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Summary

In this thesis, we will produce a detailed analysis of the tool called DExIMA,
from the high-level description to the more detailed one. The tool was previ-
ously developed by Nicola Piano [6] in its first version. In this thesis, we will
analyze the first version of the program, and we will successively rewrite it
completely from zero, changing the structure and the modes of computations
of the program. All this work is done to improve several aspects of the code
and the interface with the user. Developed in C++, DExIMA word stands
for Design-Explorer for In-Memory Architecture, because it is used to ex-
plore the solution spaces of the possible Logic-in-Memory (LiM) approach.
The first part of this thesis is dedicated to the description of what a LiM
is, and how it works, considering the state of the art of this technology and
its applications. After the explanation of LiM concept, there is a chapter
describing the motivation of this thesis and the general characteristics of
DExIMA. Following the general chapters, there are the ones related to the
tool. The core of the thesis is dived into the following parts:

DExIMA: This chapter is dedicated to the architecture of the program
and explains to the user which are the external components involved in
the program, and to understand how to approach it.

DExIMA Language: This chapter is a guide for the user since it
explains the syntax used in the configuration file of DExIMA.

DExIMA Files Descriptions: This chapter describes the fields and
the information of the output files of DExIMA and how to interpret it.

DExIMA Hardware Models: This chapter describes in detail the
models of the gates realized in DExIMA from a low-level point of view.

DExIMA Data Structure: This chapter is related to the class struc-
ture of the program and the function that these classes have inside the
program.
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Compilation Process: This chapter describes how the Compilation
process involves, and the event triggered when it parses the input con-
figuration file.

Performance Computation: This last chapter is related to how DEx-
IMA works and explains how the performance is computed inside the
tool.

The last part of this thesis is dedicated to some results obtained from the
tool, from a general point of view, and a specific case of study implementing
a Binary Neural Network. In the end, there is a chapter dedicated to the
future improvement of the tool. There is also an Appendix with some useful
data related to the language and the components library.

3



Contents

List of Figures 10

1 State of the Art 15
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Computing approach Taxonomy . . . . . . . . . . . . . . . . . 16
1.3 Configurable Logic-In-Memory Architecture (CLiMA) . . . . . 18

2 LiM Architecture 21
2.1 LiM Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Motivations 25
3.1 DExIMA 1.0 High-Level Description . . . . . . . . . . . . . . 25
3.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Configuration Files Writing Effort . . . . . . . . . . . . 27
3.2.2 Error checking problem . . . . . . . . . . . . . . . . . . 27
3.2.3 Configuration files separation . . . . . . . . . . . . . . 27
3.2.4 Random Behaviour . . . . . . . . . . . . . . . . . . . . 28
3.2.5 Simulation Times . . . . . . . . . . . . . . . . . . . . . 28
3.2.6 Models Efficiency . . . . . . . . . . . . . . . . . . . . . 28
3.2.7 Simulation parameters orientation . . . . . . . . . . . . 29
3.2.8 Insertion of a new model . . . . . . . . . . . . . . . . . 29
3.2.9 Absence of Documentation . . . . . . . . . . . . . . . . 29
3.2.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 29

4 DExIMA 31
4.1 DExIMA Structure . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Process Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Compilation Step . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Technology Parameters Computation Step . . . . . . . 33

4



4.2.3 Simulation Step . . . . . . . . . . . . . . . . . . . . . . 35

5 DExIMA Language 37
5.1 Input File description . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Constants Section . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.1 Built In Constants . . . . . . . . . . . . . . . . . . . . 41
5.4 Init Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4.1 Special components . . . . . . . . . . . . . . . . . . . . 44
5.4.2 Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4.3 CLock Driver . . . . . . . . . . . . . . . . . . . . . . . 46
5.4.4 Load Component . . . . . . . . . . . . . . . . . . . . . 46
5.4.5 LiM Component . . . . . . . . . . . . . . . . . . . . . 46

5.5 For Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6 Map Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.7 Math Environment . . . . . . . . . . . . . . . . . . . . . . . . 49
5.8 Memory Section . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.8.1 Memdef Section . . . . . . . . . . . . . . . . . . . . . . 51
5.8.2 Logic Section . . . . . . . . . . . . . . . . . . . . . . . 53
5.8.3 Cells Section . . . . . . . . . . . . . . . . . . . . . . . 54

5.9 Memory Map Section . . . . . . . . . . . . . . . . . . . . . . . 55
5.10 Instructions Section . . . . . . . . . . . . . . . . . . . . . . . . 56

5.10.1 Power Section . . . . . . . . . . . . . . . . . . . . . . . 58
5.10.2 Power Attributes . . . . . . . . . . . . . . . . . . . . . 59
5.10.3 Path Section . . . . . . . . . . . . . . . . . . . . . . . . 59
5.10.4 Parallel Paths . . . . . . . . . . . . . . . . . . . . . . . 60
5.10.5 Timing Attributes . . . . . . . . . . . . . . . . . . . . 61
5.10.6 Path Section Example . . . . . . . . . . . . . . . . . . 62

5.11 Code Section . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.11.1 Timing and Power Interpretation . . . . . . . . . . . . 64

6 DExIMA Files Descriptions 65
6.1 Log File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 General Information . . . . . . . . . . . . . . . . . . . 66
6.1.2 LiM Data . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.1.3 Instructions Data . . . . . . . . . . . . . . . . . . . . . 67
6.1.4 Code Data . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.5 Final Information . . . . . . . . . . . . . . . . . . . . . 68

6.2 Dof File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5



6.2.1 General Information . . . . . . . . . . . . . . . . . . . 69
6.2.2 LiM Data . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.3 Clock Drivers Data . . . . . . . . . . . . . . . . . . . . 71
6.2.4 Instructions Data . . . . . . . . . . . . . . . . . . . . . 72
6.2.5 Technology Information . . . . . . . . . . . . . . . . . 72

6.3 Technology File . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 DExIMA Hardware Models 77
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Transistors Capacitance . . . . . . . . . . . . . . . . . . . . . 77
7.3 Inverter Gate Reference . . . . . . . . . . . . . . . . . . . . . 79
7.4 Performance Equations . . . . . . . . . . . . . . . . . . . . . . 81
7.5 Switching Activity Evaluation . . . . . . . . . . . . . . . . . . 83
7.6 Stack Effect Model . . . . . . . . . . . . . . . . . . . . . . . . 86
7.7 Interconnections Model . . . . . . . . . . . . . . . . . . . . . . 87
7.8 Elementary Gate Models . . . . . . . . . . . . . . . . . . . . . 89

7.8.1 Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.8.2 Nand gate . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.8.3 Nor gate . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.8.4 Xor/Xnor Core . . . . . . . . . . . . . . . . . . . . . . 93
7.8.5 Three state inverter . . . . . . . . . . . . . . . . . . . . 95

7.9 Composite Gate Models . . . . . . . . . . . . . . . . . . . . . 96
7.9.1 And/Or Gate . . . . . . . . . . . . . . . . . . . . . . . 97
7.9.2 Xor/Xnor Gate . . . . . . . . . . . . . . . . . . . . . . 97
7.9.3 Half Adder . . . . . . . . . . . . . . . . . . . . . . . . 99
7.9.4 Full Adder . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.9.5 Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . 100
7.9.6 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.9.7 Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.9.8 Latch SR . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.9.9 Flip Flop Nand . . . . . . . . . . . . . . . . . . . . . . 105
7.9.10 Flip Flop C2MOS . . . . . . . . . . . . . . . . . . . . . 107
7.9.11 Ripple Carry Adder . . . . . . . . . . . . . . . . . . . . 109

7.10 Memory Models . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.10.1 Memory Cell . . . . . . . . . . . . . . . . . . . . . . . 110
7.10.2 Flip Flop Memory Architecture . . . . . . . . . . . . . 111

6



8 DExIMA Data Structure 115
8.1 Architecture Class . . . . . . . . . . . . . . . . . . . . . . . . 116
8.2 Module Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.3 Input/Output Class . . . . . . . . . . . . . . . . . . . . . . . . 118
8.4 Lim Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.5 Instruction Class . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.6 Path Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.7 Attribute Class . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.8 Code Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.9 Printer Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.10 Performance Class . . . . . . . . . . . . . . . . . . . . . . . . 125

8.10.1 ModulePerformance Class . . . . . . . . . . . . . . . . 125
8.10.2 InstructionPerformance Class . . . . . . . . . . . . . . 127
8.10.3 ArchitecturePerformance Class . . . . . . . . . . . . . 127
8.10.4 Technology Class . . . . . . . . . . . . . . . . . . . . . 128

9 Compilation Process 131
9.1 Sections stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.2 Sections State Machine . . . . . . . . . . . . . . . . . . . . . . 132
9.3 Compiler Error . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.4 Parser Organizations . . . . . . . . . . . . . . . . . . . . . . . 134

9.4.1 For Parser . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.4.2 Constants Parser . . . . . . . . . . . . . . . . . . . . . 136
9.4.3 Init Parser . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.4.4 Lim Parser . . . . . . . . . . . . . . . . . . . . . . . . 137
9.4.5 Map Parser . . . . . . . . . . . . . . . . . . . . . . . . 137
9.4.6 Math Parser . . . . . . . . . . . . . . . . . . . . . . . . 139

10 Performance Computation 143
10.1 Step 1: Module Encoding . . . . . . . . . . . . . . . . . . . . 143
10.2 Step 2: Code Presence Verification . . . . . . . . . . . . . . . 144
10.3 Step 3: Performance Computation . . . . . . . . . . . . . . . . 145
10.4 Step 4: Performance Insertion . . . . . . . . . . . . . . . . . . 146
10.5 Step 5: Extraction Chain . . . . . . . . . . . . . . . . . . . . . 146

10.5.1 Scrolling . . . . . . . . . . . . . . . . . . . . . . . . . . 147
10.5.2 ID Extraction . . . . . . . . . . . . . . . . . . . . . . . 147
10.5.3 Performance Extraction . . . . . . . . . . . . . . . . . 147
10.5.4 Parameter Extraction . . . . . . . . . . . . . . . . . . . 148

10.6 Step 6: Instructions Accumulation . . . . . . . . . . . . . . . . 148

7



10.7 Step 7: Total Performance Computation . . . . . . . . . . . . 148
10.8 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

11 Binary Neural Network Simulation 151
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
11.2 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 153
11.3 Convolutional Neural Network . . . . . . . . . . . . . . . . . . 154

11.3.1 Convolutional Layers . . . . . . . . . . . . . . . . . . . 155
11.3.2 Pooling Layers . . . . . . . . . . . . . . . . . . . . . . 156
11.3.3 Fully Connected Layers . . . . . . . . . . . . . . . . . . 157
11.3.4 Batch Normalization . . . . . . . . . . . . . . . . . . . 157

11.4 Binary Neural Network . . . . . . . . . . . . . . . . . . . . . . 158
11.5 Hardware Implementation . . . . . . . . . . . . . . . . . . . . 162
11.6 DExIMA Implementation . . . . . . . . . . . . . . . . . . . . 165

11.6.1 DExIMA 1.0 Implementation . . . . . . . . . . . . . . 165
11.6.2 DExIMA 2.0 Implementation . . . . . . . . . . . . . . 168

11.7 Results and Comparisons . . . . . . . . . . . . . . . . . . . . . 169
11.7.1 Simulation Time . . . . . . . . . . . . . . . . . . . . . 169
11.7.2 Writing Code Effort . . . . . . . . . . . . . . . . . . . 171
11.7.3 Critical Path . . . . . . . . . . . . . . . . . . . . . . . 172
11.7.4 Dynamic Power . . . . . . . . . . . . . . . . . . . . . . 172
11.7.5 Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
11.7.6 Static Power . . . . . . . . . . . . . . . . . . . . . . . . 176

11.8 Cacti Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 178
11.8.1 Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
11.8.2 Static Power . . . . . . . . . . . . . . . . . . . . . . . . 179
11.8.3 Memory Access . . . . . . . . . . . . . . . . . . . . . . 180

12 DExIMA Results 181
12.1 Previous Version Comparison . . . . . . . . . . . . . . . . . . 181
12.2 Output program interface . . . . . . . . . . . . . . . . . . . . 182
12.3 Models Comparison . . . . . . . . . . . . . . . . . . . . . . . . 185

12.3.1 Area Comparison . . . . . . . . . . . . . . . . . . . . . 185
12.3.2 Dynamic Energy Comparison . . . . . . . . . . . . . . 186
12.3.3 Static Power Comparison . . . . . . . . . . . . . . . . . 187
12.3.4 Delays Comparison . . . . . . . . . . . . . . . . . . . . 188

12.4 Flip Flop Models Comparison . . . . . . . . . . . . . . . . . . 189

8



13 Conclusions and future work 193
13.1 DExIMA 2.0 Features . . . . . . . . . . . . . . . . . . . . . . 193
13.2 DExIMA 2.0 Improvements . . . . . . . . . . . . . . . . . . . 194

13.2.1 Language improvements . . . . . . . . . . . . . . . . . 194
13.2.2 Models Improvements . . . . . . . . . . . . . . . . . . 195
13.2.3 Fixed Problems . . . . . . . . . . . . . . . . . . . . . . 196

13.3 Further Improvements . . . . . . . . . . . . . . . . . . . . . . 197

A Compiler Specifiers 199
A.1 Built-In Constants . . . . . . . . . . . . . . . . . . . . . . . . 199
A.2 TechFile Parameters . . . . . . . . . . . . . . . . . . . . . . . 200
A.3 Available Technologies . . . . . . . . . . . . . . . . . . . . . . 201

B DExIMA Models 203

Bibliography 205

9



List of Figures

1.1 In-memory computing aproaches. (A) CnM (B) CiM (C)
CwM (D) LiM. Source:[1] . . . . . . . . . . . . . . . . . . . . 16

1.2 Conceptual structure of Configurable Logic-in-Memory Archi-
tecture (CLiMA). Source:[1] . . . . . . . . . . . . . . . . . . . 18

1.3 Configurable Logic-in-Memory Cell Array. Source:[1] . . . . . 19
2.1 LiM Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 LiM Cell interconnection between Inter-Cell Logic . . . . . . . 22
2.3 LiM Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 DExIMA 1.0 High-level Structure. Source:[6] . . . . . . . . . . 26
4.1 Dexima class structure . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Compilation Step process flow . . . . . . . . . . . . . . . . . . 34
4.3 Technology load and computation process . . . . . . . . . . . 34
4.4 Simulation Step process flow . . . . . . . . . . . . . . . . . . . 35
5.1 Section organization of dex file . . . . . . . . . . . . . . . . . . 38
5.2 Sections order of dex file . . . . . . . . . . . . . . . . . . . . . 39
5.3 Comment block example . . . . . . . . . . . . . . . . . . . . . 39
5.4 Constants section syntax . . . . . . . . . . . . . . . . . . . . . 40
5.5 Init section syntax . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6 For control flow description . . . . . . . . . . . . . . . . . . . 48
5.7 Map section syntax . . . . . . . . . . . . . . . . . . . . . . . . 50
5.8 Math Environment syntax . . . . . . . . . . . . . . . . . . . . 51
5.9 Memory sections order . . . . . . . . . . . . . . . . . . . . . . 52
5.10 DExIMA Namespaces . . . . . . . . . . . . . . . . . . . . . . . 53
5.11 Cells section syntax . . . . . . . . . . . . . . . . . . . . . . . . 54
5.12 Memory Map section syntax . . . . . . . . . . . . . . . . . . . 55
5.13 Multiple path circuit example . . . . . . . . . . . . . . . . . . 62
6.1 Log File General Info . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 Log File Memories Info . . . . . . . . . . . . . . . . . . . . . . 67
6.3 Log File Instructions Info . . . . . . . . . . . . . . . . . . . . 68

10



6.4 Log File Code Info . . . . . . . . . . . . . . . . . . . . . . . . 68
6.5 Log File Final Info . . . . . . . . . . . . . . . . . . . . . . . . 69
6.6 Dof File General Info . . . . . . . . . . . . . . . . . . . . . . . 70
6.7 Dof File Memory Info . . . . . . . . . . . . . . . . . . . . . . . 71
6.8 Dof File Clock Driver Info . . . . . . . . . . . . . . . . . . . . 71
6.9 Dof File Instruction Info . . . . . . . . . . . . . . . . . . . . . 72
6.10 Dof File Technology Info . . . . . . . . . . . . . . . . . . . . . 73
6.11 TechFile LOP_45.txt . . . . . . . . . . . . . . . . . . . . . . . 75
7.1 Inverter CMOS . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Gate current conditions . . . . . . . . . . . . . . . . . . . . . . 83
7.3 And Gate Output Switching Activity . . . . . . . . . . . . . . 84
7.4 Probability propagation along the circuit . . . . . . . . . . . . 85
7.5 Transistors Stacked . . . . . . . . . . . . . . . . . . . . . . . . 87
7.6 Cell’s Pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.7 Inverter gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.8 Nand 2 inputs gate . . . . . . . . . . . . . . . . . . . . . . . . 91
7.9 Nor 2 inputs gate . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.10 Xor/Xnor Core gate (left/right) . . . . . . . . . . . . . . . . . 94
7.11 Three state inverter C2MOS . . . . . . . . . . . . . . . . . . . 95
7.12 And/Or Gate composition . . . . . . . . . . . . . . . . . . . . 97
7.13 Xor/Xnor Core Symbol . . . . . . . . . . . . . . . . . . . . . . 97
7.14 Xor/Xnor Gate composition . . . . . . . . . . . . . . . . . . . 98
7.15 Xor/Xnor Multi Inputs . . . . . . . . . . . . . . . . . . . . . . 99
7.16 Half Adder Circuit . . . . . . . . . . . . . . . . . . . . . . . . 99
7.17 Full Adder Circuit . . . . . . . . . . . . . . . . . . . . . . . . 100
7.18 Multiplexer two ways circuit . . . . . . . . . . . . . . . . . . . 101
7.19 Multiplexer composed by two ways multiplexers . . . . . . . . 101
7.20 Decoder 2 to 4 circuit . . . . . . . . . . . . . . . . . . . . . . . 102
7.21 Inverter chain Driver . . . . . . . . . . . . . . . . . . . . . . . 103
7.22 Latch cell delay . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.23 Latch SR circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.24 Flip Flop D with Nand gate . . . . . . . . . . . . . . . . . . . 105
7.25 Flip Flop D Nand Delays . . . . . . . . . . . . . . . . . . . . . 106
7.26 C2MOS Flip Flop D . . . . . . . . . . . . . . . . . . . . . . . 107
7.27 C2MOS Flip Flop D delays . . . . . . . . . . . . . . . . . . . 108
7.28 Ripple Carry Adder . . . . . . . . . . . . . . . . . . . . . . . . 109
7.29 Ripple Carry Adder Delays . . . . . . . . . . . . . . . . . . . . 110
7.30 Memory cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.31 And Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

11



7.32 Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.33 Memory Architecture . . . . . . . . . . . . . . . . . . . . . . . 114
8.1 Containers Visualization . . . . . . . . . . . . . . . . . . . . . 115
8.2 Architecture Class . . . . . . . . . . . . . . . . . . . . . . . . 116
8.3 Module Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.4 Port inherit scheme . . . . . . . . . . . . . . . . . . . . . . . . 118
8.5 Input/Output Classes . . . . . . . . . . . . . . . . . . . . . . . 119
8.6 Lim Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.7 Instruction Class . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.8 Path Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.9 Attribute inherit scheme . . . . . . . . . . . . . . . . . . . . . 122
8.10 Code Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.11 Printer inherit scheme . . . . . . . . . . . . . . . . . . . . . . 123
8.12 Printer Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.13 Performance inherit scheme . . . . . . . . . . . . . . . . . . . 126
8.14 ModulePerformance Class . . . . . . . . . . . . . . . . . . . . 126
8.15 InstructionPerformance Class . . . . . . . . . . . . . . . . . . 127
8.16 ArchitecturePerformance Class . . . . . . . . . . . . . . . . . . 128
9.1 Compiler Stack . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.2 Sections Stack Algorithm . . . . . . . . . . . . . . . . . . . . . 132
9.3 Parser Inherit Scheme . . . . . . . . . . . . . . . . . . . . . . 134
9.4 ForParser Operation . . . . . . . . . . . . . . . . . . . . . . . 135
9.5 Module Interface Construction . . . . . . . . . . . . . . . . . . 137
9.6 Map section parsing pyramid . . . . . . . . . . . . . . . . . . 139
10.1 Encoding Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 144
10.2 Verification Phase . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.3 Performance Computation Phase . . . . . . . . . . . . . . . . 145
10.4 Code Insertion Phase . . . . . . . . . . . . . . . . . . . . . . . 146
10.5 Extraction Chain Phase . . . . . . . . . . . . . . . . . . . . . 146
10.6 Instructions Accumulation Phase . . . . . . . . . . . . . . . . 148
10.7 Total Performance Computation Phase . . . . . . . . . . . . . 149
10.8 Simulation Algorithm graph . . . . . . . . . . . . . . . . . . . 150
11.1 Artificial Neuron. . . . . . . . . . . . . . . . . . . . . . . . . . 152
11.2 Neural Network Examples, a) Single Layer Neural Network,

b) Multi Layer Neural Network. . . . . . . . . . . . . . . . . . 154
11.3 RGB Kernel Example. . . . . . . . . . . . . . . . . . . . . . . 155
11.4 Convolution Process Example. Source:[25] . . . . . . . . . . . 156
11.5 Pooling Operation Examples. . . . . . . . . . . . . . . . . . . 157
11.6 LeNet5 Netwok example. Source:[25] . . . . . . . . . . . . . . 158

12



11.7 Binarization Process Example . . . . . . . . . . . . . . . . . . 159
11.8 Binary Convolution Example . . . . . . . . . . . . . . . . . . . 160
11.9 Binary Convolution Based on XNOR-Pop. Source:[25] . . . . . 161
11.10Lim complete Architecture. Source:[25] . . . . . . . . . . . . . 162
11.11XNOR part of the XNOR-Pop Unit LiM implementation. Source:[25]163
11.12One counter Lim circuit. Source:[25] . . . . . . . . . . . . . . 164
11.13CNN used for the Fashion-MNIST dataset. Source:[30] . . . . 165
11.14DExIMA 1.0 XNOR-Net Architecture . . . . . . . . . . . . . . 167
11.15DExIMA 2.0 XNOR-Net Architecture . . . . . . . . . . . . . . 168
11.16Comparison of the convolution algorithm using a Bad or Good

design in DExIMA 2.0 . . . . . . . . . . . . . . . . . . . . . . 169
11.17Comparison of the convolution algorithm between DExIMA

1.0 and DExIMA 2.0 . . . . . . . . . . . . . . . . . . . . . . . 170
11.18Comparison between the Compilation and Simulation time of

the convolution algorithm . . . . . . . . . . . . . . . . . . . . 171
11.19Line of code needed to describe convolution algorithm and

architecture comparison . . . . . . . . . . . . . . . . . . . . . 171
11.20BNN Critical path comparison . . . . . . . . . . . . . . . . . . 172
11.21BNN Dynamic Power comparison . . . . . . . . . . . . . . . . 173
11.22BNN Dynamic Power comparison using different clock period . 173
11.23BNN Dynamic Power comparison enabling or disabling the

switching activity computation . . . . . . . . . . . . . . . . . 174
11.24BNN Area comparison . . . . . . . . . . . . . . . . . . . . . . 175
11.25BNN Area components . . . . . . . . . . . . . . . . . . . . . . 175
11.26BNN Array Area Components . . . . . . . . . . . . . . . . . . 176
11.27BNN Static Power Comparison . . . . . . . . . . . . . . . . . 177
11.28Memory Array Static Power Components . . . . . . . . . . . . 177
11.29Memory Static Power Components . . . . . . . . . . . . . . . 178
11.30Cacti Area Results . . . . . . . . . . . . . . . . . . . . . . . . 179
11.31Cacti Static Power Results . . . . . . . . . . . . . . . . . . . . 179
11.32Cacti Memory Access Time Results . . . . . . . . . . . . . . . 180
12.1 DExIMA versions Lines of code . . . . . . . . . . . . . . . . . 182
12.2 Number of Manageable Errors . . . . . . . . . . . . . . . . . . 182
12.3 Simple Error Generated by DExIMA . . . . . . . . . . . . . . 183
12.4 Error with Suggestion Generated by DExIMA . . . . . . . . . 183
12.5 Output Generated by DExIMA . . . . . . . . . . . . . . . . . 184
12.6 DExIMA Models Area Comparison with FreePDK45nm . . . . 186
12.7 DExIMAModels Dynamic Energy Comparison with FreePDK45nm187
12.8 DExIMA Models Static Power Comparison with FreePDK45nm188

13



12.9 DExIMA Models Delays Comparison with FreePDK45nm . . . 188
12.10Flip Flop area comparison . . . . . . . . . . . . . . . . . . . . 189
12.11Flip Flop static power comparison . . . . . . . . . . . . . . . . 190
12.12Flip Flop dynamic energy comparison . . . . . . . . . . . . . . 190
12.13Flip Flop delay comparison . . . . . . . . . . . . . . . . . . . 191

14



Chapter 1

State of the Art

1.1 Introduction
Today the digital integrated circuits take several improvements in terms of
performance, especially in the last decades. This is due to the new technolo-
gies and the scaling of our circuit. The scaling improves several characteris-
tics of our logic gates like the reduction of the delay, area, and power con-
sumption. But the scaling introduces also problems related to the quantum
effects to take into considerations. But the improvements increase differently
in the case of memory that results slower than our computation units. As we
know the Von Neumann paradigm is the foundation of all modern comput-
ing systems. The Von Neumann paradigm consists of having an architecture
with two main components: the central processing unit (CPU), and Memory.
These two components exchange data between themselves using a bus. Now
the problem occurs, because due to the Technology improvements, the CPU
began faster than the memory, making the memory unable to provide data
as fast as the CPU is able to compute them. This problem is called Von
Neumann bottleneck or Memory Wall. Another problem related to the Von
Neumann architecture concerns data intensive algorithms, where the data
exchange between the CPU and memory is one of the main contributions to
power consumption. The bus line connected to the memory can have a high
capacity load, that generates high consumptions. To avoid this problem a
new approach is proposed, the Logic-in-Memory (LiM) approach. The idea
is to integrate some simple logic inside the memory. Doing the computation
directly inside the memory avoids the exchange of data to the CPU. This
reduces the Memory Wall, creating more parallelizable architecture and a
reduction of power consumption.
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1.2 Computing approach Taxonomy
The literature regarding the computation with memory is very rich, but we
can classify it by observing the role of that memory regarding the computa-
tion operation. According to [1] we can dived it into four main categories:

• Computation-near-Memory (CnM)

• Computation-in-Memory (CiM)

• Computation-with-Memory (CwM)

• Logic-in-Memory (LiM)

In Figure 1.1 these four categories are presented graphically.

