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Abstract

Unmanned Underwater Vehicles (UUVs) are widely used for decades mainly in ex-
ploration missions and underwater maintenance. Autonomous Underwater Vehicles
(AUVs) represent a class of this vehicles that is becoming more and more popular
but they have high costs due to the price of the sensors needed for autonomous
navigation purpose. This thesis has been focused on the estimation of UUV trajec-
tories, combining Visual Odometry (VO) and Inertial Measurement Unit (IMU)
approach. The challenge was to apply in an underwater environment methods
commonly used in submerged scenarios. Another important aspect of this study
was the utilization of low-cost hardware for data acquisition and manipulation.
All algorithms were designed to run in a Raspberry Pi, a single camera for VO
and an entry level IMU were used. A characterization of IMU was done in order
to prevent from gyroscope’s drifts over the time. The fusion of VO and IMU
measurements was done using an Extended Kalman Filter (EKF). Testing phase
was divided in three steps: first tests were centered on performance of feature based
VO algorithms in an underwater dataset, improving performance of these using
image enhancement techniques. The second phase was focused on VO algorithm
with the low-cost hardware, working in a submerged environment. The last phase
consisted in a series of underwater tests of the complete algorithm.
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Chapter 1

Introduction

Underwater Unmanned Vehicles (U.U.V.s) are becoming nowadays more and more
popular, since the developments in technologies and the growing interest in under-
water exploration. Underwater aided navigation represents still a big issue, since
the impossibility to use radio-based signals that are commonly used in submerged
scenarios, such as GPS.
To overcome this problem, typically these systems adopts acoustic based sensors
which are used to help the navigation process. Main problems of these solutions
are the drifts and the noises of the observations.
Thus is preferred to integrate various readings from different sensors/cameras in
order to have a more robust system. This implementation is costly since this kind
of sensors is quite expensive and not straightforward to integrate.
The objective of this master’s thesis was to find an alternative to improve underwa-
ter navigation, using low cost hardware. The study was focused on the development
of a system able to reconstruct UUV’s trajectory during a navigation, combining
inputs of the camera and reading from an inertial sensor.
Visual Odometry(VO) was selected for retrieve the path using the camera, paired
up with an Inertial Measurement Unit (IMU), with the deployment of an Extended
Kalman Filter.
VO based navigation techniques have almost progressed in order to reach a po-
sitioning level of accuracy of about few tens of decimeter in terrestrial scenarios,
while in underwater environments is still challenging, since the difficulty of have a
clear view of the field.
The hardware employed consisted in a Raspberry Pi 4, which is a common and
affordable embedded computer, a low-cost camera and an entry level IMU. Chal-
lenging part of this study was to run the algorithms with this kind of hardware.
In order to run in almost real time the localization algorithm, studies were made
focusing on the computational time needed by each block. Another important
aspect was the characterization of the sensors, needed to figure out if the IMU was
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Introduction

reliable for this kind of application compared to the high-cost ones.
The coding part was written using Python as language and the libraries employed
in this project are all open source.
First part of the following work covers the literature review of the problem, focusing
on UUVs and VO problem.
In Chapter 4 the low cost sensor’s characterization is described in details. Particular
attention in this chapter is given to the acquisition part of the IMU’s data. In order
to improve its performance a library for retrieve IMU’s readings was developed,
exploiting all its characteristics. Other tests were done on the inertial sensor to
measure its drifts over the time.
The technical challenge of the implementation is illustrated in Chapter 5: in this
section is presented the development step by step of the algorithm, complemented
by three main tests.
First tests were centered on the performance of feature based VO algorithms in
an pre-existing underwater dataset, improving performance of these using image
enhancement techniques, focusing also on computation time.
Second phase was focused on VO algorithm with the low-cost hardware, working in
a submerged environment. From this environment a dataset was created, acquiring
images with an ROV and tracking its movement with a GPS antenna. In this phase
was integrated also a first version of the EKF, in order to integrate the sensor’s
fusion, improving VO’s performances.
The last phase consisted in an underwater test of the complete algorithm. For this
test was developed an apposite waterproof platform (which simulates the ROV),
integrating the low-cost hardware selected for this study. In this section is described
the creation of the platform and the acquisition done in the underwater environ-
ment with the tracking of the truth track of platform’s movement. Furthermore is
presented the integration of VO and IMU which was done using the EKF, with the
results obtained.
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Chapter 2

Unmanned underwater
vehicles

Oceans cover the 71% of the Earth’s surface. They dictate weather conditions,
temperature and humidity changes. They provide an habitat for many species and
provide energy that can be used by humans. Only nearly 8% of Earth’s oceans have
been explored. This is caused by the lack of technology for use in exploration.[1]
Unmanned underwater vehicles (UUVs) are any vehicle capable to operate under-
water without the human presence inside. UUVs have been used over the past half
century, trough military and oil and gas research.
Ocean exploration started in the 60s with the US Navy developing their first UUVs
(CURV and CURV II). These systems were developed for rescue and recovery of
ordnance.
From the 80s oil and gas industry has driven for research and development of
this technology. At the end of 80s UUVs have been used to locate many historic
shipwrecks, such as the Titanic and the SS Central America, recovering from them
material. Recently, commercial companies started developing affordable UUVs
reducing technology cost. Today, they are manly used in offshore platforms (main-
tenance tasks on submersed infrastructures), in military field (detonate underwater
mines) and in scientific field (exploration and ocean floor mapping).
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Unmanned underwater vehicles

Figure 2.1: UUV at work, credits [2]

UUVs are divided in two main classes: ROVs and AUVs.

2.1 ROVs
Remotely Operated Vehicles (ROVs) are a class of unmanned underwater vehicles.
The main characteristic is that the vehicle is attached to the surface through
a tether for data communication and, in some cases, also for power. They are
equipped with a camera and other sensor useful for the their purpose.
There are four categories of ROVs, based on size/weight and tasks.

