
POLITECNICO DI TORINO

MASTER OF SCIENCE THESIS

Design of a fault tolerant instruction
decode stage in RISC-V core
against soft and hard errors

Supervisor:
Prof. Stefano DI CARLO

Co-supervisors:
Prof. Maurizio MARTINA
Prof. Alessandro SAVINO
Prof. Guido MASERA
Prof. Luca Maria CASSANO

Author:
Marcello NERI

Master of Science degree in

Electronics Engineering
Department of Electronics and Telecommunications

A.Y. 2020/2021

https://www.polito.it/index.php?lang=en
https://didattica.polito.it/laurea_magistrale/ingegneria_elettronica/en/home
http://www.det.polito.it/




iii

Declaration of Authorship
I, Marcello NERI, declare that this thesis titled, “Design of a fault tolerant instruction
decode stage in RISC-V core against soft and hard errors” and the work presented
in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date: 04/04/2021





v

“Stay hungry. Stay foolish.”

Steve Jobs
(Stanford Commencement Address, 2005)





vii

POLITECNICO DI TORINO

Abstract
Electronics Engineering

Department of Electronics and Telecommunications

Master of Science in Electronics Engineering

Design of a fault tolerant instruction decode stage in RISC-V core
against soft and hard errors

by Marcello NERI

Failures in electronic devices caused by radiation is one of the most challenging is-
sues arising in the last decades. Nowadays, radiation effects are crucial not only
in the space environment, but also at the sea level, since transistor downscaling is
affecting the characteristics of integrated circuits. When operating in hostile envi-
ronments, solid-state devices and integrated circuits may be directly struck by pho-
tons, electrons, protons, neutrons, heavy ions, or alpha particles causing alteration
of their electrical properties. This puts at risk the reliability and integrity of those
devices, leading also to possible catastrophic consequences if they occur in safety
critical applications. The international standard IEC 61508 sets the requirements that
a safety-related system must meet in order to be classified and certified according to
its reliability level.

For what concerns the hardware design, the mitigation against radiation effects is
possible by applying the concept of redundancy to all the components in the system.
Processors, which are general purpose hardware devices, are of very common usage
in many fields of application, sometimes operating also in hostile environments.
This is the reason why they can be considered really critical components that need
to be made fault tolerant.

In this thesis project, the fault tolerant design of the Instruction Decode (ID) stage
of the CV23E40P core, which is a RISC-V core, implementing the RV32IMC instruc-
tion set, is presented. The work developed in this thesis is included in a wider
project that aims to make the entire CV32E40P core fault tolerant. The proposed de-
sign makes use of Error Correction Code (ECC) and N-Modular Redundancy (NMR)
techniques which ensure fault tolerance against Single Event Effects (SEEs) to all the
component included in the stage. Specifically, the Hsiao code is one of the most suit-
able ECC from the hardware optimisation perspective. So, it is used in the design
with Single Error Correction and Double Error Detection (SECDED) capabilities. As
regards the NMR technique, for the purpose of the thesis, triplication (TMR) is the
best trade-off between hardware overhead and fault tolerance level. In fact, the TMR
uses the minimum level of redundancy to get capable to detect and correct single er-
rors without suspending the program execution.

However, in the state-of-the-art, some RISC-V cores already use these techniques
to mitigate transient errors. The innovative side of this thesis work is the design of
a specific partial solution against the permanent errors, beside the traditional tech-
niques used against the transient ones. Specifically, the most critical component in
the ID stage from the radiation perspective is the register file, being the most extend-
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ed component of the whole core. Its design provides for extra “supply” locations to
replace the permanently damaged registers and allow the correct execution of the
program in any of the most hostile situations.

The effectiveness of the fault tolerant design of the ID stage is evaluated by
means of the simulation-based approach. One transient fault is injected to each sim-
ulation of the core running the CoreMark benchmark program. The system imple-
mented for the fault injection is based on TCL scripts which exploit special functions
of QuestaSim simulator for bit-flipping the memory elements present into the stage.
Under these conditions, the fault tolerance level reached by the architecture against
the soft errors is included between the 95% and the 100% with a confidence level of
the 99%.
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Chapter 1

Introduction

The industry of integrated circuits (ICs) keeps on scaling transistor size, increasing
devices density, raising clock frequencies, and lowering operating core voltages, ac-
cording to the Moore’s Law [1]. The effects of such progress may lead to the onset
of some new mechanisms of soft errors in digital systems, causing an increase in
the probability of system failures. The radiation represents one of the main causes
of system failure and is today a real problem not only in the traditional hostile en-
vironment, such as space, but also in everyday environments. In fact, initially, the
radiation effects were avoided in daily electronic devices because an older technol-
ogy made use of larger transistors, which are more robust and tolerant against ra-
diation effects. So, the radiation was a problem only in space equipment. Now, as
technology improves, bit-flipping induced by radiation is increasingly likely since
the amount of energy required by the smaller transistors to cause such bit-state al-
teration became smaller as well. This makes possible that such soft errors are expe-
rienced, for example, also at normal flight altitudes for civilian aviation [2].

This emerging problem pushes the research towards the necessity of developing
fault tolerant systems capable to keep working even in presence of such phenomena.
In the fault tolerance context, it is important to distinguish among three fundamental
concepts: fault, error, and failure. Fault is defined as the abnormal working condi-
tion of a component in a system due to physical effects, which can lead the system to
perform in an unintended manner. If the system performs in an unintended manner
because of one or more faults, an error occurs. Finally, an error becomes a failure, if
the system is not capable to deliver the specified external services anymore due to
that error.

In order to reach fault tolerance goals, many different techniques can be used to
protect an electronic system against radiation effects, mainly based on the concept of
redundancy. Redundancy is simply the addition of information, resources, or time
besides what is needed for the normal system operation. In hardware, the resources
redundancy applied to entire blocks is called N-Modular Redundancy (NMR) and
exploits the majority voting of all the replicas of the module to evaluate any possible
error. The redundancy related to the information gives raise to Error Correction/De-
tection Code (ECC or EDC) which adds extra information to correct/detect errors,
such as parity bit, and so on. The temporal redundancy, instead, exploits the re-
execution of some operations to discern the correctness of the outputs.

One of the most interesting field of application for the fault tolerance concept is
the general purpose processor (or Central Processing Unit, CPU), and the reason lies
mainly on its heavy usage in several applications. It is clear that if a failure occurs
during the normal operation condition of the CPU, and in particular if this happens
in critical applications, dangerous consequences can follow, just think of applica-
tions like respiratory support devices, heart-rate monitors, and other life supporting
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equipment in hospitals, or like control systems in nuclear plants.
Among the large variety of microprocessors existing in the market, particular

focus can be posed on the RISC-V cores. In the last years, the employment of RISC-
V processors is increasing markedly thanks to its great potential. The RISC-V is a
free and open Instruction Set Architecture (ISA) and it is suitable to be used in a
large variety of applications. In fact, only the ISA is provided, giving the possibility
to the designer to add any kind of extra features to the core to satisfy any specific
application requirements.

A fault tolerant version of the RISC-V core would increase its real potentiali-
ties. By adding extra fault tolerant capabilities, the RISC-V core could be used in a
greater number of applications, which ranges from the traditional use as a CPU for
everyday scopes, to the use in dangerous control systems, or even to the use in more
sophisticated environments, like military experiments or aerospace missions.

1.1 Thesis objectives

The presented thesis work is part of a wider team project that aims to design a fully
fault tolerant RISC-V core. Being a very demanding project, the fault tolerant design
has been divided into three parts (as the number of the teammates), each one related
to a part of the core. According to this approach, this thesis project puts its focus on
the fault tolerant design of the Instruction Decode (ID) stage, while the remaining
parts of the core are taken into account by the other two teammates, Luca Fiore and
Elia Ribaldone.

The main objective of this thesis project is the development of a configurable ID
stage in the RISC-V core where different levels of fault tolerance can be selected.
The configuration can create up to 24 different architectures, from a fully protected
version, with the highest level of fault tolerance, to a single-component protected
version, with a reasonable level of fault tolerance according to the necessities. In
fact, in some scenarios, it is advisable to have a fully protected core, but sometimes
it is better (best trade-off) to protect only the Register File, which is a very critical
component, avoiding the waste of power and resources.

From the main objective, another important sub-objective is derived, that is the
design of a particular version of the Register File capable to manage also the per-
manent errors, besides the transient ones. In this way, the permanently damaged
locations can be easily replaced run-time without stopping the execution. This ver-
sion is also configurable. In fact, it is possible to set the threshold beyond which
the permanent fault is detected. Moreover, the design aims to keep the information
about the damaged locations into the non-volatile memory, through the Control and
Status registers inside the core, so that at the power-on reset the machine is capable
to work correctly starting immediately.

The other main objective is the implementation of a development environment
for RISC-V cores which provides several features for the designer. The main fea-
tures implemented are compilation of C-programs, simulation support, comparison
with the reference architecture, fault injection simulation, fault tolerance benchmark,
results analysis, and other minor options which facilitate the development of the
project.
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1.2 Thesis overview

This thesis is organised in a book-style way, so for each chapter a different argument
is treated and detailed. Overall, it consists of eight chapters, which specifically can
be grouped into three subsets: the first one (chapters 1, 2, 3, and 4) relates to the
background knowledge, the second one (chapters 5, and 6) to the development of
the proposed design, and the third one (chapters 7, and 8) to the presentation and
discussion of the overall results.
In the following, the complete list of the chapters flanked by a brief description is
reported.

• Chapter 2 - the International Standard IEC 61508 is briefly described, highlight-
ing the requirements for the design of hardware components in a safety-related
system;

• Chapter 3 - the effects of radiation on digital circuits are reported, and a sum-
mary comparison of terrestrial and space environment is given, providing the
proper terminology;

• Chapter 4 - the most used fault tolerant techniques for hardware design are
reported;

• Chapter 5 - the RISC-V specifications are listed and the core used in this thesis
project is illustrated;

• Chapter 6 - the design of the fault tolerant version of the Instruction Decode
stage is explained, justifying the choice of fault tolerant techniques applied;

• Chapter 7 - the fault tolerance levels reached by the Instruction Decode stage,
and by each component in it, are reported and compared with respect to the
state-of-the-art levels;

• Chapter 8 - final comments on the entire work of this thesis project are given.

The chapter 6 and 7 are the ones concerning the personal work developed during
the thesis project, so they can be considered the most important ones. However, for
a good understanding of the overall context, the first five chapters are essential.

Apart from the chapters, the thesis provides an appendix where the relevant
parts of some algorithms or codes are reported. This makes the understanding of
some algorithms easier. Anyway, the complete codes and the entire project files can
be found on the following GitHub repositories (links below), which have been used
for the development of the project.

• Reference Core repository: https://github.com/RISKVFT/cv32e40p/tree/m
aster

• Fault Tolerant Core repository: https://github.com/RISKVFT/cv32e40p/tr
ee/FT_Marcello

• Development Environment repository: https://github.com/RISKVFT/core-
v-verif/tree/FT_verif_Marcello

• General Documentation repository: https://github.com/RISKVFT/RISKV_F
T_Docs

https://github.com/RISKVFT/cv32e40p/tree/master
https://github.com/RISKVFT/cv32e40p/tree/master
https://github.com/RISKVFT/cv32e40p/tree/FT_Marcello
https://github.com/RISKVFT/cv32e40p/tree/FT_Marcello
https://github.com/RISKVFT/core-v-verif/tree/FT_verif_Marcello
https://github.com/RISKVFT/core-v-verif/tree/FT_verif_Marcello
https://github.com/RISKVFT/RISKV_FT_Docs
https://github.com/RISKVFT/RISKV_FT_Docs
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Chapter 2

International Standard

A fault-tolerant system, or in general a safety-system, aims to prevent dangerous
failures or to control them when they arise with a certain probability of success.
In industrial and commercial contexts, it is necessary to observe some standards in
order to determine the safety level of components involved in a process, or in an
equipment, and to ensure a tolerable level of risk.

As regards electronic devices and software, functional safety is one of the main
aspects of the overall safety of the system. It is related to “the function of a device
or system and ensures that it works correctly in response to commands it receives or
fails in a predictable (safe) way”. For example, functional safety regards: fire and gas
control systems, car’s airbag protection systems, automated flight control systems,
etc.

In 1998, the International Electrotechnical Commission (IEC) published a series
of standards, the IEC 61508, for electrical, electronic and programmable electronic
(E/E/PE) safety-related systems. Currently, its second version, published in 2010, is
effective and it is used by a wide range of manufacturers, system builders, designers
and suppliers of components and subsystems and serves as the basis for conformity
assessment and certification services [3].

Moreover, the IEC 61508 standards were approved by CENELEC (Comité eu-
ropéen de normalisation en électronique et en électrotechnique) as a European Stan-
dard EN 61508

2.1 IEC 61508

IEC 61508 series are the International Standards consisting of methods on how to
apply, design, deploy and maintain automatic protection in E/E/PE systems, called
safety-related systems. In other words, IEC 61508 regulates the entire life-cycle of
products and systems related to safety [4]. In this context, functional safety measures
the risk by evaluating the probability that a given event will occur and how severe it
would be. IEC 61508 applies to a safety-related system when one or more of E/E/PE
devices are incorporate in the system itself. It covers possible hazards caused by fail-
ure of the safety functions to be performed by the E/E/PE safety-related system, as
distinct from hazards that may derive from the E/E/PE equipment itself (for exam-
ple electric shock, etc). The standard is compliant with all E/E/PE safety-related
systems regardless of the application [5].

The level of risk due to a failure of the system or equipment under control is as-
sessed with a probabilistic approach, i.e. as a function of the frequency or probability
of occurrence of the failure and the severity of the consequences of the failure itself,
that could affect the safety of persons and/or the environment. Four safety levels,
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called safety integrity levels (SILs), are defined according to the risks involved in the
system application, which give a quantitative measure (order of magnitude) of the
necessary risk reduction and therefore the degree of reliability that the safety-system
must achieve. SIL1 has the lowest level of risk reduction (the least safe), SIL4 has the
highest level of risk reduction (the most safe).

2.1.1 Safety life cycle

The objective of the safety life cycle is to define the safety functions of the safety-
related system, firstly defining the scope of the system, secondly assessing the po-
tential system failures and estimating the risks they can cause. Then, safety require-
ments need to be specified and met by different components of the system. So, it is
required to develop and document a safety plan, execute that plan, document its ex-
ecution (to show that the plan has been met) and continue to follow that safety plan
through to decommissioning with further appropriate documentation throughout
the entire life of the system [6]. The life cycle’s flow is shown in Figure 2.1.

FIGURE 2.1: Safety life cycle [6]
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In a simpler way, the safety life cycle can be seen as a continuous “identify-assess-
design-verify” loop.

2.1.2 Safety Integrity Level (SIL)

IEC 61508 defines four levels of safety (SIL), from 1 to 4. Note that a safety integrity
level is a property of a safety function rather than of a system or any part of a system
and it is determined depending on the mode of operation of the safety function.

The standard describes two modes of operation for a safety function: low de-
mand mode and high demand (or continuous) mode of operation. A safety function
operating in low demand mode is only performed when required in order to keep
the system into a safe state. While, a safety function operating in continuous mode
continuously controls the state of the system. According to this, the SIL of a safety
function is evaluated in two different ways:

• the average probability of a dangerous failure on demand (in the case of low
demand mode) (Table 2.1);

• the average frequency of a dangerous failure per hour (in the case of high de-
mand or continuous mode) (Table 2.2).

Safety Integrity
Level (SIL)

Average probability of
failure on demand

(Low Demand mode)

4 ≥ 10−5 to < 10−4

3 ≥ 10−4 to < 10−3

2 ≥ 10−3 to < 10−2

1 ≥ 10−2 to < 10−1

TABLE 2.1: SILs for Low Demand mode of operation [6]
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Safety Integrity
Level (SIL)

Average frequency of
dangerous failure per hour

(Continuous mode)

4 ≥ 10−9 to < 10−8

3 ≥ 10−8 to < 10−7

2 ≥ 10−7 to < 10−6

1 ≥ 10−6 to < 10−5

TABLE 2.2: SILs for Continuous or High Demand mode of operation
[6]

At first glance, the continuous mode appears to be far more stringent than the
demand mode. It is important to notice that the continuous mode is evaluated per
hour, while the demand mode is evaluated in a time interval of roughly one year per
the definition. If it assumed that about 10,000 hours are in a year (actual 8,760), the
modes are approximately the same in terms of safety metrics [6]. In fact, the average
frequency of dangerous failure is evaluated starting from the average probability of
failure on demand.

For example, if an E/E/PE safety-related system operating in continuous mode
is used in a mission with a certain time duration during which no repair can take
place, the required SIL for a safety function can be derived simply by: determining
the required probability of failure of the safety function during the mission time, and
dividing this value by the mission time, to obtain the required frequency of failure
per hour. Then, the Table 2.2 can be used to derive the SIL.

Any device, sensor, control & command unit, and in general any component be-
ing part of a safety-related system, needs to be classified according to its related SIL.
All these subsystems, elements and components, when combined to implement the
safety function (or functions), are required to meet the safety integrity level target of
the relevant safety functions. Also subsystems and components supplied by other
producers need to be assessed again even if they have been already quoted as “suit-
able for the required safety integrity level target”. The standard requires to assess
all the components of the system throughout all the phases of the lifecycle under the
functional safety perspective. Finally, the compliance of the E/E/PE safety-related
system with the IEC 61508 standard needs to be demonstrated.

2.1.3 IEC 61508 overview

The concepts explained above are the two fundamental concepts the IEC 61508 stan-
dard is based on: the safety life-cycle (defined as “an engineering process that in-
cludes all of the steps necessary to achieve required functional safety”) and safety
integrity levels. Fundamental concepts apart, the total standard is divided into seven
parts which define the requirements to satisfy in order to be compliant with the stan-
dard. They are:

Part 1 - General requirements (required for compliance);



2.1. IEC 61508 9

Part 2 - Requirements for E/E/PE safety-related systems (required for compli-
ance);

Part 3 - Software requirements (required for compliance);

Part 4 - Definitions and abbreviations (supporting information);

Part 5 - Examples of methods for the determination of safety integrity levels
(supporting information);

Part 6 - Guidelines on the application of parts 2 and 3 (supporting information);

Part 7 - Overview of techniques and measures (supporting information).

Describing all parts of the norm is beyond the scope of this study. However, part
2 is relevant and of particular interest for the design of a fault tolerant hardware
system compliant with the standard, and it will be treated more in detail. While part
3 would be important if the safety-related system makes use of software.

2.1.4 IEC 61508 - Part 2

Part 2 [7] covers the hardware requirements for safety-related systems. Specifically,
it specifies: how to refine the E/E/PE system safety requirements specification into
the E/E/PE system design requirements specification; the requirements for activi-
ties involved in the design and manufacture processes (i.e. establishes the E/E/PE
system safety lifecycle model), including the application of techniques and measures
that are graded against the safety integrity level, for the avoidance of, and control
of, faults and failures; and the information necessary for the final safety validation
of the E/E/PE safety-related systems.

As previously explained, in this part the requirements for activities involved in
the design process are specified. Pursuing this, a detailed V-model (shown in Fig-
ure 2.2) is proposed for the development lifecycle for the design of ASICs. The model
starts with the activity related to the ASIC safety requirements specification and ends
with the validation test, passing through behavioural modelling, synthesis, simula-
tion and verification activities.

