

POLITECNICO DI TORINO

Dipartimento di Elettronica e Telecomunicazioni

Corso di Laurea Magistrale

 in Communications and Computer Networks Engineering

Tesi di Laurea Magistrale

Simulation of a Base Station with Integrated Services

Relatore

firma del relatore (dei relatori)

prof. Meo Michela
...........................
...........................

Candidato
firma del candidato

Alberto Benvenga

Marzo 2021

Index

1. Introduction 1
2. Queueing model for cells with mixed traffic 5
3. Simulation model 9
4. Results for one cell 13
 4.1 First tested case: low arrival rate 13
 4.2 Second tested case: increasing arrival rate 17
 4.3 Third tested case: a realistic scenario 21
 4.4 Fourth tested case: changing packet distributions 23
 4.5 Fifth tested case: testing lognormal distribution 30
 4.6 Sixth tested case: changing dwell time 34
 4.7 Seventh tested case: testing extreme dwell time of 1 second 37
 4.8 Eighth tested case: changing elastic size 41
5. Appendix 45
6. Conclusions 99

 1

1. Introduction

During last years, a new technology of mobile telephony has been discovered, called 5G, due
to the changing key parameters that have to be satisfied in the next years, such as:

 Virtualization of most of web devices (switch, routers, …);

 Increase of the number of mobile devices to be satisfied;

 Reducing latency;

 Reducing energy consumption;

 Increase of transmission speed.
Each of these goals has been achieved employing some specific technology that I’m going to
describe here:

SDN FOR VIRTUALIZATION:
Virtualization of web devices has been achieved thanks to the introduction of the SDN
(Software Defined Networking), which basically divide network in 2 types of nodes: edge
nodes, and central nodes.
Edge nodes are the user ones, and usually they are “dumb”, since they just have to do what

central nodes tell them to do. This is the main goal achieved by virtualization: moving the
complexity from many nodes, to few central intelligent nodes, which have to take decisions
and communicate them to the user nodes.
Any time that a dumb node does not know what to do with data, then it asks to controller
nodes; then it gets answer, and from now on it knows what to do with that type of data.
Another advantage achieved by this approach, is of course the reduction of costs of web
devices; basically the user nodes do no take decisions, they do what controllers tell them to
do, so do not need complex hardware architecture.
For what concern controller nodes, usually are few, and completely software; sometimes they
exchange information with neighbour controller nodes in order to better manage data of a
specific geographic area for example.

EDGE COMPUTING FOR LATENCY:
Reducing latency is a crucial point for some type of applications, and in order to achieve it,
edge computing has been implemented in 5G.
Edge computing is a network composed by many data centers able to elaborate and memorize
critical data locally, and then send data to a central data center.
In this way, time-sensitive data can be elaborated locally, if we have a smart device, or by an
intermediate server located near to us; non-time sensitive data, instead, can be sent to the
cloud.
In small words, critical data, the one asking very low latency, are elaborated and memorized
by servers near to us, and not by the central cloud, which can be very far from us, reducing
significantly the latency.

 2

In addition, edge computing is good also for privacy, because in this way data can be stored
locally in intermediate servers, and not all in the central cloud, like happens in cloud
computing.

NETWORK DENSIFICATION AND SMALL CELLS:
One of the main reason to switch from 4G to 5G is the continuous increase of mobile devices
asking connection to the Internet. This big problem, and the need of increase the transmission
speed, lead us to network densification and small cells.
This because having a major number of adjacent cells covering the same area means having
higher total capacity, which is necessary as the demanding bit rates per user are increasing as
time pass by.
In addition, increasing the base station sites means that we can handle higher traffic per
square meters, because there will be many 5G base stations covering geographical area, and
this means that the traffic is not directed all to the same cell, like it happens in 4G, where the
coverage of the area is bigger, but it is directed in different cells; this helps in reducing the
load of each base station, and as a consequence it allows to deal more traffic in the same
geographical area.
Also, the fact that these cells are smaller means that, inside a 5G cell, the distance between the
base station and the user equipment is smaller than the one of 4G, and it leads to higher per-
user bit rate.
Each cell works on a specific range of frequencies: the higher the frequencies are, the higher
the transmission speeds, but lower coverage. This turns into 3 possible type of cells:

 Small band cells: in these cells, working frequencies are around 700/800 MHz, and the
achievable data rate is pretty low, 30/250 Mbps. On the contrary, their coverage area
is very high, then can be implemented in places where we do not expect so much
traffic.

 Medium band cells: here the working frequencies are of a few GHz (2/3), and the
achievable data rate is 100/900 Mbps. These cells will be very common in
metropolitan scenarios, and has been already implemented in some cities.

 Large band cells: these cells are the ones which really makes possible the network
densification. Working at frequencies around 25/39 GHz, they can achieve very high
bit rate, of the order of 1Gbps. They use mmWaves, which can be easily blocked by
walls, meaning that the coverage area is very small, and that’s why they are also called

SMALL CELLS. The idea is to put these type of cells in places where we expect a lot
of traffic, and cover areas by have many adjacent SMALL CELLS.

Unfortunately, it’s not so easy to switch all the 4G technologies to the new 5G ones, it is

much easier to mix both technologies before changing definitely to 5G.
The best way to do so, is to put a 5G small cell in an area covered already by a 4G macro cell,
producing a heterogeneous network (HetNet). In particular, it is convenient to place the small
cell where it is expected to have high traffic of users, called Hotspot.
The customers entering the macro cell, then, will face four possible scenarios:

1. They will finish their service in the macro cell;
2. They will move to the small cell, performing then a handover before finishing the

service;
3. They will move to another macro cell, performing handover again.

 3

Unfortunately, planning a HetNet is very complex, especially because we have to answer to 2
questions:
1) Is the presence of a small cell effective in the same way on different kinds of traffic (elastic
and inelastic traffic)?
2) How effective is the presence of a small cell in a macro cell?
Once these questions have been answered, then it will be possible to dimension and position
small cells in such a way that densification brings the desired benefits.
This thesis will be focused on the first question, but in order to achieve reliable results, it is
necessary to create an accurate simulation model.
The thesis, then will be structured in the following chapters:

- Queueing model for cells with mixed traffic: in this chapter the analytic queueing model
which describes the situation to study has to be created;

- Simulation model: once the analytic model is ready, then it has to be implemented in a
simulation environment, which will be Omnet++. Omnet++ is an extensible, modular,
component-based C++ simulation library and framework, primarily for building
network simulators. Its functionalities will be described in a clear way, such that the
generated code will be easily understandable.

- Results for one cell: here it is reported how the small cell acts in presence of both
inelastic and elastic traffic. Here all the statistics computed by the simulation will be
plotted, and the results will be studied and analysed in order to get proper conclusions;

- Appendix: in here is present the code generated to simulate the different scenarios, and
it is explained step by step.

- Conclusions.

 4

 5

2. Queueing model for cells with mixed traffic

In this scenario we are interested in the behaviour of a base station loaded with two classes of
services: inelastic and elastic.
Our base station has a finite capacity that has to be shared between these 2 types of services.
Inelastic services require a fix bit rate, a continuous data flow (like video conversation or
video streaming); the service data rate is fixed by the rate at which data are produced at the
source, and cannot be increased or decreased by the network.
Instead, elastic ones are transmitted at the maximum bit rate possible, but only if this one is
greater than the minimum rate they ask. In this case, the data is available at the source, and the
data rate is constrained by the network capabilities, as well as the source and destination
capabilities of transmitting/receiving data, and the characteristics of the network protocols.
In conclusion, an elastic service requires a minimum data rate, and, on top of that, equally
share all the capacity not used by inelastic services with the other elastic ones.
From now on, the base station will be simulated by using a queue, where packets will be
stored until they end up their service or perform handover.
Each time a service enters our queue, it has 2 possibilities; either it completes its task, or it
performs handover; in this model, handovers represents the mobility of users, because after a
period of time we assume that the user moves into another cell, so outside the coverage of our
base station. If a service performs handover, it has to start again from the beginning the
service in the new cell.
Since the arrivals can be either elastics or inelastics, it is convenient to describe a queue
model with 2 possible streams of customer arrivals: inelastic customers with rate i , and
elastic ones with rate e . We initially will assume that the generation processes are Poisson
ones, so this implies we got i inelastic arrives per second, and e elastic arrives per second
on average.
It is important to notice that not each service that arrives at the queue enters it; it depends if
the amount of available capacity is enough to serve it.

In particular, if we assume that the queue has a total capacity C, and iR is the bit rate required
by each inelastic customer, and eR is the minimum bit rate required by each elastic service,
then a service will be accepted if and only if:

 If customer is inelastic, it will be only accepted if:

ieeii RRNRNC (2.1)

Where iN and eN represent the number of inelastic and elastic customers in service
respectively.
This equation can be summarized as follows: if we subtract from the total capacity C,
the bit rate occupied by already in service inelastic customers (ii RN), and the bit rate
that would be occupied by the elastic services if each one was working at its minimum

 6

accepted bit rate eR (ee RN), we obtain the residual available capacity. If this one is
greater than iR , then this customer can be served, otherwise it is discarded.

Notice that it is not mandatory that elastic services work at eR , this rate just need to
understand if in the worst situation for the elastic, the inelastic one can be served or not;
if yes, then elastic customers equally share the capacity that is not used by inelastic
ones, and this value can be larger than eR .

 If customer is elastic, it will be only accepted if:

eeeii RRNRNC (2.2)

 The explanation is exactly the same of the case above.
We will further assume that an inelastic service size is exponentially distributed with mean

i

1 bits, and a service time exponentially distributed (at least at the beginning) with mean
i

1

seconds; in this way, the relation between these two quantities is the following:

i

i

i

R

1 (2.3)

For what concern elastic customers, things are a little bit different. Their packet sizes are

exponentially distributed with mean
e

1 bits, but this time, we cannot say in advance how its

service time is distributed; this one depends on the number of inelastic and elastic customers
actually in service, and so it’s a value continuously changing.
This value, anyway, will be included among 2 values:

eC

1 , this value occurs in the best case, when the elastic service uses all the capacity C,

meaning that it’s the only service in the queue, leading to the minimum service time;

eeR

1 , on the contrary this value represents the case in which the elastic customer has to

work at its minimum accepted rate eR , leading to the maximum service time for
elastic customers.

Up to now, I described how are distributed packet sizes, service and generation times; but, as
I said before, a customer has 2 options when enters the queue: either it completes its service
with rates just computed, or it performs handover.

Handover is just represented with a random variable exponentially distributed with mean
H

1

seconds; it easily means that each service remains on average
H

1 seconds in our cell; if the

service time is less than this value, then the customer completes its task, otherwise it leaves
the cell (and the queue) without completing.
At each point, the state of the queue can be described by:

),(ei NNS (2.4)

 7

Since both handover and service time are exponentially distributed, for now, the minimum
between these two random variables has a rate which is the sum of the 2 rates, and so the
individual service rate of an inelastic customer is:

iHeii NN),((2.5)

While for an elastic customer it becomes:

e
e

ii
Heie N

RNCNN
)(),(

 (2.6)

This because, as explained by the formula 2.3, the rate of service time should be the product
between the bit rate associated to each elastic service, and the inverse of the mean of the
elastic packet size (e). Since the bit rate of elastic customer changes as the number of
customers in service, then it has to be computed on the base of how many inelastic and elastic
services are present in the queue in that moment.
In order to compute the elastic data rate, it is necessary to equally share the capacity not used
by inelastic customers (ii RNC) among all elastic customers in service (eN).

So, if we want to compute the total service rate, in a specific queue state, of inelastic
customers is:

iiHeiTi NNN)(),((2.7)

While, the total service rate for elastic ones is:

eiieHeiTe RNCNNN)(),((2.8)

These two formulas are obtained, respectively, simply multiplying the equations 2.5 and 2.6
by iN and eN .

In addition, there cannot be more than i inelastic customers in the queue, and more than e
elastics.
The analysis of the queueing model so can be performed either by a simulation model, which
is what I did and will be shown after, or by a CTMC in the case of exponential distributions
(which is our initial case).
In this way, the results given by the simulator can be checked studying the Markov-Chain
associated.

 8

 9

3. Simulation model

The simulation model of the scenario described above has been designed using the simulator
OMNET++. This type of simulator creates different modules, and each module can work
standalone like a usual c++ code, or it can communicate and exchange information to the
modules to which it is connected to.
The structure of modules of the simulation is represented as:

Figure 3.1: Topology of the modules composing the network

So, we got 3 types of modules, each simulating a specific part of our scenario: generator,
server and sink.
Each one of these modules is described by 3 types of files created by the simulator:

 NED FILE: this file is used to create the physical topology connecting different
modules; here we specify the connections among modules, the speed at which they
exchange information, delay, the gates that are involved in the connections, and also
parameters associated to them.

 INI FILE: this file is where all the initial parameters with their values are collected;
each parameter is associated to a module.
For example, if in the NED file we declared that the generator has a parameter called
inel_prob, then in the INI file, in order to assign this parameter a value, we have to do
as following:
Generator.inel_prob=VALUE WE DECIDE
This allows us to run different scenarios simply changing the values in the INI file,
without need to change from scratch our code.

 C++ FILE: this file is the hearth of the modules; here is where we decide exactly what
each module has to do when receives information.
Differently from the INI and NED files, which are common to all the modules, the
C++ files are specific for them; so each one has its own C++ file.
In addition, each of these C++ files is divided in 3 main parts of code:

o Initialize part: this part is the one in which we assign values to the variables
of our code; it runs just once, as soon as the simulation starts.

 10

o HandleMessage part: this one is the core of the module, because here we
have all the procedures that we want our module to run. This part runs each
time the module receives a message in input, which can be a self-message (if
the module sent a message to itself, explained after), or a message coming
from another module.

o Finish part: this part, obviously, it is entered only at the end of our simulation.
In particular, OMNET++ allows us to decide for how many simulated seconds
we want our simulation to run (this value is specified in the INI file with the
name sim-time-limit=VALUES IN SECONDS).
We will change often this value, in order to understand how the scenario works
for different time intervals, or to have more accurate statistics.
Well, once the simulation reaches the end of the seconds, the code of each
module enters the finish part, and usually here we want display at screen the
statistics computed on the run.

Now let’s describe exactly what each module does:

 GENERATOR: it simulates the arrival of new customers in our cell. It uses a specific
technique of this simulator called self-message, which basically is a message that the
module sends to itself after a certain amount of time.
Once it receives this message, then it triggers an action, which in our case is the
generation of a packet to send to our output module, which is the server.
The time between 2 self-messages is the interarrival time between 2 customer arrivals;
so, if we decided to distribute customer arrivals through exponential random variables,

then the self-message must be received, on average, after

1 seconds where is the

rate of customer arrivals.
So in the initialize part of the generator, we send a self-message, and as soon as it is
received, we enter its handleMessage part.
Here, in our specific case, we have to decide if the arrival is an elastic or inelastic one;
once we decided, we sent this packet to the server module, and we send another self-
message, so the cycle continues.

 SERVER: it basically simulates the behaviour of the base station. So as soon as it
receives a message from the generator, it will take decisions on how and if this
customer has to be served. In this module we also collect useful statistics to analyse
the base station behaviour.
If the customer finishes its service without performing handover, then we send this
one to the sink; otherwise, if it performs handover, then it will be deleted after its
dwell time expires.

 SINK: this one simply confirms us that the customer finished its service and we don’t

need any more to serve it.
Now, that we know which are the modules, what they simulate, and how are they connected
among themselves, it can be explained how the simulation works.
Later on, it will be shown in the code the presence of 2 matrices in the C++ code of the server
(simulating the base station); in particular, one matrix for elastic services and the other one for
the inelastic ones.

 11

The number of rows of the matrices is the maximum number of inelastic/elastic customers
simultaneously present in the queue allowed, so respectively i and e .

In this way, each row is linked to a specific customer, and the cells contain parameters
referring to it, in particular:

 First columns contain how many bits are remained to transmit for that customer;

 Second columns contain the remaining dwell time of that customer, that is how much
time remains before that customer performs handover;

 Third columns contain the time needed to transmit the residual bit of that customer;

 Fourth columns contain, just for elastic ones, the bit rate associated to that customer,
which will be the same for all elastic ones, since they equally share the residual
capacity. This value is necessary for them since it’s varying each time each customer

enters/leaves the queue; instead, since the bit rate associated to an inelastic service is
always the same, this value doesn’t need to be specified for them.

How these values are exactly computed is explained below when the code is studied; the
importance of these values is now explained.
Since each customer can both perform handover or complete the service, we cannot know in
advance which of these 2 situations will be chosen for each customer; so at each change of
state, we collect in the matrices these times for each service with the updated values.
The values of times keep decreasing, until one arrives to 0; when this happens it means that:

If the 0 is in the second column: a handover has to be performed for that customer;

If the 0 is in the third column: that customer has completed its services.
So, at each time, we have to compute the minimum among all remaining dwell and
completion times, in order to know which will be the first time to arrive to 0; once we know
which is the minimum time, a self-message will be scheduled after exactly that time. In this
way as soon as we receive the self-message, we know that a handover or a completion has to
be performed.
In both cases, the row linked to that customer is reset to -1, so from now on that row can be
associated to a new customer.
Notice that if a new arrival happens before the scheduled departure message expires, then the
scheduled message has to be deleted, and sent again once the new arrival has been assigned
the reserved capacity; this is necessary because, as soon as a customer arrives, the residual
capacity changes, and so also the bit rate associated to each elastic customer, and as a
consequence also their completion times. So, as soon as a new arrival happens, we check if
there is a scheduled message, if yes is deleted, and then we update whole residual times and
bit to transmit and associated bit rate for each customer.
This procedure will go on until the simulation time ends.

 12

 13

4. Results for one cell

At the begin, I started in simulating just one cell, with mixed traffic, in different scenarios, in
order to understand how things change if parameters change.
Different cases have been studied, and they are reported below.

4.1 First studied case: low arrival rate
The first studied case has the following parameters:

Table 4.1. Parameters of the first tested case

Parameters Value Unit of measure

Max # inelastics 1 Pure number

Max # elastics 10 Pure number

Interarrival rate (λ) 20 1/seconds

Probability a service is
inelastic

0.5 Pure number

Mean of dwell time 1 Seconds

Capacity of the queue 100 Kbit/s

Rate asked by inelastics 100 Kbit/s

Minimum rate asked by
elastics

0 Kbit/s

Mean of packet size of
inelastic services

100 Bits

Mean of packet size of
elastic services

100 Bits

The first important aspect to notice is that in this particular case, the minimum rate needed by
elastic services is 0Kb/s; this means that when an inelastic customer arrives, and there are no
other inelastic in service, then it will take the whole capacity (100Kb/s). Instead, all the elastic
customers in service, and the ones that will enter the queue (accepted up to a maximum of 10
elastics), will temporarily get 0Kb/s, increasing their completion time to infinity.
Obviously, as soon as the inelastic service ends, then all the elastic ones will change their rate
in such a way they equally share the capacity; this implies that, in this specific tested case, the
elastic customers are discarded if and only if there are already 10 of them in service.
Another important observation that can be done, is that, given this specific choice of
parameters, the behaviour of inelastic services is perfectly independent from the one of the
elastics; this because their behaviour is not affected by how many elastic customers we have
in service.