Figure 1.1: In-memory computing aproaches. (A) CnM (B) CiM (C) CwM
(D) LiM. Source:[1]

Now, these different approaches are being described one by one, describing
how the logic and the memory part interact between themselves.
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Computation-near-Memory The Computation near Memory approach
is characterized by the fact that the logic and the memory unit are well
separated. The two units are very close to each other. These two units are
stacked one to the top of the other in a 3D structure using the Through Silicon
Via (TSV) technology. From a system point of view, we have no variations,
this approach is involved using only the Technology. The advantage of this
configuration is the bus length reduction, implying less delay and power
consumption.

Computation-in-Memory This approach does not modify the logic array
of the memory but exploits the logic operation using the analog part of the
memory. In particular sense amplifiers of the memory are used, realizing
simple logic operations like the AND or the OR. Moreover, the decoder of
the memory is also modified to permit to do more than one read at a time
and performs row-wise and column-wise operations (i.e. operations between
different rows/columns). Also, the match lines of a CAM can be exploited
to do this type of operation. The advantage of this approach is, from a
technology point of view, to create a dedicated special design of the memory.
On the other hand, the set of available operations is very limited. RRAM
(Resistive Random-Access Memory) and MRAM (Magnetoresistive Random-
Access Memory) technologies like the PIMA architecture [2] and [5] belong
to this category.

Computation-with-Memory This computation approach uses the mem-
ory like a Look-up table (LUT), containing the precomputed-result inside
of it. The LUTs are used to perform a boolean logic function with two or
more inputs, storing its truth table. The memory is used as a Countable-
Adress-Memory (CAM) to store the result of the computation. The working
principle is simple: the LUT is accessed by a combination of inputs, the
LUT retrieves an address that is used to access the CAM to obtain the final
result. An example of this approach is exploited in [3], where a ReCAM
(ReRAM-based CAM) to compute a DNA alignment is used.

Logic-in-Memory The last approach is what we are focusing on in this
thesis and the philosophy of how DExIMA works. The LiM approach uses
logic elements directly integrated into the cell. In this case, we have a custom
memory, where each cell has a specific logic. The read and write operations
can be performed locally using the logic, without moving data outside the
array. This is an advantage in terms of speed and power consumption. The
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other advantage is the possibility to use different emerging technologies be-
yond the classic CMOS to construct the memory cells, like MTJ (Magnetic
Tunnel junction). An example of how LiM work is in [4].

1.3 Configurable Logic-In-Memory Architec-
ture (CLiMA)

An interesting example of a LiM approach is the CLiMA architecture that
stands for Configurable Logic-In-Memory Architecture [1]. The main aspect
related to this architecture is configurability, hence flexibility. The CLiMA
architecture is composed of an in-memory computation LiM and/or CiM, the
CLiM array, and a CnM unit. The usage of these three units is decided by the
type of operation to perform. The operation varies based on the operation
complexity and data movement. From these considerations, we decide to
perform the operation inside the memory or not.

Figure 1.2: Conceptual structure of Configurable Logic-in-Memory Architec-
ture (CLiMA). Source:[1]

In fact, the operations that can be performed in the memory are associated
with the CLiM arrays. Instead, the operations that cannot be performed
inside the memory, are performed by the CnM unit. Figure 1.2 shows the
structure of the memory already described. The main block of the CLiM
array is the CLiM cell, which is a 1-bit configurable cell, that can be used to
perform different types of logic operations. The connections are configured
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to create more complex operations like the addition or the multiplication
using multiple cells. Now we are going to see how these cells are composed
and allocated to the array.

Figure 1.3: Configurable Logic-in-Memory Cell Array. Source:[1]

Figure 1.3 shows the array of CLiM cells, how it is possible to see, each cell
is composed of a memory cell, that is connected to the word line (WL) and
bit line (BL), and a configurable logic block. There is also a Full-Adder in
each cell that is very useful to perform different types of operations. Each
cell contains some multiplexer to connect the cells between them. The cells
are connected to perform operation involving the whole row or column. In
Figure 1.3, all the Full-Adders of the same row are highlighted in blue. It is
possible to verify that, connecting the carry output to the next Full-Adder of
the same row, we can create a Ripple Carry Adder (RCA). Using more RCAs,
we can create an Array Multiplier (AM) connecting more columns. These are
the complex operations that we can perform using the composition of more
CLiM logic cells. The trade of using these operations is that the configuration
of these arithmetic circuits is not so convenient, for this reason, if we need to
do fast operations, it is better to use logic outside the memory. Thanks to
this configurability this type of architecture is very useful in data intensive
applications like the Convolutional Neural Network (CNN). In [1] it is showed
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how to use the CLiMA to perform the computation of CNN in a very efficient
way.
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Chapter 2

LiM Architecture

Our LiM Memory is a complex component that merges storage and computa-
tion together. Additionally, some external units may be required for complex
computations. For this reason, we classify the logic inside the memory into
two categories:

• Intra-Cell Logic: the logic present inside the LiM cell

• Inter-Cell Logic: the logic external to the LiM cell

The LiM cell of our memory is composed of a memory cell and an Intra-Cell
logic. It can be interconnected with the other cells using the logic or directly
using the memory inputs/outputs.

Figure 2.1: LiM Cell

21



2 – LiM Architecture

In Figure 2.1, an example of LiM cell is shown, highlighting the two com-
ponents and grouping all the interconnection wires that communicate with
the outside of the cell by the Inputs and Outputs Logic. There is internal
communication between the two parts. In order to explain how Inter-Cell
logic is inserted, we can see Figure 2.2, where some LiM cells directly interact
between themselves or pass through Inter-Cell logic. There are no restric-
tions about the link of these components, in fact, the first cell in figure 2.2
can be connected with any component of the scheme.

Figure 2.2: LiM Cell interconnection between Inter-Cell Logic

Also, in this case, the logic inside the Inter-Cell block can be very simple,
like a single gate or a more complex one.

2.1 LiM Structure
From now, a punctual description of the LiM architecture is provided. The
operations that a LiM usually performs involve the use of an entire row or
column. As we have already seen for the CLiMA architecture, we can use
a group of rows and columns to exploit complex operations, like the sum or
the multiplication. For this reason, we reference to Inter/Intra logic of an
entire row or column.
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2.1 – LiM Structure

Figure 2.3: LiM Architecture

The Figure 2.3 shows the entire LiM structure. The yellow boxes represent
the LiM cell containing logic inside. We have also the control circuitry of
rows/columns access operations. Similar to Intra-Column logic, which in-
terests the whole column of Intra-Cell logic, the same considerations can be
done for the Intra-Row logic. There are also two layers that consider Inter-
Columns and Inter-Row logic interacting with the adjacent cells. All this
component creates our LiM structure and it can be customized to perform
the operations of the designed algorithm.
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Chapter 3

Motivations

The DExIMA tool was born from a Nicola Piano’s idea [6]. The good of the
tool is to explore different LiM architectures using a high-level description,
without writing the entire HDL description at register transfer level (RTL).
In this way, it is possible to understand which is the most feasible LiM
architecture for our algorithm with lower effort. The tool is a performance
estimator, that computes the four main figures of merit of our circuit:

• Area

• Static Power

• Dynamic Power

• Delay (Critical path)

The tool is able to compute the performance specifying the algorithm that
we want to execute. In the following section, we explain how the program
works and the problems that we fixed starting from the original version of
DExIMA. From now on the first version of DExIMA is called 1.0, while the
newer one 2.0.

3.1 DExIMA 1.0 High-Level Description
We start from the structure of the program that is composed of three dif-
ferent compilers, that use different configuration files in input. Each file has
different behavior and it’s used in different parts of the architecture. All
the Files are used to compute the performance in output together with the
Hardware Models.
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Figure 3.1: DExIMA 1.0 High-level Structure. Source:[6]

These files have the following extensions:

• .arch: This file is used to instantiate and connect the components out-
side the memory

• .lim: This file contains the description of the LiM organization and the
operation that the LiM can perform

• .asicop: This file contains the pseudo-instruction set of the operations
executed by the components described in the .arch file

• .asicode: This file contains the sequence of instructions described in
the .lim and .asicop files.
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The program is composed of a component library related to the ASIC opera-
tions, and other predefined libraries of cells that can be used to construct our
custom LiM. All the gate models are based on the NAND with two inputs
and hierarchy generate to create all the core complex models.

3.2 Motivations
This section contains the explanation of all the issues of the DExIMA 1.0 and
the motivation that led to the rewriting of the code completely from zero.

3.2.1 Configuration Files Writing Effort
The first problem that occurs when we approached to DExIMA 1.0 was
the effort in writing the code. If we need to create an architecture with
many components, in DExIMA these components should be created one by
one. To create a component, its name is specified in a different line of the
configuration file, in fact, if we need n gates we need to write n lines of code.
It is the same if we need to connect two or more components, if we need to do
n connections we need n lines of code. This concept concerns all parts of the
code of the configuration files. This method is not feasible if we have a high
amount of gates. As a matter of fact we need an external script to create the
configuration files would frustrate part of the advantages of using DExIMA
to evaluate the performance of our architecture in a fast way. Moreover, it
is not possible to generalize the code using variables.

3.2.2 Error checking problem
Another important aspect related to the interface with the user was the error
checking. The program does not have a complete syntax manual, so its easy
to commit some errors when we write the configuration file. The problem
is that in most cases the error is not reported, meaning that we occur in
errors at the run time of the program generating, for example, segmentation-
faults. When this problem occurs, the user doesn’t have any idea on which
instruction generates the error, implying waste to find the bug.

3.2.3 Configuration files separation
Each file works completely separated and it is not possible to connect compo-
nents of .arch file with the LiM structure. A memory interface does not exist
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and is not possible to compute the power consumption related to memory
accesses by an external component. More than one LiM memory instance
are not allowed, because the only one permitted is described in the .lim file.

3.2.4 Random Behaviour
Random behavior happens sometimes, especially when the LiM part is used.
Running the same configuration files generates different results in the output.
Variations can be both small and so big as well, that they can vary completely
the outputs.

3.2.5 Simulation Times
Simulation times are very important when we exploit architectures that can
be big. Simulation times can be very long, because they grow exponen-
tially, requiring even hours. This is due to the model computations and
object creation that have a pyramid structure. In this structure, the high-
level component is dismantled with a high number of sub-components and
finally to a large number of NAND2 gates, where the performance of each is
recomputed each time.

3.2.6 Models Efficiency
The models inside the program are all based on the NAND2, but each time
a gate is connected to another one, the output fanout is simply incremented
by 1, meaning that the load of the gate is increased by the input capacitance
of one NAND2. This model does not consider that some more complex gates
can have inputs with more than one NAND2 connected. Many errors could
be introduced, depending on which component is being used. The other ele-
mentary gates that are composed of multiple NAND2 gates result in an over-
estimating value of the area and static power. Moreover, the memory cells
are not created by the program. Another external tool is employed to com-
pute the memory performance, meaning that the connections to the memory
cell create wrong performance results. Moreover, there is no possibility to
use different timing parameters (such as the clock to output, setup, and hold
times of FlipFlop) besides the critical path of each internal component. Is
not possible also to discriminate between a read and a write operation of the
memory in terms of timing and power. In the Memory part, we can create
the memory cell using only the components of the memory library and it is
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not possible to insert all the models inside the program. Moreover, switching
activity estimation is not considered in dynamic power computation.

3.2.7 Simulation parameters orientation
The simulation of the circuit is bounded by the information set in the code.
Simulation results cannot be varied. For example, we cannot change the
circuit Voltage or vary the performance changing the clock period. Moreover
the output of the program groups all the information computed in few fields,
so it is not possible to discriminate all the contributions parameters of circuit
components. Imagine having in the output the total performance of the
memory, but we want to know which is the area of the array and the area of
the interface circuitry. With only the total value, it is not possible to know
how much area is dedicated to the array, and how much area to the circuitry.
The same considerations can be done for the single instruction performances
because it is not possible to isolate it from the complete algorithm.

3.2.8 Insertion of a new model
All the models must be designed with NAND2 gates. Moreover, to insert a
new model, we need to modify several files to define completely the compo-
nent behaviour.

3.2.9 Absence of Documentation
The tool is provided without documentation, creating some difficulties when
someone tries to modify or check some information needed for the program
behavior.

3.2.10 Conclusions
In conclusion, we decided to re-design the whole program, because modify-
ing and upgrading some important parts would have implied resolving the
problems previously cited in a non-efficient way, due to the structure of the
program that cannot be changed. By re-designing it, we can create a more
precise program inheriting only a part of the syntax of the configuration files
already done.
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Chapter 4

DExIMA

DExIMA is the core of this thesis. DExIMA is a powerful tool intended to
explore and evaluate the performance of a logic circuit. It can build a custom
LiM memory and evaluate the performance in a very fast way. The process to
build a LiM memory can be very time consuming with HDL representation.
For these reasons, DExIMA provides the user a library of components useful
for the general architecture and allows us to design our architecture using a
high-level methodology. DExIMA synthetizes the circuit and computes the
performance of our algorithm. In this sense, it can be seen as a logic circuit
creator with the possibility to embedded the test bench of our algorithm.

4.1 DExIMA Structure
Let’s start with the top entity of the entire program that controls and man-
ages all the process operations. The program’s main class is called Dexima.
The class contains some objects that exchange information: its structure is
shown in Figure 4.1 below.
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Figure 4.1: Dexima class structure

The class is composed of four objects:

• Technology: used to store and compute all the technology parameters
for the models.

• Compiler: used to compile the DExIMA code and to fill the Architec-
ture object.

• Simulator: used to manage the architecture simulation process.

• Architecture: used to store all the components of the circuit and the
performance data of them.

The Dexima class in Figure 4.1 describes the objects interaction. In partic-
ular, the core of the class is the Architecture class, which stores the whole
components of our architecture. The Compiler interacts directly with the
Architecture and Technology objects. The Compiler sets and stores some
technology parameters specified by the user in the Technology object. The
Compiler also gets the empty Architecture object in input and returns the
full object. This is the motivation of the double arrow. The Simulator has
a management role and Simulates the circuit, so the interaction is only with
the Architecture object. An important aspect of Dexima class is that the
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objects created are unique. All the classes of the program get only the ref-
erence of the object to reduce the memory occupation. There is a twofold
advantage in doing it: the occupation of less amount of memory and there
is also no need to copy the objects inside the functions.

4.2 Process Flow
In this section, we will see a critical aspect for the user: what the program
expects in input and what the program returns in output. The program
receives in input a file with .dex extension that contains all the information
to instantiate and simulate our circuit. The output of the program is a file
with .dof extension that is the abbreviation of DExIMA Output File, and
contains the performance results of the circuit.
The process is split into three main steps:

• Compilation Step

• Technology Parameters Computation Step

• Simulation Step

4.2.1 Compilation Step
The first step is the Compilation Step, which is described in Figure 4.2. The
Compiler gets in input the .dex file, and the reference of the Architecture
object created inside the Dexima class. The Architecture object is initially
empty. The Compiler parses the file and fills the Architecture object with
all the information written in the .dex file. The compiler sets also some
technology parameters specified in the file. In output, we have a file with the
same name of the input file but with the .log extension. The log file contains
the summary of the created architecture. The structure and the information
contained in the log file will be described in detail.

4.2.2 Technology Parameters Computation Step
This step is located between the Compilation Step and Simulation step. It
is very important because it sets and computes all the parameters of the
technology used later in the simulation process, shown in Figure 4.3. When
the compiler gets the parameters related to the Technology, the Technology
object stores these parameters. After that, the technology object extracts

33



4 – DExIMA

Figure 4.2: Compilation Step process flow

the technology parameters from a TechFile. In the folder, there are several
TechFiles available. The object gets one of these and loads in main memory

Figure 4.3: Technology load and computation process
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the parameters written inside. The following step consists of the computation
of the parameters derived from the base values written in the TechFile (that
we will use often during the performance computation). These parameters
need to be computed at this specific point since they will later be used to
manage the interfaces between the gates (fanin values).

4.2.3 Simulation Step
The Simulation Step is managed by the Simulator class. It uses the methods
of the Architecture class to run in the correct sequence the process steps for
the simulation of the circuit. The process flow is described in Figure 4.4. We

Figure 4.4: Simulation Step process flow

have in input the reference of the full Architecture object and in the output
the .dof file with the performance of our circuit. The Technology class is used
from the Architecture class to compute the Technology parameters during
the Simulation process. In summary the Simulator calls the Architecture
functions and, finally, fetches the results from all the objects. These results
are written in the .dof file.
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Chapter 5

DExIMA Language

We start by describing the DExIMA language and how to use it. In this way
it is more convenient to know the high-level description, and after it will be
easier to explain all the hidden processes of the program that interprets the
instruction.

5.1 Input File description
The input file is the dex file. Inside of it, the followings information are
specified:

• Simulation constrain

• Components of the circuit

• Memories of the circuit

• Memories Architectures

• Components links

• Instruction set

• Algorithm code description

This information defines the complete description of our circuit. The lan-
guage is a line-based language, meaning that each instruction must start and
end in the same line. The file is composed of sections as shown in Figure 5.1.
Each section starts with keyword begin and ends with keyword end. After
that, we specify the name of the section to open/close. Nested sections are
needed in some part of the code for the correct execution of the instructions.
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Figure 5.1: Section organization of dex file

The sections have a predefined order. The sequence must be:

• Constants: Used to define constants values usable in the code

• Init: Used to instantiate the components of the circuit

• Memory: Used to specify all the information about memory

• Map: Used to link the components between them

• Instructions: Used to define the instruction set

• Code: Used to define the algorithm

The number of sections varies with a dependence on the number of memories.
The number of Memory sections is equal to the number of memories in our
architecture. The summary of section order is shown in Figure 5.2.
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Figure 5.2: Sections order of dex file

5.2 Comments
Line comments are allowed in the code. The comment lines start with symbol
#. All parts of the line at the right of the symbol are ignored by the compiler.
An example of DExIMA comment is shown below:

Figure 5.3: Comment block example

1 #This i s a comment
2 Line of code #This i s another comment

Listing 5.1: Comment example

5.3 Constants Section
The constants section is used to define constants that are usable inside the
code. There are three types of constants:

1) INT: Integer constant

2) FLOAT: Floating point constant
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3) STRING: String constant

To instantiate a constant, we use the specific constant keyword followed by
the name of the constant. At the end of the line, we insert the value. These
three fields are separated by spaces or tabs like shown in 5.4.

Figure 5.4: Constants section syntax

Now we see a practical example:
1 begin constants
2
3 #Definition of an integer constant
4 INT integer 20
5
6 #Definition of a f loat constant
7 FLOAT pi 3.14
8
9 #Definition of string constant
10 STRING str "This is a string"
11
12 end constants

Listing 5.2: Constants example

Now we analyze the example 5.2, we instantiate an integer named integer of
value 20, and a float named pi of value 3.14. The string needs double quotes
to specify the start and the end of the string. To use a constant in our code,
we use the symbol $ in front of the constant name we want to expand. The
constants in DExIMA are very powerful: they can be used everywhere in the
code and can be used in a nested form. They can directly call a command
or open and close a section. The value of the constant is substituted in the
place where they are expanded, in order to clarify better this concept below
there is a practical example:

1 begin constants
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2
3 #Define an integer
4 INT num 12
5
6 #Create a string with the num inside
7 #The result value of string i s "Gate12"
8 STRING str "Gate$num"
9
10 #Create command string
11 STRING command "FLOAT var 7.4"
12
13 #Instantiate a constant indirectly
14 $command
15
16 end constants

Listing 5.3: Nested constants example

The example 5.3 shows two cases. In the first one, we insert an integer inside
the value of the string, in another case we use a string to call a command.
All the constants are treated as strings in DExIMA, but the main difference
between these three types is that the value is checked by the compiler. If,
for example, we try to instantiate a float variable inside an INT constant or
a char, the compiler returns an error.

5.3.1 Built In Constants
There is also a fourth type of constant that has a special meaning. The
built-in constants cannot be used in the code like previous, using the $ sym-
bol. They act directly in the simulation process. The built-in constants are
instantiated with the keyword BUILT_IN, but the names cannot be arbi-
trary, it must be chosen from a list of supported types. The built-in constants
can be omitted in the section because they have defaulted predefined values.
The supported built-in constants are:

• VDD: used to define the supply voltage, expressed in [V] Volts. The
default value is specified in the Technology File.

• CLOCK: used to specify the clock period, expressed in [ns] nanosec-
onds. The default value is the critical path of the circuit.

• AR: used to specify the Aspect ratio of the minimum sized N-mos tran-
sistor. The default value is specified in the Technology File.
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• SF: used to specify the stack factor, the stack factor is a model parameter
to compute the stack effect. If we don’t want to consider the stack effect,
we put it to zero. The default value is 2.

• NODE: used to set the technology node of our Technology. The default
value is 45 nm.

• TECH: used to specify the technology type. The possible technologies
are HP "High Performance", LOP "Low Operating Power", LSTP "Low
Standby Power". The default technology is LOP.

• SWITCHING: used to enable the computation of the switching ac-
tivity of the gates. The value can be ON or OFF. The default value is
OFF.

• PROB: used to set the input probability of the gates in the switching
activity computation. The default value is 0.5.

In the table A.3 there are all the supported technologies. To clarify how
built-in constants are used, an example is shown in Listing 5.4:

1 begin constants
2
3 #Define the supply voltage of 0.9 V
4 BUILT_IN VDD 0.9
5
6 #Define the clock period of 2 ns
7 BUILT_IN CLOCK 2
8
9 #Define an aspect ratio of 4
10 BUILT_IN AR 4
11
12 #Define a stack factor of 1
13 BUILT_IN SF 1
14
15 #Define the technology node of 32 nm
16 BUILT_IN NODE 32
17
18 #Define the HP technology
19 BUILT_IN TECH HP
20
21 #Enable the computation of switching activity
22 BUILT_IN SWITCHING ON
23
24 #Define the input probability
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25 BUILT_IN PROB 0.6
26
27 end constants

Listing 5.4: Built in Constants example

The supply voltage can be modified but it is not a good practice because
the Technology parameters are computed in a particular bias point defined
by the default voltage. This implies that changing the voltage can cause
unexpected or wrong values of performance because it can be used for future
implementations. However, we insert this feature.

5.4 Init Section
After the constant section, there is the Init section. This section is used to
instantiate the components and the memories that will be used in our circuit.
To instantiate a component, the syntax is the name of the model followed
by the name of the instance. In the instance name, we open a round bracket
where we specify the parameters needed for the model, like in Figure 5.5.

