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Thesis environment

The present thesis was entirely conducted at SPINTEC, a R&D laboratory at the
crossroads of nanosciences and technology, jointly operated by CEA, CNRS, Uni-
versity of Grenoble Alpes (UGA) and Grenoble INP. Located on the MINATEC
campus in Grenoble, SPINTEC (SPINtronique et TEchnologie des Composants),
founded in 2002, is one of the major international spintronics research laboratories,
which aims to joint fundamental research in nanomagnetism and pioneering device
technology.

The main results of this master’s degree thesis, that fits into the context of the
ANR project ADMIS, come from a collaborative work of SPINTEC Theory/Sim-
ulation and Magnetic Sensors groups. The ADMIS project intends to establish a
regulated local, dynamic and reversible control of interfacial Dzyaloshinskii-Moriya
Interaction (iDMI), an antisymmetric exchange interaction set up in multilayer
thin-film systems and responsible of the occurrence of localized whirling magnetic
textures, such as Néel magnetic skyrmions.

In detail, the headline targets of ADMIS are:

• to enhance the understanding of the physics underneath iDMI in Heavy Met-
al/Ferromagnet/Insulator (HM/FM/MOx) ultra-thin trilayers;

• to establish a local – reversible or irreversible – control of iDMI strength and
sign, by operating a voltage gating of interfacial magnetic properties;

• to explore the impact of iDMI strength on the spin-driven motion of domain
walls and magnetic skyrmions;

• to study and implement memory, logic and bio-inspired devices based on the
electric field control of iDMI.

The present master’s degree thesis is part of the ADMIS project. The studies
carried out by micromagnetic modelling are intended to support the understanding
of the iDMI effect in HM/FM/MOx trilayer systems.
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Summary

Topological non-trivial whirling spin textures such as magnetic skyrmions have
recently triggered a lot of interest by virtue of their particle-like nature, stabil-
ity and tunability. All these attributes make them enticing when envisioned as
elementary units of digital information to build efficient, fast, reliable, and ver-
satile spintronic devices. Particularly, due to their nanoscale size, combined with
the efficient current induced motion via Spin–Orbit Torque (SOT) [1], magnetic
skyrmions are potential candidates to develop miniaturized ultra-low power, high-
speed and high-density devices, implementing a Logic in-Memory (LIM) approach.
Also, their peculiar solitonic nature makes them attractive in the field of neuro-
morphic computing. The mingled features of stable chiral spin arrangements and
Néel-type domain walls are ascribable to an antisymmetric exchange interaction
called interfacial Dzyaloshinskii-Moriya Interaction (iDMI). This latter is set up in
ultra-thin films with Perpendicular Magnetic Anisotropy (PMA), e.g. of the type
Heavy Metal/Ferromagnet/Insulator (HM/FM/MOx), by the coaction of strong
Spin–Orbit Coupling (SOC) in the HM and the broken inversion symmetry (SIA)
– also responsible for the emergence of novel physics, such as Spin–Orbit Torque [2].

Among the possible topological quasi-particles stabilised in such peculiar trilayer
systems, a lower dimension (1-D) non-trivial spin texture, named Domain Wall
Skyrmion (DWSk), has been newly reported and experimentally observed using
Lorentz Transmission Electron Microscopy (LTEM). The DWSk is a 1-D topolog-
ical excitation sharing the same topological charge Q as conventional skyrmionic
bubble (Q = ±1) and describable as a localized 2 − π rotation of the In-Plane (IP)
component of magnetization within a Néel domain wall, which stands between two
Out-Of-Plane (OP) magnetic domains. Such spin texture can intuitively be viewed
as the counterpart of a 2 − π Vertical Bloch Line coming about in Bloch instead of
Néel domain walls.

Chiral skyrmionic bubbles with localised 1-D skyrmion inside the otherwise ho-
mochiral Néel domain wall, hereinafter called Double Skyrmions (DSk), have been
numerically predicted as a soliton solution [3]. However, the dipolar energy term,
accounting for their stabilization, was not included in the analytical expression of
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the total energy. The dipolar contribution was hold in consideration in the work
of Je (2020) [4], who numerically investigated the dynamics of the skyrmion nu-
cleation process, still object of the study. The nucleation and annihilation of 1-D
skyrmions, contributing to the modification of domain wall morphology, were to
just assist the topological charge evolution in the transient time frame.

The aim of this thesis work was to pursue a systematic study for magnetic stack
of the type Pt/Co(0.9 nm)/MgO, using the open source GPU-accelerated micro-
magnetic simulation software MuMax3. Formerly, this sample has been inten-
sively characterized – both experimentally and numerically – since chiral magnetic
skyrmions can be there stabilised at room temperature and zero external magnetic
field, owing to the large iDMI of such system [5]. Such topological solitons have
been further demonstrated to reach a steady-state spin driven motion and to be nu-
cleated and manoeuvered by external magnetic field and/or spin polarized current
[6]. After a first study of usual skyrmionic bubbles, the analysis carried out during
this thesis work concentrated upon a more exotic skyrmion generation process, i.e.
the heating-induced writing, accomplished by an ultra-fast laser pulse inducing a
localised thermal demagnetization of the material. Particularly, such experimental
protocol has been proved to make it easily accessible peculiar stable states that are
not attainable by conventional approaches, due to high energy barriers [7].

In the present master thesis work, it is demonstrated that, by tuning the mag-
netic field applied during the magnetization recovery process, an initially randomly
demagnetized state can numerically converge either to the hexagonal-like skyrmion
bubble lattice, consistently with experimental evidences in literature [7], or to the
here named magnetic multidomain state. Notably, this latter represents a sta-
ble magnetization state where a smooth domain wall of well-defined chirality and
distinct non-trivial spin textures survive concomitantly. In detail, beyond the con-
ventional skyrmionic bubble, the magnetic outline reveals the stability of two new
topological excitations, namely the domain wall skyrmion and, more importantly,
the double skyrmion. Such numerical prediction portraits the double skyrmion as
stable state of the magnetic stack, pushing forward the earlier observations of this
novel magnetic texture as a transient metastable state. The aforesaid multidomain
state was tested against both thermally induced fluctuation and granularity, which
validated simulation results and ruled out the numerical artefacts.

Firstly, the static behavior of usual skyrmionic bubble was characterized. Par-
ticularly, the distinctive response to magnetic anisotropy and/or iDMI strength
modification is presented in a phase diagram, which could be used to find how
skyrmion stability and size would be modified via voltage gating of interfacial mag-
netic properties. Also, the hysteresis loop of the skyrmionic bubble regime was
generated, to typify the rebound to an external magnetic field.
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Secondly, the double skyrmion was cross-referenced with conventional skyrmion
static and dynamic behaviour. As in the case of usual single 2-D magnetic skyrmion,
any point of a unit sphere can be covered by the magnetization distribution of the
1-D skyrmion situated in the domain wall. Accordingly, the double skyrmion spin
texture maps twice the possible orientations of magnetization, which translates into
Q = +2. The double skyrmion could be the expressions of a stable state which, al-
though energetically unfavoured with reference to conventional skyrmionic bubble,
is sustained by an energy barrier mainly supported by dipolar interaction. The lo-
cal magnetization twist within the Néel domain wall makes it possible to abate the
volume magnetic charges by way of closure of magnetic field flux lines, in analogy
to the reason underneath the nucleation of magnetic domains in a ferromagnetic
material. Nonetheless, the internal structure of a 1-D skyrmion reveals the exis-
tence of a narrow region where chirality is opposite to the one favoured by iDMI
energy. Representative of the 1-D skyrmion exceeding cost in terms of antisymmet-
ric exchange energy is the characteristic bending of the domain wall, that leads to
a kink [8]: in order to keep the IP magnetization vector perpendicular to the plane
of the domain wall for the maximum possible extent, a local arching is induced
to reduce at minimum the Bloch nature of the domain wall, disfavoured by the
Dzyaloshinskii-Moriya Interaction.

Micromagnetic simulation results reveal the DSk strong responsivity to Zeeman
field and resilience against iDMI reduction and chirality switching, with proper-
ties similar to conventional skyrmionic bubble. Particularly, the accomplishment
of DSk size tuning operated by external control parameter, i.e. magnetic field, and
internal material parameter, such as the iDMI strength, is numerically predicted.
The static analysis is complemented with the investigation of the dynamic behav-
ior under electrical current. Analogously to conventional skyrmionic bubble, it is
shown that Current In-Plane Spin Transfer Torque (CIP-STT) and/or Spin–Orbit
Torque (CIP-SOT) may displace the Q = +2 topological charge in a track, with
a characteristic space orientation of the kink. However, a distinctive behavior is
observed in high-current regime, where the strength of the Spin–Orbit Torque may
induce the DSk conversion either into two or into one isolated Q = +1 charge(s),
or even annihilate it. This opens perspectives to conceive high-density skyrmionic
devices.

Finally, a more exotic physical phenomenon is presented: the injection of a Current
Perpendicular-to-Plane (CPP) STT in a magnetic tunnel junction (MTJ), with the
magnetic stack conceived as free layer and the reference layer perpendicularly po-
larized, could nucleate double skyrmions and further induce their auto-oscillation.
Specifically, it consists in the DSk spinning motion driven by the confined kink,
where the 2-D rotation direction (clockwise or anticlockwise) is controlled by the
specificity of 1-D skyrmion, either Head-To-Head (H2H) or Tail-To-Tail (T2T).
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Chapter 1

Introduction

Since its beginning, Si-based complementary metal-oxide semiconductor (CMOS)
devices have been dominating over the field of microelectronics, in terms of density
of integration and cost: as of 2011, 99% of integrated circuit (IC) chips, including
most digital, analog and mixed-signal IC, are fabricated using CMOS technology [9].
The field of spintronics, or spin electronics, is nowadays emerging as one up-and-
coming field for next-generation nanoelectronics [10]. Here, the digital encoding of
information is performed by combining the advantages of manipulating both the
spin and the electrical charge, the two fundamental properties of an electron. The
electrical and magnetic phenomena are thus intermingled: this creates new techno-
logical scenarios that look promising because of a lower power consumption, higher
speed and increased integration density with respect to conventional microelec-
tronic devices. Indeed, the energy required to switch a spin state is much less than
the energy budget required to control an electrical current [11]. Furthermore, the
exploitation of the magnetic order is expected to incorporate novel functionalities,
e.g. non-volatility, unapproachable through conventional CMOS technology and
beneficial to lower stand-by power consumption during the digital signal processing
and propagation.

The purpose of the next section, wholly addressed to the field of conventional
CMOS micro/nanoelectronics, is that of outlining the semiconductor industry sta-
tus and pointing out the main technology bottlenecks and side effects faced in the
transistor scaling. To follow, a broad overview in the state of the art of spintronics,
new branch of electronics, will be profiled. Here, vanguard alternative solutions
have been emerging over the years, highly functional for transcending some of con-
ventional electronics limitations and rendering novel ideas to complement CMOS
devices. Right after, it will be provided an insight into the basic concepts of micro-
magnetism, representing the theoretical background essential for the comprehen-
sion of spintronics phenomena, followed by a review of MuMax3, the micromagnetic
solver used in the course of this thesis work.
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1 – Introduction

1.1 The end of Moore’s law

The Moore’s law is an empirical observation originated in 1965s, founded upon the
experimental evidences concerning the evolution of the Silicon microelectronics: it
has been representing the Golden Rule of the microelectronic industry over the
last decades. In the original draft, Gordon E. Moore foresaw that the number of
integrated components per IC would have doubled every two years. On the outlook
of semiconductor industry, to be compliant with the Moore’s law has resulted in
an exponential increase in terms of performances with an exponential decrease in
terms of cost for a given performance, bringing our society into the information era.

To refer to a peculiar semiconductor manufacturing process, coupled with its spe-
cific design rules, the expression technological node is employed: the lower the node,
the more advanced the circuit generations and architectures, leading to smaller fea-
ture sizes, producing even more miniaturized transistors which are increasingly
powerful and efficient in terms of energy dissipation.

Historically, gate length and metal half-pitch were roughly interchangeable quanti-
ties: they were equivalent to the node number. However, most recently, specifically
since the mid-1990s, a discrepancy between nomenclature and physical counterpart
has been developing and, to stay on the Moore’s law track, chip makers shrank the
gate length more roughly than other features of the devices: as a matter of fact, the
gate length became lower than the technological node. Nevertheless, since 2000s
device Design & Implementation took a different route to face limitations of power
dissipation (Joule’s heating) and current leakage, ascribed to the billions of transis-
tors packed into one chip, as well as to quantum mechanical behavior of electrons
at atomic scale, with the associated quantum tunneling effect impacting the device
reliability and worsening the thermal issues. As a result, technological manoeuvres
have been adopted to keep updating performances with just a soft shrinkage of gate
length [12]. This trend is well shown in Figure 1.1.

Currently, the 7-nm node era (about 100 million of transistors in a square centime-
ter of Si) is running its course; 5-nm node Central Processing Units (CPU) are
being manufactured right now and leading corporations expect to be projected on
what might be called the 1-nm node (scarcely the width of 5 Si atoms) within a
decade [12].

The idea behind Very Large Scale Integration (VLSI) and Ultra Large Scale Integra-
tion (ULSI), the latter integrating or embedding hundreds of billion of transistors
per chip, is geometric scaling. Indeed, a high miniaturization level offers several
advantages, as an improved integration density, together with upgraded circuital
complexity.
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1.1 – The end of Moore’s law

Figure 1.1: Source – Stanford Nanoelectronics Lab, Wikichip, IEEE IRDS 2020.

However, starting from 2000s, the technology node tables entered the nm scale
area, where devices are essentially mesoscopic. This has posed serious technologi-
cal challenges because of non-ideality effects, ascribed to gate length miniaturiza-
tion, e.g. Short Channel Effects (SCE), ballistic transport [13], quantum effects
and technological uncertainty, like Random Dopant Fluctuations (RDF) [14]. As
a matter of fact, geometrical (planar) scaling is at an end due to rocketing fabri-
cation cost, technology barriers like extreme ultraviolet (EUV) lithography, power
density limits and electrical leakage, diverting R&D labs towards the route of new
chip-manufacturing processes and novel technological frontiers.

The International Roadmap for Devices and Systems (IRDS) 2020 entitled More
Moore states: “System scaling enabled by Moore’s scaling is increasingly challenged
by the scarcity of resources such as power and interconnect bandwidth”. This means
that it will no longer be favourable from an economical perspective for high-tech
industries to keep on facing traditional metal-oxide semiconductor field effect tran-
sistors (MOSFET) miniaturization. The scaling scenario for device architectures
locates the end of FinFET technology at 2025. Most remarkable cutting-edge ten-
dencies are More Moore (MM), focused on monolithic 3D integration of Gate All
Around (GAA) & 3D VLSI [15], More than Moore (MtM), centred on diversifica-
tion and integration of multiple functions and, last but not least, Beyond Moore
(BM), oriented to innovative architectures. Figure 1.2 provides a sketch of Gate
All Around (GAA) FET and reports the trend of the Operating Voltage (OV) with
the advancement of semiconductor technology.
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1 – Introduction

Figure 1.2: Left – Sketch of Gate All Around Field Effect Transistor (GAAFET).
Right – Qualitative behavior of Operation Voltage vs. semiconductor tech.

Source: SamsungSemiUS, Youtube.

And it is exactly among the possible purposeful avenues comprised in the frame-
work of Beyond Moore (BM), that the idea of spintronics develops. As already
anticipated, spintronics adds a new degree of freedom on which information may
be coded. As a matter of fact, data storage has been using magnetism for long
time: what is new with spintronics is the coupling between spin and electrical
charge. If technologically implemented, this concept may lead to non-volatile and
ultra-fast coding of information, e.g. the Magnetoresistive Random Access Mem-
ories, (MRAM), beneficial not only for long-time scale storage, but also for faster
and shorter-time scale storage, essential for memories close to the processor. One
advantage of non-volatility for memories close to the processor is the drastic re-
duction of stand-by power consumption. Indeed, for standard Solid State Random
Access Memories (SRAMs or DRAMs), by decreasing the technological node, the
stand-by power, necessary to refresh the info (not to loose it), is becoming even
more important if compared to the power consumption of writing or reading oper-
ations. This is why spintronics is a very interesting alternative.

The next section will be entirely dedicated to the description of the main steps
forward in the field of spintronics, emphasizing the principal limitations of different
technologies, to end up with the so-called Skyrmion Racetrack Memory, dealing
with the nucleation and manipulation of magnetic skyrmions, which represent the
main topic of this thesis.
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1.2 – Spintronics

1.2 Spintronics
A major breakthrough in the field of spintronics was achieved with the discovery
of Tunnel Magneto Resistance (TMR), occurring in a Magnetic Tunnel Junction
(MTJ), mainly composed by an ultra-thin insulating layer (typically 1 nm) in be-
tween two ferromagnets. The TMR led to a considerable amplification in the mag-
netoresistance effect (more than one order of magnitude), if compared to the earlier
Giant Magneto Resistance (GMR), featured by a metallic layer as spacer, directly
implying a reduction in the reading power consumption of Hard Disk Drives (HDD)
[16].

Basically, the magnetoresistance effect consists on the dependence of the electrical
resistance (low/high), on the relative magnetization state (parallel/anti-parallel) of
the two ferromagnetic (FM) layers: in reference to the purely quantum mechanical
TMR, electrons are more inclined to tunnel through the insulating film in case of
parallel orientation than in opposite case. The binary resistance state of the MTJ
bears on the concept of the non-volatile Magnetoresistive Random Access Mem-
ory (MRAM), where the bottom ferromagnetic layer represents the fixed layer or
reference layer, with magnetization pinned by a Synthetic Antiferromagnet (SAF),
while the top one is the free layer or storage layer, with switchable magnetization
orientation. Such an implementation makes it possible to link the two states of
electrical resistance (high/low) to the digital encoding of information (0/1 bits).

Each memory cell needs to be read and written: actually the TMR effect is em-
ployed just as the simplest approach to implement the reading procedure, while
nowadays the writing procedure is mainly accomplished by Spin Transfer Torque
(STT). More in detail, a charge current, spin polarized by the thick fixed layer, is
injected to induce a torque on magnetization of the thinner free layer via intrinsic
angular momentum (spin) transfer, resulting from the misalignment of the electron
moment and the local magnetization, to which electrons have to adapt to, while
perturbing it at the same time. Indeed, in analogy to electric current induced by
moving charges, in presence of an imbalance between flowing up and down electron
spins, spin motion generates a spin current which carries spin angular moment.
This, in turn, can be transferred to the material magnetization through a strong
and local interaction represented by the torque, as a result of the angular moment
conservation law [17]. The STT mechanism is schematically depicted in Figure 1.3.
This approach, a major discovery in condensed matter and material physics, was
essential for the technological development of high-performance and high-density
STT-MRAM, overcoming the classical design (toggle–MRAM), challenging both in
terms of power consumption and scaling of dimensions, where a local magnetic field
(Oersted field), generated by currents flowing in the so called Bit and Write Word
lines, was used to switch the magnetization of the free layer.
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1 – Introduction

Figure 1.3: Illustration of current-induced STT.

