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1 Introduction
In these years marked by global pandemic and economic crisis, humanity has been
challenged to radically change their habits and to find modern solutions that fit the
context.
The market was also heavily affected: companies are unwilling to buy new goods, rather
they are intent to maximize the useful life of the industrial machines. For this reason, the
business is settling to the production of services act to extend goods maximum life.
The presented work of thesis arises from the necessity of the ISI-Welding Company to
obtain a predictive maintenance system for their welding guns. Hand in hand with the
use of data science, predictive maintenance is one of most interesting topics of last years.
The main promise is to allow a convenient scheduling of corrective maintenance, and to
prevent unexpected equipment failures, saving goods, money and production time.

1.1 ISI-Welding
ISI-GF EQUIPMENT (WUHAN) CORP., LTD. is a professional manufacturer of intelli-
gent robot welding equipment and supplier of integrated welding robot technology, with
major business of research, development, production and distribution of intelligent robot
welding products and welding robots. Since its establishment in 2007, the company has
been focusing on the application of robot welding technology to automobile manufacturing
industry, making it one of the few manufacturers in automotive industry in possession
of integrated solution for intelligent welding robot for customers. As a manufacturer of
intelligent robot welding equipment and assembler of welding robots, they are committed
to become a first-class “supplier and service provider of all-in-one solution for intelligent
robot-based welding operation”, this means to design professional intelligent solution
adapting to customer’s special requirements on welding assembly,to supply corresponding
intelligent robot welding equipment,to complete welding procedures and to provide the
customer with satisfactory after-services.
By business optimization and integration, the company is transforming to a high-tech
enterprise be able to deliver the customers with all-round services from technical solu-
tion, design, processing, production, manufacture, installation, delivery to training and
consultation. ISI have constructed industrialized production base in Wuhan, where it’s
equipped with complete production, monitoring, testing and experimental installations
for production and manufacture of welding control system, integrated welding machine,
MF welding system, robotic automatic welding system, nonstandard welding fixture and
its packages and complete automatic welding production line. ISI-GF EQUIPMENT
was delisted in August 2015 and have acquired ISI-Italia (Original Italian GF Welding
S.p.A.), a company specialized in welding technology with a history of 50 years, acquiring
world-leading robot welding technology and development capacity, and effectively expand
to global market. Acquired by SI-GF Equipment (Wuhan) Co., Ltd, ISI-Italia (Former
Italian GF) is a professional firm of welding technology, a producer among few world players
able to supply complete welding technology, with all know-how derived from experiences
for over 50 years, full line of core products are independently developed and designed,
also, it’s an exclusive supplier of FIAT Italia, key supplier of Volkswagen Deutschland,
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key supplier of Renault France, as well as a supplier for automobile engine manufacturers,
including French PSA. Wuhan ISI-GF Eagle Automotive Equipment Co., Ltd, a controlling
subsidiary of SI-GF Equipment (Wuhan) Co., Ltd, was established in 2015, the business
scope of which includes: development, design and manufacture of automatic production
line as well as mechanical electrical equipment; installation and refitting of mechanical
equipment; manufacture, wholesale and retaining of position apparatuses, fixtures, molds
and gages (Special equipment not included); development and technical transfer of au-
tomotive assembly technology; wholesale and retaining of automotive assembling tools,
wires cables, electronic products, metallic materials, steel structure members, automotive
parts, integrated mechanical electrical products and accessoriesISI.

1.2 Objective
The request of the ISI-Welding is to have a reliable predictive maintenance system for
their welding guns.
The collaboration of the Polytechnic of Turin allowed on one hand, two students to
experience the work of the company as experience for their master’s thesis, while it gave
the company the opportunity to take advantage of the human resources of the Polytechnic.
The team of students, followed by the director of the R&D sector of ISI-Welding, eng.
Dario Cambiano, were able to tackle the proposed challenge based on the study of previous
works and publications and continuous comparison.
In fact, the first part of the work was a shared study: the current maintenance policies,
the structure of the welding guns were addressed and the main methodologies for data
processing and machine learning were studied. Later, models were produced that could
approximate the phenomenon of welding in order to become aware of the phenomena on
which one wants to act. After that, the works took two different paths, albeit always
focused on predictive maintenance:

• The analysis of an algorithm capable of anticipating the spray of metallic material
during welding

• The analysis of an algorithm capable of anticipating the need to revive the electrodes
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1.3 State of art of welding guns
The spot resistance welding is a welding methodology born in the XIX century. The
teacher Elia Thompson, during a physics lesson at the Franklin Istitute in 1877, by chance,
invented the resistance welding. Thompson was illustrating to his student how a simple
electric circuit works: an induction coil with some capacitors on the secondary winding.
Once the capacitors were charged he tried to close in short circuit the primary winding,
the current melted the connected ends of the wire, joining them together. This was the
first resistance welding of history.
Since then, resistance welding has made enormous progress up to current technology.
The welding gun is an equipment provided by mechanical and electrical elements. In order
to obtain a resistance welding spot, this machine should be able to compress the sheets
to be welded and to release high currents that melts the metal through Joule effect. An
actuator generates the compression force, a transformer generates high currents (tens of
kA) with low voltages (15-20 V ) from mains voltage (380 or 500 V ). In order to avoid the
melting of the gun electrical components and to better cool the weld core, the welding
gun is provided by a cooling system (usually the refrigerant fluid is water).
The welding guns can be manual or robot. They obviously have the same mechanical and
electrical characteristics, but the robot welding gun is the control unit of a robot and it
automatically moves and performs a sequence of welding spots. The manual welding gun
has to be carried to the working positions by a human operator. Welding guns can also be
classified as:

• fulcrum welding gun

• slider welding gun

The difference consists in the arm movements toward the welding spot: a welding gun is
provided with a fixed arm and a mobile one. In the fulcrum gun both arms are hinged
to the same fulcrum, the mobile arm rotates around this fulcrum to reach the welding
spot. In the slider gun the fixed arm is connected to the frame, the mobile one perform a
translation movement in order to compress the sheets in the designed spot.
A fulcrum welding gun is composed from the following functional groups :

• Elctrical part:

– Shunt (01) form the electrical connection between transformer and welding
part.

– Welding part (02) includes electrode (tips) , electrode holders and arms.
– Transformer (03) inserted between the brackets and equipped with all the

sensors to measure current and voltage.

• Pneumatic part:

– Equlizing system (04) with valve group.
– Actuator cilinder just for welding guns with pneumatic implementation.
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• Mechanical part:

– Fixed support (05).
– Fixed joint (06).
– Moving joint (07).
– Robotic arm connection (08).

• Handling system:

– Electric motor (09).

• Cooling system:

– Hose fittings

Figure 1: Decomposed fulcrum spot welding gun

1.3.1 Shunt

Flaps group is composed from RIGID CONNECTIONS realized with electrolytic copper
(a) by fusion or using commercial slabs, they are screwed on the transformer case and
are called fixed shunts. The shunts are individually electrically isolated using a bakelized
canvas (b) and also all the bushings and washers are insulators. Then there are FLEXIBLE
CONNECTIONS, the lamellar packs (c),they are called shunts and are silver-plated (to
improve conductivity) copper bundles. Flaps guarantee electrical continuity allowing
arms movement. Flaps are connected to the arms through clamps called brides (d), these
components realize a mechanic, electrical and fluidic junction at the same time. For this
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reason surface tolerances (e) for these components are really restrictive. On the same
surfaces the holes for the cooling system are placed.

Figure 2: Flaps and shunts

1.3.2 Welding part

Welding part is composed by the arms (a) realized in copper alloy (CuCrZr) starting
from commercial cylindrical sections.These components have both structural and electrical
function because have to admit force trasmission to the electrodes (b) and guarantee
electrical continuity between shunts and metal sheets.
On the arm is placed the electrode holder (c) according with standards required by car
manufacturer companies.
On the electrode holder is positioned the electrode, often with a conical section acts to
maintain the cooling fluid and to easily perform replacement operations. Inside the arm
and the electrode there is the cooling circuit realized in copper (d). Fluid is managed by a
brass pawl (e) with o-rings (f), the cool water travel inside the arm while the heated one
has an external path. The caps (g) close the hole used for liquid insertion.
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Figure 3: Arms, electrodes and cooling system

1.3.3 Transformer

The transformer (a) is correlated with 4 brackets (b) that form its cage. The transformer
cage is both a support element and a robot coupling. Flaps are connected on a side of the
transformer (c), on the other side there is the signal strip and power connection.

Figure 4: Transformer
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Figure 5: Signal stip detail

1.3.4 Pneumatic equalizing group

The pneumatic balancing group consists of one or two pneumatic cylinders (a).
The cylinders are hinged on one side to a bracket (b) connected in turn with the lower
support, on the other side the cylinders are connected to the fixed support. The balancing
assembly also carries an end pad stroke (c).
Balancing requires a control valve group that also contains manometer indicators. This
valve assembly is typically placed on the transformer bracket assembly in the space-saving
position.

