
Master thesis - Electronic engineering

Design of a fault tolerant RISC-V
instruction execute stage for safety

critical applications

Supervisors:

Prof. Stefano Di Carlo
Prof. Alessandro Savino
Prof. Maurizio Martina
Prof. Guido Masera

Candidate:

Luca Fiore

April 5, 2021

Abstract

Combining performances, power consumption and fault tolerance in mod-
ern integrated circuits is a real challenge. The goal of this work is to present
a possible technique to detect and correct both transient and permanent er-
rors in the execution unit of a RISC-V core, without affecting performances.
TMR, Standby-Sparing, Alpha Counting and other techniques are mixed to-
gether to protect the ALU and the Multiplier against single transient errors
and multiple permanent errors. This technique can potentially be applied
to any other critical component and its main advantage is that it allows
the component affected by permanent fault to be reused in the remaining
non-faulty subparts thus maximizing resources exploitation.

To my mum and my dad
who gave me life

Acknowledgements

I would like to thank my supervisors Prof. Stefano Di Carlo, Prof.
Alessandro Savino, Prof. Maurizio Martina and Prof. Guido Masera for
their professional support and guidance. Furthermore I would like to thank
my two teammates Marcello Neri and Elia Ribaldone for their collaborative
effort into this project leading to reach a great result. I would also like to
acknowledge Politecnico di Torino for the amazing journey I have had the
past five years as a student. Thank you "my family", thank you Jessica.

Contents

List of Figures . III
List of Tables . V
Nomenclature . 1

1 Introduction 1
1.1 Motivations . 1
1.2 Thesis organization . 2

2 Standard for functional safety 4

3 Fault tolerant processors 8
3.1 Fault tolerance terminology 8

3.1.1 Faults, errors and failures [85] 10
3.2 Fault tolerant techniques: error detection 12

3.2.1 Spatial redundancy techniques 13
3.2.2 Temporal redundancy techniques 27

3.3 Fault tolerant techniques: error recovery [61] 30
3.3.1 Reboot . 31
3.3.2 Forward Error Recovery 31
3.3.3 Backward Error Recovery 34

3.4 Importance of fault tolerance 35

4 The RISC-V ISA and cv32e40p 37
4.1 The RISC-V ISA . 37

4.1.1 History . 38
4.1.2 Base Integer ISA . 39
4.1.3 Standard extensions 41

4.2 The cv32e40p core . 42
4.2.1 Design . 44

4.2.1.1 Execution unit 44

I

5 Fault tolerance on cv32e40p 49
5.1 Target . 49
5.2 Ideas . 51
5.3 Criticality levels . 52
5.4 The architecture . 54

5.4.1 ALU dispatcher, pipeline replicas and TMR 55
5.4.2 Voter . 59
5.4.3 ALU alpha-counters and table of faulty components . 61
5.4.4 MULT dispatcher, pipeline replicas and TMR 64
5.4.5 MULT alpha-counters and table of faulty components 65
5.4.6 MULT translated into Add and Shift 66

5.5 CSR extension . 69

6 Simulation and results 73
6.1 The simulation environment 73

6.1.1 Detailed structure of FT verification environment . . . 76
6.2 Functional verification . 77
6.3 Fault tolerance verification . 84

6.3.1 Choice of the number of simulations for the fault tol-
erance evaluation . 84

6.3.2 Results . 87

7 Conclusions 90
7.1 Future works . 91

7.1.1 BIST . 91
7.1.2 NRMR . 92
7.1.3 Repetition if unsure 93

Bibliography 94

RISC-V FT Fiore Luca II

List of Figures

2.0.1 IEC 61508 - Technical Requirements 5
2.0.2 IEC 61508 - Safety life cycle [42] 6

3.2.1 DMR scheme . 14
3.2.2 TMR scheme . 15
3.2.3 Two stage TMR scheme . 15
3.2.4 2 level voting TMR scheme 16
3.2.5 NRMR scheme . 17
3.2.6 Berger code scheme . 19
3.2.7 Implementation of encoded operations for Residue codes [76] . 21
3.2.8 Implementation of encoded operations for AN code [76] . . . 23
3.2.9 Implementation of RESO [64] 28
3.2.10Implementation of RERO [49] 29
3.3.1 Implementation of Pair and Spare [45] 33

4.1.1 RISC-V base instruction formats [2] 39
4.2.1 cv32e40p microarchitectural scheme [25] 44
4.2.2 Multiplier block diagram . 47

5.1.1 Diagram of performances . 50
5.3.1 General schematic of design 53
5.4.1 Zoom on the ID-EX interface 56
5.4.2 Majority Voter . 60
5.4.3 Zoom on the voting and bypass mechanism 62
5.4.4 cv32e40p Pipeline [26] . 63
5.5.1 Allocation of RISC-V CSR address ranges. 70
5.5.2 CSR manipulation instructions [18] 71

6.1.1 RI5CY Testbench [69] . 74

III

6.2.1 Custom csr access: output of C code in Listing 6.1 from Ques-
taSim simulation. 80

6.2.2 Counter decreases after writing, because no fault is injected. . 81
6.2.3 Custom csr access: Clock gating. 82
6.2.4 Wave comparison: ft vs ref architecture. 83
6.3.1 n = f(e) (p=0.5, N=150000, 90% confidence level). [47] . . . 86

RISC-V FT Fiore Luca IV

List of Tables

6.1 Results with transient fault injection on ft architecture . . . 87
6.2 Results with transient fault injection on ref architecture . . . 88
6.3 Results with permanent fault injection on ft architecture . . 89
6.4 Results with permanent fault injection on ref architecture . . 89

V

Chapter 1

Introduction

1.1 Motivations

Electronic devices are currently used in a such a wide variety of fields that
leads to the necessity to design devices suitable for really different environ-
ments.
For this reason a single component such as a processor can be realized in
many different ways because of the necessity to meet multiple different re-
quirements and to be suitable for various scenarios. For example the proces-
sor designed for a smart washing machine differs from that of an aircraft on
board control system for performance reasons, security reasons and reliabil-
ity reasons, and this also entails a diversity in terms of cost.

Anyway, whether we talk about critical applications or simple minor
applications the customer who invests on a system will require longevity,
safety and reliability.
Nowadays the complexity of a machine is so high that the human user can’t
manage all the aspects or the problems related to the machine functioning,
so it is necessary to limit at the maximum the possibility that a system fails.
The three main reasons are:

1. economic reasons: a broken device has to be substituted or fixed;

2. time reasons: the repairing time is lost time for the application;

3. safety reasons: a faulty device can potentially be dangerous.

In this work we want to find solutions to make a simple processor able
to tolerate errors and possibly to recover from them, in order to obtain a

1

device suitable for safety critical applications.
About processors, lots of researches and efforts were made in order to make
the device secure and reliable (on these terms see 3.1) and many techniques
have been discovered to improve processors endurance.
Among the multitude of processors used in embedded world, we will focus
on RISC-V, an open source ISA (Instruction set architecture) that has be-
came one the most promising architecture because of its simplicity and open
sources licenses.
The basic idea of the RISC-V project at the beginning was exactly to have
a large base of contributors who freely could use the ISA in academic and
in any hardware or software designs. At the time of writing, lots of RISC-V
implementations are used (Western digital SweRV [59] or Alibaba XuanTie
[15]), some others are in development (cv32e40p and other cores on PULP
platforms [68]) and probably many others will be designed for the reasons
we have just explained.

1.2 Thesis organization

This work is organized as follows:

1. Chapter 1: Introduction to get a general idea on the motivations that
led us to develop this project.

2. Chapter 2: Overview on the international standards for functional
safety that guided us in this project.
Our goal to provide an fault tolerant HW extension for a processor
and we want to make our work suitable for comparison with other re-
searches, hence the need for a standard guideline that standardize both
the safety problem and the required process to manage it.

3. Chapter 3: Introduction to fault tolerance processor, terminology and
techniques. In this project we will adopt some already known solutions
to protect our RISC-V core, but we will try to explore some new ap-
proaches to achieve a better fault tolerance.
Chapter 3 is therefore a detailed description of the state of the art
in processor fault tolerance, in particular the two main themes of
error detection and error correction are dealt with.

4. Chapter 4: In this Chapter there is a general description of the RISC-V
ISA, the historical milestones and the main characteristics of the ISA.

RISC-V FT Fiore Luca 2

5. Chapter 5: Description of the cv32e40p core (the RISC-V implementa-
tion adopted in this work), with particular attention to the Execution
Unit of the core, mainly including the ALU and the Multiplier.

6. Chapter 6: This is the main Chapter of this work because it deal
with the particular hardware designed on the cv32e40p to protect its
Execution Unit.
After an introduction to the fault tolerance problem on the cv32e40p
we introduce our main ideas to solve the problem and finally there
is the detailed description of the hardware extension provided to the
cv32e40p.

7. Chapter 7: Shows the results in terms of simulations results. first of
all, there is the description of the simulation environment and then we
show the simulations done to verify the correct behaviour of the core
and to evaluate its fault tolerance level.

8. Chapter 8: Summary of the main conclusions and some considerations
on the results obtained.

9. Chapter 9: It presents some ideas for further developments on the core.

The main acronyms are summarized in the Nomenclature section to allow
the reading of this thesis by experts and not-experts.

RISC-V FT Fiore Luca 3

Chapter 2

Standard for functional safety

At the beginning of the 20th century there was an incredibly fast advance-
ment in electronics and computer science which led to the growth of in-
dustrial production. For this reason arose the need for standard guidelines
for industrial activities and in particular the compatibility of different stan-
dards between countries became fundamental. In fact, every country begins
to open up to the world, leaving its borders as trade began to involve the
whole world in a way never seen before. Nowadays there are many inter-
national standardization organizations that actually collaborate to provide
documents and guidelines for almost every type of industrial activity and
also in other sectors. Regarding electrical and electronic devices, the main
organizations are the International Organization for Standardization (ISO)
and the International Electrotechnical Commission (IEC) which are respon-
sible for the development, maintenance and promotion of standards in the
fields of technology of information and communication (ICT).
In our work we will refer to standards developed by those organization to
have some guidelines to orient our reasoning in a proper way.
The main reference we will follow is IEC 61508, the international standard
currently adopted by companies and industries to ensure functional safety of
electrical, electronic and programmable electronic (E/E/PE) safety-related
systems. It is divided into seven parts and its two main objectives are to help
individual industries develop supplemental standards, tailored specifically to
those industries based on the original 61508 standard, and on the other hand
to enable the development functional safety systems where specific applica-
tion sector standards do not already exist [42].
For example IEC61511 for the process industries, IEC 62061 addressing ma-
chinery safety and IEC 61513 for the nuclear industry come directly from

4

IEC 61508 and reference it accordingly.

The first 3 parts of the Standard represent the technical requirements
(general, hardware and software requirements) and the remaining 4 parts
contain all the supporting informations (definitions and abbreviations, ex-
amples, guidelines on the application of Part 2 and 3, and so on); the rela-
tionship between these seven parts is shown in Figure 2.0.1.

Figure 2.0.1: IEC 61508 - Technical Requirements

IEC 61508 is concerned with the E/E/PE safety-related systems whose
failure could affect the safety of persons, animals and/or the environment.
The main concept of all documents is functional safety defined as the de-
tection of a potentially dangerous condition that triggers the activation of
a protective or corrective device or mechanism to prevent the occurrence of
dangerous events or that provides mitigation to reduce the consequences of
the dangerous event. functional safety is the part of safety that depends on
the correct functioning of a system or equipment in response to its inputs,
while safety is the absence of unacceptable risks of physical injury or dam-
age to the health of persons, directly or indirectly as a result of damage to
property or the environment.
From the concepts of functional safety come other two fundamental con-
cepts: the safety life cycle and the safety integrity levels. Safety life cycle
is the intended as the process necessary to achieve functional safety while

RISC-V FT Fiore Luca 5

safety integrity levels are levels of risk reduction and are four, the higher one
is that related to the strongest risk reduction.
The standard is far more complex than described in the previous few lines
but the essential is to approach the digital design for fault tolerance in a way
that follow the standard guidelines.

The goal of the project described in this report is exactly to extend the
architecture of a RISC-V core to reach a good level of fault tolerance; to be
compliant to IEC 61508 we will follow the safety life cycle as described in
Figure 2.0.2.

Figure 2.0.2: IEC 61508 - Safety life cycle [42]

The idea behind the safety life cycle is to develop and document a safety

RISC-V FT Fiore Luca 6

plan, execute that plan, document its execution (to prove that the plan has
been met), and continue to follow that safety plan until decommissioned
with additional appropriate documentation throughout the life of the sys-
tem. Changes along the way must similarly follow the pattern of planning,
execution, validation, and documentation.

In our project we will not follow all the steps required by a complete
Safety Life Cycle because our final product will not be a commercial and
physical device, so we will try to take into consideration the Standard and
to follow its guidelines but we will certainly have to adapt the Standard to
our case of study as any company do for their special projects. Our target is
to investigate and design innovative solutions to increase the fault tolerance
of our processor but basically we don’t know where and for which purposes
the core will be used, therefore we can only make some hypotheses.

RISC-V FT Fiore Luca 7

Chapter 3

Fault tolerant processors

Very often in modern era the real center of human activities is no more the
human itself but electronic devices with their brain: processors together with
machine learning. Processor are able to execute millions of simple instruc-
tions per second and nowadays they are used in almost any kind of electronic
device. We are in the so called "smart era" and the future is going to be even
smarter as long as the earth allows it. Anyway, apart from ethical and envi-
ronmental issues, modern human activities are strictly related to computers,
smartphone and vehicles that always integrate some computational unit and
so we can extend the concept of processor to almost everything around us.
In this complex modern era, humans want to feel helped and supported by
electronic devices but in particular they want to feel safe because sometimes
using a too technological device, and therefore a device that is not completely
and deeply known, can worry the user. For example if we think about the
autonomous driving mode of modern vehicles, we understand how difficult
can be for some users to completely trust the engineering team that have
developed that driving mode.
Therefore, safety is an important requirement for modern electronic device
whether we talk about a simple city car or an innovative space aircraft mod-
ule, and this is valid for both processors or any other part of a system.

3.1 Fault tolerance terminology

In this paper we will focus on a RISC-V processor for safety critical appli-
cations such as space mission flights where the dependability is probably
the main characteristic that must be preserved. Depending on the special

8

application and field of use, different emphasis can be put on the word de-
pendability and in the following summary we try to analyze all the different
meaning.

• Dependability : is the property of a computer system for which we can
legitimately rely on the service it provides;

• Reliability : is the continuity of the service. The reliability of a system
at time t is the probability that the system has been operating correctly
from time zero until time t.

• Availability : is the readiness to use of the service. The availability
of a system at time t is the probability that the system is operating
correctly at time t;

• Safety : is the non occurrence of any dangerous events due to malfunc-
tioning of the system;

• integrity : is the non occurrence of undesired corruption of informa-
tions.

• Mean Time To Failure (MTTF): Mean time to failure can be a useful
metric to have an idea of the expected life of our device. Unfortunately
this parameter can’t be considered standalone since we need to know
also the variance of failures because a device with an high MTTF but
with an high variance can potentially be worse than another device
with both parameters at a lower level.

• Mean Time Between Failure (MTBF): Mean time between failures is
derived from MTTF with the addition of the extra time required to
repair the device, the mean time to repair (MTTR). Therefore the
device will be available for less than 100% of the time:

Availability =
MTTF

MTBF
=

MTTF

MTTF +MTTR
(3.1)

Therefore a device can deliver its service in many different ways, with
discontinuity, with non-perfect output, with possibility to damage the sur-
rounding environment or it can have all the properties mentioned above and
so be a good device that can be used with confidence.

RISC-V FT Fiore Luca 9

3.1.1 Faults, errors and failures [85]

An electronic device such as a processor, as described in this paper will cer-
tainly experiment some kind of problems due to time wearing, after one year
as well as after one day, and this could cause the fail of the service provided
by the device. For example a damaged wire or a broken transistor can pro-
duce an incorrect output leading to an unuseful and potentially dangerous
processor.

In this perspective, the words fault, error and failure are erroneously
used as synonyms but all have their own specific meaning: fault is physical
defect for example due to time wearing or external physical damage and it
can manifest itself as an error, such as a bit flip, or it can be masked by
architectural solutions or by application reasons. In the same way, an error
can produce a failure (so a user-visible incorrect behaviour of the system) or
not.
According to the duration of faults (and errors) we distinguish between tran-
sient, permanent and intermittent faults (errors) which therefore require dif-
ferent fault tolerant techniques.

• transient: is the so called soft error or single event upset (SEU). This
kind of error is temporary and it usually last few clock cycles (1 clock
cycle in the extreme case).
Four are the most important causes of transient faults in a processor
or in a general electronic device [94]:

1. high energy particles produced when cosmic radiations impact the
atmosphere

2. alpha particles produced by natural decay of radioactive materials
that are very often the metallic materials of the package itself.

3. electromagnetic interference: this source of interference can come
from outside or from inside, also called cross-talk.

4. current spikes: it is the so called δI/δt problem and can produce
unexpected behaviour because of unexpected high current draw
[67].

The most common FT techniques in this case include spatial and tem-
poral redundancy (see 3.2).

• permanent: is the so called hard error because it last forever until some
external operation repairs the damaged component. This kind of error
can be due to three main reasons:

RISC-V FT Fiore Luca 10

1. temporal wear-out: electromigration [16][33], break down of tran-
sistor’s gate oxide [74][51], mechanical stress, high voltage, high
temperature and others [86]. These kind of faults can be lim-
ited by voltage and frequency scaling [87], dynamic temperature
adjustment [82] or adaptive body biasing [88].

2. chip fabrication defects: this defects can be detected before device
shipment through a test, but sometimes the test has not a 100%
coverage or sometimes the defect can’t be detected if the chip is
not in the field.

3. bad design: in this situation the error is permanent because even a
perfectly fabricated device won’t behave as expected. This type of
error should be avoided thanks to simulations during verification
but sometimes the same verification environment doesn’t provide
a full testing for that specific incorrect feature, and so the bug
arrives to the final product as it did for some processors in the
past [30][43].

The most common FT technique in the above cases is the use of a
fault-free duplicate of the component that substitutes the corrupted
one, so mainly spatial redundancy.

• intermittent: is a fault or error that happens repeatedly in the same
place due to process variation combined with voltage and temperature
fluctuation. There are some techniques developed exactly for this kind
of errors [92] but in general the approach is to treat them as permanent
or as transient.

Another important classification of errors is based on the symptoms that
HW errors can cause in SW at assembler level [76]. It is an error model ex-
tended from Forin initial model [34], used in HW independent error detection
mechanism, so at SW level, but it is still very interesting:

1. Exchanged operand: A different but valid operand is used.

2. Exchanged operator: A different operator is used, for example, an
addition is executed instead of a subtraction. The operands remain
the same.

3. Faulty operation: An operator such as addition or subtraction does
not work as expected and produces incorrect results despite of correct
input values. Every usage of the result produced is influenced by this
error.

RISC-V FT Fiore Luca 11

4. Lost update: A store operation to a register or memory location is
omitted. This can result in the usage of out-dated values later on.

5. Modified operand: An operand used by an instruction is modified by
a single or a multiple bit-flip. In contrast to a faulty operation, this
error only influences one read of a value.