Figure 5.5: Init section syntax

Nand is the name of the instance and 2 is the parameter, that in this case
indicates the number of inputs. Each model has different names and different
types of parameters. The arguments specified in the brackets can be also a
string or empty.
The example 5.5 shows some of the simple gates. All the other gate specifi-
cations can be found in the appendix.

1 begin in i t
2
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3 #Instantiate a And with four inputs
4 AND And(4)
5
6 #Example of no parameter component
7 #Instance of Inverter
8 NOT Inverter()
9
10 #Instance of a Register of D Flip Flop with 8 bit
11 FF Register(8)
12
13 #Create a latch SR
14 LATCH_SR Latch()
15
16 end in i t

Listing 5.5: Base components examples

It is possible to use the constants to parameterize the component. For ex-
ample, we can choose the name of the component or the number of inputs
like the example shown below 5.6:

1 begin in i t
2
3 #Create a Nor with int_var inputs
4 NOR Nor($int_var)
5
6 #Create a Or with name contained in string_var
7 OR $string_var(3)
8
9 end in i t

Listing 5.6: Create instance using constants

5.4.1 Special components
There are also special components that work differently from other compo-
nents. Four special components are available:

• DRIVER: The Driver is an adaptive component, the device is created
in the function of the load and has three different operation modes.

• CK_DRIVER: The clock driver is a type of driver used to compute
the performances of the clock, and it is evaluated separately from the
other components.

• LOAD: The load component is used to emulate a capacity load.
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• LIM: Instantiates a memory and is responsible for the memory interface
circuits.

Now we see a practical use and a more detailed description of these special
components, for the LIM we have a dedicated section.

5.4.2 Driver
DRIVER has three operating modes:

• Auto: in this mode, the driver is synthesized using the optimum number
of stages to drive a big capacity load.

• Buffer: in this mode, the driver has an optimum even number of stages
to not change the logic value in the input.

• Inverter: in this mode, the driver has an optimum odd number of
stages. It is used to invert the logic value in the output.

To instantiate the Driver component, we need also the multiplicity factor
that sets the successive stage size concerning the previous one. DExIMA
applies the logical effort method and computes the best number of stages
of the Driver taking into account the mode of operation. Now we see an
example of the use of this component:

1 begin in i t
2
3 #Create a driver in auto mode (A) with ef fort equal to 4
4 DRIVER Driver_auto(A,4)
5
6 #Create a driver in buffer mode (B) with ef fort equal to 2
7 DRIVER Buffer(B,2)
8
9 #Create a driver in inverting mode ( I ) with ef fort equal to

3.4
10 DRIVER Driver_inverter(I,3.4)
11
12 end in i t

Listing 5.7: Drivers examples
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5.4.3 CLock Driver
The clock driver is a specific type of Driver. This Driver is set in Auto
mode. The computation of the parameters like dynamic energy is computed
differently because it switches in each clock step of the algorithm and the
commutation is doubled compared to the normal gates. Like the normal
drivers, it is possible to set the effort parameter. More than one clock driver
can be used in the circuit and at the end of the computation, we get a detailed
report for each clock driver instantiated. Now we see a simple example of
how instantiating a clock driver:

1 begin in i t
2
3 #Create a clock driver of ef fort 4
4 CK_DRIVER Clock_driver(4)
5
6 end in i t

Listing 5.8: Clock Driver example

5.4.4 Load Component
The load component is used to test or emulate a capacity load. This com-
ponent is a special component. The performance does not affect the circuit
because it has a zero value for the area, dynamic energy, static power, and
delay. The component varies the performance of the gate on which is con-
nected. Load does not have outputs, but only inputs. The parameters needed
for the component are the value of the capacitance expressed in pF and the
parallelism of inputs we want to use.

1 begin in i t
2
3 #Create a load of 2.4 pF with 8 input parallelism
4 LOAD Load(2.4,8)
5
6 end in i t

Listing 5.9: Load component example

5.4.5 LiM Component
The LiM component is the most important. It is used to instantiate a mem-
ory. We can instantiate how many memories we want, and the parame-
ters needed for the components are two: the address parallelism, and the
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input/output port parallelism. The default memory in DExIMA has two
ports, one for the Read operation and one for Write operation. The other
internal parameters will be specified in the Memory section. The order of
how we create this component is important because it is used later to define
a dedicated section (the Memory section) where the name of the section is
not "Memory" but the name of the instance we create. For example, if we
create three memories called Ram, SRam, and Dram in this order, later we
will have three sections with the same names that must be created in the
same order. To create a memory we use the keyword LIM, in 5.10 there is
an example of memory creation.

1 begin in i t
2
3 #Remember the order i s important
4
5 #Create a memory with 8 bit address and
6 #8 bit input/output parallelism
7 LIM Ram(8,8)
8
9 #Create a memory with 12 bit address and
10 #64 bit input/output parallelism
11 LIM Lim(12,64)
12
13
14 end in i t

Listing 5.10: Memories creation example

5.5 For Control Flow
Before going ahead, the For loop is introduced. The For loop is very similar to
the modern programming language and it is very useful when we need to do
a lot of operations of the same category. In Figure 5.6 there is a description
of the syntax used. The information needed by the control flow is, first of all,
the name of the iterator, that in the figure is i. This will be the parameter
that in the cycle changes at each step. Later, we find the range function that
receives in input three parameters: the start value, the increment and, the
stop value. The start and stop values are included in the loop: if, for example,
we have the parameters (0,1,10) we have 11 iterations with values 0,1,2...10.
The float values are forbidden since it is very dangerous when used with
instance names because a non-infinite precision can cause an unexpected
instance name. Negative values and decrements cycles like (10,−1,1) are
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Figure 5.6: For control flow description

allowed too. When the user inserts a loop with no end like this (1,−1,10)
the compiler reports the error. The last part of the syntax is the body of
code: we insert the instruction we want to loop between curly brackets. The
iterator can be used only inside the curly brackets and the syntax for the
use is equivalent to the constant expansion syntax. As it was pointed out at
the beginning of the language description, this language is line-based, so it
is not possible to break the loop with a newline. It is possible to use in a
nested way to have multiple loops inside. It is very useful for example in a
bidimensional array loop. Some examples of loop use are shown in 5.11 5.11.

1 begin in i t
2
3 #Example of instantiating of n gates Nand
4 for i in range(1,1,$n){ NAND Gate$i(2) }
5
6 #Example of instantiating of n gates Nor decreasing loop
7 for i in range($n,-1,1){ NOR Nor$i(2) }
8
9 #Example of nested loop
10 for i in range(1,1,10){ for j in range(0,2,10){

XOR Xor$i$j(2) } }
11
12 end in i t

Listing 5.11: For loop examples

5.6 Map Section
The Map section is used to connect the components to each other. The
components before the connection must be instantiated in the Init section.
The syntax used is shown in Figure 5.7. The line is divided into two parts
by the right arrow "->" called link operator. The link operator shows the
direction of the link from the left to the right. The left part is reserved for
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the output port and the right part for the input port. To specify the port to
connect, we write the name of the instance followed by the "." dot operator
that is used to specify the port name of the instance. If we try to specify
a port that does not exist for the component or is not of the correct type
(input/output) in the corresponding left/right part the compiler generates
an error. The input/output port can have a multiplicity of one or more. For
example, the elementary gates like Nand or Nor gates have a multiplicity
port of one, a more complex model like a register can have an input/output
multiplicity higher than one. To connect a specific wire and not the total
wires we can use the index operator "[ ]". We include the index number
between the two square brackets of the index operator. All the index starts
from 0 to the max value minus one. For example, for 8-bit parallelism, the
index goes from 0 to 7. Is important that the parallelism of left and right
part must be the same if we have one bit on the left, we need one bit on the
right part. If we don’t specify the index, DExIMA interpreters the port of
full parallelism, so we can connect the whole bus. If the bus width doesn’t
match between the two ports, we can use a for loop to connect only the wires
we need to connect varying the index. Now we see a couple of examples that
explain these functions:

1 begin map
2
3 #Connection of a single wire gates
4 Nand.OUT -> Nor.IN0
5
6 #Connection of a single wire of a multiple parallelism
7 FlipFlop1.Q[0] -> FlipFlop2.D[1]
8
9 #Connection of entire bus
10 FlipFlop1.Q -> FlipFlop2.D
11
12 #Connect part of the wires using for
13 for i in range(0,1,3){ FlipFlop1.Q[$i] -> FlipFlop2.D[$i] }
14
15 end map

Listing 5.12: Map section examples

5.7 Math Environment
The Math Environment is a feature of the code used to make math opera-
tions. The use of Math Environment is shown in Figure 5.8. To interpret
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Figure 5.7: Map section syntax

a mathematical operation with the Math Environment we use the symbols
"$(" and ")$". All the numbers, operators, or brackets must be separated by
at least one space to be interpreted correctly. To group the operations, only
round brackets are allowed. The following operations are available:

• "+": Sum operation

• "-": Subtraction operation ( negative number )

• "*": Multiplication operation

• "/": Division operation

• "ˆ": Power operation

The available operations are shown also in Figure 5.8. The Math Envi-
ronment uses the Shunting-Yard algorithm to parse and do the operations,
something similar to what is done in [7]. The computations are done in
floating-point, but only when the result is ready, it is transformed into an
integer value using truncation. The output is an integer that is conformed
with the ecosystem of DExIMA, where all the operations and commands
support only integer numbers. The result is replaced with a string in the
position where the command is invoked. Some examples of the Math Envi-
ronment are reported in 5.13. For example, suppose to connect a chain of
gates. In a normal situation, it is hard to do this operation, but with the
Math Environment it is very simple like the example 5.13 below:

50



5.8 – Memory Section

Figure 5.8: Math Environment syntax

1 begin map
2
3 #Connect a chain of gate
4 for i in range(0,1,10){ Gate$i.OUT -> Gate$( $i + 1 )$.IN }
5
6 end map

Listing 5.13: Math Environment example

5.8 Memory Section
The memory section specifies all the information related to the memories
instantiated in the Init section. The Memory section has some subsections
inside and also in this case an order must be respected.
The memory subsections are:

• Memdef : Used to specify the array shape and the memory cells

• Logic: Used to specify the inter row/column logic

• Cells: Used to create the custom LiM cells

• Map: Used to link the instances inside the memory

The Figure 5.9 explains better the order of the sections.
From now until the end, the examples are related to a Memory called "Lim".

5.8.1 Memdef Section
The memdef section is the entry point inside the Memory Section. The
information needed is:
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Figure 5.9: Memory sections order

• Rows: The number of rows in the memory array

• Columns: The number of columns in the memory array

• Type: The type of memory cells of the array

Now see a practical example:
1 begin Lim
2
3 begin memdef
4
5 #Number of rows
6 ROWS 16
7
8 #Number of columns
9 COLUMNS 16
10
11 #Type of memory
12 TYPE FLIPFLOP
13
14 end memdef
15
16 end Lim

Listing 5.14: Memdef definition

Up to now, it is possible to use only FLIPFLOP type. This type of memory
uses Flip Flops instead of classic memory cells. In future releases, we will
provide other types like SRam and DRam for example. When the rows and
columns are specified, the compiler starts a software routine to check if the
internal array matrix is consistent with the memory interface chosen in the
Init section, when the LIM model is invoked. For example, a memory with
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only one column having an input/output parallelism of a value higher than
one is not allowed, because when DExIMA synthesizes a memory it doesn’t
know how to construct the memory interface circuitry. If the parameters
chosen in the memdef section are not consistent, the compiler reports an
error and, if possible, a suggestion to resolve the inconsistency.

5.8.2 Logic Section
The logic section is similar to the Init section. The syntax is the same, but the
components instantiated inside are used only inside the reference memory.
Moreover, the name of the instances can be the same as the components
instantiated inside the init section because these components live in different
namespaces. DExIMA has three different namespaces. We have seen two
of them. The largest is the Architecture namespace, the components are
instantiated in the Init section. The namespace related to the Lim is filled in
the Logic Section, the last namespace will be filled in the Cells section. So
we can have the same instance name but in three different namespaces. The
hierarchy of namespace is shown in Figure 5.10.

Figure 5.10: DExIMA Namespaces

A practical example is:
1 begin Lim
2
3 begin memdef
4
5 ROWS 16
6 COLUMNS 16
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7 TYPE FLIPFLOP
8
9 end memdef
10
11 begin logic
12
13 #Nand with the same name
14 #of one created in the in i t section
15 NAND Nand(2)
16
17 end logic
18
19 end Lim

Listing 5.15: Logic section example

5.8.3 Cells Section
The cells section is similar to the Init/Logic Sections but in this case, we
work in the last namespace. The Cell namespace is related to the smart Cell,
composed of Memory and a logic chosen by the user to create the custom
LiM. We use the link operator to push a logic element inside a cell. In Figure
5.11 there is the example of the syntax used.

Figure 5.11: Cells section syntax

On the left, we create a component like the previous one, but now we add the
keyword Cell on the right using the link operator and specify between round
brackets the two coordinates to identify uniquely a cell inside the memory
array. The indexing starts from zero to the number of rows/columns minus
one. By default in every cell, there is only the memory cell, but in this
section, we can choose to add inside it all the logic we want. When we push
inside the cell a Nand for example, we are free to add how many components
we want. For example, if we want to fill an entire memory 16x16 with Nand
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gate we can look at the example 5.16 (all the previous sections are omitted
to focus on what we want to show).

1 begin Lim
2
3 begin c e l l s
4
5 #F i l l the memory with Nand Gate
6 for i in range(0,1,15){ for j in range(0,1,15) {

NAND Nand(2) -> Cell($i,$j) } }
7
8 end c e l l s
9
10 end Lim

Listing 5.16: Cells section example

5.9 Memory Map Section
The Memory Map Section is similar to Map Section. The syntax is the
same. The main difference is that the component linked in this section are
only the component belonging to the second and third namespace. Now we
look at how to reference components contained inside the memory cell (third
namespace). We need to specify in the name the coordinates (x,y) of the cell
in the memory array. To access the Memory cell and not the logic inside we
use the keyword Memory.

Figure 5.12: Memory Map section syntax

The other components outside the cells are specified like previous. It is
important to underline that in order to use a component inside this section,
this must be instantiated in the logic or cell section of the same memory.

1 begin Lim
2
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3 begin map
4
5 #Connection of c e l l component with out of c e l l component
6 Nand(0,0).OUT -> Xor.IN0
7
8 #Connection of memory output with a component inside
9 #another c e l l
10 Memory(2,4).RD -> Xor(0,1).IN2
11
12 end map
13
14 end Lim

Listing 5.17: Memory Map section example

5.10 Instructions Section
At this point, we have created all the components of the circuit and we
created also the connections between them. Now we need to create an In-
struction Set that our architecture can perform. First of all, we define two
types of instructions:

• INSTRUCTION: Creates an instruction where the considered compo-
nents are the gates of the first namespace, the Architecture Namespace.

• LIM_INSTRUCTION: Creates an instruction where the considered
components are the gates of the second and third namespace, the names-
pace related to the LiM.

To create an instruction we simply use these two keywords followed by the
name of instruction we choose. For the LiM instruction, we need to specify
the name of the LiM who is referenced before the instruction name. Now we
see an example of these facts in 5.18.

1 begin instructions
2
3 #Create an instruction called subtraction
4 INSTRUCTION subtraction
5
6 #Create a Lim instruction called sum
7 #referenced with Lim memory
8 LIM_INSTRUCTION Lim sum
9
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10 end instructions
Listing 5.18: Instructions creation example

Also in this case, like the memories, the order of definition of the instructions
is important, in fact, after the definition of the names we need to describe
each instruction in detail with the same order. To describe each instruction,
we open a section called with the same name of the instruction (inside the
instructions section) after all the instructions definitions. First of all, when
we open a particular instruction section we need to specify a parameter called
PIPELINE. This parameter can be both zero and more than zero, it spec-
ifies how many pipeline stages the instruction has. From the path’s point of
view, the number of paths is the value of pipeline plus one.
Now we see a practical example of the definition of instructions and pipeline:

1 begin instructions
2
3 INSTRUCTION subtraction
4
5 LIM_INSTRUCTION Lim sum
6
7 begin subtraction
8
9 #Pipeline definition
10 PIPELINE 0
11
12 #Need more code
13
14 end subtraction
15
16 begin sum
17
18 #Pipeline definition
19 PIPELINE 1
20
21 #Need more code
22
23 end sum
24
25 end instructions

Listing 5.19: Instructions definitions and pipeline example
The code shows in 5.19 shows how to open instruction and set the pipeline
value, but the code to complete an instruction description is not enough, as
written in the comments.
Each instruction is described completely using at least two subsections:
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• Power: used to compute the power performance of the instruction

• Path: used to compute the timing performance of the instruction

The Power section is only one, instead of the Path section that is equal to
the pipeline value plus one. The path section has an index that starts from
zero to the pipeline value. They are indexed using the syntax "path[index]"
and must follow the growing index order.

5.10.1 Power Section
The Power section is used to compute the performance of a group of gates
in terms of power. The power section needs a list of instances. When the
instruction is called, the dynamic energy dissipated is the sum of all the
dynamic energies dissipated of each component in the list. To include our
component we specify the name of the instance. It is possible to call the
same instance multiple times if needed. We need to remember that the
usable components inside the section are the components included in the
referenced namespace of the instruction. An example is represented in 5.20.

1 begin instructions
2
3 INSTRUCTION subtraction
4
5 begin subtraction
6
7 PIPELINE 0
8
9 begin power
10
11 #List of power gates used
12 Gate1
13 Gate2
14 for i in range(3,1,10){ Gate$i }
15
16 end power
17
18 #Need more code
19
20 end subtraction
21
22 end instructions

Listing 5.20: Power Section example
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5.10.2 Power Attributes
The attributes are special options used to modify the computation behavior
of the dynamic energy. We have two types of attributes:

• Read: Used to compute the dynamic energy for the Read operation.

• Write: Used to compute the dynamic energy for the Write operation.

These two attributes are usable only for the LiM memories and for the mem-
ory cells. To use the attribute we use the link operator, specifying the in-
stance name on the left and the attribute name on the right. An example is
shown in 5.21.

1 #Architecture instruction
2 begin power
3
4 Lim
5 Sram -> Read
6 Lim2 -> Write
7
8 end power
9
10 #Lim instruction
11 begin power
12
13 Memory(0,0)
14 Memory(1,0) -> Read
15 Memory(0,2) -> Write
16
17 end power

Listing 5.21: Power attributes examples

5.10.3 Path Section
The Path Sections are used to compute the timing performance of the in-
struction. Inside a path section, we insert a list of components taking part in
an eventual critical path. The section computes the sum of all the propaga-
tion delays of the instances. We have different paths related to the pipeline
index so we have different possible critical paths. DExIMA evaluates which
is the critical path between them and which instruction is responsible.

1 begin instructions
2
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3 INSTRUCTION subtraction
4
5 begin subtraction
6
7 PIPELINE 1
8
9 begin power
10 #Power instances
11 end power
12
13 #Path 0 l i s t
14 begin path[0]
15
16 Nand
17 Xor
18
19 end path[0]
20
21 #Path 1 l i s t
22 begin path[1]
23
24 Nor
25 Inverter
26
27 end path[1]
28
29 end subtraction
30
31 end instructions

Listing 5.22: Path Section example

5.10.4 Parallel Paths
There is a possibility to have multiple parallel paths in each pipeline stage.
To implement this function, we can use the keyword break. This keyword
is inserted in a line without anything else (substitute an eventually instance
name) to break the upper part to the lower part. All the parallel paths are
included between two break lines or the start/end of the path section. See
the example 5.23 to have a better understanding of the use of this keyword.

1 begin path[0]
2
3 #First paral le l path
4 Gate0
5 Gate1
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6
7 #Second paral le l path
8 break
9 Gate0
10 Gate2
11
12 #Third paral le l path
13 break
14 Gate3
15 Gate4
16
17 end path[0]

Listing 5.23: Parallel Paths example

In the results related to the path, DExIMA highlights only the largest delay
parallel path.

5.10.5 Timing Attributes
The timing attributes have the same logic as power attributes, but in this
case, they are used inside a path section, evaluating different aspects related
to the timing of a component. The available timing attributes are:

• Read: Used to compute the delay of the Read operation.

• Write: Used to compute the delay of the Write operation.

• Clock_to_output: Used to compute the Clock to output delay.

• Setup: Used to compute the Setup time.

• Hold: Used to compute the Hold time.

• Contamination: Used to compute the Contamination delay.

The Read/Write attributes are used by the LiM memories and the memory
cells. The other attributes, except the Contamination one, are used by the
Flip Flops components. The syntax is similar to the power attributes. The
timing attributes are very useful especially when we need to consider also the
clock to output and setup time including in the critical path computation.
Now we see the example 5.24 of the use:
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1 begin path[0]
2
3 #Clock to output
4 FlipFlop1 -> Clock_to_output
5 Nand
6 Not
7 FlipFlop2 -> Setup
8
9 end path[0]

Listing 5.24: Timing attributes example

5.10.6 Path Section Example
A practical example is proposed to clarify the concepts. Firstly, we draw the
circuit and all the path of the circuit like shown in Figure 5.13.

Figure 5.13: Multiple path circuit example

We highlighted all the paths and sub-paths in the circuit. We can identify 3
pipeline stages that imply 2 paths. The first path has three sub-paths, the
second has only one. The resulting code is:

1 begin path[0]
2
3 #Subpath0
4 FlipFlop1 -> Clock_to_output
5 Nand
6 Not1
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7 Not2
8 FlipFlop2 -> Setup
9
10 break
11
12 #Subpath1
13 FlipFlop1 -> Clock_to_output
14 Nand
15 Nor
16 FlipFlop2 -> Setup
17
18 break
19
20 #Subpath2
21 FlipFlop1 -> Clock_to_output
22 Nor
23 FlipFlop2 -> Setup
24
25
26 end path[0]
27
28 begin path[1]
29
30 FlipFlop2 -> Clock_to_output
31 Adder
32 FlipFlop3 -> Setup
33
34 end path[1]

Listing 5.25: Multiple path circuit code

It’s obvious that if we know in advance that one of the subpaths is the
critical path, it is useless to insert all the paths since only the critical one is
considered.

5.11 Code Section
The code section is the last section of the dex file. It is used to specify the
algorithm that the circuit performs using the instruction set defined before.
The syntax is very simple, we write the name of instruction followed by an
integer that tells the compiler how many times that instruction is executed.
The order of instruction is the same as the algorithm. There is the possibility
to do multiple instructions at the same time. To do concurrent instructions
we simply do a list separated by a comma in the same line. At the end of
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the line, we specify the multiplicity of the concurrent instruction. We show
in 5.26 an example of code.

1 begin code
2
3 #Single instructions
4 multiplication 12
5 subtraction 4
6 division 3
7 multiplication 45
8
9 #Concurrent instructions
10 multiplication, division 7
11 subtraction, multiplication, division 13
12
13 end code

Listing 5.26: Code section example

5.11.1 Timing and Power Interpretation
The energy is computed through this formula:

Eline =
Ø
i

Ei · n (5.1)

Where Eline is energy dissipated in one line of the code and Ei is the energy
of the i− th instruction. n represents the multiplicity inserted at the end of
the line. For the timing interpretation, the number of clock steps required
by one line of code is computed with the formula:

Nline = max
i

(Ni) · n (5.2)

where Ni is defined by:

Ni = Pipei + 1 (5.3)

The Ni is the number of clock cycles needed to complete the i−th instruction.
It is equal to the number of Pipeline factor Pipei of i−th instruction plus one.
The computation is simply the clock step number of the slowest instruction
in the line multiplied by the multiplicity factor. It is intuitive now because
if we have a different pipe stage of the instruction we need to wait until the
time of the instruction which has the highest number of pipeline stages.
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Chapter 6

DExIMA Files
Descriptions

DExIMA is a software that interacts with the user using files. The input of
our program is both a file and also an output. This is an advantage because
it eases the interpretation of the results for very complex designs. The Files
used in the DExIMA program are:

• Input dex File: It is the script where the information is inserted to
compute the performance of our architecture.

• Output log File: It is the output we get after the compilation process
and contains the information about the instances created.

• Input TechFile: It is the file used by the program to load all the
parameters used by the specific technology.

• Output dof File: It is the output file where are written all the perfor-
mance information of the circuit.

The dex file is widely discussed in the Language Chapter, in this small chap-
ter, we see the other inputs/outputs files inside the program.