 14

This is because, again, if we have no inelastic customers in service, as soon as one of them
arrives, it doesn’t matter how many elastics are present in the queue, because they can always
adjust their rate to 0, given then priority to the inelastic customer.
Thanks to this observation, the behaviour of inelastics can be predicted by taking into account
the M/M/m/0 case, where m in this case is 1 since there can be at maximum 1 inelastic in
service. In particular:

10

0
0),0(

e

e

N

N
eNP (4.1)

Where 0 is the probability of being in the 0 state of the M/M/1/0 queue. The formula to
compute a state probability, for that queue is:

 mi

i

i

k

k

i

k

0 !

!

 (4.2)

Where simply is the ratio between the arrival and service rate of inelastic customers.

So, the formula 4.2, if we are interested in the 0 state probability, change as follows:

1

1
1

1

!

1
1

0

0 i

i

i

i

 (4.3)

In the formula 4.3 particular attention should be focused on the parameters and , because
as already mentioned before, this queue is simply modelling the inelastic behaviour, and so it
means that we are referring just to them; that’s why both and are not the general ones,
but are the inelastic ones.
In particular:

]/1[105.0]/1[20 ssprobineli (4.4)

As can be seen by formula 4.4, the inelastic arrival rate is computed by multiplying the
overall arrival rate and the probability that the customer is inelastic. The same could be done
to compute the elastic arrival rate, and that means, basically, that our arrival process can be
seen as two arrival processes (one for inelastics and one for elastics) working in such a way
that their arrival rates, summed up, give the overall one.
For what concerns, instead the inelastic service rate, then:

iHis (4.5)

By reading formula 4.5, we understand that the rate of inelastic service is the sum between the
dwell rate and the service one, and this is because the choice performed by the inelastic packet
is the one with minimum time, and so its rate is the sum of the two because they are both
exponentially distributed.

Dwell rate H , since the dwell time is exponentially distributed, is simply the inverse of the
mean of the dwell time, and reading table 4.1 we get that it is 1 second; so it turns that

]/1[1
][1

1 s
sH (4.6)

 15

Instead, the service rate i is not specified by parameters, but thanks to the formula 2.3 we
get :

]/1[1000
][100
]/[105

s
bit

sbitR iii (4.7)

In formula 4.7 both iR and i value can be read from table 4.1, but iR has been converted
from Kbit/s to bit/s.
So now, putting together the results of 4.6 and 4.7, the formula 4.5 gives the following
result:

]/1[1001]/1)[10001(ssis (4.8)

So, finally, we can compute 0 by means of the formula 4.3, using the values given by 4.4
and 4.8:

99.0
]/1[1011
]/1[1001

]/1)[101001(
]/1[1001

0

s
s

s
s

iis

is

 (4.9)

As a consequence, by formula 4.1, we get that the sum of all the state probabilities with 0
inelastics is 0.99, meaning that for 99% of the time there will be no inelastic customer in the
queue. This result may seem wrong, but it is due to the fact that the state (0,0) has a
probability equal to 0.98, while all the other state probabilities are extremely low.
This is because the service rate is much higher than the arrival one, and so as soon as a service
enters the queue, it will be immediately served, and a long time pass before a new arrival
happens. Since very small probabilities, of the order of 810 , cannot be seen by the simulator,
it will turns out as if that probabilities are 0, turning in low accuracy results; this is the main
reason for which we proceeded in the next case.
Anyway, some key statistics have been computed, and it is shown in this table:

Table 4.2. Results of the first tested case

Statistic Value Unit of measure

Inelastic losses 24766 Pure number

Elastic losses 0 Pure number

Inelastic handovers 2462 Pure number

Elastic handovers 2652 Pure number

Inelastic completed services 2472893 Pure number

Elastic completed services 2497635 Pure number

Average inelastic customers
in service

0.00987818 Pure number

Average elastic customers in
service

0.010294 Pure number

Average inelastic fraction of
capacity (%)

0.987818 Pure number

 16

Average elastic fraction of
capacity (%)

0.999165 Pure number

Average queue load 1986.98 Bit/s

Average elastic bit rate 994.08 Bit/s

The following results make sense, and let’s analyse them one by one; first of all, we can
notice we do not have any elastic customer lost. This is perfectly reasonable because the rate
of arrival is 20, meaning 20 arrivals per second on average, in which 10 of them are elastic;
but the completion time (service time), is much lower, because is computed as the ratio
between the packet size of an elastic customer, and its associated rate, which will be almost
always equal to whole the capacity, due to high service rate with respect to arrival one.
As for inelastic, under the assumption that the elastic customer is the only one in service, it
will get whole the capacity, and so it means, as explained in formula 4.7, that its service rate
will be 1000; this value, compared to the value of , turns out to be much bigger.

This leads to a scenario in which often as soon as a customer enters the queue, it will
immediately be served even before some other one can enter the queue, explaining the high
probability of state (0,0).
In addition, the minimum rate of elastics here is 0Kb/s, so even if there is an inelastic
customer in service when an elastic one arrives, this last one will not be lost, but it will be
accepted in the queue and assigned its minimum rate 0 Kb/s. So, the only way to have elastic
losses is to reach Max #el customers in service, but this scenario will never happen because
service rate is much higher than interarrivale one, as explained before.
On the contrary, inelastic losses can happen because it is exceeded the max # inelastic
customers allowed, which is 2; so, in order to have a loss, it is sufficient that an inelastic
arrives when there is already another inelastic in service, which is not so frequent, but it
happens. That explains why the losses are so small with respect to the completed services.
In addition, also the handovers turns out to be not so frequent with respect to the completed
services; this is because the dwell time is exponentially distributed with a mean of 1 sec,
while, as said before, the service time, when we are the only one in the queue (most of the
time), is 310 seconds. So the service time, on average, its 1000 times smaller than the
average dwell time, and so the completed events will be of the order of 1000 times bigger
than the handovers, as demonstrated. It is also possible to sum up handovers, losses and
completions of both inelastics and elastics, in order to check that these 2 values are almost
equal, respecting the 0.5 probability of having inelastic services.
For average customers in service, both inelastic and elastic, we get values around 0.01,
meaning that, on average, there is 0.02 customers per second, or better, there is 1 customer
every 50 seconds. This is perfectly reasonable, because is 20 and is 1000 (if the
customer is the only one in the queue), so the arrival rate is exactly 50 times smaller than the
service rate. As a consequence, it can be notice also that the average queue load is respecting
this criterion; in fact, its value (1986) is 50 times smaller than the overall capacity (100Kb/s),
that’s because 1 time over 50 there is a customer taking all the capacity, so there is a capacity
usage of 100Kb/s over an interval of 50 seconds, with available capacity which is 50 times
larger.
In addition, when there is just a customer in the queue, it has 50% possibility of being elastic,
and so it makes perfectly sense that the average elastic rate is half the average queue load; it

 17

simply follows the same criterion of queue load, but it has to be halved in order to consider
just the elastic ones.
In the end, for what concerns the average fraction of capacity, if we assume to be most of the
time with just 1 customer in the queue, again we can assume it will get all the capacity;
unfortunately, as already mentioned before, it happens 1 time every 100 for both inelastics

and elastics, so it follows that they use just
100

1 of the total capacity, so around 1%.

So now, in order to have more accurate results, we move to the second case.

4.2 Second tested case: increasing arrival rate
This case has exactly the same parameters of table 4.1, except for , which now is 1000
instead of 20.
In this way, the probability of the state (0,0) is expected to be significantly reduced, while the
other states are expected to be more probable, in such a way the simulator is able to give
reliable state probabilities.

Formulas 4.1, 4.2 and 4.3 are still valid for this case, but now has changed, and as a
consequence also the inelastic arrival rate changed, in particular it becomes:

]/1[5005.0]/1[1000 ssprobineli (4.10)

The service rate, instead, does not change, so it does not need to be computed again.
By using the value given by the formula 4.10, and putting it in the formula 4.9, we obtain a
different 0 , which is:

666.0
]/1[1501
]/1[1001

]/1)[5001001(
]/1[1001

0

s
s

s
s

iis

is

 (4.11)

By looking at formula 4.11, we can conclude that, in this case, there will be no inelastic
customers in service for 66% of the time.
This is the theoretical result; let’s see if the simulator gives the same values:

Table 4.3. State probabilities of the second simulated case

State probabilities
for 500 ei

Analytic results Simulation results Error (%)

P(0,0) 1,811533E-01 1,807240E-01 -0,24

P(0,1) 1,205879E-01 1,204550E-01 -0,11

P(0,2) 9,016861E-02 9,019070E-02 0,02

P(0,3) 6,982462E-02 6,993070E-02 0,15

P(0,4) 5,455086E-02 5,467800E-02 0,23

P(0,5) 4,267993E-02 4,277860E-02 0,23

 18

P(0,6) 3,337343E-02 3,336530E-02 -0,02

P(0,7) 2,606739E-02 2,612890E-02 0,24

P(0,8) 2,033531E-02 2,035790E-02 0,11

P(0,9) 1,584310E-02 1,581840E-02 -0,16

P(0,10) 1,230431E-02 1,230990E-02 0,05

P(1,0) 6,038437E-02 6,022180E-02 -0,27

P(1,1) 6,031053E-02 6,023220E-02 -0,13

P(1,2) 5,013937E-02 5,017010E-02 0,06

P(1,3) 3,996537E-02 4,002950E-02 0,16

P(1,4) 3,148280E-02 3,159540E-02 0,36

P(1,5) 2,469947E-02 2,478350E-02 0,34

P(1,6) 1,933794E-02 1,932920E-02 -0,05

P(1,7) 1,511743E-02 1,514880E-02 0,21

P(1,8) 1,180211E-02 1,185050E-02 0,41

P(1,9) 9,224557E-03 9,212990E-03 -0,13

P(1,10) 1,064731E-02 1,068880E-02 0,39

First of all, an interesting check can be performed summing up the probabilities from P(0,0)
to P(0,10); it comes out 0.666, confirming the theoretical prediction.
In addition, I computed the error, which is the difference between the analytic results and the
simulation ones; it is nice to see that errors are very small, this is thanks to the choice of the
parameter .

The choice of this equal to 1000 is such that the arrival rate is bigger than the service one;
that’s why, as already mentioned before, is 1000 if and only if we are the only one in
service, which is not definitely the case anymore. This means that queue fills up in a frequent
way, giving us state probabilities greater than the previous simulated case.
Other statistics computed on this scenario are:

Table 4.4. Results of the second tested case

Statistic Value Unit of measure

Inelastic losses 4168896 Pure number

Elastic losses 287458 Pure number

Inelastic handovers 8414 Pure number

Elastic handovers 69680 Pure number

Inelastic completed services 8333827 Pure number

Elastic completed services 12146356 Pure number

 19

Average inelastic customers
in service

0.333263 Pure number

Average elastic customers in
service

2.79224 Pure number

Average inelastic fraction of
capacity (%)

33.3263 Pure number

Average elastic fraction of
capacity (%)

48.601 Pure number

Average queue load 81927.3 Bit/s

Average elastic bit rate 22591.2 Bit/s

First of all, as can be noticed, the number of losses is increased with respect to the first case,
and now we also have elastic losses; this is obvious, because we increased lambda to 1000, so
it means on average 1000 arrivals per second instead of 20, and in addition, now as
highlighted in the table 4.3, it can happen we have up to 10 elastic customers in service,
leading to an elastic loss if a new one arrives. The reason because inelastic losses are much
more than the elastic ones is because there can be just 1 inelastic in the queue; it means that, if
there is already an inelastic customer in the queue, as soon as a new one arrives, then it is an
inelastic loss. Instead, there can be up to 10 elastic customers in service, and given the fact
that elastic and inelastic are equiprobable, it means that is much more frequent to have an
inelastic loss instead of an elastic one, and for the same reason the inelastic completed
services are much less than elastic ones.
For what concerns handovers, an exponential increase for elastic ones can be noticed; this
happens because in this scenario usually we have more than one elastic customer in service,
and so their assigned rate will not be anymore 100 Kb/s, but it will decrease as the number of
elastic customers in the queue increases. As a consequence, their completion time increases,
and the probability that it’s bigger than the dwell time increases as well. That’s why the

handover increase is much more evident for elastic customers than inelastic ones.
Anyway, in order to check the correct functioning of the simulation code, it is possible to sum
up handover, losses and completed services both inelastic and elastic, in order to confirm the
probability of having one or the other is 0.5.
As expected, rates and fraction and number of customers in service increases in this scenario,
and in particular, it can be verified that in this special case, the average elastic fraction can be
also theoretically computed doing:

53.48100))0,0()0((PP (4.12)

This is because we have elastic rate different from 0 if and only if there are no inelastics in
service))0,0()0((PP , that’s because the overall capacity is exactly equal to the rate asked

by inelastic customers, so if there is just one of them in queue, it will occupy all the capacity.
Given that, the elastic fraction, in these cases, will be always equal to the whole capacity
since there are no inelastics in queue, so they can adjust their rate to equally share the whole
capacity. In a similar way can be computed theoretically the inelastic fraction:

33.33100))0(1(100)1(PP (4.13)

 20

The result given by formula 4.13 is obvious, since we can have just 1 inelastic in service, and
will take all the capacity.
An interesting observation can be done summing up elastic and inelastic fraction; the result is
not 100%, but:

%9273.81)%3263.33601.48(____ usedcapacityoffractionTotal (4.14)

By formula 4.14 turns out that just 82% of the capacity has been used, and since it is
sufficient that just one inelastic or elastic customer is in the queue in order to maximize the
queue load, it means that 18% of the capacity has not been used because there were no
customers in queue. This is confirmed checking up the value of P(0,0) in the table 4.3; it is
exactly the residual amount of capacity not used by customers (around 18%).
As a consequence, can be easily checked the result of the average queue load; this because the
queue load will always be the total capacity, except in the case (0,0).
This can be explained in a simple way: since the rate needed by an inelastic customer is equal
to whole the capacity, then it doesn’t matter how many inelastics or elastics we have in the
queue, the average load will always be the maximum one. Because if we have an inelastic
one, it will use all the capacity, instead, if we don’t have it, the elastics will adjust their rate in

order to use all the bit rate; so anyway there will be no free capacity left.
For this reason, we can claim we have 100 Kb/s average load always, except the case (0,0),
so:

]/[6.81927]/[9276.81]/[100))0,0(1(sbsKbsKbP (4.15)

Notice that the value obtained by formula 4.15, could also be obtained by the formula 4.14.

The elastic average bit rate, instead, can be computed knowing that in all the states),1(eNP
it will be 0; so we have to consider only the states),0(eNP , except)0,0(P .

It is sufficient to multiply the probability of one of this state (reported in the table 4.3), by the
rate associated to each elastic; so if 1 then 100 Kb/s, if 2 then 50 Kb/s, and so on so forth, and
then summed up this values, so basically, written in formula, can be theoretically computed
by:

]/[22591]/[591.22]/[100),0(
10

1
sbsKbsKb

N
NP

e

e

N

N e
e

 (4.16)

In the end, the average number of inelastic services can be easily checked by taking into
account the fraction of capacity used by them; since their rate will be fixed to 100Kb/s, then it
is sufficient to divide the inelastic capacity used, by their rate; it will turn out the value in the
table 4.4. Notice that it is exactly the same value of the inelastic fraction of capacity, which
make perfectly sense there can be at maximum one inelastic customer in the queue.
On the contrary, the average elastic services in the queue are much more difficult to be
checked, because their rate is not fixed, and so cannot be computed by taking into account
their fraction of capacity. Anyway, since all the other results are consistent, and make all
sense, it is sure that also the average number of elastic customers in service is correct.

 21

4.3 Third tested case: a realistic scenario
in this scenario we started to simulate a more realistic scenario, in which more elastic and
inelastic customers can enter the queue, in particular the parameters are:

Table 4.5. Parameters of the third tested case

Parameters Value Unit of measure

Max # inelastics 30 Pure number

Max # elastics 30 Pure number

Interarrival rate (λ) 20 1/seconds

Probability a service is
inelastic

0.5 Pure number

Mean of dwell time 50 Seconds

Capacity of the queue 10 Mbit/s

Rate asked by inelastics 300 Kbit/s

Minimum rate asked by
elastics

50 Kbit/s

Mean of packet size of
inelastic services

500 KBits

Mean of packet size of
elastic services

500 KBits

The biggest difference with respect to the other 2 scenarios is the rate needed by
inelastic/elastic customers; now, an inelastic customer does not require all the capacity, and
on the contrary, the minimum rate needed by an elastic one is not anymore 0, so the situation
is pretty different.
The state probabilities are not reported in the following, due to the large number, instead, the
statistics computed on this case are the following:

Table 4.6. Statistics of the third simulated case

Statistic Value Unit of measure

Inelastic losses 2965 Pure number

Elastic losses 60881 Pure number

Inelastic handovers 80554 Pure number

Elastic handovers 58869 Pure number

Inelastic completed services 2417708 Pure number

Elastic completed services 2381104 Pure number

Average inelastic customers 16.1165 Pure number

 22

in service

Average elastic customers in
service

11.8752 Pure number

Average inelastic fraction of
capacity (%)

48.3496 Pure number

Average elastic fraction of
capacity (%)

47.6093 Pure number

Average queue load 9.59589e+006 Bit/s

Average elastic bit rate 955797 Bit/s

First of all, running the simulation, can be noticed that the probabilities from)27,29(P to
)30,29(P , and from)21,30(P to)30,30(P are exactly 0, and that is because they will exceed

the total capacity of 10 Mb/s.
It can be noticed also, that some other probability will seem to be 0, but in reality it’s not;

they are showed to be 0 on the simulator due to the very small value they have, and so the
program is not able to give a good accuracy to them, as explained before. As the number of
inelastic customers increases, the state probabilities are bigger and bigger, before starting to
decrease again when the inelastic customers are more or less above 20; that is verified by the
results of the simulation, in fact it is showed that the average number of inelastics in service is
16, so the probabilities with inelastic customers around this value will be bigger.
Again, from the results, can be easily checked that the average queue load will be the sum of
the inelastic and elastic fractions, which turns to be a value very near to the maximum
capacity.

In addition, since the tested in this case is the same of the first simulated case, then we
expect they have the same number (more or less) of elastic/inelastic generated services, and
this is confirmed by checking the values in the table 4.2 and 4.6; if we sum up, in both tables,
the handovers, completed services and lost ones, both inelastic and elastic, we obtain, more or
less, always 2500000.
The first big difference between these 2 cases is given by the number of elastic losses; now
there are many of them, with respect to the first case when they were exactly 0. This is due to
the fact that the minimum rate needed by elastics is no more 0Kb/s, but 50Kb/s; this means
that now elastic packets can also be discarded because there is no enough capacity to serve
them, and this has a big impact on this result. On the contrary, instead, turns out that inelastic
losses reduce in this case, and this is obvious given the fact that in this case the queue can
guest up to 30 inelastic services, instead of just 1 of the first case.
For what concern, instead, the handovers in this case, are increasing both for inelastic and
elastic with respect to the first tested case. It can seem wrong, because now the mean of the
dwell time is 50 seconds instead of 1 of the first case, but it has to be considered that the
packet size has a strong impact on this statistic, and now is 3 order of magnitude greater than
the one of the first case, as can be noticed by tables 4.2 and 4.6. This increase in packet size
has a much stronger impact on the handovers with respect to their mean, leading to the
increase noticed.