3.2 Fault tolerant techniques: error detection

When working with a specific digital device, let’s say a µprocessor, we have
to know which will be the application environment of our device to know the
types of error we are going to deal with. For this reason the error models
described above become very useful into errors classification and diversifica-
tion. The subsequent step after knowing the problems that our device would
encounter is to detect the possible error and then to recover from it if pos-
sible. Error detection and error recovery are so the main topics of this work
and special attention will put on their meaning into the Execution Unit of a
RISC-V core.

Among the multitude of FT techniques examined over years we are going
to focus on those one related to the ALU and to execution unit in general.
The keyword in FT field is always redundancy. It is important to distin-
guish between spatial redundancy and temporal redundancy even if hybrid
solutions are often used. We talk about spatial redundancy when the basic
component that we are going to protect against faults is surrounded by extra
HW useful to detect and sometimes correct errors, while on the other hand
we talk about temporal redundancy when it is required some extra time,
with respect to the normal execution, to identify some errors and eventually
correct them.

In the following list there is an overview on the main FT techniques de-
veloped in the past years and some ideas for our specific application on a
RISC-V core; we are going to distinguish between spatial and temporal re-
dundancy techniques even if as expected some techniques are a mixture.

RISC-V FT Fiore Luca 12

3.2.1 Spatial redundancy techniques

These techniques require always some extra HW to ensure a certain level of
security to the device and so the main drawback we can face are related to
occupied area and power consumption of the extra components.

Modular redundancy

It consist in inserting some replicas of the unit to protect (UTP) and compare
the output coming from the replicas to check if something in the execution
went wrong and eventually recover from errors. Transient errors are the main
target of this technique but permanent errors can be detected too, but not
corrected. In fact, by performing the same operation many times and verify-
ing that the same error has occurred, we can conclude that it is a permanent
error (for example the repetition of the same operation can be performed
during spare cycles if the UTP is free but for additional informations on this
technique see Temporal Redundancy 3.2.2 and BIST, Built In Self Test).

This technique is very efficient in terms of error detection and correction
(if the number of replicas is greater than 2 and if it is an odd number, see the
TMR presentation below) but can’t provide any kind of help against design
bugs. Infact even if we use a very high number of replicas, if they are all
equal and so if they are all affected by the same design bug, it can not be
detected.
An important solution to overcome this problem is the so called etheroge-
neous replica or in general design diversity [7] where at least one replica has
to be architecturally different from the fundamental one.
In this way there is a chance that if a design bugs occurs into an identical
replica of the fundamental component the different replica could be fault free.
An extreme example of this solution is the watch-dog timer [57] where this
"replica" monitors some hardware for sign of life. For example a processor
watch-dog timer (see temporal redundancy below) is a simple coproccessor
that tracks memory request on the bus and if the bus is empty for too long
time it is interpreted as sign of error and something is done to recover from
this situation.

• DMR - Double Modular Redundancy : Duplicate the UTP and insert a
comparator to check the equality of the outputs of the two replicas as
shown in Figure 3.2.1. DMR is very simple technique and very effective
to detect single errors except for those affecting the comparator, design

RISC-V FT Fiore Luca 13

bugs and simultaneous errors in both the modules.

Figure 3.2.1: DMR scheme

In DMR There is no possibility of recovery if the two replicas are
identical because neither of them has higher priority over the other.
Anyway there are two tricks that can be adopted to add recovery to
DMR:

1. self check each of the two modules using spare cycles of the core.
If one of the two modules reports to have more errors than the
other in the future it will be assigned less priority than the other
which in this case will be trusted more.

2. add information redundancy to each of the two replicas obtain-
ing a two level fault tolerant system. The comparator checks the
equality of the two outputs and can immediately know if some-
thing went wrong but then internally each of the two modules can
know if the operation has been performed correctly or not.

This technique will result in more than double power consumption and
occupied area (two modules + comparator) while regarding the delay
little overhead has to be accepted only due to the comparator.

• TMR - Triple Modular Redundancy : Triplicate the UTP and insert a
majority voter to check if one of the unit has encountered some prob-
lems and eventually discard that output as shown in Figure 3.2.2.
It is conceptually really close to DMR because only one error can be
detected as in DMR, but this time it can be corrected because the two
fault free modules will produce the same output that is considered to
be the correct one.

RISC-V FT Fiore Luca 14

Figure 3.2.2: TMR scheme

One problem related to this technique is that it is unable to prevent
errors in the majority voter. Therefor if the voter is faulty the TMR
mechanism will be ineffective and even dangerous because can let errors
to be propagated to the following stage. To remedy this problem a two
stage TMR [55] can be applied as in Figure 3.2.3.

Figure 3.2.3: Two stage TMR scheme

In this way there is redundancy for the voter too and so if we know
that we are going to use TMR for two subsequent unit or if we can
split our unit into two sub units we can directly leave three voters and
solve the problem of faulty voter for that unit.

Another intermediate solution similar to the two stage TMR is some-
thing where we use a two level voting as in Figure 3.2.4. This technique
hes been little investigated in the past [79] because of extra complexity
which means more area and so higher probability of faults and because
the final voter can still be subjected to errors. Obviously if we con-
sider the fault occurrence in all the component to be equally probable

RISC-V FT Fiore Luca 15

there is no advantage from this technique. What we think on the other
hand is that the probability that one of the three parallel voters has a
fault is lower than the probability that one of the three replicas of the
functional unit is wrong. So the overall probability than one input of
the final voter is faulty is really low and in the same way there is less
probability to fall in an undetectable fault because it far less likely to
find that two input of the final voter are wrong. This statement comes
from the consideration that one ALU is surely more complex than a
voter and therefore the probability an ALU is faulty is greater that the
probability a voter is faulty.

Figure 3.2.4: 2 level voting TMR scheme

Other hybrid solutions can be investigated but still the biggest problem
remains that only one error can be detected and corrected. However,
as always, if there are multiple errors masking each other or if there
is the same error in two modules, the errors cannot be detected and
instead there is the serious risk to have to error directly on the output.
TMR as the standard DMR with no "diversity", is blind to design bugs
and for this reason "heterogeneous" replicas can be exploited (see the
following NRMR).

• NRMR - N Reduced precision Modular Redundancy : Replicate N times
the UTP and insert a voter to detect and eventually correct error(s).
If needed some of these replicas can have reduced precision [52] or
different microarchitecture with respect to the fundamental one which
leads to the so called design diversity. This means to use a replica
that will produce an output with different HW effort with respect to
the fundamental unit and this is useful especially if the number N of
replicas become large (5 or more) in order to limit the Area and Power
consumption overhead.
See Figure 3.2.5 to have a visual idea of this technique.

RISC-V FT Fiore Luca 16

Figure 3.2.5: NRMR scheme

This time, as in TMR the voter strongly contributes to the area, power
and delay overheads and for this reason some technique were adopted
to contain the voter impact on the performance of the circuit [46].

Important remark about the choice of N: If N is and odd number it
means that there is not the possibility of parity conditions, that is
when for example with N=4 two modules say something and the other
two agree on something different.
On the other hand N has to be large enough to detect the number of
errors that we expect to occur but not too large because N times as
much hardware is susceptible to N times as many errors, if we assume
a constant error rate per unit of hardware [85].

Information redundancy - Arithmetic codes

A special case of spatial redundancy is the so called information redun-
dancy and in particular we will focus on arithmetic codes.
Arithmetic codes add redundancy to processed data leading to the creation
of a larger "domain" of possible data words that include the smaller subset
of valid code words. In a fault free operation the output of such encoded
circuit is always a valid code word, while on the other hand, faulty arith-

RISC-V FT Fiore Luca 17

metic operations do not preserve the code with a high probability, that is,
faulty operations most likely result in a non-valid output code word [76] [6].
Arithmetic codes can also detect errors produced by faulty transmission or
storage because the transmitted or stored value will be invalid code word
with high probability and so it will be detectable by checking the code.

This kind of circuits are also called self checking circuits [90] because the
circuit itself is able to recognize if an error occurred by means of a checker.
In this field we are going to examine four particular coding techniques useful
in ALU operations: Berger codes, Residue codes, AN codes and parity codes,
and we will use the expression "functional value" to indicate the word we
are going to protect and encode, and the expression "redundant part" to
indicate the extra bits added to the functional value.

The presented codes are classified according to the relation between the
functional value and the redundant part (or check bits): if the code word
can be clearly divided into the two parts we said it is a systematic code and
if the check bits are computed in parallel to the functional value the code is
separate.

- Berger codes [10]

Berger code is a systematic and separate code. This technique can detect
all the unidirectional errors that occur in the same direction and so simple
bit flips that move ’1’ into ’0’ and ’0’ into ’1’ but not mixed transitions.
Obviously Berger codes can not correct errors as the majority of information
redundancy techniques.
Berger codes consist of the X bit functional value and a word of N bit with
N=dlog2X + 1e reporting the binary value of the number of ’0’ contained in
the functional value itself. For example in the 8bit word "01101011" there
are 3 zeros and so the final code word will be "01101011|011" where the last
three bits give us information on the number of ’0s’ in the functional value.
At this link at the time of writing you can find a good and user-friendly app
to explore Berger Codes potentialities.

The main advantage of this technique is that the functional value can be
immediately read from the encoded word but there are unfortunately some
drawbacks. The first problem is about the kind of errors that Berger Codes
can detect as mentioned before, that is, only unidirectional bit-flips. For
example imagine that in the previous 8bit word one bit flips form ’1’ to ’0’
and another one from ’0’ to ’1’, this is the typical condition of undetectable
error or silent error because the final value will still be a valid code word.

RISC-V FT Fiore Luca 18

http://www.ecs.umass.edu/ece/koren/FaultTolerantSystems/simulator/Berger/berger.html

Despite this, referring to 3.1.1 this technique is effective for different kind of
errors such as faulty operations or modified operands (for example we encode
an operand saved in a register and when we are ready for the computation,
we read from that register a value that doesn’t match with its code that
means that the operator will receive a modified operand). Depending on the
HW implementation it can detect also exchanged operands and exchanged
operators (for example the two operands are exchanged and so the redundant
code of the two don’t match the functional values, and the same for the
exchanged operator because the redundant code of the result doesn’t match
the functional value of the results because it was obtained with a different
operation).

Another important issue of these redundant codes techniques including
Berger code, is that the computation of the redundant part has to be per-
formed separately as depicted in Figure 3.2.6 with some extra hardware that
has the "same" fault probability of the protected unit.

Figure 3.2.6: Berger code scheme

RISC-V FT Fiore Luca 19

Figure 3.2.6 shows a simple idea behind Berger codes and other redun-
dant code solutions. To have a better idea of a self checking ALU using
Berger codes have a look at [53] and [54].

However, there are many situations where the detection of all possible
unidirectional errors (provided by Berger codes) is not necessary and this has
led to the development of several ’modified’ versions that allow to overcome
even the limitations of the Berger code: the main ones are Bose-Lin code
and Dong’s code.

Bose-Lin code is a systematic error-detecting code for detecting up to
t unidirectional errors and requires fewer check bits and a much simpler
checker than a Berger code [13] [39] [28]. If the number of information bits
X is greater than 2N − 1, Bose-Lin code can be better than Berger code.
the main advantage of this technique is that it needs only a fixed number of
check bits independent of the number of information bits to detect a defined
maximum number of errors.

Then we have Dong’s Code. It is less expensive than Berger code (exactly
as Bose-Lin code) in terms of the number of check bits and the complexity of
checkers[40], but the Dong’s code has the advantage that its error detection
capability is a function of the number of check bits used, independent of the
total number of the information bits; that is the error detection capability
of code can be made to be application specific [56].

- Residue codes

Residue code is systematic and separable code, i.e. the redundant part
is separated from the functional value as in Berger codes family that means
it requires extra HW and operations to compute the results’s check bits for
each operation. The code is created by appending the residue of a number
to itself [36]: the code word xc for the functional value x is therefore the
tuple of x and its residue to a code specific constant A greater than 1.

xc = (x, x mod A) = (x, xA), A > 1

We can refer to Figure 3.2.6 used to understand Berger approach to also
understand Residue codes because they are both redundant code techniques
and so the main difference is only on the redundancy computation that now
is a residue computation.
In the following table are reported the supported and unsupported operations
by residue codes and eventually the expression to compute both functional
value and check bits.

RISC-V FT Fiore Luca 20

Figure 3.2.7: Implementation of encoded operations for Residue codes [76]

A very unpleasant results from the previous table is that there is no di-
rect encoding for division, shift operations and bit-wise Boolean operations.
This means that to support these operations you have two possibilities: use
some other technique or use loops of supported operations with their residue
codes (for example the division can be emulated expensively using a loop
that subtracts the divisor from the dividend until zero is reached).

With this technique we can detect faulty operations and modified operands
(because of no matching of output and inputs residues respectively), ex-
changed operands and exchanged operator (because check bits are computed
separately). All this considerations are valid if no masking errors occur (for
example one operand is modified and randomly its residue is affected by an
error in the same direction) because we could get a a valid tuple (x, xA) even

RISC-V FT Fiore Luca 21

if there were some errors.

Two advanced variants of Residue codes are the so calledMultiresidue codes
and Inverse residue codes. The first adoption of Multiresidue approach is
described in [70] for the case of Biresidue codes where is highlighted the pos-
sibility of error correction. As for the Inverse Residue codes, the check bits
are A − xA instead of xA and in [6] it is stated that they have significant
advantages in fault detection of repeated-use faults.

- AN codes [76]

AN codes are non-separate and non-systematic code word because func-
tional value and check bits are processed together and we can not distinguish
them into the code word. The code word xc for the functional value x is de-
rived from the multiplication of x itself by a constant A greater than 1.

xc = (x ·A), A > 1

To check if the code-word xc is valid we just need to compute the modulus
with A and verify that it is 0:

xc mod A = 0

In the following table are reported the supported and unsupported opera-
tions by AN codes and eventually the expression to compute both functional
value and check bits.

RISC-V FT Fiore Luca 22

Figure 3.2.8: Implementation of encoded operations for AN code [76]

AN-code can detect with high probability faulty operations and modi-
fied operands. Actually it is very unlikely that for example a bit-flip into
operands or a wrong result will result in another multiple of A.
The great difference with respect to Residue codes is that now division is sup-
ported with a direct encoding, but the two main drawbacks of this technique
are:

1. the functional value can’t be read directly from the encoded word but
it is obtained by an integer division x = xc/A.

2. no detection of exchanged operands and exchanged operator. In fact
if the new operand is still a multiple of A nothing is wrong, and the

RISC-V FT Fiore Luca 23

same for the exchanged operator, if it is executed a subtraction instead
of an addition the results will be again a multiple of A.

To overcome the limits of AN codes, several variants have been developed
over years:

• error correcting AN Codes: there are many examples of AN Codes able
to correct errors as in [58], [70] and others. These solution are really
complex and we will not go into detail, just know the idea behind
them: choose A so that each correctable error pattern gives a specific
modulus for A. An error pattern is composed of the original code word
and the number, the position, and the direction of the bits flipped by
the error.

These AN-codes can be used to correct transmission errors and errors
related to storage of the encoded value (therefore modified operands
are correctable). However, it is not possible to correct errors occurring
during the execution of operations. Thus, we can’t correct the symp-
toms faulty operation, exchanged operand, exchanged operator, and
lost update.

• Systematic AN Codes: to overcome the problem related to the mixture
of functional value and redundant part into the code word, a systematic
variant of AN codes has been exploited.
The code word xc is obtained using the following expression:

xc = 2m · x+ [(−2m · x) mod A], 2(m−1) < A < 2m

The code word is valid if (−2m · x) mod A is equal to its check bits.
In this way we have in the most significant part of the code word xc
the functional value shifted by m position and in the remaining part
there is the redundant part (check bits). For this reason the code is
systematic and it is also a valid AN code because xc is again a multiple
of A. More details at [60].
The main drawback of this technique is that the code word of the
result of an operation even simple such as an addition, can’t always
be computed directly from the operands. Actually an addition of two
valid codes can result in invalid code or valid but wrong code and this
will require some more adjustment to the result to be valid and correct.

• |gAN|M Codes: this variant of AN codes is strictly related to systematic
AN codes because even |gAN|M codes are systematic and non-separate

RISC-V FT Fiore Luca 24

code with the great difference that the check bits are in the MS position
and the functional value is in the LS positions. For more details have
a look at [71].

What we just want to highlight in this paragraph is that |gAN|M Codes
do not support signed numbers and divisions but they are close with
respect to addition, subtraction and multiplication in contrast with
systematic AN codes.

• ANB Codes: this can be seen as an evolution of standard AN Codes
because it try to solve the problem of undetectable exchanged operators
and exchanged operand as seen in the section regarding AN Codes.
P. Forin in [35] extend the idea under AN Codes with signature that
is an extra parameter Bx in the following expression:

xc = (x ·A) +Bx, 0 < Bx < 1

In this way, giving a special Bx to each operand will result in a code
word that is not a simple multiple of A but something strictly related to
that special x thanks to the Bx value. So the exchanged operators and
exchanged operand errors can be easily detected because each word has
its special encoding (or better set of encodings). The functional value
x is obtained by an integer division x = xc/A and the correctness of the
operand or operation is obtained just by computing Bx = xc mod A.

The main drawbacks are that there is no direct division encoding and
that many corrections have to be applied to the result of an opera-
tion with ANB encoding in order to obtain a valid code word whose
signature only depends on the signatures of the operands.

• ANBD Codes: In [35] Forin present a further extension of ANB code
with D value. The reason for this extra variable is due to the necessity
to detect also the so called lost update errors, that is an error caused
by an incorrect store of data (see 3.1.1).
The code word xc is obtained with:

xc = (x ·A) +Bx + Cx, 0 < Bx < 1

Because in addition to signature Bx there is also timestamp D that
counts variable updates, this technique requires more corrections than
ANB code to obtain a valid output code word, but fortunately this
solution support the detection of lost update errors.

RISC-V FT Fiore Luca 25

- Parity codes [63] [78]

Parity prediction circuits are not part of Arithmetic codes but we want to
talk about them because of their effectiveness and because they are currently
used in commercial microprocessor, such as the Fujitsu SPARC V micropro-
cessor [50].

Parity code is a systematic and separate code. The code generator adds
an extra bit, called parity bit, to the data frame in order to have the total
number of 1s either odd or even depending upon the type of parity. This
technique is good for single bit error detection only.

The two types of parity codes are

• Even Parity: the total number of bits in the message has to be even:
if the message has an even number of 1s, the extra bit will be ’0’.

• Odd Parity: the total number of bits in the message has to be odd: if
the message has an even number of 1s, the extra bit will be ’1’.

Parity prediction circuits generate parity bits for both the operands and
the result, as shown in Figure 3.2.6. Remember, this technique can only be
used for arithmetic operations. At the beginning two operands undergo an
arithmetic operator and the parity of the result is computed; then parity bits
for each operand are generated and are sent to a logical XOR gate that acts
as the "redundant part predictor". Finally, this result is compared to the
result of the first computation in the so called checker, to obtain the error
signal.

Conclusion on spatial redundancy techniques

We have seen that there are lot of techniques suitable for error detection
and correction for a generic ALU: those concerning modular redundancy are
surely the most effective and simple in terms of HW implementation while
those exploiting information redundancy can be very effective in some case
but their implementation can result really complicated. For this reason,
very often arithmetic codes are used in redundancy techniques implemented
in SW but these are out of the scope of this work.

