correctly initialize the AD7415 we must configure it by writing a particular byte in its
configuration register at Ox01 address.

' Default settings at power-up.

D7 | D6 | D5 | Da | D3 | D2 D1 DO
PD [ FLTR | TESTMODE | ONESHOT | TESTMODE
o |1 0s' 0s' 0s'

Figure 2. 4: AD7415 Configuration register bits definition

For the thesis purposes a very simple configuration has been selected by writinga “1” in the ONE
SHOT bit of the configuration register. In this way the AD7415 is expected to power-up, perform
a single conversion and then power down again automatically.

Finally, the sensor is able to perform the temperature sensing and to store the result on the
temperature register at 0x00 address. The temperature value register is a 10-bit, read-only
register that stores the temperature reading from the ADC in twos complement format.

Two reads are necessary to read the actual data from this register:

Temperature Value Register (First Read)
D15 D14 D13 D12 D11 D10 D9 D8
MSB B8 B7 B6 B5 B4 B3 B2

Temperature Value Register (Second Read)

D7 D6 D5 D4 D3 D2 D1 Do
B1 LSB N/A N/A N/A N/A N/A N/A

Figure 2. 5: AD7415 Temperature value register readings output

As written in Figure 2. 5. above, by reading the temperature value register twice, we will obtain
two bytes containing the actual 10-bit data needed and other N/A bites that are neglectable.
After extracting the raw digital value of the temperature in the 10-bit form from this row of bits
(from D6 bit to D15 bit), is easy to retrieve the actual value of the temperature in °C since the
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temperature resolution of the ADC is 0.25 °C, which corresponds to 1 LSB of the ADC; so by
applying the following function:

Raw_digital_temperature [gecimai
4

Temperature[°C]| =

the value of the temperature in °C is obtained.
The circuit diagram of the sensor is reported in Figure 2. 6

3V3

AD7415ARTZ 0 1uF

2{GND VDD

1 SDA
AS SCIY

I2C ADDR: 0X49 GND

Hm 0o

Figure 2. 6: AD7415 circuit diagram

2.2.2 AD7415 Testing

The AD7415 sensor gives as output the temperature expressed in °C. In order to check the output
results, a first test is to let the sensor measure a temperature and see if the value read is always
the same. The resulting output (measured with a frequency of 0.5 Hz) can be seen in Figure 2. 7:

ubuntu@ubuntu: ~/ros2_ws - 0

File Edit WView Search Terminal Help

ubuntu@ubuntu: $ ros2 run sensors sensors reader i2c busl
Reading data from I2C busl ...

Temperature: 23. [°C]

Temperature: 23.

Temperature: 23..

Temperature: 23..
Temperature: 23.
Temperature: 23.
Temperature: 23.:
Temperature: 23.

Figure 2. 7: Constant output temperature

As it can be seen, the temperature is correctly measured with an approximately error of 0.5 °C.
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After that, the second test that is performed is to heat up the sensor module to check if the
measured temperature increases with respect to the one measured above. The output obtained
can be seen in Figure 2. 8:

ubuntu@ubuntu: ~fros2_ws - a
File Edit View Search Terminal Help

ubuntu@ubuntu: $ ros2 run sensors sensors reader i2c busl
Reading data from I2C busl ...
emperature: 28.75 [°C]
emperature: 28.25 ’
emperature: 28.5

emperature: 28.25
emperature: 29.25
emperature: 29.:

emperature: 29.

emperature: 29.

emperature: 29.

emperature: 29.

emperature: 29.

emperature: 30.

emperature: 30.

Figure 2. 8: Variable output temperature

As it can be seen, considering an initial temperature of 23 °C as the one shown in Figure 2. 8,
the measured temperature is correctly greater due to the heating of the sensor module.

2.2.3 Magnetometer HMC5883L

The HMC5883L sensor is a 3-axis magnetometer supported by a 12-bit ADC coupled with a Low
noise AMR sensor that achieves a 5 milli-Gauss resolution in + 8 Gauss fields. This enables a 1°
to 2° compass heading accuracy that makes this sensor suitable for mobile phones and auto-
navigation systems. This magnetometer provides an I2C serial bus interface, just like the
AD7415, and can be supplied with a voltage up to 3.6V.

The device is controlled and configured via several on-chip registers, described in Figure 2.9

Address Location Name Access

00 Configuration Register A Read/Write
01 Configuration Register B Read/Write
02 Mode Register Read/Write
03 Data Output X MSB Register Read

04 Data Output X LSB Register Read

05 Data Output Z MSB Register Read

06 Data Output Z LSB Register Read

07 Data Output Y MSB Register Read

08 Data Output Y LSB Register Read

09 Status Register Read

10 Identification Register A Read

11 Identification Register B Read

12 Identification Register C Read

Figure 2. 9: HMC5883L register list
15



So in order to use the sensor we need to properly set the bits of the configuration register A and
B, and the mode register. This can be easily done with a write operation on the proper address
location. For our purposes a continuous-measurement mode is selected by writing all zeroes in
the mode register: in continuous-measurement mode, the device continuously performs
measurements and places the result in the data register.

The result is stored in 3 channels (one for each axis): X, Y and Z channels; and each one of them
is made up by two 8-bit output registers (A and B ) where we can find the desired measurement.

DXRA7 | DXRA6 | DXRA5 | DXRA4 | DXRA3 | DXRA2 | DXRA1 | DXRAO
©) ©) ) ©) () (0) (0) ©)
DXRB7 | DXRB6 | DXRB5 | DXRB4 | DXRB3 | DXRB2 | DXRB1 | DXRBO
©) ) () ) () (0) (0) (0)

Figure 2. 10: HMC5883L channel X data output registers A and B

Taking for example the A and B output registers of the X channel in Figure 2. 10 is possible to see
that each register contains 8-bit (the number in parenthesis indicates the default value of that
bit), and in the specific: the A output register will contain the MSB of the measurement result
while the B output register will contain the LSB.

The value stored in these two registers is a 16-bit value in 2’s complement form, whose range is
0xF800 to 0x07FF.

The circuit diagram of the sensor is reported in Figure 2. 11

HMC5883L
. DRD\’_l_E_._.
l _g‘ GMND . 0.22uF
GND SETC (44
GND 1 <pa |16 3V3
] SDAl "
47uF 13 |y sCLHA— ] 0 1uF
Pe—NC p T
,_._':l_r.f 51
5 NE unmaa [ 13 —
//—_ F-. - W DDIO
1 4 NC VDD [
GND GND

I2C ADDR: OX1E

Figure 2. 11: HMC5883L circuit diagram
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2.2.4 HMC5883L Testing

The output values of the magnetic field measured by the magnetometer are expressed in Gauss
(G). To test it, the values measured on the three axes are printed with a frequency of 0.5 Hz. The
results are shown in Figure 2. 12:

ubuntu@ubuntu: ~fros2_ws - @2

File Edit Wwview Search Terminal Help

ubuntu@ubuntu: $ ros2 run sensors sensors_reader_i2c

M ETOMETER DATA:

-0.865137614678899

1AC

f
§
§
f
§
§
f
§
§
f
i
l
f
i
§
f
§
§
f
§
§

MAC

MA

0.04862385321100918

862385321100918
862385321100918
862385321100918
862385321100918
862385321100918
862385321100918
862385321100918
862385321100918
862385321100918
862385321100918
862385321100918
862385321100918

B.04862385321100918
B.04862385321100918
B.04862385321100918
B.04862385321100918
B.04862385321100918
B.04862385321100918
B.04862385321100918
B.04862385321100918

-0.865137614678899
-0.865137614678899
-0.865137614678899
-9.865137614678899
-0.865137614678899
-0.865137614678899
-9.865137614678899
-0.865137614678899
-0.865137614678899
-0.865137614678899
-0.865137614678899
-0.865137614678899
-8.865137614678899
-0.865137614678899
-0.865137614678899
-8.865137614678899
-0.865137614678899
-0.865137614678899
-0.865137614678899

B.865137614678899

Figure 2. 12: Output values of the magnetometer

These values are expressed in the reference frame provided by the magnetometer with X axis
pointing down, Z axis pointing out of the sensor and Y axis to complete a right-handed
reference frame.

2.2.5 Sunsensor E910.86

The E910.86 is a two-axis digital sun sensor, manufactured by Elmos, that provides three sensing
functions:

e The angle of light incidence in both xz (Xn) and yz (Yn) plane
e The light intensity for each of two different spectral range

e The chip temperature

The only output used for the purpose of this thesis is the first one. The physical representation
of the Xn angle, with respect to the magnetometer reference frame, can be seen in Figure 2. 13
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X“mnd =90

Figure 2. 13: Physical model of Xn angles

The same model can be used for the Yn angle on the yz plane.

These output values are accessible through the SPI protocol that uses a 16 bit word to
communicate, composed by an address and a data section. Read commands start with a ‘00’
while write commands start with ‘10’. The SPI response always starts with ‘01’.

According to the sensor datasheet, the commands used in order to initialize the sensor and read
its result are:

Command Operation SPI response \ Data
10x100XXYYPSZDDD Write 011100XXYYPSZDDD E910.86
E910.86 and analog
and analog output
output status
status
X0x000xXXXXXXXXXX Read X and | 0100X5X4X3X2X1X0Ys5Y4Y3Y2Y1Yo X and Y
Y sensor sensor data
angle data Yn= angle
yz-plane
Xn=angle
xz-plane

Figure 2. 14: E910.86 write and read commands used

The data section of the word is used to configure the pull diodes (XX and YY operating mode (Z
and DDD bits).

In order to communicate with the sensor using the SPI protocol, the Python SPIdev library is
used. Once the initialization command is sent through the xfer2 SPIdev function, and the SPI
mode and frequency are set, the sensor is ready to be read.

Once the byte word (16 bits) is read, we can extract the bits referred to Xn and Yn data obtaining
the following digital value: X5X4X3X2X1X0Y5Y4Y3Y2Y1Yo.

The float value of the angles can be easily retrieved by using the following linear relation
contained in the sensor datasheet and represented in Figure 2. 15.
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75%Xny 75%Y,
_ yteword _ Nbyte word
Xndeg = - + 15 Yndeg = p + 15

The angles value can span from 15° to 165° with a resolution of 2.7°.

Digital output

111000 - - - -

oon | — — — A— — — —

000000 | | |
15° 90" 165" Angle of light

Figure 2. 15: Digital output - angles relation

Once the conversions are computed, the resulting values are the Xn and Yn angles (in radians).
Now that these angles are known, referring to Figure 2. 16, the sun vector can be computed.

SUNLINE

OF THE
SUNLINE ON THE
He = Zsﬂ.AII!

Figure 2. 16: Sun vector model

Referring to the Figure 2. 13, the angle § can be computed as Xn-90°. In this way, when Xn is
ranging from 15° (the minimum value that can be obtained from the sensor) to 90° the value of
B is negative; instead, when Xn is ranging from 90° to 165° (the maximum value that can be
obtained from the sensor),  is positive. The same model is used for the angle Yn, using angle a
instead of (3.

In this way, using the values of a and 3, and referring to the picture in Figure 2. 16, we can easily
compute X, Y, Z coordinates of the sun vector, expressed in the sensor frame, by applying the
following formula:
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Ysp tana

Xsh [tanﬁ ]
Zsp

The vector obtained from this computation is then normalized. The circuit diagram of the sensor
is reported in Figure 2. 17

5V0
5V0
5V0
R1 c1
100k E910.86 G 1u
R2 /RST VDD
4.7k
ouT —
GND
%— TEST Mosi|  MosI
MISO| A AA_____ MISO
s« | RES1 seu | VYV gek
{o | RES2 /CS /CS
RES3
%
RES4
X% NC1
$2| RESS Nz [
e RES6 NC3H<
| RES7 —x
X— NC4
{_|RES8 —X
RES9
%
$2_| RES10 PAD
RES11 GND
%
GND

Figure 2. 17: E910.86 circuit diagram

2.2.6 E910.86 Testing

The output values provided by the Sun sensor are the XZ and YZ angles (respectively named Xn
and Yn). A first test is performed in order to check if the sensor correctly measure an angle of
90° on both XZ and YZ plane when a light is positioned in front of the sensor as it is shown in
Figure 2. 18:

Figure 2. 18: Setting of the Sun sensor testing
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The outputs obtained from this experiment are presented in Figure 2. 19:

L]

ubuntu@ubuntu: ~fros2_ws -

File Edit Wiew Search Terminal Help

ubuntu@ubuntu: $ ros2 run sensors sensors reader spi bus@
Reading data from SPI busé ...

Xn: 92.77777777777777  [°). Yn: Q2.77777777777777 [ °]
Xn: 92.77777777777777  [°). ¥Yn: 9Q2.77777777777777  [°]
Xn: 95.55555555555556 [°]. Yn: 92.77777777777777 [°]
Xn: 95.55555555555556 [°]. Yn: 92.77777777777777 [°]
Xn: 95.55555555555556 [°]. Yn: 92.77777777777777 [°]
Xn: 92.77777777777777  [°). Yn: 9Q2.77777777777777  [°]
) [°]. [°]

Xn: 927777777 787T777 Yn: 92.77777777TTTTTT

Figure 2. 19: Xn and Yn equal to 90° test

As it can be seen, the angles are correctly measured with a precision of 2.7° (due to the
resolution of the sensor).

A second test is performed by moving the light along the X axis of the Sun sensor reference
frame and check that the Xn angle changes. The results are presented in Figure 2. 20:

ubuntu@ubuntu: ~fros2_ws - 2
File Edit View Search Terminal Help

ubuntu@ubuntu: $ ros2 run sensors sensors reader spi bus®
Reading data

Xn: 48, °1. Yn: 90.0 [°]

Xn: 48, °1. Yn: 92.77777777777777

Xn: 42, °]. Yn: 87.22222222222223

Xn: 42.77777777777778  ["]. Yn: B4.44444444444444

Xn: 53.888888888888886 [°]. Yn: 81.66666666666667

Xn: 67.77777779777777 °]. Yn: B81.66666666666667

Xn: 78.88888888888889 [°]. Yn: 78.8B8888888888889

Xn: 87.22222222222223 [°]. Yn: 78.88888888888889
Xm: 92.77777777777777 [°]. Yn: B7.22222222222223
Xm: 101.11111111111111 1. ¥n: 90.8 [°]
Xm:  112.22222222222223 °1. Yn: 98.0 [°]
Xn: 120,55555555555556 °1. Yn: 87.22222222222223
Xm: 126.11111111111111 °]. ¥n: 87.22222222222223
Xm: 128.,888BBBBBBE8889 °]. ¥Yn: 98.0 [°]

Figure 2. 20: Xn changing test

The results obtained are correct since Xn values are changing. Yn angle it is correctly
maintained to a value of approximately 90°. The precision is about 10° since the light is moved
by hand and some errors occur during the movement.

The same test is performed by moving the light along the Y axis to check if the Yn values
change. The results are presented in Figure 2. 21:
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Figure 2. 21: Yn changing test

The results are correct and compatible with the ones obtained from the Xn moving test

2.2.7 Raspberry PI 3 B+

The Raspberry Pi 3 B+ is a single-board computer of small dimensions that can be equipped with
different Linux based operating systems (mainly Raspbian and Ubuntu). The board doesn’t have
an integrated hard disk, so the installation of the operating system is done with the flashing from
an SD card.

Raspberry is often used for academic usage but also in companies for rapid prototyping as
control unit in projects of all size and application fields, mainly because is a low-cost board, is
simple to configure and to use and has an high efficiency in terms of CPU consumption.
Considering the older models, Raspberry Pi 3 B+ has an extended GPIO (General Purpose
Input/Output) with 40 pins. The board and its GPIO scheme can be seen in Figure 2. 22.
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Figure 2. 22: Raspberry Pi 3 B+ board and GPIO scheme
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For the aim of this thesis work, the connection of the following pins is necessary:

e Supply: Pins “1, 17” for the 3.3 V and pins “2, 4” for 5 V supply

e SPI communication: Pins “19, 21, 23, 24” in order to communicate through SPI protocol
with the sun sensor mounted on the sensor module

e [2C communication: Pins “3, 5” in order to communicate through I2C protocol with the
magnetometer and the temperature sensor mounted on the sensor module

e GND: Pins “14, 30, 34” are used for ground connection

These connections must be done like the representation in the schematic of Figure 2. 2 resulting
in this real circuit presented in Figure 2. 23:

Figure 2. 23: Final circuit with: Raspberry PI, logic level converter and sensor module

2.3 Software configuration

In the following section is presented the software configuration used for developing the thesis
work.