Further improvements in terms of energy efficiency of the writing procedure, write
endurance and speed can be gained in magnetization switching through Spin-Orbit
Torque (SOT) [18]. This is still the subject of study, that is of great recent interests
due to its potential applications in SOT-MRAM, in which the read and write paths
are disentangled, as opposed to STT-MRAM, thereby decreasing the read error rate
[19]. An SOT-MRAM cell integrates a magnetic tunnel junction (MTJ) on top of
a heavy-metal (HM) layer, the latter characterized by strong Spin-Orbit Coupling
(SOC). During the writing stage of such system, featured by broken structural
inversion symmetry, an in-plane (IP) charge current is injected into the HM layer
and, as a result of the Spin Hall effect (SHE), a perpendicular spin current is
generated, inducing a spin accumulation HM/FM interface, exerting a torque in
the overlying FM layer that can switch its magnetization [18]. Figure 1.4 provides
a comparison between STT-MRAM and SOT-MRAM schematics. Compared to
conventional Random Access Memories (RAM) based on semiconductor technology,
beyond being non-volatile, Magnetoresistive Random Access Memories (MRAM)
can operate at higher temperatures, they are radiation resistant and less energy-
consuming. However, notwithstanding its several benefits, MRAM technologists
are still facing the relatively low storage density [16].

16



1.2 – Spintronics

Figure 1.4: Schematics of a) STT-MRAM and b) SOT-MRAM.
c) Qualitative resistance hysteresis loop with two stable states at µ0Happ = 0 m T.

An alternative approach to conventional Random Access Memories (RAM) and
Magnetic Hard Disk Drives (HDD) is the so called Magnetic Domain Wall Race-
track Memory (DWRM), originally proposed by Stuart Parkin [20]. It may offer
the cheapness of HDD but the high performance and reliability of RAM. Also, the
truly 3-D architecture is extremely advantageous for the improvement of the in-
tegration density. Practically, the vertically configured racetrack, maximizing the
storage density, consists on a U-shaped ferromagnetic (FM) nanowire, arranged
perpendicularly on the surface of a silicon wafer. Here, the directions of magne-
tization vectors within magnetic domains (MD) are representative of the binary
information, i.e. the spacing between consecutive domain walls (DW), that is the
bit length, is the information carrier. “RM is fundamentally a shift register in which
the data bits are moved to and fro along any given racetrack to intersect with indi-
vidual reading and writing elements integrated with each racetrack” [20]. However,
there exist challenging facets of DWRM affecting its ultimate performance, as the
reproducibility of DW motion, the pinning by the edges and the required high cur-
rent density [16].

This is exactly where purposeful ideas of operating and manipulating magnetic
spin textures, like magnetic skyrmions, enter the game of spintronics. In particu-
lar, the circular symmetry of bubble magnetic domains fulfills the idea of avoiding
edge effects, while the homochirality is an essential element to displace them as
single particles (soliton nature). The energy contribution stabilizing chiral mag-
netic skyrmions comes from the so called Dzyaloshinskii-Moriya Interaction (DMI),
brought out from the combination of strong Spin-Orbit Coupling (SOT) and struc-
tural inversion asymmetry (SIA). The DMI, discussed more in detail in Section
1.3.2, is an antisymmetric exchange interaction that leads to a canting of neighbor-
ing spins, thus imposing a chiral configuration of the DW.
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1 – Introduction

Magnetic skyrmions can be defined as magnetic spin textures with non-trivial topol-
ogy, typified by an unambiguous chirality, determined by the sign of DMI. They
can hence be depicted as tiny circular magnetic domains encircled by a homochiral
domain wall, configured either in clockwise (right-handed) or anticlockwise (left-
handed) rotation of magnetization, when crossing the skyrmion radially from left
to right, as Figure 1.5 a) illustrates.

Figure 1.5: a) Illustration of CW and ACW Néel skyrmions [21].
The polarity p indicates the skyrmion core magnetization.
b) Potential realization of a skyrmion-based racetrack [22].

Their potential nanoscale dimension, solitonic nature, high stability and tunability,
conjugated with extremely low driving current density (lower than that required
for DW motion) [23] [24] [25] and efficient current-induced manipulation by SOT
[26] render skyrmions considerably attractive as elementary units for upcoming
spintronic devices and systems. An example of skyrmion-based device is the so-
called Skyrmion Racetrack Memory of Figure 1.5 b), where the digital information
is encoded in the presence (logic 1) or absence (logic 0) of the magnetic skyrmion.
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1.3 – Micromagnetic concepts

Magnetic skyrmions thus represent the main candidates to get the better over mag-
netic HDD as regards integration density as well as to overcome the issues related to
the control of domain wall motion, i.e. reliability and requested high current den-
sities in Domain Wall Racetrack Memories. More details on magnetic skyrmions
will be given in Section 1.5.

On the following, the basics of micromagnetic theory will be provided, with the
objective of facilitating the understanding of the micromagnetic simulation out-
comes focused on non-trivial spin textures, including magnetic skyrmions, obtained
during this thesis work and presented in Chapter 2.

1.3 Micromagnetic concepts
Micromagnetism is the theory upon which the description of the magnetization in
a magnetic material relies. In this framework, the magnetization distribution is
delineated under the definition of the unit vector m(r, t) = M(r, t)/Ms, on the
basis of two fundamental assumptions:

• the inspected length scales are large enough for the discrete nature of the
matter, that is the atomic structure, to be ignored (continuum approximation);

• in presence of an homogeneous material, the magnetization vector is uniform
in modulus, which matches the saturation magnetization Ms.

The continuum theory of micromagnetism allows to predict the magnetization dis-
tribution of a ferromagnet as well as the dynamics between two stable states.

1.3.1 Gibbs free energy terms
The objective of static micromagnetics is to determine the spatial distribution of
magnetization M at equilibrium. Under the assumption of uniform |M| = Ms, this
problem is reduced to finding the magnetization direction vector or unit vector m,
by minimizing the total magnetic energy:

E = EZ + Eex + Emc + Ed + Eadd (1.1)

where EZ is the Zeeman energy due to an external magnetic field or Zeeman field,
whereas the terms Eex, Emc and Ed account for the exchange, the magnetocrystalline
anisotropy and the dipolar energy contributions, respectively. Last but not least,
Eadd includes additional terms that will be uncovered later on.
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Zeeman energy

Zeeman energy, also called external magnetic field energy, is the potential energy of
a magnetic moment or that of a magnetic body as a whole in an external magnetic
field. Its volume density is expressed as:

EZ = −µ0 M · H0 (1.2)

where µ0 = 4π × 10−7 H/m is the vacuum permeability.

Upon this, the total Zeeman energy can be computed by integrating over the volume
of the ferromagnet V :

EZ = −µ0

Ú
V
M · H0 dV (1.3)

As shown, the Zeeman energy is minimized when the magnetization M is aligned
along the applied field H0.

Exchange energy

Heisenberg symmetric exchange energy arises from a local purely quantum me-
chanical effect related to the indistinguishability of quantum point-like particles as
electrons and it is at the basis of ferromagnetism, which is essentially originated
from a phenomenon electrical in nature. The exchange energy can be interpreted
as a quantum correction to the classical Coulomb’s repulsion and it is often called
Pauli’s repulsion, with regard to the Pauli’s exclusion principle that applies to iden-
tical fermions. Practically, it is energetically favourable for an atom with partially
filled outer shell to have the unpaired valence electrons farther apart from each
other, condition that is verified in case of parallel spin, i.e. symmetric spin states
and antisymmetric spatial states. The coupling of two neighboring atoms with un-
paired electrons depends instead on the way orbitals are hybridized and the number
of electrons they host. The exchange energy between two neighboring atomic spins
Si and Sj can be expressed as:

Eij = −Jij Si · Sj (1.4)

where Jij is the Heisenberg exchange constant, that is positive (respectively neg-
ative) in case of ferromagnets (respectively antiferromagnets), thus favouring a
parallel (respectively anti-parallel) spin alignment.

The line between the discrete exchange and the continuous theory is established by
expanding the energy in case of a 1-D chain of classical spins, under the assumption
of small differential angle δθ between neighboring atom spins:

Eij = −JS2 cos(δθ) ∼ −JS2
5
1 − (δθ)2

2

6
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1.3 – Micromagnetic concepts

Summing up all over the atoms in the crystal and normalizing the total energy
with lattice parameter cubed a3, the volumetric exchange energy density is finally
expressed as:

Eex = const + nJS2

2a

3
dθ

dx

42
(1.5)

where n is the number of first neighbors, called coordination number, equal to n = 2
in the one dimensional case.

By generalizing the previous equation, it is possible to define the exchange energy
density for a 3-D system:

Eex = A
Ø

i

Ø
j

3
∂mi

∂xj

42
= A (∇m)2 (1.6)

where the constant term const, related to the symmetry and coordination number,
has been neglected. In the latter expression, the exchange stiffness A ∼ nJS2/(2a)
appears, which is measured in J/m.

Magnetostatic energy

Magnetostatic energy, also called dipolar energy, is originated from the mutual long-
range interaction involving all moments of a magnetic body, which perturb each
other through the so called magnetostatic field, viewable as an internal Zeeman-like
field. A distinction is usually made between the part of the dipolar field occurring
inside the magnetic body, called demagnetizing field, and that outside the body,
called stray field. The dipolar energy density may be written:

Ed = −1
2 µ0 M · Hd (1.7)

where Hd is the dipolar field and the (1/2) prefactor is introduced to count just
once the reciprocal energy for each pair of elementary dipoles.

In most cases, to simplify the computational procedure of the total dipolar en-
ergy, it is possible to introduce the magnetic volume charges, by analogy with the
differential formulation of Gauss’ law for electrostatics (∇ · E = ρ/Ô0):

∇ · Hd = −∇ · M = ρ (1.8)

where M(r) is the magnetization distribution in the magnetic body.
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By considering that Hd has zero curl (similarly to electrostatics) and that thus de-
rives from a potential, Hd = ∇φd, the total magnetostatic energy may be expressed
as:

Ed = −µ0

2

Ú
V
M · Hd dV =

3Ú
V

ρ φd dV +
Ú

S
σφd dS

4
(1.9)

where the concept of magnetic surface charges, σ = M · n̂, were introduced to
account for abrupt change of magnetization when crossing the sample surface, n̂
being the normal vector to the surface of the magnetic body, pointing outwards.

The effect of magnetostatic energy is clearly that of reducing at minimum the
surface and volume charges within the magnetic body. In case of uniformly mag-
netized system, the first term cancels and the magnetization tends to align in the
direction minimizing surface charges, i.e. along long dimensions of the sample. Be-
ing this energy contribution substantially driven by the shape of the system, it is
also called shape anisotropy: for example, in case of an ellipsoid, magnetization
tends to align along the long axis, where opposite surface charges can be further
apart from each other.

Under the assumption of uniform magnetization, it is possible to express analyt-
ically the average value of the dipolar field inside the system along the main or
major axes i:

éHd,iê = −Ni M (1.10)

where Ni are the demagnetizing factors or coefficients, either null or positive, i run-
ning over all three main directions and Nx +Ny +Nz = 1. They prove a measure of
the average demagnetizing field, so called for opposing the magnetization, for the
considered axis.

Accordingly, the density of demagnetizing energy may be written as:

Ed = −(µ0/2) éHdê · M = m2
i NiKd (1.11)

where mi is the reduced magnetization along a defined direction and Kd is the so
called dipolar constant, Kd = 1

2 µ0M
2
s , given in J/m3.

Commonly, the demagnetization coefficients are employed to assess the energy dif-
ference along different directions. In case of a thin film or slab, under the assump-
tion Lx, Ly º Lz, Në = 0 (parallel to the film plane) and N⊥ = 1 (perpendicular
to the film plane). As a result, dipolar energy density can be defined as:

Ed = (Në sin2 θ + N⊥ cos2 θ)Kd ∼ (Në − N⊥)Kd sin2 θ = −Kd sin2 θ (1.12)

where më = sin θ, θ being the angle between the magnetization and the perpen-
dicular axis.
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1.3 – Micromagnetic concepts

Here, the relation cos2 θ = 1 − sin2 θ was used and the resulting constant term
N⊥ Kd neglected as only energy differences are relevant.

Different is the case of soft magnetic materials, where the magnetization tends to
remain parallel to the edges and surfaces of the system: in this way, surface charges
are minimized but this tendency makes volume charges arising as the magnetization
is no more uniform.

1.3.2 Phenomena due to Spin–Orbit Coupling
Spin-Orbit Coupling (SOC) is a relativistic effect defined as the interaction of or-
bital magnetic moment µü, associated with electron’s orbital motion around the
nucleus, and intrinsic magnetic moment µs, originated by electron’s spin.

In the lab frame, electron has a position +r and a velocity +v. In its rest frame, the
electron perceives the nucleus of charge +e and position −r moving with a velocity
−v. The electromagnetic force, or Lorentz force, acting on a particle of charge q
moving with a velocity v in an electric field E and magnetic field B is:

F = qE + q v × B (1.13)

Considering the case of zero external magnetic field, the electron experiences a
time-varying electric field E generated by the moving nucleus:

E(t) = e

r2 r̂(t) = e

r3 r(t) (1.14)

A charged particle, immersed in a time-varying electric field, senses the latter in
the form of an effective magnetic field. This is exactly the magnetic field generated
by a moving charge:

B = − 1
c2v × E (1.15)

Recalling the definition of linear momentum p = mv and expressing the electric
field explicitly, one obtains:

B = e

me c2 r3 r × p = e

me c2 r3 ü (1.16)

where ü is the orbital angular momentum.

This leads to a Zeeman-like interaction between the electron magnetic moment
– that becomes a question of intrinsic magnetic moment being the electron at rest
in its frame of reference – and the effective magnetic field generated by the nucleus:

HSO = −µs · B = λ ü · s (1.17)
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Here, λ = e2/(2 m2
e c3 r3) and µs is defined as

µs = − e

me c
s (1.18)

where the term (1/2) in λ is a corrective factor whose physical explanation can be
found quantum mechanically and s is the intrinsic angular momentum.

An equivalent formulation for the coefficient λ can be found by expressing the
electric field as the gradient of the electrostatic potential E = −∇(V ) that, in the
central field approximation, returns:

HSO = − e

2 m2
e c3 r

dV

dr
ü · s (1.19)

where the operator s = ~/2 σ̂ with σ̂ Pauli’s matrices.

In the new basis, where the SOC perturbed Hamiltonian is diagonal, it is requested
to define a new complete set of mutually commuting operators, that are: ü2, s2,
j2, jz, where j = ü + s is the total angular momentum operator. The net effect is
that of removing the degeneration of orbitals, previously energetically equivalent,
through a supplementary energy term which is directly proportional to Z4, with
Z the atomic number. This reveals that the SOC is strong just in case of heavy
elements, where the effective magnetic field generated by the nucleus is relevant.
As a matter of fact, for 3d transition metals, like Fe, Co and Ni, the crystalline
field plays a major role, generating a strong perturbation, which depends on the
characteristics and symmetries of crystal lattice, that makes the SOC negligible.
As a result, the magnetic moment of atoms/ions in the crystal is essentially pro-
duced by the intrinsic angular momentum and the orbital component the angular
momentum is said to be quenched.

There are plenty of phenomena originated by the Spin-Orbit Coupling, that can
be considered the gist of spintronics. The SOC, by coupling the electron’s spin
with the orbital angular momentum, which in its turn depends on the crystal lat-
tice, generates Magnetocrystalline Anisotropy (MCA) in bulk ferromagnet which
leads to preferential alignment of magnetization along certain crystallographic di-
rections, called easy axes, energetically favoured with respect to hard axes. In other
words, the variation of spin orientation induces a modification in the overlapping
degree of the magnetic electron wavefunctions, thus defining easy directions, which
are energetically convenient. In the framework of ferromagnetic thin-film systems,
with broken inversion symmetry at the interfaces, the SOC is at the origin of
an interfacial magnetic anisotropy Ks, energetically favouring Out-Of-Plane (OP)
magnetization and essential for the nucleation of magnetic skyrmions.
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The combined effect of inversion asymmetry (SIA) and strong SOC, e.g. intro-
duced by interfacing the ferromagnetic thin-film with an heavy-metal layer, leads
to the antisymmetric exchange interaction called Dzyaloshinskii-Moriya Interaction
(DMI) [27] [28].

Magnetocrystalline anisotropy energy

Magnetocrystalline anisotropy is a special case of magnetic anisotropy and one
of the sources of coercivity. The joining of crystal field effect (electron orbital
– crystal lattice coupling) and the relativistic spin-orbit effect (electron orbital –
electron spin coupling) causes ferromagnetic materials to have magnetocrystalline
anisotropy, energetically favouring the alignment of the magnetization vector M
along certain crystallographic directions or planes of the solid, called easy axes or
planes. These are usually related to the principal axes of the crystal lattice, in
opposition to the so called hard axes or planes.

In general, the magnetocrystalline anisotropy energy density may be expressed
in relation to a dimensionless function f , the basis of which could be whatever set
of angular functions consistent with the symmetry of the crystal lattice, e.g. the
atomic physics orbital functions Yl,m:

Emc = Kf(θ, φ) (1.20)

For the sake of simplicity, the best choice for the basis falls upon trigonometric
functions, where odd terms must be ignored in compliance with time reversal sym-
metry (M ≡ −M ⇒ f(M) ≡ f(−M)), meaning that, once fixed the angle in
between the magnetization axis and the easy axis, the energy is the same regard-
less of the orientation of magnetization along that axis. For cubic crystal systems
like Fe and Ni, naturally featured by three and four easy axes, respectively, the
magnetocrystalline anisotropy energy density is expressed as:

Emc, cub = K1c s + K2c p + K3c p2 + . . . (1.21)

with s = α2
1α2

2 + α2
2α2

3 + α2
3α2

1 and p = α2
1α2

2α2
3, αi being the director cosines of

magnetization along the three cartesian axes.

In the event of hexagonal (e.g. Co) or tetragonal symmetries, the azimuthal de-
pendence of the energy, that is the third order term, accounts for the orientation of
the magnetization projection along the polygon basal plane, where the two extreme
cases, magnetization crossing either one edge or one side of that polygon, are not
energetically equivalent. And that is exactly the first energy term which allows us
to discriminate between the two aforementioned symmetries.
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However, just the first and second order terms are not negligible, and this leads to
an equivalent expression of the magnetocrystalline anisotropy energy density both
for hexagonal and tetragonal systems:

Emc, hex = K1 sin2 θ + K2 sin4 θ + . . . (1.22)

where θ is the (polar) angle between M and the high symmetry axis. Often, just
the first order term is considered and the above expression simplifies:

Emc = Ku sin2 θ (1.23)

Accordingly, the relevance of anisotropy can be assessed in terms of Ku, that is the
uniaxial anisotropy constant expressed in J/m3 or, equivalently, in field units under
the definition of an anisotropy field, Ha = 2Ku/(µ0Ms). Magnetic materials with
low (high) coercivity and remanence, the amplitude of which is partly dictated by
the strength of anisotropy, are called soft (hard) magnetic materials.

At this point of the treatment, there are all the ingredients to define the char-
acteristic length scales, that play a central role in the delineation of the minimum
size below which specific phenomena can be observed, dealing with the magnetism
at the nanoscale:

• anisotropy exchange length or Bloch parameter, ∆u =
ñ

A/Ku, direct mea-
sure of the domain wall width, resulting from the competing effect of exchange
energy, which favours an infinite extension of the domain wall, so that to set
up the minimum possible tilting between neighboring spins, and magnetocrys-
talline anisotropy energy, which would be instead minimized in case of zero
domain wall extent;

• dipolar exchange length or exchange length, ∆d =
ñ

A/Kd =
ñ

2A/(µ0M2
s )

(∼ 10 nm), representative of the characteristic length when dipolar and ex-
change energies compete (e.g. vortex core size).