 23

4.4 Fourth tested case: changing packet distributions
in this case, we run a simulation with the same parameter of the previous scenario, except for
the dwell time, which now increases to 300 seconds (5 minutes). In addition, we test for 4
different combinations of distributions, in particular changing the duration of the service time,
both inelastic and elastic, that means to vary the file distribution of them.
In these situations, different curves have to be drawn, for different values of lambda, for:

 probability of inelastic losses

 probability of elastic losses

 average number of inelastic customers in the queue

 average number of elastic customers in the queue

 average elastic rate
The resulting curves are:

Figure 4.1: Probability of inelastic losses with different types of service distributions

 24

Figure 4.2: Probability of elastic losses with different types of service distributions

Figure 4.3: Average inelastic services with different types of service distributions

 25

Figure 4.4: Average elastic services with different types of service distributions

Figure 4.5: Average elastic rate with different types of service distributions

For all 5 statistics the following values of lambda have been used: 20, 30, 40, 50, 70, 90, 100,
250, 500, 750, 1000.

 26

The first thing that can be immediately noticed is that, in all the statistics analysed, the curves
drawn for different combination of distributions are overlapping. It is necessary to zoom a lot
inside the pictures in order to see very small differences among them.
This leads to a very simple conclusion: changing the distribution of the file size (inelastic or
elastic) do not affect neither the loss probability, average services, nor the average elastic rate.
In particular, I tested the exponential and deterministic distributions.
Anyway, an interesting observation can be done comparing the first 2 curves: both have a
positive-exponential shape, but the first one (probability of inelastic losses) has a slower
increase with respect to the second one. In particular, the probability of elastic losses
increases very fast when lambda changes from 20 to 30; it has a jump from around 5% to
around 60%.
This situation can be matched with the curve related to the average elastic services; again, a
huge jump from 20 to 30 happens; it changes from 14 elastic services in the queue to around
29. This makes sense with the big increase of elastic losses.
As a consequence, the average elastic rate drastically decreases when lambda changes from
20 to 30; it varies from around 700 Kb/s, to around 100 Kb/s, as shown in the last curve.
In conclusion, by choosing these parameters, big changes happen when the arrival rate is
between 20 and 30.
So, since all the combination of distributions give almost the same results, the statistics
computed for this scenario are:

Table 4.7. Statistics of the fourth simulated case for 20

Statistic Value Unit of measure

Inelastic losses 454 Pure number

Elastic losses 12039 Pure number

Inelastic handovers 1410 Pure number

Elastic handovers 1226 Pure number

Inelastic completed services 248855 Pure number

Elastic completed services 237092 Pure number

Average inelastic customers
in service

16.4901 Pure number

Average elastic customers in
service

14.3669 Pure number

Average inelastic fraction of
capacity (%)

49.7618 Pure number

Average elastic fraction of
capacity (%)

47.4869 Pure number

Average queue load 9.72487e+006 Bit/s

Average elastic bit rate 781290 Bit/s

 27

Table 4.7 refers to the case with equal to 20, instead when it becomes 30:

Table 4.8. Statistics of the fourth simulated case for 30

Statistic Value Unit of measure

Inelastic losses 30246 Pure number

Elastic losses 216993 Pure number

Inelastic handovers 1967 Pure number

Elastic handovers 2398 Pure number

Inelastic completed services 343684 Pure number

Elastic completed services 156891 Pure number

Average inelastic customers
in service

22.8772 Pure number

Average elastic customers in
service

29.1558 Pure number

Average inelastic fraction of
capacity (%)

68.5831 Pure number

Average elastic fraction of
capacity (%)

31.4156 Pure number

Average queue load 9.99987e+006 Bit/s

Average elastic bit rate 108626 Bit/s

An important observation arises: completed elastic services decreases even though lambda
increases; in fact, the increase of the elastic losses is exponential, as shown by means of the
graphs above. These turns into an unbalanced system, because 68% of the capacity will be
reserved for inelastic customers, on average; on the contrary, for lambda equal to 20, the
situation was more balanced, where both inelastic and elastic services were using around 48%
of the capacity.
The explanation is given by the fact that, as soon as inelastic services increase, the rate
associated to the elastic drastically reduces, and so they will stay in the queue for a much
longer time; so, when new elastic customers arrive, they will probably find the capacity
empty, or the maximum number of elastic customers in service, and then they will get lost.
Instead, the increase of completed inelastic services is much more linear, because their rate is
fixed.
As a conclusion, then, the more we increase the arrival rate, the more elastic losses we will
have, resulting in an unbalanced system which tends to favour inelastic customers.
Also the increase of completed inelastic services gets slower and slower as lambda increases;
so, it is inefficient to increase lambda too much; it will just result in many customers to get
lost, the only advantage is the usage of most of the capacity, which increases more and more.
On the contrary, if we are interested to get a balanced system, or to minimize the percentage
of losses, a lower value of arrival rate would be reasonable.

 28

In the end, also the 95% confidence intervals have been computed; in order to do so, it’s been

necessary to compute, first of all, the mean among all the 4 combination of distributions, and
then computing the standard deviation. Then, the next step was to take the right value of the
t_student function from the relative tables, in this case it was the one associated to the third

row, and column under 0.025; respectively, the number of samples minus one, and
2

95.01 .

Once all these parameters have been computed, the confidence intervals can be computed by
performing:

],[

N
stdDevtmean

N
stdDevtmean studstud (4.17)

Where N, in our case, is 4, since we got 4 combination of distributions.
The confidence intervals, obtained for the different statistics, are hard to be shown on a plot,
because, again will be values very near to the computed one, so it is more useful to show them
in tables:

Table 4.9. Inelastic losses (%) confidence intervals

0.1342 7.9230 23.094 35.983 53.317 63.279 66.765 86.517 93.250 95.495 96.622

0.2243 8.3962 23.548 36.520 53.712 63.420 66.982 86.632 93.294 95.538 96.641

Table 4.10. Elastic losses (%) confidence intervals

3.603 57.439 75.717 82.985 89.135 91.843 92.777 97.270 98.649 99.106 99.326

6.140 58.265 76.426 83.421 89.454 92.106 92.969 97.346 98.693 99.135 99.351

Table 4.11. Inelastic services confidence intervals

16.535 22.849 25.449 26.431 27.166 27.438 27.513 27.845 27.927 27.952 27.965

16.643 22.941 25.517 26.473 27.179 27.440 27.520 27.846 27.928 27.953 27.965

Table 4.12. Elastic services confidence intervals

14.394 29.121 29.664 29.788 29.875 29.910 29.921 29.971 29.986 29.990 29.993

14.843 29.172 29.672 29.795 29.880 29.913 29.923 29.972 29.986 29.991 29.993

Table 4.13. Elastic rate confidence intervals

6.84e5 1.07e5 7.92e4 6.91e4 6.17e4 5.91e4 5.83e4 5.49e4 5.40e4 5.38e4 5.36e4

 29

8.24e5 1.09e5 8.00e4 6.96e4 6.20e4 5.92e4 5.83e4 5.49e4 5.40e4 5.38e4 5.36e4

Basically, these intervals mean that: given that mean, and that standard deviation, for each
statistic, if we run many simulation, then 95% of the times the value given by the simulator
will fall in the specific confidential interval associated to that statistic.
In addition, it is possible to compute the accuracy (or error) with respect to the mean,
associated to each confidential interval; it’s computed as:

mean
boundlowerboundupperAccuracy __

 (4.18)

The lower this value is, the more reliable the results are, because it basically computes the
distance between the mean and the bounds.
In order to improve the accuracy, a possible solution could be to run many simulations; in this
way, the confidential intervals will automatically shrink, and so the distance from the mean
will be lower.
The error associated to our confidential intervals are:

Table 4.14. Error on inelastic losses (%) confidence intervals

0.5030 0.0580 0.0195 0.0148 0.0074 0.0022 0.0032 0.0013 4.715
e-4

4.4201
e-4

2.0303
e-4

Table 4.15. Error on elastic losses (%) confidence intervals

0.5206 0.0143 0.0093 0.0052 0.0036 0.0029 0.0021 7.7817
e-4

4.4087
e-4

2.8596
e-4

2.5430
e-4

Table 4.16. Error on inelastic services confidence intervals

0.0065 0.0040 0.0027 0.0016 4.986
e-4

8.337
e-5

2.406
e-4

4.572
e-5

2.849
e-5

1.972
e-5

9.292
e-6

Table 4.17. Error on elastic services confidence intervals

0.0307 0.0018 2.673
e-4

2.412
e-4

1.387
e-4

1.107
e-4

7.439
e-5

3.126
e-5

1.733
e-5

1.812
e-5

8.664
e-6

Table 4.18. Error on elastic rate confidence intervals

 30

0.1848 0.0105 0.0099 0.0082 0.0045 0.0016 0.0014 2.904
e-4

1.005
e-4

1.940
e-4

1.011
e-4

As can be noticed, the error decreases as increases, that’s because as increases, the
bounds of the confidential intervals tend to shrink, and, as a consequence, it results in higher
accuracy.

4.5 Fifth tested case: testing lognormal distribution
As we have already tested deterministic and exponential distribution for packet size, it is
interest to see what happens in the case of a high-variance distribution, such as the lognormal
one.
This type of distribution is described such as its logarithm is normal distributed with
parameter , which is the mean, and , which is the standard deviation. In particular, we
want to test this distribution with the same mean of the exponential packet size, but with
variance bigger 10 times with respect to that case.
In order to do so is necessary to apply some formula; first of all, it is necessary to know which
are the mean and the standard deviation of an exponential distribution, they are described as
follows:

1
 (4.19)

2
2 1

 (4.20)

Formula 4.19 says that the mean is the inverse of the parameter of the distribution, while the
4.20 means that the variance is the inverse of the square of the parameter.
By knowing that, since we had a packet size that is, on average, 500000 bits, as can be read in
the case 4.3, then applying 4.19, the parameter is:

]/1[102
][500000

11 6 bit
bit

 (4.21)

So now, using formula 4.20, it is possible to compute its variance:

][105
]/1[102

11 211
2122

2 bit
bit

 (4.22)

As we sad previously, we want to test a lognormal distribution which has a variance 10 times
bigger that the exponential case, so reading 4.22, it means we want a lognormal distributions
with variance equal to][105 212 bit .

Once we know that, it is necessary now to know how the mean and the variance of the
lognormal distribution are computed:

)
2

exp(
2

 Mean (4.23)

))2)(exp(1)(exp(22 Variance (4.24)

 31

In formula 4.23 and 4.24, and are, respectively, the mean and the standard deviation of
the underlying normal distributed function, and they are our unknowns. In order to compute
them, it is necessary to create a system of 2 equations and 2 unknowns, where the equations
are formula 4.23 and 4.24. This is possible because we know exactly which values of mean
and standard deviation of the lognormal we expect.
Since this is a system of non-linear equations, I used Matlab to solve it, by the following
code:
syms x y %%x=mu and y=sigma
eqn1 = exp(x+(y^2)/2) == 5e+5;
eqn2 = (exp(y^2)-1)*exp(2*x+y^2) == 5e+12;

[solx,soly] = solve(eqn1, eqn2)

In this way, we got solx which contains , and soly which contains .

Now, given these 2 parameters, the resulting lognormal distribution is the following:

Figure 4.6: Lognormal distribution with mean 500000 bits, and 12105

Once we know the parameters and , we can apply the lognormal distribution to the
simulation code by simply writing:
Act_1.Server.packetSize_inel = lognormal(11.6,1.744856)

The values in the parenthesis are respectively and .

After the run ends, as usual, the values are collected and copied in Matlab, so that we can plot
the figures of the statistics in which we are interested to.

 32

It turned out that:

Figure 4.7: Probability of inelastic losses implementing the lognormal distribution

Figure 4.8: Probability of elastic losses implementing the lognormal distribution

 33

Figure 4.9: Average inelastic services implementing the lognormal distribution

Figure 4.10: Average elastic services implementing the lognormal distribution

 34

Figure 4.11: Average elastic rate implementing the lognormal distribution

As can be observed by the figures from 4.7 to 4.11, the implementation of the lognormal
distribution as packet size, and so as service time, does not change significantly the statistics.
The only difference, which is negligible, is represented by figures 4.7 and 4.8; the loss of the
packets is slightly bigger when their sizes are exponentially distributed. In fact, curves red and
blue are slightly above the others in figure 4.7; the same happens in figure 4.8 for the blue and
black ones.
Anyway, the Matlab code which generates all these figures will be written in the Appendix,
so that the figures could be zoomed.

4.6 Sixth tested case: changing dwell time
In this specific case we tested the same values of of the case 4.4, but we took into account
just the combination of exponential file size distributions. In addition, 5 values of the mean of
the dwell time have been tested, which are: 50, 100, 300, 500 and 1000 seconds. In this way,
it is possible to understand which is the impact of the dwell times on the statistics. The figures
are:

 35

Figure 4.12: Probability of inelastic losses with different dwell time means

Figure 4.13: Probability of elastic losses with different dwell time means

 36

Figure 4.14: Average inelastic services with different dwell time means

Figure 4.15: Average elastic services with different dwell time means

 37

Figure 4.16: Average elastic rate with different dwell time means

Like in the case 4.4, changing this parameter does not affect so much these statistics, some
little difference can be notices by looking at figures 4.12 and 4.13, in which we can see that
probability of losses is slightly increasing as dwell means; for what concern, instead, figure
4.14, 4.15, and 4.16, no significant changes arise. It would be necessary to zoom a lot in order
to notice some difference in the curves.
Since a packet can both perform handover or complete its service, if we increase the mean of
the dwell time, it will probably complete its service in a reasonable time, such that it does not
affect so much the losses.

4.7 Seventh tested case: testing extreme dwell time of 1 second
The previous case demonstrated that changing the dwell time does not affect the statistics;
anyway, if we have smaller dwell times, we expect to have lower load in the cell, because the
services will remain in the cell for a smaller time, and as a consequence there should be less
customers in service, and so less losses.
So, why this conclusion is not matched by the previous case?
First of all, let’s think to two different situations: low arrival rate, and high arrival rate. In the
first case, there will be almost always few customers in the queue, meaning that each one will
have a low service time, in particular, given the parameters of the case 4.4 and assuming that

there is only one customer in the queue, it would be][67.1
]/[300000

][500000 s
sbit

bit
 for inelastics,

which is almost 30 times less than 50 seconds, which is the minimum dwell time tested in the
case 4.6. This means, that varying the dwell time from 50 to 1000 seconds does not change
the statistics because the service times are significantly smaller, and so the handovers do not
affect the behaviour of the inelastic customers in service most of the time. This result is even
more evident for elastic services, because assuming there is just one elastic customer in the
queue, it will take the whole capacity, resulting in a service time which is much smaller than
the dwell time.

 38

For what concerns, instead, the high arrival rate case, the scenario does not change for
inelastic customers, because their rate is not affected by the number of services in the queue,
and as a consequence their service time remains 1.67 seconds, again much smaller than the
minimum tested dwell time. Instead, the things change for elastic ones; now, it is true that low
dwell time implies lower load in the cell, but, since we are working at high arrival rate, as
soon as a client performs handover and exit the queue, then a new one will take its place, and
so the queue will be overloaded again, so the advantage is negligible, and that’s why there are

no big differences in the figures from 4.6 to 4.10. The only small difference can be noticed in
the figures 4.6 and 4.7; because, even if there will be more or less almost the same number of
customers in the queue, this means that if we are working at low dwell times, then there will
be both handover and losses, while if we have high dwell times, then the packets exiting the
queue will be almost always lost.
In order to make the dwell time change the statistics, it has to be of the same order of
magnitude of the service time; so, if we consider the service time of inelastic customer, which
is 1.67 second, we could try to run a simulation with a dwell time equal to 1 second, so that
handover and completion times should be almost equal on average.
The figures of the statistics are the following:

Figure 4.17: Probability of inelastic losses with dwell 1 second

 39

Figure 4.18: Probability of elastic losses with dwell 1 second

Figure 4.19: Average inelastic services with dwell 1 second

 40

Figure 4.20: Average elastic services with dwell 1 second

Figure 4.21: Average elastic rate with dwell 1 second

As expected, now the statistics change a lot; the average number of customer in service is
smaller for small values of , while for higher values there are more or less the same number
of customer in the queue for the reason I explained before. The big difference is that, now,
even if the queue is full, it does not necessary mean that customers are lost, because dwell
time is very low, and as soon as the service time becomes longer, the handover becomes much
more probable because it’s only 1 second.
As a consequence, the average elastic rate, for high arrival rate, is more or less the same,
while for small rates, since there are less customers, is much bigger.

 41

4.8 Eighth tested case: changing elastic size
We have tested different combination of distributions and dwell means; in this case, now, we
see how the statistics computed change as we increase or decrease the mean of the elastic
packet size, in particular its tested values are: 50, 100, 300, 500, and 1000 Kbits.
The different curves refer to a specific value of elastic size, and the figures are the following:

Figure 4.22: Probability of inelastic losses with different elastic sizes

Figure 4.23: Probability of elastic losses with different elastic sizes

 42

Figure 4.24: Average inelastic services with different elastic sizes

Figure 4.25: Average elastic services with different elastic sizes

 43

Figure 4.26: Average elastic rate with different elastic sizes

As expected, the statistics regarding inelastic customers do not change so much as the elastic
size changes, as it can be noticed by figure 4.22 and 4.24.
Anyway, an interesting observation can be done by looking at the figure 4.24; for all the
elastic sizes, the behaviour of the curve is similar to a positive exponential shape, except for
the case 50 Kbit. In that case, it seems there is an initial phase in which the average number of
inelastic customer in service exponentially increase, and then, around 70 , it starts to
exponentially decrease, and, in the end, it stabilizes around the same value of the other curves,
which is more or less 28.
A possible explanation of this behaviour could be the following; since the elastic packets, in
the black curve, are, on average, 10 times smaller than inelastic ones, it means that usually
they are very fast in being served, with respect to inelastics. So, at the beginning, inelastic
services accumulate in the queue, but, around 70 , many elastic customers are stored in
the queue, as can be noticed by figure 4.25. In particular they increase from 5 (for 50) to
22 (for 70). It means that it is not possible anymore to have so many inelastic customers
in queue, otherwise it would exceed the total capacity, and so we can observe the
exponentially decrease, above described, before the stabilization around 28.
For what concern, instead, elastic statistics, we can observe at first the figure 4.23. It
represents the probability of elastic losses, and it clearly show that the they increase as the
elastic size increases.
This is true, because as the size increases, it means that elastics need more and more time to
complete their services; so, it means that each elastic, on average, will stay in the queue for a
longer time, and these turns in a queue with no available capacity to room the new arrival
ones.
This situation is confirmed by the figure 4.25, in which we see that the number of average
elastic customers in the queue will always stabilize around 30, but this value is reached sooner
as the elastic size increases.
For what regards the elastic rate, its behaviour is reported in figure 4.26, and something very
strange happens.