As presented in section 2.2.7, the used board for testing the ROS2 software is the Raspberry Pi
3 B+. The first step for starting to develop with an embedded system is to install an OS (operating
system) suitable for the aim of the work. Generally, for what concerns embedded systems, there
are two different possibilities for installing an 0OS:

e The first one is realizing an image, generally composed by bootloader, kernel and rootFSs,
with an automatized toolbox, like Buildroot or YOCTO, that generates embedded linux
images and then flash it on the system following a certain procedure that may be different
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from board to board .

Buildroot provides a graphical user interface which allows to select on a menu the
bootloader, kernel, rootFS, predefined or custom packages and everything that we would
need on our board . It may be a hard procedure to obtain a working image (specially for
customized boards), but some boards may need this solution because of their strong
customization.

e The second solution is to download an existing operating system (like Debian or Ubuntu)
and then flash it on the board following the proper procedure. For example, with
Raspberry is very easy since you can just upload the OS image on the SD and then insert
it in the SD slot.

Since the purpose of this thesis is to develop a software framework based on ROS2, an OS image
that has ROS2 installed is necessary.

To obtain this result, the first solution is not the preferred one since in order to have ROS2 on
the image, according to ROS official installation page, the only available method is following the
“build from source” procedure which means to download the ROS2 source code and then cross-
compile it for the Raspberry Pi processor, which can be a difficult procedure to do (and not so
intuitive).

Proceeding with the second solution because of its immediacy, once the operating system is
downloaded and mounted on the SD card, is just a matter of following the procedure “Installing
ROS2 via Debian Packages” described in the ROS official installation page. The only existing
operating system that can support the last version of ROS2 (Foxy) is Ubuntu 20.04, so it's the
one used for this thesis work.

2.3.1 ROS2 overview and advantages

The Robot Operating System (ROS) is not a real operating system as the name may suggest, but
a set of software libraries and tools, also called “middleware”, for building robot applications.
Since ROS was started in 2007, a lot has changed in the robotics and ROS community. and the
goal of the ROS2 project is to adapt to these changes leveraging what is great about ROS1 and
improving what isn’t; the most interesting part of this updating procedure is that you can always
connect the latest version of ROS2 in use with ROS1, with a mechanism called bridge, in order
to not lose any functionality neither of one nor the other.

ROS is heavily used in robotics, but it can be used in general for autonomous/semi-autonomous
systems that may need to read sensors, have perception of their position and attitude in space
and to control actuators. For these reasons it is a very good choice for developing a software
framework also for aerospace applications, like nanosatellites.

In this thesis project the latest version of ROS2 is used and it is called ROSZ Foxy Fitzroy. There
are many versions of ROS2 and most of them are constantly updated and supported until their
EOL date (End of life); the actual situation is portrayed in Figure 2. 24:
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Distro Release date Logo EOL date

Eloquent Elusor Nov 22nd, 2019

Figure 2. 24: ROSZ latest distributions and EOL dates

Beyond the reasons explained above there are other benefits for using ROS:

e It is totally open-source and constantly updated by developers all around the world for
many application fields.

e Creating truly robust, modular and efficient robot/mechatronics software is hard, so ROS
provides plug-and-play solutions to common problems in developing software
frameworks.

e Isbased onthe DDS standard for the managing of data distribution for real-time systems,
that provides an easy publish-subscribe paradigm.

e Comes with many ready-to-use tools for debugging, data visualization and simulation.
e Possibility to develop software in python and C++ and to get connected with
Matlab/Simulink.

Another great advantage of using ROS/R0S2 is the possibility to integrate a generic ROS system
with MATLAB and Simulink by using the official ROS Toolbox. This feature is fundamental for
the MBSD approach, addressed in the introduction, since the toolbox natively provides a function
for autogenerating C++ code (with Simulink Coder), from Simulink models, for ROS/ROS2 nodes.
The ROS Toolbox provides an interface able to connect MATLAB and Simulink with ROS and
ROS2 enabling the creation of a distributed network of ROS/R0OS2 nodes among the target
embedded system, running the ROS software, and the local PC with MATLAB/Simulink.

The toolbox includes MATLAB functions and Simulink blocks to import, analyze ROS/R0OS2
messages sent and received from specific topics.

At the heart of any ROS 2 system is the ROS graph. The ROS graph refers to the network of nodes
in a ROS system and the connections between them by which they communicate. This graph is
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made up by the elementary concepts of ROS that are:

Nodes: are the smallest entities constituting every complex system. They can be seen as
processes, intended for few and elementary operations, that can communicate with other
nodes over topics. Each node can be a subscriber or a publisher of a certain topic.

Topics: each topic has a name and a specific kind of message that it can handle. They are
the “hubs” where messages are collected, when sent by publisher nodes, and sent to
subscriber nodes (ref. Figure 2. 25)

Figure 2. 25: Publisher “Node” sends a message over the topic “Topic”

Services: another method of communication for nodes based on a call-and-response
model. While topics allow nodes to subscribe to data streams and get continual updates,
services only provide data when they are specifically called by a client. A representation
of this system is presented in Figure 2. 26

Request Message Service

Request

Response

Figure 2. 26: Call-and-response method implemented by the service

By means of these simple components we can establish really complex systems like robots or
even nanosatellites. At the end of our development , including sensors reading, control of
actuators and storing of useful data, it is really helpful for debugging and analysis to represent
the overall system in its nodes and topics using the rqt_graph. A simple but clear example of this
functionality is represented in Figure 2. 27 extracted from the official ROS2 tutorial.
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Murtiel/emd_vel

Irqt_gul_py_node_23088

fturtiel/rotate_absolute/_action/feedback

Murtlel/pose

Murtieljcolor_sensor

Iparameter_events

Murtlel/rotate_absolute/_action/status

Figure 2. 27: rqt_graph of the official teleop turtle tutorial
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3 ROS2 FLIGHT SOFTWARE FRAMEWORK

In this chapter is described the proposed solution for the fundamental nodes implemented for a
draft of ROS2 based flight software framework. As stated in the introduction the applications
selected are related to the sensor data reading and storing and to a Watchdog for monitoring the
overall system status. These applications will be implemented as ROS2 nodes; all the details are
reported in the following sections.

3.3 Watchdog node

The watchdog is an electronic or software timer that is used to detect and recover from system
malfunctions, in order to make the whole system running properly. Particularly, its main duty is
to check if the applications that it has to monitor are active and properly running or not and, in
case they are not, to re-start them again.

In general a software watchdog is a process that perform these operations after being configured
by reading the needed informations, contained in a specific configuration file (written in YAML,
JSON or other data-serialization language), that watchdog reads when it is launched.

Is always a good safety precaution to have a software watchdog in an automatic system, but it is
necessary in critical systems that must be active for a long period like nanosatellites since if a
process crashes it’s necessary to immediately re-start it, to not compromise all the system.

An example of watchdog application in a complex software framework is the one used on the
MK-1 framework produced by Tyvak International. Its working flow is presented in Figure 3. 1.

timer = timer - 1
TNO

p \ ~
s YES - i YES
Launch applications SET/RESET 5 \ All keep alive
of the config file timer = WD_timer et 57 . received?

Tha i

Send a kill signal to ‘ P

it Check missing
fho=e applications
for safety reasons

&

Start —> Read config file ——

Launch again the | |
applications

Figure 3. 1: Mark-1 watchdog flow chart

When the watchdog application is started, it reads a configuration file (written in YAML) and
stores informations about the applications that it has to control, among other settings regarding
the timer period and so on. These executables are then launched by the watchdog itself. Each
application then is intended to send an heartbeat/keep alive message with a specified frequency
in order to signal to the watchdog that is running correctly. To check this, an infinite loop with
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the operations described below is performed:

e A watchdog timer with a specified frequency is set.

o If the timer is greater than zero, the watchdog checks if all the “keep alive” messages has
been collected from the applications to be guarded. If this doesn’t happen it decreases its
timer, otherwise the timer is reset and the loop restarts.

e Ifthe watchdog timer is equal to zero, it means that one or more applications did not send
the “keep alive” message. This could happen for many reasons, for example the
applications could be stuck in an infinite loop or it could be crashed.

The watchdog checks the missing applications and it sends a kill signal to those processes
for safety reasons. After that, it restarts the missing applications and resets the watchdog
timer.

In the ROS2 developed framework, the working principle of the watchdog node is different since
the desired application works mainly with pre-existent ROS2 API (Application programming
interface). Since an API called “get nodes_names”, which returns a list with the names of the
active nodes, is already existent in ROS2, the usage of the “keep alive” messages became useless
for detecting which nodes are alive or not.

This gives an important advantage for the system communications because it reduces the
amount of messages that a node has to send through topics. Moreover, in order to re-start the
nodes that are not alive, the ROS2 launch file service is used.

ROS2 launch files are Python scripts that allow to start up and configure a number of executables
containing ROS2 nodes simultaneously. These files include the package name and the executable
name of the node to be launched, and other parameters like the arguments to pass at the launch
command. They must be contained in a suitable “launch” folder and they can be executed through
the “ros2 launch” command from a shell, but there is also a provided API called
“launch_a_launch_file” that allows to launch other nodes programmatically, by passing as
argument the path to the correspondent launch file of the desired node.

Attributes and methods of the Watchdog class are presented in Figure 3. 2:

i Watchdog (Node)

guarded nodes: dictionary

active_node names_list: list

watchdog_launcher({launch_path)
create_active nodes names_list()

checking_missing_nodes()

watchdog_callback()

Figure 3. 2: Watchdog class
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The flow chart of the developed ROS2 based watchdog is presented in Figure 3. 3:

l I YES

. Compare active and o o B
Store name of the Call the watchdog Check the active | guarded nodes < Al guarded r;odes ;
®| nodes to be guarded > callback every 55 nodes names ‘ el > present?

NO
| Launch the missing ‘
nodes ‘

Figure 3. 3: ROSZ based watchdog flow chart

Read
Start —
] watchdog_cfg.yam!

When the watchdog node is started, it reads the configuration file (written in YAML) in which
are stored the names of the nodes to be guarded and the path to their launch file, and it stores
the names in “self.guarded_nodes” field of the class. An example of the YAML file is presented in
Figure 3. 4:

1 guarded nodes:
2 nodel:
3 name: 'i2c busl'
4 launch_path: '/home/ubuntu/ros2 ws/src/sensors/launch/i2c busl launch.py'
node2:
name: 'spi bus0'
launch path: '/home/ubuntu/ros2 ws/src/sensors/launch/spi bus0 launch.py'

Figure 3. 4: Watchdog config YAML file

The YAML file is organized as a dictionary with a key called “guarded_nodes”, which value is the
list of the nodes to be guarded. Each node is a list itself that contains two keys: the name of the
node and the path to its launch file.

The core function of the watchdog node is the “watchdog callback” which is called with a
frequency of 5 seconds. When the callback is called, the Watchdog stores the list of the active
nodes into the specific list, using the method “create_active_nodes_ name_list” and the API
“get_nodes_name” presented above. Then, a method called “checking missing nodes” is executed
in order to compare the guarded nodes list and the active nodes one. If one ore more nodes are
not present, the “watchdog_launcher” method is executed through a subprocess call (present in
the multiprocessing Python library).

This method executes the launch file of the missing nodes using the API “launch_a_launch_file”
presented above. Once these operations are done, the callback is called again after 5 s.

The Watchdog node can be executed through the “ros2 run” command via shell.

For the purpose of this thesis work, the nodes that are guarded by the watchdog are the sensors
nodes presented in the following paragraphs.

Considering its implementation, the realized watchdog node does not acts like a publisher or a
subscriber node butitis like a stand-alone node which autonomously controls the status of other
important nodes, needed for the correct working of the whole system.
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3.3.1 Watchdog Testing

In order to check the correct performances of the designed Watchdog node, some tests are
performed. The first situation is the one in which the sensors nodes to be guarded are running,
and the Watchdog needs only to print a message with a list of the active nodes. The results
obtained from this scenario are presented in Figure 3. 5:

ubuntu@ubuntu: ~/ros2_ws - 0

File Edit View Search Terminal Tabs Help

ubuntu@ubuntu: ~fro... = ubuntu@ubuntu: ~fro... = ubuntu@ubuntu: ~fro... ® [+

ubuntu@ubuntu: $ ros2 run watchdog watchdog
Active nodes: ['i2c busl', 'spi bus®', 'watchdog']
Node 1i2c busl present

Node spi bus@ present
Active nodes: ['i2c busl', 'spi bus®', 'watchdog']
Node 1i2c busl present
Node spi bus@ present

Figure 3. 5: Watchdog test. All nodes present

As it can be seen, Watchdog correctly print a list of the active nodes (including itself) and a
message that shows that the sensors nodes are correctly running.

The second situation is the one in which one of the two guarded nodes (for example the one
that read data from the SPI bus) is not running. The Watchdog is in charge of start this node up.
The results are presented in Figure 3. 6:

ubuntu@ubuntu: ~fros2_ws - N

File Edit Wiew Search Terminal Tabs Help

ubuntu@ubuntu: ~fro... * ubuntu@ubuntu: ~fro... * ubuntu@ubuntu: ~fro... ¥ [+¥]1 =

ubuntu@ubuntu: $ ros2 run watchdog watchdog

Active nodes: ['watchdog', 'i2c busl']

Node 1i2c busl present

Launching missing node: spi bus®

[INFO] [launch]: ALl log files can be found below /home/ubuntu/.ros/log/2021-83-
89-19-45-21-757562-ubuntu-25865

[INFO] [launch]: Default logging verbosity is set to INFO
[INFO] [sensors reader spi-1]: process started with pid [25866]
Active nodes: ['watchdog', 'spi bus@', 'i2c busl']

Node 1i2c busl present

Node spi bus® present

Figure 3. 6: Watchdog Test. SPI node missing

As it can be seen, when the Watchdog callback is called for the first time, the only node present
in the active nodes list, except the Watchdog, is the one that read data from the I12C bus. For
this reason, the Watchdog launches the SPI node and print an info message that contain the pid
of the process started. After that, when the callback is called for the second time, all the nodes
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are present in the list of active nodes and the execution process proceed normally.

The last scenario is the one in which both nodes are not present and Watchdog needs to start
them up. This test is performed in order to check that the Watchdog can start more nodes
simultaneously. The results are presented in Figure 3. 7:

File Edit Wiew Search Terminal Tabs Help

ubuntu@ubuntu: ~fro... * ubuntu@ubuntu: ~fro... % ubuntu@ubuntu: ~fro... ®* [¥] -

ubuntu@ubuntu: $ ros2 run watchdog watchdog

Active nodes: ['watchdog']

Launching missing node: 1i2c busl

Launching missing node: spi buse@

[INFO] [launch]: All log files can be found below /home/ubuntu/.ros/log/2821-03-
B9-10-46-39-999698-ubuntu-25913

[INFO] [launch]: ALl log files can be found below /home/ubuntu/.ros/log/2021-03-
B9-18-46-40-007670-ubuntu-25914

[INFO] [launch]: Default logging verbosity is set to INFO
[INFO] [launch]: Default logging verbosity is set to INFO
[INFO] [sensors reader i2c-1]: process started with pid [25915]
[INFO] [sensors reader spi-1]: process started with pid [25916]
Active nodes: ['watchdog', 'i2c busl', 'spi buse’']

i2c busl present

spi bus® present

Figure 3. 7: Watchdog test. Both nodes missing

The obtained results are pretty similar to the ones of the previous test. Firstly only the
Watchdog node is present and the sensors nodes are missing. So, the Watchdog start them up
and print two messages with their pid. When the callback is called for the second time, all the
nodes are correctly present and the execution process proceed normally.