Interface magnetic anisotropy

One of the major achievements of the Néel’s phenomenological theory of mag-
netic anisotropy, developed in 1953, was the prediction of so called Néel mag-
netic anisotropy, arising from spin-orbit and crystalline potential, and responsible
for Out-Of-Plane (OP) magnetization in ultra-thin films, in opposition to shape
anisotropy which, by virtue of the demagnetizing field, favours an In-Plane (IP)
magnetization [29]. Indeed, by uniquely considering dipolar and magnetocrystalline
anisotropies, under the assumption of a uniformly magnetized system, it is possible
to define an effective magnetic anisotropy energy density:

E = (Ku − Kd) sin2 θ = Keff sin2 θ (1.24)
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where Ku is the uniaxial anisotropy constant and Kd is the dipolar constant. Mag-
netostatic energy induces an alignment of magnetization in directions characteriz-
ing small demagnetizing coefficient, that is in the plane for a thin-film. A usual
condition for thin-films of Fe or Co is an extremely small bulk magnetocrystalline
anisotropy, if compared to shape anisotropy: consequently, in absence of a strong
Zeeman field perpendicular to the plane, an In-Plane (IP) magnetization will be
favourable.

In the event of ultra-thin films, with a thickness lower than few nanometers, an
extra term adds to the effective magnetic anisotropy, that is called interface mag-
netic anisotropy or surface magnetic anisotropy (for a free surface). Source of this
additional contribution is the difference in environment of the surface or the in-
terface atoms as compared to the bulk atoms in ultra-thin magnetic multilayer
systems. Here, the break in the translational symmetry (SIA) due to the presence
of planar interfaces and surfaces plays a major role in determining the anisotropy
energy, under the physical mechanism of complex band hybridization and elastic
stress due to lattice distortion [16].

The effective magnetic anisotropy, now resulting from the joint effect of the volume
(Kv) and surface (Ks) contributions, where the former includes the bulk magne-
tocrystalline (Ku) and shape (Kd) anisotropy terms, is reformulated as follows:

Keff = Kv + (Ks1 + Ks2)
t

(1.25)

with Ks1 and Ks2 , measured in J/m2, accounting for the double surface or interface,
and t representing the thickness of the ferromagnet.

The critical thickness tc, defined as the thickness of the ferromagnetic layer in
correspondence of which the interfacial or surface term exactly compensate for the
volume contribution, is expressed as:

tc = −(Ks1 + Ks2)
Kv

(1.26)

For a positive surface/interface contribution, below such critical thickness, Keff

may become positive, indicating that the interface anisotropy Ks exceeds the dipo-
lar term Kd. This phenomenon induces the so called Perpendicular Magnetic
Anisotropy (PMA), which is of great interest for technological applications as well
as a prerequisite for the observation of magnetic skyrmions (Figure 1.6).
Practically, there exist three different physical scenarios:

• t ≤ tP M (∼ 0.2 − 0.5 nm) : the thin-film is so slim to be non-magnetic, hence
paramagnetic (PM), with the Curie temperature Tc below the room tempera-
ture TR;
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• tP M < t < tc (∼ 1 − 2 nm) : the thin-film is sufficiently thick to be ferromag-
netic (FM) and enough thin to result in Out-Of-Plane (OP) magnetization,
being the thickness t smaller than the critical thickness tc;

• t > tc : the thin-film is sufficiently thick to be ferromagnetic (FM) but rel-
atively too thick for the interfaces to play a significant role, leading to an
enhanced bulk contribution, thus to a In-Plane (IP) magnetization.

Figure 1.6: Effective magnetic anisotropy Keff × FM thickness t vs. t.
For positive Keff values (t < tc), the macrospin is Out-Of-Plane (OP);

for negative Keff values (t > tc), the macrospin is In-Plane (IP).

It is interesting to notice how Keff also incorporates the magnetoelastic anisotropy
Kmel which exhibits the same behavior as magnetic interface anisotropy (Kmel ∝
1/t). This makes extremely hard to distinguish between these two intermingled
contributions when Keff is measured experimentally.

As stated before, complex band hybridization at the interfaces is one of the reasons
for interface magnetic anisotropy. As a matter of fact, under the application of a
voltage across a HM/FM/MOx thin-film, the electron accumulation or depletion at
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the FM/MOx interface (short-time scale) and the ion migration from the MOx to-
wards the FM/MOx interface (long-time scale), induce a modification of electronic
orbital occupation, hence hybridization in the FM layer [16]. This phenomenon
opens up the possibility of operating voltage gating for dynamic control of inter-
facial magnetic properties, e.g. to establish voltage-controlled magnetic anisotropy
(VCMA). To quantify the variation of interface magnetic anisotropy energy per
unit voltage per unit thickness, it is possible to define the so-called electric field
efficiency:

βKs = ∆Ks

V
tox (1.27)

where tox is the oxide layer thickness.

Dzyaloshinskii-Moriya Interaction

Dzyaloshinskii-Moriya Interaction (DMI) is an antisymmetric exchange interaction
which opposes to the symmetric exchange contribution in the stabilization of chiral
spin textures, that cannot be superimposed on their mirror images by any combina-
tion of rotations and translations. This physical mechanism permits the nucleation
of solitonic magnetic objects, like Néel skyrmions. In particular, a one dimensional
Néel skyrmion, obtained by drawing a transverse cross section of the two dimen-
sional whirling magnetic texture across its diameter, is equivalent to a 2−π cycloidal
progression of magnetization (Néel domain wall), with a unique sense of rotation
dictated by the DMI vector. Magnetic skyrmions have been observed in systems
with broken inversion symmetry (SIA) that display Dzyaloshinskii-Moriya (DM)
exchange interaction, either in bulk structures like non-centrosymmetric crystals,
presenting bulk–DMI, or in ultra-thin film multilayers of transition metals (FM) and
materials with strong SOC (HM), exhibiting interfacial–DMI. Both Néel (hedge-
hog) and Bloch (spiral) skyrmions can be stabilized in the afore-mentioned systems
owing to the interplay of Heisenberg exchange interaction, DMI and uniaxial per-
pendicular magnetic anisotropy (PMA) [30].

Quantum mechanically, the DMI energy has the following form:

EDMI = −
Ø
i<j

dij · (Ŝi × Ŝj) (1.28)

where Ŝi and Ŝj are atomic moment unit vectors at site i and j, respectively, and
dij represents the DMI vector.

The cross product governing the above equation clearly discloses how, for a given
sign of the DMI vector, that is material dependent, the energy cost of the induced
spin canting hinges on the sense of rotation from Ŝi to Ŝj around the rotational
axis, represented precisely by dij.
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Two different models can be found in literature to depict interfacial–DMI (iDMI)
in different magnetic systems that are, in chronological order, Fert–Levy model and
Rashba model. This last recent proposition was experimentally observed for the
first time in the work of Srivastava (2019) [16].

• Fert–Levy model

In the framework of Fert and Levy model [32], the iDM interaction between neigh-
boring atomic spins i and j of a FM is described as a three-site mechanism, being
indeed mediated by a third non-magnetic ion, e.g. belonging to an interfacing HM
layer, with strong Spin-Orbit Coupling (SOT), as illustrated in Figure 1.7 a).

In this picture, the iDMI vector reads:

dij = dij (r̂ij × n̂) (1.29)

where n̂ is the normal to the ferromagnetic surface, and r̂ij is the unit vector con-
necting the two atomic sites.

The favoured rotation direction is thus driven by the sign of dij that, if positive,
leads to a left-handed (anticlockwise) rotation while, if negative, to a right-handed
(clockwise) rotation. As a result, by playing with interface combinations, it is possi-
ble to make the iDMI either vanishing or being enhanced. To bring some examples,
being dij > 0 (respectively dij < 0) for Co on Pt (respectively Pt on Co), the spin
canting is nullified for an ideal Pt/Co/Pt multilayered film and for perfectly sym-
metric stack in general; instead, in presence of a Ir/Co/Pt heterostructure, the
overall iDMI is amplified because, as for Pt on Co, dij < 0 and the two contribu-
tions add up instead of cancelling out.

Park et al. (2016) [31] reported experimental evidences regarding the correlation
between the iDMI strength and the work function of the non-magnetic layers in-
terfaced to the magnetic layer. This may be due to the presence of a built-in
electric field related to the work function difference at the interfaces, which induces
a spin-orbit scattering.

• Rashba model

The Rashba model explains the iDMI mechanism in absence of a large SOC mate-
rial, as is the case for ferromagnetic/insulator interface, e.g. Fe/MgO or Co/AlOx,
condition in which the Fert–Levy picture results incomplete [33]. In ultra-thin
film systems, itinerant electrons of a 3d transition metal experience a momentum
dependent effective magnetic field, which induces spin torque.
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The Rashba effective magnetic field is the result of an interface electric field, de-
picted in Figure 1.7 b), arising due to broken inversion symmetry (SIA) and included
in the SOC Hamiltonian, which takes the form:

HR = αR σ · (k × n̂) (1.30)

where the Rashba parameter αR, dependent on the interface electric field, reads

αR = − ~2E2

2m2c2 (1.31)

k being the electron momentum and n̂ the outward normal to the FM film.

Accordingly, the Rashba effective magnetic field, removing the spin degeneracy
of the interface energy bands, is expressed as:

BR ∝ αR (k × n̂) (1.32)

Particularly, the direction of the Rashba field determines the chirality of the magne-
tization canting, resulting from the exchange interaction between the local magnetic
moments and the itinerant electron spins, precessing around the same BR.

Figure 1.7: Illustration of a) Fert-Levy DMI and b) Rashba DMI [16].

By handling the iDMI in the continuum approximation, it is possible to quantify
the relative strength of Fert–Levy and Rashba DMI contributions, under the defi-
nition of so called micromagnetic DMI constants, measured in J/m2 and expressed
respectively as:

DF L ∼ d

a t
(1.33)

DR = 4 αR me A

~2 (1.34)

with d the Fert–Levy DMI vector amplitude, a the lattice parameter of the FM, t
the magnetic film thickness and A the exchange constant.
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Being such interactions originated from the interface, the DMI constant D, be-
side being dependent on the thickness of the adjacent HM layer, exhibits an inverse
proportionality dependence on the FM layer thickness t:

D = Ds/t (1.35)

where Ds is called interface DMI constant.

It should be highlighted how the proportionality between the Rashba parameter
and the interface electric field makes it possible the voltage tuning of interfacial–
DMI, very interesting for dynamically controlling magnetic skyrmions [16]. In this
context, it is useful to introduce the electric field efficiency, defined as the change
in iDMI energy per unit voltage per unit thickness:

βDMI = ∆D

V
tox (1.36)

being V the applied voltage and tox the oxide layer thickness.

1.3.3 Landau–Lifshitz–Gilbert–Slonczewski equation
Purpose of dynamic micromagnetics is that of predicting the transient behavior
of the magnetic system over short-time scales between two regime conditions, i.e.
the time evolution of the magnetic configuration to reach a local energy minimum.
This is accomplished by solving the Landau–Lifshitz–Gilbert–Slonczewski (LLGS)
equation [34], derived by Slonczewski in 1996, a differential equation which pre-
dicts the rotation of the magnetization in response to torques. It represents an
expansion of the standard Landau–Lifshitz–Gilbert (LLG) equation, to account for
the current induced magnetization dynamics, beyond the precession and damping
terms appearing in the latter, as shown in Figure 1.8.

The Landau–Lifshitz–Gilbert (LLG) equation, proposed by Gilbert in 1954 [35], was
developed by formulating the damping term, responsible for energy loss, in analogy
to the internal frictional force found in mechanics, i.e. viscosity, opposing the
velocity vector. This equation is mathematically equivalent to the Landau-Lifshitz
(LL) equation, developed in 1935 by Landau and Lifshitz [36], and historically
representing the first formulation accounting for damping mechanisms, treated in
a penomenological manner. By introducing the gyromagnetic ratio γ = ge/(2me),
with g Landé factor (g = 1 for orbital magnetic moments, g ∼ 2 for spin magnetic
moments), and the dimensionless damping factor α, the LLG equation reads:

ṁ = −|γ0|m × Heff + αm × ṁ (1.37)

where γ0 = µ0 γ, being µ0 = 4π × 10−7 H/m the vacuum permeability.
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Figure 1.8: Illustration of the LLGS dynamics.

The equation 1.37 is composed by two different terms: the first, describing the
precessional motion of the spin around the effective magnetic field, is responsible
for the variation of rotation of directional axis and it is energy conservative; the
second, providing a damping of the precession, is the influence that reduces os-
cillations, allowing the magnetization to be eventually aligned with the effective
magnetic field.

The effective magnetic field Heff is construed as a conglomeration of competing
terms, which concur to establish the magnetic portray of the material. Indeed,
as illustrated before, the equilibrium distribution of magnetization in a piece of
material is the result of the balance among coexisting energy terms, each one at-
tributable to an equivalent magnetic field, either external (Zeeman) or internal
(others), which attempts to align the magnetization along its own direction. For
each internal energy contribution, related to the magnetization environment, the
effective magnetic field can be computed according to the following equation:

µ0 Heff = − ∂E

∂M
(1.38)

The computation of the magnetization dynamics is accomplished by using micro-
magnetics simulator tools which integrate numerical methods for the resolution of
the LLG(S) equation. At each simulation step tn, the total effective magnetic field
Hn

eff is computed according to equation 1.38 starting from E n, representing the
total energy density characterizing the latest reduced magnetization vector mn.
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This supplemented with a random effective magnetic field term which scales with
temperature to account for thermal energy. The LLG differential equation is then
numerically solved to extract the reduced magnetization vector at the adapted time
step tn+1, i.e. mn+1, as a function of which the updated total energy density E n+1

will be determined to get the reconditioned effective magnetic field Hn+1
eff , in a

recursive manner. The self-consistent loop can be terminated when the magneti-
zation torque, matching the time derivative of the reduced magnetization vector
ṁ, is below a user-defined tolerance value, or after a certain number of steps (in
which case, one checks the total energy convergence to a constant value) [37]. This
iterative method can be summarized as here below (Figure 1.9):

Figure 1.9: Computation of the magnetization dynamics.

In MuMax3, the micromagnetic solver used in the course of this thesis work, both
the LLG equation and the Slonczewski spin momentum torque term are transformed
into the Landau–Lifshitz (LL) formalism [37]:

ṁ = − |γ0|
1 + α2

3
m × Heff + αm ×

1
m × Heff

24
+ τSL (1.39)

τSL = β
Ô − αÔÍ

1 + α2

3
m ×

1
mp × m

24
− β

ÔÍ − αÔ

1 + α2

1
m × mp

2
(1.40)

β = Jz ~
Ms me d

(1.41)

Ô = P (r, t) Λ2

(Λ2 + 1) + (Λ2 − 1)(m · mp) (1.42)

where Jz is density of charge current flowing along the transverse axis of the nanopil-
lar, Ms is the saturation magnetization, d is the free layer thickness, mp is the fixed
layer magnetization, P (r, t) is the spin polarization, Λ is the Slonczewski parameter,
characterizing the spacer layer, Ô and ÔÍ are the primary and secondary spin-torque
parameters, respectively.

The equation 1.39 is composed of two different contributions: the first is the LL
torque due to the effective magnetic field, while the second is the Slonczewski term,
due to the application of a current.
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1.3 – Micromagnetic concepts

Concerning the implementation of Sloncewski torque in equation 1.40, this is appli-
cable to the case of transport in a nanopillar or, more generally, in a STT-MRAM.
It is composed by two different terms that, in order of appearance, are called
damping-like (DL) torque and field-like (FL) torque, in analogy with the damping
and precession terms of LL equation, respectively.

In case of transport in a track, the magnetic state of a ferromagnet can be, as before,
perturbed by an electric current, which exerts a Spin Transfer Torque (STT) on
non-collinear magnetization. This phenomenon is again modeled by the Sloncewski
term τSL, which is now expressed as [38]:

τSL = −(u · ∇)m + βÍ m
1
(u · ∇)m

2
(1.43)

where u is the electron velocity vector, with an amplitude u = g µB mp Jc/(2 e Ms),
being Jc the current density flowing in the ferromagnetic layer, and βÍ is a dimen-
sionless parameter.

In this equation, it is possible to discriminate between two different contributions:
the former, often called adiabatic torque, acts in the plane of the incoming and out-
going electron spin direction, whereas the latter, known as non-adiabatic torque,
is oriented perpendicular to that plane [17]. The non-adiabatic mode occurs in
systems where the spacial magnetization variation is so fast that the transport
electrons are unable to locally adapt their intrinsic angular moment to the magne-
tization texture they traverse [39].

In order to implement the Spin-Orbit Torque (SOT) switching using MuMax3,
it is possible to impose in Equation 1.40 Λ = 1 and ÔÍ = 0 that, consistently with
the convention of the study by Dai M. & Hu J. (2020) [18], returns:

τSL = β θSH

2 (1 + α2)

3
m ×

1
σ × m

2
− α

1
σ × m

24
(1.44)

where θSH is the Spin Hall Angle in the underlying heavy-metal and σ the interface
spin polarization.

Now, by recalling the definition of the Bohr magneton µB = e ~/(2 me), it ap-
pears quite evident the direct correspondence between the expression of the Spin
Transfer Torque τSL and that of the Spin-Orbit Torque τSOT , that reads:

τSOT = − γ

1 + α2

1
m × HSOT − αHSOT

2
(1.45)

being the effective fieldHSOT = H0 (m× σ), the prefactor H0 = µB Jc θSH/(γe d Ms).
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Indeed, by collecting the common factor H0 and making it explicit, one obtains:

τSOT = ~ θSHJc

2 (1 + α2) me d Ms

3
m ×

1
σ × m

2
− α

1
σ × m

24
= β θSH

2 (1 + α2)

3
m ×

1
σ × m

2
− α

1
σ × m

24
(1.46)

As in case of STT transport in nanopillars, Equation 1.45 is comprised of two dis-
tinguished terms, where the former is name damping-like (DL) torque, modeling
the Spin Hall effect (SHE), while the latter field-like (FL) torque, related to the
Rashba-Eldestein effect (REE). Notice how the flow along the z axis is now deter-
mined by the spin current density Js = Jc θSH (SOT in a track), equivalent to the
spin polarized electric current density Jz P of equation 1.40 (SOT in a nanopillar).

1.4 Micromagnetic solver
MuMax3 [37] is an open source GPU-accelerated micromagnetic simulation soft-
ware developed at Dynamics of Functional Nano Materials (DyNaMat) group of the
department of Solid State Sciences at Ghent University. The Program Developer
is Arne Vansteenkiste. MuMax3 offers the possibility to implement extensive sim-
ulations on relatively cheap hardware and to collect results very shortly, by reason
of high performance and low memory requirements.

The micromagnetic theory is a continuous model: in order to solve the Lan-
dau–Lifshitz–Gilbert (LLG) equation numerically, the system has to be discretized.
To this purpose, MuMax3, mainly written in Golang, makes use of simulation do-
main finite difference (FD) discretization through a 2-D or 3-D single regular rect-
angular grid, consisting of equally sized orthorombic cells. The unit magnetization
vector is supposed to be uniform in each unit cell, i.e. each cell is featured by a
vector representing the associated magnetization amplitude and orientation. To be
more precise, volumetric quantities, e.g. the magnetization and the effective mag-
netic field, are associated to the center of each cell, whereas coupling quantities,
like the exchange strength, are depicted on the faces between the cells.