• Class I called observation R.O.V.s. Used for inspection task, they are the
smallest ones. Equipped with only a camera and lights, they can reach depths
of 300 meters. Usually they are powered by an on-board battery. Their typical
weight is up to 40 Kg.

• Class II similar to the class I but with the payload option. They can be
fitted with several sensors and also with manipulators, such as a robotic arm,
in order to perform light maintenance tasks. This class weights from 40 to
300 Kg.

• Class III called work class. Characterized by their elevate capability of
carrying large payloads,for that are used for heavy interventions in high
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depths. They can withstand until 10000 meters of depth and they are bigger
than class I and class II R.O.V.s. Usually these vehicles are powered from the
surface due to the elevate usage of energy. They typically weights more than
300 Kg.

• Class IV called Excavators. These vehicles operate on the sea beads to do
excavations tasks, such as burying of pipelines/cables. They have a limited
manoeuvrability, weighing up to 5000 kg.

Figure 2.2: Class I ROV, credits [3]
Figure 2.3: Class IV ROV, credits [4]

2.2 AUVs

Autonomous Underwater Veichles (AUVs) are used for underwater survey missions
such as detecting and mapping submerged wrecks, rocks, and obstructions that
can be a hazard to navigation for commercial and recreational vessels. At present,
AUVs are mostly employed in survey applications with larger areas of sea. An
A.U.V. conducts its survey mission without operator intervention. When a mission
is complete, the AUV will return to a pre-programmed location where the data
can be downloaded and processed. It is powered by on-board batteries and it does
not have any cable connected to the surface. Navigation is one of the key AUV
technologies because the localization, path tracking and control of the vehicle are
all based on precise navigation parameters. Some navigation methods commonly
used for land and air are not suitable for underwater because of the attenuation
effect of water on electromagnetic signals.
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Figure 2.4: AUV, credits [5]
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2.3 Sensors overview
UUVs are equipped with various sensors needed for improve navigation tasks.
These sensor are specially useful in AUVs, since they need to do navigation task
autonomously.
Most common are:

• IMU Inertial Measurement Unit (IMU) is a type of sensor very common
on UUVs. IMUs are composed of accelerometers, gyroscopes, and, in some
cases, magnetometers. Accelerometers are used to measure linear acceleration,
gyroscopes to measure angular velocity, magnetometers to measure magnetic
field strength in order to estabilish cardinal direction (directional heading).
IMU in AUVs is used as central navigation system because of its autonomy.
Such sensors can be quite sensitive to noise and disturbances from magnetic
fields, resulting in drift. The errors of the IMU increase with increasing elapsed
time due to the drift of accelerometers and gyroscopes [6].

• DVL Doppler Velocity Log (DVL) is an acoustic sensor that estimates velocity
relative to the sea bottom. This is achieved by sending a long pulse along
a minimum of three acoustic beams, each pointing in a different direction.
Typically, this produces estimates of velocity converted into an XYZ coordinate
frame of reference – the DVL’s frame of reference. Together with a heading
estimate, these velocity estimates may be integrated over the ping interval to
estimate a step-by-step change of position [7].

• Depth Sensor Subsea level measurement can be accomplished with the use
of a pressure sensor. As the UUV is submerged, the water pressure is exerted
on the diaphgram of the pressure sensor. The deeper the system is submerged,
the higher the pressure. A correlation between pressure and output signal is
made to measure the depth of the equipment.

• Sonar SOund Navigation And Ranging is a technique that exploits sound
propagation underwater in order to detect objects, retrieve position or even
to send data (an example of sonar-based modem can be found in [8]). In
UUVs, the sonar sensor emits pulsed and listen to the echoes, this is called
active sonar technique. Knowing the speed of sound in water, the sensor can
calculate the distance the sound has travelled. Scanning sonar are used in
UUVs to retrieve distance from surrounding objects and help navigation in
low visibility condition, since targets with material densities very different
from water (such as gas, rock, concrete or metal) will be very reflective and
have strong echoes. Active sonar technique is used also for tracking U.U.V.s.
These systems are divided in three classes: Short Baseline (SBL), Ultra-Short
Baseline (USBL), and Acoustic Long Baseline (LBL). Transponder beacons are
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used either on sea floor or at the surface; the UUV sends a signal that is then
returned by the transponder and an estimation of the position is computed
based on the round-trip delay. Details of these classes can be found in [9].

Figure 2.5: UUVs surroundings from scanning sonar, credits [10]
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Chapter 3

Visual odometry

3.1 Alternative Positioning Systems

A positioning system is a mechanism for determining the position of an object in
space. In outdoor and in-air environments Global Navigation Satellite Systems
(GNSS) is the most common and most efficient technology, it can provide an
elevated accuracy on position estimation. This system is commonly know as Global
Positioning System (GPS), even if GPS is only one of many GNSS systems available.
GNSS is based on radio signals, that travel back and forth from the receiver to
the satellite. More details about GNSS systems can be found in [11]. Other
systems are based on radio beacons or optical signals, such as laser based one.
Light Detection and Ranging (LIDAR) works with one laser source and a rotating
mirror (called beam). It is used to compute the distance to many points around
it and generates information about the environment in 2D. To retrieve 3D dense
information multi-beam LIDARs are used [12].
In underwater context the previous techniques can not be used, since most of
these signals are jammed from the water. Alternative positioning systems for
this environment are based on active acoustic, sing imaging scanning Sonar or
Doppler Velocity Logs (DVL) previously described. These solutions are expensive
since Sonar and DVL sensors require high technical skills for their deployment and
operation. Moreover, their size specifications prevent their integration within small
mobile systems, and require a high computational power.
Another positioning system is the Intertial Navigation System (INS): it uses the
data sampled from the IMU and calculates the position, velocity and heading
without need for external references, using a dead reckoning method. More details
of INS can be found in [13]. INS requires, to work properly stand alone a reliable
IMU, that has small drifts. This category of sensors has an elevated cost. Common
IMUs, have large drifts but are very affordable since their reduced cost.
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The objective of this study was to find an alternative underwater positioning
solution, using low cost hardware. For this reason was selected Visual Odometry
fused with INS navigation using a camera for VO and a low cost IMU for INS. The
sensors fusion was done with a Kalman Filter.
This chapter describes the theoretical background of this study, focusing of Visual
Odometry and Kalman Filter.