In general, requirements specification activity requires the individuation of all
the subsystems and elements composing the E/E/PE safety-related system and of
all the safety functions. As a consequence, the requirements for the integration of the
subsystems to meet the safety functions requirements need to be specified. In this
way, hardware (and software) specification are set. Safety functions requirements
may regard: how safe state is achieved, response time, operator interfaces, operat-
ing modes of equipment under control, required E/E/PE behavior modes, start-up
requirements, etc.
The next activity concerns the planning for the validation of the safety of the E/E/PE
safety-related system. This task shall consider the requirements of the E/E/PE
system previously defined, the procedures to validate the implementation and the
safety integrity of the safety functions, the testing environment and other testing cri-
teria.
Parallel to the E/E/PE system safety validation planning, the design of the system
(including ASICs) takes place considering it shall meet many requirements for safety.
In particular for integrated circuits (ICs), on-chip redundancy is a special require-
ment to be taken into account, as well as requirements for systematic safety integrity
(systematic capability). However, requirements for hardware (and software) are set
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FIGURE 2.2: ASIC development lifecycle [7]

on the basis of the highest safety integrity level associated to any safety functions
implemented by that hardware.
When the initial design has been completed, an analysis shall be undertaken to de-
termine whether any reasonably foreseeable failure of the system could cause a haz-
ardous situation or require a risk control measure. If any of these effects occur, the
design of the E/E/PE safety-related system should be changed to avoid such fail-
ures. In the case a new design cannot be done, then the likelihood of such failure
modes needs to be reduced to a level commensurate with the target failure measure.
Note that there may be cases where the failure rate of the specified failure modes
cannot be reduced and either a new safety function will be required or the SIL of the
other safety functions reconsidered taking into account the failure rate.
Also the systematic faults that lead to a failure of the safety functions should be
taken into account in order to determine the systematic capability (SC) of each ele-
ment composing the system. With SC is intended a confidence level which defines
the maximum SIL level achievable by the element/subsystem in terms of systematic
integrity.
As regards hardware safety integrity, the safety integrity level referred to a safety
function is limited by the constraints deriving from implementing one of two pos-
sible routes (to be implemented at system or subsystem level for hardware safety
integrity requirements):

• Route 1H based on hardware fault tolerance and safe failure fraction concepts;

• Route 2H based on component reliability data from feedback from end users,
increased confidence levels and hardware fault tolerance for specified safety
integrity levels.

The choice of the route is application and sector dependent.
However, hardware fault tolerance is classified with an integer value N which means
that “N+1 is the minimum number of faults that could cause a loss of the safety
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function”. This requirement is defined according to the security level of integrity
required for each safety function, and according to the type of subsystem. There can
be two types:

• type A: if the mode of failure of any single component of the subsystem is well
defined, so it is possible to determine its behaviour in any situation;

• type B: if the mode of failure of any single component of the subsystem is not
well defined and it is not possible to completely determine its behaviour.

Route 1H is based around the Safe Failure Fraction (SFF) calculation approach.
The SFF is “the fraction of the overall failure rate of a device that results in either
a safe fault or a diagnosed (detected) unsafe fault” [6]. This parameter is evaluated
together with the SIL to determine the minimum level of hardware fault tolerance
required to meet the target. The minimum level of hardware fault tolerance is deter-
mined differently depending on the type of subsystem.

Safe Failure
Fraction (SFF)

Hardware Fault Tolerance

N=0 N=1 N=2

< 60% SIL 1 SIL 2 SIL 3

[60%, 90%[ SIL 2 SIL 3 SIL 4

[90%, 99%[ SIL 3 SIL 4 SIL 4

≥ 99% SIL 3 SIL 4 SIL 4

TABLE 2.3: SIL required for type A subsystem with N hardware fault
tolerance [6]

Safe Failure
Fraction (SFF)

Hardware Fault Tolerance

N=0 N=1 N=2

< 60% Not allowed SIL 1 SIL 2

[60%, 90%[ SIL 1 SIL 2 SIL 3

[90%, 99%[ SIL 2 SIL 3 SIL 4

≥ 99% SIL 3 SIL 4 SIL 4

TABLE 2.4: SIL required for type B subsystem with N hardware fault
tolerance [6]

At this point, the route 1H sets some rules to follow in order to determine the SIL of
the E/E/PE safety-related system. The rules refer to the theoretical hierarchy of the
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system. In fact, a system implementing a safety function is composed by subsystems
which in turn can be composed by one or more channels (parallel elements) each one
composed by serial elements. So, first of all, it is important to determine the SIL of
each element. This is done by evaluating for each channel the SIL for the achieved
SFF for a hardware fault tolerance of 0. Then, the SIL of the channel is determined
by taking the lowest SIL reached by all the elements composing that channel. Then,
the subsystem is considered and its SIL is determined by taking the highest SIL that
has been achieved by the related channels and by adding N (level of hardware fault
tolerance for the subsystem) SIL to it. Finally, the maximum SIL that can be claimed
for the complete E/E/PE safety-related system is determined by the subsystem that
has achieved the lowest SIL.
Route 2H, instead, does not consider SFF at all. The minimum hardware fault tol-
erance for each subsystem of a E/E/PE safety-related system should be determined
according to the following table (Table 2.5), that is based on the mode of operation,
and the SIL required for the safety function implemented by the system.

Safety Integrity
Level (SIL)

Hardware Fault Tolerance (N)

Low demand mode High demand mode

SIL 4 N=2 N=2

SIL 3 N=1 N=1

SIL 2 N=0 N=1

SIL 1 N=0 N=0

TABLE 2.5: Hardware fault tolerance required for SIL [7]

Sometimes, for type A elements only, if a hardware fault tolerance greater than 0 is
required, probably it is advisable to change the architecture with a safer one with
reduced hardware fault tolerance.

Apart from the routes, part 2 of the standard provides also some techniques and
measures that shall be used in order to prevent the introduction of faults during the
design and development of the hardware and software of the E/E/PE safety-related
system. In the case a fault is detected, the part sets the requirements for the be-
haviour of the system.

After the design and development phase, an adequate documentation must be
produced in order to prove that the E/E/PE safety-related system has reached the
required SIL for the safety functions taken in consideration. The documentation
should include: conditions of use during the test, impact analysis on the difference
between the intended operation and the previous operation experience with related
demonstration of equivalence, satisfactory evidence that elements not covered by
previous demonstration cannot affect the SIL of the system.
Then, the E/E/PE safety-related system shall be integrated according to the speci-
fied E/E/PE system design and shall be tested according to the specified E/E/PE
system integration tests. The next task requires to test and evaluate the outputs of a
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given phase to ensure correctness and consistency with respect to the products and
standards provided as input to that phase. The verification process shall be planned
concurrently with the development, for each phase of the E/E/PE system safety life-
cycle, and shall be documented. Lastly, it is necessary to validate that the E/E/PE
safety-related system meets all the requirements for safety in terms of the required
safety functions and safety integrity. The validation process (referred to both hard-
ware and software) is carried out following a prepared plan and providing simulta-
neously an appropriate documentation. To facilitate this task, a consistent group of
suggested techniques and measures is provided in Annex B of Part 2 of the standard.

Once the E/E/PE safety-related system is validated, the standard requires to pro-
vide procedures to ensure that the required functional safety of the system is main-
tained during operation and maintenance, and also procedures to make corrections,
enhancements or adaptations to the system, always ensuring that the required safety
integrity is achieved and maintained. Every modification shall be documented ade-
quately.

In annexes of this part of the standard, many techniques and measures to adopt
during the development and maintenance of E/E/PE safety-related systems are
listed. In particular as regard hardware safety integrity, in Annex A (not reported
in this documentation), Table A.1 provides the requirements for faults or failures
that shall be detected by techniques and measures to control hardware failures, in-
stead Tables A.2 to A.14 support the requirements of Table A.1 by recommending
techniques and measures for diagnostic tests. Also techniques and measures recom-
mended to reach a certain SIL are reported in other tables. In Annex B, techniques
and measures to avoid systematic failures during the different phases of the lifecycle
are presented, categorising the failures in before or during system installation and
in after system installation. Annex C is useful to determine the diagnostic coverage
and to calculate the SFF of a hardware element. Finally, Annexes E and F set some
requirements and provide techniques and measures for the development of ICs with
on-chip redundancy and ASICs.
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Chapter 3

Radiation environment

Failures caused by radiation is one of the most challenging issues arising in the last
decades. In fact, nowadays electronic systems are operating in a number of hostile
environments. When operated in these environments, solid-state devices and ICs
may be directly struck by photons, electrons, protons, neutrons or heavy ions, caus-
ing alteration of their electrical properties and consequently failure of its operation.
Such a scenario may be a danger in some circumstances, such as in aerospace and
avionic applications, high energy physics experiments, nuclear plants, and military
environments. Moreover, this is relevant also for medical diagnostic imaging and
therapy, industrial imaging and material processing [8].

Radiation that affect electronic systems come from Sun (solar wind and solar
particle events), galactic cosmic rays (and related interactions with atmospheric el-
ements), radiation belts (planets with magnetic fields), and radioactive impurities
and materials [9]. They are present both in space and in Earth, obviously in different
doses and arising different kinds of problem.

Regardless of the environment, radiation effects in electronic devices can cause
several kinds of problem (or even damage), both reversible or irreversible, leading
to transient or permanent errors. In very critical scenarios, it is crucial to mitigate
and solve both of them. Anyway, the objective of this thesis work is to be tolerant to
transient errors, so major focus is posed on them and the related causes. Other kinds
of error are rapidly described.

3.1 Radiation effects

The effects of radiation on electronic components can be divided into two main
classes: Total Dose (TD) effects (also called cumulative effects), which lead to a pro-
gressive degradation of semiconductor devices characteristics (e.g. electron/hole
mobility, oxide properties, etc), and Single Event Effects (SEEs), which can lead to
destructive (e.g. latch-up) or non-destructive (e.g. bit flip) damages due to charge
deposition induced by a single particle. So, SEEs occur in a stochastic way and are
related only to a small part of the device since caused by single particles, while TD
is cumulative and may become visible only after some time since it depends on the
duration of exposure to radiation which uniformly affect the whole device, because
it results from the effect of several particles randomly hitting the device for the en-
tire exposure interval [8]. It is evident that TD is more dangerous than SEE, in fact
the first one causes hard errors (permanent physical damages), while the latter can
cause soft (loss of information) and hard errors [10].
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3.1.1 Cumulative effects

Cumulative effects are those ones deriving from the progressive exposure of elec-
tronic devices to radiation, so they are usually related to long-term changes in de-
vices. The consequences, at device level, can be the generation of trapped charges
in insulators, interface traps, and defects in crystal lattice. These are effects which
lead to a permanent drift of device characteristics, resulting in malfunctioning of the
entire electronic system that needs to be repaired (or substituted). Generally, TD ef-
fects are serious concerns in harsh radiation environment such as in the space, and
they are almost negligible in human living environment [10].
This kind of effects can be subdivided again into two categories: Total Ionizing Dose
(TID), and Total Non-Ionizing Dose (TNID), also called Displacement Damage (DD),
effects. Both of them, as previously mentioned, lead to hard errors.

Total Ionizing Dose (TID)

This effect takes place thanks to the ionising energy transferred by radiation to com-
ponent materials. The energy is exploited to generate electron-hole pairs (free charge
carriers), which diffuse or drift to other locations of the device where they may
get trapped (typically in dielectric layers), leading to unintended concentrations of
charge and parasitic fields. This produces several effects on the device character-
istics, such as flat-band and threshold voltage shifts, leakage currents and timing
skews [11].
TID affects mainly devices based on surface conduction, so it is of concern for ICs,
since they are mainly fabricated using MOSFET devices. This kind of damages is the
primary effect of exposure to X- and γ-rays and charged particles [8].

Total Non-Ionizing Dose (TNID)

This effect is caused by the interaction of energetic non-ionizing particles, such as
neutrons, protons, and electrons, with device component atoms. Incident energetic
particles scatter off lattice ions, locally deforming the crystal lattice and creating per-
manent defects in it. This gives raise to changes in semiconductor electronic proper-
ties. DD effects are strictly dependent on the incident particle type, incident particle
energy, and target material.
Also this effect is cumulative as TID, but differently this effect is mainly concerned
to bulk conduction based devices (e.g. BJT, JFET, etc) [8].

3.1.2 Single Event Effects

Single event effects are caused by the charge deposited by a single ionizing particle.
More in detail, the energetic incident particle travels through a device region and
loses energy by ionizing the device material and creating electron-hole pairs (free
charge carriers). If an amount of charges higher than a threshold is collected at a
device junction, then a short-lived but intense current pulse that can modify the
electric state of the nearby elements (circuit level effects) is produced [12]. In other
words, a SEE is produced.
The SEE is produced on sensitive nodes. Sensitivity of nodes is strictly linked to the
charge collection threshold for the single event, that is called the critical charge. So, if
the critical charge for a device is reduced (more sensitive node), then its Single Event
Rate (SER) is increased. The critical charge depends on several factors, such as power
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supply values, temperature and also clock frequency (even if some experimental
results disagree) [12]. Generally, the probability for a SEE to occur is measured with
the cross-section parameter (σSEE), expressed as:

σSEE =
N. o f events

f luence

where f luence is expressed in Nparticles/cm2, so σSEE is expressed in cm2.

However, SEEs are classified into destructive (hard errors) or non-destructive
(soft errors). The first type of errors includes Single Event Latch-up (SEL), Single
Event Gate Rupture (SEGR), and Single Event Burnout (SEB). The latter, instead,
includes Single Event Transient (SET), Single Event Upset (SEU), and Single Event
Functional Interrupt (SEFI).

SET (non-destructive)

A SET (Single Event Transient) is a temporary voltage excursion (voltage spike) at a
node in an IC. In combinatorial digital circuits, this leads to erroneous data values
propagation through gates. This event can occur also in analogue circuits.

SEU (non-destructive)

Similar to SET, in SEU (Single Event Upset) the voltage excursion induces the change
of state of a storage element (e.g. flip-flop, latch, SRAM cell, etc). SEU produces bit-
flip in memories and sequential logic.

SBU, MBU & MCU (non-destructive)

These errors are subcategories of SET and SEU. Single Bit Upset (SBU) produces a
single bit-flip in the storage component. Multiple Bit Upset (MBU) includes two or
more error bits in the same word of the storage component. Multiple Cell Upset
(MCU) means that two or more error bits in different cells of the storage component
occur. Typically, when MCU takes place, the corrupted cells are physically adjacent.

SEFI (non-destructive)

In complex devices, such as microprocessors or modern memories, SETs or SEUs
may not be directly detected when occurred. This leads the device to continue to
operate but in an unpredictable manner. At this point, the device (if well-designed)
may go to recovery state, reset, lock-up, or otherwise malfunction in a detectable
way. So, a SEFI (Single Event Functional Interrupt) is an SEE that places a device
in an unrecoverable mode, often stopping the normal operation of the device. This
kind of errors does not damage the device, but may cause loss of data and complex
recovery actions.

SEL (destructive)

SEL (Single Event Latch-up) error provides for the activation of parasitic bipolar
structures (mainly existing in CMOS circuits), with all the negative consequences
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that may result also destructive for the device because of thermal effect (high-current
flows through the circuit). An SEL can only be solved by power cycling the device.

SEGR (destructive)

SEGR (Single Event Gate Rupture), or Single Event Dielectric Rupture (SEDR), is
barely the rupture of gate oxide (or any dielectric layer) occurring especially in
power MOSFETs caused by a single ion strike. The energy transfer and damage
induced by energetic heavy ions in dielectrics is so fast in comparison to the time re-
sponse of any electrical protection (e.g. filtering), that there is no possible protection
against this kind of error [11].

SEB (destructive)

SEB ( Single Event Burnout) is the triggering of the parasitic bipolar structure in
a power transistor (typically n-channel), accompanied by regenerative feed-back,
avalanche and high current condition. SEB is potentially destructive unless suitably
protected. This error is not so frequent in ASICs and FPGAs [11].

3.1.3 Fault attacks

Besides SEEs caused by physical causes, SEEs can also be caused on purpose. At the
beginning, this kind of fault happened accidentally. But in a short time, fault attacks
have been exploited to disturb the functioning of a device or retrieve secret informa-
tion intentionally. The most common techniques to inject a fault are: introduction
of clock glitches or voltage spikes, underpowering the system, temperature-based
attacks, and light, radiation or magnetic attacks [13].

3.2 Space vs Terrestrial environment

The Sun, with its radioactive events such as solar flares, coronal mass ejections, and
solar winds, is one of the main source of radiation. Other sources of radiation are ra-
diation belts of planets with magnetic fields, or come from outside the solar system
and produce galactic cosmic rays (their true nature is still under investigation).

Surely, space environment is much more bombarded by radiation than the Earth
which is protected by its atmosphere (particles flux in Earth is many orders of mag-
nitude lower than the one in space). Anyway, while in the past radiation effects
were a concern only for applications devoted to operate in space vessels or parti-
cle accelerators, today they are considered a critical problem also for standard sys-
tems operating in normal condition at sea level. In fact, energetic charged particles,
mainly electrons, protons and heavy ions, are encountered in interplanetary space
and also in the magnetosphere of planets, including the Earth’s one. Cosmic radia-
tion bombards the Earth like a rain of charged particles, but only the most energetic
ones reach sea level, the less energetic ones are reflected by the earth’s magnetic field
or absorbed in the atmosphere, creating in turn a continuous rain of secondary par-
ticles. Actually, the main type of energetic particles overcoming the atmosphere is
neutron. Even though these particles have no electric charge (so no ionizing effects),
they are capable to ionize materials by means of secondary mechanisms, e.g. hitting
atoms that are then ejected from the lattice becoming the new ionizing agents.
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The first reported occurrence of SEE on Earth due to cosmic rays (95% neutrons) [9]
was in 1979 and was reported by J. F. Ziegler & W. A. Lanford [14]. Moreover, alti-
tude and latitude influence the level of neutrons flux [12]. The flux assumes values
ten times higher every 3000m of altitude with respect to the value at sea level, and
values 5 times lower on the Equator than on the Poles.

Another source of radiation is the device itself. During the manufacturing pro-
cess, traces of radioactive elements can contaminate the production chain and the
device itself becomes a source of α-particles. One of the first occurrences of this kind
of event was reported in 1978 by T. C. May & M. H. Woods [15]. The α-particles
were emitted by the radioactive decay of uranium and thorium which were present
in parts per million levels in packaging materials and solders of DRAMs. When the
particles penetrate the die surface, they can create enough electron-hole pairs near a
storage node causing random SEEs.

However, the probability of a basic device experiencing an SEE at sea level is
very low. Nevertheless, there are some particular cases where the probability is not
negligible anymore or cases where the probability of errors must be null. For exam-
ple, servers, workstations, extended systems, or medical devices such as pacemakers
that cannot allow any error [12]. This reflects on the possibility for electronic devices
at sea level to incur only in SEEs, since they are caused by single particles, and not in
TD effects, which are related to cumulative events. For achieving high reliability of
electronic components (e.g. processors), so designers need to pay attention to SEEs.
Only for particular medical devices, TD tolerance is required, for example for chip
in medical electronic tags because they are sometimes sterilized by γ-rays .

As regard space environment, electronic equipment on board spacecrafts is ex-
posed to a multitude of highly energetic particles (protons, heavy ions, etc) coming
either from the Sun activity or from the galaxy core. In this scenario, radiation is ca-
pable to penetrate spacecrafts and ICs packaging causing any of the possible effects
previously described (both destructive or non-destructive). Space is a very hostile
environment for electronic devices, both for the high levels of radiation and for the
fact that generally spacecrafts live in space for very long time. So, TD effects have a
not negligible probability to occur. Moreover, radiation in space are highly dynamic,
therefore design and test of electronic components requires much effort, since high
uncertainty is present [11].

3.3 Solutions against radiation effects

In order to face the problems caused by radiation effects, several solutions can be
adopted, ranging from technology to circuit and from design to system level. Some
of them aim to decrease the sensitivity to radiation, while others aim to reduce the
probability of error caused by radiation effects.

TD effects are not of concern for this thesis work, so related solutions will be only
touched upon. For example, as regard TID effects occurring in MOS transistor, de-
vice parameters affected by this event are threshold voltage, that is a key parameter
related to circuit power consumption and speed, and leakage current. To overcome
the problem of the increase of power consumption, usually designers may add sig-
nificant margin to their power requirements to allow the digital circuit to work still
properly despite TID [16]. A solution against TNID, instead, could be the use of
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shields to reduce the impact of electrons and low-energy protons, but generally this
does not reduce the SER caused by high-energy cosmic rays. On the contrary, thick
shields can increase the SER rate because of the creation of multiple secondary par-
ticles due to interactions between the cosmic rays and the shield material [16].

As regard SEEs, many solutions can be applied at different levels. In the follow-
ing subsections, some of them are presented classified on the basis of the application
level.

3.3.1 Technology-based solutions

A first general solution at technology level may be the avoidance of using elements
quite sensitive to thermal neutrons (such as Boron) during the fabrication process of
ICs. In fact, devices without such elements seem to have SER about ten times lower
than those incorporating the elements [12].

Another solution exploiting material properties aims to reduce the initial electron-
hole density so that few charge can be generated and collected at device nodes. This
is reachable by using material with a large bandgap [9].

Increasing the node capacitance so that more charge needs to be collected to pro-
duce a dangerous voltage/current spike could be another solution but with circuit
performance penalty [17].