Figure 6: Pneumatic balancing group

In recent times, in order to lighten the welding gun, the pneumatic group has been removed
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and replaced with a software function able to equalize the force on each tip. An equalizing
system compensates for welding conditions in which the closing weld tips are offset from
the plane of the workpiece. As one of the tips first touch the workpiece, a force is created
that slides or rotates the gun to a position that centers the gun tips about the workpiece.
[?]

Figure 7: Equalizing system

1.3.5 Fixed support

It is the main structural element of the fulcrum clamp on which all the forces and the
moments are discharged.
The fixed support is made of aluminum alloy, obtained by fusion; the support houses
the pin (a) on which the joints are hinged. The support is connected at the rear to the
transformer cage. It also contains the screw (b) that allows the adjustment of the balance
and the seat for the cylinder connection pin balance (c).
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Figure 8: Fixed support

1.3.6 Fixed articulation

It is again an assembly of components in Ergal 7075 consisting essentially of two sides (a)
that carry the seat of the fulcrum (b) and the seats of the connections to the handling
system (c). In the lower part a support (d) is connected to the sides. In the upper part
there is a reinforcement (f) which prevents the sides from twisting. The plate (i) is the
guide to move the mobile arm.
To avoid the rotation of the arm during the application of the welding force it has been
added an anti-rotation system consisting of a leveling on the arm and a corresponding
plate screwed on the back.
The figure on the right highlights the anti-rotation system (e), the insulating bush (g) and
the adapter bush (h) for the different arm diameters.

Figure 9: Fixed articulation
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1.3.7 Mobile articulation

The mobile joint is inserted at the bottom of the main fulcrum, at the top it is inserted in
the pin of the tenon by means of a rotating joint that allows for small misalignments of
the pin axis with respect to the motor or cylinder rod.
The figure shows in yellow the insulating washers (a) in Ertalite TX, fixed with pins for
prevent its rotation; these serve as insulators and help eliminate gaps between the joints.
To uniquely guide the arm, pads of polymer (b) are inserted on the sides of the joint; these
slide on the guides on the fixed joint.
The closing of the arm (c) in the clamp is carried out in the same way as the lower arm.

Figure 10: Mobile articulation

1.3.8 Consolle

The consolle or robot attachment is a structure in Ergal 7075 that is used to connect the
robot wrist to the transformer cage. The shape of the robot side flange depends on the
manufacturer’s robot standards (in the figure a Comau standard for Smart series robots);
the shape of the other plate must instead mate with the brackets of the transformer cage.
The most common variants are two. The first variant (I), made with screwed plates, is
related to upper robot attachment. In that case it is necessary to override the actuator
with the console. The second variant (II), with welded plates, it is used instead when the
attachment is lower or rear. Attacks can present different distances and angles between
the plates. The yellow disk (a), visible in the figure, is a device of centering. Sometimes a
lateral attack is also possible.
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Figure 11: Consolle

1.3.9 Handling system

The most used handling systems are electric or pneumatic. The electric actuator system (a)
is connected to the tenon (a component not shown which carries the seat of the attachment
pin to the mobile joint); the engine, through a subframe (b), connects to the fixed joint.
The pneumatic cylinder connects to the other components in the same way, but does not
require auxiliary frames. However, the cylinder obviously has the so-called "bar kit" (c)
that is the system of fittings, valves and filters for the management of compressed air. The
pneumatic cylinder it also has micro brackets (d) for stroke adjustment, if it does not have
a servo control.

Figure 12: Handling system

1.3.10 Cooling system

The cooling system consists of two main circuits. In the clamps with 50 Hz transformer, a
circuit cools one arm and the flaps, while the other circuit cools the other arm and the
transformer. In the MF welding guns the cooling circuit of the transformer is independent,
this is because the transformer MF requires more heat dissipation. [2]
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1.4 State of art of maintenance
Maintenance is a set of technical, operational and managerial actions with the aim to
guarantee the availability, cost-effectiveness and safety of systems and the optimal use of
resources. A first phase of the organizational development of maintenance can be located
in the ’60s-’70s, when the importance of a maintenance planning and improvement was felt
in sectors with growing market, such as steel, chemical, petrochemical and aeronautical one.
In particular, thanks to the aeronautical industries, the reliability theory was developed.
This probabilistic theory was based on mathematical and physical theories and it was
aimed at estimating the remaining life of a component. A second important phase, during
the ’80s, was characterized by the overcoming of the maintenance endorsement, for example
transferring maintenance resources to production departments and teaching the basics of
maintenance to human operators. This path led to a third phase in which production
appropriates the maintenance culture until the complete integration of production and
maintenance strategy.

1.4.1 Lean manufacturing

Lean manufacturing, or lean production, is a production method derived from the Toyota
strategy of the 1930 and it was defined from Womack and Jones as "the way to do more
and more with less and less", the way to give to the customer exactly what he wants using
less effort, less time, less equipment and less space. This way of thinking can be resumed
in 5 key principles:

• Value: specify the value of the product as it is desired from the customer.

• Value Stream: identify the value stream for each product

• Flow: make the product flow continue, without interruption.

• Pull: introduce pull between steps to make the flow continue.

• Perfection: improvement

The continue improvement is then realized with the kaizen philosophy (composed of the 6
S principles).
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Figure 13: 6 S flow

The modern concept of maintenance arises from 2 fundamental assumptions:

• Increasing automation human operator now-day is the manager and supervisor
of the machine.

• Growing competitiveness : the imperative is to serve excellence to the customer.

In this contest, the entire production process is divided in elementary productive unit: the
mini-factory. Every mini-factory carries out only one of the transformations that lead the
raw materials to the final product.
The process is managed independently: the mini-factory has full responsibility also in the
search for suppliers and any other customers.
Human operator in the mini-factory is the supervisor of an activity and he has to be able
to guarantee the quality through self-certifications.
The self-certification defines the critical variables of the process: the aspects to which
particular attention must be paid to have a satisfactory quality.
This category also includes the parameters that most influence customer satisfaction even
if they are not considered, from the producer, fundamental for process quality.
The fundamental concept in this philosophy is "The Empowerment": to exploit as much
as possible the resource of the human intellect.
The Empowerment provides to transfer more and more elementary functions to the driver
of the machine. For this reason, modern maintenance starts with cleaning the machine.
In this way the worker can learn how the machine is done, how it works and where are
placed the critical aspects.
Over time, by cleaning, the human operator can learn about the places that get dirty the
most but also can notice, with the experience, parts that are deteriorating and wearing
out.
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The worker become an integral part of the maintenance system, he will suggest to expert
the critical issues to be analyzed.
After this step, obviously, the next ones are:the establishment of an information system
with suitable diagnostic tools, the planning of cyclical interventions and the optimization
of the life cycle cost.
The goal of the modern maintenance philosophy is to preserve the heritage but avoiding
temporary actions that damage machinery in the long term.
Also increased availability and quality are values to be pursued, new technology must be
viewed with distrust especially if it has not been tested for a long enough period. History
is full of example of how new technologies, too reckless, have brought disastrous and
sometimes even catastrophic results.
The last but not least point is costs reduction which is leading to an increasing ’Outsourcing’.
[3]

1.4.2 Maintenance policies

The maintenance policy indicates the overall attitude that the organization assumes in
relation to maintenance problems, which can then be explicit in the use (depending on the
departments, the single machine, the convenience economic etc. ) of various strategies.
One milestones of maintenance approach was the Total Productive Maintenance, developed
in Japan in fairly recent times, defined as "production maintenance carried out by all
workers of the company organized in small groups of activities". It is a comprehensive
approach to organisational issues with a view to improving the performance of production
equipment and plants, which takes into account the Japanese matrix and the application
experiences made in the Italian industry[4].
The main innovation was to bring the responsibility of the line maintenance and the quality
control to the coordinator of a production segment at the operational level. So TPM’s main
contribution to maintenance theory is given by the attempt to break down the existing
demarcation line, within a company, between maintenance and production departments.
In this context, the TPM acknowledges the existence of several maintenance situations
which may require different techniques to achieve a good result, and consequently it uses
different methodologies which can differ from plant to plant or from machine to machine,
provided that they are effective in a given situation.
Many of the strategies used are certainly not new: what is innovative is the Japanese
culture, the commitment it provides for all employees. Business maintenance policy
optimization should be pursued in the context of improving business profitability and the
service provided and, in particular, the continuous improvement in operating income. This
improvement is the expression of a close synergy between maintenance and production
which takes the form of production maintenance.

1.4.3 Maintenance strategies

The maintenance activity aims to obtain a certain continuity of the production process.
In the past this objective was pursued through operational and functional redundancies
or applying an aggressive program of review and replacement of critical systems. All
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these approaches have proved to be partially inefficient, as redundant systems and excess
capacity freeze capital that could be more profitably used for productive activity, while
a political revisions excessively prudent has proved to be a rather expensive method to
obtain the required standards.
Maintenance has therefore transformed from operational repair activities to a complex
management system with the point of preventing failure.