 44

All the 5 curves will tend, at the end, to a value near to 50Kb/s, which happens when we have
all 30 elastic customers in the queue; but the interesting thing, is the value that each curve
assumes when we have low values of , such as 20, 30, 40, 50 and 70. If we try to zoom
figure 4.15, we see that from 70 each curve assumes, more or less, the same values, and
at the end they stabilize to a common value.

Instead, if we consider low values of , each curve has a very different behaviour from each
other; considering these low arrival rates, we can notice that, up to an elastic size equal to 300
Kb/s, an increase in the elastic bit rate happens, and then from sizes greater than 500 Kb/s,
instead, the elastic bit rate decreases.

The reason of the increase, up to the case 300 Kb/s, is because, for small values of , if the
size is too small, then they will be immediately served, even before a new elastic customer
arrives, leaving no elastic customers in queue for a reasonable amount of time, and so 0
elastic associated rate for that interval of time; that’s why, in this specific scenario, the more

is the elastic size, the more is the elastic rate.
But, if the packet size becomes too large, then it means that each customer will require too
much time to get served, and so they will remain in the queue for a longer time; this will
cause a huge increase in the average number of elastics in service (notice figure 4.25), leading
the customers to be served to a rate near to the minimum asked one, which is 50 Kb/s.

 45

5. Appendix

The simulations of all the scenarios and cases have been tested by means of a code written in
Omnet++, which is a simulation library and framework, primarily for building network
simulators.
In this framework, it is possible to create networks composed by modules; each module is
descripted by 3 type of codes, as already mentioned before:

 .INI: this file contains all the values of the parameters that will be used by the module.
The grammar to do that is:

<module_name>.<parameter_name>=VALUE

 .NED: this file designs the topology of the network and assigns parameters to the
modules.

 .C++: this is the core of each module, because here is written what each module do by
using its parameters, or local variables of the code.

This means that each module has its own C++ code, while the .INI and .NED files are
common to all of them.
Obviously, in order to simulate a network, it is necessary to assign at each module a precise
task, so that, at the end, the connection among all of them simulates a network model. So, this
means that modules need to exchange messages among each other, and in Omnet++ they are
of type cMessage.
This class of messages allows us to use different functions, called “methods”; each method is

used to modify or to see the parameters associated to that message. For example:

<message_name> -> isSelfMessage()
This method returns 1 if the message is a self-message, which means if the message has been
generated and received by the same module.
Once the cMessage has been received by the module, then it can also be converted in a
cPacket, by means of the line of code:

check_and_cast<cPacket*>(message_name)
This performs a cast from the class cMessage to cPacket, which allows us to inspect
additional parameters of the message, such as getting its dimension in bit by doing:

<packet_name> -> getBitLength()
Unfortunately, the parameters in the class cPacket were not sufficient to simulate well the
network; that’s why I needed to create another type of file, which is of type .MSG, and the

code is the following:
packet myPacket extends cPacket
{

 46

 int flowId; //integer value: if it is assigned to 1 means pkt is inelastic, to 2 means elastic
 int position; //integer value: used to know the packet to which row of the matrix is
linked to
 int overallPosition; //integer values: position of pkts in the queue. VALUE NOT USED
};
Reading the first row can be noticed that this type of file is creating a new class of packets
called “myPacket”, which is an extension of the class cPacket. It basically has all the

parameters associated to the cPacket class, but in addition, it also has the new parameters that
I created, which in this code are:

 flowId: it is equal to 1 if the packet is an inelastic one, or 2 if it’s an elastic one;

 position: this parameter will be explained later
Coming back to the other files, the first one that has to be written is the .NED; this is because
it creates the topology of the network and assign the parameters to the modules.
My .NED code is:
simple generator
{
 parameters:
 volatile double interArrivalTime @unit(s); //arrival time in seconds taken as parameter
 double inel_prob; //probability that the generated customer is inelastic, taken as
parameter
 gates:
 output out; //output gate of generator
}

simple server
{
 parameters:
 int capacity; //maximum capacity of server, taken as parameter
 int needRate_inel; //rate needed by an inelastic service, taken as parameter
 int needRate_el; //minimum rate needed by an elastic service, taken as parameter
 int MAXinel; //maximum number of inelastic services in the queue, taken as parameter
 int MAXel; //maximum number of elastic services in the queue, taken as parameter
 volatile double dwell_time @unit(s); //dwell time in seconds taken as parameter
 volatile double packetSize_inel @unit(b); //pkt size of inelastics in bits, taken as
parameter
 volatile double packetSize_el @unit(b); //pkt size of elastics in bits, taken as parameter
 gates:

 47

 input in; //input gate of the server
 output out; //output gate of the server
}

simple sink
{
 parameters:
 gates:
 input in; //input gate of sink
}

network Act_1 //our network
{
 //here I create the modules
 @display("bgb=538,152");
 submodules:
 Gen: generator { //module of generator(Inelastic)
 @display("p=67,85");
 }
 Server: server { //module of server
 @display("p=251,85");
 }
 Sink: sink { //module of sink
 @display("p=466,85");
 }
 connections:
 Gen.out --> Server.in; //output gate of generator sends pkts to input gate of the server
 Server.out --> Sink.in; //output gate of server sends pkts to input gate of the sink
}
I decided to divide my network in 3 modules:

 GENERATOR: it creates the packets, and simulates the arrival of both inelastic/elastic
customer in the cell;

 SERVER: it elaborates the packets; so it discard/completes the service/perform
handover on the base of the current situation in the cell, so it simulates the base
station.

 48

 SINK: basically confirms that a packet finished its service, and does not need any more
to be served.

So, in first place, it is necessary to create these classes of modules with their respective
parameters, and input/output gates (modules are connected among each other through gates);
this part is performed by writing:

simple <name_of_module_class>
{
 parameters:
 LIST OF PARAMETERS
 gates:
 LIST OF INPUT/OUTPUT GATES
}
Then we create the modules assigning them the class in which we are interested to; in my case
one module of the class of generators, one of server and one of sink. Once all modules have
been created, then the connections among them have to be specified (indicating exactly which
input gate is connected to which output gate). The code of this procedure is:

network <name_of the_network>
{
 submodules:
 <module_name>: <name_of_module_class>
 connections:
 <mod_name>.<out_gate> -> <mod_name>.<in_gate>
}
Once the network is set, then the parameters of the modules have to be specified in the .INI
file; in particular, my file is:
[General]

network = Act_1 #name of the network to simulate
seed-0-mt = 14 #seed from which values of random variables will be chosen
sim-time-limit =25000s #simulation time in seconds

Act_1.Server.capacity = 10000000 #capacity of the queue expressed in bps
Act_1.Server.needRate_el = 50000 #minimum rate needed by an elastic service in bps
Act_1.Server.needRate_inel = 300000 #rate needed by an inelastic service in bps
Act_1.Server.dwell_time = exponential(300s) #dwell time exponentially distributed (mean in
seconds)
#Act_1.Server.dwell_time = 0 # for testing just services without dwells

 49

Act_1.Server.packetSize_inel = exponential (500000b) #pkt size of inelastic services (mean in
bits)
Act_1.Server.packetSize_el = exponential (500000b) #pkt size of elastic services (mean in
bits)
Act_1.Server.MAXel = 30 #maximum number of elastic services in the queue
Act_1.Server.MAXinel = 30 #maximum number of inelastic services in the queue

#Act_1.Gen.interArrivalTime = exponential(5e-2s) #interarr. time exp distributed (mean
1/lambda)
Act_1.Gen.interArrivalTime= exponential(${lambda=5e-2s,3.33e-2s,2.5e-2s,2e-2s,1.42e-
2s,1.11e-2s,1e-2s,4e-3s,2e-3s,1.33e-3s,1e-3s})
#Act_1.Gen.interArrivalTime = exponential(1e-3s) # for testing lambda=1000
Act_1.Gen.inel_prob = 0.5 #probability that the generated customer is inelastic
#Act_1.Gen.inel_prob = # for testing just elastic
The first thing to set is the name of the network; in this way, we can assign modules to a
specific network simply declaring it in the .NED, as I did; my net name is Act_1.
Now, it is necessary to decide how long the simulation will run, in seconds; it is important to
notice that these are not real seconds, but they are simulation seconds, which run much faster
than real ones. In the end, a seed is necessary to take random numbers from that pool, when
needed.
Now that general parameters have been decided, we can assign values to parameters of each
module. In my specific case, I assigned, first of all, to server:

 Capacity of queue/base station in bps;

 Rates needed by inelastic/elastic customers in bps;

 Dwell time in seconds;

 Packet size of inelastic/elastic customers in bits;

 Max number of inelastic/elastic customer.
Concerning the generator, then:

 Interarrival time in seconds: different values could be run in the same simulation by
putting them in {} brackets; this is useful when we want to test different values of
lambda;

 Probability that a customer is inelastic.
Now that both topology and parameters are set, it is possible to write C++ code of each
module.
I start explaining the generator code:
#include <omnetpp.h>
#include "myPacket_m.h"
#include <time.h>

 50

using namespace omnetpp;

class generator : public cSimpleModule
{
 private:
 cMessage *MESSAGE; // self-message of the generator, which trigger the transmission
of a message on the output gate
 myPacket *pkt; // message to be sent on the output gate, which is server
 double inel_prob; //this is the probability that a generated customer is inelastic

 public:
 // constructor
 generator(); // constructor
 virtual~ generator(); // destructor

 protected:
 virtual void initialize();
 virtual void handleMessage(cMessage *msg);
 virtual void finish();
};

Define_Module(generator);

generator::generator() {
 // init all msgs to NULL
}

generator::~generator() {
 // delete messages with cancelAndDelete()
}

void generator::initialize()
{
 srand (time(NULL)); //this is useful to generate different random numbers at each run

 51

 inel_prob=par("inel_prob"); //assign prob that generated service is inelastic (written in .ini)
 MESSAGE = new cMessage("generate"); //initialize the self-message
 //schedule the first message after a time according to our Poisson process
 scheduleAt(simTime()+par("interArrivalTime"),MESSAGE);
}

void generator::handleMessage(cMessage *msg)
{
 pkt = new myPacket("PDU"); //generate the pkt of type myPacket to send out
 //I generate a random float number from 0 to 1; if this value is less than inel_prob
 //then the generated customer is inelastic, else it's elastic.
 if(((double)rand()/(double)RAND_MAX)<inel_prob) //means inelastic service
 {
 pkt->setFlowId(1);
 }
 else //means elastic service
 {
 pkt->setFlowId(2);
 }
 send(pkt,"out"); //send pkt to the output gate, which is the server
 //schedule the next message after a time according to our process
 scheduleAt(simTime()+par("interArrivalTime"),MESSAGE);
}

void generator::finish()
{

}
As I explained before, the C++ code of the modules are divided in 3 parts: initialize,
handleMessage and finish.
In the initialize part, I just set up the cMessage and assigned the value of inelastic probability
from the parameter. The scope of the generator is to schedule message to the future, so as
soon as it arrives, it triggers the action in the handleMessage part; for that reason, the last row
in the initialize part is the scheduling row.
From now on, as soon as a message is received by the module, it will enter the
handleMessage part; since I scheduled a cMessage in the initialize, it will enter in the
handleMessage. Once we are in, it means that a packet is ready to be sent to the server/base

 52

station, simulating a customer arrival in the cell. So, I created a packet of type myPacket, so I
can exploit the additional parameters of this class, and then I decide if it’s an inelastic or

elastic one.
In order to decide so, I generated a random number varying from 0 to 1, by the line of code:

((double)rand()/(double)RAND_MAX)
The function rand() basically generates a random number, taken from the seed declared in the
.INI, ranging from 0 to RAND_MAX, which is a variable already present in the C++ library;
in this way, if we divide this number, by RAND_MAX itself, I get a random number ranging
from 0 to 1.
Now, if this number, which is a float, is less than the variable representing the inelastic
probability, then I decided that this customer is inelastic, otherwise it’s an elastic one. It is

important to noticed that, in order to do that, I exploited the method “flowId” of my class
myPacket; in this way, if I recognize a packet is inelastic, I simply assign 1 to the value of the
parameter “flowId”, by doing:

pkt->setFlowId(1);
Otherwise I assign 2 if it’s an elastic one.
This is very useful, because next modules can simply understand which type of packet is by
simply doing:

pkt->getFlowId();
Again if they get 1 it’s inelastic, otherwise not.
So now that I generated the packet, and I decided if it’s inelastic or elastic, then it is ready to

be sent to the module of the server by:

send(pkt,<name_of_output_gate>);
In the end, a new customer arrival has to be scheduled, by:

scheduleAt(simTime()+par("interArrivalTime"),MESSAGE)
It basically schedules the next arrival to “interArrivalTime” seconds, starting from the current
simulation time.
In this way, a loop has been created; as soon as a packet is sent to the server, a new one is
scheduled, simulating exactly customer arrivals in a cell.
So now the packets will be received by server, which has the following code:
#include <omnetpp.h>
#include <time.h>
#include "myPacket_m.h"

using namespace omnetpp;

class server : public cSimpleModule
{
 private:

 53

 int MAXel; //maximum number of elastic customers allowed
 int MAXinel; //maximum number of inelastic customers allowed
 double** matrix_elastic; //create the matrix that will containt the elastic times
 double** matrix_inelastic; //create the matrix that will contain the inelastic times
 int k;
 int j;
 int needRate_inel; //bit rate needed for an inelastic service
 int needRate_el; //minimum bit rate needed for an elastic service
 int inel_services; //number of inelastic customers currently in service
 int el_services; //number of elastic customers currently in service
 simtime_t dwell_time; //dwell time
 int tot_capacity; //total capacity(in BITS) of our queue
 double tmp;
 simtime_t previous_time; //simTime of the previous change of state
 double min; //minimum time among all dwell and completion ones
 int min_pointer; //number of the row of the matrix containing the minimum time
 simtime_t time_to_next_departure; //it's the same of min
 simtime_t time_to_next_arrival;
 int INEL; //INEL=1 means the minimum time is associated to an inelastic customer
 int EL; //EL=1 means the minimum time is associated to an elastic customer
 cMessage *DEPARTURE; //self-message that will trigger the departure of service out of
queue
 int HANDOVER; //HANDOVER=1 means the minimum time is a dwell, so handover
happens
 int SERVICE; //SERVICE=1 means the minimum time is a completion, so it ends the
service
 myPacket *pkt; //packet representing out packet, of type myPacket
 int capacity; //capacity currently free in the queue
 double comparator[4]={-1,-1,-1,-1};
 int last_inserted; //will contain the number of the row in matrix of last entered service
 cQueue buffer; //simulates our queue, collecting the packets
 int el_handover; //number of elastic handovers performed
 int inel_handover; //number of inelastic handovers performed
 int el_completed; //number of elastic services completed
 int inel_completed; //number of inelastic services completed
 int discarded_inel; //number of discarded inelastic customers

 54

 int discarded_el; //number of discarded elastic customers
 cStdDev inel_stats; //collect each time #inelastics in service (used to compute avg at end)
 cStdDev el_stats; //collect each time #elastics in service (used to compute avg at end)
 cStdDev fraction_inel; //collect each time fraction of capacity used by inelastics
 cStdDev fraction_el; //collect each time fraction of capacity used by elastics
 cStdDev queue_load; //collect each time the capacity used (used to compute avg at end)
 cStdDev el_bitrate; //collect each time the bit rate associated to elastic customers
 cStdDev inel_loss;
 cStdDev el_loss;
 cStdDev inelastic_services;
 cStdDev elastic_services;
 cStdDev average_elastic_rate;
 double size; //size of packets in float number
 int size_real; //used to round the packet sized to an integer value
 simtime_t** states; //matrix containing the times spent in each state
 //double proves[100][6]={-1.0};
 int overall;
 double inel_avg_serv;
 double el_avg_serv;
 double inel_avg_fract;
 double el_avg_fract;
 double avg_queue_load;
 double avg_el_br;

 public:
 // constructor
 server(); // constructor
 virtual~ server(); // destructor

 protected:
 virtual void initialize();
 virtual void handleMessage(cMessage *msg);
 virtual void finish();
};

 55

Define_Module(server);

server::server() {
 // init all msgs to NULL
}

server::~server() {
 // delete messages with cancelAndDelete()
}

void server::initialize()
{
 for(k=0;k<4;k++)
 {
 EV << comparator[1,k] << " ";
 }
 EV<<endl;
 MAXel=par("MAXel"); //assign the max #elatics in queue (specified in .ini file)
 MAXinel=par("MAXinel"); //assign the max #inelatics in queue (specified in .ini file)
 matrix_elastic=new double *[MAXel]; //creates the pointer to each row of elastic matrix
 matrix_inelastic=new double *[MAXinel]; //creates the pointer to each row of inelastic
matrix
 states=new simtime_t *[MAXinel+1]; //creates the pointer to each row of states matrix
 //HERE EACH ROW OF ELASTIC MATRIX HAVE BEEN ASSIGNED 4 CELLS
INITIALIZED TO -1
 for(k=0;k<MAXel;k++)
 {
 matrix_elastic[k] = new double[4];
 for(j=0;j<4;j++)
 {
 matrix_elastic[k][j]=comparator[1,j];
 }
 }
 //HERE EACH ROW OF INELASTIC MATRIX HAVE BEEN ASSIGNED 4 CELLS
INITIALIZED TO -1
 for(k=0;k<MAXinel;k++)

 56

 {
 matrix_inelastic[k] = new double[4];
 for(j=0;j<4;j++)
 {
 matrix_inelastic[k][j]=comparator[1,j];
 }
 }
 //HERE EACH ROW OF STATES MATRIX HAVE BEEN ASSIGNED MAXEL+1
CELLS INITIALIZED TO 0.0
 for(k=0;k<MAXinel+1;k++)
 {
 states[k] = new simtime_t[MAXel+1];
 for(j=0;j<MAXel+1;j++)
 {
 states[k][j]=0.0;
 }
 }
 needRate_inel=par("needRate_inel"); //assign the rate needed by inelastics (written in .ini)
 needRate_el=par("needRate_el"); //assign the minimum rate needed by elastics (written in
.ini)
 inel_services=0; //initialize to 0 the number of current inelastic customers in service
 el_services=0; //initialize to 0 the number of current elastic customers in service
 tot_capacity=par("capacity"); //assign the value of the capacity of the queue (written in .ini)
 capacity=tot_capacity; //initialize the value of free capacity to total capacity
 INEL=0; //initially there's no minimum time, so INEL=0
 EL=0; //initially there's no minimum time, so EL=0
 HANDOVER=0; //initially there's no minimum time, so HANDOVER=0
 SERVICE=0; //initially there's no minimum time, so SERVICE=0
 DEPARTURE = new cMessage("Departure"); //initialize the self-message representing a
departure
 previous_time=0.0; //initialize the simulation time of the previous change of state to 0
 el_handover=0; //initialize the number of elastic handovers to 0
 inel_handover=0; //initialize the number of inelastic handovers to 0
 el_completed=0; //initialize the number of completed elastic services to 0
 inel_completed=0; //initialize the number of completed inelastic services to 0
 discarded_inel=0; //initialize the number of discarded inelastic services to 0