The use of Silicon-on-insulator (SOI) technology instead of the bulk one may
be another solution that gives raise a consistent reduction of SER. More in detail,
the use of fully-depleted SOI technology leads to a SER 50 times lower than that of
the bulk technologies [12]. This big reduction mainly results from the fact that SOI
technology is immune to destructive latch-up thanks of the insulating layer.

3.3.2 Circuit solutions

Focusing on SRAM cells, a solution to mitigate SEEs is the introduction of resistive
paths to slow the regenerative feedback response and restore the memory cell con-
tent in case of error [12]. Other solutions involve the use of extra transistors (spatial
redundancy).

Similar solutions have been implemented to be applied to other storage elements
(e.g. DRAM, latch, etc). For example, a popular technique is the dual-interlocked cell
(DICE) topology for latch. The DICE has four tri-state inverting stages connected in
a loop, resulting in four internal nodes that store the data. If one of the nodes is
affected by the SEE, then the rest of the circuit takes action to solve it. [16]

3.3.3 Design solutions

The solutions presented in this subsection are the most interesting ones for the scope
of the thesis, since implementable by hardware design. More focus will be posed on
them in the next chapter.

In the case of digital circuits, a typical and simple solution exploits logic redun-
dancy. Replicating (two, three, five times) components or entire modules, it is possi-
ble by means of a majority voting to detect and eventually correct the induced error.
When a replica of the whole device or another device with the same functionalities
is used to realize redundancy, the solution is called lock-step.
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Another kind of redundancy to reduce SEEs is the temporal redundancy. Tem-
poral redundancy is based on the multiple execution of the same operation and the
subsequent majority voting.

A solution used to mitigate errors in memory elements, instead, involves the use
of extra bits to add extra information to the stored data (e.g. parity bits, Hamming
code, etc). Extra information give the possibility to detect and/or correct one or
more errors occurring at the same time. More extra bits are added, more errors can
be detected and/or corrected.

3.3.4 System solutions

Solutions at system levels involve the use of software to mitigate errors. The idea
of these solutions consists in modifying the program running on the device (e.g.
microprocessor) to self-detect potential errors. This goal can be achieved by adding
check and correction capabilities, such as the duplication of data and instructions,
temporal redundancy, etc. For example, a solution may requires to periodically save
the context and restore the last save when an error is detected.
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Chapter 4

Fault Tolerance hardware
techniques

The fault tolerant techniques used in hardware rely on the concepts of hardware re-
dundancy, information redundancy and time redundancy. The use of redundancy
can provide additional capabilities within a system, but can have very important
impact on the system’s performance, especially as regard area occupation, power
consumption, and computation time. For these reasons, a number of different vari-
ants of fault tolerant techniques exist in order to focus better on some aspects rather
than others, according to the requirements of the design.

4.1 N-modular redundancy

The most common technique exploiting the hardware redundancy is the N-modular
redundancy, that is the N-times replication of the targeted module, e.g. ALU, de-
coder, combinatorial blocks, or also sequential blocks. Basically, this technique is
used with a passive approach, which means that faults are masked when possible,
but it can be used also with an active (actually hybrid) approach, in the sense that the
system needs to activate another unit to mask the fault after its detection. Regardless
of the approach, this technique requires a majority voter downline of the replicas, in
order to vote the correct output. Depending on the number of replicas, the system is
provided with different fault tolerance capabilities: detection or both detection and
correction. An example of NMR with N=3, that is TMR, is shown in Figure 4.1.

If N is equal to two (Dual-Modular Redundancy, DMR), then the system is ca-
pable only to detect when errors occur. If N is equal or higher than 3, instead the
system is capable to detect and possibly also correct errors when they occur. In fact,
taking into account the TMR configuration, if the error occurs only in one replica
(single error case), the correction surely takes place. But, if errors occur differently
in all the replicas, only error detection is allowed. So, TMR ensures 100% error cor-
rection capability in case of single or multiple error in only one replica. In order
to reach tolerance against errors occurring in more replicas at a time and reach an
higher overall reliability, an higher value of N needs to be chosen. Obviously, an
higher N means higher costs, especially in terms of area and power consumption.
So, it is important to choose accurately the N replicas to use, taking into account both
correction/detection capabilities and overall hardware performance.

A lot of variants of NMR technique for reducing the overhead can be imple-
mented, optimizing different points. A common version of NMR tries to avoid hav-
ing all replicas online concurrently. This exploits an hybrid approach since some
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FIGURE 4.1: TMR general implementation

replicas are always used to detect a fault, while the spare ones are only powered
on when necessary, such as to resolve a discrepancy seen in the output of the active
systems. For example, the TMR system could be implemented as a DMR system
that activates a spare unit only when the outputs of the active units are not in agree-
ment. This solution reduces the cost in terms of power consumption, and increases
the lifetime of the units that are powered down. As a cons, the proposed technique
probably affects the computation time, since the spare unit is activated only after
having detected an error.

As regards the majority voter, two basic implementations are possible. The first
one is based on one instance of the voter, so only one output is voted and sent to
the next block in the circuit. The other implementation provides N instances of the
voter, because the majority gate itself could fail so it needs to be protected applying
redundancy as well. In this way, N outputs are generated and sent to the next block,
as shown in Figure 4.2. This implementation with redundant voter is called Full
NMR.

The last way of implementing the voting block makes particular sense if the fol-
lowing block in the circuit is redundant as well. By means of this fault tolerant tech-
nique, an even higher reliability, with respect to the basic implementation, is reached
at the expense of area and power. An example of multi-stage full TMR is shown in
Figure 4.3.

4.2 Lockstep

The lockstep technique exploits the NMR under another perspective. It is based
on the "replication" of systems which work independently and in parallel running
the same program. In this case, with the term replication is meant the instance of
different systems capable do the same operations. Usually, the Lockstep technique
is applied to processors. The term “lockstep” arises from the military field, where
it is used to indicate the “synchronized walking, in which marchers walk as closely
together as physically practical” [18].
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FIGURE 4.2: Full TMR implementation

FIGURE 4.3: Multi-stage full TMR example

The approach to keep the system safe is a bit different from the NMR technique.
Faults are always recognized by comparing results deriving from the units, but the
correction is made in a different way. If the system is composed by two units (that is
the most common case, since the processor is a very expensive unit), these are con-
tinuously interrupted at predefined points for a consistency check. In case the result
differ, then the entire system is recovered restarting from the last correct checkpoint,
that is the most recent state where the system was fault-free.
If there are more than two units, instead, the fault can be masked simply by voting
the results, as in TMR for example, or restarting again from the last correct check-
point.

The checkpoint is a concept really important for this technique. Context info are
stored during this operation in order to be able to unequivocally force the state of
the system in case of faults occurrence. Checkpoint properties strongly determine
the performance of the system. For each checkpoint, in fact, context info need to be
stored, typically requiring more memory area than the normal storage blocks. More-
over, each context saving slows down the program execution. Therefore, a trade-off
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should be made between the number of contexts to be saved and the frequency of
checkpoints insertion [19].

Applying the Lockstep technique, the operating clock frequency is poorly af-
fected. What is mainly affected is the total execution time, since time is wasted
performing checkpoint operations and eventually restoring the context.

4.3 Time redundancy

Time redundancy, differently from the techniques presented up to here, attempts to
reduce the amount of extra hardware typically used (like applying the TMR) at the
risk of spending additional time to perform the operation. In fact, this technique is
based on the repetition of computations in time and not on the “repetition” (replica-
tion) of hardware. Here, only a small amount of extra hardware is required in order
to store temporary results and to compare them.
This technique, obviously, heavily worsens the execution time, so it is suitable for
application with no realtime constraints.
In Figure 4.4, a block scheme of this technique is depicted, highlighting the fact that
the module is the same, while the input and the output are taken at different time
instants.

FIGURE 4.4: Time redundancy block scheme against transient errors

Time redundancy allows also to mitigate permanent faults. This version of the
technique relies on different data encoding used to perform the operation. This
means that a different encoding is applied to inputs at each operation repetition,
so as to allow faults in the hardware to be detected. If the same encoding is applied
in all the repetitions, the results will be all affected in the same manner and no er-
ror will be detected. Applying different encoding, permanent faults are revealed, if
present, because bits assume a different meaning at each repeated computation.
In Figure 4.5, a block scheme of this variant is shown, assuming that the computa-
tion is repeated three times and, for each computation, input date are encoded in a
different way.
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FIGURE 4.5: Time redundancy block scheme against permanent er-
rors

4.4 Watchdog

Due to its very limited cost, timing checks by means of “watchdog” timers are the
most widely-used concurrent error detection mechanism. The concept of a watch-
dog timer is based on the lack of an action intended as a consequence of a fault.
A watchdog is a timer that must be reset periodically within the timer expires. The
basic idea is that the system is fault free if it is capable to repetitively carry out a
function, such as setting a timer. The frequency to reset the timer is application de-
pendent. If the timer is not reset in time, it is very likely that the system went in a
wrong state because of a fault and so it is incapable to perform the reset operation.

This is a very low-cost technique, so it can be applied in any system to improve
the reliability with a minimum hardware overhead. Moreover, the watchdog timer
is applicable both in hardware and in software.

4.5 Error Detection and Correction code

Error Correction Code is a general fault tolerant technique based on information
redundancy and used to protect storage blocks, such as memory and registers. It
exploits additional info added to the data in order detect or correct corrupted bits
because of one or more faults. There exist several different techniques of ECC each
one with different properties that basically can be divided into two categories [20]:

• Block codes: these codes work on fixed-size blocks (packets) of bits or sym-
bols of predetermined size and are generally decoded in polynomial time. The
different blocks are independent of each other.

• Convolutional codes: these codes work on bit or symbol streams of arbitrary
length.



28 Chapter 4. Fault Tolerance hardware techniques

Convolutional codes are out of scope for this thesis project. The most useful ECCs
for ASIC design are the block codes since the data width is predetermined at the de-
sign stage. The most used are Reed-Solomon Code, Golay, BCH, Multidimensional
parity, and Hamming codes. The Hamming code is the first ECC invented in 1950
by the American mathematician R. Hamming [21].

The notation used to express properties of ECC is the following:

( n, k, m)

where n is the length of the code word, k is the length of the data word and m is
the length of the check word. Beside these variables, another important parameter
for ECC is the minimum Hamming distance (dmin) required. The Hamming dis-
tance between two data of equal length is defined as “the number of bit positions at
which the corresponding bits are different”. In other words, it measures the mini-
mum number of substitutions required to make one data equal to the other, or the
minimum number of errors that could have transformed one data into another one
still valid [22].

Moreover, ECCs are characterized by detection and correction capabilities, ac-
cording to the maximum number of faults that it is possible to detect and correct.
These properties depend on the minimum Hamming distance between any two
codewords and an higher number of detectable/correctable faults implies a wider
check word, so more hardware.
The maximum number of detectable faults is equal to dmin − 1, while the maximum
number of correctable faults is equal to b(dmin − 1)/2c. For example, with dmin = 0
no errors are detectable/correctable, with dmin = 3 two errors can be detected and
one can be corrected, and so on.

4.5.1 Parity bit

The use of the parity bit [23] allows to detect only a single fault and no correction is
possible. This technique requires a dmin = 2 and requires just a single additional bit
as check word regardless of the data width. The technique has two versions: Even
parity or Odd parity.

In the case of even parity, for a given data word, the occurrences of bits at the
logic status 1 are counted. If that count is odd, the parity bit value is set to 1, making
the total count of occurrences of 1s in the whole code word (data word + parity bit)
an even number. If the count is already even, the parity bit is set to 0.

In the case of odd parity, the coding is reversed. If the count of bits with a value
of 1 is even, the parity bit value is set to 1 making the total count of 1s in the whole
code word an odd number. If the count is odd, the parity bit is set to 0.

4.5.2 Hamming code

The Hamming code is an ECC with the property to correct up to one error and detect
up to two errors, so it has three variants: SED, SEC and SECDED.

The SED version is simply the use of the even parity bit. So, a single bit is added
to the data word.

The SEC version is more complex and requires the use of m bits, on the basis of
the data word width. The m parity bits are placed at the positions with an index
equal to a power of two, and the rest of the positions are used for the bits of the
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data word. In this way, the code word is composed by a mix of data and parity
bits, placed from the first to the k-th position. For the calculation of parity bits,
the binary representation of the position number is considered, remembering that
position numeration starts from 1 in this case. To calculate the i-th parity bit, all the
bits of the code word in a position whose binary representation has a 1 in the i-th
least significant bit are taken into account. As an example, for the 1st parity bit, bits
in positions 1, 3, 5, 7, and so on are evaluated since their binary representation has
a 1 in the least significant position. For the second parity bit, bits in positions which
have a 1 in the 2nd least significant bit position of the related binary representation
are considered and they are bits in positions 2, 3, 6, 7, and so on. For clarity, for the
third parity bit, bits in positions 4, 5, 6, 7, 12, 13, and so on, are evaluated since they
have the third least significant bit in their binary representation at 1. At the decode
stage, parity bits are evaluated against the parity of the related bits in the code word.
If the parity check matches, the result is a 0, otherwise it is a 1. The results of these
checks are called syndrome bits and form a code (error code), whose value indicates
where the error has occurred. Finally, the correction takes place by flipping the bit
in the code word at the position stated by the error code.
According to the algorithm described up to now, syndrome bits must be sufficient
to determine the position of the error (that can have k + m positions) and to state
that no error has occurred. In total, k + m + 1 values need to be represented by the
syndrome bits, and being the syndrome bits as wide as the parity bits, this means
that the following condition must be satisfied to properly select the number of parity
bits:

2m ≥ k + m + 1

The SECDED version is a mix of SEC and SED, in the sense that parity bits are
used like for SEC, and an extra even parity bit is added like for SED. So, for this
version of the Hamming code, the code word is one bit wider with respect to the one
of SEC version (mSECDED = mSEC + 1). The capabilities of this technique are single
error correction and double error detection, so three cases need to be distinguish: no
error, single error corrected, and double error not corrected.
No error is given if all the check bits plus the parity bit are correct, so the error code
is zero. Single error corrected is given if at least a syndrome bit is not zero and the
extra parity bit fails. Double error detection, instead, is given if at least one of the
syndrome bits is not zero and the extra parity bit is satisfied.
In this case, considering that m includes the parity bits and the overall parity bit, the
total number of parity bits must meet the following condition:

2m−1 ≥ k + m

From a mathematician analysis of this ECC, the Hamming code is a linear code
and so it is possible to perform encoding and decoding operations by exploiting the
multiplication of the input (the data word for encoding, the code word for decoding)
by the so called generator (or parity-check) matrix or by a part of it. The generator
matrix is composed by m rows and k+m columns. More in detail, the first k columns
are referred to the data word, the last m ones to the parity bits.
Parity bits, in the encoding stage, are generated by multiplying the data word (k bits
wide) by the sub-matrix of the generator matrix, composed by m rows and the first k
columns. The result of this operation is a vector of m bits which are the parity bits to
insert in the code word. In the decode stage, instead, the code word (k+m bits wide)
is multiplied by the entire generator matrix producing a vector of k bits as well, that
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are the syndrome bits.
The generator matrix, obviously, needs to satisfy some properties. Firstly, as

stated before, it is important to see the Hamming parity-check matrix as composed
by two matrices. The first one is referred to the parity bits and it is an identity matrix.
The identity matrix, actually, contains for each column the binary representation of a
power of two (1, 2, 4, 8, and so on). The second matrix is referred to the data bits and
has for each column the binary representation of the remaining ascending numbers
(3, 5, 6, 7, 9, and so on). In the case the overall parity bit is used, an additional rows
with all the elements at 1 is added to the generator matrix.

4.5.3 Hsiao code

In 1970, Hsiao proposed its variant of the Hamming code, which aimed to optimize
the number of 1s in the parity-check matrix. In this way, less bits need to be evalu-
ated to calculate and check the parity, resulting into faster calculations.

This code works in a slightly different manner with respect to the Hamming
code. The first difference is about the parity-check matrix that must satisfy different
properties. For the sub-matrix related to the parity bits, the identity matrix is used
here too. For the part related to the data bits, instead, a different logic rules. In fact,
in this case, the columns of this sub-matrix must contain only an odd number of 1s
and must be all different. Columns are filled in order to minimize the number of
1s, so are filled with combinations of 3-out-of-m, 5-out-of-m, 7-out-of-m, and so on
until all the k columns are full. If the column-vectors are selected in a way that the
number of 1s in each row is kept close to the average number of 1s in a row, then it
is possible to reduce the number of required logic gate levels of the hardware [24].
The other difference is that the overall parity check is not required. This difference
together with the properties of the parity-check matrix means that the three cases (no
error, single error corrected and double error detected) are distinguished in another
way. No error is given always if all the syndrome bits are zero. Single error corrected
is given if the syndrome bits are not zero and the overall parity calculated on them is
one. The position of the error is obtained by comparing the syndrome bits with the
column-vectors in the parity-check matrix. The i-th position of the matching column
gives the position of the wrong bit in the code word. Double error detection, instead,
is given if the syndrome bits are not null and the overall parity calculated on them
is equal to zero.

The Hsiao code is considered an optimized version of the Hamming code from
the hardware’s point of view. In fact, Hsiao’s encoder and decoder involve fewer
logic gates (with respect to the Hamming’s ones) leading to a lower occupation area
and possibly also less gate levels, which means lower delay.

In Table 4.1 and Table 4.2, some hardware characteristics resulting from applying
Hamming and Hsiao codes are presented in order to have a quick comparison of
them. These values are extracted from the paper published by G. Tshagharyan et al.
[24], where the two ECCs have been compared through an experimental analysis.
The Table 4.1 report values related to the number of logic levels used to implement
the encoder and decoder of the ECC. This gives an approximate idea of the delay
caused by applying the ECC. The Table 4.2, instead, reports the area occupied by the
encoder and decoder for each ECC.
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ECC type
Data Word

Width
Code Word

Width

Encoder
Logic
Levels

Decoder
Logic
Levels

Hamming SEC

8 12 2 6

64 71 5 14

310 319 12 17

Hamming
SECDED

8 13 2 6

64 72 6 15

310 320 14 18

Hsiao SECDED

8 13 2 8

64 72 5 13

310 320 10 15

TABLE 4.1: Hamming vs Hsiao codes: number of logic levels [24]

ECC type
Data Word

Width
Code Word

Width
Encoder

Area [µm2]
Decoder

Area [µm2]

Hamming SEC

8 12 7.78 16.38

64 71 70.81 148.21

310 319 350.28 573.92

Hamming
SECDED

8 13 8.92 19.39

64 72 82.06 152.57

310 320 407.26 582.06

Hsiao SECDED

8 13 9.02 20.03

64 72 80.92 137.49

310 320 402.64 535.90

TABLE 4.2: Hamming vs Hsiao codes: area occupation [24]

The results of this comparison show that Hamming code is more efficient for smaller
data words, while Hsiao code has better performance for larger data sizes despite its
complexity. This means that the proper ECC code should be selected depending on
the specific application scenario.

4.5.4 Cyclic Redundancy Check code

The Cyclic Redundancy Check (CRC) is an error-detecting code commonly used in
digital networks and storage devices and it is based on cyclic codes. The data pro-
tected by CRC code have a short check value appended, based on the remainder of
a polynomial division of their contents, that adds only redundancy but not informa-
tion. On retrieval, the calculation is repeated and, in the event the check values do
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not match, specific action are taken against data corruption. CRCs can be used also
for error correction [25].