6.1 Log File
The log file is generated after the compiling stage. It is very useful to check
and understand if the architecture we have in mind is the same as what we
have written in the dex file and what the compiler interpreted from it.
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6.1.1 General Information

The first part of the log file gives to the user very general information like:

The compiled architecture contain:

Architecture modules: 119
Number of Lim: 1
Number of models: 12
Number of instructions: 3

Figure 6.1: Log File General Info

The Architecture modules are located in the first namespace, including the
LiM modules. After, there are the memories we instantiated. The number
of models is equivalent to the number of Printers used in our architecture.
For example, if we use Nand gate and Inverters in our architecture, we have
2 models. If we insert a memory, the number increases by 2 because we have
the model of the memory and the model of the memory cells. In conclusion,
we have the instructions that can be used in our instruction set.

6.1.2 LiM Data

The second part is a list of more detailed information about the memory
instantiated. The info written in the log file related to the memories is shown
in Figure 6.2. The first information is the Name of the Lim. After, we list the
geometry of the memory related, which are: the number of rows, columns,
number of cells, and their type, in this case, FLIPFLOP. The information
about the periphery of the memory is explained using the parallelism of
the address port and the data parallelism. The Cell modules are the sum
of the memory cells and the logic inside them. In this example, we have
385 − 256 = 129 numbers of logic modules inserted inside the cells. On the
contrary, the total modules are composed of the sum of the cells section with
those that are part of the Inter-cell logic. In this case, we have 397−385 = 12
Inter-Cell logic modules. These chunks of information are repeated for each
memory.
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Lim detailed information:

Name of Lim: Lim
Out of memory cell modules: 12
Memory rows: 16
Memory columns: 16
Number of cells: 256
Type of memory: FLIPFLOP
Address bus parallelism: 4
Data bus parallelism: 16
Cell modules: 385
Total modules: 397

Figure 6.2: Log File Memories Info

6.1.3 Instructions Data

Also in this case we have a list of information related to each instruction.
We have the name of the instruction and the type. The only difference
between the two types is that for the LiM instruction there is present also
the reference LiM. The number of instances inserted in the power section
is reported also. This number takes into account multiple instances: if, for
example, we insert four times the same instance we increase this number by
four. After the specification on the number of paths, that is equal to the
pipeline value, there is a list of the information about all the path/subpath.
For each path, there is a list of each subpath with the number of modules
specified inside. The same considerations made in the power section can be
done for the enumeration of instances. The Figure 6.3 show what explained
before.

6.1.4 Code Data

In the part related to code, we have simply the information of how many
times that instruction is used in our algorithm. An example of this part is
shown in Figure 6.4.
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Instructions detailed information:

Name of Instruction: Division
Type of instruction: INSTRUCTION
Number of paths: 3
Number of power instances: 3
Path Name: path[0]
Subpath0 modules: 1
Subpath1 modules: 2
Path Name: path[1]
Subpath0 modules: 1
Subpath1 modules: 3
Path Name: path[2]
Subpath0 modules: 1

Name of Instruction: Shift
Type of instruction: LIM_INSTRUCTION
Lim reference: Lim
Number of paths: 1
Number of power instances: 267
Path Name: path[0]
Subpath0 modules: 267

Figure 6.3: Log File Instructions Info

Code:

Code multiplicity:
Division: 49
Multiplication: 137
Shift: 40

Figure 6.4: Log File Code Info

6.1.5 Final Information

The last part shows the number of clock steps used to complete the algorithm
and the total number of modules of the entire architecture, including modules
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inside and outside of memory. Other useful information is the occupied
memory, that is the memory occupied by all the program, not only to the
created architecture. The value of memory occupied by the program when
we do not instantiate any components is about 5 MB. This means that we
have an offset of 5 MB to the dimensions of our architecture. If we have a big
architecture that occupies much more than 5 MB, the offset is negligible. In
this case, the memory occupied by the architecture can be considered correct
with an addiction of small error. If the architecture is small, to the order of
some kB, we need to consider the offset and the fact that the 5 MB are noisy
(can go from 4.8 to 5.2). In the end, we have the time needed to compile the
dex file.

Total clock steps: 186
Total modules: 516
Occupied memory: 5.65 MB
Compilation time: 2.39 s

Figure 6.5: Log File Final Info

6.2 Dof File
The Dof File contains the performance data of the simulated circuit. We
recall that the Dof file is the output of the simulator at the end of all the
processes inside the program.

6.2.1 General Information
In the first part, we have the total performance of the whole circuit. In
the Figure 6.6 we can see an example. The first information we have is the
working clock period and the related frequency. The clock period displayed
is the value used by the tool to compute all the derived parameters, like the
execution time of the total algorithm or the computation of the dynamic
power. If the user defines the clock period using a built-in constant, the
period is set, if not defined the clock period is chosen using the critical path
of the circuit. If, for example, the clock period chosen by the user is lower
than the critical a message appears:
Warning ! The c l o ck per iod used i s lower than the c r i t i c a l path
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Simulation results

Clock period: 2.2 ns
Frequency: 454.545 MHz
Critical Path Instruction: subtraction
Critical Path name: path[0]
Critical Path: 1.08162 ns
Area: 261461 um^2
Dissipated dynamic energy: 194.984 nJ
Dissipated static energy: 27.5022 nJ
Total dissipated energy: 222.486 nJ
Static power: 10.8421 mW
Execution time: 2.5366 us
Average dynamic power: 76.8682 mW
Total power: 87.7104 mW
Total clock steps: 1153

Figure 6.6: Dof File General Info

The computation considers a clock period lower than the allowed one. Now
we have defined how our clock period value is set. The critical path displayed
includes also more info indicating who is responsible for our critical path. The
information is the instruction responsible for the critical path (in this case
called subtraction and the name of the path path[0]). The value of
an area is the sum of all area occupation of the architecture, the value is
expressed always in µm2. All the other units are adaptive in the file, this
means that they are not fixed, exempt for the area that has the same time
unit. The smallest unit is femto and the highest is Giga. All the numbers
are expressed in the range 1 − 1000. We find also the energies related to
the dynamic and static dissipation. The power is divided into dynamic and
static. The Execution time is the time needed to complete the algorithm. In
fact, we can see the presence of the clock steps needed by making the product
between the clock period and the clock steps we obtain this time.

6.2.2 LiM Data
In the LiM part, we have the information related to each Memory, in this
case, we do not need too much information because most of it depends on
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which part of the memory logic we are focusing on. The only invariant info
is that we take the area of the memory and the static power dissipation like
shown in Figure 6.7. The area and static power values consist of the sum of
circuit interface, memory cells, Intra-Cell, and Inter-Cell logic. In the end,
we also have the parameters related only to the memory circuitry interface,
excluding so the other parts of the memory.

Memory information

Memory: Lim
Memory area: 258642 um^2
Memory static power: 10.6853 mW
Memory interface area: 48660.4 um^2
Memory interface static power: 1.97333 mW

Figure 6.7: Dof File Memory Info

6.2.3 Clock Drivers Data

Now we have an additional part concerning the log File because this part is
used to know how the clock dissipates and the information about each clock
driver used.

Clock information

Clock Driver: ClockDriver
Dissipate energy: 40.9172 nJ
Static Power: 156.81 uW
Area: 2818.94 um^2
Delay: 74.6484 ps

Figure 6.8: Dof File Clock Driver Info

The example in Figure 6.8 shows the four main parameters for characterizing
a component. The difference is that the clock driver is active for each clock
step and the switching activity is doubled compared to the standard gates.
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6.2.4 Instructions Data
The next section is used to know the performance of each instruction. Theo-
retically, the only information about an instruction needed is the path delays
and the dissipated dynamic energy. But we add also the parameters of static
power and area because are useful to know one or a group of components
how much area and static power they consume. All the parameters, except
for the delays, are taken into account when we insert a name of a component
inside the power section. All the component parameters in the power section
are accumulated and written after in the dof file. Remember that there is
the possibility to insert a component multiple times and also in this case the
parameters are accumulated.

Instruction: FlipFlop
Dissipated energy: 3.62085 fJ
Static Power: 73.9347 nW
Area: 1.70472 um^2
Critical path: 86.0781 ps
Critical path name: path[0]
Path delays
path[0] -> 86.0781 ps
path[1] -> 58.03 ps
path[2] -> 36.6322 ps
path[3] -> 8.58404 ps

Figure 6.9: Dof File Instruction Info

In Figure 6.9 there is an example where we insert only a Flip Flop component
inside an instruction, and four paths to exploit all the timing attribute that
this component has. The value of delays for each path is the maximum
value between all the subpaths. If a path indicates a null value of zero, it is
represented by 0fs because fs is the smallest unit usable.

6.2.5 Technology Information
The last part of the File includes all the parameters used by the technology.
This can be very useful when we want to compare different technology and
know which parameters are used to compute the model performances.
In Figure 6.10 there are all the parameters. The first information is the name
of the technology file used, in this example LOP_45.txt. After that, we
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Technology internal parameters

Technology file: LOP_45.txt
Enabled the switching activity computation
Input probability: 0.5
Interconnection overhead: 15%
Standard Cell overhead: 0%
Stack factor: 2
Vdd: 0.9 V
Aspect ratio: 10
Cox: 2.4665 uF/m^2
Leff: 29.1 nm
Beta: 1.85
Diffusion lenght: 72.75 nm
C bottom n: 167.139 pF/m
C bottom p: 199.009 pF/m
C sidewall n: 821.668 pF/m
C sidewall p: 707.241 pF/m
C interconnections: 183.13 pF/m
Unitary Mos width: 0.291 um
Cin n mos: 0.0785909 fF
Gamma: 1.3705
Rho: 0.74081
Ion: 543.14 uA/um
Ioff: 3.1186 nA/um
Igate: 24.29 nA/um
Ion unitary mos: 158.054 uA
Ioff unitary mos: 0.907513 nA
Igate unitary mos: 7.06839 nA

Figure 6.10: Dof File Technology Info

can find the value of the probability associated with the inputs when the
switching activity calculation of the circuit is required. The percent values
are related to the area overhead used by the Interconnections and the area
overhead considering a standard cell design. To be more clear:

Area = A0 · (1 + Intercover) · (1 + StdCellover) (6.1)
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Where A0 is the area without overhead, Intercover is the interconnection
overhead, and StdCellover is the standard cell overhead.
All the values written after are all derived from the base parameters written
in the TechFile. For example, we have all the capacity values computed (all
the capacity are described in the chapter related to the models). At the end of
this chapter, all the parameters will be explained and easily comprehensible.

6.3 Technology File
To conclude this chapter we see how the technology file is formatted (Tech-
File) and how to add the model parameters that can be used by DExIMA.
In Figure 6.11 there is the TechFile used in the previous example of the Dof
file. The file is a simple text file where we have two columns. The left col-
umn represents the name of the variables. This name must be respected,
because if we insert a wrong name, DExIMA returns an error indicating a
group of variables in the TechFile (including the wrong one). The right col-
umn contains the values of the variables, the units are the composition of
the fundamental units without using multiple of them. For example, some
capacity values are usually specified in pF/m but in the tech file are in F/m.
The File is simply converted in a map having the name of the variable as a
key and a float variable for the value, and used after to compute the derived
parameters stored directly in the Technology class.
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Year 2005
Lgate 45.1e-9
Xj 20e-9
Gamma 0.8
Inter_over 0.15
Cell_over 0
Aspect_ratio 10
Beta 1.85
Vdd 0.9
Cox 2.4665e-06
Ion 543.14
Ioff 3.1186e-3
Igate 24.290e-3
CJ0N 2.7e-3
CJ0P 3.3e-3
CJSWN 9.2e-10
CJSWP 8.0e-10
CGD0N 1.35e-10
CGD0P 1.0e-10
MJN 0.38
MJP 0.45
MSWN 0.22
MSWP 0.265
PBN 0.85
PBP 0.87
PBSWN 0.67
PBSWP 0.76
C_Interc 1.8313e-10

Figure 6.11: TechFile LOP_45.txt
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Chapter 7

DExIMA Hardware
Models

7.1 Introduction
This chapter shows how the gate models are built and described. The models
are created in a hierarchical approach: the basic gates are described at the
transistor level and modeled. The more complex models are constructed
starting from the base models. For example, an And gate can be seen like
the cascade of a Nand gate and an Inverter. But the Nand and the Inverter
have a low-level description, constructed from the transistor configuration.
The description of the models starts with the definition of the transistor
capacitance and defines some parameters in common to save compilation
time. All the parameters will be normalized to a reference value, so the
computations are less complex and permit to speed up of the software.

7.2 Transistors Capacitance
Let’s start with the main capacitance of a transistor, the input capacitance.
The input capacitance is the result of the capacity of the gate MOS struc-
ture, and the overlapping between the drain/source diffusion and the gate
structure. All the formulas have a double subscript used for the n and p mos
transistors. With the n/p notation, we can write a single formula, instead of
two different ones (one with n and one with p). All the formulas and more
detailed information can be found in [8].
The gate capacitance is obtained by the formula:
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CMOS, n/p = COX ·Wn/p · Leff + 2 ·Wn/p · Coverlap, n/p (7.1)

Where Wn/p is the width of the transistor, Leff the effective length of the
gate, and Coverlap, n/p is a technology parameter for the overlapping capaci-
tance.
After the gate capacitance, we need to define also the capacitance related to
the drain/source junctions. The formula for the junction capacitance is:

Cj n/p = Cbottom n/p ·Wn/p + Csidewall n/p · perimetern/p (7.2)

Where each member of the equation is computed from these formulas:

Cbottom n/p = Cj0 n/p ·
1 + VDD

2 · Pb n/p

−Mj n/p

· LS (7.3)

Csidewall n/p = Cjsw0 n/p ·
1 + VDD

2 · Pbsw n/p

−Mjsw n/p

(7.4)

perimetern/p = 2 · LS +Wn/p (7.5)

Where LS is the diffusion length and the other parameters are technology
constants. First, we rewrite the complete expressions of the input capacitance
of n and p mos:

CMOS, p = Wp ·
1
COX · Leff + 2 · Coverlap, p

2
(7.6)

CMOS, n = Wn ·
1
COX · Leff + 2 · Coverlap, n

2
(7.7)

Now we compute the ratio between these two quantities:

CMOS, p

CMOS, n
= Wp

Wn
·

1
COX · Leff + 2 · Coverlap, p

2
1
COX · Leff + 2 · Coverlap, n

2 = Wp

Wn
· ρ (7.8)

The capacity ratio, excluding the width ratio, is called ρ, and it is an im-
portant parameter. We can rewrite the equation to get the input capacity of
the p mos in function of the parameters of the n mos using the equation:

CMOS, p = Wp

Wn
· ρ · CMOS, n (7.9)
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7.3 Inverter Gate Reference
All parameters of the model will be normalized in relation to the inverter
gate. To be more specific normalized to the n mos of the inverter. The
circuit is well known in Figure 7.1.

Figure 7.1: Inverter CMOS

We start with the dimension of the transistors, the Wn of the n mos is equal
to the minimum aspect ratio defined in the TechFile or specified by the user
in the constant section with the built-in constant AR. The formula is very
simple:

Wn = AR · Leff (7.10)

Now in order to choose the dimension of the p mos, we use the standard
rules of microelectronics to have the same current in the n and p mos. The
difference in the current of p mos and n mos is usually the mobility of elec-
trons and holes. The p mos is usually slower due to the lower mobility of
the holes. In general, the current computation of the two transistors is not
only influenced by the mobility but also the other parameters that need to be
taken into account. So, to have the same current flowing in the p and n mos,
we need to do the p mos wider beta times than n mos with the parameter
beta equal to:
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β = Ion,n
Ion,p

(7.11)

Now have all the ingredients to choose the dimension of the p mos to have
the same amount of current:

Wp = β ·Wn (7.12)

The value of the normalized widthis defined as:

w
def= Wnorm = W

Wn,INV
(7.13)

From now we use the notation w to indicate a normalized width. As we can
see in the previous definition, we normalize a generic W respect to the width
of the n mos of unitary inverter Wn,INV . With these considerations we get
that the normalized value of widths on the inverter are:

wn = 1 wp = β (7.14)

From this point, all the gate figures will show in this notation the width of
the transistors. The same can be done for the capacitance. We define the
normalized capacitance value like:

c
def= Cnorm = C

CMOS n, INV
(7.15)

In this case, the computation of the input capacitance of the inverter is a
little bit different, in fact, the value of p mos capacitance is not like the
width. To find it, we use the equation 7.9. In the formula, we substitute the
generic n mos with the unitary inverter n mos and we obtain:

CMOS, p = Wp

Wn,INV
· ρ · CMOS n, INV = wp · ρ · CMOS n, INV (7.16)

The first result we get is that the p mos capacitance is a function of its
normalized width and the inverter’s n mos capacitance. If we express this
capacitance in a normalized way, we obtain:

cp = wp · ρ (7.17)

Now it’s clear that we define all these constants and the normalized approach
because they simplify all the definitions of the components and reduce the
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number of calculations to do. To further simplify the notation, we usually
use for the p mos width values that are multiples of β, so we defined the
parameter:

γ
def= β · ρ (7.18)

To define uniquely a gate, we need to know the gate behavior in input and
output, treating the component as a black box. Firstly, we need to define the
fanin and fanout of our component. Different from the classical approach,
the fanout, and fanin do not have the reference to the Inverter gate but only
to the n mos transistor of the inverter. This simplifies the computation in a
relation to how all the previous parameters are defined. The definitions are:

fanin
def=

Ø
port inputs

ci (7.19)

fanout
def=

Ø
port outputs

ci (7.20)

The fanin is equal to the sum of all the normalized capacitance of a certain
input port. The fanout is equal to the sum of the normalized capacitance
connected to the output port of the gate. To characterize an output of a gate
we need also to take into consideration the output parasitic capacitance of
the port.

7.4 Performance Equations
In this section, we explain which formulas DExIMA uses for the performance
computation and which parameters of the model are needed to compute it.
The first figure of merit we analyze is the delay of the gate. The formula
used for the delay computation is:

τ = VDD
ION

· CTOT (7.21)

where VDD is the supply voltage, ION is the on current, and CTOT the total
output capacitance.
The ION is defined like:

ION = IDS
1
VGS = VDD, VDS = VDD,W = Wref

2
(7.22)
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And the Wref is usually 1 µm, the current is measured in [µA/µm]. The
CTOT is the sum of output parasitic capacitance and the capacitance due to
the load.
The equation is:

CTOT = COUT + CL = COUT + fanout · CMOS,n (7.23)

The COUT is dependent on the type of gate, and it is measured in [F], also
the CL must be in [F]. The load capacitance is equal to the fanout of the gate
that is a normalized capacitance, multiplied by the reference capacitance to
denormalize the value.
The dynamic energy is computed with the formula:

Edynamic = 1
2 · CTOT · V 2

DD (7.24)

All the parameters were already defined. The factor 1/2 is inserted because
in one clock step we charge or discharge the output capacitance. For the
clock instead, we don’t have the factor 1/2 because in one cycle we charge
and discharge the output capacitance.
The static power is computed by the equation:

Pstatic = Ileak · VDD (7.25)

The Ileak is the leakage current of the gate. It is composed by two parts:

Ileak = Ioff + Igate (7.26)

The Ioff is the subthreshold current got by the formula:

Ioff = IDS
1
VGS = 0, VDS = VDD,W = Wref

2
(7.27)

It is usually measured in [nA/µm]. The gate leakage current is defined in a
dual way compared to the n/p mos. Figure 7.2 explains the work condition
of the gate leakage current. The three current values Ion, Ioff and Igate are
computed from a tool developed in Politecnico di Torino called TAMTAMS
[9]. This tool is available online and it is a technology simulator based on
low-level parameters. The model used for the computations is the MAS-
TAR model [10] developed by STMicroelectronics and is freely distributed
on ITRS organization website [11]. As a consequence, we obtain three cur-
rents with static numerical values, that does not change according to the
parameters (are not functions implemented directly inside DExIMA). One
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Figure 7.2: Gate current conditions

of the parameters that could vary is the supply voltage, which cannot be
used since the current is computed in the point of default voltage, which is
indicated in the TechFile. The last important parameter is the area that is
simply the sum of all the transistor’s dimensions of the gate. It is added
also to the area computation a 15% of the value to take into consideration
the interconnection overhead. It is also possible to insert in the TechFile a
parameter that takes into consideration an overhead related to the standard
cell layout.

7.5 Switching Activity Evaluation
The switching activity is a parameter that we use to have a measure how a
signal toggles in our circuit nodes. It is defined by the equation:

α(n) = p1(n)p0(n) + p0(n)p1(n) (7.28)

where α is the switching activity and n is the node of interest. The p1(n)
and p0(n) are the probabilities of having a logic value of one or zero at the
node n respectively. The equation can be rewritten in the form:

α(n) = 2p1(n)(1 − p1(n)) (7.29)

This equation says that the switching activity depends on the probability
to have a value of logic 1 in the node n. In reality, the switching activity
is a function of several parameters, but for our computation, we focus on
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the dependency of the logic boolean function of our gate like in [12]. To
have an idea of the complete probabilistic model of the switching activity
it is possible to check [13]. First of all, we can rewrite the equation for the
dynamic dissipation considering also the switching activity:

Edynamic = 1
2 · CTOT · V 2

DD · α (7.30)

For example, we have a gate with fixed input values and the logic values can
be 1 or 0. This means that the associated input probability is p = 1 or p
= 0. If the inputs do not change, it means that there is no commutation
in the output. This is reflected by the value that the switching activity
assumes, which is zero. This means that we do not have dynamic power
dissipation. On the contrary, if we have a signal like a clock, that switches
every clock cycle, we have a switching activity of 1. To be more precise, with
this formula the clock switching activity is 2 because we have two transitions
in the same cycle and not only one. This characteristic, if we neglect the
glitches, it is only for the clock signal. To compute the output probability
of a logic gate we need to know the value of the probability in all of its
inputs, by default DExIMA puts this probability to 0.5. This means that we
have the same probability of having the value 0 or 1 in the input. Having
the input probability and knowing the logic function, we can compute the
output probability. For example, if we have 2 And gates, we have an output
of 1 only if both inputs are to 1. This means:

POUT = P1 · P2 = 0.5 · 0.5 = 0.25 (7.31)

and the value of the switching activity is:

αOUT = 2 · POUT · (1 − POUT ) = 2 · 0.25 · (1 − 0.25) = 0.375 (7.32)

Figure 7.3: And Gate Output Switching Activity
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Figure 7.4: Probability propagation along the circuit

With this method it is possible to compute the switching activity only in
some situations, propagating the probability when we connect gates between
themselves. In fact, for example, if we have multiple gates connected, we
can propagate the probability and compute the switching activity like in
Figure 7.4. In this case, the computation is simple, but it could be more
complex and problematic when we have a sequential circuit in which time
takes part in the computation, and there are also problems when having some
loops inside our architecture. To propagate the probability, we need also to
add more complexity in the data structure because we need to remember
the whole architecture links and create also some algorithms in order to
propagate all the probability in the circuit. This means that the tool becomes
more complex and slower. For all these reasons we choose to not implement
the propagation of probability but to take an approach of "isolated gate",
meanings that the switching activity of each gate is computed putting in
inputs the user-chosen probability that is independent of how is connected
to the gate. The result is the worst case approach because the dissipated
energy gate is higher than the propagated probability. The values of all the
probability for each gate are shown below in 7.1. But not all these formulas
are used because we have a hierarchical approach, so only the gate in the
section of the Elementary gate models has this type of computation, the
other simply uses the isolate gate computation of the components.
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Gate Output Probability
NOT 1 − P1
AND,n rn

i=1 Pi
OR,n 1 − rn

i=1(1 − Pi)
NAND,n 1 − rn

i=1 Pi
NOR,n rn

i=1(1 − Pi)
XOR,2 P1(1 − P2) + (1 − P1)P2
XNOR,2 1 − [P1(1 − P2) + (1 − P1)P2]

Table 7.1: Table of output probabilities

7.6 Stack Effect Model

The stack effect is an effect that helps to reduce the leakage current of a
gate. It happens when we put multiple transistors in series. When we have
a transistor in the off state, the leakage current is the subthreshold current.
When we put two transistors in series, the current that flows in the devices
are smaller and it is a function of some technology parameters like the Drain
Induced Barrier Lowering (DIBL). For two transistors in series, it is not
so difficult to compute the reduction that can be also in the order of ten
times and more. When we have more than two transistors this effect is more
relevant, but it is hard to compute each time the exact value. To avoid this
problem and take into consideration this effect we created a worst case model
to emulate this effect. The principle is very simple: suppose to have multiple
transistors in series like the in Figure 7.5. The approximation is to have a
homogeneous partition of the voltage across the transistors. The reduction
is related to the partition with the formula:

Istacked = 1
nα

· Ioff (7.33)

Where n is the number of stacked stages and α is the stack factor. The
default value is 2. With this value, the current is higher than the typical
stack effect values. If we choose a stack factor of 0 we do not consider this
effect. If we make a comparison of the values got in [14], the value obtained
with two transistors stacked is 1/8.4, our model return 1/4 using a stack
factor of 2. Three transistors stacked got a value of 1/15 versus the 1/9 got
with our model.