Breakdown maintenance:
Breakdown Maintenance is certainly the most spontaneous and simple way to work:
maintenance action is taken when the failure occurs. In the presence of non-critical and
easy-to-replace systems at low cost, it is convenient wait for the failure to occur before
intervening. Unfortunately, this strategy has many questionable aspects: a serious and
unexpected failure on a component may have deleterious consequences on other elements
of the system, compromising its functionality with an additional amount of costs, moreover
unscheduled repairs often take a long time to obtain spare parts and assign the appropriate
technician, stopping the production and poorly employing human operators. Finally, a
sudden or catastrophic failure is a condition that a good maintenance activity should avoid
a priori.

Preventive maintenance:
Preventive Maintenance is based on the belief that the average life of some component
is determinable and that it is possible to anticipate the failure of a system (machine or
production line), predefining the moment of intervention, usually replacement, depending
on the expected life time of the component itself. This concept was a great success in
the 1960s and 1970s with the spread of the reliability theory, because it gave a basis of
scientific nature to the maintainers. It is a type of maintenance that is one step higher
than the previous one, because in this case the mechanical system is still working but its
performance deteriorate to the state of imminent failure. There are two philosophies to
implement a failure avoidance:

• Condition-based, that promotes maintenance only when necessary by means of a
shallow observation of the system and the detection of the deterioration,

• Time-based, that schedule the interventions at constant interval on the basis of
reliability, safety and performance.

The weak point of this strategy is that the reliability theory is a probabilistic theory, so a
failure can happen also before the scheduled part replacement, but mainly there are no
chances to increase the mean time between two subsequent failures of the system.

Predictive maintenance:
A modern view of maintenance problems led to the use of non-destructive techniques
for testing systems for the purpose of identifying with a consistent advance the presence
of faults, so it is possible to schedule a review only when the condition of the machine
determines its necessity. This maintenance strategy does not use probabilistic methods
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for making a prognosis of the failures, but it uses the trend of tracked parameters to
predict potential failures. This is the predictive maintenance: a diagnostic process that,
by providing information on the health status of machine allows to plan revisions based
on the actual conditions of the components rather than on the operating time. Unlike
the earlier described condition based preventive maintenance, this new philosophy has
significant implications on design: in fact, to reduce to minimum passive times due to
frequent checks, the mechanical system should be equipped with a whole series of devices
necessary for the determination of the status efficiency of components.

Table 1: Benefits of the predictive condition-based maintenance

Safety Predictive maintenance allows machine downtime before reaching criti-
cal condition

Increase in availability,
lower costs maintenance

The intervals between two successive revisions may be increased. Down-
time can be reduced by preparing maintenance resources

Better chance of negotiation
with manufacturers

Because the conditions are measured on new machines, at the end of
the warranty and after the review it is possible have some comparison
data

Better relationships with cus-
tomers

Knowing in advance when a failure will occur, it is possible better
organize production

Opportunities to design better
future plants

The experience properly collected in historical files can be useful for
this purpose

The limit of predictive maintenance can be identified as being failure-oriented: it is more
effective than traditional approaches, but leaves wide areas of improvement in terms of
reliability and cost reduction. This strategy tries to provide the operator an sufficient
warning alert to organize the necessary repairs and the downtime. This depends, of course,
on the monitoring program and the time needed to obtain the results of the analyses: if
this time is large, an incipient failure conditions may transform in imminent failure one,
bringing the system into much more worrying conditions.

Proactive maintenance:
All these maintenance strategies can be defined as ’reactive’ strategies. In the Proactive (or
productive) Maintenance, the term ’proactive" is opposed to the concept of reaction, in the
sense that it refers to an action that takes place before the critical event. It is a pre-alert
activity that is carried out before any damage relating to the equipment or performance of
the system, a series of actions with the aim of correcting those conditions which may lead
to deterioration of the system. Instead of analyzing material or performance alteration to
evaluate incipient or imminent failure conditions, the proactive maintenance is proposed
to detect and correct abnormal values of primary causes of failure that could lead to
conditions of operational instability, the so-called ’failure roots’, and report that first level
of malfunction, the ’conditional failure’. This maintenance practice is the first line of
defense against the degradation of material (incipient failure) and the consequent weakening
of the performances (imminent failure) which finally lead to the breakdown. Moreover,
intervening with such advance make possible to avoid the occurrence of secondary failures
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that may arise on the elements adjacent to that in examination (for example because of
vibrations). Summing up, the proactive maintenance requires the following actions:

• monitoring of the key parameters indicative of the health of the system (failure
roots),

• definition of threshold values, that is the maximum acceptable values for each
parameter,

• recognition and interpretation of any outlier of these key parameters, which indicate
some instability in operating conditions,

• Specification of the methods to be used to correct primary failure causes and restore
system stability

Table 2: Failure classification

Failure type Description
Catastrophic failure A condition of sudden and complete cessation of operations and a total

deterioration of functions.
Sudden failure A condition of accelerated degradation of both material and performance,

which results in a partial weakening of functions.
Imminent failure A condition of perceptible degradation of the material in the presence of

a serious deterioration in performance.
Incipient failure A condition in which the use of appropriate means of investigation allows

to identify the first signs of degradation of the material, without the user
experiencing any change in the performance of the machine.

Conditional failure A condition of pre-alert in which it has not yet occurred a deterioration
neither of the material nor of the performance but such that, if the situation
persists, it will inevitably lead to a functional failure.

The evaluation of the failure roots is not always possible, sometimes there are no ways to
detect them or sometimes it is too expensive. Implementation of the maintenance policy
requires design criteria based on the logic of minimizing the overall cost. The first step is
analyzing a specific failure mode and verifying the existence of measurable signals that can
help its detection. If the signal exists, it is possible to perform a predictive condition-based
maintenance by monitoring the degradation of the component. If the signal does not
exist, then the analysis moves on the theory of reliability and the estimated life of the
component. If there are enough information about this topics, a preventive maintenance
can be implemented activating planned inspections or performing replacements at scheduled
times. When there is no signal e no estimated life of the component, the breakdown
maintenance is the only possible strategy.
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1.5 State of art of machine learning
Machine learning is an application of artificial intelligence (AI) that provides systems
the ability to automatically learn and improve from experience without being explicitly
programmed.
Machine learning starts with the collection of a great amount of data, they can be measured
on a real plant or simulated using an identified model of the phenomenon.
In this way the algorithm can look for common patterns in data and make better prevision
in future based on the examples that we provide. Machine Learning algorithms can be
categorized as supervised or unsupervised.

• Supervised machine learning algorithms the data sets provided to train the
algorithm are labeled examples. The learning algorithm produces an inferred function
to make prediction about the output values and compare its output with the given
label to modify the parameters inside it accordingly.

• Unsupervised machine learning algorithms are used when the information is
neither classified nor labeled. Unsupervised learning studies how systems can infer a
function to describe a hidden structure from unlabeled data. The system doesn’t
figure out the right output but can describe hidden structure from unlabeled data.

• Semi-supervised machine learning algorithms between supervised and unsu-
pervised learning, since this kind of algorithm uses both labeled and unlabeled
data for training. Typically a small amount of labeled data and a large amount
of unlabeled. This method is able to improve learning accuracy. Semi-supervised
learning algorithms are chosen when to have labeled a great amount of resources are
required. Otherwise, acquiring unlabeled data generally does not require additional
resources.

• Reinforcement machine learning algorithms is a learning methodology able to
interacts with its environment by producing actions and discover errors or rewards.
Trial and error search and delayed reward are the most relevant characteristics
of reinforcement learning. This method allows machines and software agents to
automatically determine the ideal behavior within a specific context in order to
maximize its performance. A simple reward feedback is required for the agent to
learn which action is the best; this is known as the reinforcement signal.

Machine learning allow the analysis of massive quantities of data and, to be trained
properly, it may requires additional time and resources.
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Figure 14: Machine learning flow

1.5.1 Classification Problem

In statistics, classification is the problem to identify to which, of a set of categories, a new
observation belongs. Today, for example, this approach is widely used to image recognition
applied on autonomous vehicles. The success of this kind of algorithm is entrusted by
the presence of a sufficiently wide data set, most of the time labeled, that allows the
solution of a supervised problem. In the terminology of machine learning the corresponding
unsupervised procedure is known as clustering, and involves grouping data into categories
based on some measure of inherent similarity or distance. Often, the individual observation
are analyzed into a set of quantifiable properties, known as explanatory variables or
features. These properties may be categorical, ordinal, integer-value or real-valued.
Other classifiers work by comparing observations to previous observations by means of
similarity or distance function. An algorithm that solves a classification problem, is
a classifier. The term "classifier" sometimes also refers to the mathematical function,
implemented by a classification algorithm to map the data into a category.
Classification and clustering are examples of the more general problem of pattern recogni-
tion, which is the assignment of some sort of output value to a given input.
A subclass of classification is probabilistic classification. This kind of approach uses
statistical inference to find the best class for a given instance.
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Figure 15: Neural network simple graphical structure

The most commonly used classification algorithms are:

• Naive Bayes classifier: makes use of simple "probabilistic classifier" based on
applying Bayes’theorem with naive independence assumptions between features.