3.2 Visual Odometry
Visual Odometry (VO) is defined as the pose estimation of an object that computes
a stream of images acquired from a single or multiple cameras. VO provides an
incremental online estimation of a veichle’s position. Specifically, integrates pixel
displacements between image frames over time. VO methods can be divided into
two main categories: feature-based methods (based on feature detection over the
image) and direct methods, which use all the pixels in the image to detect motion.
From results on [14] it is clear that feature-based methods are more robust in
underwater environments, therefore in this study feature-based methods were used.
Another distinction can be made over the number of cameras used: monocular VO
or stereo VO.

• Stereo VO: In stereo VO, 3D information about the environment is computed
for each time step using 3D triangulation of features in both the right and
the left image. The motion is estimated by observing the features in two
consecutive time frames in both the right and the left image. Stereo VO
methods only require two time-successive frames. Objects scale can also be
estimated since the baseline distance between the cameras is known.

• Monocular VO: Monocular VO methods only rely on one camera for VO. 3D
information extraction requires two time successive frames. Motion estimation
requires an additional third frame for transformation calculation. Monocular
vision poses extra challenges compared to stereo vision since scale information
is not known, it is usually set to a pre-defined value. In this study, monocular
VO was used.
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3.3 Feature-based methods
A feature-based VO method follows these steps: feature detection, feature descrip-
tion, feature matching and motion estimation. The steps can be seen in figure
3.1.

Figure 3.1: Feature-based Visual Odometry steps

There are two methods for represent the image: through global feature or local
features. With global features the image is represented by one multidimensional
feature vector, with values that measure various global aspect of the image such as
colour, texture and shape. This representation is not invariant to significant trans-
formation and is not suited for this study’s purpose, so local feature representation
was used.
Local feature is defined as a specific pattern which is unique from its imme-
diately close pixels, generally associated with one or more of image properties.
Such properties include edges, corners, regions that remain invariant to viewpoint
and illumination changes. These local features are then converted into numerical
descriptors, representing unique and compact summarization of these local features.
Ideal local features properties are listed in [15], most important are robustness
and invariancy to transformations such as rotation, scale etc. A trade-off between
the properties must be done, in the design of the feature detector. Best possible
features in a image are [15]:

• Edges: pixel patterns at which the intensities abruptly change, with a strong
gradient magnitude.

• Corners: points at witch two (or more) edges intersect in the local neighbor.

• Regions: a closed set of connected points with a similar homogeneity criteria
(such as the intensity value).
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Figure 3.2: Example of local features, credits [16]

3.3.1 Feature Detectors
A feature detector is an algorithm that spots in the image the local features, that
are likely to be detected again in a similar image. Feature detectors (and extractors)
must be designed finding a trade off among the set of their properties, based on the
use case. Main properties of feature detectors are listed in [17]. Existing feature
detectors can be divided in three main categories: single scale detectors, multi scale
detectors and affine invariant detectors.

Single Scale Detectors

Single scale detectors are invariant to image’s transformations such as rotation,
translation, change in illumination, addition of noise, but not invariant to scale.
Most important single scale detectors are:

• Harris detector: based on Moravel’s corner detector (described in [17]), com-
bines corner and edge detection by obtaining the variation of auto-correlation
between adjacent regions over all different orientations. It is invariant to
rotation and illumination changes.

• Shi Tomasi detector: also called GftT (Good Features To Track) is a corner
detector based on Harris detector with a modification in the scoring function:
it uses the minimum eigenvalue of each 2x2 gradient matrix to detect “good
features”, as described in [18].

• FAST detector: Features From Accelerated Segment Test is a corner detector
that works applying a circle of 16 pixels around the tested corner pixel. If
all n contiguous pixels in the circle are brighter or darker than the candidate
corner pixel, the candidate is classified as a corner. This algorithm is very
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suitable for real-time applications, since its high computational speed, but is
not robust to noise and scale changes and depends on a threshold.

• Hessian detector: is a blob1 detector based on the Hessian matrix of the
image intensity. This matrix is used to analyze local image structures. Indeed
the detector works by searching points where the determinant of the Hessian
matrix has a local minima.

Multi Scale Detectors

Multi scale detectors are capable of extracting distinctive features reliably under
scale changes. The most used are:

• LoG: Laplacian of Gaussian is a blob detector, that automatically selects
the scale for different blob sizes. It is invariant to rotation and it produces a
good estimation of the characteristics scale for other local structures (corners,
edges). LoG detector can be applied for finding the characteristic scale of a
given image location or for detect also scale invariant regions. More details in
[19].

• DoG: Difference of Gaussian is an algorithm that detects blobs and it is
based on local 3D extrema in the scale-space pyramid built with Difference-of-
Gaussian(DoG) filters. Is faster than LoG, since the computation of Laplacian
operators is time consuming, but it is less stable and more sensitive to noise
and small changes. Complete description of DoG can be found in [20].

Affine Invariant Detectors

Affine transformation is defined in [17] as any linear mapping that preserves
collinearity and ratios of distances. In this sense, affine indicates a special class
of projective transformations that do not move any object from the affine space
R3 to the plane at infinity or conversely. Previous discussed detectors can handle
only specific affine transformations such as uniforming scaling. If the scale is not
uniform in all the directions the scale invariant detector can fail. An affine invariant
detector is a generalized version of the scale invariant detector. A more detailed
discussion about these detectors can be found in [17].