3.4 Sensors Bus node

When we have different digital devices that need to communicate one with another, there is
always a communication system that enables this data exchange.

In the case presented in this thesis there is a sensor module, instrumented with several sensors,
that can communicate with an external device by means of dedicated buses, and in particular:
the AD7415 temperature sensor and the HMC5883L magnetometer can be interfaced through
an I2C bus, while the E910.86 sun sensor with an SPI bus.

The detailed description of these two communication systems is reported in the successive
sections while here only the architectural choice of how the ROS2 framework will handle the
sensors, and why, is discussed.

The first possible implementation that has been examined is also the most intuitive one: one
ROS2 node for each sensor.

In this way is possible to obtain a very easy to visualize system where each node is referred to
one single sensor and so it can be also easy to handle each sensor in different ways. But there
are also two significant problems with this implementation that made the second solution to be
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the best one.
Imagining a very usual situation like the one depicted in the following figure:

E910.86 E910.86
sensor 1 sensor2 | 7
[ SPI BUS ]

Figure 3. 8: SPI bus example with several identical sensors

where there are many identical sensors that have to perform exactly the same type of
measurement and in the same manner, for example on a satellite we may have many sun sensors
(such as in Figure 3. 8) or magnetometers collecting data for attitude determination; in cases like
these the solution “one node one sensor” is not so optimal form the software engineer point of
view because there will be many identical nodes performing exactly the same tasks and each one
of them is implemented exactly in the same way.

This totally goes against the efficiency and reusability philosophy of ROS2 and object
programming in general.

The second significant problem is related to the message traffic that our system would bear
whenever each node, representing each sensor, have to send messages over topic, containing the
collected data, at very high frequencies.

The second implementation analysed solves these two issues in this way: each node represents
a particular bus used by many sensors.

Referring to the Figure 3. 8 in this implementation the node will represent the SPI bus and not
each sensor attached to it, drastically reducing the redundancy of exactly the same piece of code.
From the message traffic point of view the situation in improved because now the node
representing the bus collects all the data from each sensor and then it works as an hub for sorting
the messages and send them to the right topic, instead of having many nodes continuously
sending messages at each collection of data.

For fully understand the differences between the two approaches we can consider a more
realistic situation, as the one presented in Figure 3. 9:

£910.86 £910.86 AD7415 HMC5883L HMC5883L
sensor 1 sensor 2 sensor 1 sensor 1 sensor 2

[ SPIBUS1 ] [ 12CBUS 1 ]

Figure 3. 9: Realistic situation with many sensors on two different buses
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The first presented method for handling sensors with ROS2 node, would lead to have 5 nodes
for collecting data coming from the sensors connected to different buses, while with the second
solution only two nodes will be created.

3.4.1 12C bus node

[2C (Inter Integrated Circuit) is a serial communication system used in embedded systems. It’s a
master/slave communication that normally have one master and one or more slaves. Each of
them is recognizable by a unique hexadecimal address. The hardware protocol needs two serial
lines for the communication: SDA (Serial data) for data and SCL (Serial Clock) for the clock
(mandatory since 12C is a synchronous bus). Two other lines are used: one for the reference
connection (called GND) and one for the voltage supply (typically 5 or 3.3 V). The hardware
representation of the I2C protocol can be found in Figure 3. 10:

VDD

L ]

MASTER T Rp ; Rp
SDA l ®

SCL Py Py Py
T 1 1
SLAVE #3

SLAVE #1 SLAVE #2

Figure 3. 10: I2C protocol representation

Considering the ROS2 based framework developed, one node for each I12C bus present on the
used board is created. The node can be created with the command “ros2 run sensors
sensors_reader_i2c busN” where N is the number of the bus that is wanted to be read. Raspberry
Pi, used for this work, has only one 12C bus (bus 1) but other boards could have more than one
bus so it’s necessary to specify which bus is wanted to be read.

To handle the i2c communication, smbusZ2 python library is used. It is the commonly used library
for this kind of communication and it provides several useful functions to open/close the
communication with a specified bus and read/write data to a specific slave address.

For what regard the purposes of this thesis work, two sensors communicate through I2C bus: an
AD7415 temperature sensor and a HMC5883L magnetometer, both described in the previous
paragraphers.

Since the I12C bus node must acts like a publisher and send a message that contains the sensors
data read on a dedicated topic, a custom message that can contain these informations must be
created. All the custom messages created for this thesis work are contained in a suitable folder.
The structure of sensors message is presented in Figure 3. 11:
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1 int32[2] temp raw
2 floatéd temp
int32[€] mag raw
float64[3] mag
int32 sun raw
floated [2] sun

T U1 e

Figure 3. 11: Sensors custom message structure

In the “raw” fields of the message are contained the raw values returned by the related sensor
without any kind of conversions (binary value). The other fields of the message contain the data
values of the related sensors that can be used for computation for other nodes of the system.
Since all the possible kinds of sensors are present in the message and some of them may
communicate through SPI protocol (they will be present in the following paragraph), their fields
will always be empty when considering an 12C bus node. Otherwise, the I2C bus sensors fields
will be empty when an SPI node is created.

Considering I12C bus node software, its flow chart is presented in Figure 3. 12:

| Publish the msg on
the topic

|

Call the sensar

Read | f [ [Create an object for |
Initialize sensors

i2c_busN_cfg.yaml Initialize smbus2 | Launch the each sensor on the |
Start and ste sensors us | RC_busN node bus and a list with | read}nngscallbacl; msg
fidinaioes e | every 0.05 seconds
i=0

i=is1 > i < lenf list)

YES

Read sensors data

and raw data on the

bus at the specified
address

Store them in their
relative field of the

msag

Figure 3. 12: I12C bus node flow chart

Its attributes and methods are then presented in Figure 3. 13:
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I12C_bus(Node)

bus: smbus2 bus object
sensors_info: dictionary
n_bus: int

sens: objects list

sensar_reading()

Figure 3. 13: I2C bus node class

After the node is launched, it reads the configuration file (written in YAML) presented in Figure
3.14:

1 n_bus:
2 [Hsensors:
2 [ s=sensorl:
type: 'temp'
5 addr: 0x45

—-| sensor2:
7 T type: 'mag'
8 addr: 0x1E

Figure 3. 14: I2C bus node YAML configuration file

Each bus is characterized by two keys: its number and a list of the sensors present on the bus.
Each element of the list has two keys: the type of the sensor and its address on the 12C bus. The
number of the bus and the list of sensors are stored in suitable python variables by scrolling the
YAML file as a dictionary structure. The [2C bus is then initialized using the dedicated smbusZ2
function and after that the node is created.

In the constructor of the 12C bus node, an object list of sensors is created by scrolling the list
retrieved from the YAML file and creating an object for each of them.

The core function of the I2C bus node is the “sensor_reading” callback, called with a frequency of
0.05 seconds. Every time that this function is called, a new sensors message is initialized. A for
loop is performed by scrolling on the list of sensors objects created in the constructor. The raw
and data values are read and stored into the message related fields for each sensors.

The message is then published on the topic and the callback is called again after 0.05 seconds.

3.4.2 SPIbus node

The SPI protocol (Serial peripheral interface) is a serial communication protocol used for
establishing a connection between microcontrollers or in general digital devices and, just like
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the [2C system, it uses a master-slave paradigm. In this communication system we don’t have an
address for each slave, instead there is the chip/slave select signal that is used for identifying a
slave among the others.

The SPI protocol connection between master and slaves is performed by four signal lines:

e SCLK: serial clock emitted by the master

e MISO: Master input slave output, that is the signal collecting data by the master

e MOSI: Master output slave input, like the MISO but in the inverse direction

e SS: Slave select, that is the signal emitted by the master for selecting the slave it wants to
communicate with

The hardware representation of the SPI protocol is depicted in Figure 3. 15:

SCLK » SCLK
MOSI » MOSI SPI
SPI MISO |« MISO Slave
Master SS1 » S5
552
883
b SCLK
» MOSI SPI
MISO Slave
# S5
» SCLK
» MOSI SPI
MISO Slave
b SS

Figure 3. 15: SPI communication protocol example with a Master and three slaves

Just like the 12C bus node, the ROS2 framework can create a node representing a specific SPI bus.
The node can be created with the command “ ros2 run sensors sensors_reader._spi busN ” where
N is the number of the bus where there are sensors wanted to be read. For the Raspberry used
in this project the SPI bus where the sun sensor is connected, is the number 0.

In order to access via software the SPI interface, the spidev python library is used.

For what concerns the message definition of the SPI bus node and the functional concept of the
implementation, is possible to refer to the previous section (3.4.1 section) where all these details
are presented and explained.

Considering the SPI bus node implementation, its class diagram and flow chart are presented in
Figure 3. 16 and Figure 3. 17 below.
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= SPI_bus(Node)

bus: spidev bus object
sensors_info: dictionary
n_bus: int

sens: objects list

sensor_reading()

Figure 3. 16: SPI_bus node class diagram

Publish the msg on
the topic

Read Create an object for PR—
spi_bush_cigyami ' : Launch the SPI_busN each sensor on the ] Initialize sensors
and store sensors | *| Mitialize spidev bus node | bus and a list with e > msg
informations them ey LAATE

HNO

YES

Read sensors data
land raw data coming
from the selected
slave

l

Store them in their
relative field of the
ms

Figure 3. 17: SPI_bus node execution flowchart

As is possible to see the class diagram is the same as the 12C bus node and also the flowchart is
actually very similar.
The main difference between an I2C bus node and an SPI bus node is in its config file, where

instead of having an “addr” section now there is a “cs” section representing the chip select signal
of the slave:

1 n bus:

2 Sensors:

3 sensorl:

i type: 'sun'
5 cS: j

Figure 3. 18: SPI_bus node configuration file
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3.5 Sensors Telemetry node

The Telemetry is a technology that allows to measure and store informations of interest for the
designer or operators who want to know relevant data of the system. Telemetry data can be sent
in real-time, but they can also be collected in a suitable file (for example a binary file) and sent
once the file has reached a defined size of after a certain amount of time. Telemetry is widely
used in complex systems like nanosatellites for monitoring the status of its subsystems. In this
way, they can send the most critical data (downlink) to ground operators who know how to
interpret them.

For what concerns the ROS2-based software developed, the data that must be stored using
telemetry are those that come from the sensors nodes described in the previous paragraphs.

A Telemetry node is created for each 12C or SPI bus to store all the sensors data that are present
in that bus both in raw and interpreted form. When a predefined number of messages has been
collected, a new telemetry file is created. All the sensors telemetry files are collected inside a
folder called “sensors_log” inside the “src” folder of the telemetry package.

The files in which the data are stored can be created with different extensions. For what concerns
this thesis work, two different approaches were implemented. The results are compared by
means of the size of the produced files and then the smaller one is selected as the suitable one.

The first attempt was done by using database (db3) files that can be easily read by using a
software that supports SQL files. The advantage of this kind of files is that they can be easily read
by an operator since the data are organized in database tables. On the other hand, the produced
files have a big size and, if the amount of data is large, the folder in which those files are contained
can became very large.

The second attempt was done by writing the data on binary (bin) files. These files are not easy
to read and the structure of the written data must be known a-priori, but they are compact and
their size is almost the half of a db3 file so this choice was the used one. The name of the binary
files is composed by the type of the bus (I12C or SPI), the number of the bus and a timestamp with
date and creation time. The structure of an I2C or SPI bus telemetry node is the same; the only
thing that changes are the sensors that are present on the bus and so the kind of data stored. The
attributes and methods of an I12C or SPI bus telemetry node are presented in Figure 3. 19:

= SensorsTelemetryl2C/SPI

recording: boolean

ind: int

create binary()

insert_data()

sensors_telemetry callback()

Figure 3. 19: I2C/SPI bus sensors telemetry class
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The flow chart of an [2C/SPI bus telemetry node is shown in Figure 3. 20:

Create Subscribe to | call
Start i2c/spi_sensors_telemetry_busN i2c/spi_sensors_telemetry_busN —self recording = False —» selfind =0 ———» sensors_telemetry_callback «——————————
node topic

| if a new megsage arrives
Set N_MAX = 1000
A | Jis F o self.ind = self.ind +1
lose the file where | e .
the data are stored | ot
lwo
- ™ — Insert the msg
~"NOT self.recording OR ™. received with the
« selfind > N_MAX -1 .~ sensors data into the
binary file
YES
Create the binary file —3 self. ing = True { selfind =0

|
Figure 3. 20: 12C/SPI bus sensors telemetry class

A telemetry node can be created by using the shell command “ros2 run telemetry
sensors_telemetry_i2c/spi busN” to start recording data of the sensors present on the [2C or SPI
specified bus.

The created node acts like a subscriber on the topic where the specified bus publishes its data.
Once the node is created and the subscription to the topic has been done, a boolean variable
“recording” is initialized to check if the desired topic is already recorded. Particularly, if the
variable is set to False the topic is not recorded, otherwise it is recorded. Another variable “ind”
is initialized to zero and it is used to count the number of messages arrived.

The “sensors_telemetry_callback” is called every time a new message is published on the desired
topic by the related sensors node. When the callback is called, a variable “N_max” is set to define
the maximum number of messages to collect inside a binary file and, once this number of
messages is reached, a new binary file is created.

The operations performed when the callback is called are:

e Checkingifthe actual value of “ind” is equal to “N_max”. If yes, it means that the maximum
number for a binary file is reached so the binary file is closed.

e Checkingif “ind” is greater than “N_max” -1 or if the topic is already recorded by using the
variable “recording”. If yes is necessary to: create a new binary file, set the recording value
to true and reset “ind” to zero

e The message received is then written inside the binary file using the Python library
“struct”.

After that, the “ind” variable is increased by 1 and the callback is called again when a new
message arrives on the topic.
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3.5.1 Telemetry node testing

Since the behaviour is the same for both 12C and SPI nodes, only the 12C telemetry node is
presented in this paragraph. In order to check that a new file is created every time that the
maximum number of messages is reached, the “N_MAX” variable is set to 5 in order to rapidly
check the correct behaviour. The output obtained is presented in Figure 3. 21:

ubuntu@ubuntu: ~fros2_ws - @

File Edit View Search Terminal Tabs Help

ubuntu@ubuntu: ~/ros2_ws ® ubuntu@ubuntu: ~fros2_ws x ubuntu@ubuntu: ~fros2_ws ®x [ -

@ubuntu: $ ros2 run telemetry sensors telemetry i2c busl
ogging data in: /home/ubuntu/ros2 ws/src/telemetry/sensors log/i2c busl/i2c busl sensors data-83-09-2021-11:08:24.bin
RECORDING

RECORDING. ..
ogging data in: /home/ubuntu/ros2 ws/src/telemetry/sensors log/i2c busl/i2c busl sensors data-83-09-2021-11:08:29.bin

RECORDING

RECORDING. ..
RECORDING. ..
ogging data in: /home/ubuntu/ros2 ws/src/telemetry/sensors log/i2c busl/i2c busl sensors data-83-09-2021-11:08:34.bin
RECORDING. ..

Figure 3. 21: Telemety node testing

The first line shows the creation of the first file in which the data of the [2C sensors are stored.
After that, a “Recording...” message is printed every time a new message is stored in the file. Once
the “N_MAX” number of messages is reached, a new file is correctly created and filled with the
new messages.

In order to demonstrate that the data are stored correctly, a Python file is prepared to read the
created binary files. This script uses the “unpack” function of the “Struct” Python library.