• K-nearest neighbor: k-NN classification has a class membership as output. An
object is classified by a plurality vote of its neighbors, with the oobject being assigned
to the class most common among its k nearest neighbors (k is typically a small
integer value). If k=1, then the object is simply assigned to the class of that single
nearest neighbor.

• Decision Tree: in these tree structures, leaves represent class labels and branches
represent conjunctions of features that lead to those class labels.

• Neural network: ANN is based on a collection of connected units or nodes
called artificial neurons, which loosely model the neurons in a biological brain. Each
connection can transmit a signal to other neurons. AN artificial neuron receives
multiple signals as input and processes a single output that would become the input
of other neurons. Neurons typically have a weight that adjusts as learning proceeds.

1.5.2 Regression problem

Regression algorithms belong to the family of Supervised Machine Learning. Regression
algorithms predict the output values based on input features from the data fed in the
system. The go-to methodology is the algorithm builds a model on the features of training
data and using the model to predict the value for new data. Today, regression models
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have many applications, particularly in financial forecasting, trend analysis, marketing,
time series prediction and even drug response modeling. Some of the popular types of
regression algorithms are linear regression, polynomial regression, lasso regression and
multivariate regression.

• Simple Linear Regression model: it is a statistical method that study relation-
ships between two continuous (quantitative) variables. In linear regression, a model
assumes a linear relationship between the input variables (x) and the single output
variable (y). In this way the output can be computed from a linear combination
of the input variables. When there is a single input variable, the method is called
a simple linear regression. When there are multiple input variables, the procedure
is referred as multiple linear regression. Sometimes this algorithm is affected by
underfitting problem when a linear relationship is not enough to estimate the output.

• Polynomial Regression model: the main difference between this algorithm and
the previous one is that the model is not linear, it is slower but has a greater accuracy.
The underfitting problem is thus avoided, on the contrary an overfitting one can
arise. The overfitting is due to an excessive adaptation to the training set with the
loss of ability to correctly estimate new data.

• Lasso Regression: LASSO stands for Least Absolute Selection Shrinkage Operator.
Shrinkage is defined as a constraint on parameters. Lasso regression is aimed to obtain
the subset of predictors that minimize prediction error for a quantitative response
variable. The algorithm starts imposing a constraint on the model parameters that
causes regression coefficients for some variables to shrink toward a zero, then variables
with a zero-regression coefficient are excluded from the model. Variables with non-
zero regression coefficients variables are strongly associated with the response variable.
This lasso regression analysis is basically variable selection method and it helps
analysts to determine which of the predictors are most important.

• Multivariate Regression: this algorithm is used when there is more than one
predictor variable in a multivariate regression model, so it is implemented to predict
the response variable for a set of explanatory variables.
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2 Model

2.1 NARX model
The nonlinear autoregressive network with exogenous inputs (NARX) is a recurrent
dynamic network with feedback connections enclosing several layers of the network. This
particular application is very useful with time-series data. It can be used as a predictor,
for nonlinear filtering and for the modeling of nonlinear dynamic systems. The defining
equation of the NARX model is:

y(t) = f(y(t− 1), ..., y(t− ny), u(t− 1), ..., u(t− nu)) (1)

where the next value of the dependent output signal y(t) is regressed on previous values of
the output signal and previous values of the independent input signal. It is possible to
design a feedforward neural network to approximate the function f . So, the output of the
network is an estimate of the output of the examined system [7].

Figure 16: Narx architecture

During the training, it is more convenient to use that the true output as delayed input
instead of the estimated one, in an open-loop architecture. In this way the inputs of the
feedforward network are more accurate and the neural network is better trained.
After the training, there are two different possible ways to implement this algorithm
according on the available measurements. If the output is measured during the process, it
is possible to feed the network with its real values, without feeding back the estimated
ones. On the other hand, if the output is not measured or its measures are not readily
available, it is possible to close the loop and to feed back the estimated output as new
network input.
Different types of neural network architecture have been tested, changing input delays
and layers size. The performance have been evaluated through a fit parameter, defined as:
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fit = 1−
öõõô MSE

1
N

qN
t=1(y(t)− ȳ)2 (2)

where N are the samples of the output, ȳ is the mean of the output values y(t) and the
Mean Squared Error (MSE):

MSE = 1
N

NØ
t=1

(y(t)− ŷ(t, θ))2 (3)

where ŷ(t, θ) is the estimated output. The MSE is a measure of the quality of the
estimator, the closer its value is to zero, the better the estimator is. In fact the MSE
takes into account the variance of the estimator and the its bias with respect to the real
output. However, it can not be considered as a reliable index since it has the squared
measurement unit of the output and it strongly depends on numerical values of data. This
is why the fit parameter has been chosen as the best index for performance evaluation.

2.1.1 Results

Different tests have been performed using the NARX methodology. At first, short-circuit
data have been used, in particular short-circuit data after the electrode dressing. This
data represent the most ’ideal’ conditions that it is possible to obtain on welding guns,
without disturbances introduced by metal sheets and electrode pollution, so they are useful
to build and evaluate a model.
Against this background, a neural network with 10 delayed states (both external input
and feedback output) and two hidden layers with 30 and 5 neurons has been implemented.
A training set of 70 welding spot data has been fed to the network. A first test is made
with the open-loop network. This is a realistic choice because the input current and the
output voltage are measured and readily available in order to detect disturbances. In
addition, it is clear that the network has a higher accuracy ’feeding back’ real values than
the estimated ones.
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Figure 17: Comparison between the real and the estimated output

In this simulation, the MSE is 3.73 · 10−5 while the fit is about 95.2%. The simulation
starts with a 10 ms delay, this is due to the initial acquisition of the delayed input and
output by the neural network that can begin to estimate only once acquired these data.
An interesting application of this algorithm is obtained by closing the loop of the neural
network. This can be a choice when the output is not available while the system is working
and the neural network takes his own estimated output as input for the estimation of the
subsequent step. Unfortunately, in this case the simulation does not lead to good results:
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Figure 18: Comparison between the real and the estimated output

It is clear that the estimated output is not able to approximate the real one. This ’failure’
may be due to the incapability of the electrical data to fully describe the phenomena
involved in a welding process.
Anyway, it can also be considered that the most significant data are the ones collected
after the blanking time (first 40 ms). A better estimation with the closed-loop is obtained
by removing both in training and test data those values collected during the blanking time
and re-designing the neural network for the new setting. The following figure shows the
result with 5 delayed states and two hidden layers with 20 and 10 neurons:
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Figure 19: Comparison between the real and the estimated output

The estimation is still not excellent but it is able to follow the real output also in closed-loop,
without any information on its real values.
Another attempt is made using data collected from short-circuit points before the electrode
dressing, after 100 real welding points. In this case the disturbance introduced by metal
sheets are still avoided, but the electrode is polluted. A neural network with 10 delayed
states and two respectively 40 and 10 neurons hidden layers has been designed and trained
with the new dataset. Performance are similar to the previous case, with a MSE of
2.79 · 10−5 and a fit of about 93%.
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Figure 20: Comparison between the real and the estimated output

The last possible attempt is made using real welding data, taking into account disturbances
and discovering if these data can be adequate for a model. 10 delayed states, a 30 and
a 5 neurons hidden layers are the characteristics of the neural network. There is higher
availability of real welding points with respect to the short-circuit ones, in fact a set of
500 points has been selected as training set. There are points affected by splash. A first
test has been performed on a welding point that has not presented the splash:
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Figure 21: Comparison between the real and the estimated output

With a MSE of 3.1 · 10−5 and a 95.4% fit, the estimation is able to approximate the real
output.
The following figure represents the test implemented using a point affected by splash:
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Figure 22: Comparison between the real and the estimated output

The indices are worst (MSE=1.86 ·10−4, fit=92%) but the general trend is still acceptable.
Actually, the splash is well estimated and this open the way to a possible forecasting
attempt using the same theoretical basis of this algorithm, with the necessary adaptation
for the different kind of problem. A final closed-loop test is performed:
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Figure 23: Comparison between the real and the estimated output

As expected the estimation is completely inappropriate. There are too many factors not
considered and not yet available that affect the welding process.
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System identification is aimed at constructing or selecting mathematical models M by
dynamical data, generated by a system S, to serve certain purpose (forecast, diagnostic,
control, etc.).
The first step is to determine a class m of models within to search the most suitable model.
There are 2 possible models to find :

• transfer-function models

• state-space models

The system identification problem may be solved using an iterative approach:

• Collect the data set :

– design the experiment so that the data can be maximally informative.
– pre-filtering technique of the data.

• Choose the model set or the model structure:

– physical model with some unknown parameters may be constructed by exploiting
the possible a priori knowledge and insight.

– black-box model may be employed, in this case the given data are elaborated
without a physical reference.

– gray-box model may be used, with adjustable parameters having physical
interpretation.

• Determine a suitable complexity level of the model set or model structure.

• Tune the parameters to pick the ’best’ model in the set (guided by data).

• Perform the model validation test.