1blob is a region of the image where some properties are constant or approximately constant
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3.3.2 Feature Descriptors
The second step is to describe the features and their neighbourhood. Feature
descriptors encode these informations in a vector (called descriptor) in order to be
matched. Most used feature descriptors are:

• SIFT: Scale Invariant Feature Transform, described in [20], is an algorithm
where interst points (features) are detected using DoG, chosen as local extrema
of Difference of Gaussian, and for each point a feature vector is extracted.
Local orientation of the image is estimated, giving invariance to rotation. For
each feature a descriptor is computed, based on local image information. The
descriptor builds an histogram of gradient orientations of sample points in
a region around the keypoint, finds the highest orientation value and the
close ones. This will be the dominant orientation of the info-point. Around
each keypoint, the description phase of the algorithm, creates a 16x16 pixel
region and samples the image gradient magnitudes and orientations, creating
a set of orientation histograms. Each histogram contains samples from a 4x4
sub-region of the original neighborhood region and has eight orientation bins
in each. A Gaussian weighting function it is used to assign weights to the
magnitude of each sample point and gives higher weights to gradients closer
to the center of the region. The descriptor vector is composed by the values of
all the orientation histograms entries, 128 entries for each key-point. Finally,
the feature vector is normalized to the unit length in order to gain invariance
to affine changes in illumination. To prevent from non-linear illumination
changes, a threshold of the values of the vector to a maximum of 0.2 is applied
followed by another normalization. The major advantages of SIFT are that
orientation and scale do not cause radical changes in the feature vector and
the representation is resilent to deformation, such as the one generated by
perspective effects. These characteristics are evidenced in excellent matching
performance against competing algorithms under different scales, rotations
and lighting. The drawback of SIFT is its high dimensionality that causes
long computation time.
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Figure 3.3: SIFT at work: image’s detected features are represented, 16x16 pixel
region around one keypoint and the 4x4 descriptor array, credits [21]

• SURF: Speeded Up Robust Features Descriptor is a blob detector and de-
scriptor. The detection phase consists in the usage of two dimensional box
filters (9x9) where the detector is based on the determinant of the Hessian
matrix for scale selection and location. These filters are an approximations of
a Gaussian, and represent the lowest scale for computing the blob response
maps. The approximated determinant of the Hessian represents the blob
response in the image, and it is stored in the blob response map. From this
map, the local maxima is detected and the interest points are found applying
a non-maximum suppression in a 3x3 neighborhood, in order to detect steady
key points. In order to get the descriptor for each key point, SURF constructs
a square region (of dimension 20 times the scale in which the feature was
found) centered around the detected interest point and oriented along its
main orientation. Then the region is divided in 4x4 sub-regions and for each
one the Harr wavelet 2 responses in the vertical and horizontal directions are
computed. The responses are then weighted with a Gaussian window centered
at the interest point, in order to increase the robustness against geometric
deformations and localization errors. The feature descriptor is normalized to
a unit vector in order to prevent illumination changes and has a length of 64
dimensions. This is one of the advantages of SURF, its low dimensionality
results in a lower computation time, outperforming SIFT. However, it is not
as robust as SIFT, in terms of invariance to rotation. Complete description of
SURF is avaible in [22]

2Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a
wavelet family or basis
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• BRIEF: Binary Robust Independent Elementary Features is a low bitrate
descriptor. It belongs to the family of binary descriptors, indeed it uses binary
strings instead of vectors of floating point numbers for build the descriptor. It
compares the intensity between two pixel positions located around the detected
interest points. The BRIEF algorithm relies on a relatively small number of
intensity difference tests to represent an image patch as a binary string. This
allows to obtain a representative description at very low computational cost.
On the other side, BRIEF descriptor is not robust against rotation larger than
35°. Complete discussion of this descriptor can be found in [23].

• ORB: Oriented FAST and Rotated BRIEF is a binary descriptor that in-
creases BRIEF performance, dealing with the problem of invariance to rotation.
It uses an improved FAST as feature detector, that consists in usage of the
Harris corners measure to rank the detected FAST corners, finding the n best
ones. Rotation invariance is obtained by computing the orientation based on
the intensity centroid. A modified BRIEF is then used as feature descriptor.
Indeed, tests are not performed randomly as in the basic BRIEF implementa-
tion, but a selection test is first done to learn good binary features. Then a
search is performed over all binary tests to find the ones with variance higher
than 0.5. A more detailed explanation of this algorithm, with mathematical
details is illustrated in [24]. ORB combines the computation speed of BRIEF
gaining the invariance to rotation and to scale.

3.3.3 Feature Matching
Feature matching is the task of establishing correspondences between two images
of the same scene/object. Once the features are extracted from two images and
their detector is computed, a distance function to compare two descriptors must
be defined. Then for all the features in the first image, the correspondent features
in the second image are found using minimum distance criteria. Given two interest
points (one from the first image p and one from the second q), a match between p
and q is accepted only if p is the best match for q in relation to all the other points
in the first image and q is the best match for p in relation to all the other points in
the second image. The optimal distance function and its parameters depend on
the data set characteristics, one of the most used is the Euclidean norm distance.
The ratio test is used to discard matching candidates for which the correspondence
may be regarded as ambiguous. It is defined as the calculation of the ratio of
distances of the descriptor in the first image to the nearest and the next nearest
image descriptor in the second image. One of this two ratios will be lower than
a threshold and the corresponding image descriptor will be the good matching
feature.

16



Visual odometry

Figure 3.4: Example of feature matching between two similar images, credits [25]

3.3.4 Key point matching: KLT
Kanade-Lucas-Tomasi(KLT) is a feature tracker algorithm. The KLT tracker
basically looks around every feature to be tracked, and uses this local information
to find the feature in the next image. Good features are extracted using the
Shi-Tomasi corner method, previously described. Then these features are tracked
using a Newton-Raphson method for minimizing the difference between past and
current frames. An accurate description of this algorithm can be found in [26]

3.3.5 Outlier remove: RANSAC
Outlier removal is a critical step that must be done to avoid false matching that can
occour in the feature matching step. Indeed, in enviroments with similar patterns
(such a building with many windows) this phenomena can appen. RANdom SAmple
Consensus is an algorithm designed for this scope. It consists in a resampling
technique that generates candidate solutions by using the minimum number obser-
vations (data points) required to estimate the underlying model parameters. The
algorithm is divided in three steps:

1. Select randomly the minimum number of points required to determine the
model parameters, from the matching step model.