The choice of the cell size is quite delicate; indeed, to ensure a smooth variation
of the magnetization between neighboring cells, the minimum linear dimension ücell

has to be set such that to be smaller than the min (∆u, ∆d), where ∆u is the
Bloch length and ∆d the exchange length, the former measuring the typical width
over which magnetization may rotate by 180° in a magnetic sample, the latter the
relative strength of exchange and self-magnetostatic energies.
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1.4 – Micromagnetic solver

This condition is actually necessary but not sufficient: in chiral ferromagnets, the
magnetization might vary on a length scale much smaller than ∆d. Hence, one
has also to verify that the maximum angle between two neighboring magnetization
vectors in the simulation domain is smaller than θmax ∼ 0.35 rad, otherwise the
mesh nodes must be heightened in number. Nevertheless, one must also consider
the trade-off that exists between the level of accuracy and the computation time.

Another point that has to be highlighted is related to the number of cells Ncell:
the computation of the magnetostatic field is performed by resorting to the CUFFT,
the NVIDIA CUDA Fast Fourier Transform library, the algorithm of which is highly
optimized only if the set number of cells is 7-smooth (prime factors at most 7) or,
even better, powers of 2. The cut-off range of the dipolar interaction in a given
direction can be directly determined under the application of Periodic Boundary
Conditions (PBC), causing the magnetization distribution in the simulation domain
to evolve as an effect of the magnetostatic field of repeated magnetization images.

To save memory, MuMax3 allocates each cell into a region of index i, with i ranging
between 0 and 256. Different region indices represent different materials, so that
to create systems with non uniform material parameters, that can be also time
dependent.

Finally, MuMax3 offers the possibility of constructing and running the simulations
in an interactive mode, from within the web GUI.

R-K Solvers

In order to compute the approximate solution of Landau–Lifshitz–Gilbert (LLG)
equation, MuMax3 can implement multiple explicit Runge–Kutta methods, a class
of recursive methods, used in temporal discretization to numerically integrate ordi-
nary differential equations. In general, the family of explicit Runge–Kutta methods
is mathematically expressed as [40]:

yn+1 = yn + h
sØ

i=1
bi ki (1.47)

where

k1 = f(tn, yn)
k2 = f(tn + c2h, yn + h(a21k1))
k3 = f(tn + c3h, yn + h(a31k1 + a31k2))
...

ks = f(tn + csh, yn + h(as1k1 + as2k2 + · · · + as,s−1ks−1))
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A given method is specified by fixing the value s, i.e. the number of steps, and the
coefficients aij (1 ≤ j < i ≤ s), bi (i = 1,2, . . . , s) and ci (i = 2,3, . . . , s), where the
matrix of coefficient aij is named Runge–Kutta matrix. bi and ci are instead labeled
weights and nodes. It is possible to group the coefficients in a compact notation,
called Butcher tableau:

0
c2 a21
c3 a31 a32
... . . . . . .
cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

where qi−1
j=1 aij = ci for i = 2, . . . , s.

Starting from the magnetization at time tn in a given cell of the simulation do-
main, the methods extract the magnetization at time step tn+1, by adding to the
former the time interval h, which is multiplied by a weighted sum (with weighting
factors bi) of all the slopes ki estimated at different points of time and space dis-
cretized domains, based on previous extrapolation of other slopes, that are specific
to the employed method.

Most important First-Same-As-Last (FSAL) solvers implemented in MuMax3 are:
• the third order convergence Bogacki-Shampine solver, with embedded second

order method, used as default when attempting to relax the magnetization to
its ground state using the function relax(), disabling the precession term in
the LLG equation;

• the fourth order Dormand-Prince solver, with embedded third order method,
the default for dynamical simulations, which can be run using command run().

The aforementioned methods have the advantage of using adaptive time stepping,
which makes it possible to achieve the relative best solution with the minimum
computational cost: the time step dimension is changed during the computation
without the need of setting a fixed size for the whole simulation. Hence, fixed
step-size approach is not the most appropriate if the solution exhibits high vari-
ability over small subsets of the integration interval and little variability over larger
ones, leading to unneeded computation for slow variations of the solution. At each
computational step tn, the truncation error e is estimated by:

e = mn
HO − mn

LO (1.48)

where mn
HO and mn

LO are the magnetization values returned by the higher-order
and embedded lower-order methods, respectively [41].
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Afterwards, the time step size ∆tn is adapted such that the local error is as close as
possible to the tolerance tol, equal to 1×10−5 as default in MuMax3: this procedure
makes the local error to be uniformly distributed at each time step tn so that to
maximize the simulator performance still matching the wanted accuracy. In other
words, if e < tol, ∆tn is increased; if e > tol, ∆tn is decreased.

It might be erroneously thought that larger order solvers are always capable of
maximizing the efficiency because of the bigger time-step size required to gain the
same accuracy. Actually, this is not the case, because the simulation time depends
on both the time-step size and the number of torque evaluation performed at each
time step, which increases with the order of the chosen R-K method.

MuMax3 is designed to operate in Single-Precision Floating Point Format (32 bit),
which allows to run simulations in gaming GPU, much more budget friendly than
professional GPU. As a result, by shrinking the time-step size below a certain
threshold value, the truncation error does not decrease anymore.

1.5 Magnetic skyrmions

1.5.1 Characteristic quantities and topology
Magnetic skyrmions are chiral spin arrangements viewable as topological non-trivial
whirling spin textures with particle-like properties, that have been predicted and
observed in the event of broken inversion symmetry (SIA). The effect of the non-
trivial topology, at least in presence of an enough large sample, is that of making
the skyrmion topologically protected, thus contributing to its stability, and very
resistant to pinning by defect during the current induced motion. Nevertheless,
consequently to a Magnus-like force, current drifted skyrmions deviate from the
direction of electron flow and may be annihilated upon contacting the racetrack
edge. The underlying cause for the topological protection to become ineffective is
the continuous variation of the topological number, that is no more an integer value
(e.g. skyrmion to meron conversion) [42].

From a topological viewpoint, it is possible to characterize spin textures by means
of a number called topological charge:

Q = 1
4π

ÚÚ
dxdy (∂x m × ∂y m) · m (1.49)

It describes how many times the unit magnetic moments of a spin texture wrap
around a unit sphere.
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In case of a magnetic skyrmion, featured by a non-trivial spin texture, the topo-
logical charge is a non-zero, integer invariant, also called skyrmion number. As
defined in Section 1.2, the polarity p outlines the magnetization orientation at the
core of the skyrmion, that can be either parallel (p = +1) or antiparallel (p = −1)
to the z axis, that is set to be oriented along the outward normal of the sample
plane. This quantity p exhibits a strict correlation with the skyrmion number Q.
Indeed, for these two latter cases, the Equation 1.49, opportunely reformulated in
polar coordinates, takes the form:

Q = p · W (1.50)

W = 1
2π

[Φ(ϕ)]2π
0 (1.51)

where W is the winding number and Φ(ϕ) is defined in Figure 1.10 b).

Figure 1.10: a) Illustration of magnetic skyrmions [43]. Bloch (left) and Néel
(middle) skyrmions with topological charge Q = +1 and polarity p = +1. Anti-
skyrmion (right) with topological charge Q = −1 and polarity p = +1. The top
row depicts the 2D magnetic configuration of these spin textures, while the bottom
row the projection of the magnetic textures on the unit sphere. b) Schematics of
a magnetic skyrmion with polarity p = +1, winding number W = +1 and helic-
ity 0 < Ψ < π/2; definition of polar coordinates (r, ϕ) and spherical coordinates
(1, Φ, θ) for magnetization m. The green arrows depict the domain wall orientation
of magnetization where purely In-Plane (IP).

Magnetic spin textures with W = ±1 are called skyrmion and antiskyrmion, re-
spectively. Accordingly the topological charge is equal to Q = +p for the skyrmion
and to Q = −p for the antiskyrmion [43].
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It is interesting to notice how the spin orientation at the skyrmion center, aligned
with the z axis, is always antiparallel to the background magnetization of the
ferromagnetic material hosting the topological quasi-particle, which is indeed en-
dowed with Perpendicular Magnetic Anisotropy (PMA), resulting in an Out-Of-
Plane (OP) easy direction of magnetization.

Bloch and Néel skyrmions, both characterized by Q = +p, can be distinguished
only by the value of the helicity number Ψ, which is uniquely determined by the
type of DMI, i.e. of bulk or interfacial origin. Helicity can be defined as the angle of
global rotation around the z axis, as illustrated in Figure 1.10 b). A Néel skyrmion
can have Ψ equal to either 0 or π, while for a Bloch skyrmion it can be either π/2
or 3π/2 [43]. Figure 1.10 a) provides a picture of the afore-mentioned spin textures.

Chiral domain walls, and thus magnetic skyrmions, result from a competing effect
involving Heisenberg symmetric exchange and Dzyaloshinskii-Moriya (DM) anti-
symmetric exchange interactions, energetically favouring collinear and non-collinear
spin arrangements, respectively.

Magnetic skyrmions should not be confused with magnetic bubbles, that are actu-
ally “cylindrical magnetic domains whose magnetization is reversed to that in the
remainder of the thin magnetic layer in which they are present” [44]. However,
as in the case of the magnetic skyrmions, “these simple domain configuration will
only occur if the magnetic material has a uniaxial anisotropy with the easy axis of
magnetization perpendicular to the surface” [44]. Magnetic bubbles can be either
achiral, being enclosed by a non-chiral domain wall, or chiral. In this latter case,
they have the same topology as skyrmions and are hence referred to as skyrmionic
bubbles. Differently from magnetic skyrmions, stabilized by DMI and the size of
which is mainly insensitive to the effect of a magnetic field, magnetic bubbles are
stabilized by dipolar energy, making them extremely responsive to the Zeeman field
[45].

1.5.2 Skyrmion motion under current
The control and reliability of the current induced motion of skyrmions is an essential
prerequisite for potential involvement of such topological solitons in future solid
state devices, in such a way to overcome problems related to the domain wall
pinning by defects and high driving current density. The current driven skyrmion
dynamics is the outcome of the spin torque acting on the magnetic texture, resulting
from two well distinguished physical mechanisms that are: the Current In-Plane
Spin Transfer Torque (CIP-STT), for an electric current directly injected and spin
polarized by the ferromagnet (FM), and Spin-Orbit Torque (CIP-SOT), in case
of an electric current flowing in the adjacent heavy metal (HM) layer in presence
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of structural inversion asymmetry (SIA). The latter phenomenon, superior both
in terms of induced skyrmion velocity and power dissipation [1], results from the
torque induced by the spin accumulation at the FM/HM interface owing to either
the transverse spin current originated from the Spin Hall Effect (SHE), that is a bulk
effect, or from the 2-D charge-to-spin conversion caused by the Rashba-Eldestein
effect (REE), ascribed to the spin-momentum locking of the spin-polarized surface
states in presence of SIA (Figure 1.11).

Figure 1.11: Schematics of skyrmion motion under applied current (SOT).

The Thiele differential equation [46] analytically describes the steady-state mo-
tion of magnetic skyrmions. For the CIP-SOT case, this equation incorporates,
along with a dissipative term, the topological Magnus-like force, characterizing the
anomalous deviation of the skyrmion trajectory from the longitudinal electrical
flux:

4π B · jc + G × v − α D · v = 0 (1.52)

where the tensor B is the spin torque efficiency of the SHE, jc is the current
density flowing in the HM, with jc = js/θSH , js being the spin current density
and θSH the Spin Hall Angle in the heavy-metal; v is the skyrmion drift velocity,
G = (0, 0, −4π Ms t

γ
p) is the gyromagnetic coupling vector with γ gyromagnetic ra-

tio; α is the Gilbert damping coefficient and D the dissipative tensor.

The first term describes the longitudinal motion of the skyrmion due to SOT,
consistent with the direction of the electric current. Responsible for this is the
damping-like torque, representative of a magnetization dependent effective mag-
netic field.
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The latter allows us to predict which will be, time by time, the evolution of the
magnetization in each point of the spin texture, that adapts to the afore-mentioned
Zeeman stimulus, as well as to visualize the longitudinal skyrmion motion. The
equivalent damping-like magnetic field reads:

HDL = HDL

1
m ×

1
jc × z

22
(1.53)

where the term HDL depends on the SHA θSH , which is material dependent and
can be either positive or negative depending on the HM. It determines, together
with the skyrmion chirality, dictated by the iDMI sign, the net displacement of the
skyrmion along or against the current direction.

The second term, clearly oriented transverse to the skyrmion drift motion imposed
by the SHE, is the gyrotropic force, representing an equivalent of the hydrodynam-
ics Magnus force. It describes the so called Skyrmion Hall Effect (SkHE), similarly
to the Hall Effect for electric charges. Indeed, the deflection direction is dictated
by the sign of the skyrmion number and it may cause the skyrmion, no more topo-
logically protected, to be annihilated when crashing into the track border [16].

The third term accounts instead for dissipation, acting as viscous force in a liq-
uid. For a skyrmion radius R much larger than the domain wall width ∆, the
dissipative tensor diagonal elements reduce to D ≈ Mst

γ
2π R

∆ . This makes it particu-
larly easy to evaluate the Skyrmion Hall Angle ΘSkH , defined as the angle between
the electric current density injected the HM (jc) and the skyrmion velocity (v):

ΘSkH = G

αD
∼ − 2∆

αR
(1.54)
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1.6 Overview and objectives of the thesis
Schematics in Figure 1.12 helps to shorthand ideas about the logic flow at the
basis of micromagnetic simulations, representing the key instrument employed
in the course of this thesis, to investigate and characterize the physics underneath
magnetic skyrmions and, more generally, non-trivial spin textures.

Figure 1.12: Schematics of micromagnetic simulator logic flow.

1. In particular, the first purpose of this thesis work is to perform a numeri-
cal characterization of skyrmionic bubbles static properties, for Pt/Co/MgO-
based systems exhibiting perpendicular magnetic anisotropy (PMA). The static
analysis is aimed to explore the influence of a Zeeman field, the impact of the
sample geometry and the effect of Periodic Boundary Conditions on the
effective size and shape of the skyrmionic bubble. This is supplemented with
the computation of a phase diagram, designed to reveal the combinations
of iDMI and uniaxial anisotropy coefficients that make it possible to stabilize
the chiral magnetic bubble in zero magnetic field conditions, with and without
PBC. These phase diagrams will be used as a guide to explore the skyrmion
stability under a gate voltage.
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As both iDMI and interface anisotropy are tuneable under voltage gating with
a given efficiency, such phase diagrams may help in predicting the required
electric field efficiencies for dynamic control of magnetic skyrmions, resulting
from the voltage control of interfacial magnetic properties. The extraction of
the magnetic hysteresis closes the static portraiture of the skyrmionic bubble.

2. The second main objective is to explore peculiar stable states for this mag-
netic stack starting from a demagnetized state. Particularly, they are found
to be the skyrmion bubble lattice (1) and the multidomain state (2).
Notably, it will be shown that, when the magnetization is randomly initialized
to mimic a fully disordered state, the system can land either on the energy
minimum (1) or (2), depending on the applied magnetic field. In particular,
the skyrmion bubble lattice is stabilised by relaxing the initial random state
at µ0Happ = −50 mT and it preserves its stability by stepping the field up
to µ0Happ = 0 mT. As far as the multidomain state is concerned, this is in-
stead stabilised in conditions of no applied magnetic field. Accordingly, for
µ0Happ = 0 mT, both the magnetic distributions are potentially achievable,
depending on the magnetic history of the sample.

3. In the frame of the aforementioned multidomain state, domain walls and non-
trivial spin textures – such as skyrmionic bubbles, domain wall skyrmions
and double skyrmions – have been observed to survive simultaneously. More
details about the latter two topological solitons will be provided in Section 2.3.
The multidomain state will be proved to be stable against non-zero temper-
ature and resilient to granularity, for crystallites of varying dimensions. The
new topological excitation occurring in the unveiled multidomain state, here
called double skyrmion, consists of a skyrmionic bubble with a domain wall
skyrmion, i.e. 2 − π in-plane rotation of magnetization inside the otherwise
Néel homochiral domain wall. Actually, the core issue of this thesis work is
exactly constructed upon this distinct novel non-trivial spin texture, with the
aim of carrying out a full characterization of its static and dynamic behavior.
Specifically, the double skyrmion will be shown to be extremely responsive to
an external magnetic field and capable of withstanding both reduction and sign
reversal of the iDMI coefficient. The double skyrmion characteristic curves,
highlighting the evolution of the total energy and the effective diameter versus
µ0Happ and D, will be compared to those featuring the conventional skyrmionic
bubble. The static analysis is complemented with the inspection of the STT
and SOT driven dynamics for different geometries and amplitudes of the in-
jected current. In particular, for the SOT induced motion, it will be proved
the existence of different current regimes, offering the possibility of either driv-
ing the topological charge along the track or annihilating it, opening the path
to conceive logic devices. Also, a potential solution to nucleate these double
skyrmions and further manipulate them will be presented.
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Chapter 2

Micromagnetic simulations

All the micromagnetic simulations conducted during this thesis experience refer to
multilayered thin-film systems of type Pt/Co(0.9 nm)/MgO, with associated simu-
lation parameters listed in Table 2.1.

Film lateral size: L (nm) 500

Film thickness: t (nm) 0.9

Saturation magnetization: Ms (kA/m) 1420

Exchange stiffness: A (pJ/m) 16

Uniaxial anisotropy constant: Ku (MJ/m3) 1.36

DMI costant: D (mJ/m2) 1.27
Damping factor: α 0.37
Exchange length: ∆d (nm) 3.43

Bloch length: ∆u (nm) 3.55

Table 2.1: Pt/Co/MgO simulation parameters [47].

This sample has been already fully characterized in the past, where the nanomet-
ric thickness of the trilayer ultra-thin film represents an important prerequisite
for the development of efficient skyrmion-based devices. In more detail, Boulle et
al. (2016) [5] succeeded in demonstrating experimentally for the first time stable
magnetic skyrmions in sputtered ultra-thin Pt/Co(0.9 nm)/MgO nanostructures at
room temperature and zero external magnetic field, as well as the large interfacial–
DMI of such systems. Before this demonstration of skyrmions in sputtered ultra-
thin films, chiral skyrmionic structures had been experimentally observed only in
bulk specimens and in epitaxial ultra-thin films, in presence of an external magnetic

47



2 – Micromagnetic simulations

field or in low temperature regime. Afterwards, Juge et al. (2019) [6] reported
the fast steady-state current driven motion of Néel skyrmions at room tempera-
ture, with effective diameter in the range of 100 nm for the same magnetic stack.
In particular, they proved the possibility to establish a spin driven dynamics of
the magnetic skyrmions under Spin–Orbit Torque (SOT), with a drive-dependent
Skyrmion Hall Effect (SkHE) due to pinning and a speed up to 100 m/s (Figure
2.1).

Figure 2.1: a) X-ray Magnetic Circular Dichroism coupled to Photoemission Elec-
tron Microscopy (XMCD-PEEM) image (black dashed rectangle) showing isolated
skyrmions in the track, superimposed on a Scanning Electron Microscopy (SEM)
image of the device. b) – d) A sequence of XMCD-PEEM images showing a
skyrmion after two consecutive 8 ns current pulses with opposite polarities (the
scale bar is 200 nm). From Juge et al. (2019) [6].

As stated in the previous chapter, the energy landscape of a magnetic sample can
be viewed as composed of several local energy minima, representing equilibrium or
stable magnetization configurations, that are separated by energy barriers. In a
real sample, the transition between two stable states can be accomplished either
by thermal effects and precessional switching or by modulating the height of the
energy barrier under the action of an external torque acting on the magnetization,
operated by an external magnetic field or an electric current. At simulation level,
distinct stable states lying on the energy landscape can be reached by relaxing
different initial magnetization patterns, provided as inputs to the simulator. For
the studied material, in the range of negative magnetic field values, the fundamental
magnetization state, stabilized by symmetric exchange energy, was observed to be
the single domain state (Figure 2.16). In contrast, in zero magnetic field conditions,
the effect of dipolar is to favor the presence of magnetic domains to reduce the stray
field radiated out of the sample. The ground magnetization state is thus represented
by the magnetic skyrmionic bubble.
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During the thesis work, the attention was focused on four distinguished peculiar
stable states, that are: the magnetic skyrmionic bubble, the skyrmion bubble lat-
tice, the multidomain state and the more exotic double skyrmion, that has never
been reported to be stable before. Main results collected for the just mentioned
magnetic configurations will be detailed in the following sections.