86



7.7 – Interconnections Model

Figure 7.5: Transistors Stacked

7.7 Interconnections Model

The interconnections model is implemented only for the connections between
two cells of the memory. This because the problem is to evaluate the length
of the wire when we connect two gates. The problem when we connect
two components between themselves is to determine their distances. We
only know the area of the cells and using this, we are able to determine
the distances between two cells. If we want to know the distances between
components that are not inside a cell of the array, we need to know their
precise position in the space. To get this information, we need to do a kind
of virtual place and route of our components, but this is a tricky operation.
This is why the interconnection is taken into account only by two components
contained inside the cells of the memory array. The same discussion can be
done with gates inside the memory but out of the cells. But for the connection
between two cells, this can be done with a smaller effort. When we connect
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two components that are inside a cell (Memory or Logic) we can compute
the distance expressed in number of cells. The wire length computation uses
a simple Manhattan method, doing the sum of the difference between the
two coordinates. The length is simply:

l = |x2 − x1| + |y2 − y1| (7.34)
where the two cells have coordinates (x1, y1) and (x2, y2), and the l is the
normalized length. The normalized length is expressed in the number of
cells, this is useful to generalize the computation, because if we change the
type of memory cell, this parameter is independent, and the effective length
is computed after, as soon as we have defined the type of cell. Now we see
how it computes the effective length having the normalized one. The model
is the following: we only know the area of the cell, independently from the
type of the cell self. We call this area A and we suppose it is a square.
Consequently, the side of the square is a =

√
A. If we imagine having all

the cells adjacent to the nearest cells in the memory, the distance between
the two centers of these squares is exactly a. Now, to compute the effective
length we do:

L = l · a (7.35)
Figure 7.6 is show what we explained before.

Figure 7.6: Cell’s Pitch

The model used for the interconnection is explained in [15], which is exploited
in TAMTAMS. From TAMTAMS we get the value of capacity per unit length
of the interconnections and it is inserted in the TechFile. Now it is possible
to get the value of the capacity by multiplying it by the length:
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Cinter = Cinter,unitlength · L (7.36)

now we normalize this value of the capacity to get the value of fanout to add
to the output of the component involved in the connection.

fanout = cinter = Cinter
CMOS,n

(7.37)

7.8 Elementary Gate Models
In this section, the available models in DExIMA are explained.

7.8.1 Inverter
We start from the simplest gate, the inverter. We write all the steps only for
this first case, for the others, we write only the result.

Figure 7.7: Inverter gate

The two normalized capacitance in input are:

cn = 1 cp = wp · ρ = β · ρ = γ (7.38)

The result fanin is:

89



7 – DExIMA Hardware Models

fanin = 1 + γ (7.39)

The output capacitance is:

COUT = Cjn(Wn) + Cjp(βWn) (7.40)

From this point to simplify the notation with the symbolWn, we refer to the n
mos of the unitary inverter. For the leakage current computation, the process
is very simple: we compute the leakage current for each configuration of the
inputs and make the average. In this case, we have only two combinations
of inputs, and making the computation we get:

Ileak = 1
2
è
Igate,p + Ioff,p + Igate,n + Ioff,n

é
(7.41)

The area is simply:

A = LMOS ·Wn · (1 + β) (7.42)

The LMOS is the length of the total mos device. We have the factor 1 + β
that is the sum of the normalized width in the input. In this and the other
devices, we always find this term.

7.8.2 Nand gate
The parameters are computed for a generic gate with n inputs. The reference
Nand 2 is shown in Figure 7.8. We use the dimension of the transistors to
have the same characteristic as the reference inverter. The dimension of the
p mos remains the same because we simply add another transistor in parallel.
Differently, for the n mos, we increase the dimensions, because the resultant
transistor obtained by the series, is like a single transistor with longer L. To
avoid this, we increase the width to maintain the same aspect ratio. This
implies that the dimension of the n mos is n. The value of fanin of a generic
input is:

fanin = n+ γ (7.43)

For the output capacitance, we have only one n mos connected, and n p mos
connected in parallel, implying an output capacitance of:

COUT = Cjn(nWn) + n · Cjp(βWn) (7.44)
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Figure 7.8: Nand 2 inputs gate

To compute the leakage current, we have to consider all the combinations of
inputs. This can be complex for a high number of inputs. For this reason,
we try to compute it for a low number of inputs, and we were able to extract
a mathematical relation that links the number of inputs and the leakage
current. The computations are done using the same technique in [14]. The
formula we get from the subthreshold current consider the stack effect is:

Ioff = 1
2n ·

n · Ioff,p + Ioff,n
2n−1Ø

k=1,nz /=0

1
nαz

 (7.45)

Where nz is the number of zeros of equivalent binary input configuration.
If we compute for n = 2 and without stack α = 0 we get:

Ioff = 1
4 ·

è
2 · Ioff,p + 3 · Ioff,n

é
(7.46)
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The other contribution of the leakage current is the gate current, the formula
we get is:

Igate = 1
2n ·

 2n−1Ø
k=1,nz /=0

Igate,p · nz + (2n − 1) · Igate,n

 (7.47)

that can be rewritten in a simple way:

Igate = 1
2n ·

C2n
2 · n · Igate,p + (2n − 1) · Igate,n

D
(7.48)

By summing these two components, we get the total leakage current. If we
try, for example, to use n = 3 we get exactly the formulas in [14]. The
only differences are: firstly the value of the stack effect that was explained
previously, and then there are also terms related to fractions of gate leakage
that, we do not consider for the model. The gate leakage fraction consists
of considering the potential conditions represented in Figure 7.2, only to the
drain or the source.
Finally, the area of the gate is:

A = LMOS ·
1
n2 ·Wn + n ·Wp

2
= LMOS · n ·Wn · (n+ β) (7.49)

7.8.3 Nor gate
The Nor gate is the dual component of the Nand gate. Also, in this case,
we consider the generic gate with n inputs. In Figure 7.9 we see the version
of the circuit with 2 inputs. The fanin of the gate is higher than the Nand
gate because the part of the series transistor is the p mos that are β times
greater. The value is:

fanin = 1 + n · γ (7.50)

The value of the output parasitic capacitance is:

COUT = n · Cjn(Wn) + Cjp(nβWn) (7.51)

If we observe the structure of the gate, it is the dual version of the Nand
gate, for this reason, it is simple to get the value of the leakage current. The
method is to replace the index n with the p and vice versa.
The off current is:
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Figure 7.9: Nor 2 inputs gate

Ioff = 1
2n ·

n · Ioff,n + Ioff,p
2n−1Ø

k=1,nz /=0

1
nαz

 (7.52)

and the gate current is:

Igate = 1
2n ·

C2n
2 · n · Igate,n + (2n − 1) · Igate,p

D
(7.53)

To conclude the area is:

A = LMOS · n ·Wn · (1 + n · β) (7.54)

7.8.4 Xor/Xnor Core
The Xor and Xnor gates in DExIMA are also base gates. They are composed
of two parts. The first part is the core of the gate and it is responsible for
the behavior of the gate. This part is called Core and it is the same for the
two gates. The circuit of the Xor and Xnor core is shown in Figure 7.10.
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Figure 7.10: Xor/Xnor Core gate (left/right)

The transistor structure is the same, this implies that it can be used for the
two gates. These are some of the simplest static structures. More typologies
are reported in [16].
Now we proceed like the previous elementary gates, the fanin for these gates
is:

fanin = 2 + 2 · γ (7.55)
The value of output parasitic capacitance is:

COUT = 2 · Cjn(2Wn) + 2 · Cjp(2βWn) (7.56)
The leakage current is computed like a gate with only two inputs because it
is always used with the other two inputs with the inverted value, so we have
only four possible combinations. The result value is:

Ileak = 1
4 ·

5
4 ·
1
Ioff,p + Ioff,n

2
+ 6 ·

1
Igate,p + Igate,n

26
(7.57)

The resulting area is:

A = LMOS · 4 ·Wn · (2 + 2 · β) (7.58)
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7.8.5 Three state inverter
The model that we describe has three inputs, where we can connect the
logic input and the two clock logic values. Notice that the inverter for the
clock inversion is not included in the model. This choice is preferred to
construct complex components starting from this with the highest degree of
freedom. The circuit is shown in Figure 7.11 and shows a three-state inverter
in C2MOS technology.

Figure 7.11: Three state inverter C2MOS

In this case we distinguish three different fanins of the inputs:

faninIN = 2 + 2 · γ (7.59)

faninϕ = 2 (7.60)
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faninϕ̄ = 2 · γ (7.61)

The output parasitic capacitance is:

COUT = Cjn(2Wn) + Cjp(2βWn) (7.62)

Also in this case the ϕ input is considered the same input with two different
logic values. So the number of combinations is four, the result is:

Ileak = 1
4 ·

3 · Igate,p + 3 · Igate,n +
A

1 + 1
2α

B
·
1
Ioff,p + Ioff,n

2 (7.63)

And with area:

A = LMOS · 2 ·Wn · (2 + 2 · β) (7.64)

The circuit can be used also as a Latch as shown in [18].

7.9 Composite Gate Models
In this section, we see all the models that are derived from the elementary
gates. We don’t rewrite all the single performance parameters for each gate
but only the circuit and which components were used to create it. In some
cases we specify only the path of interest inside the circuit, for all the other
parameters the formulas used are straight-forward:

Pstatic =
Ø
i

Pstatic,i (7.65)

Area =
Ø
i

Ai (7.66)

Edynamic =
Ø
i

Edynamic,i (7.67)

Where i represents the i−th sub-components of the model. It is important to
track the load of each sub-component inside the model, in order to correctly
compute the dynamic energy and the delay.
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7.9.1 And/Or Gate
The And/Or gate is obtained by simply connecting in chain a Nand/Nor gate
and an Inverter like shown in Figure 7.12

Figure 7.12: And/Or Gate composition

In multiple-input gates, we replace only the first input gate. For this model,
the delay is the sum of the two gates, and the contamination delay is equiv-
alent to the propagation delay.

7.9.2 Xor/Xnor Gate
To create our Xor/Xnor gate, we need three elements: the Xor/Xnor core
and two inverters. The symbol of the Xor/Xnor core is represented as a box
with four inputs, shown in Figure 7.13.

Figure 7.13: Xor/Xnor Core Symbol
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Make a composition of this element and the Inverters we get the circuit in
Figure 7.14.

Figure 7.14: Xor/Xnor Gate composition

This is the Xor/Xnor with two inputs, which is reused to build a multiple-
input gate. In this case, we have two different paths. The propagation delay is
the path considering the Inverter and the Xor/Xnor core. The contamination
path considers only the core component.
to create multiple inputs gates, we use the tree/chain configurations, since
they are more optimized for that specific number of inputs. The practical
example is shown in Figure 7.15. The number of stages in a multi input gate
(worst case) is computed by the formula:

stages = log2(inputs) (7.68)

The critical path is obtained considering the upper nearest integer of stages
(because in general is not an integer number), the contamination delays the
lower nearest integer.
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Figure 7.15: Xor/Xnor Multi Inputs

7.9.3 Half Adder
The half adder is the standard circuit shown in Figure 7.16.

Figure 7.16: Half Adder Circuit

The critical path is the maximum between the two gates (because can have
very different load) and the contamination delay the minimum.
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7.9.4 Full Adder
The circuit is shown in Figure 7.17. The Full-Adder circuits have four main
paths of interest:

• From A/B to S passing through two Xor gates

• From A/B to Cout passing through one Xor and two Nand gates

• From Cin to S passing through one Xor

• From Cin to Cout passing through two Nand
The computation of the propagation and contamination delay is obtained
using the maximum and the minimum value between these paths. Notice
that it is not possible to determine the maximum and the minimum value
a priori because we need to know the load applied to each output, which
changes the total delays. In [17] it can be checked how to explore more
efficient circuits of Full-Adders using Xor gates.

Figure 7.17: Full Adder Circuit

7.9.5 Multiplexer
Multiplexers are built hierarchically, starting from the 2-way component.
The circuit of the 2-way multiplexer is shown in Figure 7.18.
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Figure 7.18: Multiplexer two ways circuit

The critical path of the circuit is represented by the selector S, because it
has an additional Inverter than the other paths. The contamination delay
is due to the two Nand gates. To create a more inputs multiplexer, it is

Figure 7.19: Multiplexer composed by two ways multiplexers
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more convenient to use more than 2-way multiplexers because using only
the standard logical structure, we need gates with high fanin values that are
slower than multi-stage configurations. The configuration is shown in Figure
7.19. The computation of the propagation delay and contamination delay
is similar to the case of Xor/Xnor with multiple inputs. We use the same
equation for the number of stages in the equation 7.68.

7.9.6 Decoder
The decoder, compared to the Multiplexer, is more difficult to be synthesized
automatically, the version created is very simple but inefficient. It needs
improvements in the future using multiple stages with predecoders. The
circuit is the classic like it is shown in Figure 7.20.

Figure 7.20: Decoder 2 to 4 circuit
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The problem with this configuration is that the And gate has a number of
inputs equal to the decoder inputs. This implies that the area and fanin
grow very fast with the inputs. The propagation delay is due to the sum of
one Inverter and a And gate chain. The contamination delay considers only
to the And gate.

7.9.7 Driver
The Driver is simply a chain of inverter that grows the drive strength to each
stage. The reference circuit is shown in Figure 7.21.

Figure 7.21: Inverter chain Driver

To choose the optimum number of stages we use the method of logical effort
using the equations:

F = Cout
Cin

(7.69)

with effort f :

f = N
√
F (7.70)

this implies that the number of stages are computed by:

N = logf F (7.71)

The dimension of the transistor of the next stage is f times greater than the
previous. As explained in the chapter on the language, the Driver can have
to input the parameter f and the mode of operation. The mode of operation
modifies only the value N, in fact, it is a fractional value, the rounding is
chosen in function of the mode. The main difference is that for the auto and
inverter mode we introduce at least one stage (inverter of dimension 1) and
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for the buffer mode two stages (inverter of dimension 1 + inverter f times
greater).

7.9.8 Latch SR
Now we start with the sequential components: the simplest is the Latch SR,
in particular with enable. But firstly we analyze the simple latch cell with
feedback Nand gates. The timing of the cell is more complex rather than the
previous gates due to the presence of the feedback. The delay of the latch
cell is described in Figure 7.22.

Figure 7.22: Latch cell delay

The delay obtained is:

tlatch = t1 + t2 + t3 (7.72)

The complete circuit with the enable part is shown in Figure 7.23.
For the propagation delay, of the complete cell, we add the delay of the latch
cell with the delay of one Nand of the enabling part.
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Figure 7.23: Latch SR circuit

7.9.9 Flip Flop Nand
The Flip Flop is more complex than the other components because we need
to compute additional timing parameters. In DExIMA two different types of
Flip Flops are present: we start with the simplest one made by Nand gates.
The structure is a Master-Slave type, but to make what we are doing clearer,
we put the whole circuit below in the Figure 7.24.

Figure 7.24: Flip Flop D with Nand gate

Basically in DExIMA, we don’t use the single Nand gate, but we use two
Latch SR and two Inverters. The structure of the Latch presented before is
very easy to recognize. This is not the best way to implement a Flip Flop but
it is useful to understand the structure and compare it with other structures.
Now we analyze the timing part of the circuit. We need to extract the three
timing parameters of a Flip Flop, we recall quickly:

• Clock to output: It is the delay between the transition of the clock in
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input and the variation of the logic value in the output.

• Setup: It is defined as the minimum amount of time before the tran-
sition of the clock in which the data in the input must be stable to be
sampled correctly.

• Hold: It is defined as the minimum amount of time after the transition
of the clock in which the data in the input must be stable.

Now, having the definitions, we add to the previous figure the path of these
"delays". The Figure 7.25 shows the highlighted paths.

Figure 7.25: Flip Flop D Nand Delays

The red path is the path concerning the clock to output delay, in fact, when
we have a transition of the clock, it enables the Slave Latch. In this case,
the Slave is enabled and the Master is off. So the responsibility of the clock
to output delay is only the slave stage. For the setup time, we need to have
a stable input all the time before the enable of the Slave stage. This implies
that the time needed is at least the propagation delay of the Master stage.
So the component that needs to be considered is the same for the clock to
output delay. But we need to pay attention to the fact that, the Setup time
is constant because the Master stage is always loaded with the Slave stage
that does not change. The clock to output time can change because it is
a function of what we connect at the output of our Flip Flop. The hold
time is computed as the delay of the inverter connected to the clock because
when the clock toggles the Master stage, it turns off only after the inverter
propagation. After this time the Master stage does not propagate the input
so the output is unaffected. The hold path is shown in green in Figure 7.25,
also in this case the hold is constant and does not depend on the output load.
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7.9.10 Flip Flop C2MOS
This is the other version of Flip Flop D implemented in DExIMA. With
this configuration, we can use fewer transistors. This is reflected in the
performances because we get: lower area, lower delays, and lower power con-
sumption in terms of static power and dynamic energy. The base component
used is the three-state inverted explained before, we use again a Mater-Slave
configuration. The complete circuit is shown in Figure 7.26.

Figure 7.26: C2MOS Flip Flop D

There are a lot of configurations to create a Flip Flop using C2MOS gates
like in [19], but most of all use transmission gates that are not implemented
in DExIMA, so we use a more simple structure like in [20]. The circuit is
composed in the directed chain by two, three state inverters, the clock of
the two stages has opposite logic values to have the Master-Slave behavior.
Theoretically, only the direct chain is needed to have the correct behavior.
The problem is that we store logic values in the output capacitance of the
three state stages, so if we wait some time, we lost the charge due to all the
parasitic currents and other effects that discharge the capacitors, causing the
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loss of the data. To avoid this, we add a feedback chain that has only the
scope to maintain the data memorized. Notice also that the dimension of
the transistors of the feedback chain is the minimum possible, because we do
not have to constrain about this part that is responsible only for the refresh
of the logic value stored in the internal capacitance. In Figure 7.26 only one
component is omitted, the inverter that is used to have the negated value of
the clock. Similar consideration done for the Nand Flip Flop can be used
here for the timing parameters. Also in this case the responsibility of the
hold time is the clock inverter. The time paths of the three main times values
are shown in Figure 7.27.

Figure 7.27: C2MOS Flip Flop D delays

We omitted the feedback part for better visualization, but it is included in
the load capacitance of the stages. Like the previous case, the Slave stage is
responsible for the clock to output delay, and the Master stage is responsible
for the Setup time.
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7.9.11 Ripple Carry Adder

The Ripple Carry Adder, as we know, is an adder created using a combination
of Full-Adders that we have analyzed previously. In particular, the circuit
implemented has also the part related to the Xor gates to create the inversion
to do also the subtraction operation. The circuit is shown in Figure 7.28.

Figure 7.28: Ripple Carry Adder

The area and power parameters are easy to compute, they are the sum of
these figures of merit done with all the composite models in the Figure 7.28.
One important aspect is the timing. As we know, this type of adders are
not so efficient in terms of timing because the limiting part is the chain of
the carry that is usually the critical path. In Figure 7.29 two paths are
highlighted, the carry path, which usually sets the critical path, and the
direct path, which represents the worst path between input and output in
the direct chain. To compute the critical path, DExIMA computes firstly
the Carry Path, and after computes each direct path and sets to the critical
path the maximum of it. This because we can find a situation where one
or more wires in output are connected with a very large capacity load, this
implies that charging the output can be slower than the path of the Carry.
In conclusion, the Contamination delay is set equal to the fastest Full adder
of the chain.

109



7 – DExIMA Hardware Models

Figure 7.29: Ripple Carry Adder Delays

7.10 Memory Models
The memory models are the part related to the LiM. We will see in this
section the cell used and the Architecture of the memory.

7.10.1 Memory Cell
Starting from now, it is possible to choose only one type of memory cell,
the FLIPFLOP cell. It is composed of two components: a Flip Flop and a
Multiplexer. The Flip Flop used is the C2MOS Flip Flop, because since it
occupies less area and consumes less static power, this is more suitable for
a huge memory where these two parameters are very important. The Flip
Flop is used to store the information. The Multiplexer has another function,
it is used to write inside the cell. Furthermore, we can distinguish between
memory writing and output memory writing. The Flip Flop is provided
also to enable the memory cell. To be usable by the external interface, the
memory needs two inputs, one connected to the external and one connected
using a component inside the memory. From In memory point of view we
should use only two ports: the input called WR (Write) and the output called
RD (Read), the memory cell circuit is shown in Figure 7.30. The custom LiM
cell is composed of this elementary cell, plus all the logic we insert inside the
cells section. How explained in the chapter about the language, when we call
the keyword Memory, we reference this structure, if we insert the logic we
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Figure 7.30: Memory cell

have more components inside the cell. The delay of the cell is related to the
Read/Write operation. In the Read operation, in theory, we do not have to
wait, since the data are available in the output. But this is not possible if,
at the previous step, we do a Write operation and the data change. So the
delay related to the Read operation inserted is simply the Clock to output
delay of the Flip Flop. Instead, the Write delay is computed considering
the delay of the Multiplexer in input plus the Setup time of the Flip Flop
to have a stable input signal to sample. It is possible to access the other
inputs of the cell, but it is not recommended because they are used in the
composition of the architecture of the memory. Anyway, if used, it ensures
a correct performance computation.

7.10.2 Flip Flop Memory Architecture
The memory architecture is made by the Flip Flop cell that emulates a
standard memory. To explain all the components, we create a figure with a
small memory that shows all of its components. The architecture is shown in
Figure 7.33. The example memory has 4 rows and 4 columns (4x4) and with
a bit address of 3 bits. The Input/Output parallelism is 2 bits, and the word
length is 2 bits also. The structure has two decoders: one is the row decoder
and the other one is the column decoder. The use of the two decoders has
the advantage to have a smaller and faster decoder instead of using a big and
slow one. Using two decoders needs an And stage, one input is used to choose
the line and the other to choose the word. Another important component
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Figure 7.31: And Driver

is the column multiplexer used to choose in the output the wanted word.
Considering only these components, the memory can be very slow because it
needs to drive high capacities loads. In the upper part of the memory, we can
see the inputs IN0, IN1 that are called in the real model WR port. In fact,
it is the port used to write inside the memory. In the input, the buffer driver
stages are placed to drive all the capacity of the connected multiplexers.
Other buffers are present at the output of the decoders. In the figure it
is not displayed but the And gates, in reality, are not simple And gates.
The first stage is a Nand gate followed by an Inverter Driver, the circuit is
shown in Figure 7.31. The cell clocks are all connected to the external pin
CK. The And gates are used to enable the memory cells of the word to do a
Read/Write operation of the wanted word. Another external pin is OUT/IN,
and it is used to choose the way of internal multiplexers, used to choose if do
an operation inside the memory or outside the memory. This input doesn’t

Figure 7.32: Memory Interface
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have a driver because it can be used better with external drivers. The CK
is usually connected to the external clock driver, the OUT/IN input can be
used too much or not used completely. It is better to use an external driver
to compute the energy dissipation depending on the algorithm. From the
external point of view, the memory is represented by the interface shown in
Figure 7.32.
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Figure 7.33: Memory Architecture
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Chapter 8

DExIMA Data Structure

In this chapter, we describe each data structure organization and the hier-
archy of DExIMA. It is important to know how the program is organized in
order to understand how DExIMA stores and simulates our circuits. We will
start with the main class of the program and go down with the hierarchy
in a top-down approach. Before starting, we want to explain how the data
structure is displayed. The main containers used are the vector and map
object of C++. The vector and map containers are displayed simply like
in Figure 8.1. The figures do not specify the exact object like the notation
vector<string>, but only the category of object. For example, the keys of
a map that contains the name of the object are shown simply by the word
"Name", and not by the data structure "string", because it is more useful to
display the behavior of the object differs from the exact type. The exact type
of data is described in the specific section. The single objects are displayed
like a rectangle with the name of the object inside.

Figure 8.1: Containers Visualization
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8.1 Architecture Class
The Architecture class as previously pointed out is the core of the whole
program. It is a container of almost all the objects needed and has a lot of
methods used to manage the objects and process some parameters.

Figure 8.2: Architecture Class

Most data structures are map containers using a string as Key and contain
different types of objects. The class contains these object maps:

• Module: It contains all the information about a component of the
circuit.

• Lim: It contains the information about the specific memory

• Instruction: It contains the information about the instruction of the
instruction set.

• Code: It contains the algorithm code of the circuit

• Printer: Object used to handle and compute the performance of the
specific model.

116



8.2 – Module Class

• Module Performance: It contains the performance parameters of a
module object.