The main problem of some codes we have studied is the lack of the
encoded division support, such as in Residue codes. In the proceeding of
this work we will decide which techniques are the most suitable to protect

RISC-V FT Fiore Luca 26

the EX unit of our specific core, but for the moment we can’t exclude any
of these solutions a priori.

Surely there are several other ideas developed over years in this field and
surely those presented above are described very briefly, so please refer to the
cited references to have more informations. We will go in deep only for those
techniques that will be adopted in our project of protecting a RISC-V core

3.2.2 Temporal redundancy techniques

This family of protection techniques is based on the main idea of executing
the operations more than once in the same or different way in order to detect
and sometimes correct various types of errors.

It is clear that for this family of fault tolerant solutions the major is-
sue concerns control signals. In fact, if we think of a fine grained temporal
redundancy, where the modules can decide to activate or deactivate the re-
dundancy, we understand that synchronizing the different modules will be
a very ambitious job. On the other hand, temporal redundancy requires
almost no extra HW in addition to the basic architecture contrary to what
is typical in spatial redundancy.

The following are the main known temporal techniques:

• REDO: this is not an acronym as for example the following RESO and
RERO, but just for semantic continuity with them we decided to use
the name REDO. It stands exactly for redo, that is to recompute the
same operation on the same HW and in the same way two or more
times in order to detect possible errors.
This approach allow to detect transient errors that vanish between two
repetition of the operation but obviously it is ineffective in detecting a
permanent error.

• RESO: this technique, together with RERO described in the next
point, overcomes the limits of REDO that was able to detect only tran-
sient errors because it is able to detect both transient and permanent
errors.

RESO stands for Repeating with Shifted Operands [64], that is redo the
same operation on the same HW with shifted operands. The result has
to be shifted too in reverse direction in order to obtain a coherent value
to compare to the one obtained with no-shifted operands (Figure 3.2.9).

RISC-V FT Fiore Luca 27

For this reason the register that stores the value of the operand and
of the result need to be shift registers and in particular if we decide
to use a k-bit shift for n-bit operations, we need (n+k)-bit ALU and
(n+k)-bit registers. The main problem of RESO is that the shifting
operation and the comparison have to be considered fault free or at last
they have to be protected in other ways (parity bits for shift registers
and self checking comparator for the checker [4]).

Figure 3.2.9: Implementation of RESO [64]

• RERO [49]: this acronym stands for Repeating with Rotated Operands
and it is conceptually really similar to RESO with the only difference
that operands are rotated instead of shifted. For this reason there is
no more the need of shift registers and of (n+k)-bit ALU but ideally
we can use n-bit register and n-bit ALU if operands are n-bit.
Unfortunately with this approach there can be an incorrect result due
to carry propagation from a bit inside the word to the MSB, so an
additional bit is required for registers and ALU in order to ensure
correct results (Figure 3.2.10) .

RISC-V FT Fiore Luca 28

Figure 3.2.10: Implementation of RERO [49]

• BIST: built in self test is a technique that allows to detect both per-
manent and transient errors at the cost of energy spent in performing
extra operations.

As explained in 3.3.3, taking periodically checkpoints is a good way to
ensure a quite recent state of the core that can be resumed if en error
occurred in order to restart from a well known condition. During each
"computation epoch", thus between taken checkpoints, the core can
test a component if free, feeding it with known inputs and checking
the result against well known output [81].

In [84] Smolens et al. introduced a BIST variant called FIRST that
performed periodically BIST at different clock frequencies looking at
the maximum frequnecy at which the core no longer met timing re-
quirements. Their purpose was to monitor wearing-out before any
fault occurred, and in this way they were able to understand when
the core would have a permanent fault because of the decrease in the
maximum frequency.

BIST is actually a diagnosis mechanism, necessary if the error is per-
manent since detection and recovery may not be sufficient in this case.

• Active-stream/Redundant-stream Simultaneous Multithreading (AR
SMT): the idea behind this technique is to always fill the core with
the maximum number of threads it can manage. In this way if a

RISC-V FT Fiore Luca 29

core with T thread contexts at a certain point have to execute T’<T
threads, the free space can be given to redundant threads. So a thread
can be replicated and two identical threads can be executed in "par-
allel", that is a real parallelism if the processor is multicore. In this
work we will focus on single RISC-V core so the interesting point is the
multi-threads management with redundant threads on a single core.

This is counted as "Temporal Redundancy Technique" because of the
time overhead it causes. In fact redundant threads on a single core will
produce a queuing delay for the useful threads because of necessary
resource sharing between threads [83]. Lot of works were done on this
technique [75], [48], [77] and others, to improve the initial idea of SMT
for example avoiding resource sharing between threads to speed up
execution, but in this work we are going to focus only on the Execution
Unit of a RISC-V core and for this reason SMT will not be considered.

Conclusion on temporal redundancy techniques

As we have seen in the previous paragraph, temporal redundancy tech-
niques could be very effective in detecting both transient and permanent
errors avoiding extra HW, at the cost of performances reduction.
Obviously there are lot of other techniques involving temporal redundancy
that have been analyzed and adopted over years; sometimes they are a mix-
ture of the above mentioned solutions, for example the Recomputing with
Swapped Operand (RESWO) [44] or the Recomputing with Duplication with
Comparison (REDWC) [14].

Regarding our fault tolerant RISC-V core we will adopt only spatial
redundancy techniques for reasons that will be clearer later, so we will not
go in detail on temporal techniques for our work.

3.3 Fault tolerant techniques: error recovery [61]

The purpose of this work is to provide an efficient fault tolerant version of
an existent RISC-V core. In particular the main target is to design an HW
error detection mechanism capable of signaling to the SW that something
went wrong and try to manage the problems.
Very often the error recovery mechanism is left to the SW but sometimes it
can be implemented partially in HW thanks to some redundant techniques
such as TMR or NRMR as seen in 3.2.1.

RISC-V FT Fiore Luca 30

In this section we will analyze the main error recovery techniques includ-
ing those concerning the OS intervention even if they will not be used in this
work.
We will distinguish between Forward Error Recovery (FER) techniques and
Backward Error Recovery (BER) techniques that differ for the recovery ap-
proach adopted. In FER, the execution of the operation can continue after
an error is detected while in BER the machine is returned to a previous well
known (and fault-free) saved state called checkpoint and the operation is
performed again.

3.3.1 Reboot

Reboot is a brute force technique adopted when the machine encounter a
serious problem and so it is reverted to its initial state, and execution is
restarted.
This is an effective recovery solution for transient errors, if the latency of
restarting is not critical, but for permanent faults, however, this mechanism
may be ineffective since the system may encounter the same error again.

3.3.2 Forward Error Recovery

Forward error recovery allows a system to continue the operations from its
current state once the system detects a fault. In this section four styles
of FER schemes are discussed: failover, DMR, TMR, and pair-and-spare
systems.

• failover systems: this solution basically consist in duplication of the op-
erating unit in order to obtain a standby unit ready to start operation
when on the primary one an error has been detected. In this way the
process execution is guaranteed without hard interruption with only a
small delay due to switching between the two units.
This is the very initial FER idea and was used in many cases such as
in Tandem Computer Systems [8] or in Marathon EnduranceTM4000
Server [12] were the two processors are also separated by 1.5km in order
to avoid terrorist attacks.

Today failover systems are obsolete because of the limited errors they
can recover from. A failover system can correct a permanent error just
once discarding the faulty replica and can recover from transient errors
with some limitation. In fact if the transient error corrupt the state
of the machine than the execution can’t proceed even in the fault free

RISC-V FT Fiore Luca 31

replica because the state of the machine is wrong and so a reboot is
still necessary.

• DMR systems with recovery: as already described in 3.2.1 in the para-
graph dedicated to DMR, this technique is capable to detect an error
thanks to duplication of the UTP, but alone it cannot provide any pos-
sibility of fault recovery. However, if other error detection techniques
are used inside the two replicas, the recovery become possible.
Looking at Figure 3.2.1, the ideal flow is the following:

1. the same process is executed on the two replicas;

2. error affect the execution on one replica;

3. the comparator of the output of the two replicas detects a mis-
match and so an error in one of the two;

4. if no other technique are used inside replicas no further correc-
tion can be provided. But if internally, replicas have some error
detection mechanism (such as arithmetic codes) the faulty replica
will fire an error signal to the outside. In this way the comparator
knows which one of the two replica is problematic.

5. Now the system can copy in the faulty replica the correct state of
the non-faulty one and everything will continue correctly.

Obviously with this technique we can only recover from single errors
on just one of the two replicas while we can detect errors on both the
two replicas since we assume that the two replicas have some internal
error detection mechanism.

• TMR systems: as already described in 3.2.1 in the paragraph dedi-
cated to TMR, this technique is capable to detect an error thanks to
triplication of the UTP.
Having three copies of the same unit is the minimum to ensure a simple
error recovery mechanism. In fact if one unit suffers from any faults
the voter will provide the correct output from the other two fault-free
replicas. Then, as in DMR, the state of the correct replicas have to
be copied in the faulty one in order to have again a full TMR. Un-
fortunately, if the error is permanent, the previous copying approach
is ineffective because the faulty unit will get again the same error. In
this case the system will continue as a degraded DMR and all the
specifications described in previous paragraph about DMR are valid.

RISC-V FT Fiore Luca 32

Another problem related to TMR (but also to DMR and in general to
all the redundant modular techniques) is that during copies of correct
state into the faulty unit, the (T)MR system can be unavailable. This
delay can be prohibitive and really annoying for a real time system or
on the contrary it can be accepted.

In Hewlett-Packard NSAA (NonStop Advanced Architecture [11]) two
solution were adopted to avoid this problem: the first was to provide
a fast and direct link for reintegration and the second was to let the
system continue the workflow during reintegration itself.

• Pair-and-spare systems: This technique is an hybrid between DMR and
failover systems. As depicted in Figure 3.3.1 it consist in couples of
units that work in parallel and one N_to_2 switch that select the right
couple among the available couples. In each moment there is an ac-
tive couple simply called pair and an auxiliary couple called spare pair.

Figure 3.3.1: Implementation of Pair and Spare [45]

Each pair operates as in DMR with a final comparator; if there is
an output mismatch the switch commute on the spare pair and the
process is continued there. This is a FER technique because the spare
pair doesn’t start from the beginning of the process but exactly from
the moment just before the fault occurrence. In fact the state of the
main pair is copied into the spare pair to ensure the context continuity.
A real application of this technique is in Stratur XA/R Series 300 [41].

RISC-V FT Fiore Luca 33

3.3.3 Backward Error Recovery

With BER we can restore a previous state of the system that has been de-
clared safe and stable, and then we can try to go on with the operations as
if nothing had happened. This technique can be really effective but surely
it may require lot of time and energy, depending on the method adopted to
save the state. In other words, there is a specific policy on what state to
save, where and when save it, and when to deallocate it. In addition to that,
the designer has to manage the restoring mechanism and has to plan what
the system has to do after the recovery.

The first problem related to BER is the so called Output Commit Problem
[31]. It occurs when the detection of the error happens when the error is
already out of the recoverable region. It means that if we want to recover
from a fault with BER technique we have to detect the error before it goes
out of the sphere of recoverability. With the FER technique this was not a
problem since errors were detected and corrected simultaneously, but now,
with BER there is the possibility of this bad situation. For example, any
peripheral such as the screen, the speakers or a printer, are surely out of
the sphere of recoverability and therefore errors must be detected before
propagating to them in order to apply BER.

If the BER target is the core, as in our case, the error should not propa-
gates to the memory hierarchy, and if the memory is included too the error
should not propagates to the peripherals as explained above; the choice of
the sphere of recoverability is discussed by Gold et al. [38]

The common approach to the Output Commit Problem is to wait for
the completion of the error detection mechanism before sending the data
out of the sphere of recoverability, but this can surely affect the error-free
performances since the delay to detect the error is places on the critical
path. Fortunately this degradation occurs only if there are output opera-
tions, while, if there is nothing to be send out of the sphere, the waiting time
is parallel to the working time for error-free operations.

Now we are going to discuss briefly the choice of the state to save and
the choice of the saving mechanism.

To answer the question "What state must be saved for the recovery
point?", we have to list the main characteristics of the ideal recovery state:

1. the state has to be error free

RISC-V FT Fiore Luca 34

2. the state has to be consistent with the current faulty operation

3. the state must allow the resuming of the execution

Therefore, can be really difficult to find a mechanism to save the state
and update it according to the three mentioned points, because the actual
system configuration can be really complicated (e.g. multi-processor/multi-
memory systems).

The typical algorithms used for saving the recovery point are checkpoint-
ing and logging. The first is the mechanism that periodically saves the state
of the machine. The "period" between checkpoints may be fixed or variable
in response to certain events and this has impact on the effectiveness of the
solution. For example the more frequent we take checkpoints the greater is
the performance penalty of checkpointing, but at the same time the lower
is the amount of work that must be recomputed after the recovery. With
the logging, we records the changes of the machine and when an error is
detected the log sequence can be unrolled to the recovery point.

At the end, since this two mechanism have both their advantages and
disadvantages, sometimes they are used in a hybrid solutions.

3.4 Importance of fault tolerance

The reason why in the last 30 years the fault tolerance has became an im-
portant property of a system is because number of faults is increasing. This
is due in particular to miniaturization which leads to increasingly sensitive
devices. For example, a smaller RAM cell has lower critical charge and an
high energy particle from the environment can more easily flip the value
of the cell. This is clear from Shivakumar et al. [80] analysis where they
showed how transient errors will increase year by years because of scaling of
transistors dimensions. But this is true also for permanent faults because of
photolithography challenges: for example a smaller device will require more
precise fabrication processes and the probability of a mask misalignment may
be higher.

As derived from IBM experiments in the early 1980s [93] to measure
the particle flux from cosmic rays, particles of lower energy occur far more
frequently than particles of higher energy. In particular, a one order of
magnitude difference in energy can correspond to a two orders of magnitude
larger flux for the lower energy particles. As CMOS device sizes decrease,
they are more easily affected by these lower energy particles, potentially
leading to a much higher rate of soft errors.

RISC-V FT Fiore Luca 35

Another important problem is temperature because smaller devices with
more transistor will consume more energy and so the power density will in-
crease as well as the temperature of the chip. It’s clear that handling higher
temperatures in a package is always something problematic because several
phenomena are exacerbated with higher temperature [86].
Transistor density, is surely a problem that leads to an increasing in power
density but it is also clear that the probability of faults will increase with
increasing in transistor density. Infact more transistors per unit of area have
a lower chance to function correctly with respect to a lower number of tran-
sistors in the same unit of area, because of more interconnections and more
complicated designs.

All these considerations just to remark the importance of the effort that
is made on fault tolerance for safety critical devices and we could surely say
for all those devices that interact in some way with humans.

RISC-V FT Fiore Luca 36

Chapter 4

The RISC-V ISA and cv32e40p

RISC-V is the center of this project. It is an open source ISA much valued
in this years because of its simplicity and effectiveness for both academic
and commercial applications. We will briefly describe this ISA and then go
into detail on our particular implementation, the cv232e40p core developed
by PULP group and OpenHW group.

4.1 The RISC-V ISA

An Instruction Set Architecture (ISA) is the abstract representation of a
processor, the set of rules that describe the functioning of the machine. The
practical realization, the so called microarchitecture is the implementation
of the ISA. This distinction is the reason way two completely different cores
can have the same ISA.

RISC-V is an open source ISA developed at the Berkeley University from
2010 with the aim to provide a simple and effective ISA suitable for both
academic and industrial purposes. Today it is en emerging ISA because of
the possibility to reduce design cost. Infact new companies that decided to
move to RISC-V could start from open projects and go on with their custom
ISA extension with therefore a minimum cost.
As stated in the The RISC-V Instruction Set Manual - Volume I: Unprivi-
leged ISA [19], the ISA avoids “over-architecting” for a particular microarchi-
tecture style (microcoded, in-order, decoupled, out-of-order) or implementa-
tion technology (ASIC, FPGA), but allows efficient implementation in any
of these. Furthermore, the ISA is separated into a small base integer ISA
in both 32 bit and 64 bit versions (RV32(64)I), usable by itself as a base

37

for customized accelerators or for academic purposes, and optional standard
extensions, to support general purpose software development.

The great interest on RISC-V comes from the fact that it is a free and open
standard which allows anyone to easily develop their ideas. Furthermore
RISC-V is modular, so it is based on a strong and frozen set, and all the
extensions are optional without the need for continuous update as happens
in incremental ISAs like the 80x86.

RISC-V International provides the standard specification while the practical
hardware implementation is left to external designers together with the the
RISC-V software.
For a more detailed description look at the two instruction set manuals at
[18] and [19].

4.1.1 History

[72] RISC-V project started in 2010 by Prof. Krste Asanović and graduate
students Yunsup Lee and Andrew Waterman as part of the Parallel Com-
puting Laboratory (Par Lab) at University of California Berkeley, directed
by Prof. David Patterson.
The Par Lab was a five-year project to advance parallel computing funded
by Intel and Microsoft for 10M over 5 years, from 2008 to 2013, but it also
received founding from other companies and the State of California. All
the projects in the Par Lab were open source using the Berkeley Software
Distribution (BSD) license, including RISC-V and Chisel, the hardware de-
scription language that was used to design many RISC-V processors. You
can find the first publication that describes the RISC-V instruction set in
The RISC-V Instruction Set Manual, Volume I: Base User-Level ISA [2] by
the Par Lab.
Important milestone in RISC-V life are:

1. first RISC-V chip in 25nm FDSOI donated by ST Microelectronics;

2. publication of a paper on the benefits of open ISA in 2014 [65];

3. first RISC-V Workshop in January 2015;

4. start of RISC-V Foundation in 2015 with 36 Founding Members, with
the aim to own, maintain, and publish RISC-V intellectual property;

RISC-V FT Fiore Luca 38

5. RISC-V Foundation start collaboration with the Linux Foundation in
November 2018;

6. RISC-V International Association is incorporated in Switzerland in
March 2020.

4.1.2 Base Integer ISA

The basic architecture of RISC-V supports integer operations such us integer
arithmetic or memory access and several other instructions that involve op-
erations on registers. The reason of such a simple ISA is the need of a basic
starting point, a minimal set of instructions, to provide a reasonable target
for toolchains and software environments. Then developers can extend the
ISA with almost any kind of additional instruction sets to fully customize
their RISC-V implementation.

The two main integer variant of the ISA are the so called RV32I and
RV64I that stand for RiscV 32(64)bit Integer and they are very similar to
each other with differences only in the width of the registers, the size of the
address space and other minor things. There are other two less used variants
that are RV128I that is simply an extension of the RV64I in terms of address
space and instruction formats and RV32E designed as a reduction of RV32I
for embedded systems.

Now we will go into details for the RV32I which is the base ISA of the
RISC-V implementation used in this work. RV32I includes 47 instructions
that are encoded with 6 possible formats (R,I,S,U,(S)B,(U)J) as shown in
Figure 4.1.1.

Figure 4.1.1: RISC-V base instruction formats [2]

RISC-V FT Fiore Luca 39

These formats try to simplify the decoding keeping the source (rs1 and
rs2) and destination (rd) registers always at the same positions while im-
mediates are packed towards the leftmost available bits in the instruction
and have been allocated to reduce hardware complexity. In particular, the
sign bit for all immediates is always the MSB of the instruction to speed
sign-extension circuitry.