2. Generate new model parameters from these sampled points.
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3. Give to the new model a score based on the number of inliers within a pre-set
threshold value.

These steps are iterated until the number of inliers is the highest possible, with a
maximum of N iterations. The number of iterations necessary for efficient outlier
removal depends on the outlier/data points ratio and complexity of the original
model. A more detailed description of RANSAC algorithm can be found in [27].

3.3.6 Motion estimation
Figure 3.5 illustrates an example of the visual odometry problem: the relative poses
Tnm between cameras viewing the same 3D point are computed by matching the
corresponding points in the 2D image. If the points’ 3D location is known, a 3D
to 3D or 3D to 2D method may be used. The global poses Cn are computed by
concatenating the relative transformations with respect to a reference frame (can
be set to the initial frame). Motion estimation can be done with three different
techniques: 3D to 3D, 3D to 2D and 2D to 2D methods.

Figure 3.5: Example of a monocular VO system, credits [28]

• 3D to 3D method: the motion is estimated by triangulating 3D feature
points observed in a sequence of images. The transformation between the
camera frames is then estimated by minimizing the 3D Euclidean distance
between the corresponding 3D points, defined as cost function.
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• 3D to 2D method: This method is similar to the previous approach but
the 2D re-projection error is minimized to find the required transformation.

• 2D to 2D method: This method is used when 3D data is not avaiable,
for instance to estimate the relative transformation between the first two
calibrated monocular frames where points have not been triangulated yet.
Epipolar geometry is used in this case to estimate the transformation between
two frames. An example of epipolar geometry problem is illustrated in figure
3.6. The figure shows two cameras, separated by a rotation and a translation,
viewing the same 3D point. Each camera captures a 2D image of a 3D. The
conversion from 3D to 2D is called perspective projection and it is described
in details in [28]. Rotation and translation matrices between two consecutive
frames can be extracted using the epipolar constraint described as follows:

qÍEq = 0 (3.1)

where q and qÍ are the corresponding homogeneous image points in two
consecutive frames and E is the essential matrix defined as follows:

E = [t]XR (3.2)

where R is the rotation matrix and t is the translation matrix given by:

t =

txty
tz

 (3.3)

and [t]X is the skew symmetric matrix defined as:

[t]X =

 0 −tz ty
tz 0 ty
−ty tx 0

 (3.4)
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Figure 3.6: Example of epipolar geometry, credits [28]
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3.4 Sensor fusion with Kalman Filter
Kalman filter is an algorithm that provides estimates of some unknown variables
given the measurements observed over time. It has relatively simple form and
requires small computational power. It is used to estimate states based on linear
dynamical systems in state space format. The Extended Kalman Filter is an
extension of the Kalman filter able to deal with nonlinear models in an efficient
way. It linearizes the model in a current estimate. General model’s equations for
state transition and measurement are:

xk = f(xk−1, uk−1) + wk−1 (3.5)

zk = h(xk) + vk (3.6)
Where f is the function of the previous state xk−1, and of the control input uk−1
and provides the current state xk. h is the measurement function that relates the
current state xk with the measurement zk. wk−1 and vk−1 are Gaussian noises for
the process model and the measurement model with covariance Q and R. M is the
input’s model covariance. For the linearization is needed to obtain the Jacobian
matrix of each model in each time step:

Fk = Jfxk−1
(3.7)

Vk = Jfuk (3.8)

Hk = Jfhk (3.9)
The prediction and updtate steps are similar as the linear Kalman filter and are
expressed by these equations:

• Predict state estimate:
x̂k = f( ˆxk−1, uk−1) (3.10)

• Predicted error covariance:

Pk = Fk−1Pk−1F
T
k−1 + VkMV T

k Q (3.11)

• Measurement residual:
ỹk = zk − h(x̂k) (3.12)

• Kalman gain:
Kk = PkH

T
k (R +HkPkH

T
k )−1 (3.13)
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• Update state estimate:
x̂k = x̂k +Kkỹk (3.14)

• Update error covariance:

Pk = (I −KkHk)Pk (3.15)

A more detailed description of Kalman filter and its extended version, with some
examples of applications can be found in [29].
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Chapter 4

Sensors characterization

In this section it is explained in details the work done on the characterization of
the two principal sensors used in this project: the digital camera and the IMU.
Since the IMU used was a low-cost one, its characterization was very important to
know how much is reliable, compared to the high cost ones.

4.1 Camera calibration
The calibration of the camera step was needed to retrieve its intrinsic parameters
and then remove distortion effects from each frame.
Distortion is a phenomena caused by camera’s lenses and can be of two kinds:
radial distortion or tangential distortion. Radial distortion causes straight lines
to appear curved and becomes larger the farther points are from the center of the
image. The correction of a distorted image can be seen in figure 4.1.

Figure 4.1: Effect of the distortion correction

Tangential distortion occurs because the image-taking lens is not aligned perfectly
parallel to the imaging plane, as a consequence some areas of the image may look
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nearer than expected.
From camera calibration the intrinsic matrix K can be retrieved, defined as follows:

K =

fx 0 cx
0 fy cy
0 0 1

 (4.1)

where fx and fy are focal length and cx with cy represent the optical centers. This
matrix K is necessary in the perspective projection step, to transform 3D world’s
coordinates into 2D camera’s plane, as described in details in [28].
Calibration step was done using a pre-existent script of OpenCV and, to verify
result’s accuracy it was re-done with Matlab’s tool. In order to retrieve camera’s
intrinsic parameters is needed to have a test pattern with known dimensions. An
example of acceptable one is a chessboard. For that reason was created a dataset,
acquiring images (with the ROV’s camera) of a chessboard that has 7 rows and
10 columns with square’s size of 10cm. The ROV was moved to get different
perspectives of the chessboard, in this way the accuracy of the calibration increases.
54 images were used to retrieve K matrix. An example of calibration frame is
illustrated in figure 4.2.