2.1 The magnetic skyrmionic bubble
Magnetic skyrmions and skyrmionic bubbles, both observed in magnetic thin-film
with Out-Of-Plane (OP) easy axis, are topological spin structures, distinguish-
able for the characteristic size and the energy source accounting for their stabi-
lization, in spite of sharing the same topology (Q = +1). Indeed, the magnetic
skyrmion, mainly stabilized by Dzyaloshinskii-Moriya Interaction (DMI), is ideally
represented through a singular point perpendicularly magnetized at its core center,
encircled by a ring-shaped Néel domain wall. In real samples, this topological soli-
ton corresponds to a circular spin texture with a radius of the order of few ∆u (Bloch
length) or less, only weakly responsive to an applied magnetic field. In contrast,
the magnetic skyrmionic bubble is representative of an intermediate size soliton,
with a characteristic radius ranging from few tens to few thousands of nanometers.
It is stabilized mainly by dipolar interaction, is thus extremely sensitive to external
magnetic fields, and presents a longer lifetime at room temperature than skyrmions
[45], [48].

In the present work, micromagnetic simulations were employed to investigate the
effect of an applied magnetic field, the impact of the sample geometry and the influ-
ence of Periodic Boundary Conditions (PBC) onto a magnetic skyrmionic bubble.

Initial state

The static analysis of the magnetic bubble was carried out by setting Ncells =
256 × 256, value that returns ücell ∼ 1.95 nm < min(∆d, ∆u) = 3.43 nm. In order
to relax the system into the skyrmion bubble state, it was chosen as input for the
simulator a uniform magnetization state m = (0, 0, +1), redressed by an oppositely
magnetized central circular spot of size 100 nm. The abrupt, step-like alteration of
magnetization occurring at the frontier between the two magnetic domains, that
are 180° apart, is extremely costly in terms of symmetric exchange energy which, in
case of a ferromagnetic material, pushes for to make the neighboring spins oriented
parallel to each others. Consequently, a left-handed (LH) circular Néel domain
wall is formed due to positive sign of DMI coefficient, that leads to a characteristic
smooth rotation of the magnetization around the domain wall longitudinal axis.
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Under the local assumption of planar domain wall, the Néel domain wall energy
density, including contributions from exchange, anisotropy and DMI, can be ex-
pressed as:

σw = 4
ñ

AKeff − π|D| (2.1)

where Aex is the exchange stiffness (J/m), Keff = Ku − 1/2 µ0 M2
s is the effective

anisotropy (J/m3) and D is the effective DMI constant (J/m2). Here, the DMI has
the effect of making the Néel DW more energetically favourable with respect to the
Bloch DW, the energy of which is provided just by the first term of Equation 2.1
− even if volume charges usually prevent the formation of Néel DW in PMA films.
What is also important to highlight is the fact that the characteristic equilibrium
radius of the skyrmionic bubble does not depend on the size of the initial round
spot, but it is just dictated by the magnetic parameters and the effective magnetic
field the thin-film experiences. An overall view of the obtained results is provided
in Figure 2.2.

Figure 2.2: Schematics depicting the impact of magnetic field, sample geometry
and Periodic Boundary Conditions (PBC) onto a magnetic skyrmionic bubble. In
the first line the skyrmionic bubble stabilized with no external magnetic field for
a), b) square geometry and c), d) circular geometry, with and without PBC. In the
second line the skyrmionic bubble stabilized in presence of µ0Happ = −5 mT for e),
f) square geometry and g), h) circular geometry, with and without PBC. The bold
arrows in a) illustrate the purely In-Plane (IP) magnetization vectors. The white
arrows in the inner domains indicate the skyrmionic bubble diameter. The color
scale is associated to the Out-Of-Plane (OP) magnetization.
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Zeeman field

As illustrated in Figure 2.2, when a negative magnetic field collinear with the z
axis is applied, the inner magnetic domain enlarges at the expense of the outer one,
so that to minimize the Zeeman energy or, equivalently, as an effect of the torque
induced by the Zeeman field onto the magnetization. Thus, in accordance with
literature, it is possible to tune the size of the skyrmion bubble by modulating the
strength of the magnetic field. The diameter of the skyrmionic bubble is extracted
by computing the difference, in absolute value, of the two x coordinates at which
the z component mz of the unit magnetic vector is zero (fully IP magnetization),
as reported in Figure 2.3 a). In the same figure, it is possible to observe how at
the sample edges, i.e. for x = 0 and x = L, mz is slightly smaller than the unit,
because of the tilting of the magnetization vectors to reduce surface charges.

Figure 2.3: a) Extraction of magnetic bubble diameter Φ for no PBC case.
b) Magnetic bubble diameter Φ vs. PBC (N, N, 0) for N = 1, 2, . . . 20.

Both graphs refer to the condition µ0Happ = 0 mT.

Periodic Boundary Conditions

A second observed characteristic behavior is the enlargement of the magnetic bubble
in response to imposed PBC (Nx, Ny, Nz), which introduces a periodic repetition
of the simulation domain, with the dipolar field taken from the Ni next neighboring
samples along x, y and z directions. In the present case, the periodicity is just set
to be in the plane, i.e. Nx, Ny /= 0 and Nz = 0. The strength of the dipolar field
decreases as the distance from the magnetic source increases. This can be easily
visualized by considering the mutual energy of two pinpoint magnetic dipoles µ1
and µ2, both aligned along z axis and separated by a distance r:

E12 = µ0 µ1 µ2

4πr3 (1 − 3 cos2 θ) (2.2)

51



2 – Micromagnetic simulations

where µ0 = 4π×10−7 H/m is the vacuum permeability and θ is the angle between µ1
(collinear to z) and the vector r separating the two dipoles. Thus, it is energetically
preferred for two magnetic moments placed side by side to align antiparallel, so that
to close the stray field flux lines and reduce the surface charges (Figure 2.4).

Figure 2.4: Simply view on dipolar interaction.

Accordingly, one could mistakenly expect a shrinkage of the magnetic bubble, as
a result of identical copies now placed all around, that present the same core po-
larization. However, when PBC are set, also the magnetic background, that is the
external magnetic domain in the immediate surrounding of the magnetic bubble, is
expanded, which exerts a major effect as a result of the closer distance with respect
to the nearest neighboring bubble replicas.

When the value of Nx = Ny = N is enlarged, the magnetic bubble width ex-
hibits a steep increase up to N = 3, followed by a saturation tendency of the
diameter Φ(N) function for larger N values, as Figure 2.3 b) shows. This behavior
can be ascribed to two different effects: first, the repulsion from the edges, which
confine the magnetic material; second, the even weaker influence of the stray field
as the distance of the simulation window replicas increases. This latter analysis
was performed considering square geometry, but the same qualitative behavior is
expected and observed for circular geometry, as illustrated in Figure 2.2 c), d) and
g), h).

Sample geometry

The shape of the sample also plays a big role: practically, while expanding, the
skyrmionic bubble starts to interact with the sample edges and adapts to the geo-
metrical contour of the sample, being the circular skyrmionic bubble converted into
a square-like structure for a negative magnetic field applied in a square simulation
window. This can be interpreted as the effect of the repulsion exerted by the edges
of the sample which, if contacted, would led to the bubble annihilation, turn into
a uniform magnetization vector state.
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Phase diagram

To supplement the static analysis, phase diagrams were extracted, so to inspect
the regimes of skyrmionic bubble existence for different combinations of iDMI and
uniaxial anisotropy constants. The goal of this study is to mimic the effect of a gate
voltage tuning of both interfacial anisotropy and iDMI, with different efficiencies
depending on material parameters. The analysis was first carried out in absence
of PBC. The related phase diagram is depicted in Figure 2.5. Here, for the three
top lines (∆Ku = +5%, 0% − 5%), the effective magnetic anisotropy constant
is positive (Keff = Ku − 1/2 µ0 M2

s ∼ 161 kJ/m3, 93 kJ/m3, 25 kJ/m3) and the
magnetization is expected to be Out-Of-Plane (OP). However, a Ku0 variation of
-10% in the bottom line is enough strong to result in a sign change of the effective
magnetic anisotropy constant (Keff ∼ −43 kJ/m3), i.e. the Out-Of-Plane (OP)
magnetic anisotropy is converted into an In-Plane (IP) magnetic anisotropy. By
moving along an horizontal line in Figure 2.5, characterized by a fixed value of Ku,
thus by an IP or OP effective magnetic anisotropy, it is possible to observe how
the iDMI strength affects the magnetization distribution, where D determines the
absolute value and even the sign of the domain wall energy σw.

There is basically one major physical effect, analytically modeled by Equation 2.1,
that one has to be bear in mind to well interpret the magnetic behavior revealed
by the phase diagram: by increasing the iDMI constant D (respectively uniaxial
anisotropy constant Ku), the energy cost for the nucleation of Néel domain walls
diminishes (respectively raises). This concept can be easily visualized in case of
Ku = Ku0 (0% of variation), which imposes OP magnetization.

• For positive D0 variations (iDMI reinforcement), the system switches from
the skyrmionic bubble regime to the spin spiral state (negative σw) where, for
a given cross sectional line trajectory, the magnetization vector undergoes a
continual cycloidal rotation around the iDMI vector. This phenomenon occurs
because the domain wall energy becomes negative thus creating many domain
walls stabilizes the system.

• For negative D0 variation (iDMI reduction), the length of the Néel domain wall
enclosing the topological soliton is first reduced, through the gradual conver-
sion of the skyrmionic bubble into a magnetic skyrmion, eventually vanishing
into a uniform magnetization state. This is due to an increase of the domain
wall energy cost.

The same trend is re-proposed for a Ku0 variation of -5%, with the only difference
of reducing the minimum D value needed to promote the spin spiral state.
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Figure 2.5: Phase Diagram computed for PBC (0, 0, 0) and µ0Happ = 0 mT. On
x axis D and its percentage of variation ∆D, on y axis Ku and its percentage of
variation ∆Ku, with D0 = 1.27 mJ/m2 and Ku0 = 1.36 MJ/m3. Colors correspond
to In-Plane (IP) magnetized regions (the absolute color scale is meaningless). The
color gradient indicates a rotation of IP magnetization.

By further reducing Ku, with a total variation of -10%, as stated before, the ef-
fective magnetic anisotropy becomes negative. Upon this, two main effects can be
observed.

• First, for a fixed D value, large enough to have the spin spiral state stabilized
(σw < 0), the transverse width of the Néel domain wall is expanded if compared
to the foregoing line, because Keff < 0 favours the IP magnetization. To
provide a practical example, it is possible to compute the percentage of IP
component of magnetization in the sample at ∆D = +20%, which is equal to
mIP = 49% (respectively 63%) mT OT for ∆Ku = −5% (respectively −10%).

• Second, below a critical iDMI constant value, found to be Dc ∼ 0.9 D0, the
sample becomes first fully IP magnetized and then, for reduced iDMI, mag-
netic vortices are stabilized. The transition point between spin spiral to IP
magnetization state is verified in correspondence of a sign change of the do-
main wall energy σw, reported in Equation 2.1, which, for D < Dc, becomes
positive. This causes the Out-Of-Plane (OP) magnetization to be converted
into an In-Plane (IP) magnetization, promoted by the negative Keff sign. The
occurrence of magnetic vortices is verified for all the combinations of D and Ku

values, within the explored range (not wholly shown) ∆Ku ∈ [−50, −20] %.

A +5% increase of Ku0 prevents the skyrmionic bubble nucleation even for a D0
reduction of 10%; a Ku0 increment of 10% instead restricts the magnetization con-
figuration to the single domain state (mz = +1) (not shown).
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In the cases when the spin spiral or the single domain states are obtained at zero
magnetic field, there exist minimum absolute OP Zeeman field values that have to
be applied in order to carry the sample in the magnetic skyrmionic bubble regime.
In particular, in presence of spin spiral state, the Zeeman field needs to be positive,
i.e. oriented along +z, in such a way to constrict the spiraling (black) magnetic
domain(s), directed along −z, into a unique reshaped circular (black) magnetic
domain. On the opposite, for a uniform (white) magnetization state, with mag-
netization oriented along +z, an oppositely polarized Zeeman field is required, so
that to restore the (black) magnetic domain, oriented along −z, which constitutes
the magnetic skyrmionic bubble.

The analysis was then carried out in presence of PBC (10, 10, 0) (not shown), where
N = 10 leads to magnetic bubble size saturation regime, as illustrated in Figure
2.3. The application of Periodic Boundary Conditions has the effect of enlarging
the (black) magnetic domain polarized along −z (not shown). This fact has two
main consequences. First, the skyrmionic bubble area is increased, because the
magnetostatic field favouring its core is amplified; second, the iDMI value needed
for the inner magnetic domain to deviate from the simple circular or square geom-
etry is reduced. Also, in presence of PBC, magnetic vortices are never observed.
This may be understood as vortices appear in order to decrease the surface charges
on the edges of the sample: in presence of PBC, the sample has no edges, thus
uniform IP magnetization is more stable.

By repeating the micromagnetic simulations for Ku = Ku0 with an extremely re-
fined mesh (Ncells = 1024 × 1024), the magnetic skyrmion is stabilized down to
∆D = −40%. This proves how there is a shift of the minimum iDMI strength for
which the magnetic skyrmion is stable, depending on the number of cells. This is
because tinier topological solitons could be numerically supported as a consequence
of the ücell reduction. A similar effect is obtained in the case of double skyrmion,
that will be discussed in Section 2.3.

To establish a link between numerical results and experimental work, it is im-
portant to underline how, in the context of voltage tuning of iDMI and interfacial
magnetic anisotropy, the electric field at the ferromagnet/oxide interface, estab-
lished by the applied voltage, should not be higher than Eb = 1 V/nm, to prevent
the dielectric breakdown of the oxide. Taking as reference value for the electric
field efficiency on both iDMI and PMA β = 200 fJ/(Vm) [16], from Equations 1.36
and 1.27, it is possible to estimate the maximum allowed variations of D and Ks

(in absolute value), by imposing E = Eb. In particular, the computation returns
|∆D|max = |∆Ks|max = 0.2 mJ/m2, which corresponds to a percentage of variation
|∆D|max = +15% for the iDMI constant and |∆Ku|max = +16% for the uniaxial
anisotropy constant.
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We see in Figure 2.5 that, starting from D0 and Ku0 as an initial state, one could
reach string modification of the skyrmionic bubble size if D is modulated and
stronger changes of magnetic texture if Ku is varied. If one wants to modify a
skyrmionic bubble by a gate voltage, its annihilation would be very easy by a
change of PMA, while iDMI mainly provides a change of diameter. Depending on
the required application, one would thus have to independently optimize and tune
the initial value of D and Ku and their sensitivities to gate voltage.

Hysteresis loop

To complete the static analysis, the mz hysteresis loop was drawn out, to under-
stand how the skyrmionic bubble behaves under an applied magnetic field. Practi-
cally, this task was accomplished both with the use of run() command, by choosing
Ncells = 256×256, and of minimize() command, either by setting Ncells = 256×256
or Ncells = 1024 × 1024. While the run() command is employed to solve the LLG
equation, the command minimize() uses the Steepest Conjugate Gradient Method
to attempt the minimization of the total energy and it should be employed when-
ever a given magnetization configuration is relatively close to the equilibrium state.
A small tilting of θ = 1° was introduced in the otherwise OP magnetic field vector
to avoid possible artefacts generated by the symmetry. From now on, the adjec-
tive up will be indicative of magnetization oriented along +z; the opposite for down.

The micromagnetic simulation was initiated by a down circle surrounded by up
magnetization. The magnetic field was then stepped up and down starting from
µ0Happ = 0 mT, to identify the critical positive and negative magnetic field values
which cause the conversion of the skyrmionic bubble into an up and down uni-
form magnetization states, respectively. After the skyrmionic bubble annihilation
above (respectively below) the critical positive (respectively negative) magnetic
field value, when the latter is decreased (respectively increased) again, the system
is numerically restricted to endure in the uniform magnetization state, because of
the energy barrier to be overcome for the re-nucleation of the topological soliton,
and the fact that there are no fluctuations in these simulations to overcome it. A
second observation regards the two branches of hysteresis curve, descending and as-
cending, found by starting the simulation from positive and negative magnetic field
values, below and above the critical values, respectively. Particularly, these two
branches appeared to be degenerate and coincident with the falling branch of the
complete magnetization curve, that is the one intercepting the y axis at H = −Hc,
with Hc coercivity field. Physically, this is equivalent to state the amount of work
provided to the system upon the loop, given by the area circumscribed by the the
same loop, is zero.
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The same behavior is observed by reversing the initial magnetization state, but in
this case the rising branch of the full magnetization curve is traced, which cuts the
y axis at H = +Hc, because of the nucleation of a skyrmion bubble with positive
core polarization. Thus, for a given initial state, stepping up or down the Zeeman
field is a reversible process, unless the skyrmion is annihilated.

Therefore, the extraction of the full hysteresis curve from the down (respectively
up) circular spot centering an up (respectively down) square window is actually
prevented, because the initial magnetization state breaks the symmetry, favouring
the relaxation of the magnetic system into a skyrmionic bubble with negative (re-
spectively positive) core polarization. The extrapolation of the centro-symmetric
hysteresis loop, shown in Figure 2.6, is accomplished by merging the branches got
with the down spot with the ones derived from the complementary initial magne-
tization state.

Figure 2.6: Hysteresis curves for Out-Of-Plane (OP) Zeeman field with a) 256×256
and b) 1024 × 1024 cells, compared to case a). µ0H

U
c 1,2 and µ0H

D
c 1,2 indicate the

negative (1) and positive (2) critical magnetic field values for p = +1 and p = −1
polarities, respectively.

The curves obtained for 256×256 and 1024×1024 cells perfectly retrace each others
with the only exception, in the latter case, of increased absolute magnetic field
amplitude needed for the skyrmionic bubble to be annihilated. Indeed, in the former
case (Ncells = 256 × 256), the critical magnetic field values for the the p = −1 (p =
+1) magnetic bubbles – with p core polarity – identified with a step of µ0Hstep =
+1 mT, are: µ0Hc1 = −36mT (−46mT) and µ0Hc2 = +46mT (+36mT). Instead,
concerning the latter case (Ncells = 1024 × 1024), owing to the drastic reduction
of the unit cell extent, the following values are found: µ0Hc1 = −37mT (−118mT)
and µ0Hc2 = +118mT (+37mT).
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The annihilation field when expanding the skyrmion is similar in both cases. How-
ever, the annihilation fields when the skyrmion shrinks show a remarkable diver-
gence. This is because a finer mesh makes it possible to keep a non-homogeneous
magnetization over smaller sizes. Figure 2.7 illustrates the size variation in the
Zeeman field range ensuring the stabilization of the skyrmionic bubble, for p = +1
and p = −1 core polarities and Ncells = 1024 × 1024.

Figure 2.7: Effective diameter for p = −1 and p = +1 polarities in the magnetic
field range of skyrmionic bubble regime (Ncells = 1024 × 1024).