 57

 discarded_el=0; //initialize the number of discarded elastic services to 0
 overall=0;
 tmp=0;

 inel_avg_serv=0.0;
 el_avg_serv=0.0;
 inel_avg_fract=0.0;
 el_avg_fract=0.0;
 avg_queue_load=0.0;
 avg_el_br=0.0;

 inel_stats.setName("Inel_Serv_Stats"); //Give a name to all the statistics
 el_stats.setName("El_Serv_Stats");
 fraction_inel.setName("Inel_Fraction_Capacity");
 fraction_el.setName("El_Fraction_Capacity");
 queue_load.setName("Queue_Load");
 el_bitrate.setName("Elastic_Bitrate");
 inel_loss.setName("Inelastic_Losses");
 el_loss.setName("Elastic_Losses");
 /*inelastic_services.setName("Inelastic_Services");
 elastic_services.setName("Elastic_Services");
 average_elastic_rate.setName("Average_Elastic_Rate");*/
}

void server::handleMessage(cMessage *msg)
{
 if(!msg->isSelfMessage())//if pkt is not a self message means arriving service
 {
 EV <<"New packet arrived" <<endl;
 pkt=check_and_cast<myPacket*>(msg); //here I cast from type msg to type myPacket
 if(pkt->getFlowId()==1) //means inelastic service (FlowId=1 means inelastic, 2 elastic)
 {
 avg_el_br=avg_el_br+tmp*(simTime().dbl()-previous_time.dbl());

avg_queue_load=avg_queue_load+(inel_services*needRate_inel+el_services*tmp)*(simTime
().dbl()-previous_time.dbl());

 58

 inel_avg_serv=inel_avg_serv+inel_services*(simTime().dbl()-previous_time.dbl());

inel_avg_fract=inel_avg_fract+(inel_services*(double)needRate_inel/(double)tot_capacity)*(
simTime().dbl()-previous_time.dbl());
 el_avg_serv=el_avg_serv+el_services*(simTime().dbl()-previous_time.dbl());
 el_avg_fract=el_avg_fract+(el_services*tmp/tot_capacity)*(simTime().dbl()-
previous_time.dbl());
 //if there is enough capacity and there are not already the max #inelastics in service
 if(((tot_capacity-needRate_inel*inel_services-
needRate_el*el_services)>=needRate_inel) && inel_services<MAXinel)
 {
 overall++; //increase the counter of total services in queue
 buffer.insert(pkt); //the packet is inserted in the queue
 size=par("packetSize_inel"); //assign the value of size of packet according to .ini
 size_real=((int)round(size)); //round from a double value to an integer
one(NEEDED)
 EV <<"Inelastic service of " <<size<<" bits starts receiving "<<needRate_inel/1000
<<" kbps over a capacity of "<<capacity/1000<<" kbps"<<endl;
 pkt->setBitLength(size_real); //assign to the packet the INTEGER size
 //here I update the time spent in the previous state
 states[inel_services][el_services]=states[inel_services][el_services]+(simTime()-
previous_time);
 inel_services++; //increase by 1 the number of inelastic customers currently served
 dwell_time=par("dwell_time"); //assign the value of dwell time
 //HERE I'M LOOKING FOR FIRST FREE ROW (WHERE -1) IN MATRIX TO
ASSIGN THIS CUSTOMER
 k=0;
 while((matrix_inelastic[k][0]!=-1) && k<MAXinel)
 {
 k++;
 }
 pkt->setPosition(k); //as soon as I found, I assign this value to method Position
 pkt->setOverallPosition(overall-1);
 last_inserted=k; //last inserted service has been assigned the number of the row
 matrix_inelastic[k][0]=pkt->getBitLength(); //assign pkt size to the first cell
 matrix_inelastic[k][1]=dwell_time.dbl(); //assign dwell time to the second cell
 matrix_inelastic[k][2]=(matrix_inelastic[k][0])/needRate_inel;//compl.time in 3 cell
 matrix_inelastic[k][3]=simTime().dbl(); //current simulation time in fourth cell

 59

 //if there are elastics in service,their rate must be adjusted once inelastic enters
 if(el_services>0)
 {
 tmp=(tot_capacity-needRate_inel*inel_services)/el_services;
 el_bitrate.collect(tmp); //collect value of bit rate assigned to each elastic
 average_elastic_rate.collect(avg_el_br);
 }
 capacity=tot_capacity-needRate_inel*inel_services-tmp*el_services; //free capacity
 queue_load.collect(tot_capacity-capacity); //collect value of the queue load
 }
 else //means that inelastic service cannot enter the queue
 {
 last_inserted=200; //last inserted has been assigned a random value very big
 //here I update the time spent in the state
 states[inel_services][el_services]=states[inel_services][el_services]+(simTime()-
previous_time);
 discarded_inel++; //increase by 1 the counter of discarded inelastic services
 EV << "Inelastic service lost because asking for " << needRate_inel/1000 << "
kbps, but available capacity is " << capacity/1000 << " kbps"<<endl;
 EV << "Inelastic services " << inel_services << " over a maximum of " <<
MAXinel << endl;
 delete pkt; //delete the packet
 }
 }
 else //means elastic service
 {
 avg_el_br=avg_el_br+tmp*(simTime().dbl()-previous_time.dbl());

avg_queue_load=avg_queue_load+(inel_services*needRate_inel+el_services*tmp)*(simTime
().dbl()-previous_time.dbl());
 inel_avg_serv=inel_avg_serv+inel_services*(simTime().dbl()-previous_time.dbl());

inel_avg_fract=inel_avg_fract+(inel_services*(double)needRate_inel/(double)tot_capacity)*(
simTime().dbl()-previous_time.dbl());
 el_avg_serv=el_avg_serv+el_services*(simTime().dbl()-previous_time.dbl());
 el_avg_fract=el_avg_fract+(el_services*tmp/tot_capacity)*(simTime().dbl()-
previous_time.dbl());
 el_services++; //increase by 1 the number of elastic customers currently served

 60

 //if there is enough capacity such all elastics can adjust their rate to a value bigger
 //than the minimum, and there are less elastics in service than the maximum allowed,
 //then the elastic customer can enter the queue
 if((((tot_capacity-needRate_inel*inel_services)/el_services)>=needRate_el) &&
el_services<=MAXel)
 {
 overall++;
 buffer.insert(pkt); //the packet is inserted in the queue
 size=par("packetSize_el"); //assign the value of size of packet according to .ini
 size_real=((int)round(size)); //round from a double value to an integer
one(NEEDED)
 //it is then necessary to update the bit rate associated to each elastic customer
 tmp=(tot_capacity-needRate_inel*inel_services)/el_services;
 el_bitrate.collect(tmp); //collect the bit rate associated to each elastic customer
 average_elastic_rate.collect(avg_el_br);
 EV <<"Elastic service of "<<size<<" bits starts receiving "<<tmp/1000 <<" kbps
which is greater than minimum rate "<<needRate_el/1000<<" kbps"<<endl;
 pkt->setBitLength(size_real); //assign to the packet the INTEGER size
 dwell_time=par("dwell_time");//assign the value of dwell time
 //HERE I'M LOOKING FOR FIRST FREE ROW (WHERE -1) IN MATRIX TO
ASSIGN THIS CUSTOMER
 k=0;
 while((matrix_elastic[k][0]!=-1) && k<MAXel)
 {
 k++;
 }
 pkt->setPosition(k); //as soon as I found, I assign this value to method Position
 pkt->setOverallPosition(overall-1);
 last_inserted=k+100; //last inserted service has been assigned number of row+100
 matrix_elastic[k][0]=pkt->getBitLength(); //assign pkt size to the first cell
 matrix_elastic[k][1]=dwell_time.dbl(); //assign dwell time to the second cell
 if(tmp!=0) //if the bit rate associated to each elastic is different from 0
 {
 matrix_elastic[k][2]=(matrix_elastic[k][0])/tmp; //completion time in 3 cell
 }
 else

 61

 {
 matrix_elastic[k][2]=10000.0;
 //compl.time has been assigned a random very big value,to avoid to get infinity
 }
 matrix_elastic[k][3]=tmp;//bit rate assigned to each elastic written in fourth cell
 capacity=0; //free capacity will be 0, since elastic use all the residual capacity
 queue_load.collect(tot_capacity); //collect value of the queue load (=all capacity)
 //here I update the time spent in the previous state
 states[inel_services][el_services-1]=states[inel_services][el_services-
1]+(simTime()-previous_time);
 }
 else //means that elastic service cannot enter the queue
 {
 last_inserted=200; //last inserted has been assigned a random value very big
 discarded_el++; //increase by 1 the counter of discarded elastic services
 EV << "Elastic service lost because " << (capacity/el_services)/1000 << " kbps is
less than the minimum elastic rate " << needRate_el/1000 << " kbps"<<endl;
 EV << "Elastic services " << el_services << " over a maximum of " << MAXel <<
endl;
 el_services--; //decrease el_services by 1, since we did +1 before the check
 //here I update the time spent in the state
 states[inel_services][el_services]=states[inel_services][el_services]+(simTime()-
previous_time);
 delete pkt; //delete the packet
 }
 }
 el_stats.collect(el_services); //collect number of elastic customers currently in service
 inel_stats.collect(inel_services); //collect number of inelastic customers in service
 inelastic_services.collect(inel_avg_serv);
 elastic_services.collect(el_avg_serv);
 //here I collect the fraction of capacity used time by time by inelastic/elastic customers

fraction_inel.collect((((double)(inel_services*needRate_inel))/((double)(tot_capacity)))*100);
 fraction_el.collect((((double)(el_services*tmp))/((double)(tot_capacity)))*100);
 //THE FOLLOWING PART IS NEEDED TO UPDATE TIMES(IN A DECRESCENT
WAY) AT EACH CHANGE OF STATE
 k=0;

 62

 while(k<MAXel)
 {
 if(matrix_elastic[k][0]!=-1 && (k!=last_inserted-100)) //except for last inserted
 {
 //update both dwell and completion times by the quantity simTime-previous_time
 //where previous time is the time referred to the previous change of state.
 //So simTime-previos_time gives us exactly the quantity of time past between
 //these 2 change of state. Consequently update also the remaining bit to TX.
 matrix_elastic[k][0]=matrix_elastic[k][0]-(simTime().dbl()-
previous_time.dbl())*matrix_elastic[k][3];
 matrix_elastic[k][1]=matrix_elastic[k][1]-(simTime().dbl()-previous_time.dbl());
 if(tmp!=0)
 {
 matrix_elastic[k][2]=(((matrix_elastic[k][0])*el_services)/(tot_capacity-
inel_services*needRate_inel));
 }
 else
 {
 matrix_elastic[k][2]=10000.0;
 }
 matrix_elastic[k][3]=tmp;
 }
 k++;
 }
 k=0;
 while(k<MAXinel)
 {
 if(matrix_inelastic[k][0]!=-1 && (k!=last_inserted))
 {
 matrix_inelastic[k][0]=matrix_inelastic[k][0]-(simTime().dbl()-
previous_time.dbl())*needRate_inel;
 matrix_inelastic[k][1]=matrix_inelastic[k][1]-(simTime().dbl()-
previous_time.dbl());
 matrix_inelastic[k][2]=(matrix_inelastic[k][0])/needRate_inel;
 matrix_inelastic[k][3]=simTime().dbl();
 }

 63

 k++;
 }
 previous_time=simTime(); //previous time has been assigned the current simulation time
 min=100.0; //initialize the minimum time to a big value, so it will be easily changed
 EV << "INELASTIC MATRIX:"<<endl;
 for(k=0;k<MAXinel;k++)
 {
 if(matrix_inelastic[k][0]!=-1)
 {
 for(j=0;j<4;j++)
 {
 EV <<matrix_inelastic[k][j]<<" ";
 }
 EV<<endl;
 }
 }
 //here I check for each row of the inelastic matrix different from -1
 //the minimum time among all dwell and completion times
 k=0;
 while(k<MAXinel)
 {
 if(matrix_inelastic[k][0]!=-1)
 {
 if(min>matrix_inelastic[k][1])// && dwell_time!=0)
 {
 min=matrix_inelastic[k][1];
 min_pointer=k; //min_pointer assigned the value of the row of the minimum time
 INEL=1; //minimum is inelastic
 EL=0;
 HANDOVER=1; //minimum is dwell, so an handover
 SERVICE=0;
 }
 if(min>matrix_inelastic[k][2])
 {
 min=matrix_inelastic[k][2];

 64

 min_pointer=k;
 INEL=1;
 EL=0;
 HANDOVER=0;
 SERVICE=1; //minimum is completion, so service is finished
 }
 }
 k++;
 }
 EV << "ELASTIC MATRIX:"<<endl;
 for(k=0;k<MAXel;k++)
 {
 if(matrix_elastic[k][0]!=-1)
 {
 for(j=0;j<4;j++)
 {
 EV <<matrix_elastic[k][j]<<" ";
 }
 EV<<endl;
 }
 }
 //again I search for the minimum time among all times (now for elastics)
 k=0;
 while(k<MAXel)
 {
 if(matrix_elastic[k][0]!=-1)
 {
 if(min>matrix_elastic[k][1])// && dwell_time!=0)
 {
 min=matrix_elastic[k][1];
 min_pointer=k;
 EL=1; //minimum is elastic
 INEL=0;
 HANDOVER=1;
 SERVICE=0;

 65

 }
 if(min>matrix_elastic[k][2])
 {
 min=matrix_elastic[k][2];
 min_pointer=k;
 EL=1;
 INEL=0;
 HANDOVER=0;
 SERVICE=1;
 }
 }
 k++;
 }
 //at the end of this check, the value of min will be the minimum among all the times
 //so I schedule the departure for min seconds.
 time_to_next_departure=(simtime_t)min;
 if(DEPARTURE->isScheduled()) //if departure is already in schedule, then has to be
deleted
 {
 cancelEvent(DEPARTURE);
 }
 scheduleAt(simTime()+time_to_next_departure,DEPARTURE);
 }
 else //means departure
 {
 avg_el_br=avg_el_br+tmp*(time_to_next_departure.dbl());

avg_queue_load=avg_queue_load+(inel_services*needRate_inel+el_services*tmp)*(time_to_
next_departure.dbl());
 el_avg_serv=el_avg_serv+el_services*(time_to_next_departure.dbl());

el_avg_fract=el_avg_fract+(el_services*tmp/tot_capacity)*(time_to_next_departure.dbl());
 inel_avg_serv=inel_avg_serv+inel_services*(time_to_next_departure.dbl());

inel_avg_fract=inel_avg_fract+(inel_services*(double)needRate_inel/(double)tot_capacity)*(
time_to_next_departure.dbl());
 /*inelastic_services.collect(inel_avg_serv);

 66

 elastic_services.collect(el_avg_serv);*/
 previous_time=simTime(); //assign to previous_time the departure time (change of state)
 //update again the value of the bit rate assigned to each elastic customer
 if(el_services>0)
 {
 tmp=(tot_capacity-needRate_inel*inel_services)/el_services;
 el_bitrate.collect(tmp);
 average_elastic_rate.collect(avg_el_br);
 }
 else
 {
 tmp=0;
 }
 //again updates all times and bit residual in both matrices
 k=0;
 while(k<MAXel)
 {
 if(matrix_elastic[k][0]!=-1)
 {
 matrix_elastic[k][0]=matrix_elastic[k][0]-
(time_to_next_departure.dbl())*matrix_elastic[k][3];
 matrix_elastic[k][1]=matrix_elastic[k][1]-(time_to_next_departure.dbl());
 if(tmp!=0)
 {
 matrix_elastic[k][2]=(((matrix_elastic[k][0])*el_services)/(tot_capacity-
inel_services*needRate_inel));
 }
 matrix_elastic[k][3]=tmp;
 }
 k++;
 }
 k=0;
 while(k<MAXinel)
 {
 if(matrix_inelastic[k][0]!=-1)
 {

 67

 matrix_inelastic[k][0]=matrix_inelastic[k][0]-
(time_to_next_departure.dbl())*needRate_inel;
 matrix_inelastic[k][1]=matrix_inelastic[k][1]-(time_to_next_departure.dbl());
 matrix_inelastic[k][2]=(matrix_inelastic[k][0])/needRate_inel;
 matrix_inelastic[k][3]=simTime().dbl();
 }
 k++;
 }
 if(min<100.0)
 {
 time_to_next_departure=(simtime_t)min;
 //update the time spent in the previous state

states[inel_services][el_services]=states[inel_services][el_services]+time_to_next_departure;
 EV <<"MIN: " << time_to_next_departure << "EL: "<<EL<<"INEL:
"<<INEL<<endl;
 if(EL==1) //minimum is elastic beacuse EL=1
 {
 if(el_services==1) //if there are no others elastic, then free capacity increases
 {
 capacity=capacity+matrix_elastic[min_pointer][3];
 }
 else //free cap is 0 because elastics adapt rates using all the residual capacity
 {
 capacity=0;
 }
 //free the row assigned to the leaving service, so put all -1
 matrix_elastic[min_pointer][0]=-1;
 matrix_elastic[min_pointer][1]=-1;
 matrix_elastic[min_pointer][2]=-1;
 matrix_elastic[min_pointer][3]=-1;
 k=0;
 while(k<buffer.getLength()) //to define queue_length
 {
 pkt=check_and_cast<myPacket*>((cMessage*)(buffer.get(k))); //take the pkt
 //if the pkt we are considering has flowId=2 (means elastic) and

 68

 //has Position=min_pointer, then it's the pkt we are interested in
 if(pkt->getFlowId()==2 && pkt->getPosition()==min_pointer)
 {
 pkt=check_and_cast<myPacket*>((cMessage*)buffer.remove(buffer.get(k)));
 //as soon as we detect, remove the pkt from the queue and stop while cycle
 break;
 }
 k++;
 }
 if(HANDOVER==1) //means handover
 {
 delete pkt; //delete the packet
 el_handover++; //increase the counter of elastic handovers
 EV <<"Elastic service in position "<<min_pointer<<" has done handover"<<
endl;
 }
 else
 {
 send(pkt,"out"); //send the packet to the sink
 el_completed++; //increase the counter of elastic completed services
 EV <<"Elastic service in position "<<min_pointer<<" has finished"<< endl;
 }
 el_services--; //reduce by 1 the number of elastic customers in service
 }
 else //minimum is inelastic
 {
 //do all the same steps exlained before for elastic ones
 if(el_services==0)
 {
 capacity=capacity+needRate_inel;
 }
 else
 {
 capacity=0;
 }

 69

 //capacity=capacity+needRate_inel;
 matrix_inelastic[min_pointer][0]=-1;
 matrix_inelastic[min_pointer][1]=-1;
 matrix_inelastic[min_pointer][2]=-1;
 matrix_inelastic[min_pointer][3]=-1;
 k=0;
 while(k<buffer.getLength()) //to define queue_length
 {
 pkt=check_and_cast<myPacket*>((cMessage*)(buffer.get(k)));
 if(pkt->getFlowId()==1 && pkt->getPosition()==min_pointer)
 {
 pkt=check_and_cast<myPacket*>((cMessage*)buffer.remove(buffer.get(k)));
 break;
 }
 k++;
 }
 if(HANDOVER==1)
 {
 delete pkt;
 inel_handover++;
 EV <<"Inelastic service in position "<<min_pointer<<" has done handover"<<
endl;
 }
 else
 {
 send(pkt,"out");
 inel_completed++;
 EV <<"Inelastic service in position "<<min_pointer<<" of matrix has
finished"<< endl;
 }
 inel_services--;
 }
 EV << "New capacity is: " <<capacity<<endl;
 //IMPORTANT IS TO UPDATE RATE ASSIGNED TO EACH ELASTIC SERVICE
AFTER EACH DEPARTURE
 if(el_services>0)