Anyway, despite the specific format used in the core we can identify four
main subsets of instructions:

1. Integer Computational Instructions:
They are encoded in R-type format or I-type format respectively if we
have a register-register operation or a register-immediate operation.
We have addition (ADD, ADDI), subtraction (SUB), shifts (SLL, SLLI,
SRL, SRLI, SRA, SRAI), bitwise logical operations (AND, ANDI, OR,
ORI, XOR, XORI) and comparison operations (SLT, SLTI, SLTU,
SLTIU). Then we can also include two additional instructions: AUIPC
(add upper immediate to pc) used to build the pc-relative address and
LUI (load upper immediate) used to build 32-bit constants, both en-
coded with U-type format. There is one last instruction in this set, the
no-operation (NOP) actually encoded as ADDI x0, x0, 0.

2. Control Transfer Instructions:
These instructions are responsible for jumps to other instructions in
the range of ±4 KiB that break the normal flow of the program.
Jump And Link (JAL) and Jump And Link Integer (JALR) are ded-
icated to unconditional jumps and are encoded respectively with UJ-
type and I-type formats. Then we have all the other instructions re-
sponsible for conditional jumps (branches) that are all encoded with
SB-type format. These instructions produce a comparison between two
registers and an action is performed based on the result.
Branch if Equal (BEQ), Branch if Lower Than (BLT), Branch if Lower
Than Unsigned (BLTU), Branch if Not Equal (BNE), Branch if Greater
or Equal (BGE), Branch if Greater or Equal Unsigned (BGEU). Note,
BGT, BGTU, BLE, and BLEU can be synthesized by reversing the
operands to BLT, BLTU, BGE, and BGEU, respectively.

3. Load and Store Instructions:
These instructions are the only few simple instructions responsible for
memory access. As RISC-V is a load-store architecture the only mem-
ory related operations are loading a value from memory to a register

RISC-V FT Fiore Luca 40

and storing a value from a register to the memory.
Register to Memory instructions are those of the STORE family (SW,
SH, SB) that store respectively a Word (32b), Half a word (16b) and a
Byte (8b). The instructions responsible for Memory to Register trans-
fers are those of LOAD family (LW, LH, LHU, LB, LBU), where the
U stands for Unsigned as the Half (16b) and Quarter (8b) words are
zero-extended instead of sign-extended as in the non-U version.

4. Control and Status Register Instructions:
These are all SYSTEM instructions, encoded using I-type format. Con-
trol and Status Register atomic Read/Write (CSRRW) is used to atom-
ically swap values in the CSRs and integer registers; atomic Read and
Set/Clear bits (CSRRS, CSRRC) are used to read the value of a CSR
and then set or clear specific bits of the read word. The correspond-
ing immediate versions of the three previous instructions, CSRRWI,
CSRRCI, and CSRRSI, behave like their counterparts but they use an
immediate instead of an integer register.

In addition to the previous instructions there are other four particular
instructions:

1. FENCE: guarantees any specific ordering between memory operations
from different RISC-V threads;

2. FENCE.I: guarantees that stores to instruction memory will be visible
to instruction fetches on the same thread;

3. ECALL: makes a request to the supporting execution environment (e.g.
the OS);

4. EBREAK: used by the debugger to cause control to be transferred
back to a debugging environment.
Note ECALL and EBREAK are both SYSTEM instructions as those
related to CSRs.

4.1.3 Standard extensions

In the previous paragraph we have briefly described the base integer ISA of
RISC-V but as known the most important feature of RISC-V is the possibility
to easily add other custom instructions to enlarge the ISA and adapt it
to specific objectives. Despite these "non-standard" extensions, there are
several other standard ISA extensions that have been developed during years

RISC-V FT Fiore Luca 41

and can be added very easily to our particular implementation making the
final RISC-V a very powerful core, and they are:

• "M" Standard Extension for Integer Multiplication and Division;

• "A" Standard Extension for Atomic Instructions;

• "F" Standard Extension for Single-Precision Floating-Point;

• "D" Standard Extension for Double-Precision Floating-Point;

• "Q" Standard Extension for Quad-Precision Floating-Point;

• "L" Standard Extension for Decimal Floating-Point;

• "C" Standard Extension for Compressed Instructions;

• "B" Standard Extension for Bit Manipulation;

• "J" Standard Extension for Dynamically Translated Languages;

• "T" Standard Extension for Transactional Memory;

• "P" Standard Extension for Packed-SIMD Instructions;

• "V" Standard Extension for Vector Operations;

• "N" Standard Extension for User-Level Interrupts;

Among the previous ISA extensions, only "M","A","F","D","Q" and
"C" are frozen, that is they are completed and delivered, while the others
are still ongoing or are just proposed.

4.2 The cv32e40p core

cv32e40p is the RISC-V implementation that is analyzed in this paper and
the fault tolerant optimization will be performed on its Execution Unit (EX
unit).
As of today, the core is maintained [20] and documented [22] by OpenHW
Group. In this paper the core is described in a less detail with respect the
official documentation, and particular focus is put only on the EX Unit be-
cause we will try to optimize it from a fault tolerant point of view.
The core was born as part of the PULP project from OpenRISC OR10N
CPU then moving to RISC-V (2016) as RI5CY. In February 2020, finally it

RISC-V FT Fiore Luca 42

has been contributed to OpenHW Group with the name cv32e40p.
The cv32e40p version used in this work is close to the last RI5CY release ex-
cept for the changes in the verification environment because OpenHW Group
has spent lot of effort in building a solid environment for the verification [69]
[17].

cv32e40p is a simple 32-bit, in-order RISC-V core with a 4-stage pipeline
that implements the RV32IM[F]C ISA, and the Xpulp custom extensions in
order to achieve higher code density, performance, and energy efficiency [1]
[37] [29]. Infact the PULP project (Parallel Ultra Low Power) was born as
a joint effort between ETH University of Zurich and University of Bologna,
with the main goal to develop ultra low power platforms suitable for energy-
efficient computing.
With the name RV32IM[F]C ISA we means that the supported instruction
sets are:

1. I: Base Integer Instruction Set, 32-bit;

2. M: Standard Extension for Integer Multiplication and Division;

3. C: Standard Extension for Compressed Instructions.

4. optional F: Standard Extension for Single-Precision Floating-Point.
Note that cv32e40p Floating Point unit is maintained by PULP plat-
form in a separate project [24].

The core also supports the following instruction sets although they are not
mentioned in the name:

1. Zicount: Performance Counters;

2. Zicsr: Control and Status Register Instructions;

3. Zifencei: Instruction-Fetch Fence.

The core support also XPULP custom extensions from PULP group:

1. Post-incrementing load and store;

2. Multiply-Accumulate (MAC) extensions;

3. ALU extensions;

4. Hardware Loops.

RISC-V FT Fiore Luca 43

4.2.1 Design

In Figure 4.2.1 is reported the cv32e40p basic scheme:

Figure 4.2.1: cv32e40p microarchitectural scheme [25]

In this paper are taken into consideration the main components of the EX
Stage: the ALU that contains the divider and the Multiplier that includes
MAC unit and Dot Product support (Dotp).
We will focus our efforts to introduce fault tolerance into the core right on
its execution unit, but surely, in order to have a full fault tolerant processor
also the other parts of the core must be protected, and this is done in parallel
to this work by other two teammates of the project.

4.2.1.1 Execution unit

The execution unit is the main computational unit of the architecture. It is
made of the ALU, the Multiplier and the additional processing unit (APU)
or the Floating Point Unit (FPU).

ALU

The cv32e40p ALU supports standard instructions as well as some extensions
made to increase the efficiency of the processor.
Here we will introduce the main features of the extensions provided to the
standard RISC-V ISA regarding the ALU operations:

• General ALU instructions:

RISC-V FT Fiore Luca 44

These instructions try to fuse common used sequences of instructions
into a single one and thereby attempting to increase the performance
of programs that use those sequences. For example to perform the
operation to find the minimum between two numbers there is a specific
instructions called (min) that acts like this:

min rD, rs1, rs2 −− > rD = rs1 < rs2 ? rs1 : rs2

(Note: Comparison is signed).

Furthermore some new fixed point instructions have also been sup-
ported (with all their variants):
- p.add[R]N (addition with round and norm);
- p.sub[R]N (subtraction with round and norm);
- p.clip (check if a number is between two values and saturates the
result to a minimum or maximum bound otherwise)

• Packed-SIMD [3]:

The SIMD instructions (Single Instruction Multiple Data), also called
micro SIMD, perform operations on multiple sub-word elements at the
same time, in two flavors:

1. 8-Bit, to perform four simultaneous operations on the 4 bytes
inside the 32-bit word (.b);

2. 16-Bit, to perform two operations on the 2 half-words inside a
32-bit word at the same time (.h).

Regarding the second operand, we can divide the SIMD instructions
into three different sets:

1. Normal mode, vector-vector operation: operands, from registers
rs1 and rs2, are treated as vectors of bytes or half-words.

2. Scalar replication mode (.sc), vector-scalar operation: operand in
register rs1 is treated as a vector, while operand 2 is treated as a
scalar and replicated two or four times to form a complete vector.

3. Immediate scalar replication mode (.sci), vector-scalar operation:
operand in register rs1 is treated as vector, while operand 2 is
treated as a scalar and comes from an immediate. The immediate
is either sign- or zero-extended, depending on the operation. If
not specified, the immediate is sign-extended.

RISC-V FT Fiore Luca 45

All the operations are rounded to the specified bidwidth as for the
original RISC-V arithmetic operations.

The supported instructions are the usual instructions for a standard
ALU such as add, sub, avg and others, just in the SIMD versions.

• Bit manipulation instructions:

These instructions are useful to work on single bits or groups of bits
within a word because sometimes we need to access a subpart of the
word, e.g. when we want to access a configuration bit of a mem-
ory mapped register. The main new instructions are: extract/insert
(read/write-to a register set of bits), bclr, bset (clear/set a set of bits),
cnt (count number of bits that are 1), ff1, fl1 (find index of first/last
bit that is 1 in a register), clb (count leading bits in a register), and
bitrev (reverse bits in groupings of 1, 2 or 3 bits).

• Iterative Divider:

The divisions is actually implemented reusing existing comparators,
shifters and adders of the ALU through a long integer division algo-
rithm. This approach is surely slower than having a dedicated full
parallel divider but saves a lot of area.

Multiplier

The multiplier can perform different kind of multiplications as shown in
Figure 4.2.2 [37]:

RISC-V FT Fiore Luca 46

Figure 4.2.2: Multiplier block diagram

• 16bx16b fractional fixed point multiplication and multiply and accu-
mulate: multiply two signed or unsigned numbers extended on 17 bits
and eventually add a 32b number (mult_op_c).
Examples [5]:
-p.muls: LSP (Least Significant Part) short int by LSP short int into
int multiplication.
-p.mulsRN: LSP short int by LSP short int into int multiplication fol-
lowed by rounding and then normalization (immediate value);
-p.mulshh: MSP (Most Significant Part) Short int by MSP short int
into int multiplication.
-p.machhsRN: MSP short int by MSP short int into int and accumu-
late. Then rounding followed by normalization.

• 32b×32b integer multiplication and multiply-accumulate: is the clas-
sical 32bx32b integer multiplication with the additional add of the 32b
mult_op_c.

• 16b dot-product (dotp): 16b×16b + 16b×16b: see next description.

• 8b dot-product (dotp): 8b×8b + 8b×8b + 8b×8b + 8b×8b: multiply
two vectors and sum a 32b value in one clock cycle. The vector can be
made of 2 16b elements or 4 8b elements. To perform signed multipli-
cation the MSB is extended leading to 17b and 9b elements.
In region 3 and 4 of Figure 4.2.2 there is a simple description of these

RISC-V FT Fiore Luca 47

two dotp version. There are enough multiplier to perform the complete
set of multiplication all at once. Then a compression tree is adopted
to obtain the final result. In both cases an additional 32b element (the
accumulation register) can be added to the dotp result, and it is done
inside the adder compression tree.

The design of the Multiplier with the support for vectorial operations was
more involved than the design of the modified ALU. As in Figure 4.2.2 we
have seen four different modules than allow to perform any sort of multiplica-
tion related operation: a 32bx32b integer multiplier, a fractional multiplier
and two dot-product multipliers. Its architecture is surely more complex
than the one of the ALU and for this reason we will make different con-
siderations (in terms of fault tolerance) on the Multiplier compared to the
ALU.

FPU [23]:

The FPU is maintained into a separate project [24] from that of the
cv32e40p core.

In the top-level file cv32e40p_core.sv we can set the parameter FPU en-
abling the RV32F ISA extension that support single precision floating point
operations in the form of IEEE-754. This will extend the cv32e40p decoder
accordingly and it will extend the ALU to support the floating-point com-
parisons and classifications. The Floating Point Unit is instantiated outside
the cv32e40p and is accessed via the APU interface. By default a dedicated
register file consisting of 32 floating-point registers, f0-f31, is instantiated.

The FPU is divided into three parts:

• A basic FPU of 10kGE (103 Gate Equivalent) complexity, which com-
putes FP-ADD, FP-SUB and FP-casts.

• An iterative FP-DIV/SQRT unit of 7 kGE complexity, which com-
putes FP-DIV/SQRT operations.

• An FP-FMA unit which takes care of all fused operations. This unit
is currently only supported through a Synopsys Design Ware instanti-
ation, or a Xilinx block for FPGA targets.

We will not go into details for this unit since we will discard it for our
fault tolerance reasoning.

RISC-V FT Fiore Luca 48

Chapter 5

Fault tolerance on cv32e40p

This is the central chapter of our work as we will describe the workflow to
get a certain fault tolerance on cv32e40p RISC-V core.
First of all we will introduce the objectives of the fault tolerance analysis of
this project, then we will describe the ideas behind the practical realization
of the work and at the end the architectural solutions are presented, with
main focus on ALU and Multiplier.

5.1 Target

Since there are no particular performance specifications for this work, our
aim is just to obtain a working and secure version of the cv32e40p RISC-V
core with minimum area overhead trying not to affect performances. At the
time of writing this report, cv32e40p does not have a specific fault tolerance
extension, so the goal is to investigate different solutions to achieve a good
level of fault tolerance.

The classic three-point target power-area-delay, is therefore completely
free. In this work we will add a fourth vertex to the triangle: the fault-
tolerance vertex as in Figure 5.1.1. We will strive for all the vertex but in
particular we will take into consideration those of fault-tolerance and delay.

49

Figure 5.1.1: Diagram of performances

Among the multitude of techniques described in paragraph 3, we will
focus on those related to modular redundancy because they are the best
in terms of speed and recovery capability. In particular, since we want to
achieve good timing performances, all time redundant technique are unac-
ceptable. If for example we use a standard REDO approach in the full
pipeline the additional delay will be of a single "clock cycle" instead of the
delay of the complete forward path. However, we decided to add the Fault
Tolerance at a fine grain in order to reach a finer detection capability and for
this reason all the known time redundancy technique are unsuitable. In fact
if for example in the EX unit the ALU use a REDO (or RERO or RESO)
approach all the pipe needs to be stalled waiting for the completion of the
recomputation with an unacceptable loosing of performances.
Another reason to use Modular Redundancy techniques is the forward recov-
ery capability: with Repetition techniques (REDO, RESO, RERO, ..), BIST
or even AR-SMT there is always the need of checkpointing, the mechanism
of saving current stable state of the machine to restore it if necessary. For
this reason we will privilege forward error recovery techniques that avoid
checkpointing and backward restoring.

RISC-V FT Fiore Luca 50

In this work we will focus on EX unit of the pipeline which is the unit
dedicated to computations as described in the previous paragraph. EX unit
is therefore a very important part of the core because a faulty computation
can have catastrophic effects and in terms of cost the computations are in
general avid energy thief therefore a great effort must be made to optimize
this unit.

5.2 Ideas

The investigated technique for the EX unit of cv32e40p core is strongly
related to TMR and in particular we will study standby sparing (similar
to pair and spare). The dual level TMR, as described in paragraph 3 in
the section related to spatial redundancy, could surely also be applied and
would lead to a greater safety level. However we have decided to discard
this technique because of the unnecessary extra complexity that would be
introduced if the errors we will target are single transient or permanent errors
because it is far more unlikely to have an error in one voter than in the ALU,
for example.

For these reasons two are the main ideas we will investigate to identify
our final approach:

1. Hybrid stand-by sparing: leave an extra unit (full precision replica) in
stand-by (guarded evaluation [89] or clock gating) and use it if one of
the main three goes down. For transient errors there is no need of the
fourth replica but if the error is permanent having an extra module
can allow to maintain the TMR architecture.

2. A good idea may be to try to use the faulty replica in the still valid
subparts anyway. It means that after the substitution of the faulty
replica with the spare one, the faulty replica can be self-tested against
well known inputs to understand where it fails, or it can be immedi-
ately marked as partially faulty if we are able to know which sub-part
gave the error. In this way it can still be used for those operations that
are correctly supported. So, if the new TMR will experiment another
permanent fault the ex-faulty replica can be a valid substitute for its
still supported operations.

The above introduced approach is unuseful for transient faults because
in case of a transient problem the faulty unit will again give a correct result

RISC-V FT Fiore Luca 51

after one cycle, so the fourth replica is unuseful. For permanent errors on
the other side it is a very good approach because allow the core to tolerate
potentially lots of permanent fault if they are confined to a sub-part of the
protected component.

5.3 Criticality levels

Looking at the schematic in Figure 4.2.1 we have a simple idea of the inside
of cv32e40p EX unit: the ALU, the Multiplier and even the FP unit (not
reported in the figure because it is optional) and the related APU dispatcher
for the Additional Processing Unit such as the FPU itself.

In this work we will target the ALU which includes also the Divider, and
the MULT which includes the DotP unit for Dot-Product together with the
standard multiplication unit (see Figure 4.2.2).
The implemented architecture reflects the ideas presented above, with TMR,
standby sparing and other solutions mixed together; in Figure 5.3.1 there is
a general scheme of the hardware extensions provided for the ID and EX
units of cv32e40p.

It is immediately clear how the ALU and the MULT are treated in differ-
ent way. This came from the consideration of fault criticality levels. Surely
this evaluation of fault criticality is not the most accurate we can imagine
but it is based on evidence of great difference on the workload for the two
components. In a "standard" program running on the core, for example an
"Hello world" with printf() and scanf() calls, the ALU is used almost at any
cycle while the MULT can be quiet if not called via an explicit multiplication
for instance, and even an explicit multiplication in the source code can be
translated in sequence of sums and shift (if at least one of the operand is a
constant) to avoid the using of multiplier surely really power expensive. The
ALU is indeed used for many purposes: to obtain address via immediate, to
obtain the correct value of the program counter in case of branches or simply
to compute an addition we find on the C code for example.
From this considerations we decided to use a similar but not identical protec-
tion approach for ALU and Multiplier. In both cases the errors we will try
to tolerate on a single component are: single transient errors and multiple
permanent errors. This means that the ALU and the Multiplier will be no
more affected by a transient error occurring in one of the replicas thanks to
TMR and will not be affected by permanent errors thanks to TMR itself and
thanks to the spare unit for the ALU. The amount of permanent errors this
technique can protect from depends on the error extent and on the corrupted

RISC-V FT Fiore Luca 52

Figure 5.3.1: General schematic of design

RISC-V FT Fiore Luca 53

part. We will better address this problem in the rest of the discussion, now
we will give a general and detailed description of the architecture to have a
clear idea of the platform where we will conduct our final tests with faults
injection.

5.4 The architecture

In Figure 5.3.1 is represented an high level scheme of the implemented ar-
chitecture. We will divide the discussion in description of the ALU and
description of the Multiplier even if there are common parts because the two
units follow a similar approach.