The data read from the script are presented in Figure 3. 22:

File Edit View Search Terminal Tabs Help

ubuntu@ubuntu: ~/ros2_ws/src/tele... % ubuntu@ubuntu: ~fros2_ws X ubuntu@ubuntu: ~fros2_ws X [l

ubuntu@ubuntu: $ python3 read telemetry.py
Reading sensors data from: sensors log/i2c busl/i2c busl sensors_data-©3-09-2021-12:03:37.bin

Temperature raw value: ©6x15 ©0x60

Temperature value: 21.5 [°C]

Magnetic field raw val 0x1 Oxeb ©xfd ©xe7 Oxfc ©Oxb8

Magnetic field coordinates: ©.45045870542526245 [G] -0.4926605522632599 G -0.7706422209739685

Temperature raw value: ©x15 0x20

Temperature value: 21.25 [°C]

Magnetic field raw val 0x1 X exes exfc  exb7

Magnetic field coordinates: @ 7073287964 [G] -0©.4944954216480255 G -8.7715596556663513

Temperature raw value: 0x15 0x60

Temperature value: 21.25 [°C]

Magnetic field raw value: @x1 ©6xeb Oxfd ©xe6 6xfc 6xb9

Magnetic field coordinates: 0.45045870542526245 [G] -0.4935779869556427 G -0.7697247862815857

Temperature raw value: ©x15 ©xa@

] eld raw value: X oxeb Oxfd ©Oxe6 Oxfc Oxb9
Magnetic field coordinates: ©.45045870542526245 [G] -0.4935779869556427 G -0.7697247862815857

Temperature raw value: ©x15 0x20

Temperature value: 21.5 [°C]

Magnetic field raw val 0. ea Oxfd exe6 exfc oxbs

Magnetic field coordinates: .44 127073287964 [G] -©.4935779869556427 G -0.7706422209739685

Figure 3. 22: Reading Telemetry data

41



4 ATTITUDE DETERMINATION

When a spacecraft or in general an autonomous system must perform some actions and interact
with an environment, there is always the problem of determining its position in the space and
its attitude. These two informations are fundamental and need to be mathematically defined
with respect to a well-defined reference frame.

In this thesis only the attitude information is needed for performing the attitude determination,
so the position in space of our system is neglected.

In the following sections the mathematical tools for determining the attitude of our spacecraft
are presented.

4.1 Rotation matrices and quaternions

Let’s suppose that we are in a situation like the one depicted in Figure 4. 1:

Figure 4. 1: F1, F2 reference frames and a generic particle

There is a generic particle (in red in the figure) and two reference frames (F1, F2) that are
translated and not aligned, so a mathematical tool for representing the relative position and
attitude between them is needed.

To this aim is possible to analyze the situation by representing the position of the particle with
respect to the two reference frames:

R=XI+YJ+ 7K position of the particlein F1
R, =X 1I+Y,J+7Z K position of the origin of F2
r=xi+yj+zk position of the particlein F2

Figure 4. 2: Position of the particle with respect to F1, F2
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The mathematical tool needed is such that it can represent the relationship between the
coordinates (X,Y,Z) and (x,y,z). To this aim is possible to rewrite each coordinate of R in this way:

X=R-I=R,+r)- I=X,+a2l-i+yl-j+21-k

Y=R-J=(R,+r)-J=Y,+2J-i+yJ - j+2T-k

Z=R-K=R,+r) K=Z,42K-i+yK-j+:K -k
@

X X, T -1 15 1-k

Y |=| Y, [+T| vy |. T=|J1 J-3 J-k

Z Lo 2 Ki K-j K-k

Figure 4. 3: R written in matrix form in function of (x,y,z)

As is possible to see from the relation above (Figure 4. 3), each element of the T matrix is a dot
product between the F1 and F2 versors, that are called the direction cosines. These elements
represent the orientation of each axis of one frame with respect to each axis of the other one,
and due to this the T matrix is usually called Direction Cosine Matrix (DCM). An interesting
feature deriving from this analysis is that is possible to split the problems of translation and
rotation and to treat them independently, since the T matrix is referred only to the rotation while

the R vector is only referred to the translation between the reference frames.

The DCM T can be interpreted in two ways, and is fundamental to understand which
interpretation is being used:

e Alias: is referred to the transformation of coordinates. For example T can be interpreted

as a coordinate transformation F, — Fj.
e Alibi: is referred to the rotations. For example T can be interpreted as the rotation matrix

such that F; = F,.

The rotation matrices are a minimal and useful mathematical tool that can be easily employed
for representing the attitude of a spacecraft, but their affected by a well known and dangerous
limitation. Since matrices are used for representing the actual attitude of a generic system, it
happens that in certain configurations the matrix loses a degree of freedom. In these situations,
there is a singularity corresponding to the loss of an information, and that’s exactly what happens
when the so called Gimbal-lock occurs. This problem can be overcome by using non-minimal
representations of the attitude.

A possible alternative to the DCM is the quaternions. They are mathematical objects used as a
generalization of complex numbers to a 3D space, but they can also be used for representing
rotations. They're based on the Euler’s theorem and the elements of the quaternion are four
variables called Euler parameters, that are used for describing a rotation around a specific axis.
The advantages with respect to other representations are:

e Efficiency from a computational point of view
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e Less sensitive to rounding errors
e Gimbal-lock avoided since it is a non-minimal representation

A quaternion can be written using these notations that are equivalent:

q = qg+9q
= qo+qii+ ¢ + g3k

_ B in 8
= cos 5 + usin )

B8
U3

8 . B . B . B
= (cos 5, u1sins, ugsin 5, ug sin j)

= (90,9192, 93) )
_ qo Cos &
e n. C = = ,
(40 l) { q ] [ using ]

Figure 4. 4: Quaternion equivalent notations

The ¢ is the real part of the quaternion while the ( is its imaginary part, when the real part is

null the quaternion is said to be pure. The U and ,3 are respectively the axis of rotation and the
angle around the body is rotating, that can be found by applying the Euler’s theorem computing
the eigenvalues and eigenvectors of the rotation matrix describing the rotation.

Let’s now introduce some properties and algebra related to quaternions:

e The null quaternion is such that its real and imaginary part are null

The identity quaternion is such that the real partis g = 1 while the imaginary part

is null.
e The complex conjugate of a quaternion is just like the quaternion but with the
imaginary part sign inverted: Qconj = —Qinit -

e The products involving quaternions are the following:

Quaternion product (Hamilton product)
q@p=(p+q)®@(@Po+p)=...
= (qoro —q - Pp) + (0P + pod +q X p)

dot product
3
AP =2Di_1 GPi

cross product
q2p3 — q3p2
qxp= q3p1 — q1pP3
qip2 — q2p

Figure 4. 5: Algebra of quaternions
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e Given a rotation defined by a quaternion, is possible to represent the inverse of the
rotation by computing the conjugate of the quaternion.

With the properties listed above, quaternions are a suitable non-minimal representation of
rotations that are widely adopted nowadays for defining the attitude of complex systems like
robots, spacecrafts and so on.

Is also possible to pass from a representation to the other by using the proper formulas:

Quaternions — DCM:
2 2 2 2 2 o ) 9
{ qy +a1 — g3 — a3 (9192 — qogs) (q193 + qoq2)
T .

=1 2qg2+q0q3) @G-+ —a3 2(4293 — 4091)
\_ 2(q193 — qoq2) 2qas+wa) @-dG -G +a J

DCM — quaternions (go # 0):

go = 3/T11 +Too + 133+ 1

T39 — Tog
q= Té'o Tig — 131

To1 — Tio

Figure 4. 6: DCM < Quaternions formulas

4.2 Reference Frames

A reference frame is specified by an ordered set of three mutually orthogonal, possibly time
dependent, unit-length direction vectors. In order to describe the orbital motion of satellites
around the Earth, there exist a set of standardized coordinate reference frames that can be used.
The most relevant ones are:

e ECEF (Earth Centred Earth Fixed): also known as conventional terrestrial system, the
point (0, 0, 0) denotes the centre of the Earth. X-Y plane is coincident with the equatorial
plane and its versors point in the directions of longitude 0° and 90° while the Z axis is
orthogonal to them and points in direction of the true North Pole. The ECEF frame is
presented in Figure 4. 7:
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Figure 4. 7: Representation of ECEF frame

This frame rotates tied with the Earth so rotate with respect to the stars. It is a non
inertial, accelerated frame. It is commonly used to describe motion of objects on Earth
surface.

ECI (Earth Centred Inertial) frame: has its origin at the centre of mass of Earth like the
ECEF frame and its axis lays on the same plane of the ECEF frame but it is fixed with
respect to the stars and inertial (non accelerated). An equinox occurs when the earth is
at a position in its orbit such that a vector from the earth toward the sun points to where
the ecliptic intersects the celestial equator. The equinox that occurs near the first day of
spring is called the vernal equinox. It can be used as a principal direction for ECI frame. It
is useful to describe the motion of celestial bodies and spacecraft. The location of an
object can be defined by using right ascension and declination (spherical coordinates like
longitude and latitude) or using Cartesian coordinates. One commonly used ECI frame is
defined with the Earth’s Mean Equator and Equinox at 12:00 Terrestrial time on 1 January
2000 and is called J2000. The x-axis is aligned with the mean equinox and z-axis is aligned
with the Earth’s rotation axis.

LVLH (Local vertical, local horizontal coordinates) are a geographical coordinate system
based on local vertical direction and Earth’s axis of rotation. The axes are positioned as
follows: one axis is on the northern axis, one along the local eastern axis and on
represents the vertical position. If the third axis is positive when it points up the frame is
called ENU (East North Up), otherwise is called NED (North East Down). These frames are
used to represent state vectors (set of data that describe where an object is located in
space). A representation of an ENU frame with respect to the ECEF is presented in Figure
4. 8:
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Figure 4. 8: ENU frame with respect to ECEF

Body-fixed frames are tied to a named body and rotate with it. The axes can be placed as
wanted. Considering the system of this thesis work, the body frame considered is the one

[ ]
used by the sun sensor E910.86 to provide the sun coordinates and it is presented in

Figure 4. 9.

Figure 4. 9: Body frame used representation

The z-axis is pointing out of the sensor body, the y-axis points up with respect to it and x-

axis is orthogonal to them.
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4.3 General overview of AD systems

The attitude determination is one of the fundamental problem of an aerospace system and the
first step that is needed to realize and ADCS application.

Determine the attitude of a spacecraft means identify its orientation in space with respect to a
specific reference frame (normally ECEF or an ECI frame) by using the measurements obtained
from suitable sensors mounted on the spacecraft in order to know its orientation with respect
to relevant objects in the space like the Earth, the Sun or relevant star constellations. Particularly,
the objective is determine the attitude matrix A that describes the rotation from the considered
frame (normally ECEF or ECI) to the body frame of the spacecraft.

To obtain the attitude determination of an object in the space, many kinds of sensors can be
employed. The most commonly used are star trackers, magnetometers and sun sensors. These
sensors are widely used since they express the position of the body frame with respect to
relevant objects in space like the Earth magnetic field , the Sun or star constellations positions.
Attitude determination problem can be divided in two main categories:

e Static attitude determination: all measurements are taken at the same time. The
problem becomes up of optimally solving the geometry of the measurements.

e Dynamic attitude determination: measurements are taken over time. Is a much
harder problem since the informations collected need to be blended together by using
mathematical tools like Kalman filter.

For the lack of simplicity, since the objective of this thesis work is to demonstrate that a ROS2
framework can be applied to nanosatellite using an attitude determination application, static
attitude determination is considered.

The first problem to obtain an attitude determination is to determine how many measurements
(unit direction vectors) are needed to identify the orientation. Unit vectors are considered since
the length of the measurements do not provide any useful information.

Ifa 2D attitude problem is considered as starting point, the answer is that only one unit direction
vector (with the unit length constraints) provides all the required information to determine the
orientation.

Considering the 3D problem, one measurement is no more sufficient so, a minimum of two
observation vectors are required. With only one measurement, a rotation about that axis cannot
be sensed. Measuring a second direction fix the complete three dimension orientation in space.
To demonstrate this consider the example in Figure 4. 10:

An\

L

Figure 4. 10: Explanation of attitude determination
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Suppose that the sun position is measured using a sun vector and it is expressed in the body
frame by the unit direction vector Sb. Knowing only this information is not sufficient since an
infinite number of orientations around this axis are possible solutions for the attitude problem.
Considering the example of Figure 4. 10, the blue and the green frame can be both solution of
attitude problem since they can express the same sun position vector with different orientations.
Two unit vectors measurements determine the attitude matrix but, in fact, they overdetermine
it. That’s because the spacecraft attitude is represented by a 3x3 orthogonal matrix A such that
ATA =1 and det(A)=1. This means that A is a rotation matrix and so an element of the three-
parameter group SO(3).

Euler’s theorem states that the general motion of a rigid body with one fixed point is a rotation
about some axis. This shows that SO(3) is a three-parameters group (the three parameters can
be taken as the rotation angle) and two parameters specifying a unit vector along the rotation
axis.

To obtain a complete attitude determination, it is also necessary to know the components of the
two measured vectors in some reference frame like ECEF or ECL

In this thesis work, the measurements used are the ones provided by a sun vector and a
magnetometer to respectively obtain the informations about Earth magnetic field and Sun
position. The attitude problem considered is to determine the orientation of the spacecraft with
respect to the ECEF frame, so the corresponded informations about the Earth magnetic field and
Sun position expressed in this frame are taken into account and they will be explained in the
following paragraphers.

The following notation will be used:

e Sb: sun unit vector expressed in the body frame
e mbP: Earth magnetic field unit vector expressed in the body frame
e  SECEF; sun unit vector expressed in the ECEF frame

e mECEF: Earth magnetic field unit vector expressed in the ECEF frame

4.4  1GRF Earth magnetic field

The Earth magnetic field is a magnetic dipole with the magnetic field S pole coincident with the
Earth geographic north pole and the magnetic field N coincident with the Earth geographic south
pole. Its representation is presented in Figure 4. 11:
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Figure 4. 11: Earth magnetic field representation

The magnitude of the Earth magnetic field at its surface ranges from 25 to 65 puT and it is mostly
caused by electric currents in the liquid outer core.

The currents that create the magnetic field started up millions years ago. Magnetometers can
detect minute deviations in the magnetic field caused by iron artifacts, some kind of stone
structures and archaeological geophysics.

In order to represent the Earth magnetic field and its secular variations, different kind of
mathematical models are proposed. The used one for this thesis work is the International
Geomagnetic Reference Field (IGRF). This model was obtained by combining data and
informations from many satellites and research institutes from all around the world. The last
version released is the 13t generation and it is provided by the International Association of
Geomagnetism and Aeronomy (IAGA). The magnetic field can be calculated as the negative
gradient of a scalar potential V which can be represented by a truncated series expansion:

V(r9,®,t) = a Z Z (%)"“[g,’{‘(t) cos(m®) + k™ (¢) sin(md)|PMcos(9)

n=1m=0

Where a is the mean radius of the Earth (approximately 6371,2 km), g»* and hy' are the Gauss
coefficients (available in tabular form), r, 9, @ are the spherical coordinates of the observation
point and P;*cos(19) is the Legendre associated function of order n and m.

To easily compute in Python the value of the Earth magnetic field, a library named “pyIGRF” is
provided by IAGA. Particularly, this function “pyIGRF.igrf value” requires as input the latitude,
the longitude and the altitude of the observation point and the current date. The latitude and the
longitude are expressed in geocentric coordinates. Taking as reference Figure 4. 12:

North pole Mormal to
the ellipsoid
surface

9 e

Equatorial plane Geaocentric ~ Geodetic
latitude latitude

Figure 4. 12: Geocentric and geodetic coordinates
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The considered latitude and longitude are expressed as geocentric coordinates i.e. their angles
are measured with respect to the centre of the Earth.
The “pyIGRF.igrf value” function provides as output:

e D:declination (positive east) i.e. the angle between the magnetic north and the true
north

[: inclination (positive down) i.e. the angle between the horizontal plane and the total
field vector

e H: horizontal intensity

e X:north component expressed in NED coordinates

e Y:east component expressed in NED coordinates

e Z:vertical component (positive down) expressed in NED coordinates

e F:total intensity unitin nT

The informations about the X, Y and Z coordinates with respect to NED frame are the one used
for the realization of attitude determination and their usage will be explained in the next
paragraph.

The output results of the Earth magnetic field coordinates (i.e. MECEF vector) are presented in
Figure 4. 13:

File Edit WView Search Terminal Help

ubuntu@ubuntu: $ ros2 run attitude determination attitude determination

Starting Attitude Determination...