• Instruction Performance: It contains the performance parameters
related to instruction.

• Architecture Performance: It contains the performance of the whole
architecture.

8.2 Module Class
DExIMA can be defined as a Module based program because each component
of the architecture is defined by a Module object. The Module Class is
represented in Figure 8.3, in the figure, there are all the components, the
only omitted part is a string called Code that has special behavior that will
be later described.

Figure 8.3: Module Class

The class contains two strings that are the Name of the Instance and the
Model of the instance (And, Or, Xor, etc..). There is also a vector of strings,
where the parameters of the gate are stored inside. It is important to re-
member that each model can have a different number of parameters. For
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example, the Nand gate has only one, the number of inputs, while the In-
verter has none. These three fields are filled in the Init section where we
specify: model, name, and list of parameters. The Module class has also two
maps containing the Input and Output objects. These two objects are used
to connect the Module object with other objects of the same type. The Key
of the maps is the string containing the name of the Input/Output port, for
example, IN0 or OUT.

8.3 Input/Output Class

The Input and Output are classes used to connect the components between
them. It inherits classes from class Port. The port class has two variables
inside it, the Name and the Parallelism. The first one saves the string Name
of the port and the latter contains an unsigned int value that stores the value
of the port parallelism.

Figure 8.4: Port inherit scheme

The Input/Output ports have additional parameters depending of their na-
ture. The two classes schemes are shown in Figure 8.5. Starting from the
Output class, it has only a vector of float that contains the fanout of each
wire of the port parallelism. These parameters are used to compute the load
capacitance connected to the wire. On the contrary, the input object has
two vectors, one containing the fanin of each port wire, and one contains a
bool value that represents the state of the wire. The state of a wire can be
connected or not connected. By default, all the wires are not connected and
when we connect it in the Map section, we change the value of the specific
wire of the port.
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Figure 8.5: Input/Output Classes

8.4 Lim Class
The Lim class is used to store and manage all the information about the
memory. The object saves the strings of the Lim Name and Type (ex. Sram,
FLIPFLOP). The other parameters are used to specify the memory dimen-
sions. The Address/Read/Write parallelism and the number of rows and
columns are stored in an unsigned int variable.

Figure 8.6: Lim Class

There is also a map of Modules used to store the out-of-cell component. The
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memory is represented in a 2D map with the same rows and columns. Each
cell has inside another map used to store all the Modules pushed inside the
memory cell (In a different point of view is a 3D array). By default, we have
only one Module related to the memory cell depending on the type. There is
also a vector containing the object called InterconnectionAttribute that stores
the interconnection parameters of the memory array.

8.5 Instruction Class
The Instruction Class is used to store the information about the instruc-
tions of the instruction set. Similar to the previous classes, we find the
Name and the Type that can be standard or LiM type (INSTRUCTION,
LIM_INSTRUCTION). If it is a LiM instruction, we find also the name of
the associated LiM.

Figure 8.7: Instruction Class

Another important parameter is the Pipeline value, explained in the chapter
about the language. In the class, there are two containers: a vector and
a map. The vector is used to store an object called PowerAttribute. This
class is composed of the instance and the attribute related to the power
performances specified in the Power section. There is also a map containing
a class called Path, that stores each path specified in the path section. The
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Figure 8.8: Path Class

number of objects inside the map is equal to Pipeline + 1.

8.6 Path Class
The Path class stores the components of each parallel path. The class con-
tains the Name of the Path and a map with each subpath. Each element of
the map is a vector containing objects of type TimingAttribute
This type of object stores the Instance to compute the timing performance
of the associated attribute, similarly to the PowerAttribute.

8.7 Attribute Class
The Attribute class contains only a pointer of type Module and it is the base
class of three other objects that share a pointer to Module.
The Power/Timing Attribute class adds only an enumeration that specifies
attributes as the one of Power/Timing. The Interconnection attribute, in
comparison to the others, has information about the interesting port and the
index where we have connected a wire. The last info is the normalized wire
length. The normalized wire length is defined as the distance in the number
of cells between two connected Modules. This can be useful because if we
change the type of cell in the memory, it usually has different dimensions.

121



8 – DExIMA Data Structure

Figure 8.9: Attribute inherit scheme

To obtain the effective length, DExIMA multiplies it by the cell pitch of the
memory.

8.8 Code Class

The code class contains the code of the algorithm. The class contains the
number of clock steps computed in the code section. The map container
stores how many times the instruction is called in the code section. The key
on the map is the name of the instruction.

Figure 8.10: Code Class
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Figure 8.11: Printer inherit scheme

8.9 Printer Class
The printer class is the class responsible for the performance computation of
a component. It has several inherit classes that use specialized methods to
compute the performance of the specific gate. It uses also a method native
of the Printer class to create the component’s interface. All the gate types
need a class that inherits the methods of the class printer. The printer
inherits scheme is shown in Figure 8.11. The Printer object has all the data
information about the specific gate, all these data structures are shown in
Figure 8.12.
The base variable is a string that specifies the name of the model, for example,
NAND. We have five different vectors of string that specify the interface of
the component. The port names are the names used by the component in
the map section; all the other vectors are based on this vector. The port type
specifies if the port is an input or an output. The position of the parameters
in the vector is related to the index in the port names vector that we are
referencing. The port Parallelism is used to specify how many wires the port
has. The port Multiplicity is used to specify how many ports of that type are
usable. The Parameter vector can have how many parameters the component
needs, and it is not directly linked to the dimensions of the other vectors. In
the end, the Fanin vector is a vector of float that specifies the fanin of each
port. All these vectors are created in the constructor of the specific printer,
in 8.1 we can see a practical example for the NAND model.
Nand : : Nand ( )
{

m_printer_type = "NAND" ;
m_parameters = {"INPUTS" } ;
m_port_names = {" IN " , "OUT" } ;
m_port_type = {" input " , " output " } ;
m_port_paral le l ism = { " 1 " , " 1 " } ;
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m_port_mult ipl ic ity = {"INPUTS" , " 1 " } ;
}

Listing 8.1: Nand Constructor Example

The first line specifies the name of the model. The Nand gate has only one
parameter called INPUT, which is used in the other vectors. The parameter
names are used in the other vectors because, when the component interface
is created, the value of the parameters inserted in the Init section are directly
substituted in the other vector to properly construct the output interface of
the component. The port types specified in the examples are the first an
input type and the second an output type. In the specific case, we have for
the two ports only parallelism, but it can be more than one, for example in
the Flip Flop model. The parallelism is specified in the map section using the
operator "[index]". In conclusion, the multiplicity vector is where we specify
that the number of inputs defined by the parameter vector and the output
is only one. The logic of the multiplicity is simple: the created ports are

Figure 8.12: Printer Class
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named by the name in the vector plus a number starting from zero to the
multiplicity value minus one. For example, with a multiplicity of 2, it creates
IN0 and IN1. This simple syntax is very useful to create the interfaces of
the components in a very fast and automated way. The only problem related
to this approach it is that is not possible to use mathematical operations
inside it. For example, when we create a Decoder component, we need only
the inputs, the outputs will be the power of two of the inputs, but in this
way, we need two parameters to specify also the number of outputs to create
it. The only parameter not specified in the constructor is the fanin vector
because there is a method that is used to create it. This is due to the fact
that it depends on the technology, and on the model, it is more complex
compared to the previous parameters. This longer explanation highlights
how this class is important to the correct work of the program.

8.10 Performance Class
The Performance Class is the Base class used to inherit from the specific
Performance classes. The Performance class has the main four performance
parameters:

• Dynamic Energy

• Static Power

• Area

• Delay

The inherit scheme is shown in Figure 8.13.
The inherit classes are used to store the main parameters, at different hier-
archical levels.

8.10.1 ModulePerformance Class
The ModulePerformance class has the four main parameters, but has also an
additional map. The two maps have as Keys two enumerations that represent
the attribute for the Power and the Timing.
The values inside the maps are float values that represent the values of at-
tributes. For example, all the components have the attribute of the Con-
tamination delay, which can be the same as propagation delay. In that case,
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Figure 8.13: Performance inherit scheme

Figure 8.14: ModulePerformance Class

we can extract the contamination delay using this map. All the components
can have an arbitrary number of attributes, depending only on the type of
model.
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Figure 8.15: InstructionPerformance Class

8.10.2 InstructionPerformance Class
The InstructionPerformance class is used in the performance related to one
instruction. The delay, in this case, is interpreted as the critical path and
has added a string that specifies the name. It is used to highlight the re-
sponsibility of the critical path. We have also a map, that, for each path of
the instruction, contains the value of the maximum delay of each subpath.

8.10.3 ArchitecturePerformance Class
The structure of ArchitecturePerformance class is shown in Figure 8.16. The
common four parameters inherited from the Performance class are omitted
to highlight only the added data structures. The class has two maps that
store the information about Clock Drivers and Memories. Each object inside
this map is a Performance class type, so we have the four main info about
each component. For the clock Driver, this works perfectly, but the memory
cannot have information about delay and energy that are intrinsic to memory.
These parameters depend on the links inside the memory and the algorithm
they are executed and it is not useful to store them. Different considerations
can be made for the area and static power. These are fixed for each memory
and can be used. Other useful information that can be known, is area and
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Figure 8.16: ArchitecturePerformance Class

static power related to all the circuitry of the memory like a row and a column
decoder. The other unused variables of delay and dynamic energy are used to
store these two parameters. The other six parameters are floats and strings
that store general information about the circuit like the global critical path
and the info to find with instruction and path are responsible for it. This
class is the class that prints directly in the dof file, so all the info, except for
the information, related to the instructions and technology are stored in this
class.

8.10.4 Technology Class
The main purpose of the Technology class is to store the parameters that
are frequently used in the computation of the performance. The Technology
class is provided with several getter methods that are used by the printer
classes when they compute the performance of gates. We did not display
this class in an image because it has only float variables inside it. It is not
useful to describe these parameters because they are already listed in the dof
file. What we visualize in the dof file is simply the content of the Technology
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class. The class has two different scope methods: the first part consists of the
interest of the methods in the computation of the derived parameters from
the technology file, and the others are used for printer use. For example,
the computation of the effective gate length from the TechFile parameters
is a method of the first part, instead, we have very useful methods used to
Normalize/Denormalize the capacity values, this belongs to the second part.
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Chapter 9

Compilation Process

9.1 Sections stack
The compiler is the class that reads the dex file and creates all the objects
in the Architecture class. As we already know, the dex file is organized in
sections that use the keywords begin/end to open/close it. The compiler
uses a stack to manage these sections. When the compiler reads a begin line,
it checks if the next section is correct. If what it expects, is in the correct
order it pushes the keyword of the specific section inside the stack. When the
compiler encounters another begin keyword, it checks the admissible stack
deep, because there are sections that do not admit sub-sections. If the stack
is not "full" for that section, it makes another push.

Figure 9.1: Compiler Stack

If the compiler encounters an end keyword it checks if the section keyword is
the same at the top of the stack, if it is, do a pop operation. The schematic
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Figure 9.2: Sections Stack Algorithm

operation and algorithm are shown in Figure 9.1 and 9.2.

9.2 Sections State Machine
The section parser is organized using a software state machine of Moore type.
Each line of the code means one operation of the state machine. The be-
gin/end keyword are the triggers to the transitions inside the state machine.
The main state machine has one state for each section. If one section has
sub-sections inside, there is a nested state machine that controls the sub-
sections. There is a very useful function inside the Compiler class called
transition_logic that is used to manage directly the Section stack and the
transitions between states. The function needs in input:

• Line string: It is the string of the line that we are analyzing in the dex
file.
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• Future Keyword: It is the keyword of the next state we need to transit.

• Stack depth: It is the allowed depth in the Stack means the nesting
level of the next subsection.

• Transition State: It is the enum type related to the state we want
to transit. This can be used with different types of enum because is a
template function.

The function returns a bool variable, the value results true if at the line it
starts with a begin/end keyword, otherwise, it results false. This is very
useful not to treat the open/close section like the line in the specific section.
Inside each section’s state, there is a specific function to the section to parse.
The power of this approach is that the code is modular, because in the future,
in order to add or to remove a section, we simply have to add or remove the
state and create the function to parse the new section. The function helps
to transit inside it without knowing the implementation details about it and
add the new section with few lines of code.

9.3 Compiler Error
The CompilerError class is responsible for the generation of the errors in our
program. The object is created only one time in the Compiler class, and we
exchange the reference in the Parser classes. The object is very simple, it
contains the variables:

• m_error_occur: a bool variable that stores a flag to indicate if an
error occurs or not, using True/False. It is used a lot of times inside the
compiler routines because it indicated if continue or stop the program
in case of error.

• m_error: an enumerate called error_type that contains the type of
error that occurs during the compilation process.

• m_error_line_number: an unsigned int that stores the line number
where the error occurs.

• m_error_line: a string that stores the code line responsible of the
error inside the dex file.

• m_problem: a string containing the error message displayed by DEx-
IMA.
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• m_suggestion: a string containing the suggestion message displayed
by DExIMA.

The use of the object is very simple: where an error occurs we use a method
called set_error, where we specify the type of error and eventually the
specific message, like error and suggestion. Normally, each error type has
associated with a message stored in a file. If we need a specific error that
includes information about a component or other information, it is possible
to do. When we use this method, the error is set to true and it stores all
the information needed to print in the terminal. If we call again the set
error method, the information remains the same because we need to consider
only the first error that occurs, since the following can be a function of the
previous one.

9.4 Parser Organizations
The most used classes inside the compiler are the derived classes of Parser,
which have the most used and useful functions to manipulate the strings. All
the classes related to the parsing of the code lines use the regex expressions
instead of using the built-in C++ methods of class string. There is a specific
parser for each section, that is specialized to understand and parse its section.

Figure 9.3: Parser Inherit Scheme

Each state of the compiler takes the wanted parser and uses its methods
inside it. In each parser, there are regex variables used to match the most
used expressions. Now we present some useful features of some of these
derived classes starting from the ForParser.

9.4.1 For Parser
The ForParser is the object that manages the for instruction but it is used
also to store some variables:
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• Iterator: a string variable used to store the name of the iterator of the
for loop.

• Start value: an int variable that stores the start iterator value of the
loop.

• Step value: an int variable that stores the iterator increment value of
the loop.

• Stop value: an int variable that stores the stop iterator value of the
loop.

Figure 9.4: ForParser Operation

The scope of this parser is to get in input the string that uses the For con-
struct. From the string, it extracts the four parameters needed and stores
them inside the object. Finally, the process returns only the string related
to the internal code part. After this process, we use the info extracted to do
a C++ loop substituting each step with the value of the iterator inside the
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output string. When the For parser does this operation it checks the validity
of all the syntax and the parameters. For example, if we insert values that
create an infinite loop, the ForParser generates an error before starting the
infinite loop. The Figure 9.4 shows the process just described. In the com-
piler, there is a function that recursively applies this operation because we
can have nested For loops.

9.4.2 Constants Parser
The ConstantsParser class stores the constants inside the code and substi-
tutes them in the string lines. This class has two maps: one that contains all
the couple of the constant’s names and the value, and another map that is
used only to contain a couple of built-in constants and their values. This sec-
ond map container is what is sent to the Technology class after the constants
section. After the storage of a constant, each time the compiler parses a line,
first of all, it checks if the expansion of one or more constants is present.
This check is done for all the constants inside the map. This means that,
if we have a lot of constants, we spend some time on each line to check the
presence of all the constants, so it is useful to use the math environment
when possible.

9.4.3 Init Parser
The InitParser is used to create the Module objects. It can be used in three
different sections in order to have three dedicated methods that use common
parsing operations. The three interesting sections are: init, logic, and cells
sections because in these three sections we create the modules in the three
namespaces of DExIMA. The operation that the InitParser does, is to check
if the Model name exists and if the Instance name is already used by another
Module. The last part checked is related to the values and the number of
parameters, but this operation is done by the specific printer of the Model. If
the model is used for the first time, is created also the printer object related
to the model, and is inserted inside the map of printers. When the Module is
created it has only the parameters, the Name, and the Model. The creation
of the Input and the Output port is related to the generic printer methods
as shown in Figure 9.5. The information used in the creation is the info
in the constructor of the printer and the parameters inserted by the users.
There is also information got by the Technology to create the fanin of the
Inputs objects. The Init parser stores also a vector with names of the LiMs
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Figure 9.5: Module Interface Construction

to manage the transition to the next memory states.

9.4.4 Lim Parser
The Lim Parser constructs the memory geometry specified in the memdef
section and does the computation to check if the Lim Module built is coherent
with the number of rows and columns. The compiler generates an error if the
values are not coherent and also makes suggestions to correct the problem
with the suggested values. This parser creates the Lim object with all this
information and fills the cells with a memory cell each.

9.4.5 Map Parser
The Map Parser is used to parse the map sections, both internal and ex-
ternal of Memory. It is specialized and has three different methods, one for
each namespace. The map parser is the parser that has the highest compu-
tational cost, it needs to check several parameters. Now we explain these
steps considering the worst case, the case of the LiM parser. The order of
the operations is:

1) Check the link operator: In the first step, we identify the link oper-
ator and divide the instruction into two parts. The left is part related
to the output port and the right one is related to the input port.

2) Check the dot operator: For each part, we check the presence of the
dot operator and divide it into other two parts: the left represents the
name of the instance and the right represents the port name.
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3) Matrix coordinates division: Each part related to the instance name
can specify the coordinates in the LiM array. First of all the string
is already divided into other two pieces: the piece related to the only
instance name and the other with only the coordinates of the cell.

4) Instance name evaluation: In this step, if the coordinates are spec-
ified, they are extracted and we check if the values are admissible co-
ordinates, and the indexes do not exceed the memory array. After the
coordinates, the name of the instance is checked. In particular, if the
coordinates are specified, we check that the gate is present inside the
memory cell. If we do not have coordinates, we check if the gate is
present in the output cell gate container.

5) Port index extraction: The parts related to the port names are
scanned to check the presence of the index operator. If present, the
string is divided into two sub-strings with the name of the port and the
index of the port.

6) Port checking: The first operation of the port checking is related to
the existence of it. In fact, we check if the Instance with name extracted
before having a port with that name. If the answer is positive, we check
if it is an input or an output and, after having verified that, if it is in
the correct position to be an input/output.

7) Index checking: The specified index is checked if it is a possible value
for that port and does not exceed the maximum possible parallelism of
the port. If all ends correctly, we set the parallelism of connection, if
the index is specified we want to connect only one wire, otherwise, the
whole bus is connected to the other port.

8) Connection checking: Finally, we need to check if the two ports can
be connected. We can have two negative situations: the first happens
when the two instances have a different number of wires involved in the
connector, the second is when the considered input is already connected
to another port.

9) Fanout update: The last step is to increment the Fanout of the output
port with the value of Fanin of the input port and set the connected flag
of the input port.

In all these steps we have omitted all the checking sequences of the spaces
that can occur when paring the line, and we didn’t say anything about the
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Figure 9.6: Map section parsing pyramid

searching of the unwanted word in the black spaces of the line. Figure 9.6 is
showing the process that is like a pyramid where at the top we find the line
to parse and at the bottom all the data needed to know by the instruction
and to be checked.

9.4.6 Math Parser
The Math parser, how as mentioned before uses the Shunting Yard algorithm
to parse the line and compute the result of the maths operation. The Shunt-
ing Yard algorithm consists of two steps to compute the math operation. All
the mathematical expressions we write are called infix notation. The first
step to compute the expression is to translate the infix notation to the so
called reverse polish notation (RPN) or postfix notation. In the postfix no-
tation, the operators follow their operands, the advantage of this notation is
that we do not need parenthesis to represent the operation and it is easier
to compute in comparison to the infix notation. To make the infix to postfix
transformation we need two data structures: a queue (FIFO) and a stack.
The queue is used for the output of our computation and the stack is the
operator’s stack where we put the operators during the computation. We
read our expression left to the right and we divide the expression into tokens
(operands and operators) and put them inside an array. After doing this we
follow the algorithm:

• If a number is found, we push directly to the output queue
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• If an operator is found, it is pushed inside the operator’s stack

• If the operator has precedence lower or equal than the operators at the
top of the stack, the operator is popped off the stack and added to the
output

• At the end, the remaining operators to the stack are popped out and
pushed to the output

To clarify it, we make an example, we have the infix expression:

Expression(infix) = 2 × 3/(7 − 5) (9.1)

First of all we divide it into a token list:

tokens =



2
×
3
/
(
7
−
5
)



(9.2)

The operations we do are shown in table 9.1. The result of the operations is
our RPN expression:

Expression(postfix) = 2 3 × 7 5 - / (9.3)

Having our postfix expression is possible to evaluate easily the computation
of the whole expression. To compute the result of the postfix equivalent we
need only a stack. Also in this case we use the tokens and proceed from left
to right. The algorithm is the following:

• If a number is found, we push in the stack

• If an operator is found we pop one value of the stack and use like right
operand. Pop another value and use it as the left operand. Finally, we
evaluate the operation and the result is pushed into the stack.

• At the end we pop out the result contained in the stack
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Related to the previous example, the operations to do are shown in table 9.2.
And we have our final result of 3. These are all the processes done by the
MathParser and replace the expression with the computed value.

Token Action Output
Queue

Operators
Stack

2 Add number to output 2
× Push operator to stack 2 ×
3 Add number to output 2 3 ×

/ Pop operator to stack 2 3 ×
Push operator to stack 2 3 × /

( Push operator to stack 2 3 × ( /
7 Add number to output 2 3 × 7 ( /
- Push operator to stack 2 3 × 7 - ( /
5 Add number to output 2 3 × 7 5 - ( /

) Pop operators until "(" 2 3 × 7 5 - ( /
Pop "(" operator to stack 2 3 × 7 5 - /

Pop entire stack 2 3 × 7 5 - /

Table 9.1: Infix to postfix transformation

141



9 – Compilation Process

Token Action Output
Stack Expression

2 Push number to stack 2
3 Push number to stack 3 2

×

Pop Right operand 2 × 3
Pop Left operand 2 × 3

Evaluate Expression 2 × 3 = 6
Push Result 6

7 Push number to stack 7 6
5 Push number to stack 5 7 6

-

Pop Right operand 7 6 - 5
Pop Left operand 6 7 - 5

Evaluate Expression 6 7 - 5 = 2
Push Result 2 6

/

Pop Right operand 6 / 2
Pop Left operand 6 / 2

Evaluate Expression 6 / 2 = 3
Push Result 3

Pop Final Result

Table 9.2: Postfix expression evaluation
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Chapter 10

Performance Computation

The Process of performance computation uses an approach to minimize the
number of computations in the circuit. The philosophy is to compute the
performance of some gates only if necessary. If we have two or more gates with
the same performance, it is not necessary to compute again. Two components
are defined identically if they have three parts in common:

• Model

• Parameters

• Fanout

The complete process is described in 7 steps. This chapter explores this
process step by step. All the process is managed by the Simulator Class
using the methods provided by the Architecture class.

10.1 Step 1: Module Encoding
The first step is the Encoding step. As said in the previous chapter, the
Module class has a field called Code that is a string used to identify uniquely
a Module with a simple string. The process is represented in Figure 10.1,
where we have our Module class, and in output, we obtain the Code string
from it. Each Module has a method called encoding() that creates the
equivalent Code represented by the specific object. The whole process is
called by the Architecture class that makes two main loops. One loop in-
terests the architecture modules, the other is a loop of LiM memories that
have a method to encode the Modules inside each memory. Each LiM has
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Figure 10.1: Encoding Phase

hierarchically two loops to encode the memory cells Modules and the out
of cell Modules. The code has three fields, the three specified in the in-
tro of the chapter. The first field of code contains the name of the model,
for example, FF. After, the code is followed by an underscore with the list
of the parameters of the model. The list separator is the char "+". The
generic string part of the second field is par1+par2+parN. The last field is
the field related to the fanout and also in this case the fields are separated
by the underscore. The fanout is written dividing the port with the char ":"
and each wire with the "+" char. The third field is constructed by the ex-
ample wire1+wire2+wireN:wire1:wire1+wire2+wireN. For example, a simple
Flip Flop code can be FF_3_3.12+2.3+4.

10.2 Step 2: Code Presence Verification
The second step is a verification step. There is a map inside the Architecture
class that stores all the Module Performance of the circuit. The map has, as
Key, the Code of the Model extracted at Step 1, and the value is an object
of ModulePerformance related to the Code. Having this data structure, we
associate a ModulePerformance to each Code. Figure 10.2 represents the
process, which is a simple searching process inside the map structure. If
the result of the verification shows to have the ModulePerformance inside
it, we go directly on Step 4 and skip Step 3. If the ModulePerformance
associated with that code is not present inside it, we go on Step 3. This
step is done for all the Modules Encoded in the Architecture Class, including
all the Modules inside the Lim objects. All the Modules refer to this map,
including the nested objects.
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Figure 10.2: Verification Phase

10.3 Step 3: Performance Computation
Step 3 is evaluated when, at Step 2, a negative answer to the presence inside
the map structure is taken. When happens, we take from the Printers maps
the specific Printer of the module to compute the Performance. The process
uses a method of the Module to take the Model type, the Model type is also
the Key of the map containing the Printers.