Figure 4.2: Chessboard used for the camera’s calibration
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4.2 IMU characterization
The IMU used for this work was the MPU-6050. Combines a 3-axis gyroscope and
a 3-axis accelerometer and communicates through I2C protocol 1. It is commonly
used in many projects since its reduced cost, availability and easiness of use.

Figure 4.3: IMU MPU-6050

4.2.1 Setting for data acquisition
The acquisition IMU’s data was implemented using the Rasberry Pi, connecting
them toghether through I2C. Both were placed inside the waterproof platform
constructed for the underwater tests. The description of this structure is presented
in 5.4.1.
A library for retrieve IMU’s readings was developed in Python coding language.
This step was necessary in order to exploit all the MPU-6050 characteristics. Indeed,
it has configurable registers for set the sampling rate (that can be up to 8KHz),
enable a low pass filter (and set the frequency of this filter), select gyroscope and
accelerometer ranges. Acquisition rate was set to 200Hz and low-pass filter was
enabled with a value set to 10Hz. Sample rate was decided with initial acquisitions.
It was noticed that the readings at higher frequencies were very noisy, for that
reason it was also decided to use the internal low-pass filter and set it to the lowest
frequency possible. The effects of these choices on noise removal can be seen in
figure 4.4.

1I2C is a serial communication bus widely used for attaching lower-speed peripheral ICs to
processors and microcontrollers in short-distance
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Figure 4.4: Comparison between original raw data (left) and using a Low pass
filter (right)

4.2.2 Calibration
Calibration step of an IMU is crucial to have reliable readings in its application.
High cost IMUs come with fabric calibration values, that are stored in the firmware
or inside the IC’s memory, providing accurate measurements off the shelf. Low cost
IMUs, such the one used in this study, are usually poorly calibrated.
Calibration process consists in the estimation of biases and offsets in steady and
known conditions. These data will be used to correct future sensor’s reading.
This was achieved developing a script that acquires sequentially the data from the
inertial sensor, in fixed positions, and computes the calibration factors, storing
finally the values in a text format.
Firstly the offset that affects the gyroscope is measured. Indeed, each one of
the three axis of the gyroscope should measure 0◦/s in steady conditions. Once
the platform is fixed in a stable position the script acquires 1000 samples of the
gyroscope’s readings and computes the mean value for each axis, finding the offset
values.
The second part concerns to the calibration of the accelerometer. It requires taking
advantage of the acceleration due to gravity, that can be used in the positive and
negative orientation of the IMU. Additionally position of the IMU perpendicular to
gravity is used in order to acquire a third calibration point. This results in three
unique values that can be combined to formulate a linear fit between the three
values and the values outputted by each axis of the accelerometer. For each axis
the platform was fixed in three position:
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1. Axis upward against gravity

2. Axis downward toward gravity

3. Axis perpendicular to gravity

For each axis position the script acquires 500 samples, and after the third orientation
computes the values of the intercept and slope that will be used for least-squares
fitting of a first-order model for the axis of the accelerometer. Figure 4.2 shows
the platform during the calibration phase of the accelerometer, with the Y-axis
pointed upward against gravity. The platform was placed in a plane surface, and
each orientation of the axes was done with the help of a bubble level, in order to
achieve the maximum accuracy possible.

Figure 4.5: Platform during accelerometer’s calibration
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4.2.3 Noise reduction with wavelets denoising
Wavelet noise reduction has been proven as a useful tool in signal analysis, and it
is widely used in denoising applications [30]. Wavelets are local in both frequen-
cy/scale (via dilations) and in time (via translations). In many classes of functions
can be represented by wavelets in a more compact way with respect Fourier’s
transformation. The filtering of signals using wavelets is based on the idea that
as the Discrete Wavelet Transform (DWT) decomposes the signal into details and
approximation parts using a selected wavelet. At some scale the details contain
mostly the insignificant noise and can be removed or zeroed out using thresholding
without affecting the signal. The signal is then reconstructed with the Inverse
Discrete Wavelet Transform (IDWT). More details on theoretical background about
Wavelet denoise can be found in [31]. In this work the selected wavelet was the
Daubechies 10 (db10), with the number of wavelet levels fixed to 7 and the threshold
was assigned to the variance of the signal. The parameters were selected empirically,
with hit and trial testing of various mother wavelets and levels. In figure 4.6 is
presented the result of this filter in a simple acquisition. It is clear the signal is
smoother, and does not lose important information.

28



Sensors characterization

Figure 4.6: Effect of wavelet denoise process on acquisition

4.2.4 Six faces test
An important aspect of the IMU is the drift of the measurements over the time.
Defined also as bias stability, is needed to know how much a measurement is reliable
during an acquisition process. This drift can be caused by temperature variation,
electromagnetic noises or poor sensor performance. MPU-6050’s datasheet gives
for the accelerometer a sensitivity change value of 0.02%/◦C. To see the presence
and the value of sensor’s drift, the six faces test was implemented. It consists in
place the platform in six different positions and perform a long acquisition, while
the IMU stands still. For each of the axis, the platform was moved in order to
oriented the axis downward toward gravity and then upward against gravity, as
can be seen in figure 4.7.
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Figure 4.7: Orientations of the platform during the six faces test