In order to validate the results obtained through the command minimize(), the
hysteresis loop was computed by the use of command run() (not shown), limiting
to the specific case of down circular spot as initial state and Ncells = 256 × 256 to
abate the simulation time. The result manifests an ultimate superimposition with
the curve got by minimize(), where the latter command has to be definitively
preferred to draw magnetization loop in case of skyrmionic bubble, because of the
extremely higher computational efficiency and, at the same time, reliability of the
outcomes.

2.2 The skyrmion bubble lattice
Magnetic skyrmions were recently observed in ultra-thin multilayers with Perpen-
dicular Magnetic Anisotropy (PMA). Here, the strong Spin–Orbit Coupling (SOC)
and the antisymmetric interfaces (SIA) set up interfacial Dzyaloshinskii-Moriya in-
teraction (iDMI), that stabilises Néel magnetic skyrmions with specific chirality.
As explained in Chapter 1, Spin–Orbit Torque (SOT) is a novel current induced
mechanism employed to write skyrmions and drive their motion in skyrmion-based
devices. However, despite SOT being extremely efficient in controlling the skyrmion
motion in the case of Néel domain walls, the electric current based nucleation
schemes are generally highly power consuming and lead to a crosstalking between
writing (nucleating) and driving (moving) operations.
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A remarkable headway in fulfilling the requirements of fast, efficient, controllable
and local skyrmion creation is represented by the ultra-fast all-optical manipulation
of magnetic textures, which also enables a decoupling of the writing and driving
operations. Recently, Je et al. (2018) demonstrated the ultra-fast laser heating-
induced generation of skyrmion bubble lattice in Ta/FeCoB/TaOx trilayer thin-film
[7]. In the following, micromagnetic simulation outcomes obtained for Pt/Co/MgO
will be presented.

Figure 2.8: a) Initial random magnetization state. b) Skyrmion bubble lattice
stabilised at T = 0 K for µ0Happ = −50 mT and no PBC. The color scale is as-
sociated to the Out-Of-Plane (OP) magnetization. c) Equilibrium magnetization
distribution at T = 10 K for µ0Happ = −50 mT and no PBC, with magnetization
in b) taken as initial state. d) Skyrmion bubble label convention. Circular and tri-
angular markers indicate the bubble cores, without and with thermal fluctuation,
respectively.

The aftermath of thermal demagnetization is mimicked by prescribing an initial
random magnetization state to the simulator, shown in Figure 2.8 a), which would
be experimentally obtained if the sample was subjected to a laser pulse. The number
of cells is set to Ncells = 512 × 512. Under the application of a perpendicular
external magnetic field µ0Happ = −50 mT, after a transient phase, the system
reaches a local minimum corresponding to the magnetic skyrmion bubble lattice of
Figure 2.8 b), characterized by nearly hexagonal symmetry, in perfect agreement
with results of Je et al. (2018) [7]. The skyrmion bubble lattice is made up of
fifteen mutually interacting Néel magnetic skyrmions, each one with a topological
charge Q = +1. The total topological charge is thus equal to Q = +15. The
magnetization distribution is shown to be robust against thermal fluctuations, as
Figure 2.8 c) reveals. In particular, the micromagnetic simulation at non-zero
temperature, set to T = 10 K, is performed by imposing the stabilised skyrmion
bubble lattice of Figure 2.8 b) as initial state. The thermal action just induces a
blurring of the domain walls, consequence of the random magnetization fluctuation,
combined with a random shift of the magnetic bubble cores. Accordingly, the total
topological charge is preserved.
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Figure 2.8 d) illustrates the bubble core sites with and without thermal effects
and provides the label convention used for modelling the fifteen skyrmions. The
induced thermal perturbation also causes a slight overall increase of the skyrmion
size: the average diameter, equal to Φav = 12.29 nm for the unperturbed case, is
indeed increased by around 1.6% at T = 10 K. The estimated average diameters
have an uncertainty of Ô = L/Ncells,i = 0.98 nm. It is only right to highlight how the
thermal effect is treated phenomenologically; the input temperature T is just an
effective temperature, while the actual thermal field depends also on the saturation
magnetization Ms, the numerical mesh, and the damping factor α. Also, one should
remember that the LLG equation is valid just close to zero temperature. For all
these reasons, considering the overdamping and the presence of interfaces in the
sample under analysis, in the context of micromagnetic simulations, the imposed
value T = 10 K is adequate to model the effect of a thermal field close to room
temperature.

Figure 2.9: a) mz 3-D plot for the skyrmion bubble lattice at T = 0 K and no
PBC. b) Skyrmion bubble lattice mz map stabilised at T = 0 K for µ0Happ =
−50 mT and PBC (10, 10, 0). The numbers indicate the label convention. The color
scale is associated to the Out-Of-Plane (OP) magnetization. c) Bubble diameter
distribution for T = 0 K and no PBC compared to the single bubble case (Φ =
12.65 nm). d) Bubble diameter distribution for T = 0 K and PBC (10, 10, 0)
compared to the single bubble case (Φ = 13.41 nm).
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The spatial ordering of the fifteen Néel skyrmions directly results from the long-
range dipolar interaction. Indeed, the topological solitons repel each other when
associated to the same core polarization p, under the effect of the stray field. The
mutual interaction is also evidenced by the reduced average diameter (by around
2.8%) of the magnetic skyrmion bubble belonging to the hexagonal lattice, when
compared to the case of having just one at the center of the simulation window
(Φ = 12.65 nm), which benefits from an extended magnetic background (Figure
2.7). This latter concept is illustrated in Figures 2.9 c).

Figures 2.9 b) and d) image the effect of sample edge removal: when PBC (10,
10, 0) are imposed, as for the single skyrmionic bubble diameter (increased by
around 6.0%) all the topological solitons increase their size (by 8.4% on average).
Also, in presence of PBC, owing to the deletion of the repulsive force exerted by
the edges, the skyrmionic bubbles spread all over the simulation window, stepping
away from each other.

Figure 2.10: a) Evolution of the skyrmion bubble lattice Out-Of-Plane (OP) magne-
tization mz with the external magnetic field µ0Happ, ranging from −50 mT to 0 mT
in steps of +10 mT. The related data are extracted using the command relax()
for T = 0 K and no PBC. The color scale is associated to the OP magnetization. b)
(Corresponding) magnetic bubble average diameter Φ (black curve) and OP mag-
netization mz (red curve) as a function of the OP external magnetic field µ0Happ

for T = 0 K and no PBC.

Starting from the stabilised skyrmion bubble lattice at µ0Happ = −50 mT, by step-
ping up the Out-Of-Plane (OP) Zeeman field till µ0Happ = 0 mT, with µ0Hstep =
+10 mT, it is possible to observe the expansion of the average skyrmion bubble
size, depicted in Figure 2.10 a). Reasonably, this is accompanied by a growth of
the total magnetization z component mz, which becomes even less negative, due to
the contribution of the increasingly large bubble magnetic domains, as Figure 2.10
b) shows.

61



2 – Micromagnetic simulations

Interestingly, in zero magnetic field conditions, the inner skyrmionic bubbles re-
sult evidently squeezed when compared to the outer ones, as a direct consequence
of the strengthened demagnetizing field lines ejected from the surrounding bubble
magnetic domains.

The objective of the next section, starting from the same thermally demagnetized
state, is to illustrate the possibility for the magnetic stack to approach an unusual
distinctive stable state, which until now has not had any correspondence in lit-
erature. In particular, it will be shown that such stable state, hereinafter called
magnetic multidomain state, accomodates a newly disclosed topological excitation,
here labeled double skyrmion, which will be thoroughly characterized.

2.3 The magnetic double skyrmion

2.3.1 Introduction and state of the art
The DMI interaction allows the stabilization of a wide range of topological magnetic
quasi-particles, which are protected from collapsing into the background magneti-
zation state, including skyrmions, anti-skyrmions, skyrmioniums, merons or, more
in general, skyrmion bags [3]. Among them, a new kind of 1-D topologically pro-
tected excitation, namely the domain wall skyrmion (DWSk), has latterly entered
the game of spintronics, being the subject of manifold recent publications found in
literature. The domain wall skyrmion, as the name suggests, represents a 2 − π
rotation of the In-Plane (IP) magnetization components within a Néel domain wall
[49], stabilised mainly by dipolar energy, as shown in Figure 2.11 d). As a matter
of fact, the local twist of magnetization, even though extremely confined, may be
regarded as a one-dimensional 2 − π domain wall, which aids looping the magnetic
field flux lines. Both such circumscribed 1-D skyrmion and 2-D skyrmions can be
minimally defined as having an integer topological charge, that can be equal to
Q = ±1.

Something that should be mentioned is that the direction of magnetization ro-
tation for 1-D skyrmion, in contrast to 2-D skyrmion, is not dictated by iDMI.
Furthermore, the core of the 1-D skyrmion has a magnetization orientation which
opposes the chirality imposed by the iDMI sign. DWSk is comparable to 2 − π
Vertical Bloch Line (VBL) coming about in Bloch instead of Néel domain walls
and having an integer topological charge of Q = ±1 [50]. Schematics of 1 − π
and n − π VBL, homochiral Néel DW and DWSk are provided in Figures 2.11
a) and b). Domain wall skyrmions may pave the way for the realization of novel
efficient spintronics [51]. Indeed, they have the great advantage of being restricted
to move within the magnetic domain wall, which serves as a track, being therefore
insensitive to edge pinning.
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For the very same reason, they are prevented to drift in undesired directions as
with 2-D skyrmions (via SkHE) [50].

Figure 2.11: Schematics depicting the internal magnetization of a) 1 − π Vertical
Bloch Line, b) n − π Vertical Bloch Line, c) chiral Néel domain wall, and d) do-
main wall skyrmion. e) Predicted phase diagram depicting conditions where the
aforementioned magnetic textures can be expected to be observed with respect to
DMI strength and film thickness in Pt/Co/Ni/Ir samples [50].

Theories without a Skyrme term can provide fixed size skyrmions located on a do-
main wall. Jennings and Sutcliffe (2013) [52] numerically investigated for the first
time the DWSk dynamics in a relativistic (2 + 1)−dimensional (planar) theory, to
prove both the skyrmion stability and the multi-skyrmion scattering. In the spe-
cific case of chiral magnets, the Skyrme term is replaced by Dzyaloshinskii-Moriya
Interaction (DMI), accounting for the nucleation of Néel magnetic skyrmions. In-
stead, in the present case, a static single skyrmion was numerically constructed on
a domain wall in (2 + 1)−dimensions by including in the total energy an additional
in-plane anisotropy contribution and by imposing suitable boundary conditions to
the function θ(y). Here, θ represents the angle between the generic unit vector m
and the z axis, outward normal to the simulation plane, while y is the transverse
axis. Figure 2.12 highlights the in-plane winding structure discrepancies, arising
when a standard Sk and a DWSk are compared.
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Figure 2.12: xy plane winding structure for conventional skyrmion (left) and do-
main wall skyrmion (right). The colour represents the value of m3 and the arrow
indicates the amplitude and direction of the two-component vector (m1, m2) [52].

In particular, the colour indicates the amplitude of m3, while the arrows represent
the magnetization vector projected in the xy plane. The origin of the plane is
placed at the center of the simulation window. Focusing on the DWSk (right), by
aligning along y lines, m3 exhibits a monotonic increase from −1 to +1 and the
vector (m1, m2) has a constant direction; x lines instead revels a constant m3 vec-
tor which implies constant magnitude for (m1, m2) vector that at, the same time,
rotates through one revolution, being asymptotically equal to (0, +1) at the x line
endpoints. It is quite evident how, although the winding structure of the DWSk
appears quite dissimilar from that of the conventional skyrmion, again any point
of the unit sphere can be covered by the space distribution of the magnetization
vector. In this work [52], the DWSk is shown to be resilient to a wiggle introduced
in the domain wall, providing a strong numerical evidence of its stability. Also, a
DWSk, boosted with an initial velocity towards a second identical soliton on the
same domain wall, is demonstrated to experience a repulsive force. Last but not
least, a more exotic phenomenon is presented, where DW skyrmions survive the
process in which two half-walls straighten into a single wall, to subsequently move
apart along the remaining straight wall due to their repulsive interaction. This is
a further evidence in support of their stability.

Atomistic simulation results obtained by Lepadatu (2020) [49] show how, together
with skyrmions and skyrmioniums, transient domain wall skyrmions can emerge in
systems with structural inversion asymmetry (SIA), both antiferromagnetic (AFM)
and ferromagnetic (FM), during magnetization recovery processes after material ir-
radiation through an ultra-fast laser pulse. In spite of the creation of large number
of DWSk during the skyrmion creation stage, they are not found in the relaxed
state due to both quick thermal decay and pair annihilation with opposite topolog-
ical charge skyrmions.
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Magnetic domain wall skyrmions were experimentally observed for the first time
by Li et al. (2020) [50] using Lorentz Transmission Electron Microscopy (LTEM).
The elusivity of prior experimental evidences is likely attributable to the small win-
dow of DMI strength and film thickness required for their stabilization [50] and,
as previously shown, due to rapid thermal activated collapse [49]. The experi-
mental inspection was carried out in an asymmetric multi-layer system based on
(Pt/[Co/Ni]M/Ir)N , where a reduction in M accounts for an enhanced interfacial
DMI from the Pt/Co and the Ni/Ir interfaces, while N controls the optimal total
film thickness for the nucleation of DWSk. A qualitative magnetic phase diagram,
result of a systematic study of this multi-layer system, depicts the region where
DWSk are theoretically expected to be observed and were actually observed by
LTEM (Figure 2.11 e)). Such a region corresponds to high DMI, increased above
the critical value to stabilize chiral Néel DW, and low film thickness, where t is
small enough to suppress the formation of hybrid DW, that are DW having a non-
constant structure along the direction perpendicular to the film.

Domain wall skyrmions were also experimentally disclosed by Nagase et al. (2020)
[51], again by using LTEM. In this study, a direct observation of these topological
defects in cubic chiral magnetic thin-films of the type Co8.5 Zn7.5Mn4 (110), with
thickness of t ∼ 50 nm, was reported. More in detail, under the application of out-
of-plane magnetic field, DWSk appear as pairing up with the conventional DW. In
addition, micromagnetic simulation results suggest that DWSk can largely nucle-
ate in cubic chiral magnet (110) thin-films with large magnetocrystalline anisotropy.

Je (2020) [4] numerically studied the dynamic process of the skyrmion nucleation,
which is still object of the study, carrying out micromagnetic simulations using
the Object Oriented MicroMagnetic Framework (OOMMF) public code with DMI
package tool. In this work, the simulation parameters correspond to a 0.3 nm thick
Ta/FeCoB/TaOx thin-film. The transition of the sample into the skyrmionic state
can be thermally activated, for example by shining a laser beam to exploit localized
heating, so that to assist the system in overcoming certain barriers in the energy
landscape to reach the magnetic skyrmion energy well. However, to switch be-
tween the single/multiple domain and skyrmionic states, the latter associated to
a different total Q, requires a change in the topological charge, which is mediated
by the emergence and annihilation of 1-D skyrmions, modifying domain wall mor-
phology. In particular, for D > 0, Head-to-Head (H2H) and Tail-to-Tail (T2T) 1-D
skyrmions – hereinafter called anti-kink and kink and characterized by topological
charges Q = −1 and Q = +1 respectively – annihilate in pairs. Such spin textures,
illustrated in Figure 2.13, are visually distinguishable from one another by the in-
duced domain wall convex and concave profiles respectively, as Figure 2.14 f) shows
(continuous line circles).
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The localized bending of the domain wall is indicative of the 1-D skyrmion exceeding
cost in terms of antisymmetric exchange energy [8]. As a matter of fact, in order to
keep the In-Plane (IP) magnetization vector transverse to the domain wall for the
maximum possible extent, to reduce at minimum its Bloch-like nature – disfavoured
by the Dzyaloshinskii-Moriya Interaction – a narrow characteristic curvature is
induced. In this study [4], it is reported the dominant role, played by 1-D skyrmions
appearing in flat and circular domain walls, in the topology evolution of skyrmion
generation. The system is initialized through a random magnetization state in the
center of the simulation window, to mimic the nucleation of magnetic skyrmions
from a thermally demagnetized region. The magnetization relaxation is induced
in presence of an out-of-plane magnetic field of µ0Happ = +8 mT. The unitary
discrete jumps of the topological charge revealed in the course of transient time
are correlated to the annihilation of the topological defects embedded in the Néel
domain walls.

Figure 2.13: Schematics depicting the internal magnetization of a), b) 1−π Vertical
Bloch Lines of topological charge Q = ∓1/2 for zero DMI and c), d) domain wall
skyrmions of topological charges Q = ∓1, Head-to-Head (H2H) and Tail-to-Tail
(T2T) respectively, for positive DMI [8].

Chiral skyrmionic bubbles, embodying one or multiple 1-D skyrmions inside the
otherwise homochiral Néel domain wall, have been numerically foretold as solitonic
solutions [3]; nevertheless, apart from the work of Je (2020) [4], the dipolar inter-
action, which is potentially the primary reason accounting for the stability of such
narrow magnetization knots, was not hold in consideration. The main contribution
to the literature of the present thesis work, inclusive of dipolar energy term, is the
evidence of the stability, after magnetization regaining, of a newfound particle-like
excitation, here named double skyrmion (DSk), which likely survives concomitantly
with other non-trivial magnetic spin textures. Hereafter the main micromagnetic
simulation results centered on the double skyrmion will be presented, with the goal
of investigating its distinctive static and dynamic properties when compared to a
conventional skyrmionic bubble of well-defined chirality.
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2.3.2 Numerical characterization results
The multidomain state

In this thesis work it is numerically evidenced that magnetic kinks can be stabi-
lized, after magnetization recovery process, in both flat Néel domain walls and,
anew, in the domain wall of Néel skyrmionic bubbles. To distinguish between these
two peculiar cases, they are hereafter referred to as domain wall skyrmion (DWSk)
or kink, and double skyrmion (DSk), respectively. As already stated, a random
magnetization state imposed as initial magnetic configuration, depicted in Figure
2.14 a), allows to mimic the effect of material irradiation through an ultra-fast laser
pulse, which causes the ferromagnetic layer to be fully demagnetized in short-time
scale, as a direct consequence of the induced thermal heating (T > TC , the Curie
temperature). When the external magnetic field is set to zero (by contrast to the
previously treated skyrmion bubble lattice), the initial demagnetized state, after
several relaxation steps – as detailed in the following – numerically converges to-
wards the (here called) magnetic multidomain state, illustrated in Figure 2.14 c).
The magnetic configuration reveals the simultaneous presence of two Néel domain
walls, the top one entrapping two DWSk (2 × quasi-particles of Q = +1), three
conventional Néel skyrmionic bubbles (3 × quasi-particles of Q = +1) and, last
but not least, two DSk (2 × quasi-particles of Q = +2), superposition of a Néel
skyrmionic bubble and a DWSk. The total topological charge of the thin-film is
thus expected to be Q = +9, a value which is fairly close to the numerical one, equal
to Qnum ∼ +8.75. The non-integer value of the numerical topological charge can
be explained considering the finite size of the sample, the localization of magnetic
kinks in nearly flat non-closed domain walls of finite extent, abruptly cut by the
sample edges, and the space discretization in square unit cells. It is important to
emphasise that the essential prerequisite to make magnetic kinks steadily visible at
simulation level is to set an extremely refined mesh, which enhances the resolution
above the characteristic length of these new topological structures. Here, the size
of the unit cell, equal to ücell = 0.49 nm, is fairly smaller than both the exchange
length (∆d = 3.43 nm) and the Bloch length (∆u = 3.55 nm).