Figure 10.3: Performance Computation Phase

Each printer has a method that gets in input an object of type Module
and applies all the specific methods to construct and fill an object of type
ModulePerformance. In the end, the method returns this object.
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10.4 Step 4: Performance Insertion
The Performance Insertion is a simple operation, where the Code computed
by the encoding phase and the ModulePerformance are associated together
in the map of all the ModulePerformance objects. Now, when we apply again
Step 2, we already find the Computed ModulePerformance object.

Figure 10.4: Code Insertion Phase

10.5 Step 5: Extraction Chain
The extraction Chain is the main operation used to get the computed Pa-
rameters in the previous steps.

Figure 10.5: Extraction Chain Phase

The complete Extraction chain is shown in Figure 10.5. Now we look at all
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the steps of the extraction chain.

10.5.1 Scrolling

The first step is what we have called Scrolling. It is a loop over some data
structures, and it depends on what type of performance parameter we need.
To compute the whole area and static power, the loop is done with all the
Modules objects of the architecture. The loop process is identical to what
we’ve done during the encoding phase. This happens because all the compo-
nents contribute to the area and static power. A different loop is done when
we need delay and dynamic energy, the data structure used in these cases are
the vectors inside the Instructions. For the dynamic power computation, it
is used the PowerAttribute vectors and the TimingAttribute vectors for the
delays computation.

10.5.2 ID Extraction

The ID Extraction is simply what we get from the Scrolling phase. Usu-
ally all the data structures in the Scrolling phase point to a Module object,
more correctly all these Modules are in reality pointers to Module object.
In fact, the "original" pointers are stored in the main structures inside the
Architecture class. The pointers inside the Instruction objects are pointers
to the same object creates previously inside the Architecture class. If we
scroll inside a simple Module container, we extract only the ID Code inside
the Module object. If we are using the Attributes objects inside the Instruc-
tion we extract also the attribute associated with the Module, like shown in
Figure 10.5.

10.5.3 Performance Extraction

The Performance extraction phase is the phase where we use the ID Code to
get the associated ModulePerformance object. The ID point to the container
stored inside the Architecture object. The Scrolling is usually done by the
Architecture and hierarchically to the nested object using some methods. For
this reason, not all objects can access this container. All the methods get the
reference of the container and get the desired ModulePerformance contained
inside it.
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10.5.4 Parameter Extraction
Now we have our ModulePerformance object and from this we can choose
which parameters getting from it, depending on which type of Scrolling loop
we are in. If we are computing the area and static power, we can directly
get both at the same step. In the case of Instruction Scrolling, we need also
the Attribute associated, if the attribute is not specified, the performance is
directly extracted from the four main fields. On the contrary, if one attribute
is present, we accede to the two maps.

10.6 Step 6: Instructions Accumulation
The Instructions Accumulation step is a loop to all the Instruction objects
in the Architecture. For each Instruction, we do a series of Extraction chains
in the data inside it. We mainly do a Scrolling to the PowerAttribute vector
and a Scrolling to the TimingAttribute vectors inside the Path objects.

Figure 10.6: Instructions Accumulation Phase

The result, like shown in Figure 10.6 is an InstructionPerformance object
that is the object called where we use that instruction.

10.7 Step 7: Total Performance Computa-
tion

At the final step, we have all the ingredients to compute the Performance
of our Architecture. We simply need the InstructionPerformance container
and the Code of our algorithm. The result is stored inside the Architec-
turePerformance object, and after it is printed in the dof file. The process is
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managed by the code that uses the multiplicity of each Instruction to accu-
mulate the dynamic energy and, in the meantime to compare the delays of
each instruction to find the worst. Finally, we have the total energy and the
critical path.

Figure 10.7: Total Performance Computation Phase

At this point, DExIMA chooses the clock period, which is the critical path
if the user does not specify it. On the contrary, if the user sets it in the
constants section, this is the value considered. To compute the dynamic
power, we first compute the execution time of the algorithm:

talgorithm = ClockSteps · tperiod (10.1)
and heaving the total energy we can compute simply the average dynamic
power:

Paverage = Edynamic
talgorithm

(10.2)

The other parameters are simply the accumulations of all the Extraction
chain operations for the other parameters.

10.8 Algorithm
Each step has usually sub-steps to complete the operations, the total algo-
rithm execution is shown in Figure 10.8 where only the main operations used
are presented. There are more loops inside that are omitted to have a better
representation of the whole process.
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Figure 10.8: Simulation Algorithm graph
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Chapter 11

Binary Neural Network
Simulation

In this chapter, we will see the implementation of a Binary Neural Network
in hardware and look at the performance obtained using different approaches
and simulations. We will see the comparison between the new version and
the previous version of DExIMA comparing it using modern tools like Syn-
opsys Design Vision. The Binary Neural Network (BNN) is a type of Neural
Network that uses a binary approximation to be reproduced in hardware in
a more suitable way. We start by explaining how a Neural Network is made
and how it works. At the end of this chapter, we will see some simulation
results of this specific Architecture and the related algorithm.

11.1 Introduction
The Neural Networks are structures composed of elements called Neurons,
which are interconnected between them by links called synapses. This name
is inspired by the way in which the brain performs a particular learning task
[21]. The Neuron is the base computational unit, as it is shown in Figure
11.1. The mathematical expression of a neuron can be written as:

net =
NØ
i=0

Xi ·Wi +Bias (11.1)

The terms of expression are:

• Xi: the inputs of our Neuron, they can be a floating-point number. For
the BNN, they are binary values ±1.
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Figure 11.1: Artificial Neuron.

• Wi: the weight associate with the link called synapses. The most used
type of weights is the floating-point values having the full precision. In
the specific case of a BNN, we use a binarized weight that can assume
the values of ±1.

• Bias Is an additive term

The output of the net is passed between a function called activation function
that it is used to insert a non linear behaviour using particular functions
[23]. This function can be tuned inserting a threshold. The non linearity is
necessary when we work with classes that are not linearly separable. The
most used activation functions are:

• Sigmoid Function:
f(x) = 1

1 + e−x (11.2)

• Hyperbolic Tangent:
f(x) = tanh(x) (11.3)

• ReLU (Rectified Linear Unit):

f(x) = max(0, x) (11.4)
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11.2 Neural Network
The neural networks are a composition of multiple neurons and they can be
grouped by layers. Each layer is connected with the previous one and with the
successive layer. The scope of the neural network is to recognize some objects
of a specific class. This process is called classification, in which we insert in
input an object and the response of the network corresponds to the type of
class the object belongs to. The preliminary operation allowing our network
to recognize the objects is called training. During training we insert, in
input, an object with an associated label and the network responds with some
results. The result obtained can duffer for the wanted class, so, the output
error used to back-propagate the signal is computed. The back-propagated
signal is used to update the weights. The updated weights now allow the
network to recognize the correct classes. When the training is complete, if
we have done good training with a good Neural Network Architecture, we get
in the output the correct class of the input images with a certain accuracy
rate. The Neural network can have a different number of layers, but they
can be divided into three different categories:

• Inputs Layer: It is a layer that simply sets the input data to the
Network, the number of the neuron is equal to the number of input data
we have.

• Hidden Layers: The hidden layers are used for the computation and
propagation of the information inside the Network.

• Output Layer: The output layer is responsible for the classification,
the number of output neurons represents the number of classes that can
be classified.

The simplest architecture is a single layer Perceptron shown in Figure 11.2
sub-figure a). But the single layer is able only to recognize linearly separable
classes. By increasing the complexity of the model, we introduce the hidden
layers, more layers imply more complex models. A neural network has the
peculiarity that each neuron of a layer is connected to all the neurons of
the next layer. This means that a large Neural network can have too many
weight parameters that can be trained. In the Neural Network, there are two
problems related to the complexity of the model. If we insert too many layers,
the model begins too complex and this means that the network is capable
of recognizing very well the samples used for the training, but has a poor
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Figure 11.2: Neural Network Examples, a) Single Layer Neural Network, b)
Multi Layer Neural Network.

performance when we try to classify new input samples. This phenomenon is
called overfitting, and it occurs when we dispose of more parameters than
needed. It loses its generality and it can recognize well only the training
set. On the opposite side, we have the underfitting, this happens when we
have not enough parameters to classify our samples and we need a bigger
and more complex network to recognize them with suitable accuracy.

11.3 Convolutional Neural Network
The Convolutional Neural Network is a type of neural network used to classify
and recognize complex data like images. From now on we reference always
images to explain better what we need to focus on. The Layers of this type
of network can divide into three categories:

• Convolutional Layers: Used to perform the convolution operation
between the input image and a filter.

• Pooling Layers: Used to reduce the size and the complexity of the
CNN.
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• Fully Connected Layers: Layers used to perform the classification
operation.

For more details about it [24]. From this point, we follow the same explana-
tion and hardware implementations shown in [25].

11.3.1 Convolutional Layers
The convolutional layers take into account two objects: the input image called
Input feature map IFMAP and the filter called Kernel. The result of the
convolution is called Output feature map OFMAP. The Kernel is simply a
matrix of the weight values, in the case of an RGB image the matrices are
three, one for each color. In the Figure 11.3 we see an example of the Kernel.

Figure 11.3: RGB Kernel Example.

The operation that performs the output feature map computation is de-
scribed by the equation [25] derived from [26]:

y0(j, i) = Bias0+
#Cin−1Ø
cin=0

Wy−1Ø
k=0

Wx−1Ø
p=0

k0,cin(k, p)·X0,cin(j ·stride+k, i·stride+p)

(11.5)
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Figure 11.4: Convolution Process Example. Source:[25]

where i, j are the index of the output feature map corresponding pixel, cin
is the input channel index, #Cin are total input channels. Wx,Wy is the
kernel’s matrix size indicating the number of rows and columns respectively,
0 is referred to as the OFMAP considered. k0,cin is the kernel weight and p, k
are the kernel’s indexes. The convolution process described by the equation
11.5 is shown in a graphical way in the Figure 11.4. The stride is the step of
how we move the kernel in the input feature map. The Convolutional layer
network doesn’t connect each neuron of the previous layer with the next one.
This has the advantage to reduce the number of parameters inside the model.
The scope of the convolutional layers is to extract a high-level feature from
images, like shapes. This feature extraction and reduction allows to have an
easier and more efficient classification process.

11.3.2 Pooling Layers
The Pooling operations are different, the most used are: the max pooling and
the average pooling [27]. The Pooling operation is similar to the Convolution
operation, we have a window that shifts in the IFMAP with a certain stride.
It usually uses a value of stride to not overlap the window in the different
steps. Inside the window, we do the max operation between the values, in
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Figure 11.5: Pooling Operation Examples.

case of max pooling, or the average in the case of average pooling. In Figure
11.5 there is an example of these two types of pooling.

11.3.3 Fully Connected Layers
The fully connected layers are the most important part of our CNN. This part
the responsible for the classification of the images after the feature extraction
and reduction by the convolutional and pooling layers. As explained before,
the neurons of this part are connected to all the neurons of the next layer,
differently from the convolutional layers. In the output of the convolutional
part, we have a matrix of data, that will be rearranged in a single vector to
take in input the fully connected part; this operation is called Flattening.
In Figure 11.6 we can see an example of CNN highlighting the three types of
layers explained before.

11.3.4 Batch Normalization
A technique called Batch Normalization is used to reduce the problems
coming from the training (such as slow convergence), in particular in very
deep networks such as CNN. The technique is based on the normalization of
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Figure 11.6: LeNet5 Netwok example. Source:[25]

the inputs of each layer, to shift the mean output activation of value 0 and
a standard deviation of 1. This permits to have a faster training and more
complex models without losing precision. This technique is used also for the
implementation of the Binary Neural Network [25].

11.4 Binary Neural Network
The Binary Neural Network (BNN), is a CNN where we apply the bina-
rization operation of the weights and the inputs. The operation is simply
performed using the sign operation where we recall the relation:
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sign(x) =

1, if x ≥ 0
−1, if x < 0

(11.6)

The binarization operation of, for example, the IFMAP is shown in Figure
11.7

Figure 11.7: Binarization Process Example

From now we show how do the convolution operation is made, having the
binarized weights of our network, as described in [28]. The first operation
we do is to consider our binary values {−1,1} into the couple {0,1} because
in the second case we can implement and elaborate using our more familiar
binary notation with our logic circuits. The convolution is performed doing
the XNOR logic operation and a pop-count operation. The XNOR operation
is done using the truth table 11.1. The pop-count operation is simply the
difference between the number of ones and the number of zeros in a word,
like in the equation 11.7.

A B OUT
0 0 1
0 1 0
1 0 0
1 1 1

Table 11.1: XNOR truth table

Pop-count relation:

pop-count = #1s− #0s (11.7)
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We see an example in Figure 11.8 of the convolution operation using binary
coefficients.

Figure 11.8: Binary Convolution Example

How we can see, we firstly do the XNOR operation and the pop count of the
output like in equation 11.8.

y(0) = pop-count(xnor(101,110)) = pop-count(100) = −1
y(1) = pop-count(xnor(100,110)) = pop-count(101) = +1
y(2) = pop-count(xnor(010,110)) = pop-count(011) = +1

(11.8)

Now that we have understood how the operation works, we can realize the
simplest circuit to do this operation. As shown in Figure 11.9 there is the
circuit used to make a simple convolution with a 2x2 kernel. The problem
with this procedure is that the value after binarization is not equal to the
original one, this introduce an error in the computation due to this approxi-
mation. To compensate the precision losses, we introduce an extra factor in
our operation. The relation of our net is described [29]:

Convout,XNOR-−Net ≈ (Xb ~ wb) · K × α (11.9)
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Figure 11.9: Binary Convolution Based on XNOR-Pop. Source:[25]

whereXb and wb represent the input and the weight binarized, the~ operator
represents the binary convolution,"·" the punctual operation,× the standard
multiplication, the K and α are our correction factors [29].
The α factor is defined as:

α =
qN
i=0ëwië
N

(11.10)

where wi is the weight considered at full precision and N the number of
weights. The K factor is a matrix defined by the relation:

K =
q#Cin−1
cin=0

---X(:, :, cin)
---

#Cin
∗


1

WxWy

1
WxWy

. . .
1

WxWy

1
WxWy

. . .
... ... . . .

 (11.11)

The first term represents the absolute punctual sum of the multiple input
feature maps divided by the number of the input channels. The second term
is a matrix of size Wx ×Wy which contains the same factor in all positions.
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11.5 Hardware Implementation
The goal of implementing this algorithm in a LiM structure is the advantage
to have a high-level of parallelism. The other advantage is that the transfer
between processor and memory is reduced to the minimum, this leads us
to do almost the computation inside the memory. The first operation we
need to perform is the Xnor operation like described in equation 11.9. The
idea is to put inside each memory cell an Xnor gate. Doing so, we can do
the binary product between the content of the cell and an external input.
The resultant architecture is shown in Figure 11.11. In this example, we are
doing the convolution operation between a kernel of dimension 2x2 and a 4x4
IFMAP with a stride value of 1. As we can see, we use the multiplexer to
switch the incoming bit that will be sent to the bit pop count operation. The
convolution operation of the highlighted IFMAP portion is done through the
equation:

Incoming bit0 = pop-count(X0 ⊕ w0, X1 ⊕ w1, X4 ⊕ w2, X5 ⊕ w3) (11.12)

To simplify the pop-count operation and reduce the complexity of the cell
we can rearrange the operation in this way:

pop-count = #1s− #0s = 2#1s− length(word) (11.13)

where length(word) is the size of the array entering in the pop-counter.

Figure 11.10: Lim complete Architecture. Source:[25]
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Figure 11.11: XNOR part of the XNOR-Pop Unit LiM implementation.
Source:[25]

The one counter circuit is realized using Half Adders as shown in Figure 11.12.
Connecting these two units we can get the complete architecture. If we have
the number of output feature maps higher than one, we can simply duplicate
this structure and do the operations in parallel. The whole architecture is
shown in Figure 11.10, we can see all the blocks analyzed before and we
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Figure 11.12: One counter Lim circuit. Source:[25]

have also a part called the surrounding logic unit. The surrounding logic
unit contains all the circuits used to compute the corrective factors α and
K that is in the equation 11.9 and other circuits used to compute the batch
normalization. For more info about this part, everything is explained in
detail in [25]. It is possible to use the same architecture to compute also
the fully connected part inverting the role of the weights and the inputs
[25]. The dimension of our memory depends on the parameters used for
the convolution operation and also for the fully connected part. In fact, the
dimension is defined by which part of the two requires more resources, if we
consider only the Xor convolutional part:Memory sizex = D2

out

Memory sizey = Wx ×Wy

(11.14)

where Dout is the dimension of the output feature map obtained by the
equation:

Dout = Din −Wx

stride
+ 1 (11.15)
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this equation considers only the Wx dimension because the kernel is usually
regular and has the same dimension of the y direction Wy. Moreover, that
these dimensions are equal to the dimension of the memory of the one counter
part.

11.6 DExIMA Implementation
First of all, what we need to know is which algorithm we implement using
this architecture. The model chosen to implement is a neural network able to
recognize images of the Fashion-MNIST dataset which contain clothes images
on a grey scale. The CNN is shown in Figure 11.13.

Figure 11.13: CNN used for the Fashion-MNIST dataset. Source:[30]

In the beginning, the intention was to implement the entire algorithm, but
for some reasons that were previously explained only the first convolution
operation is implemented. In this section, we will see how the architecture
is implemented using the first version of DExIMA that we call DExIMA 1.0,
and after we will see the same architecture implemented with the new version
of the software that we call DExIMA 2.0. In the end, we make a comparison
between the two versions and the architecture created in VHDL and we also
do a synthesis using Synopsys Design Compiler. The VHDL codes are a
courtesy of Andrea Coluccio that implements them for his Master Thesis
[30].

11.6.1 DExIMA 1.0 Implementation
The reason why we make only the convolution operation is dependent on the
fact that the first version of DExIMA had a big bottleneck, the speed. To do
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the first six convolution operations, the tool takes at least 45 minutes, and
the speed trend has an exponential behavior. In particular, by adding one
output feature map, the tool increases the computed delay of a factor of 3
and this does not permit the simulation of the whole algorithm. We start
computing the dimension of the memory that will be able to do the first
convolution operation. The input feature map is composed of an image of
28x28 pixels and uses a kernel of a size of 5x5 and a stride of 1. This means
that the output feature map dimension will be:

Dout = Din −Wx

stride
+ 1 = 28 − 5

1 + 1 = 24 (11.16)

this reflects what it is shown in Figure 11.13, the total dimension of memory
is:

Memory sizex = D2
out = 576

Memory sizey = Wx ×Wy = 25
(11.17)

The first problem occurred while writing the code because we need a high
number of components to create the whole architecture, but we did not have
an instrument to create multiple instances in DExIMA, and we cannot pa-
rameterize the code using the constants. This needs an external script that
creates the code that will be compiled by DExIMA 1.0. A Python code that
automatically creates the architecture is written, and all the files are needed
for the tool because the first version of the program tries to write four differ-
ent files for different parts of the architecture. The input information needed
for the Python script is shown in 11.1 and consists of the kernel size, the
output feature map size, and the number of output feature maps.

# Memory v a r i a b l e s
ke rne l = 5 # kerne l dimension ( square case )
of_map = 24 # OFMAP dimension ( square case )
memory_parallel ism = 64 # memory output p a r a l l e l i sm
C_out = 6 # output number o f f e a t u r e maps

#Memory dimensions in x and y dimension
s ize_x = (of_map ∗∗ 2) ∗ C_out
s ize_y = ke rne l ∗∗ 2

Listing 11.1: Header of CNN Python Script constructor
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Another problem was the fact that it was not possible to create multiple
memories but just one. To resolve this problem, we simply adapt the whole
architecture to work only with one memory, this is shown in Figure 11.14.

Figure 11.14: DExIMA 1.0 XNOR-Net Architecture

In this way, it is possible to avoid the problem of the parallelism growing
the memory in vertical for each output feature map. The advantage of the
previous version of DExIMA, that was possible to build a memory with the
wanted dimension because the tool does not create directly the memory in-
terface circuity. This process is demanding to CACTI a memory simulator
designed by HP (Hewlett-Packard) [31]. With the adapted memory, in ver-
tical we have the different output feature maps and we can use a single row
to store the kernel weights. Each output feature map goes to the output
multiplexer and the result is shifted by one to multiply it by two and sub-
tract with the word length. In the horizontal dimension, we can recognize
the Xnor part and the One counter part. Between them there is the logic
needed to interface the two blocks, this logic isn’t inside the cells so it does
not waste memory cells.
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11.6.2 DExIMA 2.0 Implementation
Using the new version of DExIMA we do not need an external script to
write the code, but it can be done directly from hand. Different from the
first version of DExIMA it is not possible to create a memory to the wanted
dimension, but we need to have a dimension able to create the memory
interface circuitry.

Figure 11.15: DExIMA 2.0 XNOR-Net Architecture

The dimensions should be the same computed before, but the dimension of
the effective memory nearest to the wanted is obtained by constructing a
memory of the size of 512x64. However, in this way we have more cells than
needed, we can recognize in the results that the area and the static power
have this overhead due to the implementation. The Architecture used is
shown in Figure 11.15, the architecture is very similar to the previous one,
but in this case, we have only 512 rows of the 576 needed, so the memory
continues the XNOR and One counter part in the right part of the memory.
Because in this case, it is larger on the x axis compared to the previous, we
can use this part of memory. The upper part is filled with the remaining
components, this is called MIXED because it contains the Xnor and the One
counter part. The last part of the memory is called OVERHEAD, and it is
not used due to the dimensions constrain. The needed cells for the algorithm
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are (not considering the kernel row) Cell_needed = 576 · 50 = 28800 but the
memory created has Cell_created = 512 · 64 = 32768, this means that we
have an excess of 3968 cells, which corresponds about to 13,8% more cells.
This must be taken into account where the results are presented. In this
version, we have the advantage of creating multiple memories that work in
parallel so we don’t need to change the memory shape varying the number
of output feature maps and we can simply duplicate the memory doing copy
and paste in the dex file.

11.7 Results and Comparisons

11.7.1 Simulation Time
The first parameter we analyze is the bottleneck of the previous version,
the Simulation time. First of all, we show the simulation times obtained by
DExIMA 2.0 for the convolution algorithm, the results are shown in Figure
11.16. The Figure shows how the simulation time increases by adding the
output feature maps. There are two examples of how important the dex
file organization is, in fact the performance got in output is equal, but with
two different computational times. This is because if we have duplication

Figure 11.16: Comparison of the convolution algorithm using a Bad or Good
design in DExIMA 2.0

of the same circuits it is unuseful to connect the duplicate ones and insert
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Figure 11.17: Comparison of the convolution algorithm between DExIMA
1.0 and DExIMA 2.0

them in the instruction part, we can use only one copy in the mapping part
and instructions. Remind that the map section is very expensive in terms
of computation time because we need to extract a lot of information. Now
we can see the comparison between the computational time of the previous
version of DExIMA and the new one. The results are shown in Figure 11.17.
The previous version of DExIMA shows an exponential trend that increases
very fast, but for small architectures, we have advantages only in the case of
Bad Design. Since the new compiler is more simple than the previous one,
this implies fewer operations to be checked. But the advantages of the new
version are significant, we have linear behavior comparing to the exponential
one. In the good design, we have much relevant performance improvement,
with 6 output feature maps, we have about 45 minutes for the previous
version and about 5 minutes for the new one. The last information about
the simulation time is related to the difference between the compilation time
and simulation time. The previous times are the sum of these two parameters.
As we can see in Figure 11.18 they differ in orders of magnitude. The scale
for the compilation is expressed in minutes and the scale for the simulation
in milliseconds. This shows that the bottleneck of the new version is the
Compiler because they need to do several operations to parse and check the
dex file. However, the simulation process is very fast due to the algorithm
explained in the previous chapters.
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Figure 11.18: Comparison between the Compilation and Simulation time of
the convolution algorithm

11.7.2 Writing Code Effort
Another important parameter is the effort when we write the code in DEx-
IMA. As we said before, to create n components in the previous version of
DExIMA we need to write n lines of code, in the new version we need only
one line with a for loop construct.