M ECEF X: ©.277685189937835 M ECEF Y: -0.84183029138617801 M ECEF Z: -0.9597609921286322
X: .2776851899659409 M _ECEF Y: -0.04183029117305572 M ECEF Z: -0.9597609921297889
X .2776851899940389 M ECEF Y: -0.041830290960001286 M ECEF Z -0.9597609921309452

X: .2776851900221434 M ECEF Y: -0.041830290746900624 M ECEF Z: -8.9597609921321015

L4 .27768519005024267 M_ECEF Y: -0.04183029053383644 M _ECEF -8.9597609921332578
X: .2776851900783471 M _ECEF Y: -0.04183029032073462 M ECEF Z: -0.9597609921344142
X .27768519010644976 M ECEF Y: -0.041830290107642325 M ECEF Z: -0.9597609921355709
X: .2776851901345468 M ECEF Y: -0.84183828989459852 M ECEF Z: -0.9597609921367269

Figure 4. 13: M_ECEF coordinates

4.5 Sun position vector in ECEF frame

In order to retrieve the informations about the sun position with respect to the ECEF frame (i.e.
SECEF) to achieve the attitude determination, the Skyfield Python library is used.

Skyfield is a library developed by Rhodes Mill and it is widely used to computes positions for the
stars, planets and satellites in orbit around the Earth.
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The first step to compute the sun position is to obtain the Sun and Earth ephemeris. These are
tables that contain values, computed in a particular range of time, of different astronomical
quantities like magnitudes, orbital parameters, coordinates or distances from planets.
That can be easily done in Skyfield by downloading the “de421.bsp” file released by the JPL’s
Guidance, Navigation and Control section. This file contains the main ephemeris of all the planets
of the Solar system and it can be easily loaded in a python script by using the “load_file” function
provided by Skyfield. The output of this function is a dictionary structure. For example, if the
earth ephemeris are needed, and the output of the “load._file” function is stored in the dictionary
named “planets”, the result can be easily obtained as “earth = planets [‘earth’]”.
The computation of the sun vector need also the informations about the actual date-time
expressed in UTC. Conventionally, in the astronomic field, the date-time is expressed using the
Julian date (which express the number of days spent from 1st January 4713 a.C.).
The Timescale object returned by “load.timescale” function in Skyfield, manages the conversions
between different time scales. The supported ones are UTC, UT1 (Universal time), TAl
(International Atomic Time), TT (Terrestrial time) and TDB (Barycentric Dynamical Time). By
using the “now” function Skyfield can retrieve the current Julian date expressed in UTC.
Once these informations are known, the Sun position expressed in ECEF frame can be easily
retrieved with a few lines of Python code presented in Figure 4. 14:

# 5 ECEF computation

apparent = earth.at(t) .observe(sun) .apparent()

sun info = apparent.frame xyz(framelib.itrs)
5 ECEF=numpy.array(sun info.au)

Figure 4. 14: S_ECEF computation in Skyfield

The first line of code computes the Earth position with respect to the Sun position using the
functions “at” to compute the Barycentric position at the specified Julian date and “apparent” to
compute the apparent position. The result is in geocentric coordinates i.e. with respect to the
centre of the Earth.

The second line set the reference frame as ITRS (International Terrestrial Reference Frame).
The obtained results are expressed in au (Astronomical unit) and are stored into an array by
using the “numpy” library.

The output results of the Sun position coordinates (i.e. SECEF vector) are presented in Figure 4.
15:

ubuntu@ubuntu: ~/ros2_ws - w2
File Edit WView Search Terminal Help

ubuntu@ubuntu: $ ros2 run attitude determination attitude determination
Starting Attitude Determination...

5 ECEF X: 0.8914820405187353 5 ECEF Y:
.8916451333462759 S ECEF Y:
.8918082592766743 S ECEF Y: i
.8919712178934749 5 ECEF Y: 4478508393290722 S ECEF Z: -0.06178164507055167

0.4488236316613585 5 ECEF Z: -0.06178283819039991

8.

8.

I -

.8921340813923331 S ECEF Y: ©.4475263764802415 S ECEF Z: -0.06178125259917499
8.

8.

8.

8.

4484995942447724 S ECEF Z: -0.06178244202179223
44817519737424827 S ECEF Z: -0.06178204548622173

X
X
X
X
X
X
X
X:

.8922967239016723 5_ECEF Y: 44720205981129604 S ECEF Z: -0.06178085637867058
.8924593124884492 S ECEF Y: 44687755628871595 S ECEF Z: -0.061780460002090136
.8926218346152015 S ECEF Y: 4465528906212254 S ECEF Z: -0.06178006349963957
.8927841512151837 S_ECEF Y: 4462283407161925 5_ECEF Z: -0.061779667210640835

0
0
0
0
0
0
0
0

Figure 4. 15: S_ECEF coordinates

52



4.6 TRIAD algorithm

With the knowing measuremnt Sb, mb, SECEF and mECEF, the attitude problem can be resolved by
considering the TRIAD (three-axis attitude determination) algorithm. TRIAD algorithm is one of
the simplest attitude algorithm and it can provide good results and solve the Wahba’s problem
which is intended to find a rotation matrix (particularly an orthogonal matrix) between two
coordinate systems from a set of vector observations.

The algorithm considers that one vector measurement is more accurate than the other one. Since
the sun vector is more precise than the Earth magnetic field vector, it is taken as the more
reliable one. The result of TRIAD algorithm is the attitude matrix A that computes the rotation
from the ECEF frame to the body frame of the nanosatellite.

The algorithm is intended to computes two matrices t* and ti that represent two support
reference frames that combined allow to obtain the attitude matrix.

The operations to obtain the column vectors of these matrices is presented below:

e The first column vector of the two matrices is equal to the more accurate measurement,

in this case the sun vector. In this case:
t{? — Sb ti — SECEF

e The second column vector of the two matrices is chosen to be perpendicular to both

measured vectors. In this case:

b _ bemb i
2 = svcmo] 2=

SECEF y 1 ECEF
||SECEF x mECEF||

e The third column vector of the matrices is computed as:
t? =t2 x tb th=1t x ti

Finally, the two 3x3 computed matrices are:
th = [t7 t3 t3] t' = [t] t5 t3]
By noting that [t? t2 t2] = A5, [t! t} tL], the attitude matrix can be computed as:
Azxs = [t7 t3 3] [t] t5 t5]"

The attitude matrix A is in the form of a DCM (direct cosine matrix). After that, it can be easily
convered into a quaternion due to their advantages presented in the paragraph 4.1.

A graphical representation of t? is presented in Figure 4. 16 to better clarify the physical meaning
of the constructed frames.
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Figure 4. 16: TRIAD algorithm reference frame

The same representation can be obtained for the frame ti by considering SECEF and mECEF
instead of S and mb.

4.7 Attitude determination node

In this paragraph, the realization of the attitude determination using the TRIAD algorithm
explained in the previous sections is implemented into a ROS2 node.

The basic principle is the same as the other ROS2 nodes described in the chapter dedicated to
the flight software framework. The realized attitude determination node acts like a subscriber
to the topics where the sensors data of the [2C/SPI buses are published but it also acts like a
publisher on a dedicated topic where it publish the attitude quaternion that describe the rotation
from the ECEF frame to the body frame at each time that the callback is called. These data are
needed to realize the Matlab real-time simulation that will be presented in the next chapter.
The class diagram that contains the attributes and methods of the node is presented in Figure 4.
17:

Atftitude_determination{Node)

timer_period: int
mag: float[3]

sun: float[2]

i2c_mag_callback()
spi_sun_callback()
sun_mag_vectors ECEFY()
sun_mag_vectors BODY()

TRIAD_attitude_determinationiS_B M B S ECEF M _ECEF)

AD_timer_callback()

Figure 4. 17: Attitude determination class diagram
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The attributes that are necessary for the implementation of the node are:

integer “timer_period” to set the frequency of the attitude determination callback (which
is setto 2 Hz i.e. 0.5 seconds)

float array of three elements to store the Earth magnetic field vector coordinates
provided by the magnetometer (expressed in its reference frame) each time that a new
sensor data is published

float array of dimension two to store the XZ and YZ angles provided by the Sun sensor
(expressed in the body frame) each time that a new sensor data is published.

The methods that have been implemented are:

i2c_mag_callback() and spi_sun_callback() to store the last data published from the
magnetometer and the sun sensor in the related topics into the attributes mag and sun.

sun_mag_vectors_ECEF() and sun_mag_vectors_BODY() to calculate the sun vector and the
Earth magnetic field vector in both ECEF and body frame.

TRIAD_attitude_determination() to compute the attitude determination through TRIAD
algorithm using the informations of the sun and Earth magnetic field vectors both
expressed in ECEF and body frame.

The flow chart of the ROS2 node realization is presented in Figure 4. 18:
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Figure 4. 18: Attitude determination flow chart

After that, the attitude determination callback is called with the specified frequency. The first
step is to check if self.mag or self.sun are not empty. If at least one of them is empty, the attitude
determination cannot be performed since one information from the sensors is not present yet.
Otherwise, all the informations have been collected and the computations can start.

The first step is to compute the sun vector SP and the Earth magnetic field vector mb (both
expressed in the body frame) by calling the method sun_mag_vectors_ BODY(). The operations
performed by this method are presented in Figure 4. 18 colored in yellow.

The value of the XZ-plane and YZ-plane angles provided by the sun vectors are stored into two
variables (named a and b). The coordinates of the sun vector St are retrieved from these two
angles with the method proposed in paragraph 2.2.5.

For what concerns the Earth magnetic field vector mb, it must be noted that this measurement
provided by the magnetometer and SP of the Sun position provided by the Sun sensor are not
expressed in the same reference frame. The representation of the two reference frames is
presented in Figure 4. 19:
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Figure 4. 19: Representation of magnetometer and sun sensor reference frame

Since the sun sensor frame (represented in green in Figure 4. 19) is chosen as body frame, the
measurement of the magnetometer (which reference frame is represented in red in Figure 4. 19)
needs to be expressed in this frame. In order to do this, two rotations are performed:

e Arotation around the Z axis of the magnetometer reference frame of 90° to align the X
axis of this frame with the one of the body frame

e After that a rotation around the X axis of the obtained frame of 180° is performed to
align the obtained frame with the body frame

The resulting rotation matrix that represents the rotation from magnetometer frame to body
frame is:

body. frame [1 0 o0 ] [O -1 0] [ 0 -1 0 ]
Rinag Frame = Rot,(180°)Rot,(90°) =10 -1 O |1 O Of=[-1 0 0
0 0 -1llo o0 1 0 0 -1
Since a transformation of coordinates is performed (and not a rotation) the transposed resulting
matrix is applied. Finally, the Earth magnetic field vector expressed in body frame coordinates
can be easily computed as:
m = Ry mnea frome
Once SP and mP are computed, the resulting vectors are normalized.
After that, the computation of the corresponding Earth magnetic field and sun vector expressed
in ECEF frame is performed using the realized method sun_mag_vectors_ECEF(). The operations
performed in this method correspond to the green blocks of the attitude determination flow
chart. The first step is to define the variables needed for the computation. The computation of
the Earth magnetic field require the knowledge of the altitude, the latitude and the longitude (for
this work is used the coordinate of Tyvak International offices, otherwise the in-orbit
coordinates are needed if the nanosatellite is flying) while the Sun vector requires the current
time (expressed in UTC) and date.
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After that, the NED coordinates of the Earth magnetic field (expressed in nT) are computed using
the library pylGRF as explained in paragraph 4.4. These coordinates need to be converted into
ECEF coordinates. The NED and ECEF frames are presented in Figure 4. 20:

Figure 4. 20: NED to ECEF frame

The angle @ represents the latitude while the angle A represents the longitude. In order to
convert the NED coordinates of the Earth magnetic field into ECEF coordinates the following
rotations are performed:

e Arotation around the E axis of the NED frame of an angle ®+90° in order to align the N
axis with the ECEF frame

e Arotation around the N axis of the obtained frame of an angle - A in order to align the
frame obtained from the previous rotation with the ECEF frame

The resulting matrix that represents the rotation from NED frame to ECEF frame is:

Rysp 7rame. = Roty(— MRoty (P + 90°) =

cos(—A) sin(—2) O] cos(®+90°) 0 —sin(P + 90°)
0 1 0

sin(® +90°) 0 cos(® +90°)

=|—sin(—A) cos(—A) O
0 0 1

Since a transformation of coordinates is performed (and not a rotation) the transposed resulting
matrix is applied. Finally, the Earth magnetic field vector expressed in ECEF frame coordinates
can be easily computed as:

T
ECEF_frame
ECEF — p _f mNED_frame

m — "*NED_frame

The sun vector coordinates SECEF can be easily computed with Skyfield as explained in
paragraph 4.5. Finally, mECEF and SECEF yectors are normalized.
After that, all the informations to obtain the attitude determination through TRIAD algorithm
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are achieved so the method TRIAD_attitude_determination() can be called by passing as
arguments Sb, mb, SECEF and mECEF,

The operations performed by this method are just those explained in the paragraph 4.6 related
to the TRIAD algorithm and are represented by the red blocks in the attitude determination
flow chart. The output of this function is the attitude matrix in DCM form.

Once the DCM attitude matrix is obtained, it is converted into an attitude quaternion by using
the demZ2quat function provided by the navpy Python library.

Finally, the results is published on the dedicated topic and it will be retrieved by Matlab as it
will be explained in the next chapter.

4.8 Attitude determination node testing

The attitude determination application require the informations from both 12C and SPI sensors
to achieve a result using TRIAD as it is presented in Figure 4. 21, that shows the architecture of
the designed framework using rqt graph.

/watchdog
fi2c_sensors_data_busl

@nsors_telemeuy_busl
fattitude_determination
/spl_sensors_data_bus0
@nsors_telemetry_buso

Figure 4. 21: Architecture of the framework

Once the two nodes that read the sensors data on the SPI and [2C buses are started, the attitude
determination application can compute the quaternion (from ECEF frame to body frame).
The results obtained are presented in Figure 4. 22:

Figure 4. 22: Attitude determination testing
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As it can be seen, in the first two shells of the picture are present the nodes that are intended to
read sensors data while, in the third shell, is performed the attitude determination. Once the
node is started, a message is printed to confirm that the node has been created. Until both data
from magnetometer and sun sensor are not present, a “Wait for sensors data..” message is
printed. Once at least one message is received from the sensors, the attitude determination is
performed and the quaternion is correctly printed and published on a dedicated topic.
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5 REAL-TIME MATLAB ANIMATION

In this chapter of the thesis is presented a real-time animation that represent the attitude
determination of a 3U satellite. This result is achieved through ROS toolbox that allows the
communication between ROS / ROS2 and Matlab/Simulink. The simulation is performed by
running the designed attitude determination application (and the sensors nodes) on the
Raspberry Pi and the Matlab scripts on a computer.

5.1 Settings of ROS toolbox

In order to allow the communication between the ROS2 nodes designed for the flight software
framework and Matlab, the usage of ROS toolbox is taken into account. The ROS2 nodes are run
on the Raspberry Pi (that can be accessed from a PC using ssh protocol) while Matlab with ROS
toolbox is run on a PC. In order to let the two machines see each other, a xml file named
“DEFAULT_FASTRTPS_PROFILES” has to be inserted both in the ROS2 workspace folder on the
Raspberry Pi and in the Matlab folder in which are present the script for the animation. The
xml file is structured as presented in Figure 5. 1:

<?xml version="1.0" encoding="UTF-8" 2>

<profiles>

<transport_descriptors>
<transport_descriptor>

<transport_id>veelpeers</transport_id> <!-- string —->
<type>UDPv4</type> <!-— string -->
<maxInitialPeersRange>100</maxInitialPeersRange> <!-- uint32 —-»

d/transport_descriptor>
</tran5port_descriptors>
<participant profile name="participant somename" is default profile="true">
<rtps>
<builtin>
<initialPeersList>
<locator>
<udpvd>
<address>192.168.10.2</address>
</udpvd>
</locator>
<locator>
<udpvd>
<address5>192.168.10.1</address>
</udpvid>
</locator>
</initialPeersList>
</builtin>
<userTransportss»
<transport_id>veelpeers</transport_id>
</userTransports>
<useBuiltinTransports>false</useBuiltinTransports>
</rtps>
</participant>
</profiles>

Figure 5. 1: DEFAULT_FASTRTPS_PROFILES.xml file

The two devices communicate through Ethernet cable and they must belong to the same subnet.
Their IP addresses (192.168.10.1 for the PC and 192.168.10.2 for the Raspberry Pi) must be
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present in both Matlab and ROS2 xml files.