The general idea is to exploit the so called spatial redundancy to achieve
TMR, the best trade off in terms of complexity and efficiency for single tran-
sient errors. However, time, fabrication defects or external interventions can
cause a permanent issue on one of the three replicas used for TMR. There-
fore, in order to have a functioning TMR even when a permanent errors
occurs, a fourth replicas has been introduced for the ALU, the so called
spare unit (while for the MULT another approach has been adopted which
consists in exploiting the ALU to perform a multiplication by translating it
into a sequence of sums and shifts).
The extra fourth unit (or the translating mechanism for the MULT) can re-
place the permanent faulty unit if there is a mechanism to detect permanent
errors. For this reason each ALU and MULT replica is associated to a set
of α-counters which count the number of errors during program execution
and mark a component as permanent faulty if the associated counter reach a
defined threshold (see subsection 5.4.3). To keep track of the faulty units we
use a "table", actually a set of FFs, set to ’1’ if the corresponding component
has been considered "broken".
Even if we have only 4 ALUs, the counters are 36 because each ALU has
been divided in 9 sub-parts in terms of common executed operations. This
means that among 58 opcodes associated to ALU usage we can identify set of
opcodes and so set of operations associated to the same physical component
inside the ALU. Therefore, if one of this component became faulty all the
associated instructions that would exploit that component may no longer
be supported in that ALU. For example imagine that for several contiguous
cycles the ALU has to perform a comparison, say the ALU_LTS (lower than
unsigned) which obviously uses the comparator mechanism inside the ALU,
and that for each computation the results in incorrect. Now we can imagine

RISC-V FT Fiore Luca 54

that the other operations that involves the comparison mechanism may also
be incorrect and for this reason we state that all that operations are no more
supported in that ALU. At the same time there is still the possibility to use
that ALU for the remaining non faulty subparts.
A similar approach has been adopted for the MULT with only three repli-
cas and with the addition of the above mentioned mechanism to translate a
multiplication in a sequence of sum and shifts.
In the next pages we will go inside each high level block in Figure 5.3.1 to
discover the specific implementation and the solutions adopted to optimize
the system.

An remarkable point is about the customizability level of the HW exten-
sion provided to the EX unit of cv32e40p for the fault tolerance. Infact the
idea is to provide the possibility to activate or deactivate the fault tolerant
extension in order to give the user an additional freedom degree. The user
can enable or disable the whole supplied mechanism for the fault tolerance
at pre-synthesis time, since the same core can be used in environment with
a different criticality level.
If we decide not to use the FT extension we have to write ’0’ in the Sys-
temVerilog parameter FT inside the top level module at cv32e40p_core.sv.
In this way we go back to use a single ALU and a single MULT avoiding the
compilation of all the provided mechanism to manage these extra units, as
we will explain in the rest of the paper.
When FT is ’0’ all the extra signals defined and used for fault tolerance
reasons are simply set to ’0’ to be harmless.

Now we will address the ALU HW extensions and then similar reasoning
will be done on the MULT.

5.4.1 ALU dispatcher, pipeline replicas and TMR

Despite the targets of this work are the ALU and the Multiplier and so the
EX stage, a lot of work is done inside the ID stage of the core because it is
actually the source of most of the signals used in the EX stage.

In Figure 5.4.1 there is a more detailed scheme of the HW extension
provided to the ID stage to manage the TMR mechanisms in the EX stage.

RISC-V FT Fiore Luca 55

Figure 5.4.1: Zoom on the ID-EX interface

The green rows indicate the signals produced into ID stage that have to
be send to the EX stage and therefore those signals coming in the ID-EX
pipeline register, interface between the two stages. This big pipeline register
is now quadruplicated in order to protect it too from errors as well. Each
pipe register receive the same inputs and provide the same outputs with
the only difference on the clock they receive because now it comes from a
clock gating block controlled by the ALU-MULT dispatcher. If for example
the ALU_3 has not to be used for the TMR it will put in stand-by mode
through clock gating on the associated pipe register. In this way all inputs
to the ALU_3 remains the same thus giving zero switching activity and so
zero dynamic power consumption. The Dispatcher has so the role of deciding
which of the four ALU has to be the spare one for that clock cycle.
Regarding the Multiplier, even if there is no extra 4th unit if one of the
three replicas became permanent faulty it will be put in stand-by mode on

RISC-V FT Fiore Luca 56

the specific faulty sub unit and the above mentioned translating mechanism
will be activated.
There are four pipeline replicas and four ALU replicas so the matching is
immediate while for the Multiplier, on the other side, there is the need of an
addressing mechanism to choose the right three pipeline registers to feed the
three Multipliers. If the ALU and the Multiplier will never be used together
into the same cycle this addressing mechanism is unuseful because we can
always choose the same set of three pipeline registers to feed the three mul-
tipliers. However we can’t exclude an ISA extension where ALU and MULT
are used together so we decided to provide this mechanism to be compliant
with the maximum number of ISA extension.
The Dispatcher receive informations on the status of the ALUs and MULTs
and taking into consideration the current opcode the EX stage will receive,
decides which ALUs and which MULTs are suitable for that operation. In
particular the orange register in Figure 5.4.1 is the one responsible to pass
the MUXs selectors to the EX stage and the clock enable used for the clock
gating of the pipe registers. The reason why clock enable is pipelined too is
because the next cycles after the pipelining the clock gating will be applied
to the sequential circuit related to the stand-by unit. This means that if for
example the ALU_3 is the spare one in a precise clock cycle, the associated
set of counters have to be disabled too. But this will be more clear in 5.4.3
dedicated to the counters.
That clock enable is also used as a redundant protection inside the stand-by
ALU or inside the stand-by MULT. In fact, even if these components have
already minimized power consumption thanks to clock gating, they contain
sequential circuits inside, for example the divider into the ALU. So we decide
to do clock gating also on that parts in order to have a second level of pro-
tection against unwanted switching in that unit. For example it can happen
that some signals after the pipelines switch unexpectedly (because of tran-
sient error), so the FSM of the divider inside the ALU can have transitions
and lead to undesired outputs. Anyway those possibly undesired output will
be stopped by the same mechanism that put that component in stand-by (in
fact they will not taken into consideration by the voter), but however the
unwanted switching would have already occurred thus consuming power, so
the reason of this extra protection.

Regarding the ALUs, since there are operations characterized by the
same computations and so by the exploiting of the same physical compo-
nent inside, they are virtually divided into 9 subparts and the errors will be
counted on each of those subparts (for a deeper understanding see 5.4.3).

RISC-V FT Fiore Luca 57

It means that an ALU can be marked as permanent faulty on one of the 9
subparts it is divided in, thus leaving the possibility to exploit that ALU for
the remaining good parts.

Unfortunately the implemented technique is really effective only for single
permanent errors or for multiple permanent errors that affect different ALUs
not in the same subset of operations. In other words if for example one ALU
is permanently faulty for the first set of operations of the 9 it has, and another
ALU has the same problem, the dispatcher can’t provide a complete set of
three ALUs to have a complete TMR for that unlucky operation because
only two are suitable for that operation. And the situation become even
worse if there are three or even four ALUs permanently wrong.
To manage this situations the dispatcher has to dynamically change the
behaviour of the result checking mechanism in the EX stage, i.e. the voter
and the counters, to handle all the possible configurations. Therefore this is
what the Dispatcher actually do:

• Receive informations about the status of ALUs and MULTs that are
stored into the table of permanent faulty components (see 5.4.3) that
is actually a set of flops that are set to ’1’ if the associated components
inside one ALU or inside one MULT is faulty.

• Looking at the operation that has to be performed in the EX stage
at the next cycle it will decide which ALUs or MULTs are suitable to
perform that operation. The dispatcher will try to select set of three
ALU and all the three MULTs in order to have a full TMR.

• If there are less than three available replicas suitable for that operations
the dispatcher will try to select the higher number of good replicas, thus
two or one or zero if there are not suitable replicas.

1. in case of only two good replicas nothing changes in the counting
mechanism because errors will just be counted on the two good
replicas. However the voter can no more be used as in the case
when there were three supposed correct inputs because now just
two of them are supposed to be correct.
For example suppose that two ALUs are faulty for ADD opera-
tion, now we actually choose the other two and one of the faulty
ones to have a full TMR. In this case if one of the two has acci-
dentally a fault in the same direction of the chosen faulty unit,
the wrong result will pass as correct through the voter and we

RISC-V FT Fiore Luca 58

will never know about this. To solve this problem, dispatcher
provides additional signals to the voters indicating that only two
units are non faulty and redirecting their outputs on the first two
input of the voter. Thus the voter became a comparator and if it
detects a mismatch it will just make the corresponding counters
to increment saying that an error has been detected and that it
has not been corrected as in the case of three different inputs to
the voter.

2. in case of only one good replica the voter can’t be used because
it will probably say that the output is not valid since it would
receive three different inputs and so can’t decide which one is
prevalent.We have written "probably" because there can be a re-
mote possibility that one faulty unit is faulty in a "correct" way
in that cycle.
Anyway, to solve this problem we added after the voter a 4_to_1
MUX that will provide to the next stage (i.e. the decode stage
where is the register file) either the result provided by the voter
or directly one of the three inputs to the voter, thus bypassing
the voter itself (Figure 5.4.3).

3. in case of no good replica no one of the four replicas of the ID_EX
pipeline will be clocked but a special signal will be triggered to
report that bad occurrence to the SW (the OS for example).

5.4.2 Voter

The key component of this fault tolerant system is surely the voter which
is responsible for comparing the results of the involved computational units
in order to provide a correct output. That means the voter receives three
inputs and gives the voted output with majority voting approach. In fact the
three inputs have all the same confidence and they come from equal replicas
of a component so there is no a specific input more reliable than the others.
Actually, the developed voter in Figure 5.4.2 has some additional outputs
that give extra informations about the status of the three inputs and about
the confidence of the output.

RISC-V FT Fiore Luca 59

Figure 5.4.2: Majority Voter

In Figure 5.4.2 Result is the voted between In_A, In_B and In_C and
so it is equal to the majority of inputs or in case all three differ from each
other it is set to In_A as a default. Additional information are obtained
through Err_detected and Err_corrected: if at least one error has been
detected then Err_detected is ’1’ and if only one error has been detected
and corrected, Err_corrected became ’1’ too. In this way we have all the
possible combinations:

1. Zero errors were detected: the output is valid.
Err_detected = 0;
Err_corrected = 0;

2. One error was detected and corrected: the output is valid;
Err_detected = 1;
Err_corrected = 1;

3. Two errors were detected and not corrected: the output is not valid;
Err_detected = 1;
Err_corrected = 0;

4. Three errors were detected and not corrected: the output is not valid;
Err_detected = 1
Err_corrected = 0;

The implemented Voter gives other three signals to inform the system
about the position of the error among the three inputs: ifErr_detected_<i>
is ’1’ it means the corresponding i-input is incorrect because it differs from
the other two that are equal. It is clear that only one of the three signals can
be active at the same time because it can happen that one input is different

RISC-V FT Fiore Luca 60

from the other two, but in the extreme case when all inputs are different
from each other, all the three Err_detected_<i> are active at ’1’.

In the case of only two available replicas the voter can’t be used as a
standard voter but became a simple comparator. The dispatcher redirect the
output from the two non faulty replicas to the first two input of the voter
and the "Only_two" signals inform the voter of the particular situation it
had to face.

5.4.3 ALU alpha-counters and table of faulty components

The voter described in the previous paragraph is used to inform the counting
mechanism about the occurrence of errors and about their origins; in this
way we are able to focus on the component which gives incorrect results
monitoring its errors frequency. In Figure 5.4.3 there is a simple scheme of
the counting system.
About the ALU, since we have 4 ALUs virtually divided into 9 subsets of
operations, we need 36 counters each counting the errors that occur into
the associated ALU in the associated subset of operations. The idea is
that if one counter reaches a predefined threshold, the associated ALU is
marked as permanently faulty for that subset of operations setting to ’1’ the
corresponding flip-flop in the table of permanent faulty components. When
the application will require the same operation by the ALU, the dispatcher
will select the ALUs suitable for that operations trying to discard the faulty
one.
Obviously, as mentioned in the previous paragraph about the dispatcher, if
more than one ALU are marked as faulty for that operation (for example say
that 2 of the 4 ALUs are faulty), the dispatcher can select only two available
ALUs or just one in the extreme case where 3 ALUs are permanent faulty.
In these scenarios the provided mechanism is ineffective because we would
need higher degree of redundancy to manage these situations. On the other
hand, the probability that such a extreme events occur is lower the greater is
the number of components we can mark as faulty, or in other words the finer
is the granularity at which we apply error detection. We could imagine that
if these situations occur it would mean that the processor has encountered
serious problems that would therefore require a complete renewal at higher
level with respect to the recovery mechanism provided by our fault tolerant
architecture.

RISC-V FT Fiore Luca 61

Figure 5.4.3: Zoom on the voting and bypass mechanism

In Figure 5.4.3 in the dashed orange block is depicted the counting mech-
anism. Actually the counters and the table of permanent faulty components
are accessed by EX_STAGE and ID_STAGE but they can be also addressed
by the outside with the protocol described by the green signals: csr_addr,
r_en, w_en, w_data and r_data.
These signals are managed by a custom extension on Control and Status
Registers (CSR) (see 5.5) provided to allow the registers status to be saved
when the core is powered off. For example if the core is powered off and
then powered on again, we want to maintain the informations on the status
of faulty components, so probably we want to reload the counters and the
table of faulty components with the old value they had before the shutdown.
Therefore the need to save and restore these register treating them as CSRs.

The behaviour of these counters is really simple: if an error is detected by
the voter, the counter associated with that component will count up, while
if the component provides a correct result, the counter will count down only

RISC-V FT Fiore Luca 62

if the counter value is greater than 1, otherwise it remains 0.
The up and down counting values are stored in two registers as well as the
threshold the counter has to reach to state that the associated component is
permanently faulty. The designer can set the values of these three parameters
before synthesis updating the package at cv32e40p_pkg.sv .

The choice of these three parameters reflects the hardness of the fault de-
tection mechanism for permanent faults, infact the lower is the threshold the
sooner the unit is said to be permanently damaged, or even the higher the
ratio between up and down counting values the sooner the counter reaches
the threshold. On the other hand, if we want to be sure that a specific unit
is really permanently damaged we would like to count lot of errors, so we
would set an higher threshold or a lower ratio between up and down counting
values. The designer will make his/her choice in order to obtain a more or
less aggressive permanent fault detection.

Three issue are related to this counting mechanism:

1. if the operation requires more than one clock cycle, for example a di-
vision or a multiplication, the counters must wait for the completion
of that operation to increment or decrement. If the counters are timed
only with the clock they will try to count at each cycle, thus inter-
preting the outputs of the voter in the wrong way. Therefore, to solve
this problem the counters are actually enable only when ready_o from
ALU or MULT is set. This signal is used to synchronize stages as
depicted in Figure 5.4.4

Figure 5.4.4: cv32e40p Pipeline [26]

RISC-V FT Fiore Luca 63

When ex_ready is active the EX stage has completed the operation
and so the outputs of the voters are correct and can be read by the
counter mechanism in the correct way.

2. the values of the table of faulty components are available exactly two
clock cycle after the completion of the operations. Infact when the
operation is completed, we have to wait one clock cycle to update the
counters and the following one clock cycle to update the set of flip flops
in the table based on the value of the counters. However we would like
to have the new value of the table as soon as possible, so we output
both the value of the input to the FFs of the table the value stored
into the table itself. Infact the input to the table is available the clock
cycle before it is saved into the table so we are able to save one clock
cycle and the dispatcher can do its job one cycle in advance.

3. If there are only two non faulty replicas available for a certain operation
or even just one replica, the voter became a simple comparator or it is
just bypassed as we have seen, and this implies no error can be detected
and therefore counted on those replica. To solve this problem we would
like to correct errors also in the unlucky case when TMR become a
DMR: a BIST mechanism may be implemented to distinguish between
the only two available replicas but this will implies a great overhead in
terms of complexity and time consumption (7.1.1).

5.4.4 MULT dispatcher, pipeline replicas and TMR

The MULT protection basically follows the approach used for the ALU but
with some differences.
The MULT unit has been triplicated with a final voter as in the ALU solution
(Figure 5.4.1). However there is no extra 4th replica because of criticality
consideration made in 5.3.
Actually, in an average application, the multiplier is used far less frequently
than the ALU and its structural implementation can be really huge. For this
reason it may be a bad idea to add another MULT replica if other solution
can be applied instead. Infact we want to have the same degree of secu-
rity and recovery for ALU and MULT but if we don’t add the spare MULT
unit there will be some unbalanced protection approach between ALU and
MULT. Therefore we think about a possible solution that will try to trans-
late a multiplication into a set of sums and shifts. As anticipated in 5.3, gcc
compiler does something like this when he translate constant multiplication
with add-shift method. Infact it is quite easy for the software to predict the

RISC-V FT Fiore Luca 64

result if it knows the operands values but when the multiplication operands
are variables (so unknown a priori) only the hardware can do something in
this direction. See 5.4.6 for further details.

Since there are four pipe replicas and only three MULTs we have to redi-
rect outputs from each replicas to the right MULT. If the ALU is never used
together with the MULT we can just assign the first three pipes to the three
MULTs for example. Actually we can’t exclude further extensions where
ALU and MULT units are used together so we decide to provide an address-
ing mechanism to manage the choice of the right three pipe registers.
The redirecting mechanism is composed by three MUXs (the blue ones in
Figure 5.4.1) whose selectors are generated by the dispatcher. These selec-
tors are actually those also used for MUXs after the 4 ALU replicas, just
because we have to choose the same three pipe registers both if we have to
use only the ALU or if we have to use ALU and MULT together.

As for ALUs, power consumption of each MULT replica is minimized by
clock gating. First of all if one MULT is unavailable for a specific operation,
the associated pipe register will be clock gated. The second clock gating level
is inside each MULT replica itself: the multiplication algorithms sometimes
requires more than one clock cycle to complete operation, therefore to check
for possible errors through the voter we have to wait until completion of the
computation and in the meantime the counters have to be in stand-by mode.

5.4.5 MULT alpha-counters and table of faulty components

The same considerations made for the ALU counters and the ALU table of
permanent faulty components are still valid for MULT (see Figure 5.4.3). In
particular we have divided the MULT into 4 subparts in order to monitor
the internal status of each of them as if they are standalone, so to make the
most of each resource. The division into four subparts is clear looking at
Figure 4.2.2: 32bx32b integer mult, 16bx16b fractional mult, 16b dot prod-
uct and 8b dot product.
Since we have divided the MULT into 4 subparts, hence 4 sets of operations,
we have 4·3=12 counters, and 12 flip-flops to store the faulty status of each
subpart.

As for the ALU, counters and FFs associated to each MULT are mapped
to the CSR address space in order to make them readable and writable by
instruction in case of processor shutdown and new power-on so that no in-

RISC-V FT Fiore Luca 65

formation is lost.

Also for the voter of the MULT there is the necessity to manage partic-
ularly unlucky situations where just two MULTs are available for the oper-
ation or when only one unit is available. In the first case the voter became
a comparator with the two good inputs redirected to the first two inputs of
the voter, while in the second case the voter is completely discard with the
bypass mux, obviously controlled by the same dispatcher.