For a better understanding of the adopted technique, it is possible to follow the
implemented steps in the same Figure 2.14. In detail, the random magnetiza-
tion state of Figure 2.14 a) was first relaxed (relax() command) by imposing
Ncells = 1024 × 1024, so that to keep the MaxAngle value within specifications,
as shown in Figure 2.14 b). Afterwards, the relaxed magnetic state, featured by
several kinks (Q = +1) and anti-kinks (Q = −1) and a total topological charge
Qnum ∼ +6.5, was run (run() command) to properly study the dynamics of the
topological charge evolution.

67



2 – Micromagnetic simulations

Figure 2.14: a) Initial random magnetization state. b) Relaxed magnetization state
at T = 0 K (relax() command). c) Multidomain equilibrium state at T = 0 K
(run() command). d) Multidomain state at T = +10 K after 20 ns of integra-
tion. e) Zoom on domain wall skyrmion accomodated by a left-handed (LH) Néel
DW. f) Evolution of magnetization with integration time starting from the state
obtained with relax() command of Figure b). g) CIP-SOT driven motion for
Japp = +5 × 1010 A/m2 injected parallel to x axis and PBC (1, 1, 0). The color
scale is associated to the Out-Of-Plane (OP) magnetization. The applied magnetic
field is zero.

In the course of the magnetization progression towards the local energy minimum
of Figure 2.14 f), the attractive force between the two oppositely charged DWSk
(encircled with continuous line), sited in correspondence of the bottom domain wall,
is revealed. Indeed, the co-located kink (Q = +1) and anti-kink (Q = −1), visually
discernable by the concave and convex profiles respectively, annihilated after having
approached each other, resulting in a flat Néel domain wall. This finding is in
agreement with result of Jennings and Sutcliffe (2013) [52]. The antithetical case,
i.e. the repulsive force between equally charged 1-D skyrmions (encircled with
dashed line), is also disclosed. This latter numerical evidence is confirmed by
simulating the CIP-SOT driven motion of the equilibrium multidomain state, with
Japp = 5 × 1010 A/m2 oriented along x axis and PBC (1, 1, 0), as Figure 2.14 g)
shows: particularly, the two kinks on the top domain wall start to draw closer to
one another at first, to retreat after having reached a minimum critical distance,
alongside the inversion of the domain wall slope.
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Resilience of 1-D skyrmions to temperature and material inhomogeneity

A further inspection of the robustness of such topological objects demanded to check
both the thermal stability and the resilience to granular structure. To this purpose,
the equilibrium magnetic configuration of Figure 2.14 c) was imposed as initial
state for micromagnetic simulations. The equilibrium magnetization distribution at
non-zero temperature was then calculated from the numerical solution of stochastic
Landau-Lifshitz Gilbert (sLLG) equation [53], by imposing an effective temperature
of T = 10 K. As displayed in Figure 2.14 d), the effect of thermal perturbation is
just that of blurring the contour of the domain walls, fact that numerically predicts
the thermal stability at room temperature.

Figure 2.15: Out-Of-Plane (OP) equilibrium magnetization distribution superposed
by the cartography of the granular structure for a) 3 nm, b) 7 nm and c) 15 nm
grains, with normally distributed uniaxial magnetic anisotropy (σ/µ = 10%) and
10% exchange coupling reduction at the grain boundaries. From d) to e), corre-
sponding maps of topological charge density with total integrated Q.

Thereafter, in order to model real polycrystalline materials, composed of many
crystallites of variable size and orientation, grain-like regions were specified using
Voronoi tessellation [37]. For the same purpose, a normal distribution of magnetic
anisotropy Ku, with standard deviation to mean value equal to σ/µ = 10%, and
an exchange coupling reduction of 10% between the grains, were set. Particularly,
three case studies were treated, that are 3 nm, 7 nm and 15 nm grains.
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Two main effects are observed, illustrated in Figure 2.15: first, the space reori-
entation of double skyrmions driven by the anisotropy fluctuation; second, the
appearance of irregularities in the domain wall contour – more and more evidenced
by the increase of grain size – which makes it difficult to visually discern between
magnetic kinks and non magnetic warps, the latter upshot of the grains, at ex-
perimental level. However, what really matters is the survival of the topologically
non-trivial magnetic kinks even in the presence of granularity. This observation
directly translates into the conservation of the total topological charge, which is
reduced by nearly one just in the worst case of 15 nm grains, where the red middle
magnetic domain is splitted into two, provoking the disappearance of a DWSk. This
can be also intuited by specifically looking at the maps of topological charge density
Qd of Figures 2.15 d), e), f): the topological charge density is indeed expected to be
highly concentrated in the specific locations of ultra-confined 1-D skyrmions, fact
that is confirmed by the presence of the yellow spots centered in correspondence
with local kinks of Figures 2.15 a), b), c).

Having outlined the procedure to observe the double skyrmion and provided evi-
dences of its stability, from here on the attention will be focused onto the profiling
of the static and dynamic behavior of such kind of topological excitation, wholly
compared to the case of homochiral skyrmionic bubble.

Static properties

With the aim of analyzing the static response of the double skyrmion (DSk) and
making a comparison with the conventional skyrmionic bubble (Sk), the corre-
sponding total energy and effective diameter were extracted by varying indepen-
dently the strength of the iDMI coefficient D and the amplitude of the out-of-plane
Zeeman field µ0Happ, for circular and square geometries, respectively.

In this context, owing to the kink-induced breaking of the spherical symmetry,
the DSk effective diameter and, for consistency, that of the Sk are numerically
estimated according to the following algorithm:

• evaluation of the number of unit cells Nmz>0
cells where mz > 0;

• computation of the effective area where the condition mz > 0 is satisfied,
A = Nmz>0

cells üxüy, üx and üy being the unit cell lateral dimensions;

• calculation of the corresponding effective diameter, Φ = 2
ñ

A/π.
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Figure 2.16: Comparison of double skyrmion and skyrmion total energy Etot (black
curve) and effective diameter Φ (red curve) characteristic variations vs. a) out-of-
plane Zeeman field µ0Happ (square geometry) and b) iDMI coefficient D (circular
geometry). The applied magnetic field in b) is zero. The pale blue lines represent
the total energy distribution for the single domain state.

As evidenced by Figure 2.16, the overall behavior, common to the two topologi-
cal excitations, is the linear decrease (respectively quadratic-like increase) of the
total energy with the increase of the Zeeman field amplitude (respectively iDMI
strength). However, the DSk energy exceeds the Sk one for all the explored condi-
tions. This evinces how the DSk is a stable state that the system can visit, being
then impeded to reach the Sk energy minimum because of the interposing energy
barrier. Indeed, the DSk appears to be fostered just by the dipolar energy, while
all the other contributions overstep the Sk case. Reasonably, this is attributable
to the DSk larger effective area, better balancing the extent of the magnetic back-
ground, and, to a lesser extent, to the presence of the local magnetic whirl which,
albeit extremely confined, helps balancing the magnetic volume charges in the Néel
domain wall.

The graphs also point out that the size of the DSk, similarly to skyrmionic bubble,
is extremely responsive to both control parameter, i.e. magnetic field, and internal
material parameters, such as the strength of the iDMI. Upon toughening the exter-
nal magnetic field, aligned parallel to the background magnetization (blue region),
the effective diameter undergoes a rapid shrinkage.
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However, there exists a critical magnetic field value µ0Hc = −40 mT, identified with
a resolution of −10 mT, below which the perimeter of the magnetic bubble becomes
so short to no longer be able to withstand the equivalent tensile stress in the domain
wall introduced by the magnetic kink, which is thus annihilated. The DSk is thus
transformed into a conventional Sk. Put differently, the larger the strength of the
applied negative Zeeman field, the lower the height of the energy barrier in between
the DSk and Sk energy minima. The same contraction of the double skyrmion,
observed for negative magnetic field values, occurs when the iDMI coefficient is
reduced. Reasonably, due to reduction of iDMI, the energy of Néel domain wall is
increased, which increases the total energy, as seen in Figure 2.16 b). Notably, the
DSk exhibits an enhanced resilience to iDMI reduction, inspected in steps of 10% of
variation, with respect to Sk. This is attributable to the DSk stronger topological
protection (Q = +2 vs. Q = +1) and the likely higher associated energy barrier:
indeed, while the Sk state is converted into the single domain state at ∆D = −40%,
as displayed by the abrupt energy jump, the DSk vanishes at ∆D = −50%.

Figure 2.17: Equilibrium magnetization states at different iDMI for µ0Happ = 0 mT,
Ku = 1.27 MJ/m3 and circular geometry. a) Superposition of LH Sk bubble and
T2T DWSk stabilised for D = +0.5 mJ/m2. b) Bloch skyrmionic bubble with two
1−π VBL stabilised for D = +0 mJ/m2. c) Superposition of RH Sk and H2H DWSk
stabilised for D = −0.5 mJ/m2. The color scale is associated to the Out-Of-Plane
(OP) magnetization.

At present, it is possible to switch iDMI sign with a gate voltage (Fillion C. et
al., private communication). It is thus interesting to check how a skyrmion and
a double skyrmion would evolve with a continuous decrease of iDMI coefficient,
even going to iDMI sign inversion. Indeed, the achievability of D sign inversion,
where the iDMI sign controls the chirality of the skyrmionic bubble carrying the
kink, would be another evidence of the stability of DSk. This study was carried out
in collaboration with C. Fillion. In order to accomplish the numerical experiment
without the support of an external magnetic field, the Quality Factor of the system
was reduced to Q = Ku/Kd ∼ 1.002, by imposing Ku = 1.27 MJ/m3.
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In this way, the system approaches the Out-Of-Plane (OP) to In-Plane (IP) tran-
sition region and the cost of the domain wall, modelled by Equation 2.1, is thus
compensated. This allows to stabilize Bloch skyrmionic bubble in absence of iDMI
[54]. As a matter of fact, the PMA and the iDMI represent two distinguished
phenomena triggered by similar physical reasons. Accordingly, to account for the
reduction of Ku, the initial iDMI strength was downsized to D = +0.5 mJ/m2.
Larger values of D would in fact lead to spin spiral state (negative σw). Figure
2.17 shows the DSk equilibrium states for various iDMI values. The initial state
chosen to carry out the micromagnetic simulation is the left-handed (LH) Néel
skyrmionic bubble with a tail-to-tail (T2T) kink in its domain wall, stabilized for
circular geometry, in absence of Zeeman field and PBC, as shown in Figure 2.17 a).
The iDMI was then stepped down by imposing Dstep = 0.01 mJ/m2 and, one step
at a time, the system was stabilised through the command minimize(). At the
value D = 0 J/m2, a Bloch-like topological soliton with two diametrically opposite
1 − π VBL is stabilized, preserving the total topological charge (Q = +2). The
two 1 − π VBL are featured by divergent directions of rotation. This topological
excitation appears to be composed by two mutually dependent Bloch skyrmions of
opposite whirling directions that are stuck together (sharing a part of the DW).
Afterwards, when the D coefficient is further changing towards negative values up
to D = −0.5 mJ/m2, the Bloch-like topoligical soliton is turned again into a dou-
ble skyrmion, but of opposite chirality (with respect to positive D case), that is
right-handed (RH), with a head-to-head (H2H) magnetic kink. The restoration of
the Néel domain wall occurs through the expansion of the 1 − π VBL having the
right attribute, i.e. H2H, at the expense of the other, which is annihilated. It is
interesting to note how, with no iDMI, the local arching of the domain wall in
correspondence of the 1−π VBL is significantly reduced, if compared to the double
skyrmion case. This is not surprising because the curvature of DWSk is due to
strength of iDMI [8]. In support of this, it is observed that such distinctive fea-
ture, in close proximity to the kink, becomes clearly even more pronounced when
the iDMI is strengthened, confirming its central role in establishing such charac-
ter. In order to validate the numerical experiment, the same was conducted again
through the command run() by reducing the step value to Dstep = 0.1 mJ/m2, to
face the increased computational cost. The only spotted difference is the space re-
orientation of the DSk in the course of the simulation. The process is demonstrated
to be reversible and the trace and retrace steps energetically degenerated.
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Influence of boundary conditions and sample shape

Figure 2.18: Impact of dipolar field on double skyrmion size and orientation. In
detail, Out-Of-Plane (OP) equilibrium magnetization distribution with no applied
magnetic field for a), b) square geometry and c), d) circular geometry, without and
with Periodic Boundary Conditions (PBC), respectively. The white dashed line
indicates the kink axis. e) Zoom on the 1-D skyrmion.

By tuning the shape of the sample and the Periodic Boundary Conditions (PBC),
it is possible to control the isotropicity of the magnetic environment surrounding
the double skyrmion, in such a way to investigate the impact of the magnetic field
flux lines radiated by the magnetic background on the space orientation of the
kink. With reference to Figure 2.18, it is possible to observe that, in case of square
geometry and no PBC, the anisotropicity of the magnetic environment drives the
magnetic kink to align along either the x or y axis, energetically equivalent. This is
verified independently on the initial magnetization state. Indeed, differently from
the conventional skyrmion, ideally enclosed by a perfectly circular domain wall, the
double skyrmion local bending introduces a radial dependence of its domain wall
position. Upon this, the DSk shortest axis is obtained by a transverse sectional
plane cutting through the topological structure along the magnetic kink axis. This
axis, minimizing the linear extent of the inner magnetic domain, lines up with
the direction along which the extension of the outer magnetic domain, oppositely
magnetized, is minimized as well. The same characteristic behavior is observed
in presence of circular shape with PBC, where the inherent geometrical isotrop-
icity of the simulation domain is disrupted upon imposing PBC, because of the
identical copies of the sample contacting the magnetic background along x and y
axes. Again, the kink re-orients itself so that to align along one of the isoenergetic
axes minimizing the radiated dipolar field, now matching the main diagonals of the
squared simulation region. As expected, for the circular sample, when PBC are
removed, the magnetic kink randomly orients in space, attesting the energy equiv-
alence of all the angular positions. Reasonably, micromagnetic simulation results
reveal that the influence of the sample size and geometry lose their effectiveness
when the DSk area is reduced, as shown on the bottom panels of Figure 2.16, where
the kink orientation (in presence of negative Zeeman field) is now random.
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Dynamic properties under current

The dynamic behavior of the double skyrmion was outlined by inspecting the Cur-
rent In-Plane Spin–Orbit Torque (CIP-SOT) and Spin Transfer Torque (CIP-STT)
driven dynamics. It is well known that a conventional skyrmionic bubble (Sk),
when subjected to CIP-SOT, reaches a steady-state motion, with a characteristic
Skyrmion Hall Angle (SkHA) in between the velocity and the current density vec-
tors, as detailed in Section 1.5.2. This phenomenon is illustrated in Figure 2.19 a),
where the white contour portraits the initial magnetization state.

Figure 2.19: Illustration of CIP-SOT driven motion of a) skyrmionic bubble and
b) double skyrmion, for Japp = 50 × 1010A/m2 and µ0Happ = −20 mT applied
perpendicular to the plane. The color scale refers to Out-Of-Plane (OP) magneti-
zation. c) Comparison of effective diameter Φ (black line) and velocity v (red line)
vs. CIP-SOT current density Japp characteristics for skyrmionic bubble and double
skyrmion, with µ0Happ = −20 mT applied perpendicular to the plane. The white
contours in a) and b) represent the initial magnetization states.

In particular, for an applied current density Japp = 50 × 1010A/m2, injected in the
HM layer so as to induce an HM/FM interface spin polarization θσ = 240° (with
respect to x axis), the Sk follows a trajectory modified by the SkHA, numerically
estimated to be ΘSkH = 64.45°. The end of the track is reached in around 14 ns.
Figure 2.19 b) sets out the double skyrmion (DSk) CIP-SOT driven motion, while
maintaining unchanged the injection conditions. On the whole, the DSk dynamics
comes very close to the Sk behavior, with the exception of four main discrepancies.
In detail, the DSk, reaching the end of the track in nearly 22 ns, appears to be
slower than conventional Sk. This may be due to the DSk larger effective area,
when subjected to the same torque magnitude, as shown in Figure 2.19 c).
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Also, its numerical SkHA, measured to be ΘSkH = 65.74°, results slightly bigger,
likely due to the greater topological charge. To better explore this phenomenon,
the analytical SkHA was estimated according to the following equation, as detailed
in Section 1.5.2:

ΘSkH = G

αD
(2.3)

where α is the Gilbert damping coefficient.

Particularly, the terms G and D were computed by implementing the following an-
alytical models for the dissipative matrix D and the gyromagnetic vector G = G ẑ
[47]:
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where Ms is the saturation magnetization, t is the thickness of the FM, γ is the
gyromagnetic ratio and m is the numerical magnetization tensor. First of all, the
analysis of numerical results demonstrated that GDSk ∼ 2 GSk, implying that the
simplified expression G = −(Ms t/γ) · 4π Q, valid for conventional skyrmionic bub-
ble, can be also adopted for double skyrmion. Secondly, again consistently to the
magnetic skyrmion description, the main diagonal elements of the dissipative tensor
turned out to be nearly equivalent (Dxx = Dyy = D), and several orders of magni-
tude larger than Dxy and Dyx, which can thus be neglected. Also, it was found that
the DSk topological charge Q = +2, responsible for the doubled G value, is not
fully compensated by D, being DDSk ∼ 1.9 DSk. This finally explains the slightly
larger SkHA measured for the double skyrmion.

A fourth salient difference between the two topological excitations can be found
in the characteristic kink orientation, aligned nearly transverse to the direction of
motion. Specifically, the angle in between the kink alignment axis and the interface
spin vector σ = Japp × ẑ was measured to be approximately equal to 70°. To be
more precise, during the transient period prior the steady-state motion and lasting
around 2 ns, the double skyrmion rotates so as the kink can align along a preferred
direction. This observation can be again reasoned in the frame of the DL-SOT
analytical model. In particular, by imposing Japp = Japp x̂, the DL-SOT force FDL

can be computed according to the following expression [47]:

FDL,i = µ0MstH
0
DL

ÚÚ
dxdy
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∂xi

− mz
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4
(2.6)

where H0
DL = CDLJapp/µ0, being CDL the effective magnetic field per unit current

density (in T A−1 m2) and i = x, y, z.
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As a matter of fact, for a purely Néel (respectively Bloch) magnetic skyrmion, such
DL-SOT force is collinear (respectively transverse) to the current density vector
[47]. Upon this statement one can infer that, due to the partial Bloch-like nature
of the domain wall introduced by local kink, in contrast to the skyrmionic bubble,
the double skyrmion would be subjected to a non-zero transverse force, affecting
its motion. By implementing the above equation for a DSk, the transverse force
component FDL,y was found to be orders of magnitude greater than Sk. Also, the
map of the DL-SOT force density, revealed that FDL,y is highly concentrated on the
kink. This could ultimately explain the torque experienced by the 1-D skyrmion
during the SOT driven motion.

Figure 2.20: Illustration of double skyrmion response to CIP-SOT in high-current
regime for Japp = 100 × 1010A/m2 and µ0Happ = −20 mT applied perpendicular to
the plane. The color scale refers to Out-Of-Plane (OP) magnetization. Top, middle
and bottom lines are associated to interface spin polarizations θσ = 150°, 240° and
330°, respectively.