The first step that is necessary to realize the real-time animation is to generate a suitable custom
message that is able to handle the data of the received quaternions. In order to do this, a file
named “AttitudeDetermination.msg”, that contain the structure of the message to be received (an
array of float with dimension four), is generated. After that, the ROS Toolbox function
“ros2genmsg” is able to generate the specified custom message by passing as argument the path
to the “AttitudeDetermination.msg” file. The operations performed by this function are presented
in Figure 5. 2:

>> ros2genmsg ('C:\Users\MatteoPascucci\Desktop\ros2 matlab\custom msgs')

Identifying message files in folder 'C:/Users/MatteoPascucci/Desktop/ros2 matlab/custom msgs'..Done.

Validating message files in folder 'C:/Users/MatteoPascucci/Desktop/ros2 matlab/custom msgs'..Done.

[1/1] Generating MATLAB interfaces for custom message packages... Done.

Running colcon build in folder 'C:/Users/MattecPascucci/Desktop/ros2 matlab/custom msgs/matlab msg gen/winéd'.

Build in progress. This may take several minutes...
Build succeeded.build log

Figure 5. 2: ros2Zgenmsg operations

To allow the generation of custom messages, Visual Studio 2017 with is related cross-compiler
for C++ applications must be installed on the used machine.

Once this operations are performed, the Matlab environment is ready to receive data from the
nodes of the ROS2 framework. After that, the lines presented in Figure 5. 3 are executed:

1 attitude visualizer=ros2node("/attitude visualizer");

2 att_sub=ros2subscriber (attitude visualizer,"/attitude","custom msg/AttitudegQuaternion",@att callback);
Figure 5. 3: Generation of attitude visualizer node

With the command “rosZnode” is possible to generate a new ROS2 node (named attitude
visualizer) to handle the data of the computed quaternion. After that, with the command
“rosZsubscriber” the generated attitude visualizer node is subscribed to the topic “attitude” (in
which the attitude quaternion data are published) by defining that the messages that will be
received are the same type of “AttitudeQuaternion” messages. The Matlab file that handle the
operations to be performed when a new message arrives on the topic is “att_callback”.

Finally the produced files to realize the real-time animation are:

e “att_callback” to perform the operations to rotate the 3U satellite. This file is called
every time a new quaternion is published on the “attitude” topic. The operations
performed will be described in the following paragraph

e ‘“animation” to define the 3U satellite object to be plotted

5.2 Real- time animation of a 3U satellite

Using the ROS Toolbox as presented before, the data of the quaternion (or the equivalent
rotation matrix) computed by the designed ROS2 application, can be collected in a Matlab script
to animate in real-time a 3U satellite. So, once a new rotation data is published on its specific
topic, a specific Matlab callback is called and it stores the attitude information to use it to rotate
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a 3U satellite simulated by creating a hypercube. This object is defined by its vertices collected
into an array. The obtained object is presented in Figure 5. 4.

Figure 5. 4: 3U satellite simulation

In the presented Matlab plot are present the 3U satellite and its related body frame
(correspondent with the magnetometer location on the satellite) with Y axis pointing up, Z axis
pointing out and X axis to complete the right hand reference frame. The face of the satellite in
which lays the body frame is colored in red.

Since the realized function to visualize the real-time animation uses rotation matrices, the first
step to perferm is to convert the received quaternion, using the “dcmtoqua” function, to obtain
the related rotation matrix. Once the simulation is started, the first quaternion received, its
related rotation matrix and their conjugates are stored into suitable variables (respectively q0
and RO0). This is done in order to visualize the rotation with respect to the first collected
quaternion. For how the object is drawn, there is the problem that the body reference frame of
the satellite is not aligned with the Matlab reference frame as it is shown in Figure 5. 5:

0.8 -
0.6 -
0.4

0.2 -

-0.2 -
-0 -
-0.6

o5 e -

Figure 5. 5: Rotation of the Matlab frame w.r.t body frame

63



This cause that, for example, if a rotation around the Y axis of the body frame (indicated as YB in
the figure) is intended, Matlab perform a rotation around its Z axis (indicated with ZM in the
figure). To fix this problem, each time that the callback is called, a rotation of -90° around the X
axis is performed to align the satellite body frame with the Matlab frame.

Basically, each time that the callback is called, these operations are performed:

The quaternion received from the ROS2 node is stored and converted into its related
rotation matrix.

If it is the first message received, the quaternion is stored in g0 and the rotation matrix
in RO and the conjugate of the quaternion is computed and stored into q0_conj. From
this, it is retrieved the rotation matrix from the body frame to the ECEF frame using the
qua2dcm function and it is stored into R0O_conj.

The rotation from the body frame to the Matlab frame is defined as:

bod 1 0 0
Runiiap = Rotx(=90) =0 0 1
0 -1 0

The rotation matrix to be applied to the satellite is finally computed as follows:
— ECEF body
R = Rconj * Rbody * RMatlab
Finally, the “animation_rot_R” function is called to rotate the satellite with a rotation
correspondent to the computed matrix R. This function just requires as argument the
satellite object and the computed rotation matrix R.
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5.3 Tests of the real-time animation

In order to test the realized real-time application, some animation can be performed to test the
performances of the attitude determination. Particularly, the sensor module (that simulates the
behaviour of a 3U satellite) is rotated around its three axes of its body reference frame. The
obtained results are shown in the following figures.

Rotation about Z axis:
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Figure 5. 6: Rotation about Z axis

Rotation about Y axis:
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Figure 5. 7: Rotation about Y axis
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Rotation about X axis:

Figure 5. 8: Rotation about X axis

As it is reported in the above pictures the results are pretty good, even if some errors (due to
some light reflections and noise of the sensors measurements) occurs. To take account of the
entity of these errors, an analysis of the noise of the attitude determination is performed in the
next paragraph.

5.4 Noise analysis of the attitude determination

The realized attitude determination application is subject to some imprecision in the
determination of the orientation. This is due to different factors that influence the performance.
In the first place, TRIAD is not the optimal algorithm to determine the attitude and some
computation error may occur. Moreover, sensors are subject to some noise that affect the
collected measurements. For this reason, an analysis to measure the order of magnitude of the
noise that affect the attitude determination measurements is performed.

To do this, the attitude determination application is ran while the sensor module is hold fixed in
a position. The following operations are so performed into the callback of the Matlab script:

e Ifitis the first iteration, the quaternion received is stored into the variable g0.
Otherwise it is stored into the variable gbody.

e The conjugate of the quaternion received is computed and stored into a variable
q_body_conj

e To compute the noise that occur in the attitude determination, it can be computed the

rotation:

Qerror = 4o * body conj
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The considered product is the quaternion Hamilton product. By doing this operation, it is
computed the error that occurs between the first collected measurement q0 and the
current measurement quaternion g_body (i.e. the noise of the attitude determination)

e The current time and q_error are finally stored into suitable arrays to plot them in a
graph

Since the sensor module is hold fixed, the expected result is that no rotation occurs and that
g_error is equal to the identity quaternion (i.e. [1 0 0 0]). The collected results are plotted and
are presented in Figure 5. 9.
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Figure 5. 9: Attitude determination noise analysis

The blue lines in the plot represented the collected values of gerror for each component of the
quaternion. The dotted red lines represents the mean values of the measurements for each
components of the quaternion computed as:

N
Zi=1 Ax;

mean value(q,) = -

Where N is the number of the measurements and gxis one of the four quaternion components.
It is noted that the proposed attitude determination present good performances with very small
error in both real and imaginary part of the quaternion. The decrease of the real part and the
increase of the g4« component over time is due to the movement of the Earth with respect to the
Sun that causes small changes in the SECEF yector in the attitude determination algorithm. Beside
that, the noise error is approximately in the order of 10-3.
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6 CONCLUSIONS

In this thesis work it was demonstrated that ROS2 can be a good choice for the design of software
framework for complex systems like nanosatellites. Particularly, thanks to its modularity, it is
easily possible to let different applications to communicate and exchange messages through
topics.

Moreover, the integration of ROS2 with Matlab and Simulink using the ROS toolbox allows to
apply the Model based software design philosophy by designing and simulating different control
strategies and auto generate the C++ code of the ROS2 nodes using tools like embedded coder.

Since the aim of this thesis was to design a first implementation of the flight software framework,
different applications can be implemented in the future in order to complete the realization of
the nanosatellite architecture. Particularly:

¢ Anode that is able to manage different kind of actuators like magnetorquers or reaction
wheels to realize the required action computed by the controller

¢ Nodes that contain the control laws for different scenarios like detumbling manoeuvre
or Earth pointing control in order to complete the design of a full Attitude
determination and Control system. Particularly, these nodes can be auto generated
directly from Matlab / Simulink.

¢ Nodes that handle all the communications, particularly the radio communications and
the uplink or downlink of the data.

Moreover, this realization of the framework was performed on a standard board like a Raspberry
Pi. Since Tyvak develop its own custom electronic boards, the framework will be ported into
them. In order to do this, a suitable image that contain ROS2 and all the designed packages can
be generated by using a suitable tool like Buildroot.

Once all the applications are designed and the system is ported into a custom board, the software
framework can be considered completed and the integration testing phase will start.
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7 APPENDIX A: BUILDROOT

Nowadays, many companies prefer to design their own customized electronic boards instead of
using standard ones. Even if it can be an hard process in terms of R&D, it guarantees many
advantages in terms of hardware since different combinations of devices can be mounted on it
to achieve better performances for the desired task. On the other hand, it is necessary to realize
a suitable image to properly communicate with the board. For this reason, different tools like
Buildroot or Yocto have been realized to easily realize images for embedded boards.

Buildroot is a tool that is used in order to generate embedded Linux images for different types
of boards using cross-compilations. It provides as outputs the root filesystem, the kernel, the
bootloader and all the files that are needed for a specific board to build correctly an embedded
Linux image. Moreover, Buildroot provides a lists of configurations files with a great number of
boards and processors that are available on the market (for examples Raspberry Pi and SAM
processor) that allow to build working images for that devices.

Buildroot allows the configuration of the images through and easy user interface called
“menuconfig” that is presented in Figure 7. 1:

nicol icolo-PC: ~/D loads/buildroot-2020.02.7 -

File Edit WView Search Terminal Help
/home/nicolo/Downleoads/buildroot-2020.82.7/.config - Buildroot 2020.02.7 Configuration

Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----}.
Highlighted letters are hotkeys. Pressing <Y> selects a feature, while <N> excludes a
feature. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] feature is
selected [ ] feature is excluded

||| Target options --->)
uild options --->
oolchain --->
ystem configuration ---
ernel --->
arget packages --->

ilesystem images --->
ootloaders --->

Host utilities --->
egacy config options ---

< Exit > < Help = < Save = < Load =

Figure 7. 1: Buildroot 2020 menuconfig
Analysing the available options of the menuconfig:

e Target options: it allows to set the architecture of the target CPU by choosing from a list
of the most commonly used ones (like Intel or ARM architecture)

e Build options: it allows to configure the setting for the build like how many jobs to run
simultaneously, enable the compiler cache, set the location of the download and host
directory and optimization tools for the gcc compiler

e Toolchain: it allows to choose between a Buildroot or an external toolchain. Moreover, it
is possible to configure the kernel headers, the version of the gcc cross-compiler, the
options for uClibc (C libraries), activate the WCHAR support and enable the support to
programming languages like C++ or Fortran
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e System configuration: it allows to configure the whole system settings like the
hostname, the system banner, activate the login with password, set the root password,
set the path to the permission tables, activate timezones info and run custom scripts
before or after the creation of the filesystem or inside the fakeroot environment

e Kernel: it allows to configure the kernel options like its version, patches and eventually
a defconfig file, the output format of the kernel (the considered one is zImage), if a
compression of the kernel is necessary, if it is necessary a Device Tree Blob (DTB) or if
install the kernel in the “/boot” folder of the target

e Target Packages: all the packages that are present in Buildroot and that can be installed
on the target like audio and video, compressors and decompressors for files, debug
tools, graphical libraries, support for programming languages (Python, C++, PHP ecc...),
tool for hardware support (i2c-detect, spidev ecc...) or text editors. In this section, it can
be inserted custom packages.

e Filesystem Images: it allows to choose the output format of the generated filesystem
(cpio, tar, jffs2 ecc...) and if it is necessary a compression. Moreover, it allows to
integrate it as initramfs inside the kernel

e Bootloader: it allows to choose the desired bootloader (like U-boot) from a list and
manage its configurations

e Host utilities: it allows to configure support tools for the host

e Legacy config options: packages that were present in older Buildroot versions

The original intention of this thesis project was to realize an image with Buildroot, that had ROS2
installed on it and to flash it on a custom board developed by Tyvak (called EAB) that mount an
ATSAM9GZ20 processor.

Tyvak provided a working image for the EAB realized with Buildroot 2012 to take it as starting
point to understand which components are necessary to realize the new image using Buildroot
2020.

The first attempt was to realize an embedded linux image using standard files that are natively
present in Buildroot. In the list of the supported boards of Buildroot 2020 is natively present the
AT91SAM9G20-EK (that mount an ATSAM9GZ20 processor) board. By using the command “make
atsam9g20dfc_defconfig”, the configuration described by this file is set in the options of the
menuconfig and it can be built to produce a standard embedded Linux image that is compatible
with this processor. To flash an image on the EAB, Tyvak uses a customized version of a tool
named Sam-ba, which is commonly used to flash images on the SAM boards. The main problem
is that, using the image produced by Buildroot, the flashing procedure is successful but the board
does not boot up.

Analysing the image produced by Tyvak, it can be noted that all its component (kernel, filesystem
and bootstrap) and some features in the settings are customized. In order to boot up, the EAB
requires all those files and, if one or more of them are replaced with standard files produced by
Buildroot, the booting procedure always fails.

For the reasons explained above and since the objective of this thesis was to demonstrate the
feasibility of the design of a flight software in ROSZ2, the realization of the framework was moved,
as explained in the related chapters, to a Raspberry Pi that mount Ubuntu 20.04 as operating
system.

70



8 APPENDIX B: ROS2 CODE

In this chapter is presented the realized code for the ROS2 flight software. . The code was realized
with Python 3.8.

8.1 Watchdog node code

G
ik

#
# WATCHDOG NODE
#

G
ik

import rclpy
import time
import os

import yaml

from rclpy.node import Node

from custom msg.msg import Wdmsg

from ros2launch.api import * # for launch a launch file
function
from ros2node.api import * # for get node names function

from multiprocessing import Process # for relaunching nodes with
Process ()

# WATCHDOG FUNCTIONALITIES
#

# The provided Watchdog checks if the nodes provided by the yaml
configuration file and stored in a suitable dictionary, are active.