The algorithm exploits the repetitive division by a binary polynomial (called gen-
erator polynomial) to generate a check code, that is the reminder of the division. The
generator polynomial is represented in binary format, in the sense that the coeffi-
cients can be only 1 or 0. The algorithm starts with the data (k bits wide) with the
check code initialized to 0 (m bits wide) appended in the less significant positions,
that is the dividend, and the (constant) generator polynomial (n bits wide), that is
the divisor. The widths of the divisor and of the check code depend on the order of
the polynomial itself. Assuming x the order of the polynomial, n is equal to x + 1,
while m is equal to x. In this way, the division of the dividend (k + m) by the divisor
(m + 1) is always possible. At the end of the multiple divisions, the output is a string
of 0s in correspondence of the data bits position and the reminder in correspondence
of the check code. Now, the calculated check code is appended to the original data
ensuring error detection capability. In fact, at the decoder side, the same operations
are performed taking into account the data and the received check code (not initial-
ized to 0). If the reminder after the multiple divisions is equal to 0, then the data is
valid, otherwise an error has occurred [26].
The most commonly used polynomial are CRC-8, CRC-16, CRC-32, and CRC-64,
respectively 9, 17, 33, and 65 bits wide [25].
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Chapter 5

RISC-V core

RISC-V (pronounced "risk-five") is “a free and open ISA (Instruction Set Architec-
ture) based on RISC (Reduced Instruction Set Computer) principles enabling a new
era of processor innovation through open standard collaboration” [27]. The RISC-V
ISA is provided under open source licenses and this is its major strength. In fact, no
patents were filed related to RISC-V, as the RISC-V ISA itself does not represent any
new technology, but it is based on computer architecture ideas that date back at least
40 years [28].
The RISC-V ISA project was originally developed in 2010 by researchers from the
Computer Science Division at the Electrical Engineering and Computer Science de-
partment of the University of California, Berkeley, along with many volunteer con-
tributors not affiliated with the university. Despite other academic designs are gen-
erally optimized only for simplicity of exposition, the RISC-V designers aimed to
make the RISC-V ISA usable also for practical computers [29]. Now, the ISA is gov-
erned by the RISC-V Foundation.
Processors based on RISC-V ISA are very versatile. The ISA supports three word-
widths, 32, 64, and 128 bits, so it can be used in several ways and exploited for
different purposes, from supporting basic or complex operating systems (such as
Linux) to supporting supercomputers with vector processors. This makes RISC-V
cores well-liked also from an industrial point of view and it is the reason why it is
spreading more and more worldwide.

5.1 RISC-V overview

The most common architectures of RISC-V core are characterised by five stages
pipeline to improve the performance, but there are also other versions with a lower
or higher number of stages of pipeline. The traditional five stages are:

• IF: instruction fetch from memory

• ID: instruction decode and register read

• EX: execute operation or calculate address

• MEM: access memory operand

• WB: write result back to register

Cores basically implement the Base Integer Instruction Set (I) plus some optional
extensions [30]. The Base Integer Instruction Set contains integer computational in-
structions, integer loads, integer stores, and controlflow instructions.
Actually, RISC-V is a family of related ISAs, of which there are currently four base
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ISAs according to the width of the integer registers and the corresponding size of
the address space and by the number of integer registers. They are [30]:

• RV32I: which provides 32-bit address space

• RV64I: which provides 64-bit address space

• RV128I: which provides 128-bit address space

• RV32E: (to support small microcontrollers) which provides 32-bit address spaces
and has half the number of integer registers

For each family, which basically implements the “I” instruction set by constraint,
additional standard extensions are defined to provide further functionalities. For
instance, the most used ISA extensions are Integer Multiplication and Division (M),
Atomic Instructions (A), Single-Precision Floating-Point (F) (IEEE 754-2008 compat-
ible), Double-Precision Floating-Point (D) (IEEE 754-2008 compatible), Compressed
Instructions (C), and so on.
By convention, RISC-V instructions are on 32 bits (4 bytes o 1 word) divided in fields
of regular sizes to make the hardware simpler. According to the type of instruction,
each field of the instruction assumes a particular function (explained in Figure 5.1).
Types of instruction implemented in the RISC-V ISA are:

• R-type: arithmetic instruction format

• I-type: load and immediate arithmetic

• S-type: store instruction format

• SB-type: conditional branch format

• UJ-type: unconditional jump format

• U-type: upper immediate format

FIGURE 5.1: RISC-V instruction formats [31] (“opcode”: operation
code – “rd”: destination register number – “funct3”: 3-bit function
code (additional opcode) – “rs1”: the first source register number –
“rs2”: the second source register number – “funct7”: 7-bit function
code (additional opcode) – “immediate”: constant operand, or offset

added to base address)

In Figure 5.1, it is easy to notice that the fields in each instruction type try to keep the
identical meaning as much as possible. This is a strength of RISC-V cores because
it leads to many improvements for what concerns area, power and delay, as well as
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ease of design.

Another important aspect of RISC-V ISA regards the register file. This essential
component requires 32 (or 16 for RV32E ISA family) integer registers of width de-
pendent on the ISA family (32-, 64-, or 128-bits) [32] and at least one write port and
two read ports. All the registers (named from x0 to x31) are defined general purpose
registers, even if some of them are used to serve specific functions, by convention.
Besides the “integer” register file, if “F”, “D”, or “Q” instruction sets are imple-
mented, 32 additional “floating-point” registers are required to store floating-point
values.
In the standard RISC-V calling convention [33], each integer and floating-point reg-
ister (named from f0 to f31) assumes a particular role described in Table 5.1.

Register Description Saver

x0 Hardwired to zero 0 —

x1 Return address Caller

x2 Stack pointer Callee

x3 Global pointer —

x4 Thread pointer —

x5-x7 Temporaries Caller

x8 Frame pointer Callee

x9 Saved registers Callee

x10-x11 Function arguments/return values Caller

x12-x17 Function arguments Caller

x18-x27 Saved registers Callee

x28-x31 Temporaries Caller

f0–f7 FP temporaries Caller

f8–f9 FP saved registers Callee

f10–f11 FP arguments/return values Caller

f12–f17 FP arguments Caller

f18–f27 FP saved registers Callee

f28–f31 FP temporaries Caller

TABLE 5.1: RISC-V calling convention register usage

The last specifications regard the memory. It is fundamental to know that RISC-
V applies Little-Endian rules (least significant byte at least address of a word) and
does not require words to be aligned in memory. Moreover, memory should be byte
addressable.

Finally, a basic architecture (including the controller) of the five stages pipelined
version of the RISC-V core is presented in Figure 5.2. Advanced versions with haz-
ard detection unit and forwarding unit are not described since they are out of the
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scope of the thesis work. Anyway, the presence of these units in RISC-V cores is
crucial to reach better overall performance.

FIGURE 5.2: Basic architecture of pipelined RISC-V core [31]
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5.1.1 RISC-V cores

Nowadays, several companies and universities have developed their own versions
of RISC-V core and SoC platforms. Some of them have even managed to fabricate
their chip, either available for sale or just for personal purposes [34].
A RISC-V core of great interest is the one developed by ETH Zurich and Univer-
sità di Bologna, the “RI5CY” core. It is provided also with SoC platforms (named
PULPino [35] and PULPissimo [36]), developed by the two universities, which make
the core more interesting and suitable for many purposes. It is now (since February
2020) contributed to OpenHW Group [37] and named “CV32E40P”.

CV32E40P is the core which is subjected to all the fault tolerant techniques that
will be developed in this thesis project. The choice of the core is motivated also by
a project previously developed in the scope of a university course in which PULPis-
simo platform with the RI5CY core has been mapped on the fpga Xilinx ZCU102
[38].

5.2 CV32E40P (RI5CY core)

CV32E40P [39] is a small and efficient, 32-bit, in-order RISC-V core with a 4-stage
pipeline written in SystemVerilog. It implements the RV32IMC, and optionally F,
ISA and Xpulp custom extensions [40] for achieving higher code density, perfor-
mance, and energy efficiency. Xpulp custom extensions support multiple additional
instructions, such as hardware loops, post-increment load and store instructions,
and additional ALU instructions that are not part of the standard RISC-V ISA.

In Figure 5.3, the block diagram of the core is depicted, where the main com-
ponents for each stage of the pipeline are highlighted, as well as the interface with
memory.

FIGURE 5.3: CV32E40P core block diagram [40]

The first obvious difference with other RISC-V cores is the number of pipeline
stages, that is four instead of five. Stages are IF, ID, EX, and WB. The MEM stage
is avoided since data memory is already addressed in the EX stage. The number of
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pipeline stages used to implement the processor core is one of the key design deci-
sions. A higher number of pipeline stages takes the advantage of obtaining higher
operating frequencies, increasing the overall throughput, but also increasing the
data and control hazards, which, in turn, reduce the IPC (Instruction Per Cycle) [41].
To reduce the impact of hazards, additional components (such as branch prediction,
speculation, etc) would be required, but increasing the overall power consumption.
So, this is another reason why four staged pipeline has been designed, en fact a key
characteristic of this core is the ultra low power target.

The main features and hardware components of the core are explained in detail
in the next subsections, dividing them by stage.

5.2.1 Pipeline

Instruction Fetch stage

In the IF stage, the instruction is fetched from the instruction cache or instruction
memory, as usual, with the peculiarity that the instruction address must be half-
word-aligned (a word is 32-bits wide) due to the support for compressed instruc-
tions.

Compressed instructions need an ad-hoc decoder, called “compressed_decoder”,
which extracts and extends all the compressed information from the compressed
instruction. In case the instruction is not compressed, it lets the input instruction
pass through unchanged.

To achieve optimal performance, a prefetcher, called “prefetch_buffer”, is instan-
tiated in this stage. This component fetches 32-bits instruction or 128-bits cache line
from the instruction memory, stores the information into a FIFO memory (made
up of four 32-bits wide registers, and called “fetch_fifo”) and sends it to the com-
pressed decoder. All the operations related to fetching instructions are managed by
the “fetch_controller”, that is also responsible for detecting branch instructions and
acting consequently.

Instruction Decode stage

The ID stage is the stage where the instruction coming from the IF stage is decoded
and, according to the opcode, signals towards the EX stage are enabled.

This stage is composed by three main components, that are register file, decoder,
and main controller. Obviously, also other components are instantiated to support
more functionalities.

The register file is available in two versions, the flip-flop based and the latch
based, both with the same structure (for the purpose of this thesis work, the flip-flop
based register file is used). As the RISC-V ISA requires, it is composed by 32 loca-
tions of 32-bits for integer values, plus other 32 locations for floating-point values if
the “F” instruction set is implemented. So, the address is 5-bits wide, plus, if “F” is
implemented, a 6th bit to select the register file (integer or floating-point) to use. Dif-
ferently from the usual structure of RISC-V register file, this register file is provided
with two synchronous write ports (A and B) and three asynchronous read ports (A,
B and C). In this way, since the write ports are dedicated separately to ALU and WB
stage, structural hazards are avoided. The last information about the register file is
the presence of the MBIST (Memory Built-In Self Test) interface for debugging and
testing operations.
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The decoder is a combinatorial block described in SystemVerilog by means of a
large case statement. In the case statements, all the combinations of opcode (7 bits)
are taken into account, and for each of them specific fields of the instruction are also
evaluated, in order to generate the proper signals towards the EX stage.

The last and most important block is the “core_controller”. It is described as a
18-states FSM (Finite State Machine) responsible for managing the whole core. Syn-
chronization among the stages is ensured thanks to this controller together with
other controllers even instantiated in this stage,as well. The other controllers are
“stall_controller”, “forwarding_controller”, and “interrupt_controller”.

Execution stage

The EX stage is the main computational stage of the architecture. Here, the ALU
(Arithmetic Logic Unit) is instantiated. The ALU supports four different operations:
bit manipulation, fixed-point operations, iterative division, and packed SIMD (Sin-
gle Instruction Multiple Data) operations. As regard the multiplier, it is instantiated
beside the ALU.

The floating-point unit (FPU), instead, is instantiated outside the core, if the “F”
instruction set is implemented, and it is accessed via the APU (Auxiliary Processing
Unit) interface.

At this stage, the data memory can be accessed for a write operation (by means
of a store instruction) or can be simply pointed by the address (calculated by the
ALU or arrived from the ID stage) in order to read its content at the WB stage.

Write Back stage

The WB stage is the one responsible for writing back the result of the EX stage or
the data read from the memory to the register file at the ID stage. To manage these
operations, two units are instantiated, one of which is optional. Respectively, they
are the Load-Store Unit (LSU) and the Physical Memory Protection (PMP) unit.

The LSU takes care of accessing the data memory, which supports “load” and
“store” instructions on words (32-bits), half words (16-bits) and bytes (8-bits). It
exploits the OBI (Open Bus Interface) protocol to communicate with the memory.

The PMP unit provides a filtering operation of data read from memory. It allows
the core to possibly run in USER MODE. Every fetch, load and store access executed
in USER MODE are first filtered by the PMP unit which can possibly generated ex-
ceptions.

5.2.2 Hardware characteristics

The characteristics of the core (in terms of area, frequency, and power consumption)
have been analysed after synthesis, place and route targeting the UMC 65nm tech-
nology [42]. The energy consumption, obviously, changes with respect to different
workloads and operating frequencies and voltages [43].

Area

Area is evaluated in kgates-equivalent (kGE), that is the equivalent minimum-size
NAND2 gate area. In UMC 65nm, one gate equivalent (GE) is 1.44µm2. The core
area is 40.7kGE [43], distributed as listed in Table 5.2.
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Component Area [kGE] Percentage [%]

Prefetch Buffer 5.2 12.8

Decoder and Controller 5.6 13.6

Register File 10.0 24.7

ALU, LSU, CSR 7.8 19.2

Multiplier and Division unit 11.3 27.7

Debug unit 0.8 2

Total 40.7 100

TABLE 5.2: RI5CY area distribution [43]

Frequency

For the operating frequency two netlist have been generated, in order to see the
effects on power consumption. The first netlist has been constrained with a relaxed
clock period of 10ns, whereas the second netlist has been synthesized with a tighter
clock period of 3ns. In typical conditions of the targeted technology at 1.2V, the
slow-netlist can reach 185MHz and the fast-netlist 560MHz, whereas at 0.8V, the
slow-netlist can reach 55MHz and the fast-netlist 160MHz. The clock frequencies
are summarized in Table 5.3.

Clock constraint
Frequency [MHz]

@ 0.8V
Frequency [MHz]

@ 1.2V

10 ns 55 185

3 ns 160 560

TABLE 5.3: RI5CY clock frequency with different time constraints at
different supply voltages [43]

Power consumption

The power consumption contributions are estimated for all the four combinations of
clock frequency and voltage supply and are reported in Table 5.4.

5.3 State-of-the-art of fault tolerant RISC-V core

During last years, the fault tolerance question has become of big interest in the world
of electronic devices. Identifying the potentialities of the RISC-V ISA and the ease
of implementation, together with the need of using optimized processors (also from
an area point of view), fault tolerant RISC-V cores can become a huge resource for
this scope. Anyway, still few models of fault tolerant versions of RISC-V cores have
been implemented.
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Clock Frequency
@ Voltage Supply

Dynamic Power
[µW]

Leakage Power
[µW]

Total Power
[µW]

55 MHz @ 0.8 V 77 0.22 77
160 MHz @ 0.8 V 336 2.96 339
185 MHz @ 1.2 V 937.95 1.91 940
560 MHz @ 1.2 V 3752 24.9 3777

TABLE 5.4: RI5CY power consumption at different clock frequencies
and supply voltages [43]

Wietse F. Heida [19] proposed an hybrid fault tolerant design against SEUs and
SETs using NMR to protect the pipeline and combinatorial blocks and ECC (Hsiao
SECDED) to protect memory elements. The core he used is a classic five staged
pipeline core implementing the RV32I instruction set.

Another solution against SEUs and SETs has been designed by D. A. Santos et al.
[44], employing Hamming code to protect the memory elements and TMR to protect
the ALU and the control unit (disregarding the instruction and data memories). The
processor they used implements a limited version of RV32I.

L. Blasi et al. [45] developed an enhanced version of the Klessydra F03_mini
core (RV32I), adding a Hardware Thread (HART) full-weak protection (a particular
version of TMR) and a thread-controlled Watch-Dog Timer module against SEEs.

An optimized solution, from a resource utilisation perspective, is proposed by
A. Ramos et al. [46] with a selective TMR on ALU, based on the most executed ALU
operations, against SETs. The core used is the lowRISC.

A fault tolerant approach different from the others is pursued by C. Rodrigues
et al. [47] with a Dual-Core Lockstep solution, using the Arm Cortex-A9 processor
and the lowRISC RISC-V processor.

Another fault tolerant version has been developed by L. A. Aranda et al. [48]
which have made the Rocket RISC-V core [49] fault tolerant. This core has been
simply protected by means of the DTMR (Distributed Triple Modular Redundancy)
technique.

Basically, ECC and TMR are the fault tolerant techniques most used to make the
RISC-V core fault tolerant. These techniques allow customization in terms of level
of reliability (correction/detection) and resources optimization (resources overhead
as low as possible).

However, the existing fault tolerant versions of RISC-V cores aim to mitigate only
the SEEs, which are the most common errors, disregarding permanent errors.
A fault tolerant version of RISC-V core, which implements a complete RISC-V ISA
and which is capable to mitigate both SEEs and cumulative effects, can be considered
an innovative project in this field of study.
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Chapter 6

Fault tolerant design of the
Instruction Decode stage

The objective of this thesis project is to develop a fault tolerant version of the ID
stage of the RISC-V core CV32E40P. Since the larger the components, the higher the
probability that the radiation produces its negative effects, only the main compo-
nents (that are also the most extended in terms of area) inside the stage are taken
into account. They are: the decoder, the register file, the controller, and the pipeline
registers between IF and ID stage. For the purpose of the thesis project, the other
components are not considered to be at risk from a radiation point of view, and so
they are used in their original versions.

The fault tolerant techniques used for designing the fault tolerant version of the
components are selected from the ones listed in chapter 4 and customized depend-
ing on the purpose.
In particular, the register file occupies almost the 25% of the entire core (as reported
in Table 5.2). This means that it is one of the most critical components of the core
and it needs even an higher level of protection with respect to the others. To accom-
plish this need, two different fault tolerant versions are proposed for the register
file, depending on the severity of protection required. The first one protects against
soft errors (transient), the second one against hard errors (permanent). The latter
has been designed by integrating the technique used for the soft error version with
some specific observations. Obviously, this version allows the component to be, in
general, more robust and more suitable for very harsh environments.

The design of the fault tolerant version of the ID stage aims to build a config-
urable system (at the pre-synthesis stage) that makes it possible to activate the fault
tolerant version of a component independently on the others. This mechanism al-
lows to reach different levels of fault tolerance in order to achieve the best trade-off
between the hardware performance and the level of protection of the core required
for the specific application. In total, 24 combinations are possible deriving from the
fact that 2 versions (the basic and the fault tolerant one) are available for decoder,
controller, and pipeline, while 3 versions (the basic, the soft, and the hard error one)
are available for the register file. This means that 24 different levels of fault tolerance
can be selected.

In Figure 6.1, an RTL (Register Transfer Level) view of the ID stage is presented
highlighting the main components taken into account in the fault tolerant design.
For simplicity, only few signals (the most relevant ones like the Program Counter
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signal, the Instruction signal, the Register File’s addresses and operands signals,
and other generic ones just to show the link among the components) are illustrated.
They are sufficient to give an idea of the connections inside the stage. As regards the
pipeline blocks, the one of interface between the IF and the ID stages is considered
part of the ID stage for the design scope, while the one of interface between the ID
and the EX stages is not considered part of it, but only depicted to show a complete
circuit between two banks of registers.
Starting from this basic RTL schematic, the fault tolerant versions of the components
are gradually added and illustrated more in detail in the following subsections of
the chapter.

FIGURE 6.1: Block diagram of the ID stage unprotected

6.1 Fault tolerant version of the Pipeline Registers

The pipeline registers are simply a set of registers which store some signals going
from the IF stage to the ID stage. The signals’ width varies depending on the kind
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of information that the signal transports. Some of them are 32-bit wide, like the in-
struction signal, while others are one single bit signals, for a total of six registers.
More in detail, two registers have a width of 32 bits to store the instruction and the
program counter, while the others are simply flip-flops to store some flags.
This implies that a generic solution is required to protect both the two kinds of reg-
isters.
The most generic one is the NMR (N-modular redundancy). The technique must
have detection and correction capabilities for a SEE, so the triple redundancy (TMR)
has been taken into account. All the registers are triplicated, and for each triplet a
majority voter is added.
Another generic technique is the ECC (error correction code). This technique re-
quires an encoder and a decoder for each register of the pipeline, as well as addi-
tional bits in the register to store the redundant information. For example, the Hsiao
code featured with detection and correction capabilities would require 7 and 2 addi-
tional bits, respectively for the registers 32- and 1-bit wide.

The choice of the FT technique to apply has been done mainly comparing the two
techniques mentioned above in terms of area and delay. The power consumption is
not taken into account since it may depends largely also on the technology adopted.
To proceed with the comparison, the designs of the two techniques have been syn-
thesized by means of Synopsys, which allows to obtain an early estimation of the
hardware characteristics of the circuit. For the synthesis, the library UMC 65nm is
used, but any other library could be used because the objective is simply to show the
differences of the circuits built both in CMOS logic with the same technology’s node.
In the following table (Table 6.1), the features (area and delay) related to the synthe-
sis of the majority voter of the TMR, and of the encoder and the decoder of the Hsiao
ECC are listed. Also the area of the register is reported, in order to better estimate
the total area occupied by applying a specific technique. All the components taken
into account are designed to support 32-bit wide signals.