The double skyrmion dynamic response profiled up to this point generalizes to all
the injection conditions included in the region of low and medium current regimes of
Figure 2.19 c): here, the effective diameter and velocity of both topological solitons
increase upon reinforcing the applied current density. However, it is possible to
identify a critical current density value, measured to be Japp = 50 × 1010A/m2 with
a resolution of 10 × 1010A/m2, which marks the boundary with the high current
regime. In the high current regime, as illustrated in Figure 2.20, the physics dras-
tically changes. Characteristically, due to the powerful torque exerted by the spins
accumulated at the HM/FM interface, the DSk topological charge is subjected to
a non-conservative transformation, which is determined by the injection geometry.
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In detail, such Q = +2 quasi-particle in the track can be converted either into
two Q = +1 quasi-particles, i.e. two distinguished skyrmionic bubbles, or into one
Q = +1 quasi-particle, i.e. one unique skyrmionic bubble. A methodical description
of the current induced manipulation of the topological charge could open avenues
to conceive high density skyrmionic devices.

Figure 2.21: Illustration of CIP-STT driven motion of a) skyrmionic bubble and
b) double skyrmion, for Japp = 50 × 1010A/m2 and µ0Happ = −20 mT applied
perpendicular to the plane. The color scale refers to Out-Of-Plane (OP) magne-
tization. c) Comparison of effective diameter Φ (black line) and velocity v (red
line) vs. STT current density Japp characteristics for skyrmionic bubble and double
skyrmion, with µ0Happ = −20 mT applied perpendicular to the plane. The white
contours in a) and b) represent the initial magnetization states. The electrical
current polarization is 10%.

The double skyrmion CIP-STT driven dynamics, illustrated in Figure 2.21 for an
electrical current polarization of 10%, reveals a physics far less complex than CIP-
SOT driven motion. Indeed, the double skyrmion can be displaced along the track
without being annihilated for all the explored conditions. In this instance, the
kink is aligned along the displacement direction, particularly at the head of the
motion. Indeed, the STT increases with magnetization gradient, that is much
larger in the kink. As a consequence, the kink drives the motion. The direction of
motion for both topological solitons is consistent with the electron flow; however,
the trajectories present again a slight angular tilting with respect to the applied
current density vector. This is again due to the Skyrmion Hall Angle, equivalent
to the case for CIP-SOT driven motion, as expected.
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What is more, the DSk and Sk velocity curves, varying linearly with the injected
current density, are nearly superposed to each other. While the size of the Sk
remains unaffected by the increasing exerted torque, the DSk effective diameter,
beyond exceeding that of the Sk, exhibits a very slow linear increase.

Figure 2.22: a) Schematics of Magnetic Tunnel Junction (MTJ) with the magnetic
stack HM/FM/MOx used as free layer and CPP-STT current. Illustration of auto-
oscillation sub-periods for PBC (1, 1, 0), Japp = 100 × 1010 A/m2 at b) µ0Happ =
−20 mT and c) µ0Happ = 0 mT applied perpendicular to the plane. d) Double
skyrmion frequency of auto-oscillation f (black curve) and effective diameter Φ
(red curve) vs. CPP-STT current density Japp for Out-Of-Plane (OP) Zeeman field
µ0Happ = −20 mT and PBC (1, 1, 0). e) Double skyrmion frequency of auto-
oscillation f vs. CPP-STT current Iapp for OP Zeeman field µ0Happ = −20 mT and
PBC (1, 1, 0), where Iapp is the total current crossing the DSk magnetic domain.
The color scale refers to OP magnetization.
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A more exotic and fascinating physical phenomenon was observed when Current
Perpendicular-to-Plane (CPP) STT in the presence of a perpendicular polarizer
was applied to the double skyrmion. To be more detailed, in the numerically im-
plemented experiment, the magnetic stack under study is used as a free layer of a
Magnetic Tunnel Junction (MTJ), also comprising a thin insulator (tunnel barrier)
and an Out-Of-Plane (OP) fixed layer, as illustrated in Figure 2.22 a). When a
current is flowing perpendicular to the plane, the fixed layer thus provides on the
double skyrmion spins that are polarized in the +z or −z direction. Subsequently
to the injection of a STT current across the magnetic stack, a steady-state auto-
oscillation of the double skyrmion is inducted, driven by the kink pinpointed in
the domain wall. Indeed, owing to the electron spin perpendicular polarization, the
Slonczewski torque (Equation 1.40) can affect only regions of the FM with non-zero
In-Plane (IP) magnetization, i.e. the domain wall. Moreover, as an outgrowth of
the broken rotational symmetry around the z axis, introduced by the presence of
the local kink, the DSk reacts to the CPP-STT with a rotational motion, synchro-
nized to the frequency of mx, y periodic oscillation (concurrent with the STT driven
motion). This phenomenon is not observed for the Sk counterpart, responding just
with a damped breathing mode (resonance mode causing the core of the swirling
spin structure expanding and compressing periodically over time), due to Sk cylin-
drical symmetry.

The study was carried out in presence of an external magnetic field µ0Happ =
−20 mT, for consistency with the previous analysis (CIP-STT), and up polariza-
tion of the fixed layer. For positive current, the direction of the electron flow,
opposing the electric current flux, is from the fixed to the free layer. As shown
in Figure 2.22 b), depicting four time frames of a spinning sub-period for the case
Japp = 100 × 1010 A/m2, the topological soliton rotates anti-clockwise (ACW). The
preferential direction of rotation can be more easily explained by repeating the ex-
periment for a kink of charge Q = +1 located on a flat domain wall, i.e. a domain
wall skyrmion (not shown). In this context, the left displacement of the non-trivial
spin texture, modeled by the damping-like (DL) STT effective magnetic field, is in
perfect agreement with numerical observations. In a conceptual experiment, this
DWSk can be imaged as an extremely-localized 1-D skyrmion accomodated on the
domain wall of a relatively huge skyrmionic bubble: the local kink thus perceives
the extended circular domain wall as locally flat and undergoes an unidirectional
displacement. If we now imagine to shrink the relative extent of the domain wall,
this latter returns to be a circular, and no more linear, track in the kink frame of
reference. The local kink, being confined in such track, while displacing towards the
left, is forced to follow the contour of the domain wall, from which it cannot escape.
The linear one-way (left) displacement is thus converted into a rotation motion with
well-defined sense of rotation (ACW). Figure 2.22 d) shows how the frequency of
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rotation, in the low and medium current regimes, increases upon reinforcing the ap-
plied current density, because of the even stronger CPP-STT torque. At the same
time, the core of the double skyrmion, polarized coherently with the fixed layer,
keeps expanding with the increasing frequency of rotation, slightly slowing down
the auto-oscillations. As a result, the frequency of rotation exhibits a saturating
behavior versus the total current injected in the DSk, computed by multiplying the
applied current density by the DSk area, as shown in Figure 2.22 e). Indeed, as
a consequence of the expansion of the core size, the kink to domain wall lengths
ratio drastically decreases, meaning that the impact of the kink, which propels the
motion, becomes even less significant. In support of this claim it is also proved
that, if the applied magnetic field is shut down, thus the DSk area is increased,
e.g. for Japp = 100 × 1010 A/m2, the frequency of rotation decreases by more than
one order of magnitude, as illustrated in Figure 2.23 c). Upon this, one can infer
that the effectiveness of the oscillatory motion can be improved by reversing the
polarization of the fixed layer from up to down or, equivalently, by inverting the
sign of injected current.

By gradually reinforcing the STT current density above a critical value (∼ Japp =
200 × 1010 A/m2), marking the border with the high current regime, first multi-
ple up magnetic domains are nucleated, then a final saturated up magnetization
state is obtained (not shown). The critical applied current density is observed
to decrease when the damping factor of the material increases. Interestingly, the
dynamic evolution of the multi-domain states in high-current regime reveals the
presence of several kinks (Q = +1) and anti-kinks (Q = −1) localized in the do-
main walls. This observation opens the perspective of using such an MTJ structure
for both nucleating double skyrmions and further activating their auto-oscillation.
The established steady rotation, in its turn, opens avenues for realizing DSk-based
spin-torque nano-oscillators in overdamped materials.
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2.4 Other non-trivial spin textures
A randomly distributed thermal field can catalyze the spontaneous nucleation of
one or multiple 1-D skyrmions in the domain wall of a skyrmionic bubble. The
usual numerical procedure adopted to stabilise and further characterize a conven-
tional skyrmionic bubble is to initialize the micromagnetic simulator by a circular
magnetic domain antiparallel to the magnetic environment (see Section 2.1). The
interfacial-DMI then promotes the generation of an in-between Néel-type domain
wall – with well-defined chirality – during the energy relaxation transient phase.
Having an external random perturbation during this stage, e.g. induced by a ther-
mal field, excites the nucleation of extremely confined 1-D skyrmions in such do-
main wall. In other words, the heat energy, either due to the ambient temperature
(during relaxation) or due to a laser pulse (prior to relaxation), assists the magne-
tization to locally counteract the Dzyaloshinskii-Moriya interaction, bringing out
local magnetic kinks breaking the chiral homogeneity of the domain wall. Against
this backdrop, the dipolar field seems to play a crucial role, promoting the local
whirling of In-Plane (IP) magnetization – to close the magnetic field flux lines
radiated by the domain wall – as it thermally floats. To corroborate this idea,
the dipolar interaction was disabled and no twists of magnetization were in fact
observed in the domain wall during the transient time. This finally proves that
domain wall skyrmions not only withstand thermally induced fluctuation but that
they are effectively triggered by it. Figure 2.23 illustrates a sequence of thermally
nucleated non-trivial spin textures, described by integer topological charge values
varying from Q = +2 to Q = −3 in steps of Q = −1. The final topological
charge is determined by the balance, at the first time steps of energy relaxation,
between 1-D skyrmions of both topological charge Q = +1 (kinks) and Q = −1
(anti-kinks), which annihilate in pairs. The design of an experimental protocol to
locally nucleate 1-D skyrmions in a controlled manner may pave the way to develop
versatile skyrmionic devices where the digital information is encoded in topological
charge of the solitonic magnetic texture. Furthermore, the even larger number of
(anti−)kinks may make the auto-oscillation of such topological solitons increas-
ingly efficient.

During the thesis work, further to double skyrmion (Q = +2) and skyrmion
(Q = +1), the attention was focused on the so-called magnetic droplet [55], charac-
terized by a skyrmionic bubble (Q = +1) having an anti-kink on the domain wall
(Q = −1): the total topological charge is thus Q = 0, as the uniform magnetization
state. The magnetic droplet presents a total energy that, despite still larger than
skyrmionic bubble, is slightly smaller than double skyrmion. This is because the
droplet area is closer to the value which would exactly compensate the area of the
outer magnetic domain. This, compared to the DSk case, implies a reduction of
the stray field radiated out of the sample, thus of dipolar energy.
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Nevertheless, the droplet can be stabilized only in a narrow range of both out-of-
plane negative Zeeman field (µ0Hc = −2 mT) and iDMI strength values (∆Dc =
−8%), as shown in Figures 2.24 a) and b). It disappears otherwise into the ground
single domain state, which could be explained by a smaller or vanishing annihila-
tion barrier as compared to non-zero Q spin textures. Upon this, it is prevented to
effectively establish control of the droplet size, as a consequence of the loss of total
topological charge. However, despite being extremely susceptible to annihilation
under CIP-STT and/or SOT compared to (double) skyrmion, the droplet can be
moved in a track along the direction of the applied current. Moreover, due to its
zero topological charge, it is not subjected to Skyrmion Hall Effect (not shown).

The behaviour of the droplet under CPP-STT was then tested. In Figure 2.24
c) it is possible to observe how for Japp = 100 × 1010 A/m2, µ0Happ = −2 mT ap-
plied perpendicular to the plane and no PBC, the droplet auto-oscillates. First,
the droplet spinning motion opposes the direction of rotation observed for double
skyrmion. Indeed, for a left-handed (LH) skyrmionic bubble, the magnetic anti-kink
(Q = −1) of the droplet is configured Head-To-Head (H2H). This is in opposition
to the magnetic kink (Q = +1) of the double skyrmion, which is in fact Tail-to-
Tail (T2T). The 1-D skyrmion specificity indeed determines the space distribution
of the effective magnetic field which, in its turn, controls the displacement direc-
tion. The opposite sense of rotation of the droplet with respect to the DSk may
be explained again through the direction of motion of the anti-kink within a flat
domain wall. Second, under the same injection conditions, the droplet frequency
of rotation (f ∼ 30 MHz) at µ0Happ = −2 mT is smaller than what measured for
double skyrmion (f ∼ 38 MHz) for no applied magnetic field. This is likely due to
the elongated shape of the droplet which, contrary to the double skyrmion, does
not adapt to the sample geometry while rotating. Also, being µ0Happ = −2 mT
the critical Zeeman field, it is prevented to further reduce the droplet size to speed
up the auto-oscillation. Upon these considerations, the magnetic droplet reveals
ultimately weaker stability and tunability than double skyrmion.

Figure 2.23: Illustration of different non-trivial spin textures numerically sta-
bilised in Pt/Co(0.9 nm)/MgO. The white arrows schematically represent the 1-D
skyrmion magnetic configuration for the double skyrmion (Q = +2) and the droplet
(Q = +0), and the IP magnetization in the domain wall of skyrmion. The color
scale refers to Out-Of-Plane (OP) magnetization.
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Figure 2.24: Droplet total energy Etot (black curve) and effective diameter Φ (red
curve) compared to double skyrmion and skyrmion characteristic behavior vs. a)
Out-Of-Plane (OP) Zeeman field µ0Happ (square geometry) and b) iDMI coefficient
D (circular geometry). c) Illustration of droplet auto-oscillation sub-periods under
CPP-STT for no PBC, Japp = 100 × 1010 A/m2 and µ0Happ = −2 mT applied
perpendicular to plane. The color scale refers to OP magnetization.
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Chapter 3

Conclusions & perspectives

The possibility to stabilize Néel magnetic skyrmions at ambient temperature in
sputtered ultra-thin films has been recently demonstrated for the magnetic stack of
the type Pt/Co(0.9 nm)/MgO, thanks to the large interfacial Dzyaloshinskii–Moriya
Interaction (iDMI) of such systems [5]. These topological solitons have aroused
great interest not only for the underlying physics, but also because their adjustable
nanometric size and effective Spin–Orbit Torque driven motion make them promis-
ing as dense storage data bits, either for memory and logic applications or for
neuromorphic computing [2]. In this thesis work, the aforementioned thin-film
system was investigated by micromagnetic modelling, with a view to improve the
understanding of the physics underneath iDMI and to identify and characterize
potential peculiar stable states. To follow the main achievements of this master
thesis will be highlighted.

Upon being thermally demagnetized by an ultra-fast laser pulse, on the basis of
the Zeeman field acting during the magnetization recovery process, the ferromag-
netic layer can reach two distinct stable states, that are: (1) the hexagonal-like
skyrmion bubble lattice, (2) the magnetic multidomain state.

1. The skyrmion bubble lattice is made up of fifteen Néel skyrmions (Q = +15)
joined by the mutual (long-range) dipolar interaction. The magnetic skyrmions
are shown to survive thermally induced fluctuations and to expand apart from
each other when the repulsive force from the sample edges is disabled, upon
imposing Periodic Boundary Conditions. This is along the lines of prior ex-
perimental observations present in literature [7].

2. The magnetic multidomain state, besides flat domain walls (Q = 0), comprises
concurrent non-trivial spin textures that are: the skyrmionic bubble (Q =
+1); the domain wall skyrmion (Q = +1), i.e. a 1-D skyrmion located
on a flat domain wall; and the double skyrmion (Q = +2), i.e. a 1-D
skyrmion tracked on a circular domain wall. The 1-D skyrmion is a confined
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region of the domain wall where the in-plane magnetization rotates by 2 − π,
which results in a strong bending of the domain wall. Furthermore, its core
magnetization opposes the chirality enforced by the iDMI sign. The numerical
uncovering of the domain wall skyrmion is perfectly consistent with the most
recent experimental findings in literature but for different magnetic stacks [50].
Anyway, the observation of the double skyrmion stability after magnetization
recovery process is unprecedented and represents the major contribution to the
literature of this thesis work (F. Nasr et al., in preparation). The multidomain
state has been demonstrated to survive thermal field, again inducing a blurring
of the domain wall, and granularity typical of polycrystalline materials. This
proves that the ultra-confined 1-D skyrmions are extremely robust and hard
to be unwhirled.

Additionally, the conventional skyrmionic bubble (Q = +1) and the novel double
skyrmion (Q = +2) were isolated and characterized with regard to static and dy-
namic properties.

In sight of experimentally operating the voltage gating of interfacial magnetic prop-
erties, a skyrmionic bubble phase diagram was composed by combining variations
of magnetic anisotropy Ku and iDMI coefficient D. In particular, starting from
a skyrmion bubble, it was shown that the tuning of the iDMI strength makes it
accessible either the nanometer magnetic skyrmion (D reduction) or the spin spiral
state (D increase). Concurrently, the variation of the interface magnetic anisotropy
allows either to reduce the critical iDMI strength to enter the spin spiral phase (Ku

reduction) or to reduce the skyrmionic bubble size and eventually access to the
single domain state (Ku increase). Then, the magnetic response of the sample to a
Zeeman field was investigated at the reference values of D and Ku, by extracting
the skyrmionic bubble hysteresis loop. Furthermore, the application of a magnetic
field was observed to restore the skyrmionic bubble of polarity p = −1 starting
either from the up single domain state (µ0Happ < 0) or from the spin spiral state
(µ0Happ > 0).

The double skyrmion was then cross-referenced to conventional skyrmionic bub-
ble, by systematically studying the two topological excitations in parallel. Overall,
both the static and dynamic properties for the two cases studies were shown to be
akin to each other. Particularly, the accomplishment of both size tuning – operated
by control parameter, i.e. magnetic field, and internal material parameters, such
as the iDMI strength – and chirality reversal were numerically predicted. Also, the
effective displacement in a track both under Current-In-Plane (CIP) Spin Transfer
Torque (STT) and Spin–Orbit Torque (SOT) was observed. However, the double
skyrmion (Q = +2) may be converted into a single 2-D skyrmion (Q = +1) ei-
ther in presence of a strong Zeeman field, anti-parallel to the core polarity – as
a consequence of the contraction of the domain wall – or under high CIP-SOT –

86



3 – Conclusions & perspectives

as a consequence of the strong spin torque acting on the magnetic texture. Also,
it was proved that there exist particular CIP-SOT current injection geometries in
the heavy-metal layer which produce a conservative transformation of the topo-
logical charge in high-current regime, i.e. double skyrmion (Q = +2) conver-
sion into two magnetic skyrmions (2 × quasi − particles of Q = +1). What is
more, contrary to skyrmionic bubble, the action of Current Perpendicular-to-Plane
(CPP) Spin Transfer Torque (STT) in a Magnetic Tunnel Junction (MTJ), with
the Pt/Co(0.9 nm)/MgO used as free layer and perpendicularly polarized reference
layer, may induce the double skyrmion auto-oscillation. Here, the rotational mo-
tion is driven by the 1-D skyrmion and the specific direction of rotation at fixed
chirality is determined by reference layer polarization, either up or down.

The thermal nucleation of one or multiple 1-D skyrmions on the otherwise homochi-
ral bubble domain wall for the trilayer system Pt/Co(0.9 nm)/MgO, evidenced by
micromagnetic simulations, calls for validation via experimental work. The estab-
lishment of opto-electrical control of such topological spin textures, i.e. by using
ultra-fast laser pulses, combined with spin-polarized current and gate voltage, would
break new ground to design novel high-density skyrmionic devices, based on:

• the discrete variation of topological charge, controlled by the number of 1-D
skyrmions on the chiral bubble domain wall;

• the topological charge (non-conservative) manipulation;

• the physical mechanism of auto-oscillations.
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