At the end of this model development cycle, if the found model greatly approximate the
behavior of the real data it is possible to use it, otherwise there is the necessity to restart
from the beginning criticizing the data, the model orders or the other choices made in the
development phase.
One of the approaches used to find a relationship between input and output is the
polynomial identification. In this way we assume to have a completely unknown system
(black-box) with only the measured data. This approach has been used in order to try to
see if the polynomial relationship could suggest something about the physical model.
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2.2 Polynomial model
Principal families of dynamic model can be considered as a particular case of:

y(t) = G(z)u(t) +H(z)e(t) (4)
where y(t) is the measured output, u(t) is the command input and e(t) is the error.
G(z) and H(z) are transfer functions, given from the relationship between polynomials, in
which parameters have to be estimated with precise identification methods.

Figure 24: Example of the system to identify

The signal v(t) = H(z)e(t) can be seen both as a noisy agent on the overall system or as a
phenomenon not modeled from G(z)u(t).
Moreover, it is possible to suppose that H(z) has all the poles with modulus less than 1
and roots of the numerator with modulus less or at least equal to 1.
Specializing G(z) and H(z) in particular structures, it is possible to obtain different
families of black-box models[6].

2.3 ARX model
An ’AutoRegressive eXogenous’ model has the form:

y(t) = −a1y(t− 1)− ...− anay(t− na) + b1u(t− 1) + ...+ bnb
u(t− nb) + e(t) (5)

The noise enter as a direct error.
If z−1 is denoted as the unitary delay operator such that z−1y(t) = y(t− 1) and z−2y(t) =
y(t− 2), is possible to define:

A(z) = 1 + a1z
−1 + a2z

−2 + ...+ anaz
−na

B(z) = b1z
−1 + b2z

−2 + ...+ bnb
z−nb

(6)

then, the above relationship can be written as:

A(z)y(t) = B(z)u(t) + e(t)⇒ y(t) = B(z)
A(z)u(t) + 1

A(z)e(t) = G(z)u(t) +H(z)e(t) (7)
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where:

G(z) = B(z)
A(z) , H(z) = 1

A(z) (8)

The blocks scheme is:

Figure 25: Example of an ARX model block diagram

It is possible to see how the noise pass through the term 1/A(z), the meaning is that the
noise acts on the state of the system. The input is known as exogenous variable, then
the model contains the autoregressive (AR) A(z) and the exogenous (X) B(z) parts.
The integers na and nb are the orders of these two parts of the ARX model[6].

2.4 ARMAX model structure
The input-output relationship of the ’AutoRegressive MovingAvarage eXogenus’ model is
a difference linear equation:

y(t) + a1y(t− 1) + a2y(t− 2) + ...+ anay(t− na) =
b1u(t− 1)+...+ bnb

u(t− nb) + e(t) + c1e(t− 1) + ...+ cnce(t− nc)
(9)

where the white-noise e(t) enters as a linear combination of nc + 1 samples.
By introducing the polynomials:

A(z) = 1 + a1z
−1 + ...+ anaz

−na

B(z) = b1z
−1 + ...+ bnb

z−nb (10)
C(z) = 1 + c1z

−1 + ...+ cncz
−nc
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Figure 26: Example of an ARMAX model block diagram

The input output relationship can be written as:

A(z)y(t) = B(z)u(t) + C(z)e(t)

y(t) = B(z)
A(z)u(t) + C(z)

A(z)u(t) = G(z)u(t) +H(z)e(t)
(11)

where: G(z) = B(z)/A(z) and H(z) = C(z)/A(z).
The auto-regressive (AR) part is included in the term A(z)y(t), the exogenous (X)
part in B(z)u(t) and the moving average (MA) part in C(z)e(t) (which is a colored
noise instead of the white one).
The integers na,nb,nc are the orders of these three parts of the ARMAXmodel (ARMAX(na, nb, nc))[6].

2.5 OE model structure
The relationship between input and undisturbed output is a linear difference equation:

w(t) + f1w(t− 1) + ...+ fnf
w(t− nf) = b1u(t− 1) + ...+ bnb

u(t− nb) (12)

and the model output is corrupted by white measurement noise:

y(t) = w(t) + e(t) (13)

By introducing the polynomials:

F (z) = 1 + f1z
−1 + ...+ fnf

z−nf (14)
B(z) = b1z

−1 + b2z
−2 + ...+ bnb

z−nb (15)
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The above input-undisturbed output relationship can be written as:

F (z)w(t) = B(z)u(t)⇒

y(t) = w(t)+e(t) = B(z)
F (z)u(t) + e(t) = (16)

= G(z)u(t) + e(t)

where G(z) = B(z)/F (z).
The integers nb and nf are the orders of the OE model, denoted as OE(nb,nf )[6].

Figure 27: Example of an OE model block diagram

In the ARX and ARMAX model, the poly A(z) is the denominator of every component,
this is often an uncomfortable situation (too much restrictive).
To relax this hypothesis it is possible to use the OE structure in order to have a better
simulator of the real plant.
On the other hand, if a one step predictor of the system is needed, the ARX structure
gives better results.

2.6 Data analysis
The data measured during the short circuit welding point has been used to search the
polynomial model.
As a matter of fact, this kind of welding point are taken from the company before and
after the dressing of the electrodes to take track of resistance changes during the dressing.
In particular the short circuit welding point considered are the ones taken after the dressing.
This to try to identify the most ideal condition possible, without the uncertainty introduced
by the electrodes worn out and the metal sheets interposed.
The data have been filtered with a low pass filter, in order to reduce the noise and the
mean value has been removed.
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Figure 28: Example input in a short circuit welding point

Figure 29: Example output in a short circuit welding point

It is possible to see that the welding point last 240ms.
The first 40ms are considered "blanking time" because they are really noisy and, possibly,
they don’t bring helpful informations. For this reason, in the evaluation of the model, they
will be not considered.
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2.7 Polynomial models
With the selected data, different kind of ARX, ARMAX and OE models have been tried.
The M set of possible models has been chosen always with a possible delay from 1 to 5,
and every single term with an order from 1 to 5 too.

Model Order Delay
ARX na = nb = 1 to 5 nk =1 to 5
ARMAX na = nb = nc = 1 to 5 nk =1 to 5
OE nb = nf = 1 to 5 nk =1 to 5

Table 3: ARX, ARMAX and OE orders and delays

nk is called delay because is the first useful time instant of the input so that the equation,
for example in the ARX model, become:

y(t) = −a1y(t−1)− ...−anay(t−na)+ b1u(t−nk)+ ...+ bnb
u(t−nb−nk+1)+e(t) (17)

and the same for ARMAX and OE models.
The best models are firstly evaluated according to 99% auto-correlation region.

Figure 30: Auto-correlation and cross-correlation analysis

The choice of the best models is made evaluating the number of residues out of the 99%
confidence zone in the right half plane (due to plot symmetry) of the auto-correlation.
In the Figure 30, for examples, it is possible to visualize the auto-correlation and cross-
correlation function of the arx model with na = 3, nb = 3 and nk = 4. In the research of
the polynomial model has been chosen a number of maximum residues out of the 99%
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confidence region equal or less than 3. For this reason the presented example do not pass
the auto-correlation analysis and its RMSE will not be considered in the final evaluation.
Furthermore, 2 cases were considered:

• current input and voltage output

• current and squared current inputs and voltage output

As example, below are reported some of the best ARX models with double input and their
auto-correlation analysis:

na nk Resid
1 1 1
3 1 1
2 5 1
5 4 1
4 4 2
5 3 1
4 3 1
3 2 2
5 5 1

Table 4: ARX residues analysis results

Resid stands for the number of residues outside the 99% confidence region, while na is the
order reference and nk is the delay reference .
All the model reported are good choice to polynomial identification, the best between this
model will be then selected with RMSE analysis.
The MSE is defined as :

MSE = 1
N −N0

NØ
N0+1

(y(t)− ŷ(t, θ))2 (18)

The RMSE is defined as :

RMSE =
√
MSE (19)

Where ŷ(t, θ) is the output valued with the estimated model. The Root Mean Square
Error has not a global meaning, it is just an index of the fitting of the curve. The
RMSE represents the square root of the second sample moment of the differences between
predicted values and observed values or the quadratic mean of these differences.The RMSE
serves to aggregate the magnitudes of the errors in predictions for various data points into
a single measure of predictive power. In the following plot is possible to see how, basically,
increasing the order, the RMSE tends to decrease. The goal is to choose the lower RMSE
between the models that passed the residual analysis.
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Figure 31: RMSE analysis of ARX model

It is possible to see that the ARX model with na = 5 and nk = 5 has the lower possible
RMSE (0.0026). For this reason the ARX(5,5,5) (ARX(na,nb,nk)) is the best possible
model in the ARX set.
At this point the real output and the estimated one is compared due to the Best Fit.