 70

 {
 tmp=(tot_capacity-needRate_inel*inel_services)/el_services;
 el_bitrate.collect(tmp);
 }
 else
 {
 tmp=0;
 }
 EV << "INELASTIC MATRIX:"<<endl;
 for(k=0;k<MAXinel;k++)
 {
 if(matrix_inelastic[k][0]!=-1)
 {
 for(j=0;j<4;j++)
 {
 EV <<matrix_inelastic[k][j]<<" ";
 }
 EV<<endl;
 }
 }
 EV << "ELASTIC MATRIX:"<<endl;
 for(k=0;k<MAXel;k++)
 {
 if(matrix_elastic[k][0]!=-1)
 {
 matrix_elastic[k][2]=(matrix_elastic[k][0])/tmp;
 matrix_elastic[k][3]=tmp;
 for(j=0;j<4;j++)
 {
 EV <<matrix_elastic[k][j]<<" ";
 }
 EV<<endl;
 }
 }
 //exactly as done after an arrival, we have to collect statistics after a departure

 71

 el_stats.collect(el_services);
 fraction_el.collect((((double)(tot_capacity-capacity-
(inel_services*needRate_inel)))/((double)(tot_capacity)))*100);
 inel_stats.collect(inel_services);

fraction_inel.collect((((double)(inel_services*needRate_inel))/((double)(tot_capacity)))*100);
 queue_load.collect(tot_capacity-capacity);
 }
 //set all indices to 0, and start again the search of the minimum time
 INEL=0;
 EL=0;
 HANDOVER=0;
 SERVICE=0;
 min=100.0;
 if(buffer.getLength()>0)
 {
 k=0;
 while(k<MAXinel)
 {
 if(matrix_inelastic[k][0]!=-1)
 {
 if(min>matrix_inelastic[k][1])// && dwell_time!=0)
 {
 min=matrix_inelastic[k][1];
 min_pointer=k;
 INEL=1;
 EL=0;
 HANDOVER=1;
 SERVICE=0;
 }
 if(min>matrix_inelastic[k][2])
 {
 min=matrix_inelastic[k][2];
 min_pointer=k;
 INEL=1;
 EL=0;

 72

 HANDOVER=0;
 SERVICE=1;
 }
 }
 k++;
 }
 k=0;
 while(k<MAXel)
 {
 if(matrix_elastic[k][0]!=-1)
 {
 if(min>matrix_elastic[k][1])// && dwell_time!=0)
 {
 min=matrix_elastic[k][1];
 min_pointer=k;
 EL=1;
 INEL=0;
 HANDOVER=1;
 SERVICE=0;
 }
 if(min>matrix_elastic[k][2])
 {
 min=matrix_elastic[k][2];
 min_pointer=k;
 EL=1;
 INEL=0;
 HANDOVER=0;
 SERVICE=1;
 }
 }
 k++;
 }
 time_to_next_departure=(simtime_t)min;
 scheduleAt(simTime()+time_to_next_departure,DEPARTURE); //again, schedule for
min time

 73

 }
 }
}

void server::finish()
{
 //free all the memory dynamically allocated for the matrices
 for (k=0;k<MAXel;k++)
 {
 delete [] matrix_elastic[k];
 }
 for (k=0;k<MAXinel;k++)
 {
 delete [] matrix_inelastic[k];
 }
 delete [] matrix_elastic;
 delete [] matrix_inelastic;
 //display on the screen the computed statistics
 EV << "LOSS_INELASTIC: "<< discarded_inel <<" .LOSS ELASTIC: " << discarded_el
<< endl;
 EV << "HANDOVER INELASTIC: " << inel_handover <<" .HANDOVER ELASTIC: "
<< el_handover << endl;
 EV << "COMPLETED INELASTIC SERVICES: " << inel_completed <<" .COMPLETED
ELASTIC SERVICES: " << el_completed << endl;
 EV << "AVERAGE INELASTIC SERVICES: " << inel_stats.getMean() <<" .AVERAGE
ELASTIC SERVICES: " << el_stats.getMean() << endl;
 EV << "AVERAGE INELASTIC FRACTION: " << fraction_inel.getMean() <<"
.AVERAGE ELASTIC FRACTION: " << fraction_el.getMean() << endl;
 EV << "AVERAGE QUEUE LOAD: " << queue_load.getMean() << endl;
 EV << "AVERAGE ELASTIC BIT RATE: " << el_bitrate.getMean() << endl;
 EV << "AVERAGE INELASTIC SERVICES IN CONT. TIME: " <<
inel_avg_serv/(simTime().dbl()) << endl;
 EV << "AVERAGE ELASTIC SERVICES IN CONT. TIME: " <<
el_avg_serv/(simTime().dbl()) << endl;
 EV << "AVERAGE INELASTIC FRACTION IN CONT. TIME: " <<
(inel_avg_fract/(simTime().dbl()))*100 << endl;
 EV << "AVERAGE ELASTIC FRACTION IN CONT. TIME: " <<
(el_avg_fract/(simTime().dbl()))*100 << endl;

 74

 EV << "AVERAGE QUEUE LOAD IN CONT. TIME: " <<
avg_queue_load/(simTime().dbl()) << endl;
 EV << "AVERAGE ELASTIC BIT RATE IN CONT. TIME: " <<
avg_el_br/(simTime().dbl()) <<endl;

 for(k=0;k<MAXinel+1;k++)
 {
 for(j=0;j<MAXel+1;j++)
 {
 EV << "Probability of state ("<<k<<","<<j<<") is: "<<states[k][j]/simTime()<<endl;
 }
 }
 k=0;
 for (k=0;k<MAXinel+1;k++)
 {
 delete [] states[k];
 }
 delete [] states;

inel_loss.collect((double)discarded_inel/(double)(discarded_inel+inel_handover+inel_comple
ted));
 el_loss.collect((double)discarded_el/((double)discarded_el+el_handover+el_completed));
 recordScalar("Inel_loss_probability",(inel_loss.getMean())*100);
 recordScalar("El_loss_probability",(el_loss.getMean())*100);
 recordScalar("Average_inel_services",inel_avg_serv/(simTime().dbl()));
 recordScalar("Average_el_services",el_avg_serv/(simTime().dbl()));
 recordScalar("Average_elastic_rate",avg_el_br/(simTime().dbl()));
}
First of all, the code creates a cQueue object, which is basically a container where the arriving
packets will be stored.
The queue got a maximum capacity, which value is specified in the .INI file; the packets will
be inserted in the queue if and only if there is enough room to serve them. In particular, the
following check has to be done:

 If the packet is inelastic, then if the available capacity is larger than the rate needed by
the inelastic, the customer can be served;

 If the packet is elastic, the situation is a little bit different, because the elastic rates
change. So, when a elastic customer wants to enter the queue, it is necessary to check

 75

if the capacity not occupied by the inelastics is enough to assign to each elastic
customer at least the minimum needed rate, which written in formula is:

((tot_capacity-needRate_inel*inel_services)/el_services)>=needRate_el

Where:

o tot_capacity is the total capacity of the queue;
o needRate_inel is the rate asked by each inelastic;
o inel_services is the number of inelastics;
o el_services is the number of elastics;
o needRate_el is the min rate asked by elastics;

If the answer is yes, then the elastic customer can join the queue, and the elastics equally
share the capacity not occupied by inelastics; instead, if it’s not, the customer is discarded.
Now, in order to decide, time by time, which is the customer that finishes service or performs
handover, I created 2 matrices, one for inelastic services, and one for elastic ones.
The inelastic matrix will be composed by MAXinel rows, where MAXinel is the maximum
number of inelastic customers simultaneously allowed (specified in the .INI file), and 4
columns; alternatively, the matrix associated to the elastics is made of MAXel rows and 4
columns.
The idea is to assign a row of the matrix to each customer that enters the queue, so that there
we can write key parameters of each service, in order to take decisions.
In particular, the matrices will contain:

 First column: number of bits of that customer that has to be transmitted yet;

 Second column: the remaining dwell time associated to that service;

 Third column: the time necessary to transmit the residual bits;

 Fourth column: for elastics, it’s the elastic rate, while for inelastics is the current

simulation time.
How these matrices work has been already described when I was presenting the simulation
model.
Anyway, an important notification is that, during the declaration part, I do not know yet how
many rows they have, because I will know only after I read the value from .INI parameters in
the initialize() phase; that’s why it is necessary to dynamically allocate memory for them, by

doing:

double** matrix_elastic;
matrix_elastic=new double *[MAXel];
for(k=0;k<MAXel;k++)
 {
 matrix_elastic[k] = new double[4];
 for(j=0;j<4;j++)

 76

 {
 matrix_elastic[k][j]=comparator[1,j];
 }
 }
The first row is to create a pointer to a pointer to a double; then, after the MAXel has be read
as parameter, it is possible to create MAXel pointers to double rows. In the end, all the rows
have been assigned the same value of comparator vector, which is just -1, so all rows are
initialized to -1.
Now that matrices are ready, and all .INI parameters have been read and assigned to variables,
then it is possible also to declare some statistics variable that will be used at the end to analyse
some results. The statistics computed are:

 Number of inelastic and elastic customers in service;

 Fraction of the queue capacity, in percentage, reserved for inelastics/elastics over time;

 Queue load in bps;

 Elastic rate in bps;

 Probability of inelastic/elastic losses;
These statistics will be updated each time an event occurs.
In addition, a third matrix is needed, which refers to the state probabilities; it will have
MAXinel rows and MAXel columns, so that each cell refers to a specific state of the queue.
Each cell will contain the time spent in that specific state, and at the end of the simulation,
that value divided by the simTime(), will return the probability that queue will be in that state.
Now that we have initialized everything, as soon as a message arrive to the module, it will
enter the handleMessage part.
The first thing to do is to cast the message received from the class cMessage to myPacket; in
this way, it is possible to check if this packet is inelastic or not, by doing:

pkt->getFlowId()
If this method returns 1, then it means the packet is inelastic, otherwise is elastic.

Once I know which type of customer is, then I can perform the corresponding check to see if
there is enough capacity to serve it.
If yes, then I assign to the packet a size, which respects the parameter in the .INI, and I
generate a value for the dwell time; so now, as soon as I found the first row different from -1
in the respective matrix, then I write the parameters related to that customer.
It has to be noted that a specific scenario must be taken into account; if the rate assigned to
each elastic is 0, then I cannot compute the time to transmit residual bits, otherwise I would
obtain infinity, which does not make any sense, so I decided to put a very big value which
will change only as soon as the elastic rate becomes different from 0. This happened in the
first scenario tested.

 77

Apart from this special case, all the statistics are updated each time a new arrival or departure
happens. This is performed thanks to the variable previous_time; basically, each time a new
arrival or departure from the queue happens, then I save the current simulation time in that
variable. In this way, when the next event (arrival/departure) happens, I can exactly compute
how much time past from 2 consecutive events by performing:

simTime()-previous_time
Once I know this value, I can update all statistics by this amount.
In addition, also the value in the table, such as dwell times, completion times and bit residual
must be updated by this quantity, in order to be always updated on the base of what happens.
The only thing to notice is that I do not have to update the parameters of the packet just
entered the queue, and so I used the variable last_inserted.
Each row in the matrices different from -1 will be updated by the quantity simTime()-
previous_time, except for the row referring to the last_inserted; so, if last_inserted is 2, then
the second row will no be updated. A tricky thing is that, for elastic, the last_inserted is
row+100; this has be done in order to differentiate if the last arrived is elastic or not.
Basically, if the last arrival is inelastic, then last_inserted-100 will never match an elastic row,
because it will be a negative value, and so all the elastic rows will be updated, as I want; on
the contrary, if the last arrival is elastic, then last_inserted will be greater than 100, and so an
inelastic row will never match its value, updating then all inelastic rows. Of course this
technique works just if the MAXinel and MAXel are less than 100; if they are greater, it is
sufficient to modify the last_inserted to row+MAX(MAXinel,MAXel) for elastic customers,
and put in the if check of elastics just:

K!=last_inserted-MAX(MAXinel,MAXel)
The last parameter to explain is pkt->setPosition(k); this parameter is useful to know the
packet to which row of the matrix is linked to, and it will be used a lot during the departure
phase of the code.
Of course as soon as each packet (inelastic or elastic) enters the queue, the rate associated to
each elastic has to be updated, and as a consequence its statistics.
Instead, if the packet cannot be accepted in the queue, then the packet is discarded, and
last_inserted is put equal to -1; in this way, nor elastic or elastic rows can ever be equal to it,
meaning that all rows will be updated, as I wish.
Once that the matrices are updated time by time, then the next step is to look for the minimum
time among all; in particular, we have to search for the minimum among all the second and
third columns of the matrices, which represents, respectively, the dwell and completion time.
If the minimum is in the second column, then it means than a handover is performed, instead
if it’s the third, it means that service has been completed. In particular, in the code, at the

begin the variable min contains a very big number, so that could not be the minimum; at each
loop, if the current value is lower than the minimum, then it becomes the minimum.
In addition, I keep track of which is the rwo related to the minimum, by putting min_pointer
equal to its row number; then, if the minimum is inelastic the variable INEL will be 1,
otherwise the variable EL will assume the value 1, and the same criteria work for variables
HANDOVER and SERVICE. In this way, we know all about the minimum.
Once the minimum has been discovered, then we have to schedule the self-message triggering
the departure with a time equal to the minimum found before. It is important to notice that, if
the self-message DEPARTURE is already scheduled, then has to be deleted, and sent again,

 78

because it was being sent in the past, but now the situation of the times has changed, and so
could not be the minimum anymore.
So, we now know, that if we receive a self-message is because a departure has to be
performed. The first thing to do if we receive a self-message is to update all the statistics and
parameter in the matrices by the time time_to_next_departure, which is the time needed to
perform the departure of the customer.
Then, reading the values of the variable of EL/INEL, HANDOVER/SERVICE and
min_pointer, I exactly know which is the row of the matrix containing the minimum, so I can
put it all equal to -1, because the customer is releasing it, and modify the free capacity
accordingly.
But now comes the problem, how do I know the row of the matrix to which packet of the
queue is related to? This is possible thanks to the parameter pkt->getPosition(); it will returns
the row to which the packet is referred to, and together with pkt->getFlowId(), we know to
which matrix the packet refers to.
So, after I found the row to delete, I immediately know which is the packet related to it, and
so I proceed eliminating it from the queue, and I update the elastic rate.
Now, the search of the minimum starts again, in the same exact way of before, creating then a
cycle.
This loop will go on until the simulation time ends, and in that moment the code enter in the
finish() part.
Here I just print the statistics computed, and I free the memory dynamically allocated for the
matrices.
The last module of the network is the sink, but its code is pretty empty, it contains just print
messages to notify that customer has finished correctly its service.
Once all the codes of the simulation part are ready, then the results are stored in variables, and
displayed to the output, which is the screen; in addition, the results are copied in a Matlab
code, such that it can draw the pictures of the curves in which we are interested to. The code
is the following:
clc
clear all
close all

lambda=20;

lambdas=[20,30,40,50,70,90,100,250,500,750,1000]; %%lambda tested values
dwells=[50,100,300,500,1000]; %%dwell tested means
elsizes=[50,100,300,500,1000]; %%Kbit, el sizes
%%ALL THE VALUES ARE TAKEN FROM THE OUTPUT OF THE SIMULATOR
%%THE FOLLOWING VALUES ARE THE ONES OBTAINED FOR BOTH
EXPONENTIAL DISTRIBUTIONS

 79

prob_inel_losses_expexp=[0.158751,8.11781,23.1179,36.0461,53.3362,63.3447,66.8639,86.5
591,93.2788,95.5092,96.623];
prob_el_losses_expexp=[4.4995,57.6006,75.7725,83.0226,89.1748,91.8913,92.8524,97.2847,
98.6623,99.1147,99.3313];
avg_inel_serv_expexp=[16.5931,22.8566,25.4538,26.4331,27.1672,27.4397,27.5166,27.8459
,27.9282,27.9529,27.9651];
avg_el_serv_expexp=[14.4993,29.1609,29.6654,29.7888,29.8767,29.9108,29.922,29.9719,29
.9864,29.991,29.9932];
avg_el_rate_expexp=[760058,108839,79958.9,69677.6,62047.5,59202.4,58363.8,54938,5408
1.4,53826.4,53698.3];
%%THE FOLLOWING VALUES ARE THE ONES OBATINED FOR INEL SIZES EXP.
AND EL SIZES DETERMINITSIC
prob_inel_losses_expdet=[0.221171,7.96953,23.3297,36.2199,53.5373,63.292,66.7811,86.53
22,93.2519,95.5023,96.6335];
prob_el_losses_expdet=[5.86049,58.0394,76.2513,83.3236,89.388,92.044,92.915,97.3276,98.
6833,99.129,99.3465];
avg_inel_serv_expdet=[16.5463,22.8937,25.4878,26.4608,27.1759,27.4383,27.5144,27.8451,
27.9278,27.9529,27.9652];
avg_el_serv_expdet=[14.6156,29.1324,29.6686,29.7927,29.8789,29.9126,29.923,29.9724,29.
9866,29.9912,29.9934];
avg_el_rate_expdet=[803304,108891,79621.3,69306.9,61875.7,59154.6,58368.2,54942.4,540
84.2,53822.8,53696.2];
%%THE FOLLOWING VALUES ARE THE ONES OBATINED FOR DETERMINITSIC
INEL SIZES AND EL SIZES EXP.
prob_inel_losses_detexp=[0.170448,8.30333,23.4284,36.2893,53.5643,63.3637,66.9309,86.6
101,93.2792,95.5285,96.6351];
prob_el_losses_detexp=[4.01622,57.6598,76.032,83.1723,89.2497,91.9158,92.7981,97.2918,
98.6577,99.112,99.3334];
avg_inel_serv_detexp=[16.6296,22.9057,25.5055,26.4608,27.1721,27.4399,27.5187,27.8459,
27.9279,27.9532,27.9653];
avg_el_serv_detexp=[14.8185,29.1608,29.6686,29.793,29.8772,29.9109,29.9215,29.9718,29.
9864,29.9908,29.9933];
avg_el_rate_detexp=[696794,108266,79383.9,69325,61903.1,59141.5,58332.6,54931.9,5408
1.4,53821.4,53694.8];
%%THE FOLLOWING VALUES ARE THE ONES OBTAINED FOR BOTH
DETERMINISTIC DISTRIBUTIONS
prob_inel_losses_detdet=[0.166836,8.24783,23.4111,36.4536,53.6216,63.3982,66.9186,86.5
989,93.2805,95.5279,96.6366];
prob_el_losses_detdet=[5.1116,58.1104,76.2324,83.2951,89.3658,92.0473,92.9281,97.3306,9
8.6836,99.1283,99.3455];
avg_inel_serv_detdet=[16.5891,22.9254,25.4866,26.4553,27.1764,27.4395,27.5188,27.8459,
27.9276,27.9532,27.9652];