Component Area [GE] Delay [ns]

Majority voter 480.75 2.17

Hsiao encoder 160.25 1.35

Hsiao decoder 362.25 3.19

Register 240 0.31

TABLE 6.1: Synopsys’ estimations of the majority voter, the Hsiao
encoder, the Hsiao decoder, and a generic register (every component

is 32-bit wide)

From the table above, it is easy to notice how the majority voter and the Hsiao
decoder affect in the same way the delay of the signals from the registers. Being
these components placed just after the registers, the two techniques may be consid-
ered equivalent.
The big difference regards instead the total area occupied to protect the registers.
In fact, considering the TMR applied to a 32-bit register, the total area occupied is
0.481 kGE (majority voter) plus 0.720 kGE (three copies of a single register), that is
1.201 kGE. As regards the Hsiao code, the total area occupied is 0.522 kGE (encoder
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and decoder) plus about 0.293 kGE (39-bit register, because of redundant bits), that
is 0.815 kGE. The TMR occupies an area about 47% larger than the one required for
the Hsiao ECC.
If the analysis ended at this point, the choice would be easy (Hsiao code is better
than TMR), but there are other parameters to be taken into account. First of all, it
is extremely important to observe that the Hsiao technique affects not only the path
downstream the register (going towards the ID/EX pipeline register), but also the
path upstream the IF/ID register because of the encoder. This is a not negligible
drawback. Apart from this negative side related to the Hsiao code, it is important
to take into account a feasible improvement deriving from applying the TMR. That
is the removal of the majority voter if the same technique is applied also to other
component downstream the register. In this case, it is possible to connect the three
outputs of the three copies of the pipeline register directly to the three copies of the
other triplicated component. This means that the delay is not affected anymore, and
also the area is reduced and becomes about 14% less than the area occupied by ap-
plying the Hsiao technique.
In conclusion, in this case it is more advantageous to apply the TMR technique, as
explained before. For this reason, for the final fault tolerant design, the TMR is the
technique chosen to protect the pipeline registers against the SEEs.
In Figure 6.2, the final design of the FT version of the pipeline registers is shown. Ac-
tually, the image shows a generalized case. The real schematic of the IF/ID pipeline
registers is composed in total by six registers: two registers 32-bit wide and one
register 1-bit wide.

CONFIGURATION Area
[GE]

Max Delay
[ns]

normal 510 0.31

fault tolerant 2543 2.48

TABLE 6.2: Some relevant hardware characteristics for the three dif-
ferent versions of the Register File.

6.2 Fault tolerant version of the Decoder

The decoder instantiated inside the ID stage is a purely combinatorial block. It re-
ceives in input the instruction fetched and some flags, and produces in output all
the signals necessary to activate the multitude of units required to correctly execute
that instruction.
According to the Table 5.2, the decoder is one of the most relevant components of
the core which occupies together with the controller about the 13% of the total area,
so it needs to be protected against SEEs.

Being a combinatorial block, the simplest and most efficient fault tolerant tech-
nique to apply is the NMR, in particular, the TMR to reach detection and correction
capabilities.
Moreover, the TMR allows to achieve the improvement explained in the previous
paragraph, that is to remove the intermediate majority voters downstream the pipeline
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FIGURE 6.2: RTL design of the FT Pipeline registers

registers. In this way, the triplicated outputs from the pipeline registers go directly
to the three copies of the decoder, leading to a reduction of delay, power consump-
tion, and area.
Time redundancy could be another solution which allows to reduce the area (with
respect to the TMR, that triplicates the decoder), but its main drawback is the incre-
ment of the execution time (which is triplicated).

In Figure 6.3, a simplified version of the design of the FT version of the decoder
is shown. The input is the ensemble of all the inputs, as well as the output. The
majority voter is actually decomposed into as many voters as the number of the
outputs.

6.3 Fault tolerant version of the Controller

In the CV32E40P core, the main controller is placed in the ID stage and is responsible
to generate the control signals for all the units inside the ID and the next stages. It
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FIGURE 6.3: RTL design of the FT Decoder

CONFIGURATION Area
[GE]

Max Delay
[ns]

normal 849 3.30

fault tolerant 4346 5.52

TABLE 6.3: Some relevant hardware characteristics for the three dif-
ferent versions of the Register File.

can be considered one of the most important components of the core from a func-
tional point of view.

The controller is described as a 18-states FSM, so it is a mix of combinational
and sequential blocks. In every FSM, the "present state" and the "next state" signals
play a key role, the first one is the input of a combinational block responsible to
generate the output signals, the last one, instead, is generated by another combina-
tional block. Such a component needs to be treated differently with respect to a pure
combinational (like the decoder) or pure sequential block (like the pipeline registers)
even because of its feedback loop. For this reason and for a better understanding of
the FT technique to apply, a clear schematic of the structure is given in Figure 6.4.

The structure can be seen as two combinatorial blocks divided by a register,
which performs the transition from the next state to the present state. The main
characteristics is the fact that the present state signal is used in feedback to generate
the next state, so particular attention needs to be paid to this path when applying a
FT technique.

Also in this case, the TMR has been chosen as the most suitable FT technique to
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FIGURE 6.4: RTL schematic of a generic FSM

protect the component against the SEEs. In this way, both the combinational and se-
quential blocks can be protected without complex solutions. Basically, this solution
requires simply to triplicate the entire controller (disregarding the type of compo-
nents), and then apply a majority voter downstream the three replicas to filter out
the correct outputs.
This technique applied in this way protects the component against the SEE, but it is
not the safest way. In fact, analysing the working principle, if a SEE occurs in the
output logic block, it is easily filter out, but the behaviour is completely different if
that occurs in the next state logic block or in the present state register. A fault in
any of those blocks may lead to the generation of the wrong present state, which in
turn leads to the wrong generation of all the outputs. Anyway, this is not a problem,
because the wrong outputs are filtered out by the majority voter. The real and con-
siderable problem is the wrong present state. Storing the wrong present state means
that the copy of the controller will work following a different evolution of the states.
This represents a problem since the SEE is filtered out only at the moment it occurs,
but its effects remain silent in the component for the remaining time making that
controller’s replica completely useless from the TMR perspective.
For example, a SEE occurs in one of the three copies (copy 1) of the controller causing
the problem described above, after some time another SEE occurs in one of the two
other copies (copy 2). In this scenario, the outputs of both the copy 1 and copy 2 will
be incorrect, possibly even different among themselves. The correct outputs would
be those from the copy 3, but, being wrong all the outputs from the three copies,
the majority voter will not be capable to select the correct ones, and so the error will
be only detected and not corrected. This leads the entire machine to operate in an
unpredictable manner.
The solution against this problem is the application of a majority voter downstream
the present state register as well. The voter lets the correct present state pass through,
discarding the wrong one. In this way, the present state signal, which goes in input
to the next state logic, is always valid and so the next state logic can produce the
correct next state. This means that the effects of the fault occurred are completely
eliminated because it is sure that the controllers evolve towards the correct state in
any case. All the three copies will always work in the right manner and the related
outputs can be always considered valid for the comparisons carried out by the vot-
ers.
In conclusion, the problem is solved simply by means of an extra majority voter
which brings the faulty controller back to the right state.

In Figure 6.5, the complete RTL view of the enhanced TMR technique applied to
the controller is presented. The generic input and the generic output are reported
just as an example to show the signals flow.
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FIGURE 6.5: RTL design of the FT Controller

6.4 Fault tolerant version of Register File

The register file, as explained before, is probably the most important component of
the whole core and not only of the ID stage. Its area occupies about a quarter of the
entire core, so it is a very susceptible component from the radiation point of view.
For this reason, the design of this component will provide two different variants
(apart from the unprotected one) in order to make it tolerant against both soft and
hard errors.

To have a complete understanding of the solutions applied to the register file, it
is advisable to explain in detail its structure.
The register file is composed by 32 locations 32-bit wide (like every RISC-V core),
each one used for a specific purpose, but this is not of interest for the design goal.
The variant of the CV32E40P core provides 3 reading ports and 2 writing ports. As
regards the reading ports, they require an address in input to put in output the data
read. The address ports are named “Addr_RX”, the data ports “Read_X” (where
X goes from A to C). Analogously, the writing ports require both the address and
the data to write. The address and data ports, in this case, are named respectively
“Addr_WX” and “Write_X” (where X goes from A to B).
According to the specifications, the address signals need to be 5-bit wide, in order
to be able to select any of the 32 locations of the register file, while data signals are
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CONFIGURATION Area
[GE]

Max Delay
[ns]

normal 1641 7.89

fault tolerant 6026 9.94

TABLE 6.4: Some relevant hardware characteristics for the three dif-
ferent versions of the Register File.

32-bit wide, since 32-bit is the parallelism of the CV32E40P core. Actually, if the “F”
ISA extension is enabled, the additional floating point register file is instantiated,
and the address signal requires an additional bit in order to be able to select one of
the two variants (integer or floating point). The floating point register file, however,
has the same characteristics of the integer register file.

6.4.1 First FT version (soft errors)

Among the multitude of FT techniques that can be applied to the register file, the
most suitable are the Hamming code and its derived variant the Hsiao code. From
the comparison of the two techniques carried out by taking into account Table 4.1
and Table 4.2 and by considering the analysis performed by Hao Li et al. [50], the
Hsiao code results the best candidate to protect the register file against SEEs.
In fact, this technique allows to reduce delay, area, and also power consumption
with respect to the other ECCs. Moreover, with respect to the TMR, the area is con-
siderably reduced because only 7 bits (parity bits) are added for each location of the
register file instead of triplicating all the locations. Just to give some numbers, the
Hsiao code implies an increase of area of about 22% plus the overhead due to en-
coders and decoders, while the TMR leads to an increase of 300% plus the overhead
due to the majority voters. The only advantage probably would be the reduction
of the delay, but just for the writing operations, since for the reading operations the
delay is, more or less, the same, because the Hsiao decoder and the majority voter
have equal delay. This is a minimal advantage to take this technique into account,
considering the enormous drawbacks of area and, consequently, of power consump-
tion (all the reading and writing operations are triplicated, as well).
In conclusion, the Hsiao code is the FT technique selected to protect the register file.

The Hsiao ECC technique is composed by an encoder (to encode the data to write
into the RF), a decoder (to decode the data read from the RF), and an extension of
the data width from 32 to 39 bits (data + code are now stored). The general scheme
of the RF with the Hsiao’s technique applied is reported in Figure 6.6. Two encoders
and three decoders are instantiated because of the two write and the three read ports
implemented for this version of the register file.

The design of the encoder and the decoder is a tricky task. Their design is based
on the definition of the so called parity-check matrix (also known as H-matrix),
which outlines the combinations of the input data bits to produce the related par-
ity bits. For this purpose, MATLAB comes into help. A custom MATLAB code has
been developed to generate the H-matrix and test the algorithm both for encoding
and decoding data. Another utility of the Matlab code is the possibility to validate
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FIGURE 6.6: RTL design of the FT Register File

the future hardware design in a simpler way. The code developed is listed in Ap-
pendix A.

To simplify the understanding of the Hsiao’s algorithm, it is important to clarify
the role and the properties of the H-matrix. First of all, the Hsiao ECC requires that
specific rules must be followed in the generation the H-matrix. In fact, these rules,
different with respect to the Hamming ECC, allow to reduce the number of con-
nections and logic gates for the hardware implementation, leading to more efficient
performance. The H-matrix must respect the following rules:

1) every column contains an odd number of 1’s;

2) no two columns are the same;

3) the difference of the number of 1’s in any two rows is not greater than 1;

4) the total number of 1’s reaches the minimum.

Secondly, the matrix has conceptually a unique meaning both for the encoder and
for the decoder, that is the definition of the sets of input data bits which are used to
generate a certain parity bit. In this case where the data width is 32-bit, the H-matrix
is composed by 7 rows and 39 columns. The number of rows is equal to the number
of parity bits required, and so each row is referred to a parity bit. While the number
of columns is equal to the amount of bits of the data plus the number of parity bits,
and so each i-th column is referred to the i-th bit of the data in input. Indexes from 0
to 31 refer to the data bits, while those from 32 to 38 refer to the additional parity bits.
At this point, the parity bit is computed by carrying out the XOR operation among
all the bits of the data correspondent to the elements at ’1’ in the row of the matrix.
The XOR operation is the basis for the algorithms of encoding and decoding, which
differ from each other in some particular conditions to be assumed when performing
that operation.
The encoding algorithm requires that the parity bits are initialised to ’0’, so that the
XOR operation is like if it were performed only among the bits of the dataword
(input data). The result of that operation is a parity bit.
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The decoding algorithm, instead, requires to carry out the XOR operation among all
the bits of the whole codeword (including the parity bits). In this case, the result of
the operation is a syndrome bit, which is then used to find the position of the error
inside the codeword.

The content of the H-matrix generated by means of the Matlab code is visible
in the following table (Table 6.5). It respects the above-mentioned rules. According
to the previous explanation, the header column reports the indexes of the 7 parity
bits, and the header row reports the indexes of the 32-bit data plus the 7 additional
parity bits to compose the complete codeword (indexes are ordered accordingly to
the standard adopted by IEEE for a 32-bit microprocessor architecture [51], MSB at
the left-end, LSB at the right-end).

PARITY BIT 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1
2 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0
3 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0
4 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 1
5 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 1
6 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0
7 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0

TABLE 6.5: H-matrix to generate the parity bits of the Hsiao ECC

At this point, it is possible to show the connections required for the encoding and
decoding operations.

As regards the encoder, as a proof of concept, the first parity bit is theoretically
generated by means of a XOR operation among the 0th, 4th, 5th, 8th, 10th, 13th, 15th,
18th, 19th, 22nd, 24th, 27th, 29th, and 31st bit of the input data (the columns from
32 to 38 are not considered). Translated in hardware, this operation is performed by
means an equivalent tree of XOR gates with fewer inputs (up to 4, generally). The
SystemVerilog code which describes the hardware for the encoder has been devel-
oped in a behavioural way, so that the Simulator (ModelSim) or the Design Compiler
(Synopsys) can optimise it as much as possible, according to eventual constraint of
delay. No other functionalities are required for the encoder.

As regards the decoder, the logic is quite similar for the generation of the syn-
drome bits, but now the XOR operations are performed taking into account also the
columns from 32 to 38. For example, the first syndrome bit is generated by carrying
out the XOR operation among the 0th, 4th, 5th, 8th, 10th, 13th, 15th, 18th, 19th, 22nd,
24th, 27th, 29th, 31st and 38th bit of the input codeword.
The main difference with respect to the encoder, that makes this component more
complex, is the task of correcting the eventual error occurred due to the fault. This
functionality implies much more combinational logic. Also the decoder has been
described in SystemVerilog in a behavioural way to let the simulator define the con-
nections more efficiently.
Another minor difference is the outputting of some flags to state if the error has been
detected or corrected. These flags are combined with each other and given in output
in the form of a signal of 2 bits called “errors_vector[1:0]” (almost equivalent to the
“SECDED” signal which states if an error has been corrected or if a double error has
been detected). The meaning of the signal is described in the following:
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• if the value is ’00’, no error has occurred;

• if the value is ’01’, an error has been detected and corrected at least in one
decoder;

• if the value is ’10’, a double error has been detected but not corrected at least
in one decoder;

• if the value is ’11’, the two previous cases have occurred simultaneously.

If either the first or the second case happens, the machine does not need to be
stopped and the operations can go on. Instead, if any of the remaining cases oc-
curs, the machine needs to be stopped since the decoder has not been capable to
correct the error.

6.4.2 Second FT version (hard errors)

The register file, as stated before, is the most critical component of the entire core,
and this may be a valid reason to equip it with an additional level of protection
against the permanent faults, apart from the transient ones.
The design of such a version requires the implementation of ad-hoc solutions deriv-
ing from the critical aspects to take into account to better protect the component.

The most important aspect which requires particular attention regards the util-
ity of all the locations of the register file, because they are extremely important for
the correct execution of the operations. The locations of the register file have dif-
ferent meanings according to the RISC-V standard, and so some of them may be
considered more important than others. Anyway, for the solution proposed, they
are all treated with the same weight basically for one reason. In fact, a solution that
takes into account the different importance of the locations would have required
an expensive control circuit to manage their priorities, with the pros of having a
more efficient system in terms of total number of locations employed. For example,
this kind of solution may require to properly handle the temporary registers, which
are considered the less important locations. When a temporary register location is
permanently damaged, then the system should try to reuse some unused locations
conceived for other purposes so that no additional locations are needed. Anyway,
this system should be able to operate without affecting the working flow or with-
out recompiling the program for the custom hardware optimising, for example, the
use of the locations. The solution developed, instead, aims to be a generic solution
adaptable in several scenarios and extendable to an even higher number of locations.

Another consideration regards the way to protect the register file against the soft
errors. In fact, the component must be able to face both the soft and the hard errors
without stopping the execution. In this case, the same technique used before (for the
first FT version of the RF) has been adopted, that is the Hsiao ECC.

The third and last main consideration made is about the threshold over which
the permanent fault should be detected. Generally, a permanent fault is signaled
when a certain number of transient faults occurs consecutively. That quantity is a
very variable parameter, which depends mainly on the severity of the environment,
or simply on the probability of a fault to occur. To satisfy any level of severity, the
design proposed provides a pre-synthesis configurable threshold to better meet the
specification. The default value is set to 31, this means that if 32 faults occur on the



6.4. Fault tolerant version of Register File 55

same location, then the permanent fault is signaled.

The solution proposed takes into account all the considerations made previously,
and relies on a “supply” copy of the register file (called “second” register file), which
is conceived to replace the locations damaged in the “main” register file. The second
register file has exactly the same organisation of the main one, and so it has 3 reading
ports, 2 writing ports and 32 locations 39-bits wide.
The mechanism is really simple. Near the two register file, a 32-bit register is placed,
called “location_damaged_register”, which stores the information about the status
of the 32 locations. Each bit of the 32 is related to the correspondent location (the 0th
bit to the 0th location, the 1st bit to the 1st location, and so on until the 31st bit). If the
bit is set to ’0’, then the location on the main register file is valid, otherwise, when
the bit is set to ’1’, the related location on the main register file is damaged and so
the operation needs to be executed using the correspondent location on the second
register file.
Keeping this mechanism in mind, the working principle of the design can be divided
into four parts:

1) how the “location_damaged_register” is used at the input ports;

2) how the “location_damaged_register” is used at the output ports;

3) how the “location_damaged_register” is updated;

4) how the “location_damaged_register” interfaces with the CSR.

1 - At the input ports, or more precisely at the address ports, the content of the
“location_damaged_register” is first filtered by means of a multiplexer which has as
the selector the address for the reading or writing operation. Since there are three
reading ports and two writing ports, five 32-to-1 multiplexers (1-bit wide) are in-
stantiated in total. The output of each multiplexer is called “RF_YX”, where Y can
be R or W (respectively for the reading or the writing operation), and X can be A, B,
or C according to the name of the port of the register file.
Then, the signal “RF_YX”, whose value is ’0’ or ’1’ depending on the register file to
use, is exploited to let the address reach either the “main” or the “second” register
file, by means of two AND gates 5-bits wide. The first AND gate, linked to the main
register file, receives in input the address and the signal “RF_YX” (extended on 5
bits) negated, while the second AND gate is linked to the second register file and is
equal to the first one with the exception of the signal “RF_YX” that is not negated.
According to this scheme, only one register file will receive the real address, the other
one will receive the address ’00000’ (that points to the only-read location containing
the data ’00...00’). This is equivalent to not perform any operation in the register file
not used.
As regards the two input data ports for the writing operations, an Hsiao encoder is
used for each input data. It is placed upstream the duplication of the data, so that
only an Hsiao encoder is necessary for each writing port. In this way, the encoded
data arrives to both the main and the second register file, but it is actually used only
in one register file. This solution implies less area and delay than the other possible
solution composed by two filtering gates, like for the address ports, and an Hsiao
encoder for each fork of the signal.
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2 - At the output ports, the mechanism is really simple. In fact, to properly manage
the data coming from the main and the second register file, only an extra 2-to-1 mul-
tiplexer (32-bits wide) is needed. The signal “RF_YX” (the same used for the input
ports) is used as the selector of the multiplexer, while the data read from the main
and from the second register file are the two inputs. The multiplexer lets only the ac-
tual read data pass through the downstream Hsiao decoder before being outputted.
In total, this scheme is repeated three times, one for each read port.