Best Fit = 1−
öõõô MSE

1
N−N0

qN
t=N0+1(y(t)− ŷ)2 (20)

It can be easily converted in percentage.
At the end of this process, the result is a polynomial model able to produce the same
output of the system if it is fed with the same input. This model is just a mathematical
representation and not necessarily has physical meaning.
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Figure 32: Measured and estimated output comparison

The same procedure can be iterated for the ARMAX and the OE model.
The results are:

Model C C and C2

ARX na = nb = 5 and nk = 2 na = nb = 5 and nk = 5
ARMAX na = nb = nc = 4 and nk = 3 na = nb = nc = 5 and nk = 3
OE nb = nf = 4 and nk = 3 nb = nf = 4 and nk = 3

Table 5: ARX, ARMAX and OE orders and delays for both input conditions

One thing to specify is that, in the situation with current and its squared value as input,
the coefficient relatives to the inputs have to be doubled.
The Multiple Input Single Output (MISO) system has to be considered as the superposition
of two Single Input Single Output (SISO) systems.
To report an example, the ARMAXMISO system will be of the type ARMAX(na, nb1, nb2, nc, nk1, nk2)
where nb1 and nk1 are related to the first input (C) while nb2 and nk2 to the second one
(C2). As simplification, has always been considered nb1 = nb2 and nk1 = nk2.
The obtained results are encouraging.
The data set was previously divided in 70% for the estimation of the model and a 30% for
the validation.
The results during validation show a floating fitting between 80% and 95%.
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Figure 33: Measured and estimated output (single input models)

Figure 34: Measured and estimated output (double input models)

It is possible to see that, on average, the results obtained with the double input (C,C2)
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are better than the single input cases.
This shows a possible physical relationship between the output voltage and the power of
the system (P = I2R).
Another attempt was also made, considering as input, also the cube value of the current.
In this case the fitting percentage did not increase significantly as the C2 case.
A possible meaning of this phenomenon is that physically has no meaning the cube of the
current.
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3 Physical model
From the physical point of view, the main role in the welding process is played by the
Joule effect. This phenomenon is defined as the process by which the passage of an
electric current through a conductor produces heat. The power of heating generated by
an electrical conductor is proportional to the product of its resistance and the square of
the current. When two metal sheets are put in touch and compressed, the highest electric
resistance is right at the contact point. So, during the welding process, the higher power
of heating is released in this point and here the metal starts melting.

Figure 35: Weld core of metal sheets during a welding process

It is important that the welding process last long enough to allow an effective mixing of
the melted metal of the sheets. In fact, a brief release of current can lead to a ’gluing’
of the sheets rather than a welding. On the other hand, a longer one lead to a possible
expansion of the welding core out of the contact zone with the electrodes, causing splash
or a less controlled welding. Those reasons make explicit the importance of the power
involved during the process. The ISI-Welding Company evaluates the power as an index
of the quality of the point and applies also a control based on the released power during
the welding process: if the energy is too low, it makes the process last longer; if it is too
high, it makes it stops prematurely.
The dependence of the welding process by the power was also suggested by the previous
studies on the polynomial models, since these models perform better with the information
on the square of the current (directly proportional to the power). In general, the knowledge
on the spot welding states that the resistance spot welding has to be seen as an electric,
mechanic and thermal phenomenon at the same time[8].

• Electrical conductivity: current, necessary to generate a certain quantity of heat,
increases with increasing conductivity.
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• Thermal conductivity: current necessary to compensate the heat dissipated by
conduction increases with increasing thermal conductivity.

• Thermal expansion coefficient: higher current value and shorter time are needed
to avoid the expulsion of the melted core and guarantee sufficient heat at the same
time[9].

In the last point it emerges that electrical quantities are also greatly influenced from the
metal fusion and its consequent cooling. For those reasons, physically, there is the necessity
to investigate the dependency between the current flowing into the circuit, energy variation
and resistance variation. Unfortunately power and resistance data are not measured and
it is hard to identify a precise data-driven model.
Our system can be classified as a grey-box: this is an approach that combines a partial
theoretical structure with data to complete the model.
It is known that the voltage depends on the current, its derivative for inductive phenomena
and its integer value for capacitive phenomena. Moreover, it depends also on the power
and its derivative (to take into account the thermal effects), on the resistance and its
derivative (to take into account the thermal expansion and its change of state).
Once the theoretical basis have been laid and a large dataset is made available, a data-
driven methodology has to be chosen to implement the physical model. The method of
Least Squares is a standard approach in regression analysis to approximate the solution
of overdetermined systems (sets of equations in which there are more equations than
unknowns) by minimizing the sum of the squares of the residuals made in the results of
every single equation. A residual is defined as the difference between the actual value of
the dependent variable and the value predicted by the model:

ri = yi − f(xi, θ) (21)

The most important application is in data fitting. Least-squares problems can belong
to two categories: linear and nonlinear least squares, depending on the linearity of the
residuals. The linear least-squares problem occurs in statistical regression analysis, the
nonlinear problem is usually solved by iterative refinement in which at each iteration the
system is approximated by a linear one, and the calculation is similar in both cases.

The only input available is the current. A first basic model can be designed considering
the voltage as dependent only on the current and its square value, for the proportionality
with the power. This equation represent the mathematical model:

V (t) = θ1I(t) + θ2I(t)2 (22)

This equation can be arranged in matrix form:

y = Xθ (23)

Where y is an n− by − 1 vector of responses (voltage values), X is the n− by −m design
matrix for the model (current and its square), θ is the m− by − 1 vector of parameters to
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identify. The least square method makes use of the pseudo-inverse of a matrix :

A+ = AT (ATA)−1 (24)

This formula is a generalization of the inverse of a matrix in case this is not squared.
Taking up the matrix equation of the model, with some mathematical tricks and using the
pseudo-inverse the following steps can be performed:

XTXθ = XTy

↓
θ = (XTX)−1XTy

(25)

In this way it is possible to compute θ from the collected inputs-outputs.
The first chosen dataset is the one with short-circuit point data. This is the simplest
available,it is possible to obtain the first useful information from this model and at a later
stage other complex models that take into account further factors can be implemented
and checked. The matrix of parameters θ is therefore computed using the input-output
set of data selected, and a test on a point is performed:

Figure 36: Comparison between estimated and real model (short circuit case)

Results show that the estimated model is not very able to approximate the real one for
the entire duration of the signal.
Another attempt with this simple model is performed using a dataset of real welding spots.
The new parameters are computed and another test is executed:
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Figure 37: Comparison between estimated and real model (real welding case)

As expected, in this case the estimation is not acceptable. There is a simple reason: a
lot of factors have not been intentionally considered, such as thermal and conductivity
phenomena, the change of resistance due to the melting of the metal, capacitive and
inductive phenomena that can arise in an electric circuit. All these factors in some way
depends on the current. The following equation collects various shapes of the current which
can be able to take in account these phenomena that are not directly measured. According
to the Least Square method, every variable has been associated to a θ parameter.

V (t) = θ1I(t) + θ2I(t)2 + θ3
dI(t)
dt

1
I(t)2 + θ4

dI(t)
dt

+ θ5

Ú
I(t)dt (26)

Moving over to the matrix, the equation does not change with respect to the previous
one, what changes are the X and θ dimensions and the computational load will be
higher. Of course real welding points data are the best choice for this kind of model
built on assumptions that implies the presence of metal sheets during the welding process.
Subsequently, θ parameters have been computed and analyzed. The parameter associated
to the integral of the current is very small and can be neglected. This can mean that
there are no capacitive phenomena involved in the welding process. As last step, a test is
executed:
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Figure 38: Data obtained by the physical model compared with real one

Results shows that the estimated model is able to roughly approximate the real output.
Better performance can be achieved by measuring other important variables (that can be
compression force, temperature, etc) and including them in the model.
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4 The mean challenge
The main aim of this work is to find a reliable predictive maintenance system for electrode
dressing. Actually an electrode is dressed cyclically after 100 welding points, unless an
human operator schedules it before the due date (for example if a critical condition occurs).
The dressing is a milling procedure to reshape the electrode and to give it newly the
electrical qualities lost due to worn out.
For this reason it is a critical point to define in advance when the dressing is needed and
when it is not, this procedure can save money and time.

4.1 Work chain and dressing
A production line has several machines in series, each of them will have a series of different
welding programs that will always be done in the same order (for convenience we will
call the points programmed on a single machine cycle). The programs are different
welding points with different duration and different current and voltage requirements.
Each machine keeps count of the points made because, without further needing, after
100 welding points the dressing is programmed. During the various welding points, the
electrodes pollute themselves with the molten metal of the sheets, changing shape and
technical quality, this phenomenon do not allow to have control over the quality of the
stitch. The dressing is a procedure to restore the electrodes original shape by milling, in
order to bring it back, as much as possible, to the nominal conditions. The dressing is
also applied as a precaution to new electrodes to make sure that they have the necessary
shape for the welding points foreseen by the machine. A shorted welding spot is performed
before and after each dressing, i.e. without any plate to be welded between the electrodes.
These points are taken before and after the dressing to track the changes of the electrodes
resistance, the fact that they are short-circuited is intended to eliminate uncertainties and
the various disturbances introduced by the metal sheets. Another consideration is that, if
the machine operator notices a particular worn out in electrodes (and the quality of the
welding point is no more acceptable), he can arrange a dressing before reaching the 100th
welding point. Of course, the short-circuited points will also be scored in this case before
and after dressing. Finally, even if the dressing is foreseen every 100 welding points, if
the 100th point happens in the middle of the cycle, the machine will finish the remaining
programs first and then the process necessary for dressing will begin.
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Figure 39: Example of used and new electrode

4.2 Short circuit point
After a first phase of data filtering and normalization, the first attempt is made using the
short circuit points[10]. As it has been previously explained, the short circuit points have
been taken in order to keep track of changes in electrode resistance during welding points.