5.4.6 MULT translated into Add and Shift

In the previous paragraphs we have introduced the idea to decompose a mult
into a sequence of sums and shifts when no MULT replica is available.
This approach is also used by the gcc compiler when we have to perform a
multiplication by a constant since it can predict the result during compila-
tion, or when the target platform does not have a multiplier. We want to
replicate this behaviour for any multiplication that occurs into the core when
the multiplier is no more available because it is permanently damaged.
In our core the multiplier architecture is managed by the synthesis tool, for
example Synopsys, because the multiplication is described in behavioural
way. Anyway we can assume that for example the synthesized multiplier
will include shifters and adders because it will use the common shift-add al-
gorithm (actually there are many other architecture that the synthesis tool
can choose for the multiplier: fast adder with Dadda [27] or Wallace [91]
tree, Baugh-Wooley multiplier [9] and others).

Unfortunately, even assuming that the architecture chosen by the syn-
thesis tool is that of simple sequential multiplication with right shift, if we
tried to replicate the same multiplication algorithm using the ALU, we would
make an extreme effort and greatly increase the complexity of the circuit,
since we will have to design the RTL of the multiplier instead of leaving
the burden to the synthesis tool. The problems related to this solution and
the great complexity are related to the amount of resources that we will in-
troduce. In fact, we can think of the possibility of using this mechanism as
something truly remote, meaningful only when a great damage is experienced
on the multiplier. Therefore is better to minimize the resource overhead and
to try to exploit in the easiest way what is actually available on the current
architecture.
For this reason, it might be good to "simply" decompose the instructions of
the mult family into a sequence of add and shift instructions. Surely the

RISC-V FT Fiore Luca 66

worst drawback will be the necessity to stall the pipe because of the need
to execute possibly a greater amount of instructions instead of a single one.
The greatest advantage on the other hand is that we will leave the architec-
ture as it is with the single requirement to create a module that takes care
of decomposing the mult instruction.

To explain the architectural idea, we will clarify what is actually this
decomposition we have mentioned above. Suppose we have to perform the
following multiplication: x · 14, we can decompose this simple multiplication
by a constant in at least two ways using power of 2 [62]:

1. x · 14 = x · 16− x · 2 → (x << 4)− (x << 1)

2. x · 14 = x · 8 + x · 4 + x · 2 → (x << 3) + (x << 2) + (x << 1)

Multiplying a number for a power of 2 is actually a simple left shift, that
is a really simple operation with respect to a multiplication involving the
whole multiplier.
One problem may be which of the two possible decompositions to choose.
To answer this question we have to look at the binary representation of the
previous example: x · 14 = x · 0..01110. We can formulate a simple law:
looking at the ’1’ in the higher position, we choose the decomposition with
the subtraction if the number of ’0’s is lower than the number of ’1’s in the
other bits at lower positions. In fact number of ’1’ is related to the number
of shifts we have to perform, so if we have many ’1’s it means that we have
to add as many elements computed with shifts.

A very power saving technique to perform the decomposition might be
to share common subexpressions [62] [66]. If for example we have to perform
a dot product operation where it is adopted the multiply and accumulate
approach, if two operands have some ’1’s at the same position it means that
the decomposition based on powers of 2 will include common subexpressions.
Obviously this optimization is effective in DSP-like computations, where
there is a sequence of multiplications (and optionally a sequence of sums).
To clarify we can think at the following example:

z = x[0] · a+ x[1] · b

The two constants a and b are: a=185=101110012 and b=221=110111012.
Looking at the positions of the ’1’s we see that the first, fourth, fifth, sixth
and eighth ’1’s are commons, so the corresponding shifts can be shared.

RISC-V FT Fiore Luca 67

However, from an HW point of view, we will now introduce the approach
to follow in order to reach a functioning translation system and to integrate
it into the fault tolerance architecture already developed. It is actually a fu-
ture work but we want now to lay the foundations for a proper development
of the idea.

To obtain the previously described system we will mainly need two blocks
inside the ID stage:

1. Translation Controller: it is actually a dispatcher extension, it has to
recognize the need to activate the translation mechanism looking at
the availability of the MULT replicas. It’s main job is to activate the
translation mechanism once it recognize that there are no more MULTs
available for the current instruction and the second job is to stall the
pipe in order to let the translator to complete its job.

2. Translator: it is the real block that perform the translation. It receives
the operands of the multiplications and perform the translation. This
is the component where we can do most of the considerations: we could
think to have a very passive block that will always decompose the same
input, or we could think of a dynamic components that decide which
input to translate in order to do less work as possible (so less shifts
and less sums). Other consideration can be made on this process in
order to optimize it but anyway the most important thing is about
the complexity of this Translator. We could think of a Translator that
has to perform like the ID decoder, thus directly providing the com-
mands and the operands to the ALUs to perform the "multiplication"
with sums and shifts, or we could have a simpler Translator that is
responsible for just acting as a virtual IF stage for instructions that
it creates on fly and that it gives the ID decoder. In this second case
the Translator creates a sequence of simple add and shift instructions
and send it to the decoder that then acts in normal way as nothing is
happening.

We will not go into details for this translations mechanism because will
not be implemented in this version of the core, but this is a good starting
point for future works. Actually in this version of the core, the dispatcher has
been updated with the possibility to detect the unlucky case of no available
MULTs but much other works has to be done to support such a mechanism.

RISC-V FT Fiore Luca 68

5.5 CSR extension

Control and Status Register are registers that maintain the working state of
a RISC-V machine.
CSRs are defined in the RISC-V privileged specification but cv32e40p im-
plements only the registers that were needed for the PULP system [21]. The
reason for this is that we wanted to keep the footprint of the core as low as
possible and avoid any overhead that we do not explicitly need.

CSR are addressed by 12-bit word (csr[11:0]) for up to 4,096 CSRs.
By convention, the upper 4 bits of the CSR address (csr[11:8]) are used

to encode the read-write accessibility of the CSRs according to privilege level
as shown in Figure 5.5.1. The two most significant bits (csr[11:10]) indicate
whether the register is read/write (00,01, or10) or read-only (11). The next
two bits (csr[9:8]) encode the lowest privilege level that can access the CSR:

• 00: Machine level;

• 01: Supervisor level;

• 10: Hypervisor level;

• 11: User level.

RISC-V FT Fiore Luca 69

Figure 5.5.1: Allocation of RISC-V CSR address ranges.

RISC-V FT Fiore Luca 70

Attempts to access a non-existent CSR raise an illegal instruction excep-
tion. Attempts to access a CSR without appropriate privilege level or to
write a read-only register also raise illegal instruction exceptions. A read-
/write register might also contain some bits that are read-only, in which case
writes to the read-only bits are ignored. [18]

For a complete description of all RISC-V CSRs refer to [18] in the sec-
tion "Control and Status Register" where the meaning of any single CSR is
explained, and refer to Table 8 of [21] where there is a detailed description
of the RISC-V CSR actually implemented in cv32e40p core.

The instructions to access and manipulate CSR are described in Fig-
ure 5.5.2:

Figure 5.5.2: CSR manipulation instructions [18]

In order to monitor the status of our ALUs and MULTs we will add
custom CSRs to the set of supported CSRs in order to count number of
errors into the monitored components and to save their health state.
There are already some performance counters supported by RISC-V ISA and
they are also mapped to the CSR address space. We will add our custom
performance counters and a set of flops as the table of permanent faulty
components.
First of all we have to choose the address space we want to reserve for our
custom extension. Looking at Figure 5.5.1 we have chosen 0x7C0− 0x7FF
and 0x800 − 0x8FF address spaces to map our registers. Both regions are
custom read/write so both satisfy the first requirement of being able to be
read and written by software via instructions.
0x800−0x8FF addresses are partially occupied by PULP extension registers,
in particular 0x800− 0x807 are used for Hardware Loop PULP functions.
We decided to map counters for our 36 ALUs and 12 MULTs to 0x808 −

RISC-V FT Fiore Luca 71

0x837 address space, while we decide to locate tables of permanent faulty
components into three registers at addressed 0x7C0− 0x7C2.
All register are infact 32 bits registers and in order to save the status of
36+12 components we need 48 bits. However we decided to separate registers
dedicated to ALU to those related to MULT because we can not exclude
future modifications. The 48 flops distribution is the following:

• 0x7C0: first 32 ALU bits - CSR_PERM_FAULTY_ALUL_FT

• 0x7C1: last 4 ALU bits - CSR_PERM_FAULTY_ALUH_FT

• 0x7C2: 12 MULT bits - CSR_PERM_FAULTY_MULT_FT

The three registers that compose the table of permanent faulty com-
ponents are in the Machine level CSR address space so they are protected
against wrong read/write from the software that runs at an higher level. Un-
fortunately we can not insert the 48 performance counters inside that space
too because it is too limited. Therefore performance counters are in User
address space and they are surely accessible by any high privileged level but
are less secure because any program running on the core can possibly corrupt
them.

All our custom CSRs are accessed via special protocol that extend the
one provided in the basic cv32e40p.
The instructions to access those CSRs are correctly decoded in the ID stage
and the proper signals are generated into CSR block. We added special sig-
nals to manage the reading and writing on our custom CSR. In particular, if
the received address is one of those added for custom reasons, it is redirected
into the EX stage where there are our physical registers. At the same time,
if we have to read a custom register we activate a read enable r_en and
redirect the output of the physical register from EX stage to the CSR block.
If on the other side we have to write the register, we activate a write enable
w_en and redirect the writing value from CSR block to EX stage (look at
the Figure 5.4.3).

RISC-V FT Fiore Luca 72

Chapter 6

Simulation and results

In this paragraph we will address the verification problem. It is a funda-
mental step to state that the architecture operates in the correct way and to
investigate the real fault tolerance it is able to achieve.
We have to distinguish between the classical functional verification and the
simulations campaign for the fault tolerance evaluation. The first is done
to verify that the hardware extensions provided to protect the core do not
affect the normal behaviour of the core in absence of faults, while the second
is conducted to evaluate the fault tolerance capabilities of the new version
of the core.

We will use QuestaSim software for the SystemVerilog simulation and
thanks to the force QuestaSim command we will be able to inject faults
into the core by forcing a flip in a random bit of the architecture.

6.1 The simulation environment

The simulation environment that we have developed is a complex software
composed of several scripts with the main objective of automating the entire
simulation and validation process.

Our fault tolerance validation environment (from now on called FT ver-
ification environment) is actually based on the one adopted for RI5CY core
by PULP group and here reported in Figure 6.1.1.

73

Figure 6.1.1: RI5CY Testbench [69]

The testbench is written entirely in System Verilog: in the top module
tb_top there is the wrapper riscv_wrapper that contains the instantiation
of the RISC-V core together with a memory model. The mm_ram maps
the dp_ram module to the instruction and data ports of the RI5CY proces-
sor core and some pseudo peripherals. The most useful of these is a virtual
printer, actually a redirection of writes to stdout (when the core writes ASCII
data to a specific memory location it is written to stdout). In this way, pro-
grams running on the core can write human readable messages to terminals
and log files.
Testcases are coded in C and/or RISC-V assembly-language and are all self-
checking i.e. the pass/fail determination is made by the testcase itself as the
testbench is not able to find errors.

At [69] there is a detailed description of the verification environment
adopted for RI5CY core and here adopted in the verification of the fault
tolerant version of cv32e40p.

Its main limitations are:

• A significant amount of testcase writing will be required to achieve full
core coverage.

• testcases are the same every time they run, so only the stimulus we
think about will be run and only the bugs we can imagine will be found.

RISC-V FT Fiore Luca 74

• Stimulus generation and response checking is 100% manual.

• The performance counters are not verified.

• others at [69]

OpenHW group actually developed a good UVM environment to improve
the verification of the core [17], but we could not use it as we lacked the li-
cense to use the Imperas Instruction Set Simulator (ISS).

However, apart from the verification of the special HW added to the basic
core, we built an automatic simulation process to compare the fault tolerant
architecture with the basic one. Every software was firstly simulated on the
basic core and then simulated again on the new architecture, feeding it with
the same inputs. This approach will be a real advantage for the various sim-
ulations that we will perform on the fault tolerant version of the core, when
we want to simulate only a small piece of the core (e.g. the ex_stage) with
the fault injection. In fact, since we want to save time spent on simulations,
we don’t want to simulate the whole core but we aim to simulate and inject
faults only on the unit of interest. Therefore we would have need of a special
testbench for each sub-unit and this may be quite tricky as the unit under
test could change.

So we decided to go with the following ideas:

1. simulate the whole core with a specific firmware;

2. save inputs and outputs of a sub-unit;

3. re-simulate only the sub-unit feeding it with the saved inputs;

4. load the previous saved outputs and compare them with the outputs
of the current simulation.

A very important aspect is that the previous steps are all completed within
QuestaSim environment thanks to built in commands and tcl scripts (Ques-
taSim language is actually tcl).

We can exploit this technique for two purposes as suggested above:

1. verify that the fault tolerant extension doesn’t affect the normal be-
haviour of the core in absence of faults.
We perform this verification if the initial simulation is done on the

RISC-V FT Fiore Luca 75

basic core (called ref) and the second one on the protected version of
the core (called ft), in other words we will say ref vs ft with no FI
(fault injection).

2. verify that the ft core is protected against faults, if the initial simula-
tion is done on the ft core and the second on the same ft core with
now the fault injection. We will say ft vs ft with FI.

6.1.1 Detailed structure of FT verification environment

The main software is called comp_sim.sh and it is the program adopted to
manage:

1. the compilation of the firmwares;

2. the simulation of the firmwares on the core;

3. the evaluation of the fault tolerance of the ft version of the core

The first two points are actually managed by the RI5CY verification en-
vironment and we just create a system that better organize the compilation
and simulation of firmwares in order to obtain a more user friendly interface.

The real challenge was the creation of the fault tolerance verification
system and its integration inside the general verification environment.
As introduced above, the main idea was to inject faults only inside a sub-unit
of the core in order to save time and to have a finer grain fault tolerance
evaluation.

The process as described in section 6.1 is mainly managed by three tcl
scripts running on QuestaSim:

1. vsim_save_data_in.tcl: it is responsible for saving all the input sig-
nals value during the first simulation into a .vcd file that will be used
again as input for the second simulation.

2. vsim_save_data_out.tcl: it is responsible for saving all the output
signals value during the first simulation into a .wlf file that will be used
again as a comparison with the outputs from the second simulation.

3. vsim_stage_compare.tcl: this is the most complex file, responsible
for comparing the outputs from the second simulation with those from
the previous simulation that have been stored into the .wlf file. As

RISC-V FT Fiore Luca 76

mentioned before, the comparison can be performed on couples of sim-
ulations in order to verify either the functionality of the core (ref vs
ft with no fault injection) or the fault tolerance of the core (ft vs ft
with fault injection).
This script manages several things to be able to get the final compar-
ison between the two different simulations: first of all it has to find all
the signals where to possibly inject the faults, and they are all the in-
puts signals plus the internal registers. Then the script has to manage
the clock creation because clock is a special signals and can’t be loaded
from the previously saved .vcd file as if it were a standard input. The
clock creation is done with the force command, the same we will use
to generate the fault. Anyway, the script has to reload the so called
"dataset" that is the previous saved simulations (in the .wlf file) and
has to start the new simulation and comparison at the same time. In
fact we will perform the new simulation by dividing it in several pieces
and we will compare the new simulation piece from time to time: in
this way, when the first error is encountered, the simulation stops and
we can go further, thus saving time.
Actually vsim_stage_compare.tcl performs the same comparison for
a specific firmware N times, with N equal to the number of cycles
we want to repeat the simulation-comparison with the fault injection.
Each simulation-comparison will have the fault injected on a different
instant or on a different signal, in order not to repeat an already done
simulation (see subsection 6.3.1). If the comparison is done without
fault injection it is not necessary to repeat the comparison N times, so
it is only performed once.

Each firmware that we want to run on the core has to be compiled with
riscv-gnu-toolchain to obtain the .hex file ready for the execution on our
core.

6.2 Functional verification

The first step to rate the fault tolerance of the protected version of cv32e40p
is to verify the functionality of the core itself. In fact the most important
characteristic of the fault tolerant extension is that it has to be completely
transparent in terms of functionality if no faults occur.
Therefore the core was fed with several example firmwares that had already
been used to verify the functionality of the basic core (ref). In addition,
some of them were modified to stimulate the new hardware in order to state it

RISC-V FT Fiore Luca 77

has been correctly designed. For example to verify the managing of the new
CSRs added to the basic list of registers, a C software was modified with
some asm directives in order to directly access those registers via custom
assembler code (Listing 6.1). With this simple C program we are also able
to verify the mechanism of the spare unit and so the dispatcher job together
with the clock gating switching between replicas.

RISC-V FT Fiore Luca 78

1

2 . . .
3 // Var iab l e s f o r custom CSR f o r Fault Tolerance monitor ing
4 unsigned i n t count_shift_0 ;
5 unsigned i n t perm_faulty_alu_h , perm_faulty_alu_l ;
6 unsigned i n t perm_faulty_mult ;
7 . . .
8

9 // Control and Status Reg i s t e r Write
10 // ps eudo in s t ruc t i on : expands to csrrw x0 , csr , r s1
11 __asm__ v o l a t i l e (" l i a5 , 0x0") ;
12 __asm__ v o l a t i l e (" l i a5 , 0x89ABCDEF") ;
13 __asm__ v o l a t i l e (" csrw 0x808 , a5") ;
14

15 __asm__ v o l a t i l e (" l i a5 , 0 x32") ;
16 __asm__ v o l a t i l e (" csrw 0x7C0 , a5") ;
17

18 __asm__ v o l a t i l e (" l i a5 , 0 xF7") ;
19 __asm__ v o l a t i l e (" csrw 0x7C1 , a5") ;
20

21 __asm__ v o l a t i l e (" l i a5 , 0 xF7") ;
22 __asm__ v o l a t i l e (" csrw 0x7C2 , a5") ;
23

24 // Control and Status Reg i s t e r Read
25 // ps eudo in s t ruc t i on : expands to c s r r s rd , csr , x0
26 __asm__ v o l a t i l e (" c s r r %0, 0x808" : "=r " (count_shift_0)) ;
27 __asm__ v o l a t i l e (" c s r r %0, 0x7C0" : "=r " (perm_faulty_alu_l)) ;
28 __asm__ v o l a t i l e (" c s r r %0, 0x7C1" : "=r " (perm_faulty_alu_h)) ;
29 __asm__ v o l a t i l e (" c s r r %0, 0x7C2" : "=r " (perm_faulty_mult)) ;
30

31 . . .
32 // p r in t va lue read from CSRs
33 p r i n t f ("\ tcount_shift_0 = 0x%0x\n" , count_shift_0) ;
34 p r i n t f ("\ tperm_faulty_alu_l = 0x%0x\n" , perm_faulty_alu_l) ;
35 p r i n t f ("\tperm_faulty_alu_h = 0x%0x\n" , perm_faulty_alu_h) ;
36 p r i n t f ("\ tperm_faulty_mult = 0x%0x\n" , perm_faulty_mult) ;
37 . . .
38 �

Listing 6.1: C code to verify custom CSR accessing

The above code can be divided in four pieces: at the beginning we simply
declare some variables where will be stored the content of the CSR after the

RISC-V FT Fiore Luca 79

read instructions. Then with a set of three instructions we write into four
custom CSRs some random values (in hexadecimal format). The next step
is obviously to read what has been written into those register and finally to
print the read value. In this way if the write/read mechanism is correct, we
must see on screen exactly what we have decided to write into the registers.
In particular we decided to write 0x89ABCDEF in the register associated
to the first of the nine subparts in which is divided the first ALU, thus the
counter of the logic operations on the first ALU, which is at address 0x808.
Then we wrote 0x32, 0xF7 and 0xF7 into the three registers which represent
the table of permanent faulty components at addresses 0x7C0, 0x7C1 and
0x7C2. The first two store the 36 bits associated to the 36 counters for the
four ALUs, while the third stores the 12 bits associated the 12 counters for
the three MULTs (see 5.5).