3 - The mechanism to update the “location_damaged_register” is the most complex
part of the design. It is based on the three signals “SECDED_X” (where X is the name
of the reading port), generated by each Hsiao decoder, which activate the counters
in case of error occurred. There is a counter for each location of the register file,
so in total 32 counters are instantiated. To properly activate the counter referred to
the location used for the current reading operation, an ad-hoc component has been
implemented, called “enable_counters_generator”. It receives as inputs both the
“SECDED_X” and the “RADDR_X” signals, and produces in output thirty-two 1-bit
signals, each one connected to a counter. These 1-bit signals represent the enable of
the downstream faults counters. Then, the component raises at ’1’ the signal corre-
spondent to the location addressed by “RADDR_X” only if the “SECDED_X” signal
states that at least one error has occurred in that location. Obviously, the component
is capable to raise at ’1’ up to three 1-bit signals concurrently, since in the worst case
an error may occur in all the three locations used for the reading operations.
Once the enable signals are generated, the thirty-two “faults_counters” are ready to
eventually increase their count at the rising edge of the clock. When the count has
reached the threshold value set for the detection of a permanent fault, a flag is raised
and a ’1’ is written into the correspondent element of the “location_damaged_register”.
In this way, starting from the next clock cycle, the damaged location in the “main”
register file will not be used anymore and will be replaced by the correspondent one
in the “second” register file.

4 - The last essential mechanism of the design concerns the support for updating
the content of the “location_damaged_register” directly from the CSRs. The CSRs
are particular registers that can be accessed (read or written) by means of special
instructions. This means that the CSRs can store an information coming from the
non-volatile memory present in the system. This feature is extremely important
because it is essential that a damaged location in the register file will not be used
anymore for the rest of the life of the device, and so the status of the locations needs
to be stored permanently and not only into the “location_damaged_register” that is
a volatile memory component.
In this way, for example at the power-on reset, that is the event which prepares the
system to properly operate, it is possible to load into the CSR the last updated in-
formation about the status of the locations, and then load that information into the
“location_damaged_register”.
Obviously, also the inverse mechanism needs to be implemented in order to keep
the content of the CSR always updated. For this scope, an enable signal has been in-
stantiated which will raise as soon as any of the faults counters raise its flag because
a permanent fault has been detected. More precisely, the enable signal is generated
by an OR operation performed among all the flags coming from the counters, and
it is delayed by one clock cycle to be synchronised with the updated content of the
“location_damaged_register”. So, the enable signal states when the CSR needs to be
written with the new content of the “location_damaged_register”.
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In Figure 6.7, the RTL schematic view of the second FT version of the Register
File is reported, showing the most important components, sometimes described at
logic-gate level and sometimes described as a black-box.

FIGURE 6.7: RTL design of the FT Register File

A relevant detail not reported in the above schematic is the support for updating
the “location_damaged_register” with the content of the CSR, and the related mech-
anism. This choice comes from the fact that the hardware used for implementing
that part is really basic and easy to understand, and its representation would have
made the schematic unclear.
However, it is interesting to observe how the interface has been kept the same as the
original one, with the exception of the three signals necessary for interfacing with
the CSRs (not reported for simplicity). This is important to understand how the dif-
ferent versions of the Register File can be selected simply by setting a parameter in
the design.
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CONFIGURATION Area
[kGE]

Max Delay
[ns]

Read Delay
[ns]

normal 11.55 1.45 1.45

soft 15.49 5.24 4.39

hard 31.13 9.25 8.36

TABLE 6.6: Some relevant hardware characteristics for the three dif-
ferent versions of the Register File.

6.5 Configurations

After having described the protection techniques applied to each component, the
complete scheme of the ID stage can be presented. The schematic should show each
relevant component with the additional pieces of hardware instantiated to protect it
against faults. In Figure 6.8, the complete RTL schematic of the ID stage is presented.
The IF/ID Pipeline registers, the Decoder and the Controller make use of FT tech-
niques based one the TMR, so some majority voters are placed downstream the three
replicas as a proof of concept (also the signals taken into account are selected as a
proof of concept).
The register file, instead, uses a technique based on the Hsiao ECC, so instances of
the encoder and the decoder are placed, respectively, upstream and downstream the
component (in their exact quantity in the schematic).

Looking at the schematic, the three replicas of each component have the contour
coloured in blue, red, or green, while the additional components for the FT version
have a yellow contour. These colours have been chosen to give a clearer idea of the
organisation of the design and how it can be composed and decomposed. Depend-
ing on the configuration selected at the pre-synthesis stage, some components may
be protected while others may be not. For what concerns the not selected compo-
nents, the yellow contoured components are removed, and, in case, only one of the
three replicas is instantiated.

As stated at the beginning of the chapter, there are 24 possible different config-
urations that can be chosen. The configuration to use can be selected by means of
the design parameter, called “ID_FAULT_TOLERANCE”, representable on 5 bits.
The first bit (the LSB) sets the FT version of the Controller, the second bit sets the
Decoder, the third the Pipeline registers, and the last two set the three different ver-
sions of the Register File.
In Table 6.7, all the configurations of the ID stage are shown, reporting in the left
column all the possible values of the parameter “ID_FAULT_TOLERANCE”, and in
the remaining columns the correlated versions of the components that are activated.
The term “normal” indicates the standard (unprotected) version of the component,
“FT” or “FT_SOFT” indicate the FT version against soft errors, and “FT_HARD”
indicates the FT version against hard errors.
From the table above, it is possible to notice that the binary code ’01111’ (’15’ in
radix-10) corresponds to the most safe configuration against soft errors, while to ac-
tivate the configuration that protects the register file also against the hard error it
is necessary to set to ’1’ the MSB of the code (that means a number equal or higher
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FIGURE 6.8: RTL design of the complete FT ID stage

than ’16’ in radix-10).

For each configuration, a certain level of fault tolerance can be reached, and dif-
ferent hardware characteristics are derived. The first characterisation is discussed in
the next chapter, while the latter is presented below.

To derive the hardware characteristics and make some relevant comparisons, the
synthesis has been carried out for each configuration of the stage (24 synthesis in
total) by means of Synopsys Design Compiler. The library used is the same adopted
by P. D. Schiavone et al. [43] to determine the characteristics of the core RI5CY, that
is the UMC 65nm. Obviously, the results may differ since in this case the synthesis’
process has been carried out without performing any high-effort optimization. Any-
way, the focus should be posed on the comparisons of the various configurations
expressed in percentage with respect to the original one (FT_CODE=0).
In Table 6.8, it is possible to observe how the different configurations have different
values for area and delay, and how the application of the version of the register file
against the permanent errors affects those parameters. The power consumption has
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not been evaluated because of the low dependability and the high dependence on
several factors, such as the workload, the clock frequency, the voltage supply, etc.
The results have been obtained without imposing any constraint to the Design Com-
piler, and with “exact_map” option for the compilation of the sequential elements.

The results show that the area for the fully protected version against the soft error
(FT CODE 15) is increased but not doubled or triplicated (1.72x more extended than
the original design), even though a lot of hardware redundancy is applied. This
is reasonable since the most critical component, the register file, makes use of the
Hsiao ECC that allows to save a lot of area with respect to the TMR. Also the delay
gets worse, with an increment of about 41% (about 4ns). The components which
mainly impact on the critical path are the pipeline and the register file. Overall, the
hardware characteristics can be considered reasonable and acceptable considering
further optimisations.
The version against the hard errors intuitively has even more limits. The fully pro-
tected version has an area 2.63x greater than the unprotected version (FT CODE 0)
and 1.53x greater than the one against the soft errors (FT CODE 15). The delay, in-
stead, is increased respectively of about 75% (about 8ns) and 24% (about 4ns).
As regards the delay, an additional consideration is necessary in order to better un-
derstand its implications. In fact, the delay reported in the table represents the delay
of the most critical path of the ID stage and not of the entire core. This means that
even if the delay gets worse, the maximum clock frequency reachable by the core
may be higher.



6.5. Configurations 61

FT CODE
binary (int)

CONFIGURATIONS

Controller Decoder Pipeline Register File

00000 (0) normal normal normal normal

00001 (1) FT normal normal normal

00010 (2) normal FT normal normal

00011 (3) FT FT normal normal

00100 (4) normal normal FT normal

00101 (5) FT normal FT normal

00110 (6) normal FT FT normal

00111 (7) FT FT FT normal

01000 (8) normal normal normal FT SOFT

01001 (9) FT normal normal FT SOFT

01010 (10) normal FT normal FT SOFT

01011 (11) FT FT normal FT SOFT

01100 (12) normal normal FT FT SOFT

01101 (13) FT normal FT FT SOFT

01110 (14) normal FT FT FT SOFT

01111 (15) FT FT FT FT SOFT

1X000 (16/24) normal normal normal FT HARD

1X- - - (>16) — — — FT HARD

1X111 (23/31) FT FT FT FT HARD

TABLE 6.7: The 24 possible configurations of the ID stage (where ’X’
means “don’t care”). In the last row, the symbol ’-’ means that the
same pattern of the previous rows for that bit/component is followed.
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FT CODE Area
[kGE]

Area variation
[%]

Delay
[ns]

Delay
variation [%]

0 17.17 100.00% 10.49 100.00%

1 19.92 116.00% 10.49 100.00%

2 21.35 124.34% 11.20 106.76%

3 24.10 140.33% 12.13 115.63%

4 19.21 111.89% 13.00 123.92%

5 21.96 127.89% 13.00 123.92%

6 23.40 136.24% 13.84 131.93%

7 26.14 152.24% 14.89 141.94%

8 20.58 119.84% 12.35 117.73%

9 23.33 135.84% 12.35 117.73%

10 24.76 144.17% 12.32 117.44%

11 27.51 160.16% 12.32 117.44%

12 22.62 131.74% 14.73 140.41%

13 25.37 147.74% 14.73 140.41%

14 26.80 156.08% 14.78 140.89%

15 29.55 172.07% 14.82 141.27%

16 (24) 36.22 210.88% 15.99 152.43%

17 (25) 38.97 226.88% 15.99 152.43%

18 (26) 40.40 235.21% 15.96 152.14%

19 (27) 43.14 251.20% 15.96 152.14%

20 (28) 38.26 222.77% 18.34 174.83%

21 (29) 41.01 238.77% 18.34 174.83%

22 (30) 42.44 247.12% 18.38 175.21%

23 (31) 45.19 263.11% 18.38 175.21%

TABLE 6.8: The 24 possible configurations of the ID stage with the
related values of area and max delay, expressed both in absolute value
and in percentage with respect to the configuration with FT CODE

equal to 0.
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Chapter 7

Benchmark

Once the design of the ID stage is ready, the next steps concern the validation of the
system and the evaluation of its fault tolerant performance. An ad-hoc environment
has been developed to reach these goals. This environment creates the support to all
the necessary operations regarding the validation of the model, the simulations in
general, and the benchmark.
After having validated the fault tolerant version of the stage, the last aspect to take
into account is the benchmark of the fault tolerance capabilities of the design. This is
the most interesting aspect of the entire process of designing a fault tolerant system
and also the most time- and effort-demanding task. It requires to reproduce those
conditions that would lead to the generation of a fault (more precisely a SEU), and
to reproduce all the possible scenarios that may occur while the core is running.
At this point is necessary to explain that, for the scope of the thesis work, the bench-
mark has been carried out simply to have a roughly estimation of the fault tolerance
capabilities of the system and so an approximate assessment of the complete design.
This is because a complete and exhaustive benchmark would have required several
months.

To test the fault tolerance of an electronic system, it is necessary to create an
environment where it is possible to reproduce the occurrence of faults. Such an
environment should be based on a fault injection mechanism that forces the fault at
a certain instant time and on some specific components of the design. In literature,
there exist different methods based on fault injection strategies. Basically, they can
be grouped into five categories [52]: hardware-based fault injection, software-based
fault injection, simulation-based fault injection, emulation-based fault injection, and
hybrid fault injection.
A brief description for each category is given below.

• Hardware-based fault injection: this method makes use of particular devices
to induce a real fault into the target system’s hardware at physical level. For
example, J. R. Samson et al. [53] developed and demonstrated a Laser Fault
Injection (LFI) technique to inject soft faults into VLSI circuits.

• Software-based fault injection: this technique consists of reproducing at soft-
ware level the errors that would have been generated by a fault occurred in the
real hardware.

• Simulation-based fault injection: this method is based on the development of
the electronic system by means of an hardware description language so that the
system can be simulated by means of an hardware simulator (i.e. ModelSim
or QuestaSim) capable to force the fault in any point of the circuit and at any
time instant.
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• Emulation-based fault injection: this technique represents an alternative to the
simulation-based one because it allows to speed-up the overall time spent to
reproduce all the possible scenarios by using an FPGA emulating the circuit.

• Hybrid fault injection: this approach combines two or more categories of fault
injection techniques exploiting the advantages of each considered technique.

All these techniques are more or less equivalent from the results point of view.
What really changes are the tools and devices required and the time spent to execute
the benchmark.
For the scope of this thesis work, the simulation-based method has been used for
the benchmark, since it is the most low-cost one and does not require any special
hardware, only a computer with a design simulator installed and some scripts coded
to handle the data flow. Obviously, it has the main drawback of being very time-
demanding because of the high number of simulations to perform, so the accuracy
of the results will be limited because of the limited time. The other critical aspect to
take into account is the organisation of all the scripts to synchronise and properly
handle all the data and tools involved in.

7.1 Development Environment

Before explaining in detail the mechanism implemented for the benchmark, it is nec-
essary to present the development environment that has been developed to facilitate
all the operations concerning the validation and the simulation of the system. The
development environment has been actually developed by the entire team (which
aims to create a fully fault tolerant core) because it is useful for supporting the de-
sign process of all the stages (IF, ID, EX, and WB) of the core.

Basically, it extends the features provided by the verification environment devel-
oped by the OpenHWGroup [54] for some RISC-V cores. It has already testbench
and UVM support. The features added to the environment are mainly implemented
by means of a Bash script called “comp_sim.sh”, which in turn may call other scripts
coded in Python, TCL [55], or other languages to complete that activity. The most
relevant added features are listed below:

• compilation of any C-program by means of a generic Makefile;

• adaptation of the CoreMark [56] program to the CV32E40P core;

• simulation of the core, or any sub-module, running any C-program;

• support for saving the input and output signals of the simulation of the core,
or any sub-module, to speed-up further simulations;

• automatic download of the reference architecture and the architecture under
test from GitHub repositories;

• comparison between the simulations performed by the reference architecture
and the one under test;

• simulation with fault injection on the core or any sub-module running any C-
program;

• fault tolerance benchmark of the core, or any sub-module, running any C-
program;
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• support to obtain the benchmark result with a certain accuracy;

• support to efficiently handle the data of the benchmark simulations.

The support to these options has notably facilitated the entire benchmark process,
but other requirements need to be defined to make the while process clear and valid,
and make the results more understandable. For example, the workload needs to be
defined to know which scenarios can be replicated with the simulations. Moreover,
the mechanism to apply the fault injection needs to be clarified, and the number of
simulations per benchmark must be reported and justified in order to give a clear
idea of the meaning of the results.

7.2 Benchmark process

The benchmark process is composed by different steps can be grouped into three.
The first one is the definition of the workload, that sets the scenarios covered by
means of the simulations. The second one is the validation of the system as prior
condition to validate the results deriving from the benchmark. Finally, the last one is
the mechanism to inject the fault into the system and how to monitor the execution.

7.2.1 Workload

The workload for the benchmark process is important since it allows to understand
which components are mainly used during the simulation and so which scenar-
ios can be represented by running a specific program. For the scope of this thesis
work, the programs used are taken directly from the verification environment (called
“core-v-verif”) for the core under test [54], discarding those related to the “PULP”
options not taken into account in this project.
The programs used are coded in C-language and are:

• counters;

• csr_instructions;

• cv32e40p_csr_access_test;

• dhrystone;

• fibonacci;

• generic_exception_test;

• hello_world;

• illegal;

• interrupt_bootstrap;

• interrupt_test;

• misalign;

• modeled_csr_por;

• perf_counters_instructions;
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• requested_csr_por;

• riscv_arithmetic_basic_test_0;

• riscv_arithmetic_basic_test_1;

• riscv_ebreak_test_0.

In total, they are seventeen programs, all coded in C-language, and compiled by
using the RISC-V toolchain. These programs are provided with self-checking capa-
bilities, that means they are capable to determine autonomously if their execution
worked fine or not. Actually, some of these programs fail the self-check, but they
have been used anyway. This is because the starting point of this thesis project is an
existing core, the CV32E40P, that has been assumed to be the reference architecture
correct by definition. The starting version of the core is the reference against which
to compare the new fault tolerant version. So, even if some programs do not work
as expected, they have been included in the workload because what really matters
is that the new architecture works exactly as the reference one.
However, this choice comes also from the fact that the fault tolerant design has been
developed so that it is possible to replace the base-component (i.e. the decoder or
the register file) with another version having the same interface without altering the
working principle. The fault tolerant design is applicable also to further releases of
the core that will fix the current bugs.

The programs above mentioned are specific to test the RISC-V core functionali-
ties, so they are not universally accepted (except for the Dhrystone) to compare the
benchmark results. In order to have a benchmark of the core capable to be compared
against other cores (not only RISC-V ones), the CoreMark benchmark program has
been taken into account.
The CoreMark is a benchmark developed by EEMBC widely used to measure the
performance of MCUs and CPUs [56]. It is very useful for the fault tolerance bench-
mark as well since it contains several algorithms implemented. This means that
many scenarios can be simulated simply by running this program. The algorithms
implemented are: list processing (find and sort), matrix manipulation (common ma-
trix operations), state machine (determine if an input stream contains valid num-
bers), and CRC (cyclic redundancy check). Obviously, the CoreMark benchmark has
many others advantages with respect to other benchmark programs, for example it
ensures that the compilers cannot pre-compute the results at compile time, but they
are not so relevant for this purpose since only the fault tolerance capabilities are
evaluated and not the performance. For this reason, only one cycle of the CoreMark
is executed, and not a number of cycle so that the total execution time is 10 seconds,
as the standard for the CoreMark results would require. Being runned only for one
cycle, it will be called “coremark_1” in this context.
The porting of the CoreMark program to the CV32E40P core has been done by start-
ing from the version of the CoreMark files adapted for the 64-bit riscv core called
“riscv-boom” [57]. This has facilitated the task since only the functions that manage
the time inside the core needed to be adjusted for the CV32E40P.

However, among the programs used for the workload there is the Dhrystone
benchmark program that may be universally accepted as the CoreMark, because it
is used as well to benchmark the CPU performance. Unfortunately, this benchmark
program is becoming obsolete because of some drawbacks that make its results not
so clear and not so easily comparable. So, the CoreMark is preferred for bench-
marking purposes. However, the Dhrystone code is dominated by simple integer
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arithmetic, string operations, logic decisions, and memory accesses intended to re-
flect the CPU activities in most general purpose computing applications [58].
To sum up, the CoreMark and the Dhrystone are two benchmark programs that con-
tain several algorithms to better evaluate the performance of the CPU. The main
difference is that the manner is becoming even more used, while the latter disused.
But there is another secondary difference, not so negligible from the simulation point
of view. In fact, even if the CoreMark is more used, it requires a lot of simulation
time to terminate its execution, so the benchmark using the CoreMark may be very
time-demanding. On the contrary, the Dhrystone requires an acceptable amount
of simulation time, so that will be preferred to carry out some quicker benchmarks
(about one order of magnitude saved in the total time required.

In Table 7.1, the information regarding the number of clock cycles required by
each benchmark program to complete is reported. Note the huge difference of work-
load between the “CoreMark” and the rest of the programs.