# This is done through the API provided by ROS2 "get node names".
If a node of the guarded list is not present, a suitable ROS2 API
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# "launch a launch file" is called by using the node unique ID, in
order to re-launch the node.

class Watchdog (Node) :

def init (self, guarded nodes):
super (). 1init ('watchdog')
watchdog freg=5.0 # sec. Frequency of the watchdog callback

self.tmr wd=self.create timer (watchdog fregq,
self.watchdog callback)

self.guarded nodes=guarded nodes # controlled by watchdog

def watchdog launcher(self, launch path): # Launch the missing node
launch file

launch a launch file(launch file path=launch path,launch file argum
ents="")

def create active nodes names list(self): # retrieving the list of
active nodes

self.active node names list=[]

with NodeStrategy(self) as node:

node list = get node names (node=node, include hidden nodes=False)
i=0

while (i<len (node 1list)):

self.active node names list.append(node list[i].name)

it+=1

def checking missing nodes(self): # missing nodes checking
for node in self.guarded nodes.values():

node check=False

for J in range(0,len(self.active node names list)):

if (node['name']==self.active node names list[]J]):
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print ("Node ",node['name']," present")

node check=True

if (not node check):

print ('Launching missing node: ', node['name'])

p=Process (target=self.watchdog launcher,args=(node['launch path'],)

)

p.start ()

def watchdog callback(self): # Watchdog core
self.create active nodes names 1list()
print ('Active nodes: ', self.active node names list)

self.checking missing nodes ()

def main (args=None) :

rclpy.init (args=args)

# collecting Bus informations from Yaml file

stream=open ('/home/ubuntu/ros2 ws/src/watchdog/watchdog/watchdog cf
g.yaml', 'r'")

cfg=yaml.load (stream, Loader=yaml.FullLoader)

guarded nodes=cfg['guarded nodes']

watchdog = Watchdog(guarded nodes) # initialize watchdog

rclpy.spin (watchdog)

# Destroy the node explicitly

# (optional - otherwise it will be done automatically

# when the garbage collector destroys the node object)
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watchdog.destroy node ()

rclpy.shutdown ()

if name == ' main '

main ()

8.1.1 Watchdog launch file code

from launch import LaunchDescription

from launch ros.actions import Node

def generate launch description():
return LaunchDescription ([

Node (
package='talker',
executable="'talker'

),

Node (
package='listener',

executable='listener'

1)

8.2 I2Creading node code

G
ik

#
# I2C BUS SENSORS READER NODE
#

igddssdssddaddsddsasaddsadsadsadstddnddnpdnid AR AREEi
ik
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import rclpy
import os
import smbus?2
import yaml

import sys

from . import Sensors
from rclpy.node import Node
from custom msg.msg import SensorsMsg

from multiprocessing import Process # for launching nodes with
Process ()

global requested bus # to change node name corresponding to the
specified bus (n=busN)

# I2C SENSORS READER FUNCTIONALITIES
#

# The provided node is intended for reading sensors attached to a
specific i2c bus. Using the command "ros2 run sensors
sensors_reader i2c busl/bus2/.../busN" is possible to launch

# a node for each specified i2c bus to handle, using the associated
YAML configuration file. Each I2C bus node creates a sensor object
for each sensor and reads the collected data.

# These data are published on a specific topic called
"i2c sensors data".

class I2C bus (Node) :

def init (self, bus, sensors info, n bus):
super (). init ('i2c_ '+4requested bus)
self.bus=bus

self.sensors info=sensors info
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self.n bus=n bus

self.sens=[] # for storing sensors objects

print ("Reading data from I2C",sys.argv[1l],"...")

# creating objects for each sensor

for sensor in self.sensors info.values():

if (sensor['type']=="'temp') :

# sensor AD7415 object

self.sens.append(Sensors.AD7415 (self.bus,sensor['addr'],None))
if (sensor['type']=="'mag') :

# sensor HMC5883L object
self.sens.append(Sensors.HMC5883L (self.bus, sensor['addr'],None))

self.sens[-1].1initialize ()

self.publisher = self.create publisher (SensorsMsg,
'i2c sensors data '+requested bus, 10)

timer period = 0.001 # seconds

self.timer = self.create timer (timer period, self.sensor reading)

def sensor reading(self):

msg = SensorsMsg()

for i in range(len(self.sens)):

# reading sensors

if(self.sens[i] .name=="'AD7415") : #Temperature sensor
msg.temp raw=self.sens[i].read sensor raw()
msg.temp=self.sens[i].read sensor()

if (self.sens[i] .name=="HMC5883L") : #Magnetometer sensor
msg.mag raw=self.sens[1].read sensor raw/()
msg.mag=self.sens[i].read sensor ()

# print (msg.magqg) #just for debug
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self.publisher .publish (msg)

def main (args=None) :

rclpy.init (args=args)

common_ path='/home/ubuntu/ros2 ws/src/sensors/sensors/"'

global requested bus

requested bus=sys.argv[1l]

# collecting Bus informations from Yaml file
stream=open (common path+'i2c '+requested bus+' cfg.yaml', 'r'")
cfg=yaml.load (stream, Loader=yaml.FullLoader)

sensors_info=cfg['sensors']

# create and launch the node

bus i2c=smbus2.SMBus (cfg['n bus']) # initializing the bus with
smbus?2

i2c_bus = I2C bus(bus _i2c,sensors_info,cfg['n bus']) # creating bus
node

#p=Process (target=rclpy.spin, args=(i2c_bus,))
#p.start ()

rclpy.spin(i2c_bus)

# Destroy the node explicitly

# (optional - otherwise it will be done automatically
# when the garbage collector destroys the node object)
i2c bus.destroy node ()

rclpy.shutdown ()
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if name == main :

main ()

8.3 SPIreading node code

G
ik

#
# SPI BUS SENSORS READER NODE
#

G
ik

import rclpy
import os
import spidev
import math
import yaml

import sys

from . import Sensors
from rclpy.node import Node
from custom msg.msg import SensorsMsg

from multiprocessing import Process # for launching nodes with
Process ()

global requested bus # to change node name corresponding to the
specified bus (n=busN)

# SPI SENSORS READER FUNCTIONALITIES

#

78



# The provided node is intended for reading sensors attached to a
specific SPI bus. Using the command "ros2 run sensors
sensors reader spi busO/busl/.../busN" is possible to launch

# a node for each specified SPI bus to handle, using the associated
YAML configuration file. Each SPI bus node creates a sensor object
for each sensor and reads the collected data.

# These data are published on a specific topic called
"spl sensors data".

class SPI bus (Node) :

def init (self, bus, sensors info, n bus):
super (). init ('spi '+4requested bus)
self.bus=bus

self.sensors info=sensors info

self.n bus=n bus

self.sens=[] # for storing sensors objects

print ("Reading data from SPI",sys.argv[1l],"...")

# creating objects for each sensor

for sensor in self.sensors info.values():
if (sensor['type']=='sun'):

# sensor E91086 object

self.sens.append(Sensors.E91086 (self.bus,None,sensor['cs']))

self.publisher = self.create publisher (SensorsMsg,
'spi sensors data '+requested bus, 10)

timer period = 0.001

self.timer = self.create timer (timer period, self.sensor reading)

def sensor reading(self):

msg = SensorsMsqg()
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for 1 in range(len(self.sens)):

# reading sensors

if (self.sens[i] .name=="ES91086") : #Sun sensor
self.bus.open(self.n bus,self.sens[i].cs)
self.sens[i].initialize ()

msg.sun_ raw=self.sens[i].read sensor raw /()
msg.sun=self.sens[1i].read sensor ()

# print (msg.sun) #just for debug

# print ("MAG X: ",msg.sun[0],"[G]"," MAG Y:
",msg.sun[1l],"[G]","MAG Z: ",msg.sun([2],"[G]")

self.publisher .publish (msg)

self.bus.close ()

def main (args=None) :

rclpy.init (args=args)

common_ path="'/home/ubuntu/ros2 ws/src/sensors/sensors/"'

global requested bus

requested bus=sys.argv[1]

# collecting Bus informations from Yaml file
stream=open (common path+'spi '+requested bus+' cfg.yaml', 'r')
cfg=yaml.load (stream, Loader=yaml.Fullloader)

sensors_info=cfg['sensors']

# create and launch the node

spi = spidev.SpiDev () # initializing the bus with
spidev

spi bus = SPI bus (spi,sensors info,cfg['n bus']) # creating bus
node

80



rclpy.spin(spi bus)

# Destroy the node explicitly

# (optional - otherwise it will be done automatically
# when the garbage collector destroys the node object)
spi bus.destroy node ()

rclpy.shutdown ()

if name == ' main '

main ()

8.4 Sensors code

import math

def word2bytearray (word) :
array = [word >> 8, word & 0xO00FF]

return array

class Sensors():

def init (self,bus,addr=None,cs=None) : # default none values
for addr and cs because we could have both I2C and SPI devices

self.bus=bus
self.addr=addr # 1in case of I2C bus sensors

self.cs=cs # in case of SPI bus sensors

def read sensor raw(self):

raise NotImplemented

def read sensor (self):
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raise NotImplemented

class AD7415 (Sensors) :

""" Analog Devices AD7415 Temperature Sensor.

Please refer to the datasheet (Rev. F) for further information.
mww
# Name

name="'AD7415"

# Registers
REG TEMP = 0x00

REG_CONFIG = 0x01

# Values
VAL_TRIGGER = 0x04
VAL MSB POSITION SHIFTED = 0x02

VAL SIGN EXTEND MASK = 0xFC

def read sensor raw(self):

# Reads inputs

raw = self.bus.read byte data(self.addr, self.REG CONFIG)
self.bus.write byte data(self.addr,

self.REG CONFIG, raw | self.VAL TRIGGER)

temp raw = self.bus.read i2c block data(self.addr, self.REG TEMP,
2)

return temp raw

def read sensor(self):
raw=self.read sensor raw ()

# Purge low 6 bits
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temp = (int.from bytes(raw, byteorder='big', signed=False) >> 6)
temp raw = wordZbytearray (temp)

if temp raw[0] & self.VAL MSB POSITION SHIFTED:

temp raw[0] = temp raw[0] | self.VAL SIGN EXTEND MASK

temp = (int.from bytes(temp raw, byteorder='big', signed=True)) /4.
# 0.25 degC/LSB

return temp

class MMC5883MA (Sensors) : #NOTA CHE IL SENSORE USA LITTLE
ENDIAN

""" Memsic MMC5883MA 3-Axis Magnetometer.

Please refer to the datasheet (Rev. C) for further information.
# Name

name="'MMC5883MA"

# Registers
REG_DATA OUT = 0x00

REG _CONTROL 0 = 0x08

# Values

VAL TRIGGER MAG = 0x01

def read sensor raw(self):
self.bus.write byte data(self.addr, self.REG CONTROL O,
self.VAL TRIGGER MAG)

field raw = self.bus.read i2c block data(self.addr,
self.REG_DATA OUT, 6)

return field raw

def read sensor (self):
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raw=self.read sensor raw()

# swapping positions because it works in Little Endian

rawX = [raw[l], raw[O0]]
rawY = [raw[3], raw[2]]
rawz = [raw[5], rawl[4d]]
field = [(int.from bytes (rawX, byteorder='big', signed=False)-

32768)/4096.,
(int.from bytes(rawY, byteorder='big', signed=False)-32768)/4096.,
(int.from bytes (rawZ, byteorder='big', signed=False)-32768)/4096.]

return field

class HMC5883L (Sensors) :

""" Honeywell HMC5883L 3-Axis Magnetometer.

Please refer to the datasheet (#ref?) for further information.

name="'HMC5883L"

# Settings

DEF MA = 0bll

DEF DO = 0b100
DEF_MS = 0b00
DEF GN = 0b001
DEF_HS = 0b0

DEF MD = 0b00

# Registers

REG_CONFIG A = 0x00
REG_CONFIG B = 0x01

REG_MODE = 0x02
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REG DATA X MSB = 0x03
REG _DATA X LSB = 0x04
REG DATA Y MSB = 0x05
REG DATA Y LSB = 0x06
REG DATA 7 MSB = 0x07

REG DATA 7 LSB = 0x08

# Values
VAL GAIN = {0b000: 1370,

0b001: 1090,

0b010: 820,
0b01l: 660,
0b100: 440,
0bl01: 390,
0b110: 330,
Obl1l: 230}

def initialize(self):

# Apply default configs, then the user can change them when they
want

# Don't initialize at object creation so we can temporally separate

# object creation and object existence on the bus (sometimes
needed)

self.configure ()

def configure (self, ma=DEF MA, do=DEF DO, ms=DEF MS, gn=DEF GN,

hs=DEF HS, md=DEF MD) :

# CONFIG A

# MSb < X X X X X X X X > LSb
# 0 MA1 MAO DO2 DOl DOO MS1 MSO
self.confighA = ((0b00000011 & (ms << 0)) |
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(0b00011100 & (do << 2)) |
(0b01100000 & (ma << 5)))

# CONFIG B
# MSb < X X X X X X X X > LSb
# GN2 GN1 GNO O 0 0 0 0

self.configB = 0b11100000 & (gn << 5)

# MODE

# MSb < X X X X X X X X > LSb
# HS 0 0 0 0 0 MD1 MDO
self.mode = ((0b1l0000000 & (hs << 7)) |

(000000011 & (md << 0)))
self.gain = self.VAL GAIN[ (0Oblll & gn)]

self.bus.write byte data(self.addr, self.REG CONFIG A,
self.configh)

self.bus.write byte data(self.addr, self.REG CONFIG B,
self.configB)

self.bus.write byte data(self.addr, self.REG MODE, self.mode)

def read sensor raw(self):

rawX = [self.bus.read byte data(self.addr, self.REG DATA X MSB),
self.bus.read byte data(self.addr, self.REG DATA X LSB) ]

rawY = [self.bus.read byte data(self.addr, self.REG DATA Y MSB),
self.bus.read byte data(self.addr, self.REG DATA Y LSB)]

rawZz = [self.bus.read byte data(self.addr, self.REG DATA 7 MSB),
self.bus.read byte data(self.addr, self.REG DATA 7 LSB) ]

field raw=[rawX[0], rawX[1l], rawY[O], rawY[1l], rawz[O], rawZzZ[1l]]

return field raw

def read sensor (self):
raw=self.read sensor raw()

field = [float ((int.from bytes([raw[0],raw[l]], byteorder='big',
signed=True))) /self.gain,
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float ((int.from bytes([raw[2],raw[3]], byteorder='big',
signed=True)))/self.gain,

float ((int.from bytes([raw[4],raw([5]], byteorder='big',
signed=True)))/self.gain]

return field

class E91086 (Sensors) :

e B910.86 Sun Sensor.

Please refer to the datasheet for further information.
# Name

name='E91086"

def initialize (self):
self.bus.mode = 0 # set SPI mode

self.bus.max speed hz = 500000 # set the frequency

self.bus.xfer2([0x90,0x18]) # command 1001000000011000 for
configuration (datasheet for more details)

self.bus.xfer2 ([0x00,0x007)

def read sensor raw(self):
ret=self.bus.xfer2 ([0x00,0x00]) # command for reading sensors

tmp = (ret[0]<<8 | ret[l]) & Ox3FFF # concatenate the two
returned bytes since the output is 0100XXXXXXYYYYYY and set to O
everything but the data XY

return tmp

def read sensor(self):
tmp=self.read sensor raw ()

Xdata = tmp >> 6
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Ydata = tmp & Ox3F

Xn deg=75*Xdata/27+15

¥Yn deg=75*Ydata/27+15

# print ("Degrees: ",Xn deg,¥Yn deg)

Xn rad=Xn deg*math.pi/180

¥Yn rad=Yn deg*math.pi/180

sun_angles=[Xn rad, Yn rad]

return sun_angles

8.5 12C Sensors telemetry node code

G
i

#
# I2C SENSORS TELEMETRY NODE
#

G
i

import rclpy
import os
import struct

import sys

from rclpy.node import Node

from custom msg.msg import SensorsMsg
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from datetime import datetime

global requested bus

# I2C SENSORS TELEMETRY FUNCTIONALITIES
#

# The provided node is intended for logging the data coming from
i2c sensors in a suitable binary file. It splits the log files

# whenever a predefined threshold for the max number of messages
stored is exceeded. So a new binary log file is created, if

# the threshold is exceeded or if the topic is not recorded yet,
and stored in a predefined directory within its timestamp

class SensorsTelemetryI2C (Node) :

def  init (self):

super (). 1init ('i2c sensors telemetry '+requested bus)
self.subscription i2c = self.create subscription(
SensorsMsqg,