In Figure 6.2.1 there is the output of the previous C program printed on
the QuestaSim Transcript window. The printed value for the four registers
we have considered is exactly as expected. We decided to write a strange
value (0x89ABCDEF) on the first register at 0x808 even if it can only reach
100 that is the maximum threshold we have chosen for the counters, just to
verify that no conflict arose inside.

Figure 6.2.1: Custom csr access: output of C code in Listing 6.1 from
QuestaSim simulation.

RISC-V FT Fiore Luca 80

Following the approach used to verify the CSR read/write, we can test
the functioning of the fault tolerant mechanism: counters, dispatcher and
clock gating for the spare unit.
If for example we write into the counter dedicated to logic operation the
same value as the previous example, that is 0x89ABCDEF , since we will
not inject any fault, we expect to see that value to be decremented. In fact,
each time that specific ALU has to compute an operation that involve a
logic operation, the voter will not detect any error and so the counter will
be decremented by the value we have set into the package, thus ’1’.
In Figure 6.2.2 we got exactly what we expected: count_logic_n[0] (counter
of errors on logic operations for the first ALU) is 0x89ABCDEF and at
40080 ns, when alu_operator_i is 15 that is a logic AND, the counter de-
crease to 0x89ABCDEE because no error can be detected since no fault has
been injected. From Figure 6.2.2 we can also see that count_logic_q[0] is
modified one clock cycle after the update of count_logic_n[0] as expected,
because q is the output of the register and n is the input.

Figure 6.2.2: Counter decreases after writing, because no fault is injected.

Another important thing we can see from Figure 6.2.2 is the clock gating
mechanism. The signal clock_gated is the clock received from the four
replicas of the pipe, from the four replicas of the ALU and from the four

RISC-V FT Fiore Luca 81

sets of nine counters. The clock of the fourth chain (fourth pipe replica,
fourth ALU replica and the associated set of counters) is gated while only
the first three replicas work. In fact if we look at alu_operator_i, only the
first three signals ([2], [1] and [0]) contain the updated value of the operator,
while the fourth one is frozen due to clock gating. This is even more evident
in Figure 6.2.3

Figure 6.2.3: Custom csr access: Clock gating.

The previous figure shows some waveforms of a simple program where
we write a value of 0x7 inside the table of permanent faulty components for
the ALU, in particular we wrote 0x7 into CSR at address 0x7C0 (See 5.5).
In the section CSR WRITING of Figure 6.2.3 there is the standard CSR
writing/reading protocol already seen: at 38130ns the writing starts, and
after a clock cycle we have the value inside the register.

We wrote a 0x7 which in binary means 00..0111 into the register at
0x7C0: the three ’1’s of the value mean that the first subpart of the first
three ALUs are permanently broken, as you can see looking at the signal
permanent_faulty_alu_0 where the three ’1’s are divided into the address
[0], [1] and [2] of permanent_faulty_alu_0.
Now what we expect is to see the first three ALUs frozen when a logic op-
eration has to be performed, because the first subpart in which an ALU is

RISC-V FT Fiore Luca 82

divided is exactly the one dedicated to the logic operations. This is exactly
what we see at time 38210ns (almost at the end of the simulation displayed
in Figure 6.2.3) when ALU operator become 18: only the 4th ALU replica
is active infact ALU operator (operator_i in the figure) is updated with the
value of 15 only for the 4th ALU replica and the same happens to the clock
that is gated for the first three replicas (the faulty ones).

Several other firmwares have been tested on the core and almost every
one of them were taken from the database provided by OpenHW group that
was adopted to test the basic core too. We just modified some of them to
test the added components and added Coremark, an important program to
benchmark the whole core. [73] [32].

So, the first series of simulations were done to state that the functioning
of the core was not affected by the fault tolerant extension. The results
we got for each sw simulated on the core are similar to what is reported in
Figure 6.2.4.

Figure 6.2.4: Wave comparison: ft vs ref architecture.

The previous figure shows the command window of QuestaSim where
are reported the functions executed from the .tcl script we have written to
compare the two simulations. As you can see there is a list of signals that are

RISC-V FT Fiore Luca 83

compared (the list is actually longer than what is in the figure) and at the
end there is a summary of the found differences. In this case obviously, since
there is no fault injection, there are no differences and so we can confirm that
for this particular SW (Coremark benchmark) the fault tolerant version of
the core behaves like the basic one.

6.3 Fault tolerance verification

This section will cover the fault tolerance evaluation of the cv32e40p with
and without the HW extension designed in this project.

First of all we have to decide how to perform the simulation campaign, that
is, where and when inject faults and in particular how many simulations to
get a good coverage and so to have a reliable result on the fault tolerance of
our architecture. Then we have to practically perform the simulations and
we have to compare the results obtained on the ref architecture with those
obtained on the ft architecture with fault injections in both cases.

6.3.1 Choice of the number of simulations for the fault tol-
erance evaluation

The fault injection campaign we need to run to get the information on the
network fault tolerance capability could be incredibly huge in terms of num-
ber of simulations.
Just think of the need to inject a fault on every single bit of every possible sig-
nal on every clock cycle over the entire simulation time for a specific firmware
running on the core. It is easy to predict how large could be the required
number of simulations to have a coverage of 100% of all the possibilities. For
example if we just want to simulate a single stage of the core without any
fault tolerance extension, the ID stage for instance, and if we decide to inject
the fault on all the signals coming from the pipe of the previous stage and on
each register of the register file, we have an amount of 53 signals and 1560
bits. If we simulate a simple "hello world" code consisting of 16000 clock
cycles, we will need 1560 · 1600 = 24960000 different simulation to cover
all the possible fault injections. And if each simulation requires 1min to be
done on a computer (actually it could be even worse), we will have to wait al-
most 550 days to receive a correct result, so an unacceptable amount of time.

For this reason we decide to follow the Statistical Fault Injection (SFI)
method [47], a way that allow a great reduction of the number of simulation

RISC-V FT Fiore Luca 84

required to have a good result, where good is related to the confidence level
and to the margin of error with respect to the result that would have been
obtained with the complete fault injection campaign.
If N is the total population, representing the number of simulations to have
a full fault injection, we can compute the number of simulations n required
to have a certain coverage with Equation 6.1:

n =
N

1 + e2 · N − 1

t2 · p · (1− p)

(6.1)

• N: initial population size. It is the total amount of faults we can inject;

• n: reduced number of faults to inject. It is the number of fault ran-
domly selected for the injection or in other words the sample size. We
consider each individual in the initial population N (a specific fault at
a given clock cycle) to have the same probability to be sampled, thus
a uniform distribution must be used during sample.
When N is large, increase of N has little influence on the sample size
for a given margin of error and a given confidence.

• p: estimated proportion of individuals in the population having a given
characteristic (e.g. the estimated probability of faults resulting in a
failure). This parameter defines the standard error.
The parameter p basically corresponds to an estimate of the true value
being searched (e.g. percentage of errors resulting a failure). Since
this value is a priori unknown (but between 0 and 1), a conservative
approach is to use the value that will maximize the sample size. It has
been demonstrated that this is achieved for p=0.5;

• e: margin of error. It means that if we classify the types of failure
we have after the fault injection on all the population we will get that
the exact probability that individuals have the desired characteristic
should be a value between [X − e;X + e], where X is the value of
probability that individuals have the desired characteristic obtained
during the campaign using the sample.
The margin of error is the most influential parameter on n because a
small reduction of e produce a strong increasing of the required sample
size (Figure 6.3.1).

RISC-V FT Fiore Luca 85

Figure 6.3.1: n = f(e) (p=0.5, N=150000, 90% confidence level). [47]

• t: cut off point corresponding to the confidence level. It is computed
with respect to the Normal distribution (quantile table) and is the
probability that the exact value is actually within the error interval.
A 90%, 95% or 99% confidence level is usually chosen (typically 95%)
with corresponding t of 1.96, 2.5758 and 3.0902.
Increasing the confidence level (and thus the t parameter) has less
impact on n than reducing e.

In the initial population, sampling is done without replacement. Other-
wise, the population can be considered as infinite as the same individual can
be chosen multiple times thus giving a possible bias.

What we have to do:

1. compute the number of bits where we can apply fault injection;

2. compute the number of cycles where a given bit can change;

3. multiply the two previous values obtaining N .

4. set the estimated proportion p as 0.5, choose a confidence level t (be-
tween 95% and 99%) but more important choose a margin of error e
(between 0.1% and 5%).

For our simulations we have chosen:

RISC-V FT Fiore Luca 86

• t=2.5758, (99%)

• e=0.05.

and the resulting (rounded) n is 663 for all the firmwares, so for all N .

6.3.2 Results

We performed the same simulations on both ref and ft architecture to have
a final comparison on the fault tolerant improvement provided by our work.

The two tables below summarize the main results:

Firmware Errors Fault Tolerance
coremark_1 1 99.85%
counters 0 100.0%

csr_instructions 2 99.70%
cv32e40p_csr_access_test 14 97.89%

dhrystone 0 100.0%
fibonacci 0 100.0%

generic_exception_test 0 100.0%
hello_world 1 99.85%

illegal 0 100.0%
interrupt_bootstrap 0 100.0%

interrupt_test 1 99.85%
misalign 0 100.0%

modeled_csr_por 0 100.0%
perf_counters_instructions 0 100.0%

requested_csr_por 0 100.0%
riscv_arithmetic_basic_test_0 10 98.50%
riscv_arithmetic_basic_test_1 11 98.35%

riscv_ebreak_test_0 0 100.0%
mean ≈ 2 99.69%

Table 6.1: Results with transient fault injection on ft architecture

RISC-V FT Fiore Luca 87

Firmware Errors Fault Tolerance
coremark_1 70 89.45%
counters 156 76.48%

csr_instructions 86 87.03%
cv32e40p_csr_access_test 103 84.47%

dhrystone 125 81.15%
fibonacci 155 76.63%

generic_exception_test 95 85.68%
hello_world 77 88.39%

illegal 90 86.43%
interrupt_bootstrap 94 85.83%

interrupt_test 99 85.07%
misalign 136 79.49%

modeled_csr_por 83 87.49%
perf_counters_instructions 150 77.38%

requested_csr_por 67 89.90%
riscv_arithmetic_basic_test_0 121 81.75%
riscv_arithmetic_basic_test_1 88 86.73%

riscv_ebreak_test_0 122 81.60%
mean ≈ 107 83.86%

Table 6.2: Results with transient fault injection on ref architecture

The average fault tolerance of the ref architecture is so 83.86% while
the one of the ft architecture is 99.69%. These results are obtained injecting
transient faults that is the reason why also the ref architecture is quite
good in terms of fault tolerance. In fact it is clear that there is a non-
zero possibility that the injected transient fault occurs on a signal that is
actually not used in that specific clock cycle thus giving no problems to the
simulation.
But what happens if we inject permanent fault? We performed permanent
faults injection on simulations of few firmwares, Coremark, hello_world and
riscv_arithmetic_basic_test_1. This is due to the limited time as we did
not have time to complete the fault injections for all the firmwares.

RISC-V FT Fiore Luca 88

Firmware Errors Fault Tolerance
coremark_1 18 97.22%

hello_world_1 19 97.13%
riscv_arithmetic_basic_test_1 21 96.83%

mean ≈ 19 97.13%

Table 6.3: Results with permanent fault injection on ft architecture

Firmware Errors Fault Tolerance
coremark_1 330 50.23%
hello_world 167 74.82%

riscv_arithmetic_basic_test_1 276 58.37%
mean ≈ 193 70.89%

Table 6.4: Results with permanent fault injection on ref architecture

As you can see from the two previous table the fault tolerance of the core
decrease because it has to face permanent faults that are surely more critical
than transient ones.
The ref architecture goes from 83.86% to 70.89% while the ft architecture
goes from 99.69% to 97.13%. This is due to the fact that a transient error
may occurs in a clock cycle where the infected signal is not used, while if we
apply a permanent fault on that signal there is an higher probability that it
will affect the outputs.

The ft architecture can’t provide a 100% fault tolerance because there
are some secondary processes in the ex_stage.sv file that were not protected
because we focused only on the ALU ans on the MULT. Actually it would
be enough to apply a simple TMR to these parts as they are really simple
and not critical.

RISC-V FT Fiore Luca 89

Chapter 7

Conclusions

This thesis aims to find an innovative solution to increase the fault toler-
ance of cv32e40p RISC-V core. We have adopted already know techniques
like TMR within a new approach aimed to exploit available resources at the
maximum level. We also managed to make the fault tolerant extension to
be customizable (to be activated or deactivated, to set the counting and
threshold values for the performance counters) and we tried to optimize the
new architecture with a view to low power consumption (clock gating on the
spare components and on the faulty ones).

As reported in the previous chapter we got very good results in terms of
fault tolerance both for transient and permanent errors. What we could do
in the future is first of all to increase the number of simulations to get a
wider coverage (now we have performed 663 simulations for each firmware)
and secondly to complete the permanent faults simulations campaign with
all other firmwares (in fact we tested Coremark only).

Another important aspect that has not been properly addressed during this
work is the power and speed ratings. In fact we have not synthesised the
network and we have not analyzed it from these points of view for reasons
of time. In fact all the work done on the ID and EX stage of the machine is
really expensive in terms of area as we have added many extra components
to the basic architecture leading to a large occupation of area. In partiular
we have added three extra ALUs, two extra MULTs, two voters, 36 up/down
counters for the 4 ALUs, 12 up/down counters for the three MULTs, two 32b
registers as table of faulty components and other minor components such as
some muxs and some clock gating blocks. This means that the area is surely

90

increased and the static power consumption too for the same reason, but we
tried to maintain this overhead as low as possible thanks to clock gating over
the faulty and spare components. Actually our aim is to get a good level of
fault tolerance with less interest on power, area and delay: the main future
work can be to improve the architecture with a view to performances.

In the next section just some additional future works.

7.1 Future works

We have mentioned many future works during the discussion, such as the
translation of multiplications into an adds-shifts sequence, or the general
optimization of the architecture for performances. Here we want to add
some good ideas that could be used to improve the core even more and to
reach an even better level of fault tolerance.

7.1.1 BIST

There is a big problem related to the previous described architecture. If for
example two of the four ALUs are declared defective, the voter that now
is a simple comparator can’t recover from a detected mismatch of the two
received inputs (the usual problem of DMR with respect to TMR). Infact
is impossible to choose between two inputs coming from units at the same
level, that is, with the same confidence and the same implementation.
In this situation a good solution can be to implement a Built In Self Test
(BIST) as described in 3.2.2.
The idea is to provide a quiescent BIST mechanism that will be waked up
only when there is the remote and unlucky situation of only two available
components for the TMR (now DMR).
When the error detection mechanism detects errors without the possibility
to recover them, so when the results of the only two available components
are different, BIST support will be enabled. We can think of a BIST done
on both the available units to understand which of them is operating cor-
rectly. This new error detection mechanism can be applied even before the
error happening in order to prevent wasting of time once the error actually
occurs. That is, if for example there are spare cycle where nothing has to
be done on the ALU because the MULT is involved in those cycles, we can
perform BIST on the ALU, and vice versa.

RISC-V FT Fiore Luca 91

You can think of the real need for a TMR when you could apply a BIST
knowing that it is a good way to test the behavior of each single replica
without comparing it with the others. Unfortunately BIST is really a time
and energy consuming activity and the scheduling of BIST cycles in order
to minimize energy losses and waste of time is a real challenging activity
because dynamically depends on the core workload, therefore on the actual
application.
The real disadvantage of this technique is the complexity it introduce and
the low frequency of the situation in which it can actually be applied. In-
fact the probability that two of the three or four available components are
broken is low and sometimes it may never happen before the entire core is
decommissioned. So we would have set a very complex BIST mechanism for
nothing.

7.1.2 NRMR

Replicate the module in heterogeneous way, with different architectural solu-
tions or simply with different output precision, and compare the outputs; if
the difference is greater than a certain threshold then we can say that there
is an error. For example, inside the voter, we can check if the output is just
1bit far from the correct result (1bit threshold).
The reduced precision replica can be an extra 4th replica in the TMR ap-
proach, used just when an error is detected to ensure that the error is just
one and not two identical errors in two different replicas, or it can be useful
when there are only two available units for that operation and so when the
TMR became a DMR.

In 3.2.1 we have introduced the technique and now we want to summarize
the pros and cons of it.
Among the benefit of a NRMR there is the design diversity which implies
the possibility to distinguish between results coming from different replicas.
Infact if two outputs have different precision we can give more confidence to
the higher precision one, or even if the only difference is on the architecture
of the replica. we can give them different confidence.
This is particularly important when we are in the case of only two available
components (see 7.1.1), and also when we want to be sure that there is not an
even number of errors going into the voter. In the first case for example we
can have a sort of voting even with only two data because they are in some
way different and so the DMR can take a decision. In the second case, if an
error is detected on one of the three inputs to the voter we can state that

RISC-V FT Fiore Luca 92

the error is exactly the one detected, and that there is not the possibility to
have instead two errors in the other two results which may implies the voter
to be wrong, for the same reason of different confidence of the inputs to the
voter.

7.1.3 Repetition if unsure

if from TMR there is an uncertainty (only two of the three units agree) still
continue but repeate the faulty operation in the next clock cycle to verify if it
was a transient fault or something more serious (so spatial redundancy with
temporal redundancy also called instruction retry). For example if the ALU
detects and corrects one error thanks to TMR, nothing happens except that
the pipe will be stalled for the number of clock cycle required to understand
if the fault is transient or permanent. If it was transient everything return to
normal, but if it is permanent the core continues with a DMR in that section
knowing that it will be only able to detect an error and nothing more. This
is a faster way to detect permanent errors with respect to our one that is
based on counters, but actually the two techniques collapse into just one if
for example we decide to fix the threshold to ’2’ thus counting maximum two
consecutive errors.

RISC-V FT Fiore Luca 93

Bibliography

[1] M. Gautschi P. D. Schiavone A. Traber. RI5CY: User Manual. Apr.
2019.

[2] D. A. Patterson A. Waterman Y. Lee and K. Asanović. The RISC-V
Instruction Set Manual, Volume I: Base User-Level ISA. May 2016.

[3] ALU instruction set extension for SIMD. url: https://cv32e40p.
readthedocs.io/en/latest/instruction_set_extensions/#simd.

[4] D. Anderson. “Design of self-checking digital networks using coding
techniques”. In: 1971.

[5] Arithmetic Operations GCC built-ins for GAP8 RISC-V ISA exten-
sions. url: https : / / greenwaves - technologies . com / manuals /
BUILD/PULP-OS/html/group__Arith.html.

[6] A. Avizienis. “Arithmetic Error Codes: Cost and Effectiveness Studies
for Application in Digital System Design”. In: IEEE Transactions on
Computers C-20.11 (1971), pp. 1322–1331.