Program N cycles

coremark_1 18141307

counters 49750

csr_instructions 10210

cv32e40p_csr_access_test 950

dhrystone 195050

fibonacci 98500

generic_exception_test 2193

hello_world 13432

illegal 10847

interrupt_bootstrap 5562

interrupt_test 8046

misalign 358798

modeled_csr_por 41410

perf_counters_instructions 80460

requested_csr_por 62795

riscv_arithmetic_basic_test_0 32223

riscv_arithmetic_basic_test_1 32446

riscv_ebreak_test_0 41770

TABLE 7.1: Workload in terms of number of clock cycles required to
complete
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7.2.2 Validation

The first operative step of the benchmark process is the validation of the new model
with respect to the original one. This check is necessary in order to have a further
confirmation about the equivalence between the original design and the fault tol-
erant one. Actually, because of the 24 possible configurations, all the 24 different
design need to be validated.
In this context, with the term equivalence is meant that the two models taken into
account should work in the same way, with the same timing, that means that all the
signals in output from one stage should be equal cycle by cycle during the simula-
tion.
Obviously, the first and main validation has been carried out by means of standard
testbenches coded for the purpose of verifying the correctness of the new fault tol-
erant components. So, with the first validation the design has been evaluated con-
sidering its logical behaviour. Instead, this further validation is to be sure about the
equivalence of the model and how to interpret the results of the benchmark discard-
ing the possibility that they may be affected by design mistakes.

The development environment comes into help to accomplish this task in an ef-
ficient way. It provides the possibility to simulate with QuestaSim the core running
any C-program, and meanwhile saving both the input and the output signals re-
spectively in a “vcd” and a “wlf” file. Then, these signals can be reused to run the
simulation of any fault tolerant version of the core and to compare simultaneously
the outputs cycle by cycle.
This procedure has been carried out taking the original core (unprotected) as the ref-
erence version. This means that its inputs and outputs have been saved and used,
respectively, to feed all the simulations (by means of the "-vcdstim" option of the
"vsim" command of QuestaSim) and as the golden outputs against which to com-
pare the outputs of all the simulations of the 24 fault tolerant versions of the core (by
means of the "compare" command). This procedure has been repeated also for each
program of the workload.
To clarify the flow of this process, a block diagram is reported in Figure 7.1, dividing
the process into two sub-steps. In the diagram, with the symbol “X” is meant the
name of any C-program in the workload.

The “comp_sim.sh” script is the main file in the development environment from
which all the processes start. In this scenario, it is first used to launch the Ques-
taSim simulation of the unprotected core running the “X” program. Meanwhile,
QuestaSim has been initialised by “comp_sim.sh” to run the “save_data.tcl” script.
At the end of the simulation, the TCL script commands QuestaSim to produce two
files related to the “X” program, one with the input signals, “input_X.vcd”, and the
other with the output signals, “output_X.wlf”. In the second step, “comp_sim.sh”
is used to launch the QuestaSim simulation of the fault tolerant core while using
the signals stored in “input_X.vcd” as input stimuli. In this step, QuestaSim is ini-
tialised to launch the “compare.tcl” script that needs the open the dataset stored in
“output_X.wlf” in order to perform the comparison with the outputs of the current
simulation. If the comparison succeeds, then the two versions of the core are equiv-
alent. If it fails, the benchmark cannot go on, and the design needs to be reviewed.

Once the validation step has reported all successful results, the benchmark can
proceed to the next step.



7.2. Benchmark process 69

FIGURE 7.1: Validation steps in the development environment

7.2.3 Fault injection system

The simulation-based approach for the benchmark, but actually this is valid for any
kind of approach, typically requires some useful components, such as fault injector,
fault library, workload generator, workload library, controller, monitor, data ana-
lyzer, and so on [52]. Each component has a specific role in the benchmark process,
and a brief description about its role is reported below for the components used in
this context:

• fault injector: it is responsible to inject the fault into a specific signal of the
target system while is running the workload;

• fault library: it stores the information related to the fault injections;

• workload generator: it generates the input stimuli for the simulation to run;

• workload library: it contains the data for the workload generator;

• controller: it controls the whole benchmark process;

• monitor: it is responsible to control when a fault becomes error and keep track
of it;

• data analyzer: it elaborates the results deriving from all the simulations of the
benchmark and gives the final level of fault tolerance reached by the design
evaluated.

In the development environment, these components are implemented by means
of Bash scripts, TCL scripts and Makefile files, but actually they are not separated
entities as the previous list shows. In fact, some scripts implement several functions,
eventually including more components. For example, the TCL script that QuestaSim
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FIGURE 7.2: Fault injection system scheme [59]

runs during the simulation works as fault injector and monitor.

Before to further explain the mechanism of this step, it is important to focus on
some key points that make this analysis clear and grounded. Actually, the most
important ones are three. The first point (probably the most important one) regards
the accuracy of the results. The second one concerns the method used to inject the
fault, including all the requirements it respects. The third one is the way the data are
analysed and elaborated.

Accuracy

The accuracy of the results strictly depends on the total number of simulations per-
formed. More simulations means higher accuracy, but also more time required. The
question is now how to choose the correct number of simulations to carry out to
obtain a certain accuracy, or vice versa, which is the accuracy if the benchmark per-
forms a certain amount of simulations. To solve this question, a statistical approach
has been adopted by exploiting the formula derived by R. Leveugle et al. [60].

ncycle =
N

1 + e2 · N−1
t2 · p · (1−p)

“N” is the initial population size given by multiplying the total number of signals
where the fault can be injected by the total number of clock cycle required to ter-
minate the execution of the program. “e” is the margin of error on the result. “t” is
the cut-off point corresponding to the confidence level that is the probability that the
exact value is actually within the error interval. “p” basically corresponds to an esti-
mate of the true value being searched (in this case the percentage of faults resulting
in an error) and since it is a priori unknown (but between 0 and 1) a conservative ap-
proach is to use the value that will maximize the sample size, that is obtained when
“p” is equal to 0.5. “ncycle” is the total number of simulations to perform to obtain
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the accuracy defined with the previous parameters.
Analysing the formula, it results that what heavily influences “ncycle” is the parame-
ter “e”, that makes the result rapidly increased if it is reduced below the value 0.03.
“t” has a much lower impact on the formula, while the remaining parameters poorly
affect the result.

For the scope of the thesis, the following values and methods have been used for
those parameters:

- “N” is evaluated considering all the bits in the memory components inside the
ID stage and considering the total number of clock cycle strictly dependent on
the program to execute;

- “e” is set to 0.05, that means that the actual result of the benchmark will be the
interval [FT% − 5% ; FT% + 5%];

- “t” is set to 2.5758, that corresponds to a confidence level of 99%;

- “p” is set to 0.5, as the study suggests.

By using these parameters, the number of simulations to perform is proven to be
equal for all the benchmark programs, and it results ncycle = 663. This is a reason-
able value considering the characteristics of the hardware available to perform the
benchmark and the time available. All the benchmarks for the soft errors will be
carried out with this accuracy.
This calculation is implemented in the TCL script named “cycles_cov.tcl”.

Fault injection

As stated previously, the fault injection mechanism relies on the use of built-in Ques-
taSim commands within TCL scripts. The fault injection should fulfill some criteria
useful to clarify the meaning of the results and necessary to support the statistical
approach above mentioned. Basically, they can be summarised explaining the sim-
ulation steps [61] that the implemented method follows. The steps can be divided
into seven.

1) Choose a random flip-flop where to inject the fault (a SEU is reproduced). The
bit is selected from a list containing all the signals that represent the content of
the registers.

2) Choose a random time instant when to inject the fault. Any time instant can
be selected except for the first 6 clock cycles necessary for the system to reset.

3) Run the simulation until the chosen time instant for the fault injection.

4) Inject the fault by forcing the bit flip in the selected bit. This task is accom-
plished by means of the "force" command of QuestaSim with the option "-
deposit" to emulate the transient faults (soft errors) or -̈freeze" for the perma-
nent faults (hard errors).

5) Run the simulation for the next 10 clock cycles and compare the outputs. This
is because it is highly likely that the fault becomes an error during the early
clock cycles when it has been injected. If at least one error is occurred, the
simulation is stopped.
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6) If the first comparison does not reveal any error, the run and compare phase is
repeated ten times, so dividing the rest of the simulation into ten blocks. If the
comparison of a block shows at least one error, the simulation is stopped and
so the other comparisons are not executed.

7) Collect the results into a file for later analysis.

An important property not listed above is that the fault cannot be injected more
than once into the same bit at the same time instant. This fault injection mechanism
is implemented in the TCL script named “fault_injection.tcl”, and actually it is de-
fined inside a loop where the number of cycles to perform is equal to the number of
simulations required to obtain a certain accuracy.

Analysis

Finally, the last important point is the analysis of the results post simulations. The
most interesting and relevant data is about the level of fault tolerance reached by
the device under test. This is simply obtained by dividing the number of correct
simulations by the number of total simulations and then multiplying by 100 to get
the result as a percentage.

FT% =
ncycles − nerrors

ncycles
· 100

As long as the fault tolerance level, another interesting analysis may be carried
out on how the fault is actually perceived by the system. Generally, a classification
of five categories [61] is done about the the fault effects:

1) No effects: if the program simulation terminates correctly, outputs and regis-
ters match the golden simulation. In this case, the fault may be overwritten or
detected and corrected;

2) Latent: if the program simulation terminates correctly, but the content of the
registers differs from the golden simulation;

3) Wrong result: if the program simulation terminates with wrong results;

4) Timed out: if the program simulation does not terminate within a certain time
interval longer the the normal execution time;

5) Exception: if the system detects an unexpected event, aborting the execution.

This classification has not been implemented in the TCL script, although it is pos-
sible to state that any simulation has reported an abnormal behaviour, like “timed
out” or “exception”. The only category not evaluable is the “latent” one, so it would
be collapsed into the “no effects” one.

Finally, another interesting feature to evaluate concerns the number of faults de-
tected and corrected, detected but not corrected, and undetected. Even though the
design provides the possibility to easily check these features, this classification has
not been taken simply because of lack of time. In fact, the ID stage contains the
“errors_vector_o” signal which collects the errors information coming from the dif-
ferent fault tolerant components instantiated inside the stage. This analysis can be
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carried out by monitoring this signal cycle by cycle during the simulation.

However, additional information are saved for each fault injection performed, so
that it is possible to show some stats about which signals are more sensitive to faults.

The key points explained above are the pillars of the fault injection system and
of the entire benchmark process in general. By using these functions, it is possi-
ble to create a basic benchmark routine for the system. Actually, before to proceed
with the final explanation, it is important to remember that the benchmark relies on
the simulation-based approach, that is very time-consuming. For this reason, some
smart ideas have been implemented to speed-up the simulations and consider an
higher coverage for the benchmark.

The first optimisation done is the fifth point of the list in the “fault injection”
paragraph. It compares the outputs of the simulation at the early clock cycles after
the time instant when the fault has been injected. Being very highly likely that the
fault becomes an error during those cycles, no time is wasted in case that the error
has been detected since the rest of the simulation will not run. In Figure 7.3, the
organisation of the files and how they interact along with the simulator is shown.

The second optimisation is probably the most efficient one. It relies on the fact
that it is useless to simulate the entire core if the fault tolerant design to test regards
only a single stage of the core (in this case the ID stage). So, a simple mechanism
has been implemented so that all the simulations of the benchmark actually take
into account only the ID stage. The mechanism is quite equal to the one used for the
validation. While in the validation the inputs and the outputs of the core were saved,
here the inputs and the outputs of the ID stage are saved. Moreover, since the fault
tolerant version has been declared equivalent to the unprotected one, the inputs and
the outputs are taken directly from the simulation of the fault tolerant version so
that the interfaces of the stage already match. If they were taken from the original
version, some ad-hoc functionalities needed to be implemented to accomplish the
cases when the fault tolerant version has the triplicated pipeline enabled (and so the
input interfaces differ).

Actually, one more optimisation could be implemented that would have lead to
an even higher coverage with zero time consumption. That is the profiling of the
hardware and the program [62]. This technique is crucial to recognize the parts of
the system that benefit or suffer from a specific change (the fault injected). This helps
to know a priori which components are nonsensitive to the faults injected because
for example they are not used during the execution of the program. Identifying these
cases allows to reach an higher coverage, and so an higher accuracy achievable.
A roughly and basic implementation of this technique may be the analysis of the per-
manent faults applied from the very first clock cycle to each single flip-flop inside
the stage. In this way, the cases where the simulation terminates correctly demon-
strate that those flip-flops are not used during the execution of the program.

At this point, the playground is clear and the key points are known, so the
scheme emulating the mechanism of the entire benchmark process can be easily un-
derstood. In Figure 7.3, the scheme subdivided into four steps is reported.
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The four steps are: generation of inputs and outputs for the benchmark program,
calculation of the number of simulations to reach a certain accuracy, repeated simu-
lations with fault injection, analysis of the results. Before these steps, actually some
parameters are declared at the command entering stage. The stage, the benchmark
program, and the accuracy are defined. Then, the process starts. First of all, the
input and output files are generated by simulating the FT core running any bench-
mark program. The name of the files contains info about the program and the stage
simulated. Then, the entire FT core running the program is simulated to find the
number of flip-flops instantiated inside the stage and the total execution time (in
terms of clock cycles). The “cycles_cov.tcl” script does the task and calculate the
number of simulations (or cycles) to carry out. Once “N_cycle” is calculated and
stored, the most time-consuming activity of the process can starts. The simulations
of the stage are performed again and again until “N_cycle” times. Meanwhile, infor-
mation about the simulations are saved into files, that later are processed to produce
the stats and the fault tolerance level reached by the stage.

As it is easy to notice, the “comp_sim.sh” script is always present in each step. It
plays the role of controller of the entire benchmark process, ensuring that each step
performs correctly. Moreover, it is responsible also to analyse the data at the end of
the process. The “fault_injection.tcl” script represents both the fault injector and the
monitor. The “signals.txt” files store all the information about the faults injected, so
it is the fault library. QuestaSim itself works as workload generator. The directory
where all the benchmark programs taken into account is the workload library.

Actually, the organisation is a bit more complicated, but this represents a good
simplification of the structure. Just to mention a main practice difference, the first
step is in turn divided into two sub-steps, one to save input signals, one for output
ones. The reason of this further division is the fact that the input stimuli need to be
save into a vcd file by means of the command "vcd dumpports -vcdstim", while the
output (and all in general) signals need to be stored into a wlf file by means of the
command "dataset save" and with the GUI activated, otherwise it is not stored.

7.3 Results

At this point, several simulations have been carried out by means of the develop-
ment environment implemented. In total, three kinds of benchmark have been per-
formed:

1) complete benchmark (all the workload tested) of the fully protected version of
the ID stage against soft errors (FT=15);

2) single benchmark (only the Dhrystone program) of all the versions of the ID
stage (FT from 0 to 15);

3) single benchmark (only the Dhrystone program) of the fully protected version
of the ID stage against hard errors.

For the first two categories the benchmarks have been carried out setting the
accuracy to the confidence level of 99% and the error of 5%. While for the third cat-
egory the coverage is calculated differently.

Obviously, these benchmarks need to be compared against the reference archi-
tecture in order to see how much the fault tolerance capability of the stage has been
improved. So, the complete benchmark has been carried out also for the unprotected
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stage, using the same level of confidence and error as the first two categories.

In Table 7.2, the results of the complete benchmarks for the unprotected (FT=0)
and fully protected (FT=15) versions of the ID stage are shown.

Program
FT=0 FT=15

Errors FT level Errors FT level

coremark_1 126 80.99% 0 100.00%

counters 125 81.14% 0 100.00%

csr_instructions 89 86.57% 0 100.00%

cv32e40p_csr_access_test 123 81.44% 0 100.00%

dhrystone 116 82.50% 0 100.00%

fibonacci 123 81.44% 0 100.00%

generic_exception_test 99 85.06% 0 100.00%

hello_world 88 86.72% 0 100.00%

illegal 98 85.21% 0 100.00%

interrupt_bootstrap 105 84.16% 0 100.00%

interrupt_test 107 83.86% 0 100.00%

misalign 106 84.01% 0 100.00%

modeled_csr_por 91 86.27% 0 100.00%

perf_counters_instructions 100 84.91% 0 100.00%

requested_csr_por 106 84.01% 0 100.00%

riscv_arithmetic_basic_test_0 107 83.86% 0 100.00%

riscv_arithmetic_basic_test_1 123 81.44% 0 100.00%

riscv_ebreak_test_0 91 86.27% 0 100.00%

TABLE 7.2: Benchmark results on 663 simulations of the architectures
FT=0 and FT=15 (confidence level=99%, error=5%)

The unprotected version shows a fault tolerance level that ranges from 80.99% to
86.72%. The associated error intervals intersect each others, so it is very likely that
the exact value of fault tolerance level will be in the interval between 80.99% and
86.72% (actually the real interval will be a bit smaller because of the intersection of
all the error intervals). However, the average level of fault tolerance of the unpro-
tected version is 106.83%.
The fully protected version instead shows a fault tolerance level of the 100% for all
the benchmarks. Taking into account the error margin, the exact fault tolerance level
will be between 95% and 100% with an high probability. Such an high value for the
FT level is plausible because only the SEUs have been taken into account, and all the
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sequential components in the stage have been protected by design.

In Table 7.3, the results of the benchmarks of all the FT configurations of the stage
are reported. Only the Dhrystone program has been simulated for this purpose. For
a better understanding the Table 6.7 is extremely important, that shows which FT
components are enabled according to the FT code.

FT CODE Errors FT level

0 116 82.50%

1 93 85.97%

2 107 83.86%

3 100 84.92%

4 80 87.93%

5 94 85.82%

6 80 87.93%

7 82 87.63%

8 18 97.29%

9 11 98.34%

10 17 97.44%

11 10 98.49%

12 0 100%

13 0 100%

14 0 100%

15 0 100%

TABLE 7.3: Benchmark results on 663 simulations of all the architec-
tures FT from 0 to 15 running the Dhrystone program (confidence

level=99%, error=5%

From this table, it is possible to notice that the FT decoder and the FT controller
actually do not impact on the fault tolerance capability of the stage. In fact, the FT
levels are more or less equivalent in both the cases where their FT version is enabled
and when not. This strange behaviour actually is explained by the fact that the faults
are injected only into the flip-flops, and the decoder and the controller make a very
low use of them. Only the controller uses a register 32 bits wide, while the decoder
is purely combinational.
The most interesting point is that the FT level is evidently increased from the FT
CODE 8 on (increment of about 10%). This is explained by the activation of the FT
version of the register file, that is one of the most extended and the most critical com-
ponent for the radiation effects. Its activation allows to reach FT level higher than
97%, even when the other components remain unprotected. Moreover, the FT level
100% is reached when the FT version of the pipeline is activated as well.
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This result is perfectly inline with the prediction due to method used to benchmark
the system. In fact, the fault injection has been carried out only on the memory com-
ponents, and the register file and the pipeline are uniquely composed by flip-flops.

Finally, the single benchmark of the FT version of the stage against the hard er-
rors has been carried out. For this benchmark it is important to clarify some points,
since they are a bit different with respect to the other benchmarks. In fact, the fault
has not been injected at a random time instant, but it has been injected always at
the time instant 200ns in order to cover all the duration of the simulation and better
evaluate its impact on the design. Moreover, 1842 simulations have been run, which
would correspond to a confidence level of 99% and error of 3%. Actually, the time
instant is not chosen randomly anymore, and this may lead to a biased result. By the
way, since the fault injected covers approximately the entire duration of the simula-
tion and the signal where to inject the fault is selected randomly, it is still possible
to adopt the same statistical method previously used to evaluate the accuracy even
if it does not fit perfectly. Injecting the fault at 200ns forces the benchmark to eval-
uate all the worst case scenarios. In fact, if a fault injected into a signal at a specific
time instant leads to an error, injecting the fault at the beginning of the simulation
ensures to cover that case and also others critical. This means that the result may be
considered a worst case one.
Then, another important aspect regards the design parameter required for the FT
version of the register file against the permanent faults which sets the threshold for
the detection of a permanent fault. For this benchmark, this parameter has been set
to 4.
The result of this final benchmark is reported in Table 7.4.

FT CODE Errors FT level

31 0 100%

TABLE 7.4: Benchmark results on 1842 simulations of the architec-
ture FT=31 (or FT=23) running the Dhrystone program (confidence

level=99%, error=3%

The analysis of the results lead to state that for the FT version of the ID stage to
mitigate permanent faults the fault tolerance level ranges from 97% to 100% with a
confidence level of 99%.
Obviously, this single benchmark is not so exhaustive, because it would be oppor-
tune to run other benchmarks and compare the results, or run a benchmark which
uses a program with a very long execution time, like the CoreMark program. Run-
ning a program with a long execution time allows to have much more probability
that the permanent faults are detected by the appropriate components.
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FIGURE 7.3: Benchmark steps in the development environment
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Chapter 8

Conclusions

The work carried out in this thesis has given a general overview on the fault tol-
erance context, presenting briefly the standard IEC 61508 which set the rules, the
phenomena that are involved in the real world, and the most common techniques
used to mitigate these errors. Then, an introduction on the RISC-V specifications
and on the CV32E40P’s characteristics is presented. Finally, the entire design pro-
cess for the fault tolerant version of the core, the environment developed to test the
architecture, and the benchmark method are disclosed.