Figure 11.19: Line of code needed to describe convolution algorithm and
architecture comparison
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The Figure 11.19 shows an histogram with the two values of code lines. The
difference is evident, we use only 266 lines of code versus 46154 lines. This
shows how different the two compilers are.

11.7.3 Critical Path
Starting from now, we compare also the performance using the synthesized
circuit by Synopsys. First of all, we see the values of the critical paths got
from DExIMA in the two versions and the value obtained with Synopsys,
the results are shown in Figure 11.20. We can see that the critical path for
the new DExIMA and Synopsys is very similar instead of the value for the
previous version of DExIMA, which is almost double the expected. The re-
sponsibility of this path lies in the part of the circuit that uses the ripple carry
adder, which that is the most limiting component inside the architecture.

Figure 11.20: BNN Critical path comparison

11.7.4 Dynamic Power
Now we show the results in terms of dynamic power, which are shown in
Figure 11.21. Also in this case the values obtained by the new version of
DExIMA and Synopsys are very similar, the result obtained by DExIMA
differs only for some mW . On the contrary, the value obtained from the
first version is lower than expected. The value of dynamic power obtained is
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Figure 11.21: BNN Dynamic Power comparison

computed using the execution time that is function of the clock period. The
clock period used for the second version of DExIMA and Synopsys is set at
the value of 2.2 ns because it is the nearest to the value of the critical path
obtained from the first version of DExIMA. By doing this, we have a fair

Figure 11.22: BNN Dynamic Power comparison using different clock period

comparison, because the clock period of DExIMA 1.0 is set to the critical
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path of 2.17 ns. For this reason, we can do only one comparison with the
first version of DExIMA, but we can do with the new version because we can
change the value of the clock period independently from the critical path.
The Figure 11.22 shows two simulations varying the clock period. In the
first simulation, we set a clock of 2.2 ns and the second a value of 20 ns and
we can observe that the results are in line with the Synopsys results. All
the computation considers the switching activity of the components and an
input probability of 0.5. In the last Figure the 11.23, there are the results in
the two clock periods of how the dynamic power varies if we do not consider
the switching activity of the gates.

Figure 11.23: BNN Dynamic Power comparison enabling or disabling the
switching activity computation

11.7.5 Area
In the area, we firstly show the absolute values and we specify all the sub-
parameters. The Figure 11.24 shows the results, and we can notice that
DExIMA 2.0 has a higher area compared to the two others, as expected.
The cells in the new version of DExIMA have an additional component, the
multiplexer. This increases the area occupied by the memory and the circuit
synthetized by Synopsys uses a structure more similar to a register file than
to real memory, this means that the circuitry of the interface is smaller than
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Figure 11.24: BNN Area comparison

the one implemented with DExIMA 2.0. Knowing each component of the

Figure 11.25: BNN Area components

memory we plot a pie chart. Figure 11.25 shows also the overhead part of
the memory. There is also the part related to the circuitry used inside the
memory, but it is not possible to isolate the circuitry overhead related to the
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additional cells. The Memory area is the sum of the area of the components
inside the cells and the out of the cells components. In Figure 11.26 there is

Figure 11.26: BNN Array Area Components

a more detailed division of the memory area, which shows the memory area
due only to the cells, and the other piece is all the logic inserted inside the
cells, and inside the memory. This graph includes also the value of overhead.

11.7.6 Static Power
Some of the considerations done with the area can be repeated for the static
power. We start, as before, with the absolute results, that are shown in
Figure 11.27. This result shows how what was obtained by DExIMA 1.0 is
out of scale in comparison to what was obtained by Synopsys. The result of
DExIMA 2.0 on the contrary has only three times more than the Synopsys
result, but in this total, we need to dived in all its subparts. The result of
DExIMA 2.0 is the sum of interface static power and the memory cells static
power (without the logic and overhead). Finally, we can see in the Figures
11.29 and 11.28 the division of the static power components is organized in
the same way it was organized for the area.
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Figure 11.27: BNN Static Power Comparison

Figure 11.28: Memory Array Static Power Components
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Figure 11.29: Memory Static Power Components

11.8 Cacti Comparison
In the last part of this chapter, we want to make some comparisons with
the Result obtained using Cacti. The memory that we consider is with the
same dimensions of the memory used previously for the BNN. The memory
has 512 rows and 64 columns, with one port for reading and one for write,
and uses the same configuration used in DExIMA 1.0. This can be useful to
understand the contribution of the previous result of only the Cacti part.

11.8.1 Area
The area results are shown in Figure 11.30, and it is evident how the area in
DExIMA is higher, this is due to the different memory cells definition. Cacti
have an optimized 6T Static Ram cell for memory. On the contrary, DExIMA
uses the Flip Flop and the cell having also more components for the correct
work of the architecture. The ratio between the area of DExIMA and Cacti
is about 6.5. If we do raft computation in terms of how many transistors does
DExIMA has inside the cells versus the 6T cell we obtain that the DExIMA
cell has 50 transistors inside it. The ratio about the number of transistors is
about 8.33, so the transistor size is different inside the cell, but in this way
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we have an idea of the reason why the area got by DExIMA is much higher
than the one got by Cacti.

Figure 11.30: Cacti Area Results

11.8.2 Static Power
The static power also in this case is higher for DExIMA due to the different
memory organizations.

Figure 11.31: Cacti Static Power Results
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11.8.3 Memory Access
The last characteristic given by Cacti is the Access Time of the memory,
in Figure 11.32 there are the values given by Cacti and the values given by
DExIMA. As we can see for DExIMA, both the Write and the Read times
are inserted. The Read Time is longer than the Write time because the
bottleneck for the reading is the output multiplexer that is big and slow.
The Write process, instead, is faster because uses only adaptive drivers that
are optimized for speed.

Figure 11.32: Cacti Memory Access Time Results
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Chapter 12

DExIMA Results

In this chapter, we will see the general results and some comparisons between
the features of the program and its previous version. Most of the main
features are shown in the results of the BNN of the previous chapter but
here we explore a more general perspective.

12.1 Previous Version Comparison

One important thing that we want to underline is that the previous version
of DExIMA (1.0) and the new version (2.0) are completely different. The
only common parts are related to the language and the Module class, which
is very similar to the CompiledModule class of the previous version, all the
other parts differ. The complexity of the program is different, as well. Figure
12.1 shows the difference measured in lines of code of the C++ program.
The new version of DExIMA has 123% lines more than the previous version.
Another important aspect that is very weak in the previous version is the
number of handle errors of the compiler. In fact, in the previous, version it
often happens that the compiler doesn’t report the error, but the program
starts. If we are lucky, we have an error in runtime like the segmentation
fault, and we indicate that something went wrong. Otherwise, the simulation
ends successfully but some parameters are wrong. Sometimes it happened
in version 1.0 that we found a stochastic behavior each time we did the
simulation obtaining wrong parameters. Figure 12.2 shows the difference in
the number of manageable errors in the two versions, in fact, the previous
version can to recognize only 7 errors against the 108 errors of the new one.
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Figure 12.1: DExIMA versions Lines of code

Figure 12.2: Number of Manageable Errors

12.2 Output program interface
In this section, we first show how the errors are displayed, and after how the
output of the program is when it is running. As we can see in Figure 12.3,

182



12.2 – Output program interface

Figure 12.3: Simple Error Generated by DExIMA

it is shown how a simple error is displayed.
As it is possible to see, the first info is the line in the dex file where the
error occurs and after, the line of the error and the word of the parameters

Figure 12.4: Error with Suggestion Generated by DExIMA
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responsible for the error are displayed, at the end there is the error message.
In some cases also another field called Suggestion is available, there is also a
specified suggestion on how to resolve the occurred error. This is shown in
Figure 12.4. The last screenshot that we analyze is where it is shown all the
information displayed if no errors occur.

Figure 12.5: Output Generated by DExIMA

In Figure 12.5 we see in the first line the name of dex File that we are com-
piling, each line after, shows the section that the program is parsed. When
is complete, the word compete is displayed. As we can see after the parsed
constants section, we load the Technology like explained in the previous chap-
ters, at the end we print the log file. In the part related to the Simulation
it is possible to recognize the steps explained in the simulation chapter. The
first part computes the connections inside the memories to add the equivalent
fanout. The other steps are well known from the simulation chapter. The
output file is the dof file in the output. At the end of each section, the com-
putation time spent is displayed. The compilation and successive simulation
are done in series for all the dex files contained inside the folder specified in
the input line of the program.
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12.3 Models Comparison
To make a fair comparison, we stored the performance of the models imple-
mented in DExIMA to compare with the performance of the Technology Li-
brary used by Synopsys. The Technology used is the FreePDK45nm [32, 33],
which is a free library (more correct is a Process Design Kit PDK) that
is possible to consult. The FreePDK45nm is developed by North Carolina
State University and it is also possible to consult some information in [34].
First of all, we read the liberty files and other files related to the technology
to extract the parameters of area, static power, delay, and dynamic energy.
For the area and static power, it was simply because the value is directly
written. For the delay and dynamic energy, we find that we have a different
delay in dependency of the input, and have different values for the rising
and falling time. When we incur in this situation we have simply done the
average between the rising and falling time. Every model uses different load
capacitance to compute the performance, but the lowest value of capacitance
is in common for all the models of the library, it is CL = 0.365616 fF . An-
other important parameter used in the technology file is the input transition
time, in DExIMA this parameter is omitted, it is like having a null transition
time in input, for this reason, we consider the lowest value of transition time.
Doing all these considerations we need to highlights another aspect: the two
technologies are similar but not identical, so we have some variations in the
parameters used (like Ion, Ioff , etc...), and the dimension of transistor used
for the models also this case is slithery different for some models. First of all,
we showed the majority of gates together, and after we focus on the Flip Flop
because it has more parameters to analyze, especially on the delays part.

12.3.1 Area Comparison
Figure 12.6 shows a histogram with almost all models exploited in DExIMA
that are available in the FreePDK45nm technology. In general, we can see
that the DExIMA models occupy less area, this is expected because the
models in the library are "complete". This means that they have also a
specific physical layout for each cell and use also a standard cell layout. In
DExIMA this aspect is not directly exploited, the area of each model is
simply the area of transistor plus a 15% overhead to the interconnects, so
the occupation is always lower. But when we create a memory this is an
advantage because it can be denser with respect to a standard cell layout. It
is possible to insert also overhead to take into account a standard cell layout.
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Figure 12.6: DExIMA Models Area Comparison with FreePDK45nm

This can be done by modifying a parameter in the TechFile that is normally
set to zero. If we want, for example, an overhead of 50% we simply set this
parameter to 0.5, it is possible to see this information in the dof file in the
Technology part.
As disclosed before some models have different transistor dimensions of the
gate. One of the models that are easy to recognize the difference compared
to DExIMA, is the Inverter INV_X1 where X1 stays from the drive strength
of the gate. As explained in the Models chapter the inverter has a dimension
of 1 (we refer only to the n-mos) and the Nand has a dimension of 2. In the
FreePDK45nm, we can observe that the inverter n-mos has the dimension
compared with the n-mos of the Nand, this means that from the DExIMA
point of view the inverter is like having drive strength X2 because it is double
in comparison to the standard inverter in DExIMA. The same consideration
can be done for the Three-state inverter but in the case of DExIMA, it is
realized using C2MOS configuration. From the base models, the gate area is
about 50% less than the FreePDK45nm.

12.3.2 Dynamic Energy Comparison
The dynamic energy is computed inserting for each gate the load specified
before CL = 0.365616 fF , to have the same reference load. This can be done
in DExIMA using the LOAD model and inserting the value of capacitance
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Figure 12.7: DExIMA Models Dynamic Energy Comparison with
FreePDK45nm

(remember that the input expected value is in pF ). In general, the values
of dynamic energy are expressed in µW/GHz, but the results in DExIMA
are directly in J so we use directly the value in fJ . In general, these values
are very good considering the difference between the two models. Another
parameter that in DExIMA is not computed is the energy dissipated by the
internal nodes of the gate, this is why some models dissipate less energy than
the FreePDK45nm values.

12.3.3 Static Power Comparison
Also, in this case, the data are good like shown in Figure 12.8, because the
value is very similar except to the values obtained by the Xor/Xnor gates
that for DExIMA are more efficient models. If we imagine the standard
composite model of the Xor using three Nand and Two Inverter, we obtain
a value of static power of:

Xorcomposite = 3 ·Nand+ 2 ·Not = 3 · 17.23 + 2 · 7.18 = 66.05 nW (12.1)

This exceeds the value of FreePDK45nm that is of 36.16 nW , it is about
the 50%. This having also a perfect matching of the value of static power of
Nand gate, it shows how the specific implementation is important (width of
transistors, topology, etc...), and doing a perfect comparison is impossible.
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Figure 12.8: DExIMA Models Static Power Comparison with FreePDK45nm

Considering also that some models can use pass transistors to optimize the
gate, in DExIMA this type of topology is not implemented.

12.3.4 Delays Comparison

Figure 12.9: DExIMA Models Delays Comparison with FreePDK45nm

In Figure 12.9 you can see the result of the delays: the elementary gates
models are a little slower than the corresponding value for the PDK45nm.
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For example, if we take the inverter gate, the DExIMA model is slower as
expected because the dimension of the transistor and the Ion are smaller,
which means higher delays.

12.4 Flip Flop Models Comparison
Looking for the performance of the Flip Flop in DExIMA that implements
two different types as explained in the Model chapter.

Figure 12.10: Flip Flop area comparison

If we look in Figure 12.10 we see the three models, the component of PDK45nm,
the Nand version and, the C2MOS version of DExIMA. It is possible to see
that the version of C2MOS is more compact in terms of area, for this rea-
son it is used to create the memory cell of DExIMA. Instead, if we look at
the static power in Figure 12.11 we find that the values of static power of
C2MOS are very similar with the FreePDK45nm technology instead of the
Nand, which has also double the value. The dynamic energy is similar for
the three versions of the models. The last part is related to the timing per-
formance shown in Figure 12.13, we divide the histogram into three sections
related to the clock to output, setup, and hold time. The performance of
timing is similar to the FreePDK45nm for the C2MOS model, in the case
of Nand the Setup time result higher. Finally, we have the value of Hold
time that is about 2 times the value obtained in the FreePDK45nm. But we
expect this result because the responsible of hold times in DExIMA is due
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Figure 12.11: Flip Flop static power comparison

Figure 12.12: Flip Flop dynamic energy comparison

to an inverter. As said before, the dimension of the inverter in DExIMA is
half that of the technology. This means that the inverter is 2 times slower
this is verified with the result obtained in the hold times.
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Figure 12.13: Flip Flop delay comparison
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Chapter 13

Conclusions and future
work

In this chapter we summarise all the upgrades done in the program and the
newly added features, highlighting the problems with the previous version
explained in the chapter of Motivations (Chapter 3). After this part, we
explain the new problems and the upgrade needed for the future.

13.1 DExIMA 2.0 Features
The new DExIMA has several features embedded in it:

• Configurability: It is possible to set several simulation parameters like
clock period, technology, etc. It is also possible to use the constants to
configure the architecture. Adding new technology files is also possible.

• Modularity: All the components of the program, from the parsing
sections that can be added and removed, to the printers, are modular.

• Maintainability: All the classes and functions are well separated and
is possible to test each and easily add a new one.

• Generality: The program can integrate different types of models thanks
to the printer’s generality. The models are not restricted to CMOS
technology but can be used also by emerging technologies like the pNML
(perpendicular Nano Magnetic Logic) or other types of technology.
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13.2 DExIMA 2.0 Improvements
Now there is the list of subsections that specify all the improvements and
modifications.

13.2.1 Language improvements
In the new version are added several features to the language, which means
an addition to a compiler level. The newly introduced features are:

• Cycle For: Now it is possible to use this smart construct to create
multiple instances and connect them with only one line of code, without
specifying one by one, and without using an external script to do it.

• Constants: The constants are constant variable that is possible to use
in each part of the code, very useful to parameterize our architectures.

• Built-In constants: Thanks to these special constants it is possible to
modify the behavior of the simulation.

• Math Environment: The math environment allows to do math oper-
ations directly in a DExIMA script and it is useful in combination with
the constants to parameterize the code and the loops.

• Comments: Comments are also a useful tool to modify and manage
the code efficiently and increase readability.

• Linter: It is also a useful tool to understand before the compilation
process if in the code something is wrong.

• Sections: Now there are more sections and subsections to customize
our circuit and options to customize the best possible. Before there
were only 3 sections in the .arch file (init, map, operation), but now
there are 6 sections and 7 different subsections.

• Pipeline: Now the instruction can have more than one path, moreover
we can specify sub-paths inside its path.

• Attributes: The attributes permit to refine the simulation and specify
the different characteristics of Flip Flops and the memory in terms of
power and timing.
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• Log and Dof Files: Thanks to these two output files the user can track
the tool operation and store in a unique file a lot of information about
the performance computed, and technology parameter. It is useful to
identify the behavior of each piece of architecture.

13.2.2 Models Improvements
In this version, the models are changed and refined to have better precision in
the performance computation. The additions and improvements have done
are:

• Specialized Models: Now each base gate has a custom model and de-
signed at the transistor level, and all the complex gates are a composition
of these. Now not all the models are based on the Nand 2 gate.

• Dynamic Inputs Variation: Now all the base gates are sensible to
the inputs variation and the performance of it changes. In the previous
version if we change the number of inputs the performance does not
change and it remains also a Nand 2 but with the possibility to connect
more "virtual" inputs.

• Computation of Secondary effects: Now some important secondary
effects are taken also into account like the Stack Effect.

• Attributes differentiation: The parameters of the performances are
more than four because we take also different specifications into account
like the clock to output, setup, and hold of Flip Flop, and differentiate
the specification of power and timing.

• Fanin/Fanout interaction: The modules now can recognize the load
and the dimension of it, without considering only the load of one Nand
2. Moreover, the memory cell has a real cell and we can connect with
another component and recognize how much load is connected to it.

• Switching activity evaluation: Now it is possible to compute the
switching activity of our gate choosing the input gates probability. Re-
member that the computation is worst the case using the "isolate gate"
approach.

• Easy Interface construction: Creating a new model now, it is very
simple to create the interface. We need to create a class derived from
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the printer and set some vectors of strings, and in this way, DExIMA
automatically creates all the routines to the component interface and
manages the errors. On the contrary, in the previous version, we need to
modify too many files to specify every single aspect of the component.

13.2.3 Fixed Problems
In this subsection we list the problems highlighted in Chapter 3 and how we
resolved them with the new version of the tool:

• Configuration Files Writing Effort: Thanks to all the new features
added and the improvements of the new compiler, the effort of code
writing is reduced to the minimum.

• Error checking problem: Now the compiler can detect all types of
errors. As shown before we have 108 different manageable errors versus
the previous 7. Moreover, the compiler returns important suggestions
to resolve the errors.

• Configuration files separation: Now we have only one file, the .dex
file, instead of four different configuration files. With this approach, we
can connect all the components between them, also the memories. Doing
this it is possible to share part of the tool code of the compiler. It is
now possible also to create multiple memories in the same architecture.

• Random Behaviour: Now that random behaviors are not present any-
more, all the successive simulations of the same script get the same re-
sult.

• Simulation Times: Thanks to the new computation structure, the
simulation is very fast, and the bottleneck is the compiler. But in this
case, it is better because we have a linear behavior instead of exponential
law.

• Models Efficiency: Now the models are more complex and specialized,
meaning that they have performances, that are more close to reality,
instead of using only Nand 2 gate.

• Simulation parameters orientation: Now it is possible to modify
the simulation constrain thanks to the built-in constants, and it is also
possible to change the technology used for the "synthesis".
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• Insertion of a new model: Now the insertion of a new model needs
only the creation of class associated with it. The interface is very easy to
implement, and the performance equations are grouped all in the same
class. If the model is derived from others, in this case, we can reuse the
modules already present.

• Absence of Documentation: Now documentation generated by the
Doxygen automated tool [35] is available in HTML to navigate in it, or
PDF form but it is more diluted with its about 900 pages.

13.3 Further Improvements
Some features of the tool need to be optimized and refined for the next
updates.

• Compiler optimization: Some constructs of the compiler can be opti-
mized to reduce the computation cost and speed up more the compilation
step. On the contrary, the simulation part is well optimized.

• Switching activity propagation: It can be very useful to add the
computation of the switching activity considering also the propagation
between the gates after the connections.

• Stack Effect refinement: From now on, the stack effect computation
is the worst-case approach, that can be useful to create an optimized
model to compute it more precisely.

• New Memory architectures and models: It is needed also to add
a more realistic model for the memory like inserting the SRAM and
DRAM cells and the related architecture.
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Appendix A

Compiler Specifiers

A.1 Built-In Constants

Name Default Scope
VDD TechFile Set the voltage Supply in [V ]

CLOCK Critical Path Set the Clock period in [ns]
AR TechFile Set the Aspect Ratio of unitary N-mos
SF 2 Set the stack factor

NODE 45 Set the technology node in [nm]
TECH LOP Set the technology type

SWITCHING OFF Enable the Switching computation
PROB 0.5 Set the inputs probability

Table A.1: Table Containing the available built in constants
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A – Compiler Specifiers

A.2 TechFile Parameters

Name Scope
Year Technology Year
Lgate Gate Length [m]
Xj Source/Drain extensions length [m]

Gamma Scaling factor for lateral diffusion
Inter_over Interconnection Overhead
Cell_over Standard Cell Overhead

Aspect_ratio Minimal N-Mos Aspect Ratio
Beta P-Mos/N-Mos Width Ratio
Vdd Supply Voltage [V ]
Cox MOS capacitance [F/m2]
Ion Drain Saturation Current [A/m]
Ioff Subthreshold Current [A/m]
Igate Gate Current [A/m]
CJ0N N-Mos junction capacitance [F/m2]
CJ0P P-Mos junction capacitance [F/m2]

CJSWN N-Mos sidewall junction capacitance [F/m]
CJSWP P-Mos sidewall junction capacitance [F/m]
CGD0N N-Mos overlap capacitance [F/m]
CGD0P P-Mos overlap capacitance [F/m]
MJN N-Mos Bottom Capacitance Parameter [%]
MJP P-Mos Bottom Capacitance Parameter [%]

MSWN N-Mos Sidewall Capacitance Parameter [%]
MSWP P-Mos Sidewall Capacitance Parameter [%]
PBN N-Mos Bottom Capacitance Parameter [V ]
PBP P-Mos Bottom Capacitance Parameter [V ]

PBSWN N-Mos Sidewall Capacitance Parameter [V ]
PBSWP P-Mos Sidewall Capacitance Parameter [V ]
C_Interc Interconnection Capacitance [F/m]

Table A.2: Technology Parameters description table
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A.3 – Available Technologies

A.3 Available Technologies

Technology nodes
HP LOP LSTP
14 18 22
16 20 25
18 22 28
20 25 32
22 28 37
25 32 45
28 37 53
32 45 65

Table A.3: Table of available technologies
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Appendix B

DExIMA Models

Model Keyword Parameters Inputs Outputs
Inverter NOT Void IN OUT
Nand NAND #Inputs IN0,IN1... OUT
And AND #Input IN0,IN1... OUT
Nor NOR #Inputs IN0,IN1... OUT
Or OR #Inputs IN0,IN1... OUT
Xor XOR #Inputs IN0,IN1... OUT
Xnor XNOR #Inputs IN0,IN1... OUT

FlipFlop
Nand FF_NAND Parallelism D,CK Q,Qn

FlipFlop
C2MOS FF Parallelism D,CK Q

FlipFlop
Enable FF_EN Parallelism D,

CK,EN Q

Clock
Driver CK_DRIVER Effort IN OUT

Driver DRIVER Model,
Effort IN OUT

Decoder DECODER Input Par,
Output Par IN OUT

FlipFlop
Cell** FLIPFLOP Void

WR,
WR_MEM,
S,EN,CK

RD

FullAdder FA Void A,B,
CIN S,COUT
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HalfAdder HA Void A,B S,COUT

Latch SR LATCH_SR Void S,R,
EN Q,Qn

LiM
Memory LIM Address Par,

Read/Write Par

ADDR,WR,
CK,
SEL

RD

Capacity
Load LOAD Capacity Value [pF],

Parallelism IN Void

Multiplexer MUX
#Inputs,

Parallelism,
Ways

IN0,IN1...
S OUT

Ripple
Carry Adder RCA Parallelism A,B,

ADD S,COUT

Three State
Inverter TNOT Void IN

CK,CKn OUT

Xor
Core* XORCORE Void IN0,IN1,

IN2,IN3 OUT

Table B.1: Models description table

* The model cannot be used
** The model can be specified only in the TYPE field of the memory section
(memdef)
Par : Is the abbreviation of Parallelism
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