'i2c_sensors data '+requested bus,

self.sensors telemetry callback,

10)

self.subscription i2c # prevent unused variable warning
self.recording=False # to check if the log file is already created

self.ind=0 # to count the messages recorded

def create binary(self): # Create the log file in the
sensors log folder

path="/home/ubuntu/ros2 ws/src/telemetry/sensors log/i2c "+requeste
d bus

if not os.path.exists(path): # If the folder is not present, it'll
be created

os.mkdir (path)
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name db=path+"/i2c "+requested bus+" sensors data-
"+str (datetime.now () .strftime ("$m-%d-%Y-%H:3%M:%S"))+".bin" #
timestamp log file creation

print ('Logging data in: '+name db)
self.recording=True # log file created flag
self.file=open (name_db, 'wb')

self.ind=0 # messages number reset

def insert data(self, msg): # Insert the sensors data into the log
file created

if (self.ind< self.n max):
tmp=struct.pack ("ffffffffffff"',
msg.temp raw[0],msg.temp raw([1l],
msqg.temp,

msg.mag raw[0],msg.mag raw[l],msg.mag raw[2],msg.mag raw[3],msg.mag
~raw[4],msg.mag raw[5],

msg.mag[0],msg.mag[l],msg.magl[2]
)
self.file.write (tmp)

self.ind+=1

def sensors telemetry callback(self, msg):

self.n max=1000

if (self.ind == self.n max):

self.file.close()

if (not self.recording or self.ind > self.n max-1):
self.create binary()

self.insert data (msqg)

print ("RECORDING...")

def main (args=None) :
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rclpy.init (args=args)

global requested bus

requested bus=sys.argv[1]

sensors_telemetry i2c = SensorsTelemetryI2C()

rclpy.spin(sensors_ telemetry i2c)

# Destroy the node explicitly

# (optional - otherwise it will be done automatically
# when the garbage collector destroys the node object)
sensors telemetry iZc.destroy node ()

rclpy.shutdown ()

if name == ' main '

main ()

8.6 SPI sensors telemetry node code

G
i

#
# SPI SENSORS TELEMETRY NODE
#

G
ik

import rclpy

import os
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import struct

import sys

from rclpy.node import Node
from custom msg.msg import SensorsMsg

from datetime import datetime

global requested bus

# SPI SENSORS TELEMETRY FUNCTIONALITIES
#

# The provided node is intended for logging the data coming from
spl sensors in a suitable binary file. It splits the log files

# whenever a predefined threshold for the max number of messages
stored is exceeded. So a new binary log file is created, if

# the threshold is exceeded or if the topic is not recorded yet,
and stored in a predefined directory within its timestamp

class SensorsTelemetrySPI (Node) :

def init (self):

super (). init ('spl sensors telemetry '+requested bus)
self.subscription spi = self.create subscription(
SensorsMsg,

'spi sensors data '+requested bus,

self.sensors telemetry callback,

10)

self.subscription spi # prevent unused variable warning
self.recording=False # to check if the log file is already created

self.ind=0 # to count the messages recorded
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def create binary(self): # Create the log file in the
sensors log folder

path="/home/ubuntu/ros2 ws/src/telemetry/sensors log/spi "+requeste
d bus

if not os.path.exists(path): # If the folder is not present, it'll
be created

os.mkdir (path)

name db=path+"/spi "+requested bus+" sensors data-
"+str (datetime.now () .strftime ("%$m-%d-%Y-$H:%M:%S"))+".bin" #
timestamp log file creation

print ('Logging data in: '+name db)
self.recording=True # log file created flag
self.file=open (name db, 'wb')

self.ind=0 # messages number reset

def insert data(self, msg): # Insert the sensors data into the log
file created

if(self.ind< self.n max):
tmp=struct.pack ('fff',
msg.sun_raw,
msg.sun[0],msg.sun[1]

)

self.file.write (tmp)

self.ind+=1

def sensors telemetry callback(self, msg):

self.n max=1000

if(self.ind == self.n max):

self.file.close()

if (not self.recording or self.ind > self.n max-1):
self.create binary()

self.insert data (msqg)

print ("RECORDING...")
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def main (args=None) :

rclpy.init (args=args)

global requested bus

requested bus=sys.argv[1]

sensors telemetry spi = SensorsTelemetrySPI ()

rclpy.spin(sensors telemetry spi)

# Destroy the node explicitly

# (optional - otherwise it will be done automatically
# when the garbage collector destroys the node object)
sensors_ telemetry spi.destroy node ()

rclpy.shutdown ()

if name == ' main '

main ()

8.7 Attitude determination node code

import rclpy
import os
import numpy
import math
import pyIGRF
import datetime

import navpy
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from
from
from
from
from
from

from

rclpy.node import Node

custom msg.msg import SensorsMsg

custom msg.msg import AttitudeQuaternion
PyAstronomy import pyasl

skyfield import framelib

skyfield.api import load file

skyfield.api import load

class AttitudeDetermination (Node) :

def init (self):

super (). 1init ('attitude determination')

self.

sun = None

# self.sun safe b= 1.61927769490585 # 92.7° (or 1.522314958683943
for 87.3° )

# self.sun safe a= 1.61927769490585 # 92.7° (or 1.522314958683943
for 87.3° )

self.mag = None

self.

subscription i2c = self.create subscription(

SensorsMsg,

'i2c

self.

10)

self.

sensors data busl',

i2c _mag callback,

subscription spi = self.create subscription/

SensorsMsqg,

'spi

self.

10)

sensors _data busO',

spi sun callback,

self.quat publisher = self.create publisher (AttitudeQuaternion,
'attitude', 10)

print ("Starting Attitude Determination...")
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self.subscription i2c # prevent unused variable warning
self.subscription spi # prevent unused variable warning
timer period=0.01 # 10 Hz

self.AD timer = self.create timer (timer period,
self.AD timer callback)

def i2c mag callback(self, msqg): # callback collecting mag
sensor data

self.mag=msg.mag

def spi sun callback(self, msg): # callback collecting sun
sensor data

self.sun=msg.sun

def sun mag vectors ECEF (self): # method computing ECEF frame
vectors

# Variables needed for M ECEF vector computation
lat deg=45.09221603086248

lon deg=7.670356843569824

lat rad=lat deg*math.pi/180

lon rad=lon deg*math.pi/180

alt=0.239 #km
date=pyasl.decimalYear (datetime.datetime.now())
# Variables needed for S ECEF vector computation
ts = load.timescale ()

t = ts.now() # Julian date hour expressed in UT (-1h wrt
Italy)

planets =
load file('/home/ubuntu/ros2 ws/src/attitude determination/attitude
_determination/ephemeris/de421.bsp')

sun = planets['sun']
earth = planets['earth']

# M NED, M ECEF computation
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mag info=pyIGRF.igrf value(lat deg, lon deg, alt, date)

M NED=numpy.array([mag info[3],mag info[4],mag info[5]]) #nT
(North, East, Down coordinates)

M NED=M NED/ (numpy.linalg.norm (M NED)) #
normalization

a=lat rad+math.pi/2
b=-lon rad

Ry=numpy.array ([ [math.cos(a),0, -
math.sin(a)],[0,1,0], [math.sin(a),0,math.cos(a)]])

Rz=numpy.array ([ [math.cos (b),math.sin(b),0], [~
math.sin(b),math.cos(b),0]1,10,0,111)

R=numpy.dot (Rz, Ry)
# rotation matrix: NED FRAME -> ECEF FRAME

R=R.T i
transformation matrix from NED frame -> ECEF FRAME

M ECEF=numpy.dot (R,M NED)
# S ECEF computation
apparent = earth.at(t) .observe(sun) .apparent ()

sun_info = apparent.frame xyz (framelib.itrs)

S ECEF=numpy.array(sun_info.au)
S_ECEF=S ECEF/ (numpy.linalg.norm(S_ECEF))
ret=[M ECEF,S ECEF]

return ret

def sun mag vectors BODY (self): # method computing BODY frame
vectors

# Sb computation

b=self.sun[0]-math.pi/2 # angle XZ-plane
a=self.sun[l]-math.pi/2 # angle YZ-plane
# if (abs(b-math.pi/2)<0.047):

# b=self.sun safe b

# self.sun safe b=b

# if (abs(a-math.pi/2)<0.047):
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a=self.sun safe a
self.sun safe a=a
print ("beta: ",b)

print ("alpha: ", a)

0 *= = = =

_B=numpy.array ([math.tan(b),math.tan(a),1]) # general
relation for 2-axis digital sun sensors

#print ("S B non normalizzato: ",S B)

# Mb computation

R=numpy.array([[0,-1,0],[-1,0,0],[0,0,-1]]) # rotation matrix:

sensor FRAME -> SUN sensor FRAME

R=R.T # transformation
matrix: MAG sensor FRAME -> SUN sensor FRAME

M B=R.dot (numpy.array (self.magqg))
# normalize vectors

S B=S B/ (numpy.linalg.norm(S B))
M B=M B/ (numpy.linalg.norm(M B))
ret=[M B,S B]

return ret

def TRIAD attitude determination(self,S B,M B,S ECEF,M ECEF):
# creating the triads: USING S B as "best" measure
# 1lst components

tlb=S B

t1i=S ECEF

# 2nd components

tmp=numpy.cross (S B, M B)

t2b=tmp/ (numpy.linalg.norm (tmp))
tmp=numpy.cross (S _ECEF, M ECEF)

t2i=tmp/ (numpy.linalg.norm (tmp))

# 3rd components

t3b=numpy.cross (tlb, t2b)

t3i=numpy.cross(tli, t2i)
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# attitude matrix computation

Rbt=(numpy.array([tlb, t2b,t3b])).T # rotation matrix: BODY FRAME

-> TRIAD FRAME

Rti=numpy.array ([tli,t21i,t31]) # rotation
ECEF FRAME

DCM attitude=numpy.dot (Rbt,Rti)

return DCM attitude

def AD timer callback(self): # Timed
attitude (refer to "timer period") via TRIAD

if (self.sun is not None and self.mag is not
# store body frame vectors
v=self.sun mag vectors BODY ()

M B=v[O]

S B=v[1l]

# store ECEF frame vectors
v=self.sun mag vectors ECEF ()

M ECEF=v[0]

print ("S B: ",S B)

print ("\n")

print ("S ECEF: ",S ECEF)

S

#

id

# print ("M B: ",M B)
id

# print ("M _ECEF: ",M ECEF)
id

TRIAD ALGORITHM

matrix: TRIAD FRAME ->

callback computing
algorithm

None) :

DCM attitude=self.TRIAD attitude determination(S B,M B,S ECEF,M ECE

F)

g0, gvec=navpy.dcm2quat (DCM _attitude)

g attitude=[q0, gqvec[0], gvec[l], gvec[2]]
# print ("Attitude DCM Matrix: ")

# print (DCM attitude)

# print ("Attitude quaternion: ")
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# print (g attitude)

# print ("\n")

msg = AttitudeQuaternion ()
msg.quat=q attitude
msg.rl1=DCM attitude[0]
msg.r2=DCM attitude[l]
msg.r3=DCM attitude[2]

self.quat publisher.publish (msg)

def main (args=None) :

rclpy.init (args=args)

attitude determination = AttitudeDetermination ()

rclpy.spin(attitude determination)

# Destroy the node explicitly

# (optional - otherwise it will be done automatically

# when the garbage collector destroys the node object)

attitude determination.destroy node ()

rclpy.shutdown ()

if name == ! main '

main ()
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9 APPENDIX C: MATLAB CODE

In this chapter is presented the Matlab code used in order to realize the real-time animation of
the attitude determination of a 3U satellite. As described in the previous chapters, the code takes
usage of the ROS toolbox to allow the communication between Matlab and ROS2.

9.1 Attitude callback

function att callback (msg)
global sat
global bodyf
global g0
global g0 conj
global RO conj
global g stored
global R stored
global t

global time
global check

%Satellite animation
q body=(msg.quat) ';
R body=[msg.rl; msg.r2; msg.r3];

if (check==0)
g0 _conj=[g body(1l); —-g body(2:end)];
g0=g_body;

o°

RO conj=(quat2dcm (g body'))";

check=check+1;
end
% ROTATING OUR QUATERNION/MATRIX ATTITUDE WITH A ROTATION OF -
90° WRT X AXIS
g _btom=[0.7071, -0.7071, 0, 0]; % for aligning bf to matlab
frame
g_tmp=quatprod (g0 conj,g btom');
g=quatprod(q_body,q tmp);
% animation rot g(sat,bodyf, q)

sfor evaluating g error
g body conj=[g body(l); -g body(2:end)];
g_err=quatprod(g0,g body conj);

R btom=[1 0 0; 0 0 1; 0 -1 0]; % for aligning bf to matlab frame
R _tmp=R0O_conj*R btom;

R=R body*R tmp;

animation rot R(sat,bodyf,R)
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% quaternion plot

t
time=[time, t];
q

_stored=[g stored,q err];
% R _stored=[R stored; R];

end

9.2 Animation

clc; clear;

%% Initial Satellite
global sat
global bodyf
global g stored
global R stored
global time
global t

global check
global g conj
global RO conj
global g0

q0=[1;
q_conj=[]
RO _conj=|
g stored=
R stored=
sat=[];
time=[];
t=0;
check=0;

14

17
(17
[]

Q

for i=0:2

U=[-0.5 -0.5 0.5
0.5 0.5 -0.5-0.5 -0.5 -0.5;
0.5 -0.5 -0.5

0.5 -0.5 -0.5

0.5

-0.5 -0.5 -0.5 -0.5 -0.5

-1.5 -1.5 -1.5 -1.5 -1.5 -0.5
-1.5 -0.5 -0.5 -1.5 -0.5 -0.5

U(3,:)=U(3,:)+i;
sat=[sat, U];
end

[e)

% Body frame definition
90° WRT X AXIS OF BODY FRAME

(same of Sun

% 3U Satellite definition and body reference
-0.5 0.
-0.5 -0.

-0.5 -0.

Sensor) :

frame model

5 0.5 -0.5 0.5 0.5

5 0.5 0.5 0.5 0.5

5 -0.5 -0.5 -0.5 -1.5

BEF->MATLAB=ROTATION -



% WRT X AXIS

bodyf origin=[0; -0.5; 0];

bodyf z=[0; -1; 0];

bodyf x=[0.5; -0.5; 0];

bodyf y=[0; -0.5; 0.5];

bodyf=[bodyf origin, bodyf z, bodyf origin,bodyf x, bodyf origin,
bodyf y, bodyf origin];

o\

plotting initial conditions
figure(l); grid on; hold on;
daspect ([1 1 117)

view (30,20)

o o

o\

% £s1=20;

$ 11=2;

% xlim([-11 11
% ylim ([

o\°

zlim([-11 11

xlabel ('$XS$', "interpreter', 'latex', 'fontsize', fsl)
ylabel ('S$SYS$S', 'interpreter', 'latex', 'fontsize', fsl)
zlabel ('$72S$', "interpreter', 'latex', 'fontsize', fsl)
fac=[17 21 26 25];

1)
-11 117])
1)

o°® o° o o°

o\°

plot3 (bodyf (1, :),bodyf(2,:),bodyf(3,:), ' 'color','b', 'tag', 'initial',
'linewidth',1.2); hold on; grid on;

o\°

plot3(sat(l,:),sat(2,:),sat(3,:),"'color','g','tag', 'initial', 'linew
idth',1.2);

Q

o

patch ('Vertices',sat', 'Faces', fac, 'FaceVertexCDhata',hsv (1), 'FaceCol
or','flat")

%% Rotating Satellite

% declaring a subscribe to attitude topic

attitude visualizer=ros2node ("/attitude visualizer");

att sub=ros2subscriber (attitude visualizer,"/attitude","custom msg/
AttitudeQuaternion",@att callback);

o\°

figure (2);

subplot (411); hold on; grid on;
plot (t,g stored(l,:),'b");
subplot (412); hold on; grid on;
plot(t,g stored(2,:),'k");
subplot (413); hold on; grid on;
plot(t,g stored(3,:),'r");
subplot (414); hold on; grid on;
plot(t,g stored(4,:),'m");

o 0© o° o© o o° o©

o\

%% for evaluating g error

figure (3);

subplot (221); hold on; grid on; title('g 1"); x1im([0,500]);
plot (time,q stored(1l,:));
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subplot (222); hold on; grid on;
plot (time,q stored(2,:));
subplot (223); hold on; grid on;
plot (time,g stored(3,:));

subplot (224); hold on; grid on; title('g 4'");

plot (time,g stored(4,:));

title('g 2'); x1im([0,500]);

title('g 3");
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