 80

avg_el_serv_detdet=[14.5437,29.1338,29.6715,29.7939,29.8794,29.9127,29.9228,29.9723,29
.9862,29.9909,29.9933];
avg_el_rate_detdet=[758500,108231,79512.2,69333.2,61850.3,59134.9,58313.5,54932.3,540
84.5,53818.5,53694.6];

%%THESE VALUES ARE GENERATED USING DIFFERENT DWELL
MEANS(Exponentials)

%%DWELL=1

prob_inel_losses_dwell_1=[0,0,0.000998379,0.0528922,3.26538,13.3865,19.3253,64.8232,8
2.1755,88.1321,91.069];
prob_el_losses_dwell_1=[0,0,0.000600402,0.126884,9.50951,26.6975,33.9176,73.5367,86.7
314,91.1671,93.3568];
avg_inel_serv_dwell_1=[6.22024,9.35932,12.4893,15.6264,21.2326,24.3738,25.2036,27.482,
27.7861,27.8663,27.9025];
avg_el_serv_dwell_1=[1.1208,3.1634,7.80786,14.2488,24.6347,27.5603,28.1419,29.6168,29.
8431,29.9017,29.9283];
avg_el_rate_dwell_1=[3.02259e+6,2.55696e+6,1.20317e+6,465203,153471,98512.6,87172,5
9310.4,55778.1,54858.7,54444.6];

%%DWELL=50
prob_inel_losses_dwell_50=[0.116908,7.07251,21.8709,34.7472,52.3216,62.2904,65.7926,8
6.1916,93.0743,95.4012,96.526];
prob_el_losses_dwell_50=[2.21062,52.9985,72.8692,80.9341,87.7331,90.7934,91.7931,96.8
817,98.4682,98.9859,99.2341];
avg_inel_serv_dwell_50=[16.1103,22.5443,25.3254,26.3565,27.1413,27.4127,27.4941,27.84
09,27.9256,27.9517,27.964];
avg_el_serv_dwell_50=[11.7236,28.9856,29.6123,29.7597,29.8578,29.8975,29.91,29.9676,2
9.9844,29.9897,29.9922];
avg_el_rate_dwell_50=[962372,112901,81408.9,70516.6,62326.3,59482.3,58620.8,54995.5,5
4113.2,53838.9,53710.4];

%%DWELL=100
prob_inel_losses_dwell_100=[0.174989,7.54891,22.7054,35.583,52.9549,62.8662,66.4862,8
6.3796,93.1779,95.4571,96.5826];
prob_el_losses_dwell_100=[3.88943,55.8795,74.6173,82.2823,88.6473,91.4865,92.4109,97.
1318,98.5763,99.0581,99.2963];

 81

avg_inel_serv_dwell_100=[16.3795,22.7291,25.4118,26.4113,27.1538,27.4292,27.5063,27.8
431,27.9268,27.9525,27.9647];
avg_el_serv_dwell_100=[13.5989,29.0957,29.6434,29.7805,29.8703,29.9059,29.9172,29.970
3,29.9855,29.9905,29.9929];
avg_el_rate_dwell_100=[835508,110846,80432.4,69897.8,62152.5,59297.1,58473.6,54974.8,
54097.6,53829.3,53702.2];

%%DWELL=500
prob_inel_losses_dwell_500=[0.206859,8.15638,23.4152,36.3079,53.4278,63.2881,66.8623,
86.6148,93.2723,95.5166,96.6297];
prob_el_losses_dwell_500=[5.04061,57.7803,76.202,83.2646,89.3597,92.0015,92.891,97.31
71,98.6839,99.131,99.342];
avg_inel_serv_dwell_500=[16.5981,22.8419,25.4749,26.4475,27.172,27.4363,27.5156,27.84
58,27.9281,27.953,27.9651];
avg_el_serv_dwell_500=[14.8458,29.1676,29.6744,29.7917,29.8794,29.9118,29.9228,29.972
,29.9865,29.9912,29.9933];
avg_el_rate_dwell_500=[747945,108961,79656.2,69475.7,61910.9,59193,58357.9,54933.7,5
4078.7,53823.2,53696.5];

%%DWELL=1000
prob_inel_losses_dwell_1000=[0.18047,8.25655,23.1788,36.4251,53.6497,63.3141,66.9813,
86.6019,93.2945,95.5265,96.6442];
prob_el_losses_dwell_1000=[4.96425,58.1947,76.2991,83.3867,89.4025,92.0482,92.9705,97
.3453,98.6938,99.1309,99.3492];
avg_inel_serv_dwell_1000=[16.6231,22.9439,25.4588,26.4563,27.1767,27.4376,27.5182,27.
8464,27.9284,27.9533,27.9652];
avg_el_serv_dwell_1000=[15.0914,29.1942,29.6785,29.7961,29.8793,29.9125,29.9231,29.97
25,29.9868,29.9912,29.9934];
avg_el_rate_dwell_1000=[725248,107648,79790.5,69383.3,61872.7,59181.4,58340.6,54932.
9,54077.8,53819.2,53695.2];

%%THESE VALUES ARE GENERATED USING DIFFERENT ELASTIC
SIZES(Exponentials)

%%SIZE=50Kbit
prob_inel_losses_elsize_50k=[0.0778869,5.30227,18.9371,32.2512,51.4062,62.4209,66.1881
,86.5596,93.2848,95.5119,96.6227];
prob_el_losses_elsize_50k=[0,0,0.0113963,0.612801,14.8769,29.1261,35.2988,73.7046,86.9
855,91.3932,93.5319];

 82

avg_inel_serv_elsize_50k=[16.5099,23.6867,26.9271,28.1539,28.3283,28.0334,27.958,27.87
75,27.9324,27.9541,27.9656];
avg_el_serv_elsize_50k=[0.121459,0.505049,1.75844,5.86812,21.5116,25.9516,26.9327,29.5
308,29.8346,29.9011,29.9287];
avg_el_rate_elsize_50k=[473107,614982,605488,418656,78804.6,61794.1,60128.8,55453.8,
54332.7,53977.4,53812.5];

%%SIZE=100Kbit
prob_inel_losses_elsize_100k=[0.0961099,5.04935,20.0239,35.1443,53.1928,63.2114,66.798
7,86.5408,93.2634,95.5228,96.6239];
prob_el_losses_elsize_100k=[0,0.0279143,4.74655,22.6709,48.2322,60.9498,65.1002,86.749
4,93.466,95.6784,96.7601];
avg_inel_serv_elsize_100k=[16.5204,23.5922,26.5293,26.9165,27.2886,27.4874,27.5512,27.
8475,27.9282,27.9533,27.9651];
avg_el_serv_elsize_100k=[0.282483,2.1172,14.8965,25.4367,28.6401,29.2208,29.3554,29.83
97,29.9289,29.9543,29.9663];
avg_el_rate_elsize_100k=[886764,898270,287651,84393.8,63558.9,60121.5,59178.8,55179.
4,54191.9,53889.9,53749];

%%SIZE=300Kbit
prob_inel_losses_elsize_300k=[0.086808,7.705,23.2114,36.1588,53.4003,63.1968,66.8773,8
6.4909,93.2558,95.5162,96.6283];
prob_el_losses_elsize_300k=[0.0139834,29.8651,60.4388,72.061,82.2542,86.6714,88.1985,9
5.5316,97.8075,98.5479,98.9039];
avg_inel_serv_elsize_300k=[16.5224,22.9085,25.5057,26.4438,27.1687,27.436,27.5158,27.8
448,27.9279,27.953,27.9652];
avg_el_serv_elsize_300k=[2.09607,26.3715,29.2629,29.5873,29.7782,29.8431,29.864,29.952
9,29.9774,29.9851,29.9889];
avg_el_rate_elsize_300k=[1.73094e+6,140702,80843.4,70092.9,62222.5,59356.3,58498.2,54
987.5,54102.3,53833.9,53706.2];

%%SIZE=1000Kbit
prob_inel_losses_elsize_1000k=[0.269063,8.07981,23.2315,36.2869,53.4017,63.2608,66.822
5,86.5231,93.2904,95.4958,96.6237];
prob_el_losses_elsize_1000k=[48.3347,78.4213,87.7515,91.2924,94.5058,95.8596,96.2732,9
8.5992,99.3154,99.5444,99.6597];
avg_inel_serv_elsize_1000k=[16.4589,22.8652,25.4596,26.4611,27.1728,27.4356,27.5155,27
.8452,27.9283,27.9529,27.9651];
avg_el_serv_elsize_1000k=[28.8268,29.7139,29.8559,29.9031,29.9407,29.9564,29.9606,29.9
855,29.993,29.9954,29.9966];

 83

avg_el_rate_elsize_1000k=[177359,106076,79281.1,69056.3,61801,59102.9,58290.5,54921,
54072.1,53815.7,53691.9];

%%HERE I COMPUTE THE CONFIDENCE INTERVALS
%%FIRST OF ALL COMPUTE THE MEAN OF THE STATISTICS

mean_inel_losses=(prob_inel_losses_expexp+prob_inel_losses_expdet+prob_inel_losses_det
exp+prob_inel_losses_detdet)/4;
mean_el_losses=(prob_el_losses_expexp+prob_el_losses_expdet+prob_el_losses_detexp+pro
b_el_losses_detdet)/4;
mean_inel_services=(avg_inel_serv_expexp+avg_inel_serv_expdet+avg_inel_serv_detexp+a
vg_inel_serv_detdet)/4;
mean_el_services=(avg_el_serv_expexp+avg_el_serv_expdet+avg_el_serv_detexp+avg_el_s
erv_detdet)/4;
mean_el_rate=(avg_el_rate_expexp+avg_el_rate_expdet+avg_el_rate_detexp+avg_el_rate_d
etdet)/4;

%%THEN COMPUTE THE SQUARED STANDARD DEVIATIONS

stdDev_inel_losses=(((prob_inel_losses_expexp-
mean_inel_losses).^2)+((prob_inel_losses_expdet-
mean_inel_losses).^2)+((prob_inel_losses_detexp-
mean_inel_losses).^2)+((prob_inel_losses_detdet-mean_inel_losses).^2))/3;
stdDev_el_losses=(((prob_el_losses_expexp-mean_el_losses).^2)+((prob_el_losses_expdet-
mean_el_losses).^2)+((prob_el_losses_detexp-mean_el_losses).^2)+((prob_el_losses_detdet-
mean_el_losses).^2))/3;
stdDev_inel_services=(((avg_inel_serv_expexp-
mean_inel_services).^2)+((avg_inel_serv_expdet-
mean_inel_services).^2)+((avg_inel_serv_detexp-
mean_inel_services).^2)+((avg_inel_serv_detdet-mean_inel_services).^2))/3;
stdDev_el_services=(((avg_el_serv_expexp-mean_el_services).^2)+((avg_el_serv_expdet-
mean_el_services).^2)+((avg_el_serv_detexp-mean_el_services).^2)+((avg_el_serv_detdet-
mean_el_services).^2))/3;
stdDev_el_rate=(((avg_el_rate_expexp-mean_el_rate).^2)+((avg_el_rate_expdet-
mean_el_rate).^2)+((avg_el_rate_detexp-mean_el_rate).^2)+((avg_el_rate_detdet-
mean_el_rate).^2))/3;

%%NOW TAKE THE VALUE OF THE T-STUDENT (t3,0.025) FROM TABLES

 84

t_student=3.182446;

%%NOW COMPUTE THE CONFIDENTIAL INTERVALS, BOTH LOWER AND UPPER
BOUNDS

conf_inel_losses(1,:)=mean_inel_losses-t_student*((sqrt(stdDev_inel_losses))/(sqrt(4)));
conf_inel_losses(2,:)=mean_inel_losses+t_student*((sqrt(stdDev_inel_losses))/(sqrt(4)));
conf_el_losses(1,:)=mean_el_losses-t_student*((sqrt(stdDev_el_losses))/(sqrt(4)));
conf_el_losses(2,:)=mean_el_losses+t_student*((sqrt(stdDev_el_losses))/(sqrt(4)));
conf_inel_services(1,:)=mean_inel_services-
t_student*((sqrt(stdDev_inel_services))/(sqrt(4)));
conf_inel_services(2,:)=mean_inel_services+t_student*((sqrt(stdDev_inel_services))/(sqrt(4))
);
conf_el_services(1,:)=mean_el_services-t_student*((sqrt(stdDev_el_services))/(sqrt(4)));
conf_el_services(2,:)=mean_el_services+t_student*((sqrt(stdDev_el_services))/(sqrt(4)));
conf_el_rate(1,:)=mean_el_rate-t_student*((sqrt(stdDev_el_rate))/(sqrt(4)));
conf_el_rate(2,:)=mean_el_rate+t_student*((sqrt(stdDev_el_rate))/(sqrt(4)));

%%NOW LET'S TRY LOGNORMAL DISTRIBUTION

%%LOGNORMAL-EXPONENTIAL

prob_inel_losses_lnexp=[0.222478,6.44334,21.0564,33.81,52.137,61.7517,65.72,85.9467,93.
0195,95.3442,96.4982];
prob_el_losses_lnexp=[5.13969,55.581,75.0495,82.8036,89.1794,91.8043,92.8107,97.2985,9
8.6727,99.1098,99.3355];
avg_inel_serv_lnexp=[15.9543,22.3514,25.2217,26.3071,27.127,27.4009,27.4903,27.8378,27
.9254,27.9512,27.9637];
avg_el_serv_lnexp=[12.8114,29.0749,29.6512,29.7868,29.877,29.9098,29.9219,29.9718,29.9
865,29.9909,29.9932];
avg_el_rate_lnexp=[1.02253e+6,114750,82334.4,70920,62389.1,59542.6,58618.6,55020.5,54
110.6,53840.5,53711.1];

%%EXPONENTIAL-LOGNORMAL

prob_inel_losses_expln=[0.143514,8.08217,23.2202,36.2263,53.2827,63.315,66.8894,86.540
3,93.2667,95.5058,96.6292];

 85

prob_el_losses_expln=[1.4878,53.4742,73.187,80.7999,87.688,90.7577,91.873,96.901,98.47
96,98.9915,99.237];
avg_inel_serv_expln=[16.573,22.9054,25.4655,26.4499,27.1701,27.4363,27.5183,27.8455,27
.9278,27.953,27.9652];
avg_el_serv_expln=[11.24,29.0263,29.6123,29.7546,29.8572,29.8965,29.9108,29.9677,29.98
46,29.9898,29.9922];
avg_el_rate_expln=[926861,109046,79987,69542.9,61983.2,59243.8,58378.3,54951.6,54086,
53823.8,53698];

%%LOGNORMAL-LOGNORMAL

prob_inel_losses_lnln=[0.159959,6.53374,20.4957,33.355,51.266,61.6179,65.3051,85.9553,9
3.0324,95.3079,96.4779];
prob_el_losses_lnln=[1.99827,51.502,72.297,80.6707,87.4605,90.6515,91.8564,96.891,98.46
18,98.9851,99.2366];
avg_inel_serv_lnln=[15.8996,22.4088,25.1692,26.2755,27.1048,27.3997,27.4831,27.8377,27
.9252,27.9509,27.9634];
avg_el_serv_lnln=[10.2968,28.9002,29.5895,29.7535,29.854,29.8954,29.91,29.9675,29.9843,
29.9897,29.9922];
avg_el_rate_lnln=[1.11646e+6,115509,83199.7,71324.8,62697.3,59613.6,58735.4,55025.9,5
4114.1,53846.8,53716];

%%FIGURE OF PROBABILITY OF INELASTIC LOSSES
figure(1)
plot(lambdas,prob_inel_losses_expexp)
hold on
plot(lambdas,prob_inel_losses_expexp,'*b')
hold on
plot(lambdas,prob_inel_losses_expdet,'r')
hold on
plot(lambdas,prob_inel_losses_expdet,'*r')
hold on
plot(lambdas,prob_inel_losses_detexp,'g')
hold on
plot(lambdas,prob_inel_losses_detexp,'*g')
hold on
plot(lambdas,prob_inel_losses_detdet,'k')
hold on

 86

plot(lambdas,prob_inel_losses_detdet,'*k')
hold on
plot(lambdas,conf_inel_losses(1,:),'*y')
hold on
plot(lambdas,conf_inel_losses(2,:),'*y')
xlabel("Lambda")
ylabel("Losses [%]")
legend("Expexp","Expexp(real points)","Expdet","Expdet(real
points)","Detexp","Detexp(real points)","Detdet","Detdet(real
points)","Location","southeast")
title('Probability of inelastic losses')

%%FIGURE OF PROBABILITY OF ELASTIC LOSSES
figure(2)
plot(lambdas,prob_el_losses_expexp)
hold on
plot(lambdas,prob_el_losses_expexp,'*b')
hold on
plot(lambdas,prob_el_losses_expdet,'r')
hold on
plot(lambdas,prob_el_losses_expdet,'*r')
hold on
plot(lambdas,prob_el_losses_detexp,'g')
hold on
plot(lambdas,prob_el_losses_detexp,'*g')
hold on
plot(lambdas,prob_el_losses_detdet,'k')
hold on
plot(lambdas,prob_el_losses_detdet,'*k')
hold on
plot(lambdas,prob_el_losses_lnexp,'c')
xlabel("Lambda")
ylabel("Losses [%]")
legend("Expexp","Expexp(real points)","Expdet","Expdet(real
points)","Detexp","Detexp(real points)","Detdet","Detdet(real
points)","Location","southeast")

 87

title('Probability of elastic losses')

%%FIGURE OF AVERAGE INELASTIC SERVICES
figure(3)
plot(lambdas,avg_inel_serv_expexp)
hold on
plot(lambdas,avg_inel_serv_expexp,'*b')
hold on
plot(lambdas,avg_inel_serv_expdet,'r')
hold on
plot(lambdas,avg_inel_serv_expdet,'*r')
hold on
plot(lambdas,avg_inel_serv_detexp,'g')
hold on
plot(lambdas,avg_inel_serv_detexp,'*g')
hold on
plot(lambdas,avg_inel_serv_detdet,'k')
hold on
plot(lambdas,avg_inel_serv_detdet,'*k')
hold on
plot(lambdas,avg_inel_serv_lnexp,'c')
xlabel("Lambda")
ylabel("Avg services")
legend("Expexp","Expexp(real points)","Expdet","Expdet(real
points)","Detexp","Detexp(real points)","Detdet","Detdet(real
points)","Location","southeast")
title('Average inelastic services')

%%FIGURE OF AVERAGE ELASTIC SERVICES
figure(4)
plot(lambdas,avg_el_serv_expexp)
hold on
plot(lambdas,avg_el_serv_expexp,'*b')
hold on
plot(lambdas,avg_el_serv_expdet,'r')
hold on