[7] Avizienis and Kelly. “Fault Tolerance by Design Diversity: Concepts
and Experiments”. In: Computer 17.8 (1984), pp. 67–80.

[8] Joel Bartlett, Jim Gray, and Bob Horst. “Fault Tolerance in Tandem
Computer Systems”. In: The Evolution of Fault-Tolerant Computing.
Ed. by Algirdas Avižienis, Hermann Kopetz, and Jean-Claude Laprie.
Springer Vienna, 1987.

[9] Charles R Baugh and Bruce A Wooley. “A two’s complement parallel
array multiplication algorithm”. In: IEEE Transactions on computers
100.12 (1973), pp. 1045–1047.

[10] J.M. Berger. “A note on error detection codes for asymmetric channels”.
In: Information and Control 4.1 (1961), pp. 68–73. issn: 0019-9958.
doi: https://doi.org/10.1016/S0019-9958(61)80037-5.

94

https://cv32e40p.readthedocs.io/en/latest/instruction_set_extensions/#simd
https://cv32e40p.readthedocs.io/en/latest/instruction_set_extensions/#simd
https://greenwaves-technologies.com/manuals/BUILD/PULP-OS/html/group__Arith.html
https://greenwaves-technologies.com/manuals/BUILD/PULP-OS/html/group__Arith.html
https://doi.org/https://doi.org/10.1016/S0019-9958(61)80037-5

[11] D. Bernick et al. “NonStop/spl reg/ advanced architecture”. In: 2005
International Conference on Dependable Systems and Networks (DSN’
05). 2005, pp. 12–21.

[12] T. D. Bissett et al. Loosely-Coupled, Synchronized Execution. United
States Patent 5.896.523, 1999.

[13] Bose and Der Jei Lin. “Systematic Unidirectional Error Detecting Co-
des”. In: IEEE Transactions on Computers C-34.11 (1985), pp. 1026–
1032.

[14] L. Breveglieri, P. Maistri, and I. Koren. “A Note on Error Detection
in an RSA Architecture by Means of Residue Codes”. In: Proceed-
ings of the 12th IEEE International Symposium on On-Line Testing.
IOLTS ’06. USA: IEEE Computer Society, 2006, pp. 176–177. isbn:
0769526209. doi: 10.1109/IOLTS.2006.8.

[15] C. Chen et al. “Xuantie-910: A Commercial Multi Core 12 Stage Pipe-
line Out-of-Order 64 bit High Performance RISC-V Processor with
Vector Extension : Industrial Product”. In: 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA).
2020, pp. 52–64.

[16] J. J. Clement. “Electromigration modeling for integrated circuit in-
terconnect reliability analysis”. In: IEEE Transactions on Device and
Materials Reliability 1.1 (2001), pp. 33–42.

[17] CORE-V Verification Environment. url: https://core- v- docs-
verif-strat.readthedocs.io/en/latest/corev_env.html.

[18] Berkeley CS Division EECS Department University of California. The
RISC-V Instruction Set Manual privileged Architecture. May 2017.

[19] Berkeley CS Division EECS Department University of California. The
RISC-V Instruction Set Manual Unprivileged ISA. July 2020.

[20] cv32e40p. url: https://github.com/openhwgroup/cv32e40p.

[21] cv32e40p CSR. url: https://cv32e40p.readthedocs.io/en/latest/
control_status_registers/.

[22] cv32e40p Documentation. url: https://github.com/openhwgroup/
core-v-docs/tree/master/cores/cv32e40p.

[23] cv32e40p FPU. url: https://cv32e40p.readthedocs.io/en/latest/
fpu/.

[24] cv32e40p fpu. url: https://github.com/pulp-platform/fpnew.

RISC-V FT Fiore Luca 95

https://doi.org/10.1109/IOLTS.2006.8
https://core-v-docs-verif-strat.readthedocs.io/en/latest/corev_env.html
https://core-v-docs-verif-strat.readthedocs.io/en/latest/corev_env.html
https://github.com/openhwgroup/cv32e40p
https://cv32e40p.readthedocs.io/en/latest/control_status_registers/
https://cv32e40p.readthedocs.io/en/latest/control_status_registers/
https://github.com/openhwgroup/core-v-docs/tree/master/cores/cv32e40p
https://github.com/openhwgroup/core-v-docs/tree/master/cores/cv32e40p
https://cv32e40p.readthedocs.io/en/latest/fpu/
https://cv32e40p.readthedocs.io/en/latest/fpu/
https://github.com/pulp-platform/fpnew

[25] cv32e40p Introduction. url: https://cv32e40p.readthedocs.io/
en/latest/intro/.

[26] cv32e40p Pipeline. url: https://cv32e40p.readthedocs.io/en/
latest/pipeline/.

[27] Luigi Dadda. “Some schemes for parallel multipliers”. In: Alta frequenza
34 (1965), pp. 349–356.

[28] D. Das and N. A. Touba. “Synthesis of circuits with low-cost concurrent
error detection based on Bose-Lin codes”. In: Proceedings. 16th IEEE
VLSI Test Symposium (Cat. No.98TB100231). 1998, pp. 309–315.

[29] P. Davide Schiavone et al. “Slow and steady wins the race? A compar-
ison of ultra-low-power RISC-V cores for Internet-of-Things applica-
tions”. In: 2017 27th International Symposium on Power and Timing
Modeling, Optimization and Simulation (PATMOS). 2017, pp. 1–8.

[30] Advanced Micro Devices. Revision Guide for AMD Athlon 64 and
AMD Opteron Processors. July 2009.

[31] E. N. Elnozahy and W. Zwaenepoel. “Manetho: transparent roll back-
recovery with low overhead, limited rollback, and fast output commit”.
In: IEEE Transactions on Computers 41.5 (1992), pp. 526–531. doi:
10.1109/12.142678.

[32] EMBC Coremark. url: https://www.eembc.org/.

[33] A. H. Fischer et al. “Electromigration failure mechanism studies on
copper interconnects”. In: Proceedings of the IEEE 2002 International
Interconnect Technology Conference (Cat. No.02EX519). 2002, pp. 139–
141.

[34] P. Forin. “IFA-GCCT”. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems (1989), pp. 79–84.

[35] Philippe Forin. “Vital coded microprocessor principles and application
for various transit systems”. In: IFAC Proceedings Volumes 23.2 (1990),
pp. 79–84.

[36] R. Forsati et al. “A Fault Tolerant Method for Residue Arithmetic Cir-
cuits”. In: 2009 International Conference on Information Management
and Engineering. 2009, pp. 59–63.

[37] M. Gautschi et al. “Near-Threshold RISC-V Core With DSP Exten-
sions for Scalable IoT Endpoint Devices”. In: IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 25.10 (2017), pp. 2700–
2713.

RISC-V FT Fiore Luca 96

https://cv32e40p.readthedocs.io/en/latest/intro/
https://cv32e40p.readthedocs.io/en/latest/intro/
https://cv32e40p.readthedocs.io/en/latest/pipeline/
https://cv32e40p.readthedocs.io/en/latest/pipeline/
https://doi.org/10.1109/12.142678
https://www.eembc.org/

[38] Brian T Gold et al. The granularity of soft-error containment in shared-
memory multiprocessors. Tech. rep. 2006.

[39] S. S. Gorshe and B. Bose. “A self-checking ALU design with efficient
codes”. In: Proceedings of 14th VLSI Test Symposium. 1996, pp. 157–
161.

[40] Hao Dong. “Modified Berger Codes for Detection of Unidirectional
Errors”. In: IEEE Transactions on Computers C-33.6 (1984), pp. 572–
575.

[41] Gavin Holl and Dhiraj Pradhan. “Fault Tolerant Multiprocessor Sys-
tems”. In: (July 2002).

[42] IEC. Overview Report. 2006.

[43] Intel. Intel Pentium 4 Processor on 90 nm Process Specification Update.
Sept. 2006.

[44] B. W. Johnson. “Fault-Tolerant Microprocessor-Based Systems”. In:
IEEE Micro 4.6 (1984), pp. 6–21.

[45] Barry W. Johnson. Design & Analysis of Fault Tolerant Digital Sys-
tems. USA: Addison-Wesley Longman Publishing Co., Inc., 1988. isbn:
0201075709.

[46] E. P. Kim and N. R. Shanbhag. “Soft N-Modular Redundancy”. In:
IEEE Transactions on Computers 61.3 (2012), pp. 323–336.

[47] R. Leveugle et al. “Statistical fault injection: Quantified error and con-
fidence”. In: 2009 Design, Automation Test in Europe Conference Ex-
hibition. 2009, pp. 502–506. doi: 10.1109/DATE.2009.5090716.

[48] H. M. Levy et al. “Exploiting Choice: Instruction Fetch and Issue on an
Implementable Simultaneous Multithreading Processor”. In: 23rd An-
nual International Symposium on Computer Architecture (ISCA’96).
1996, pp. 191–191.

[49] J. Li and E. E. Swartzlander. “Concurrent error detection in ALUs by
recomputing with rotated operands”. In: Proceedings 1992 IEEE In-
ternational Workshop on Defect and Fault Tolerance in VLSI Systems.
1992, pp. 109–116.

[50] FUJITSU LIMITED. SPARC64 V Processor For UNIX Server. 2004.

[51] B. P. Linder et al. “Growth and scaling of oxide conduction after
breakdown”. In: 2003 IEEE International Reliability Physics Sympo-
sium Proceedings, 2003. 41st Annual. 2003, pp. 402–405.

RISC-V FT Fiore Luca 97

https://doi.org/10.1109/DATE.2009.5090716

[52] S. Liu et al. “Reduced Precision Redundancy for Reliable Processing
of Data”. In: IEEE Transactions on Emerging Topics in Computing
(2019), pp. 1–1.

[53] J. -. Lo, S. Thanawastien, and T. R. N. Rao. “Concurrent error de-
tection in arithmetic and logical operations using Berger codes”. In:
Proceedings of 9th Symposium on Computer Arithmetic. 1989, pp. 233–
240.

[54] J. -. Lo et al. “An SFS Berger check prediction ALU and its ap-
plication to self-checking processor designs”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 11.4
(1992), pp. 525–540.

[55] R. E. Lyons and W. Vanderkulk. “The Use of Triple-Modular Redun-
dancy to Improve Computer Reliability”. In: IBM Journal of Research
and Development 6.2 (1962), pp. 200–209.

[56] A. Maamar and G. Russell. “A 32 bit RISC processor with concurrent
error detection”. In: Proceedings. 24th EUROMICRO Conference (Cat.
No.98EX204). Vol. 1. 1998, 461–467 vol.1.

[57] A. Mahmood and E. J. McCluskey. “Concurrent error detection using
watchdog processors-a survey”. In: IEEE Transactions on Computers
37.2 (1988), pp. 160–174.

[58] D. Mandelbaum. “Arithmetic codes with large distance”. In: IEEE
Transactions on Information Theory 13.2 (1967), pp. 237–242.

[59] T. Marena. “RISC-V: high performance embedded SweRV™ core mi-
croarchitecture, performance and CHIPS Alliance”. In: 2019.

[60] J. J. Massey. “Survey of residue coding for arithmetic errors”. In: ICC
Bulletin 3 (1964), pp. 195–209.

[61] “CHAPTER 7 - Hardware Error Recovery”. In: Architecture Design for
Soft Errors. Ed. by Shubu Mukherjee. Burlington: Morgan Kaufmann,
2008, pp. 253–295.

[62] H. T. Nguyen and A. Chattejee. “Number-splitting with shift-and-add
decomposition for power and hardware optimization in linear DSP syn-
thesis”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 8.4 (2000), pp. 419–424. doi: 10.1109/92.863621.

[63] M. Nicolaidis. “Carry checking/parity prediction adders and ALUs”. In:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems
11.1 (2003), pp. 121–128.

RISC-V FT Fiore Luca 98

https://doi.org/10.1109/92.863621

[64] Patel and Fung. “Concurrent Error Detection in ALU’s by Recom-
puting with Shifted Operands”. In: IEEE Transactions on Computers
C-31.7 (1982), pp. 589–595.

[65] D. A. Patterson and K. Asanović. Instruction Sets Should Be Free: The
Case For RISC-V. Aug. 2014.

[66] M. Potkonjak, M. B. Srivastava, and A. P. Chandrakasan. “Multiple
constant multiplications: efficient and versatile framework and algo-
rithms for exploring common subexpression elimination”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 15.2 (1996), pp. 151–165. doi: 10.1109/43.486662.

[67] M. D. Powell and T. N. Vijaykumar. “Pipeline damping: a microarchi-
tectural technique to reduce inductive noise in supply voltage”. In: 30th
Annual International Symposium on Computer Architecture, 2003. Pro-
ceedings. 2003, pp. 72–83.

[68] PULP platform. url: https://pulp-platform.org.

[69] PULP-Platform Simulation Verification. url: https://core-v-docs-
verif-strat.readthedocs.io/en/latest/pulp_verif.html.

[70] T. R. N. Rao. “Biresidue Error-Correcting Codes for Computer Arith-
metic”. In: IEEE Transactions on Computers C-19.5 (1970), pp. 398–
402.

[71] Thammavarapu R. N. Rao. Error Coding for Arithmetic Processors.
USA: Academic Press, Inc., 1974. isbn: 0125807503.

[72] RISC-V. url: https://riscv.org.

[73] RISCV BOOM Coremark. url: https://github.com/riscv-boom/
riscv-coremark.

[74] R. Rodriguez, J. H. Stathis, and B. P. Linder. “Modeling and exper-
imental verification of the effect of gate oxide breakdown on CMOS
inverters”. In: 2003 IEEE International Reliability Physics Symposium
Proceedings, 2003. 41st Annual. 2003, pp. 11–16.

[75] E. Rotenberg. “AR-SMT: a microarchitectural approach to fault tol-
erance in microprocessors”. In: Digest of Papers. Twenty Ninth An-
nual International Symposium on Fault Tolerant Computing (Cat. No.
99CB36352). 1999, pp. 84–91.

[76] U. Schiffel et al. “Software-Implemented Hardware Error Detection:
Costs and Gains”. In: 2010 Third International Conference on Depend-
ability. 2010, pp. 51–57.

RISC-V FT Fiore Luca 99

https://doi.org/10.1109/43.486662
https://pulp-platform.org
https://core-v-docs-verif-strat.readthedocs.io/en/latest/pulp_verif.html
https://core-v-docs-verif-strat.readthedocs.io/en/latest/pulp_verif.html
https://riscv.org
https://github.com/riscv-boom/riscv-coremark
https://github.com/riscv-boom/riscv-coremark

[77] E. Schuchman and T. N. Vijaykumar. “BlackJack: Hard Error De-
tection with Redundant Threads on SMT”. In: 37th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks
(DSN’07). 2007, pp. 327–337.

[78] Frederick F Sellers, Hsiao Mu Yue, and Leroy W Bearnson. “Error
detecting logic for digital computers”. In: (1968).

[79] K. G. Shin and Hagbae Kim. “A time redundancy approach to TMR
failures using fault-state likelihoods”. In: IEEE Transactions on Com-
puters 43.10 (1994), pp. 1151–1162.

[80] P. Shivakumar et al. “Modeling the effect of technology trends on the
soft error rate of combinational logic”. In: Proceedings International
Conference on Dependable Systems and Networks. 2002, pp. 389–398.

[81] Smitha Shyam et al. “Ultra Low-Cost Defect Protection for Micropro-
cessor Pipelines”. In: Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating
Systems. New York, NY, USA: Association for Computing Machinery,
2006, pp. 73–82. doi: 10.1145/1168857.1168868.

[82] K. Skadron et al. “Temperature-aware microarchitecture”. In: 30th An-
nual International Symposium on Computer Architecture, 2003. Pro-
ceedings. 2003, pp. 2–13.

[83] J. C. Smolens et al. “Efficient Resource Sharing in Concurrent Er-
ror Detecting Superscalar Microarchitectures”. In: 37th International
Symposium on Microarchitecture (MICRO-37’04). 2004, pp. 257–268.

[84] Jared C. Smolens et al. “Detecting Emerging Wearout Faults”. In: 2007.

[85] Daniel Sorin. Fault Tolerant Computer Architecture. Morgan Claypool,
2009.

[86] J. Srinivasan et al. “The impact of technology scaling on lifetime relia-
bility”. In: International Conference on Dependable Systems and Net-
works, 2004. 2004, pp. 177–186.

[87] D. Sylvester, D. Blaauw, and E. Karl. “ElastIC: An Adaptive Self-
Healing Architecture for Unpredictable Silicon”. In: IEEE Design Test
of Computers 23.6 (2006), pp. 484–490.

[88] A. Tiwari and J. Torrellas. “Facelift: Hiding and slowing down aging
in multicores”. In: 2008 41st IEEE/ACM International Symposium on
Microarchitecture. 2008, pp. 129–140.

RISC-V FT Fiore Luca 100

https://doi.org/10.1145/1168857.1168868

[89] V. Tiwari, S. Malik, and P. Ashar. “Guarded evaluation: pushing power
management to logic synthesis/design”. In: IEEE Transactions on Com-
puter Aided Design of Integrated Circuits and Systems 17.10 (1998),
pp. 1051–1060.

[90] J. F. Wakerly. “Partially Self-Checking Circuits and Their Use in Per-
forming Logical Operations”. In: IEEE Transactions on Computers C-
23.7 (1974), pp. 658–666.

[91] C. S. Wallace. “A Suggestion for a Fast Multiplier”. In: IEEE Trans-
actions on Electronic Computers EC-13.1 (1964), pp. 14–17. doi: 10.
1109/PGEC.1964.263830.

[92] P. M. Wells, K. Chakraborty, and G. S. Sohi. “Adapting to Intermittent
Faults in Future Multicore Systems”. In: (2007), pp. 431–431.

[93] J. F. Ziegler. “Terrestrial cosmic ray intensities”. In: IBM Journal of
Research and Development 42.1 (1998), pp. 117–140.

[94] J. F. Ziegler et al. “IBM experiments in soft fails in computer electron-
ics (1978–1994)”. In: IBM Journal of Research and Development 40.1
(1996), pp. 3–18.

RISC-V FT Fiore Luca 101

https://doi.org/10.1109/PGEC.1964.263830
https://doi.org/10.1109/PGEC.1964.263830

	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivations
	Thesis organization

	Standard for functional safety
	Fault tolerant processors
	Fault tolerance terminology
	Faults, errors and failures FTComputerArchitecture

	Fault tolerant techniques: error detection
	Spatial redundancy techniques
	Temporal redundancy techniques

	Fault tolerant techniques: error recovery 2008253
	Reboot
	Forward Error Recovery
	Backward Error Recovery

	Importance of fault tolerance

	The RISC-V ISA and cv32e40p
	The RISC-V ISA
	History
	Base Integer ISA
	Standard extensions

	The cv32e40p core
	Design
	Execution unit

	Fault tolerance on cv32e40p
	Target
	Ideas
	Criticality levels
	The architecture
	ALU dispatcher, pipeline replicas and TMR
	Voter
	ALU alpha-counters and table of faulty components
	MULT dispatcher, pipeline replicas and TMR
	MULT alpha-counters and table of faulty components
	MULT translated into Add and Shift

	CSR extension

	Simulation and results
	The simulation environment
	Detailed structure of FT verification environment

	Functional verification
	Fault tolerance verification
	Choice of the number of simulations for the fault tolerance evaluation
	Results

	Conclusions
	Future works
	BIST
	NRMR
	Repetition if unsure

	Bibliography