Figure 40: Comparison between the short circuit points before and after dressing

Every time a short circuit point is taken before and after dressing. As it possible to see in
the figure, after the dressing the voltage is lower (in modulus) then in the point before the
dressing.
This means that, possibly, there might be an increase of electrodes resistance welding by
welding.
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For this reason, a first kind of machine learning algorithm has been tried: a simple 1 layer
neural network, to test if this kind of situation can be easily recognized.
This is an hard simplification of the problem but can give important tips.
This predictive maintenance problem has been treated as a classification problem where
the welding machine under analysis can be seen as ’safe 0’ or ’unsafe 1’.
The results are really encouraging because, in test phase, the algorithm is able to recognize
the 100% of the situations.

Figure 41: Confusion plot of the overall results (train,validation,test)

A possible limit of this test is the relative small data set, only 65 points available, but it is
just a first step to clarify how classification problems and machine learning algorithms
work and their potential.

4.3 Second step
The main problem that this thesis proposes to solve is to find a predictive maintenance
system able to predict the dressing of electrodes while the machine normally operates.
Unfortunately a great part of the uncertainty is introduced by the metal sheets that must
be welded together.
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Figure 42: Comparison between 2 different spot welding

In the figure are represented the data measured in two different welding point carried
out by the same machine performing the same program: practically they are 2 identical
welding points, where in theory, also the metal sheet interposed between the electrodes is
the same.
As it is possible to see, the results are completely different and that is why is so difficult
to carry out a study on the parameters that can identify an electrode at the end of its life
cycle with the measured data.
For this reason the use of neural networks was considered more appropriate.
In this second attempt, different algorithms of neural network are tried in order to identify
the critical situation before the dressing.
The input are the measured data millisecond by millisecond without the first 40ms
(blanking time).
For the classification problem is considered as unsafe (1) the 100th welding point before
the electrode dressing, moreover the training is done just on one program of one machine.
That is not to be considered as simplification of the problem because, as explained before,
even if the electrodes is to be changed the machine will end first the cycle of planned
programs and then it will approach the dressing procedure. For this reason it is possible
to identify the critical condition in the last program of the cycle sending right after the
welding guns to revive the electrodes.
This is the strategy that, from now on, is applied: the machine learning algorithm are
applied only at the last welding point of a cycle.
In future, in order to make this approach more reliable, the algorithms can be applied at
the last 2 or 3 programs to be sure that if one fails, it is possible to rely on the others.
The best results with this approach are reached with neural network algorithms. The
network used are simple 1 layer neural network with 10 or 100 neurons in order to study
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how, increasing the complexity of the net, the results will change.

Figure 43: ANN results with 10 neurons

The results are encouraging but not good enough to entrust the maintenance planning to
this system.
In a particular way, the identification of the unsafe situation (1) has a precision which
fluctuates between 50 and 70 percent.
In the next image are represented the training, validation and test results for a neural
network with 100 neurons in its hidden layer.
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Figure 44: ANN results with 100 neurons

It is possible to see that increasing the complexity of the net the results are not better.
Rather than further complicating the network, adding more layer or trying a long-short
term memory approach, in the next steps will be analyzed another approach.

4.4 Data evidence
The next step arises from some observation that have been done studying the data sets.
The only measured data are current and voltage (input/output), and the resistance can
be computed as R = V

I
. In the following image it is shown the trend of the computed

resistance of 6 welding points (from a dressing to another).
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Figure 45: Resistance trend during different welding points

In the figure the welding points are represented without the first 40ms of blanking so that
the time sequence is just symbolic. The points are surely consecutive in time and made
from the same machine performing the same program but from one point to another there
are several seconds of stop.
The first observation is that the value of the resistance increases with time and consecutive
points.

Figure 46: Resistance mean value in different cycle
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In the Figure 46 are represented the mean value of the resistance of different welding
points. Welding points with the same color belong to the same cycle.
It is possible to see how, generally, the mean value of the resistance tends to increase point
after point.
Another observation, made on resistance trend, can be highlighted : in addiction to
increasing the mean value, the resistance trend also changes the shape of the curve. In
the resistance trend is possible to see how in the first point after the dressing, during the
entire welding point the resistance keeps increasing its value. Going on with the points, the
behavior of the curve becomes more similar to a transient with steady-state immediately
after.

Figure 47: Resistance area in different cycle

The previous observation has been resumed in the computation of the area of every single
curve.
It is possible to see that point after point the subtended area generally increases.
For this reason the next step, rather than giving to machine learning algorithm all the
measured data, will try to give indicators that can highlight these changes.

4.4.1 Statistical descriptors

A descriptive statistic is a summary statistic that quantitatively describes or summarizes
features from a collection of information, while descriptive statistics (in the mass noun
sense) is the process of using and analyzing those statistics. Statistical descriptors are
indices that can precisely and synthetically describe a set of data. They belongs to the
field of the descriptive statistics and can be used both with continue and discrete variables.
They can be divided into:
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• position indices:

– mode,
– median,
– mean.

• dispersion indices:

– standard deviation,
– variance.

• shape indices:

– skewness,
– kurtosis.

Position indices (also known as central trend measures) identify, in different ways, the
central element of the distribution.
Dispersion indices evaluate how much data deviates from the central element of the
distribution.
Finally, shape indices consider the shape of the distribution with respect to a normal (or
Gaussian) distribution. In particular, skewness how much the distribution is asymmetric
and kurtosis how it is flat. Mathematically, the skewness is defined as:

skewness = m3

m
3/2
3

(27)

while kurtosis:

kurtosis = m4

m2
2

(28)

where mk is the central moment of order k:

mk =
nØ

i=1
(xi − µ)k (29)

xi are the values of the dataset and µ is the mean value.
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Figure 48: Skewness and kurtosis graphically explained

So, these indices are able to describe the distribution and can be used instead of taking in
consideration all the measured values. A new neural network has been implemented with
a new set of inputs. This inputs include:

• statistical descriptors: mean, mode, median, standard deviation, 3th order and 4th
order central moment, skewness, kurtosis, max and min value of a welding point.

• other indices automatically computed from the company software: initial and final
resistance values, instants of max and min values, rise and descent time, growth and
degrowth rate.

4.5 Final solution
From now on the machine learning algorithm are trained on the statistical descriptors in
order to give them a precise description of the welding rather then all the measured data.
In this situation, for the algorithm is easier to get how the shape of the curve changes
from a welding to another.
The statistical descriptor used are:

• mode

• median

• mean

• skewness

• kurtosis

• variance

• 3th order moment

• 4th order moment

• max value

• min value

• variance

Starting from the knowledge assumed during the modeling phase, it makes sense to
compute these indexes for all the quantities included in the welding phenomenon as the
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resistance and its derivative or the energy. Moreover there are 4 more indexes that are
automatically computed from the welding quality system of the ISI welding and are:

• min time

• max time

• growth rate

• degrowth rate

These indexes are computed on the voltage output and they also are used as descriptors of
the behavior of the welding point. All the indexes seen until now will be computed after
the first 40ms called blanking time. Several attempts will be done in order to try different
configuration and combination of data to find which one gives the best results.
The best results are reached with the indexes computed for measured voltage, measured
current, computed resistance and its derivative. Moreover, due to the fact that the
algorithm better recognize a critical situation if has some information about the ’story’ of
the machine, the input will be the statistical description of the actual welding point and
the previous one.
The first algorithm applied is a simple one layer neural network. The neural network is
trained due to back propagation.
The term back propagation strictly refers only to the algorithm for computing the gradient,
not how the gradient is used, in particular in the case of 1 layer neural network the
algorithm applied is the delta rule.
The delta rule is a gradient descent learning rule for updating the weights of the inputs to
artificial neurons in a single-layer neural network.
For a neuron j with activation function g(x), the delta rule for j’s ith weight wij is given
by:

∆wij = α(tj − yj)gÍ(hj)xi (30)

where

• α is a small constant called learning rate

• g(x) is the neuron’s activation function

• gÍ is the derivative of g

• tj is the target output

• hj is the weighted sum of neuron’s inputs

• yj is the actual output

• xi is the ith output
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Figure 49: 1 layer neural network gradient

In the Figure 49, the gradient trend and the validation for each epoch are proposed.
An epoch, in terms of neural-based training, is one full pass through the data-set.
The gradient descent algorithm will stop if, after that for 6 consecutive checks, the gradient
stops decreasing.
In the second image of Figure 49 it is possible to see that from the epoch 35 from 41 the
gradient stops to decrease and the algorithm stops to look for a smaller one.