The results were stored in a text file and then plotted. Acquisition time was fixed
to 45 minutes. The focus of this test was not only to see drifts but also to verify if
these drifts are different with the orientation of the IMU. In figure 4.8 is illustrated
the two different orientations on the Z axis. For clearness of the graph, absolute
value of the readings was plotted.
Accelerometer’s data is not particularly affected by drifts for the axes perpendicular
to the gravity vector. Looking at the accelerometer data for Z, instead, it can be
noticed a small drift over the time, that has opposite slope for the two orientations.
This drift can be considered negligible and most probably caused by the increase
of the temperature inside the IMU’s housing.
The readings from the axis of the accelerometers show offsets that cannot be
ignored: X and Y readings, in the test illustrated in figure 4.8, should be equal to
0 since they are perpendicular to the gravity vector. These offsets can cause errors
in the navigation estimation, and for that reason they were taken into account and
subtracted from the measures in the underwater test done in 5.4. For the test were
considered the offsets measured with the Z axis pointing upwards, since it was the
orientation of the platform used. Table 4.1 shows the offsets of the accelerometer’s
readings. Values of the X axis have the highest standard deviation, meaning that
the removal of the offset will be not accurate, since this offset is not constant during
the readings.
Gyroscope drifts over the axes is more marked, even can be considered acceptable.
For X axis and Y axis values the trend is pretty the same for the two different
orientations. Z axis values shows instead opposite trend of the drifts between the
two orientations. Table 4.2 shows the values for the offsets of the gyroscope.
Same observation were made for the other axes orientations, since data showed that
drift’s slope is correlated with the axes orientation. For a better characterization
of drift the next step done was to compute the Allan variance.
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Figure 4.8: Six faces test: Z axis

Accelerometer
Axis

Average off-
set [m/s2]

Standar
deviation
[m/s2]

Min offset
[m/s2]

Max offset
[m/s2]

X axis 8.37e−2 2.04e−3 7.74e−2 8.79e−2
Y axis 1.06e−1 7.31e−4 9.61e−2 1.20e−1
Z axis 1.47e−1 2.97e−3 1.39e−1 1.53e−1

Table 4.1: Six faces test with Z axis upwards: accelerometer offsets.

Gyroscope
Axis

Average off-
set [◦/s]

Standar
deviation
[◦/s]

Min offset
[◦/s]

Max offset
[◦/s]

X axis 1.41e−2 1.05e−2 1.89e−7 3.84e−2
Y axis 1.21e−2 2.06e−3 1.23e−6 1.69e−2
Z axis 7.09e−3 3.50e−3 1.53e−7 1.72e−2

Table 4.2: Six faces test with Z axis upwards: gyroscope offsets.
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4.2.5 Allan variance
The Allan variance is a time-domain analysis technique originally developed to
study the frequency stability of precision oscillators. Being a directly measurable
quantity, it can provide information on the types and magnitude of various noise
terms. Because of the close analogies to inertial sensors, this method has been
adapted to random-drift characterization of a variety of devices. An accurate
description of Allan variance and IMUs characterization process using this method,
can be found in [32]. From Allan variance analysis the covariance values for each
IMU’s error can be extracted and used in the final implementation. Figure 4.9
shows the hypothetical Allan variance of an inertial sensor. The five basic noise
terms are: quantization noise, angle random walk, bias instability, rate random
walk, and rate ramp. The quantization noise is one of the errors introduced into
an analog signal by encoding it in digital form. Bias instability error is originated
by the electronics or other components that are susceptible to random flickering.
Rate random walk is a random process of uncertain origin.

Figure 4.9: Ideal Allan variance for an inertial sensor, credits [33]
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The data acquired for the six faces test was used to compute the Allan variance. The
variance was computed only for the accelormeters, and it is plotted in figure 4.10
First row in the figure shows for each of the three different orientations (X,Y,Z axis
upwards toward gravity) the different values of the variance computed for X-axis,
Y-axis, Z-axis accelerometer’s data. The second row shows instead the X-axis, Y-
axis, Z-axis accelerometer’s computed variance over the three different orientations.
This is useful to see how different axis’s orientation affect the computation. From
the results it can be noticed that the quantization noise affects the accelerometer’s
axes with different values. X axis accelerometer has the same errors for the different
rotations whilst the random walk error of the Y axis readings are influenced by the
change of orientation. Z axis accelerometer’s bias instability seems to be affected
by the orientation of the Y axis. In table 4.3 are shown the values for random walk
and bias instability, relative to the IMU having the Z-axis pointing towards gravity
vector.

Figure 4.10: Allan variance results for MPU6050
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Accelerometer Axis Random walk [m/s2/
√
s] Bias instability[m/s2]

X axis 9.66e−5 3.16e−5
Y axis 1.14e−4 2.96e−5
Z axis 1.13e−4 4.10e−5

Table 4.3: Allan variance values for Z axis upwards.
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Chapter 5

Data Integration and
Positioning

In this chapter the integration of the experimental work is presented. Firstly is
explained in details the algorithm designed for this work, followed by the steps
done to derive that. These steps were made by test done on the different parts of
the system. The first test presented was done on a pre-existing underwater dataset,
focused on the comparison of the feature detectors.
Then, the Visual Odometry algorithm is described: its design, the integration
with the EKF (see 5.1.5 and 5.3.3) and the tests done, describing also on the data
acquisition done for these tests. Lastly is presented the work done in order to test
the system in an underwater environment: the creation of a waterproof acquisition
unit, the setup of the test and its results.
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5.1 Algorithm
The algorithm proposed for this study is represented schematically in figure 5.1.
In the following sections are explained in details the various blocks that compose
the implementation. This application was tested with datasets acquired in and
underwater environment. Details about the data acquisiton and test’s results are
described in 5.4.

Figure 5.1: Proposed implementation of the complete project’s algorithm

Where vx, vy and vz are the velocities alongside the respective axes of the body, ax,
ay and az the accelerations and vφ is the angular velocity around X-axis,vθ around
Y-axis,vψ around Z-axis.