 88

plot(lambdas,avg_el_serv_expdet,'*r')
hold on
plot(lambdas,avg_el_serv_detexp,'g')
hold on
plot(lambdas,avg_el_serv_detexp,'*g')
hold on
plot(lambdas,avg_el_serv_detdet,'k')
hold on
plot(lambdas,avg_el_serv_detdet,'*k')
hold on
plot(lambdas,avg_el_serv_lnexp,'c')
xlabel("Lambda")
ylabel("Avg services")
legend("Expexp","Expexp(real points)","Expdet","Expdet(real
points)","Detexp","Detexp(real points)","Detdet","Detdet(real
points)","Location","southeast")
title('Average elastic services')

%%FIGURE OF AVERAGE ELASTIC RATE
figure(5)
plot(lambdas,avg_el_rate_expexp)
hold on
plot(lambdas,avg_el_rate_expexp,'*b')
hold on
plot(lambdas,avg_el_rate_expdet,'r')
hold on
plot(lambdas,avg_el_rate_expdet,'*r')
hold on
plot(lambdas,avg_el_rate_detexp,'g')
hold on
plot(lambdas,avg_el_rate_detexp,'*g')
hold on
plot(lambdas,avg_el_rate_detdet,'k')
hold on
plot(lambdas,avg_el_rate_detdet,'*k')
hold on

 89

plot(lambdas,avg_el_rate_lnexp,'c')
xlabel("Lambda")
ylabel("Avg elastic rate [b/s]")
legend("Expexp","Expexp(real points)","Expdet","Expdet(real
points)","Detexp","Detexp(real points)","Detdet","Detdet(real
points)","Location","northeast")
title('Average elastic rate')

%%FIGURE OF PROBABILITY OF INELASTIC LOSSES (CHANGING DWELL TIMES)
figure(6)
plot(lambdas,prob_inel_losses_expexp)
hold on
plot(lambdas,prob_inel_losses_dwell_50,'k')
hold on
plot(lambdas,prob_inel_losses_dwell_100,'r')
hold on
plot(lambdas,prob_inel_losses_dwell_500,'g')
hold on
plot(lambdas,prob_inel_losses_dwell_1000,'c')
xlabel("Lambda")
ylabel("Losses [%]")
legend("Expexp(dwell=300)","Expexp(dwell=50)","Expexp(dwell=100)","Expexp(dwell=50
0)","Expexp(dwell=1000)","Location","southeast")
title('Probability of inelastic losses')

%%FIGURE OF PROBABILITY OF ELASTIC LOSSES (CHANGING DWELL TIMES)
figure(7)
plot(lambdas,prob_el_losses_expexp)
hold on
plot(lambdas,prob_el_losses_dwell_50,'k')
hold on
plot(lambdas,prob_el_losses_dwell_100,'r')
hold on
plot(lambdas,prob_el_losses_dwell_500,'g')
hold on
plot(lambdas,prob_el_losses_dwell_1000,'c')

 90

xlabel("Lambda")
ylabel("Losses [%]")
legend("Expexp(dwell=300)","Expexp(dwell=50)","Expexp(dwell=100)","Expexp(dwell=50
0)","Expexp(dwell=1000)","Location","southeast")
title('Probability of elastic losses')

%%FIGURE OF AVERAGE INELASTIC SERVICES (CHANGING DWELLS)
figure(8)
plot(lambdas,avg_inel_serv_expexp)
hold on
plot(lambdas,avg_inel_serv_dwell_50,'k')
hold on
plot(lambdas,avg_inel_serv_dwell_100,'r')
hold on
plot(lambdas,avg_inel_serv_dwell_500,'g')
hold on
plot(lambdas,avg_inel_serv_dwell_1000,'c')
xlabel("Lambda")
ylabel("Avg services")
legend("Expexp(dwell=300)","Expexp(dwell=50)","Expexp(dwell=100)","Expexp(dwell=50
0)","Expexp(dwell=1000)","Location","southeast")
title('Average inelastic services')

%%FIGURE OF AVERAGE ELASTIC SERVICES (CHANGING DWELLS)
figure(9)
plot(lambdas,avg_el_serv_expexp)
hold on
plot(lambdas,avg_el_serv_dwell_50,'k')
hold on
plot(lambdas,avg_el_serv_dwell_100,'r')
hold on
plot(lambdas,avg_el_serv_dwell_500,'g')
hold on
plot(lambdas,avg_el_serv_dwell_1000,'c')
xlabel("Lambda")
ylabel("Avg services")

 91

legend("Expexp(dwell=300)","Expexp(dwell=50)","Expexp(dwell=100)","Expexp(dwell=50
0)","Expexp(dwell=1000)","Location","southeast")
title('Average elastic services')

%%FIGURE OF AVERAGE ELASTIC RATE (CHANGING DWELLS)
figure(10)
plot(lambdas,avg_el_rate_expexp)
hold on
plot(lambdas,avg_el_rate_dwell_50,'k')
hold on
plot(lambdas,avg_el_rate_dwell_100,'r')
hold on
plot(lambdas,avg_el_rate_dwell_500,'g')
hold on
plot(lambdas,avg_el_rate_dwell_1000,'c')
xlabel("Lambda")
ylabel("Avg elastic rate [b/s]")
legend("Expexp(dwell=300)","Expexp(dwell=50)","Expexp(dwell=100)","Expexp(dwell=50
0)","Expexp(dwell=1000)","Location","northeast")
title('Average elastic rate')

%%FIGURE OF PROBABILITY OF INELASTIC LOSSES (CHANGING EL SIZE)
figure(11)
plot(lambdas,prob_inel_losses_expexp)
hold on
plot(lambdas,prob_inel_losses_elsize_50k,'k')
hold on
plot(lambdas,prob_inel_losses_elsize_100k,'r')
hold on
plot(lambdas,prob_inel_losses_elsize_300k,'g')
hold on
plot(lambdas,prob_inel_losses_elsize_1000k,'c')
xlabel("Lambda")
ylabel("Losses [%]")
legend("Expexp(ElSize=500k)","Expexp(ElSize=50k)","Expexp(ElSize=100k)","Expexp(ElS
ize=300k)","Expexp(ElSize=1000k)","Location","southeast")

 92

title('Probability of inelastic losses')

%%FIGURE OF PROBABILITY OF ELASTIC LOSSES (CHANGING EL SIZE)
figure(12)
plot(lambdas,prob_el_losses_expexp)
hold on
plot(lambdas,prob_el_losses_elsize_50k,'k')
hold on
plot(lambdas,prob_el_losses_elsize_100k,'r')
hold on
plot(lambdas,prob_el_losses_elsize_300k,'g')
hold on
plot(lambdas,prob_el_losses_elsize_1000k,'c')
xlabel("Lambda")
ylabel("Losses [%]")
legend("Expexp(ElSize=500k)","Expexp(ElSize=50k)","Expexp(ElSize=100k)","Expexp(ElS
ize=300k)","Expexp(ElSize=1000k)","Location","southeast")
title('Probability of elastic losses')

%%FIGURE OF AVERAGE INELASTIC SERVICES (CHANGING EL SIZE)
figure(13)
plot(lambdas,avg_inel_serv_expexp)
hold on
plot(lambdas,avg_inel_serv_elsize_50k,'k')
hold on
plot(lambdas,avg_inel_serv_elsize_100k,'r')
hold on
plot(lambdas,avg_inel_serv_elsize_300k,'g')
hold on
plot(lambdas,avg_inel_serv_elsize_1000k,'c')
xlabel("Lambda")
ylabel("Avg services")
legend("Expexp(ElSize=500k)","Expexp(ElSize=50k)","Expexp(ElSize=100k)","Expexp(ElS
ize=300k)","Expexp(ElSize=1000k)","Location","southeast")
title('Average inelastic services')

 93

%%FIGURE OF AVERAGE ELASTIC SERVICES (CHANGING EL SIZE)
figure(14)
plot(lambdas,avg_el_serv_expexp)
hold on
plot(lambdas,avg_el_serv_elsize_50k,'k')
hold on
plot(lambdas,avg_el_serv_elsize_100k,'r')
hold on
plot(lambdas,avg_el_serv_elsize_300k,'g')
hold on
plot(lambdas,avg_el_serv_elsize_1000k,'c')
xlabel("Lambda")
ylabel("Avg services")
legend("Expexp(ElSize=500k)","Expexp(ElSize=50k)","Expexp(ElSize=100k)","Expexp(ElS
ize=300k)","Expexp(ElSize=1000k)","Location","southeast")
title('Average elastic services')

%%FIGURE OF AVERAGE ELASTIC RATE (CHANGING EL SIZE)
figure(15)
plot(lambdas,avg_el_rate_expexp)
hold on
plot(lambdas,avg_el_rate_elsize_50k,'k')
hold on
plot(lambdas,avg_el_rate_elsize_100k,'r')
hold on
plot(lambdas,avg_el_rate_elsize_300k,'g')
hold on
plot(lambdas,avg_el_rate_elsize_1000k,'c')
xlabel("Lambda")
ylabel("Avg elastic rate [b/s]")
legend("Expexp(ElSize=500k)","Expexp(ElSize=50k)","Expexp(ElSize=100k)","Expexp(ElS
ize=300k)","Expexp(ElSize=1000k)","Location","northeast")
title('Average elastic rate')

%%FIGURE OF PROBABILITY OF INELASTIC LOSSES (LOGNORMAL
DISTRIBUTION)

 94

figure(16)
plot(lambdas,prob_inel_losses_expexp,'b')
hold on
plot(lambdas,prob_inel_losses_lnexp,'k')
hold on
plot(lambdas,prob_inel_losses_expln,'r')
hold on
plot(lambdas,prob_inel_losses_lnln,'g')
xlabel("Lambda")
ylabel("Losses [%]")
legend("Expexp","Lnexp","Expln","Lnln")
title('Probability of inelastic losses')

%%FIGURE OF PROBABILITY OF ELASTIC LOSSES (LOGNORMAL
DISTRIBUTION)
figure(17)
plot(lambdas,prob_el_losses_expexp,'b')
hold on
plot(lambdas,prob_el_losses_lnexp,'k')
hold on
plot(lambdas,prob_el_losses_expln,'r')
hold on
plot(lambdas,prob_el_losses_lnln,'g')
xlabel("Lambda")
ylabel("Losses [%]")
legend("Expexp","Lnexp","Expln","Lnln")
title('Probability of elastic losses')

%%FIGURE OF AVERGARE INELASTIC SERVICES (LOGNORMAL DISTRIBUTION)
figure(18)
plot(lambdas,avg_inel_serv_expexp,'b')
hold on
plot(lambdas,avg_inel_serv_lnexp,'k')
hold on
plot(lambdas,avg_inel_serv_expln,'r')

 95

hold on
plot(lambdas,avg_inel_serv_lnln,'g')
xlabel("Lambda")
ylabel("Avg services")
legend("Expexp","Lnexp","Expln","Lnln")
title('Average inelastic services')

%%FIGURE OF AVERGARE ELASTIC SERVICES (LOGNORMAL DISTRIBUTION)
figure(19)
plot(lambdas,avg_el_serv_expexp,'b')
hold on
plot(lambdas,avg_el_serv_lnexp,'k')
hold on
plot(lambdas,avg_el_serv_expln,'r')
hold on
plot(lambdas,avg_el_serv_lnln,'g')
xlabel("Lambda")
ylabel("Avg services")
legend("Expexp","Lnexp","Expln","Lnln")
title('Average elastic services')

%%FIGURE OF AVERGARE ELASTIC RATE (LOGNORMAL DISTRIBUTION)
figure(20)
plot(lambdas,avg_el_rate_expexp,'b')
hold on
plot(lambdas,avg_el_rate_lnexp,'k')
hold on
plot(lambdas,avg_el_rate_expln,'r')
hold on
plot(lambdas,avg_el_rate_lnln,'g')
xlabel("Lambda")
ylabel("Avg elastic rate [b/s]")
legend("Expexp","Lnexp","Expln","Lnln")
title('Average elastic rate')

 96

%%FIGURE OF PROBABILITY OF INELASTIC LOSSES (DWELL OF 1 SEC)
figure(21)
plot(lambdas,prob_inel_losses_expexp)
hold on
plot(lambdas,prob_inel_losses_dwell_1,'r')
xlabel("Lambda")
ylabel("Losses [%]")
legend("Dwell = 300 secs","Dwell = 1 sec","Location","southeast")
title('Probability of inelastic losses')

%%FIGURE OF PROBABILITY OF ELASTIC LOSSES (DWELL OF 1 SEC)
figure(22)
plot(lambdas,prob_el_losses_expexp)
hold on
plot(lambdas,prob_el_losses_dwell_1,'r')
xlabel("Lambda")
ylabel("Losses [%]")
legend("Dwell = 300 secs","Dwell = 1 sec","Location","southeast")
title('Probability of elastic losses')

%%FIGURE OF AVERAGE INELASTIC SERVICES (DWELL OF 1 SEC)
figure(23)
plot(lambdas,avg_inel_serv_expexp)
hold on
plot(lambdas,avg_inel_serv_dwell_1,'r')
xlabel("Lambda")
ylabel("Avg services")
legend("Dwell = 300 secs","Dwell = 1 sec","Location","southeast")
title('Average inelastic services')

%%FIGURE OF AVERAGE ELASTIC SERVICES (DWELL OF 1 SEC)
figure(24)
plot(lambdas,avg_el_serv_expexp)
hold on
plot(lambdas,avg_el_serv_dwell_1,'r')

 97

xlabel("Lambda")
ylabel("Avg services")
legend("Dwell = 300 secs","Dwell = 1 sec","Location","southeast")
title('Average elastic services')

%%FIGURE OF AVERAGE ELASTIC RATE (DWELL OF 1 SEC)
figure(25)
plot(lambdas,avg_el_rate_expexp)
hold on
plot(lambdas,avg_el_rate_dwell_1,'r')
xlabel("Lambda")
ylabel("Avg elastic rate [b/s]")
legend("Dwell = 300 secs","Dwell = 1 sec")
title('Average elastic rate')

error_inel_losses=(conf_inel_losses(2,:)-conf_inel_losses(1,:))./mean_inel_losses;
error_el_losses=(conf_el_losses(2,:)-conf_el_losses(1,:))./mean_el_losses;
error_inel_services=(conf_inel_services(2,:)-conf_inel_services(1,:))./mean_inel_services;
error_el_services=(conf_el_services(2,:)-conf_el_services(1,:))./mean_el_services;
error_el_rate=(conf_el_rate(2,:)-conf_el_rate(1,:))./mean_el_rate;

 98

 99

6. Conclusions

As I explained in the introduction, the main scope of this thesis is to understand how a base
station deals with different type of services, inelastic and elastic ones.
Thanks to the first scenario tested, it turned out that if the generation process is too slow with
respect to the service time, the system will be almost always empty, meaning that our cell is
underutilized. Then, it can never happen that we got elastic losses, since there will never be
more than 10 elastic services in the queue; while, on the contrary, losses happen for inelastics
because there cannot be 2 or more of them in the cell. In addition, since most of the time there
will be just one customer in the queue, its service time will be very short, and so it is very
difficult that it performs handover before finishing the service.
So, from the case 4.1. we got that if the customer arrival process is too slow, it is good in
terms of completed services and losses, but not in terms of utilization of the network, because
we are using just a little part of it, and if we assume that it is pretty expensive to install a 5G
base station somewhere, it will be a waste of money to have such a great capacity that cannot
be used.
That’s why we moved into the second tested case increasing the arrival rate; there is, of
course, an increase of the losses, but at the same time an increase of the completed services,
especially for what concern the elastic ones. We can say, that elastics benefit of this increase
in the speed of customer arrivals, because there can be up to 10 of them in the queue, so
having more customers means more completed services, while, on the contrary, for inelastic
ones the situation get worse. This because there can be just 1 of them in the cell, and so if we
are increasing the rate of the arrivals, it means we are increasing the probability of having
more than 1 inelastic in the queue, resulting in an inelastic loss, in fact there are much more
inelastic losses than elastic ones.
In addition, since there are so many entering customers, the utilization of the queue increases
a lot, meaning that we are better exploiting its resources.
But, in order to get into some more realistic scenario, we need to increase the maximum
number of customers (both inelastic and elastic), in order to simulate a base station of a
crowded place.
In the case 4.3 we tested a maximum number of inelastic and elastic customer equal to 30,
with an arrival rate equal to the case 4.1. It can be noticed that inelastic losses reduce, due to
the possibility of having up to 30 inelastic customers in the queue, instead of just one, while
the elastic ones are increasing. Of course, handovers increase, since having more customers in
the queue means more probability that one of them moves into another cell before finishing
its service.
From now on, the following scenarios start from the same parameters of the case 4.3,
changing each time a different parameter, in order to see how it affects the statistics computed
for different values of the arrival rate.
In the case 4.4, we tested different distributions, in particular the exponential and the
deterministic one, for the packet sizes, and, as a consequence changes also the service time
distributions.
It can be noticed from the output figures that different distributions do not affect the statistics
computed, and it is interesting to notice it. Our queue is a mix of two different queues: a

 100

M/M/m/0 which describes the behaviour of inelastic customers, and a M/M/1-PS which
describes the behaviour of the elastic ones.
Both of them are insensitive to the service distributions, and our queue seems to be insensitive
to it too.
The same conclusion can be deducted from the case 4.5, in which we test a high variance
distribution for the packet size, a lognormal distribution, and the statistics do not change
again.
The next parameter to be studied has been the dwell time; in particular, in the cases 4.6 and
4.7. In the case 4.6, the dwell time does not seem to change anything, in fact the curves for
different values of it are overlapping, meaning that no changes arise. In reality, this is due to
the choice of the mean of the dwell time; in this specific scenario it was too big compared
with the average service time. In this case, due to the particular choice of parameters, it turned
out that there were almost always few customers in the queue, meaning high bit rate for each
one of them, and so low service times.
Since, on average, the service was much smaller than the dwell time, it does not matter how
small the latter is, because handover would be performed few times.
In order to see some changes, the dwell time has to be of the same order of magnitude of the
average service time, and that’s why the case 4.7 has been studied.
It is possible to see that, in this case, the choice of the dwell changes a lot the statistics, and in
particular, lower dwell time means less queue load on average, because customers exit the
queue much more times.
Most of the changes happen for smaller values of the arrival rate, that’s because as soon as the

arrival rate becomes bigger and bigger, the fact that one customer stays in the queue or
performs handover does not change the overall situation, because there will be a new arriving
customer taking its place.
As a consequence, especially for smaller arrival rates, we can notice less losses, because, on
average, there will be less customers in the queue.
So, in order to notice some change, the dwell time has to be of the same order of magnitude of
the service time.
The last tested case, instead, shows us how the statistics vary as the elastic size increases. The
inelastic statistics do not change so much, while the elastic losses increase as the packet size
increases, and the same happens for the average number of elastic customers in the queue.
In conclusion, we can claim that not all the changes affect the statistics, in particular our
queue turns out to be insensitive to the service distribution, while the dwell time is relevant
when is less, or at least of the same order of magnitude of the service time; it means that if a
customer is moving slower than the service speed, then it will finish the service regardless of
how slow it is.
Finally, changing the elastic packet sizes affects the elastic statistics, especially when we have
low arrival rate; the changes are negligible when the customer arrival is high because the
queue will fill anyway, so the behaviour is more or less the same.

 101