Figure 50: Validation performance
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In the Figure 50 it is shown a validation of the performance using the Cross-Entropy.
Cross-entropy loss measures the performance of a classification model whose output is a
probability value between 0 and 1. Cross-entropy loss increases as the predicted probability
diverges from the actual label. So predicting a probability of .012 when the actual
observation label is 1 would be bad and result in a high loss value.
In binary classification, where the number of classes M equals 2, cross-entropy can be
calculated as:

H = −(y log(p) + (1− y) log(1− p)) (31)

Where y is the class label and p the predicted probability.

Figure 51: 1 layer neural network results

As always the 1 symbolizes that the electrodes need to be dressed. The results are really
encouraging in testing phase.

65



Better results are reached with a multi-layer neural network. In this case the complexity
is increased due to the presence of 3 layers of 1000 neurons and an LSTM layer.

Figure 52: Multi layer neural network results

LSTM (Long Short Term Memory) networks are well-suited to classifying, processing and
making predictions based on time series data, since there can be lags of unknown duration
between important events in a time series.
The last algorithm that gives good results is the Coarse Tree.

Figure 53: Coarse Tree results
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4.6 Analysis of the results
The results until now show, regardless of the algorithm and its complexity, an uncertainty
beyond which they cannot go. For this reason, analyzing the results an important finding
emerged.
In the over 1500 points taken into consideration, sometimes the dressing do not occurs at
the 100th, as the planning foresees, sometimes it occurs at the 88th or before.
The motivation is that, every welding gun has an human operator which acts as a garrison,
if the human operator realizes that the machine is at its limit and from that moment on
the machine enters a critical work situation,he can wait for the end of the current cycle
and then arrange for an early dressing.
In particular, in the 1500 used to test the algorithm this happens 42 times.
In this occasion the label used as classification output was ’0’ as a safe situation, but in
reality it is a ’1’ as the unsafe situation.
Stricly analyzing these points, it emerged that the algorithms can recognize these situations
with different success rates.

Figure 54: Multi-layer architecture results on false positive

In this test the 42 false safe situation were mixed up with 126 real safe cases. Is it possible
to see that the multi-layer architecture is able to detect the possible unsafe situation with
a precision of the 62%. Obviously this means that in the Figure 52 the percentage of the
correctly detected case is higher then the reported percentage.
The second study case is the 1-layer architecture. This algorithm, until now, has a slightly
lower success rate among proven methods. Now introducing the ’false 0’ the situation
change.
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Figure 55: 1-layer architecture results on false positive

The 1-layer neural network is able to find the false positive situations with a success rate
of the 90.5%.
The last algorithm is the Coarse Tree.

Figure 56: Coarse Tree architecture results on false positive

The coarse tree algorithm reached a success percentage of the 100% analyzing the false 0
situations.
The problem now is, are this results encouraging or not ?
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The results obtained so far must be viewed critically, if the algorithms detected with a so
high precision the false 0 situations, is it possible that the unsafe situation (1) cataloged
as safe ones (0) were truly safe and the dressing were not needed ? Machine learning
algorithms are absolutely not foolproof and to be reliable need tons and tons of data but,
after the evidence emerged, it is possible to assert that the algorithm went far beyond
from the expected value.
The question now is, which algorithms give the best results ?
Looking at the confusion plots seems to be Coarse Tree, but is it a certainty ? For this
reason the desirable next step of this work it is to apply the algorithm on the real plant
and to compare its prediction with opinion and experience of the human operator or to
keep on training the algorithm with more detailed data sets.

4.7 Other tests
Probably the best solution to realize a reliable predictive maintenance system is to develop
an algorithm and for each program. The reason behind this choice is that different welding
guns or programs have really different requirements. For example can change the duration
of the welding, the current necessary to melt the metal sheets or the thickness of the metal
sheets itself. Nevertheless it can be interesting to try the algorithms on a machine and a
program different from the one for which they were designed.

Figure 57: Coarse Tree architecture results

It is possible to see that the Coarse Tree keeps good results even if applied on another
welding machine that perform a completely different point.
Moreover in this results there are not information about the early dressing.
The multi-layer algorithm if applied to another machine gives worst results.

69



Figure 58: Multi layer architecture results

In my opinion this result does not mean that the algorithm is unreliable, because it is
possible that different programs on different machines or even on the same one imply really
different electrical quantities. For example if the metal sheets are thicker, it is possible
that the mean resistance is higher as well as the voltage, and it is not easy to forecast how
the other descriptors will change.
For this reason the easier solution is to train an algorithm for each program of each
machine.
In this way, when at a certain welding in the cycle, the system provide the unsafe label, if
the subsequent algorithms provide the same label, a dressing will be scheduled at the end
of the cycle.
This method gives the possibility to have greater security given by the cross-checking of
different algorithms.
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5 Conclusion and future developments
The industry 4.0 arises from the ongoing industrial automation that in the last years meets
new technologies to improve work conditions, to create new business model and to increase
productivity and quality.
Large scale machine-to-machine communication and the internet of things (IoT) are
integrated to make the machine smarter and smarter, able to self-monitor and able to
analyze and diagnose issues without the need for human intervention.
For this reason it is not a long shot to say that predictive maintenance will become, in the
next years, a technology possible to find in every industrial context.
In this work of thesis have been moved the first steps of a longer path.
To sum up, good results have been obtained under different aspects:

• The physical model obtained, considering that only current and voltage are
measured, gives a great approximation of the real phenomenon but, most important
things, the study of a physical model allows to have a deeper knowledge of the
welding and it suggests which information can be useful to our machine learning
algorithm to recognize critical situation. For example, the energy variation and the
resistance variation are crucial quantities in the determination of the phenomenon.

• The machine learning algorithms gives really encouraging results, making it
clear that a predictive maintenance system for electrodes dressing is possible.
Different algorithms gives different results but under current conditions it is not easy
to define if there is an algorithm better than one other, the decision tree (Coarse
Tree) reach the higher performance but there are still some uncertainty in the data
set that need to be defined.
The main goal of the development of the predictive maintenance system has been the
usage of the statistical descriptors. This approach admits to give to the algorithms
a precise description of a welding point giving in input a very small sample of data,
giving an advantage in computational terms.
Moreover a statistical description of a curve highlights the changes in shape and
trend which, in the studied case, was exactly what the algorithm needed to define
different situation but surely is a strategy that could find many applications in a lot
of machine learning algorithm.

• The critical point analysis gives also the possibility to understand what can be
done, directly on this work of thesis, to achieve better results. A crucial point during
welding is the definition of the resistance at the ends of the electrodes. Actually
it is computed starting from the measured current and voltage, for this reason the
resistance is comprehensive of all the components in the circuit (from the transformer
to the electrodes) while the resistance measured between the electrodes could be of
greater interest for the algorithms because will track the change in resistance directly
where needed.
If it was possible that, measuring the resistance at the ends of the electrodes it could
be defined a model of the electrodes remaining useful life.
Another critical point is the heat produced on what there are no information.
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The heat produced during welding have a crucial role both in the dressing prediction
and in the welding it self. After seeing the heavy role that energy plays in the
welding phenomenon, data about the heating are possibly the key to improve the
results.

At this point it is possible to do some considerations on the next step of this work and
how possibly the predictive maintenance system can be improve.
In first place a new technology, to be considered reliable, have to pass a long testing phase.
The results of this thesis are obtained using measured data but in simulation and surely
the algorithms need to be tried on the real plant to know how they truly work.
Moreover, like it was explained in the dedicated chapter, in my opinion the predictive
maintenance system can not be entrusted to just one algorithm but it is needed a net of
different machine learning algorithms that act on different programs of the same machine.
The reason is that machine learning is based on statistics and interfacing more algorithms
among them, it means to have a more accurate prediction.
Then a more accurate physical study of the system can give important tips on the data
that are more useful to the machine learning algorithms to identify the critical situations
before they happens.
Another attempt that could be done is to make a frequency analysis of the welding points.
It is possible that the behavior of welding points in safe and unsafe conditions have the
power located in different frequency ranges.
This is another possible approach to define the remaining useful life of the electrodes.
Naturally it is desirable, for this kind of technologies, the usage of a Iot platform able to
collect the data from all the available machine at the same time. In this way an human
operator can be informed in real time about the condition of his machine and also he can
be informed on how the predictive maintenance system is working in the rest of the plant.
It is important not to forget that the main resource is the human experience and for this
reason an heuristic analysis, made continuously asking to human operator their opinion
and what their experience recommends, could give important tips about the problem that
the study and the theory can not give.
For this reason on the IoT platform can be equally registered the measured data and
alert from the machine and personal notes form human operator made to transfer the
experience from the worker to the one who have to develop the predictive maintenance
system.
Moreover, to try to generalize the predictive maintenance of the dressing problem, could be
useful to group the data coming from different programs of different machines performing
welding points with similar requirements.
Anyway after the predictive maintenance system it is possible to pass to a proactive
maintenance system.
Proactive maintenance is a preventive maintenance strategy that works to correct the
root causes of failure and avoid breakdowns caused by underlying equipment conditions.
The purpose of proactive maintenance is to see machine failures as something that can
be anticipated and eliminated before they develop. Creating a proactive maintenance
program helps organizations find hidden inefficiencies.
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