The fault tolerant design of the ID stage is the main point of the thesis, so most
of the attention has been posed on it. At the end of the design a completely config-
urable system is produced, which allows to select the fault tolerant components to
enable according to the desired level of fault tolerance set by requirements. Then,
the design needs to be tested by means of ad-hoc benchmarks that allow to show the
fault tolerance level reached by the system.
Necessarily, the design and the benchmark processes have required the develop-
ment of an environment capable to facilitate all the operations to execute during
these phases. Such an environment has made automatic some important steps of
both the design and the benchmark processes, reducing so the probability of mak-
ing a mistake by doing those operations manually.

The benchmark has revealed that the maximum fault tolerance level reachable is
of 100% (with an error of 5% and a confidence level of 99%) for the fully protected
version against the soft errors. This result was reported for all the benchmark pro-
grams used. The same result has been obtained also for the version against the hard
errors, even if it was tested only with the Dhrystone program.
These values are perfectly inline with the fault tolerance levels reached by the other
architectures of the state-of-the-art. In fact, for example, the FT core developed by D.
A. Santos et al. [44] reaches a FT level of 100% calculated with a benchmark on 100
simulations with the CoreMark and considering only SEUs. The architecture devel-
oped by L. A. Aranda et al. [48] shows as well a fault tolerance level of 99.95% on a
benchmark carried out on 27000 simulations running the Dhrystone program.
Anyway, it is necessary to remember that in this thesis work only the ID stage is
evaluated. For this reason, the comparisons are to be intended as a guide to know if
the results can be considered trustworthy. For a 1-to-1 comparison, the fault tolerant
version of the ID stage must be integrated with the other fault tolerant versions of
the remaining stages developed by the rest of the team. As explained in the intro-
duction, this thesis work is part of a wider project which aims to make the entire
CV32E40P core fully fault tolerant.

The results obtained by means of the benchmark make it possible to classify the
new fault tolerant architecture according to the standard IEC 61508. Taging into ac-
count the architecture fully protected against the soft errors, the fault tolerance level
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reached is between the 97% and the 100%, with a confidence level of 99%. This im-
plies that the Safe Failure Fraction (SFF) of the system (the ID stage) is included in
the same interval. Considering the ID stage as a system of Type B (a complex sys-
tem whose failure behavior is not fully known) and considering the Hardware Fault
Tolerance (HFT) of 1 (this means that 2 faults may lead to the lowering of the SFF),
the target system can get a Safety Integrity Level (SIL) equal to SIL 3 if the SFF is
considered up to 99%, or to SIL 4 if the SFF is considered from 99% to 100%.
Analysing the worst case, it is possible to state that the fault tolerant ID stage reaches
a SIL 3. A further improvement of this level may be achieved if a more accurate
benchmark is carried out, or if the level of redundancy is increased. The last way
would lead to an extremely high overhead in terms of hardware resources and per-
formance, so it would be advisable to accomplish a more detailed benchmark with
a reduced error margin.
Obviously, other safety tests need to be executed to guarantee the SIL reached by the
system.

All kinds of results obtained from the synthesis and from the benchmark are
summarised in the following table (Table 8.1). This is useful to give a general overview
of the characteristics of each hardware configuration of the ID stage designed.
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FT CODE
Area
[kGE]

Area var.
[%]

Delay
[ns]

Delay var.
[%]

FT level

00000 17.17 100.00% 10.49 100.00% 82.50%

00001 19.92 116.00% 10.49 100.00% 85.97%

00010 21.35 124.34% 11.20 106.76% 83.86%

00011 24.10 140.33% 12.13 115.63% 84.92%

00100 19.21 111.89% 13.00 123.92% 87.93%

00101 21.96 127.89% 13.00 123.92% 85.82%

00110 23.40 136.24% 13.84 131.93% 87.93%

00111 26.14 152.24% 14.89 141.94% 87.63%

01000 20.58 119.84% 12.35 117.73% 97.29%

01001 23.33 135.84% 12.35 117.73% 98.34%

01010 24.76 144.17% 12.32 117.44% 97.44%

01011 27.51 160.16% 12.32 117.44% 98.49%

01100 22.62 131.74% 14.73 140.41% 100%

01101 25.37 147.74% 14.73 140.41% 100%

01110 26.80 156.08% 14.78 140.89% 100%

01111 29.55 172.07% 14.82 141.27% 100%

1X111 45.19 263.11% 18.38 175.21% 100%

TABLE 8.1: Area, Area variation (with respect to FT CODE 0), Max
delay, Max delay variation (with respect to FT CODE 0), and FT level,

reported for each configuration of the system
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Appendix A

Hsiao ECC design code

A.1 Matlab code

In this section of the Appendix A, the highlights of the Matlab code for the Hsiao
ECC are listed. In particular, three parts are shown: the definition of all the variables
required, the encoder algorithm, and the decoder algorithm.

This is the part related to the definition of the variables to implement the algo-
rithm, such as the number of parity bits, the H-matrix, and other supporting vari-
ables.

1 %% VARIABLES USED FOR THE HSIAO (OR HAMMING) ALGORITHM
2 % k : WIDTH OF DATA
3 k = 3 2 ;
4 % r_tmp : TEMPORARY NUM OF PARITY BITS
5 r_tmp = c e i l ( log2 ( k ) ) ;
6 % r : TOT NUM OF PARITY BITS
7 r = r_tmp + f l o o r ( ( k + r_tmp ) / 2^( r_tmp ) ) +1;
8
9 % INITIALIZATION OF H−MATRIX AND PARTIAL DEFINITION

10 h_matrix = zeros ( r , k+r ) ;
11 h_matrix ( 1 : r , 1 : r ) = eye ( r ) ;
12 num_ones_per_row = 3* k/r ;
13
14 r _ f a c t = 1 : r ;
15 e l _ f a c t = 1 : 3 ;
16 r _ e l _ f a c t = 1 : r −3;
17 tot_comb = prod ( r _ f a c t ) /( prod ( e l _ f a c t ) * prod ( r _ e l _ f a c t ) ) ;
18 combs = zeros ( 3 , tot_comb ) ;
19
20
21 % GENERATION OF ALL THE ODD COMBINATIONS OF ' 1 ' ( 1 , 3 , 5 ) AS

REQUIRED BY HSIAO' S ALGORITHM
22 % UP TO 5 ' 1 ' BECAUSE IT IS ENOUGH FOR ENCODING 32−BITS DATA
23 n_comb = 1 ;
24 f o r e l _ 1 = 1 : r
25 f o r e l _ 2 = e l _ 1 +1: r
26 f o r e l _ 3 = e l _ 2 +1: r
27 combs ( : , n_comb ) = [ el_1 , el_2 , e l _ 3 ] ;
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28 n_comb = n_comb +1;
29 end
30 end
31 end
32
33 % DEFINE H MATRIX
34 rep_e l = zeros ( r , 1 ) ;
35 n_rep_min =0;
36 f o r j = r +1: k+r
37 t rovato = 0 ;
38 n_rep_min = min ( rep_e l ) ;
39 f o r i = 1 : n_comb−1
40 e l _ 1 = combs ( 1 , i ) ;
41 e l _ 2 = combs ( 2 , i ) ;
42 e l _ 3 = combs ( 3 , i ) ;
43 i f ( min ( combs ( : , i ) ) ~=0 && rep_e l ( e l _ 1 ) ==n_rep_min && rep_e l (

e l _ 2 ) ==n_rep_min && rep_e l ( e l _ 3 ) ==n_rep_min )
44 rep_e l ( e l _ 1 ) = rep_e l ( e l _ 1 ) +1;
45 rep_e l ( e l _ 2 ) = rep_e l ( e l _ 2 ) +1;
46 rep_e l ( e l _ 3 ) = rep_e l ( e l _ 3 ) +1;
47 h_matrix ( el_1 , j ) = 1 ;
48 h_matrix ( el_2 , j ) = 1 ;
49 h_matrix ( el_3 , j ) = 1 ;
50 combs ( : , i ) = zeros ( 3 , 1 ) ;
51 t rovato = 1 ;
52 break
53 end
54 end
55 i f t rovato == 0
56 f o r i = 1 : n_comb−1
57 e l _ 1 = combs ( 1 , i ) ;
58 e l _ 2 = combs ( 2 , i ) ;
59 e l _ 3 = combs ( 3 , i ) ;
60 i f ( min ( combs ( : , i ) ) ~=0 && rep_e l ( e l _ 1 ) ==n_rep_min+1 &&

rep_e l ( e l _ 2 ) ==n_rep_min && rep_e l ( e l _ 3 ) ==n_rep_min )
61 rep_e l ( e l _ 1 ) = rep_e l ( e l _ 1 ) +1;
62 rep_e l ( e l _ 2 ) = rep_e l ( e l _ 2 ) +1;
63 rep_e l ( e l _ 3 ) = rep_e l ( e l _ 3 ) +1;
64 h_matrix ( el_1 , j ) = 1 ;
65 h_matrix ( el_2 , j ) = 1 ;
66 h_matrix ( el_3 , j ) = 1 ;
67 combs ( : , i ) = zeros ( 3 , 1 ) ;
68 t rovato = 1 ;
69 break
70 e l s e i f ( min ( combs ( : , i ) ) ~=0 && rep_e l ( e l _ 1 ) ==n_rep_min &&

rep_e l ( e l _ 2 ) ==n_rep_min+1 && rep_e l ( e l _ 3 ) ==n_rep_min )
71 rep_e l ( e l _ 1 ) = rep_e l ( e l _ 1 ) +1;
72 rep_e l ( e l _ 2 ) = rep_e l ( e l _ 2 ) +1;
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73 rep_e l ( e l _ 3 ) = rep_e l ( e l _ 3 ) +1;
74 h_matrix ( el_1 , j ) = 1 ;
75 h_matrix ( el_2 , j ) = 1 ;
76 h_matrix ( el_3 , j ) = 1 ;
77 combs ( : , i ) = zeros ( 3 , 1 ) ;
78 t rovato = 1 ;
79 break
80 e l s e i f ( min ( combs ( : , i ) ) ~=0 && rep_e l ( e l _ 1 ) ==n_rep_min &&

rep_e l ( e l _ 2 ) ==n_rep_min && rep_e l ( e l _ 3 ) ==n_rep_min +1)
81 rep_e l ( e l _ 1 ) = rep_e l ( e l _ 1 ) +1;
82 rep_e l ( e l _ 2 ) = rep_e l ( e l _ 2 ) +1;
83 rep_e l ( e l _ 3 ) = rep_e l ( e l _ 3 ) +1;
84 h_matrix ( el_1 , j ) = 1 ;
85 h_matrix ( el_2 , j ) = 1 ;
86 h_matrix ( el_3 , j ) = 1 ;
87 combs ( : , i ) = zeros ( 3 , 1 ) ;
88 t rovato = 1 ;
89 break
90 end
91 end
92 end
93 i f t rovato == 0
94 f o r i = 1 : n_comb−1
95 e l _ 1 = combs ( 1 , i ) ;
96 e l _ 2 = combs ( 2 , i ) ;
97 e l _ 3 = combs ( 3 , i ) ;
98 i f ( min ( combs ( : , i ) ) ~=0 && rep_e l ( e l _ 1 ) ==n_rep_min+1 &&

rep_e l ( e l _ 2 ) ==n_rep_min+1 && rep_e l ( e l _ 3 ) ==n_rep_min )
99 rep_e l ( e l _ 1 ) = rep_e l ( e l _ 1 ) +1;

100 rep_e l ( e l _ 2 ) = rep_e l ( e l _ 2 ) +1;
101 rep_e l ( e l _ 3 ) = rep_e l ( e l _ 3 ) +1;
102 h_matrix ( el_1 , j ) = 1 ;
103 h_matrix ( el_2 , j ) = 1 ;
104 h_matrix ( el_3 , j ) = 1 ;
105 combs ( : , i ) = zeros ( 3 , 1 ) ;
106 t rovato = 1 ;
107 break
108 e l s e i f ( min ( combs ( : , i ) ) ~=0 && rep_e l ( e l _ 1 ) ==n_rep_min+1

&& rep_e l ( e l _ 2 ) ==n_rep_min && rep_e l ( e l _ 3 ) ==n_rep_min +1)
109 rep_e l ( e l _ 1 ) = rep_e l ( e l _ 1 ) +1;
110 rep_e l ( e l _ 2 ) = rep_e l ( e l _ 2 ) +1;
111 rep_e l ( e l _ 3 ) = rep_e l ( e l _ 3 ) +1;
112 h_matrix ( el_1 , j ) = 1 ;
113 h_matrix ( el_2 , j ) = 1 ;
114 h_matrix ( el_3 , j ) = 1 ;
115 combs ( : , i ) = zeros ( 3 , 1 ) ;
116 t rovato = 1 ;
117 break
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118 e l s e i f ( min ( combs ( : , i ) ) ~=0 && rep_e l ( e l _ 1 ) ==n_rep_min &&
rep_e l ( e l _ 2 ) ==n_rep_min+1 && rep_e l ( e l _ 3 ) ==n_rep_min +1)

119 rep_e l ( e l _ 1 ) = rep_e l ( e l _ 1 ) +1;
120 rep_e l ( e l _ 2 ) = rep_e l ( e l _ 2 ) +1;
121 rep_e l ( e l _ 3 ) = rep_e l ( e l _ 3 ) +1;
122 h_matrix ( el_1 , j ) = 1 ;
123 h_matrix ( el_2 , j ) = 1 ;
124 h_matrix ( el_3 , j ) = 1 ;
125 combs ( : , i ) = zeros ( 3 , 1 ) ;
126 t rovato = 1 ;
127 break
128 end
129 end
130 end
131 i f t rovato == 0
132 f o r i = 1 : n_comb−1
133 e l _ 1 = combs ( 1 , i ) ;
134 e l _ 2 = combs ( 2 , i ) ;
135 e l _ 3 = combs ( 3 , i ) ;
136 i f ( min ( combs ( : , i ) ) ~=0 && rep_e l ( e l _ 1 ) ==n_rep_min+1 &&

rep_e l ( e l _ 2 ) ==n_rep_min+1 && rep_e l ( e l _ 3 ) ==n_rep_min +1)
137 rep_e l ( e l _ 1 ) = rep_e l ( e l _ 1 ) +1;
138 rep_e l ( e l _ 2 ) = rep_e l ( e l _ 2 ) +1;
139 rep_e l ( e l _ 3 ) = rep_e l ( e l _ 3 ) +1;
140 h_matrix ( el_1 , j ) = 1 ;
141 h_matrix ( el_2 , j ) = 1 ;
142 h_matrix ( el_3 , j ) = 1 ;
143 combs ( : , i ) = zeros ( 3 , 1 ) ;
144 t rovato = 1 ;
145 break
146 end
147 end
148 end
149 end

Here, the encoding algorithm is reported, keeping in mind that the variables re-
lated to the data are flipped because of the mirrored relation between data in hard-
ware and data in Matlab.

1 %% ALGORITHM
2 % The v a r i a b l e s " _ f l ipped " have the b i t s ordered l i k e in
3 % hardware (MSB to the l e f t , LSB to the r i g h t ) , while the other
4 % v a r i a b l e s have the b i t s mirrored w. r . t . hw because in
5 % Matlab the index s t a r t s from the f i r s t l e f t element of the array
6
7 %%%% ENCODER
8 % DATA TO BE ENCODED ( value taken f o r example )
9 data_in_enc_hw = ' 10110110011101100101110100011001 ' ; %input data of

the encoder HW
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10 data_in_enc = f l i p l r ( data_in_enc_hw ) ; %input data of the encoder in
Matlab

11 data_encoded = ' ' ; %data encoded
12
13 k_data = s t r l e n g t h ( data_in_enc_hw ) ;
14
15 % LOOP TO INITIALIZE THE NEW VARIABLE WHICH CONTAINS DATA & PARITY

BITS
16 i f ( k == k_data )
17 data_encoded ( 1 : r ) = s t r i n g ( zeros ( 1 , r ) ) ; %p a r i t y b i t s i n i t i a l i z e d

to 0
18 data_encoded ( r +1: k+r ) = data_in_enc ( : ) ;
19 end
20
21 % LOOP TO SET THE PARITY BITS
22 f o r i = 1 : r
23 p a r i t y =0;
24 f o r j = 1+ r : k+r
25 i f h_matrix ( i , j ) == 1
26 p a r i t y = xor ( par i ty , data_encoded ( j )− ' 0 ' ) ;
27 end
28 end
29 data_encoded ( i ) = num2str ( p a r i t y ) ;
30 end
31
32 data_encoded_hw = f l i p l r ( data_encoded ) ; %f i n a l data encoded in hw

1 %% ALGORITHM
2 % The v a r i a b l e s " _ f l ipped " have the b i t s ordered l i k e in
3 % hardware (MSB to the l e f t , LSB to the r i g h t ) , while the other
4 % v a r i a b l e s have the b i t s mirrored w. r . t . hw because in
5 % Matlab the index s t a r t s from the f i r s t l e f t element of the array
6
7 %%%% DECODER
8 % I t ' s the inverse process of the encoder
9 % DATA TO BE DECODED ( value taken from the prev example )

10 data_in_dec_hw = ' 101101100111011001011101000110011110111 ' ; %input
data of the decoder HW

11 data_in_dec = f l i p l r ( data_in_dec_hw ) ; %input data of the decoder
in Matlab

12
13 error_check = zeros ( r , 1 ) ; %array which conta ins the e r r o r s r e l a t e d

to the p a r i t y ( len=r )
14 e r r o r _ p o s i t i o n =0; %v a r i a b l e which s t a t e s the index where the e r r o r

occurred
15
16 % LOOP TO CHECK THE ERROR POSITION
17 f o r i = 1 : r
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18 p a r i t y =data_in_dec ( i )− ' 0 ' ;
19 f o r j = 1+ r : k+r
20 i f h_matrix ( i , j ) == 1
21 p a r i t y = xor ( par i ty , data_in_dec ( j ) − ' 0 ' ) ;
22 end
23 end
24 error_check ( i ) = p a r i t y ; %t h i s v a r i a b l e says where the e r r o r

has occurred
25 end
26 f o r i = 1 : k+r
27 i f h_matrix ( : , i ) == error_check
28 e r r o r _ p o s i t i o n = i ;
29 end
30 end
31
32 p a r i t y _ c a l c = 0 ;
33 f o r i = 1 : r
34 p a r i t y _ c a l c = xor ( p a r i t y _ c a l c , error_check ( i ) ) ;
35 end
36
37 par i ty_check = p a r i t y _ c a l c ; %v a r i a b l e to s t a t e e r r o r on the o v e r a l l

p a r i t y
38 ecc_check = 0 ; %v a r i a b l e to s t a t e e r r o r on the data+code word
39
40 data_correc ted = data_in_dec ;
41
42 % CHECK IF THE ERROR HAS OCCURRED, AND CORRECT IT
43 i f ( error_check ( : ) == zeros ( r , 1 ) )
44 ecc_check = 0 ;
45 e l s e i f ( e r r o r _ p o s i t i o n > 0)
46 ecc_check = 1 ;
47 data_correc ted ( e r r o r _ p o s i t i o n ) = num2str ( not ( data_in_dec (

e r r o r _ p o s i t i o n )− ' 0 ' ) ) ;
48 e l s e
49 ecc_check = 1 ;
50 end
51
52 NOERROR = 0 ; % everything i s OK
53 SEC = 0 ; % s i n g l e e r r o r detec ted and c o r r e c t e d
54 DED = 0 ; % double e r r o r detec ted and not c o r r e c t e d
55 PE = 0 ; % p a r i t y e r r o r detec ted
56 i f ( par i ty_check == 0 && ecc_check == 0)
57 NOERROR = 1 ;
58 e l s e i f ( par i ty_check == 1 && ecc_check == 1)
59 SEC = 1 ;
60 e l s e i f ( par i ty_check == 0 && ecc_check == 1)
61 DED = 1 ;
62 e l s e i f ( par i ty_check == 1 && ecc_check == 0)
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63 PE = 1 ;
64 end
65
66 data_corrected_hw = f l i p l r ( da ta_correc ted ) ;
67
68 NOERROR
69 SEC
70 DED
71 PE
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