5.1.1 Visual Odometry
Visual Odometry section of this implementation was derived from previously work
done that is described in 5.3.2. The VO sampling to camera rate was increased to
2.5Hz. This choice was made to increase VO’s performance. The output response
of the VO was modified, in a way that for frame it returns linear velocity trough
axes and also angular velocity.
Therefore the output vector is composed as : [vx, vy, vz, vφ, vθ, vψ].
Inclinations around the axes are defined as the heading of the moving object. They
are commonly named as: roll, pitch and yaw. Figure 5.2 shows the convention
adopted.
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Figure 5.2: Roll, pitch and yaw convention, credits: [34]
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5.1.2 IMU
IMU’s readings are filtered, as previously described, using the wavelets and, for
each axis of the accelerometer is subtracted its mean noise value derived from the
six faces test. In this case were considered the offsets measured with the IMU’s Z
axis pointing upwards, since it was the orientation of the system during the test.
Gravity was removed by subtracting 9.81m/s2 from the Z-axis accelerometer data.

5.1.3 Reference frame
Camera and IMU, placed inside the underwater platform (described in 5.4.1), have
different orientations within each other. VO reference frame is also different with
respect the one selected for the body (the platform constructed for the test in
5.4.1), as it is represented in figure 5.3

Figure 5.3: Body’s, camera’s and IMU’s reference frame

Inputs from VO were then converted from their frame of reference to the body’s
one using the following equations:Xbody

Ybody
Zbody

 =

0 0 1
1 0 0
0 1 0

×
Xcamera

Ycamera
Zcamera

 (5.1)

IMU’s inputs are not converted since they have the same orientations of the body’s
reference frame.
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5.1.4 Mechanization equations
Values in body’s frame must be translated to the global frame. This is caused by
the rotation of the body with respect the global reference frame. Mechanization
equations were used to perform this translation. Euler angles used in the mecha-
nization equations describe the orientation of the body frame relative to the global
frame, as it can be seen from figure 5.4.

Figure 5.4: Rotation of the body’s frame with respect the global’s one

The first conversion that is done regards the angular velocity vector of the body
frame that it is translated to the global frame with the following equation:vφglobalvθglobal

vψglobal

 = 1
cos θ

1 sinφ sin θ cosφ sin θ
0 cosφ cos θ − sinφ cos θ
0 sinφ cosφ

×
vφbodyvθbody
vψbody

 (5.2)

Because the above equation requires the global orientation in order to calculate
the global change in orientation, a previous calculation or estimation of heading
is required. In the system developed, the predicted heading produced within the
Kalman filter was used. Heading computed with the Kalman filter is used also for
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the transformation matrix Cg
b as follows:

Cg
b =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1


 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ


 1 0 0

0 cosφ − sinφ
0 cosφ sinφ

 (5.3)

Accelerations are then converted to the global frame using the previously described
matrix, with this following equation:axglobalayglobal

azglobal

 = Cg
b ×

axbodyaybody
azbody

 (5.4)

More details about mechanization equations can be found in [35].

5.1.5 Sensor Fusion
Fusion between readings from VO and IMU was performed using an EKF. The
state vector of the filter was defined as follows:

X = [x, y, z, vx, vy, vz, ax, ay, az, φ, θ, ψ, vφ, vθ, vψ] (5.5)

Every time a reading from the IMU arrives it is passed to the filter as input,
composing the following input vector:

u = [ax, ay, az, vφ, vθ, vψ] (5.6)

The dynamic equations derived for this filter are expressed in the following equation.
Note that are listed in terms of X-axis but they were extended for the Y and Z
axes: 

xt = xt−1 + vxt−1 × dt+ 0.5× axt−1 × dt2

vxt = vxt−1 + axt−1 × dt
axt = uxt
φt = φt−1 + vφt−1 × dt
vφt = uvφt

(5.7)

The difference between two consecutive IMU’s readings timestamps are used as
dt in the filter. Jacobian’s of state update are computed (see 3.7 and 3.8) at each
prediction obtaining the prediction covariance matrix 3.15. Status update of the
filter is done with readings from VO. Measurement vector is thus composed:

z = [vx, vy, vz, vφ, vθ, vψ] (5.8)
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Measurement matrix was defined as follows:

H =



0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


(5.9)
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5.2 Comparison of features detectors
In this section is described the first test done on a underwater dataset. The aim of
this test was to compare the previously described feature based method, in order
to choose the best one for the application of this project. Another interest of this
test was the enhancement of the image useful to achieve better performance in the
feature detection step. An additional attention was given to the computational time,
for the purpose of evaluate the possibility to achieve a near real-time implementation
in the complete system.
Performace of feature detector is defined as the number of matches between two
consecutive frames. Computational time, instead, as time elapsed for detect,
describe and match the features of frame n+ 1 with the ones present in frame n.

5.2.1 Aqualoc dataset
Dataset used in this test was provided by Ferrera M., Creuze V., Moras J., Trouvé-
Peloux P.. It consists in a set of sequences recorded in three different scenarios:
an harbor at a depth of a few meters, a first archeological site at a depth of 270
meters and a second site at a depth of 380 meters.
Acquisition was done using an ROV equipped with a monochromatic camera, an
IMU, a pressure sensor and a embedded computer. Camera acquisition rate was
fixed to 20Hz whilist IMU was 200Hz. More details about hardware implementa-
tion, camera calibration and dataset description can be found in [36]. The sequence
used for this test was the 04 of the second archeological scenario: recorded at a
depth of 380 meters, has a duration of 11 minutes and 09 seconds for a travelling
distance of 18.1 meters and includes some visual disturbance such as turbidity,
back-scattering, sandy clouds and the presence in some frames of the dynamics
robotic arm of the ROV.

5.2.2 Implementation
Hardware

The hardware used for this test was a Rapsberry Pi 4.. Raspberry Pi is a low-cost
and compact computer that has a quad-core CPU, capable of running at 1.5GHz,
4GB of RAM and a dedicated GPU [37].
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Figure 5.5: Raspberry Pi 4

Software

All the algorithms were implemented using Python as coding language. This allowed
to use the OpenCV library, an open-source library which exploits a comprehensive
set of both classic and state-of-the-art computer vision and machine learning
algorithms [38].

Pre-process

To improve the performance of the feature detectors a pre-processing step for each
image was done. This improvement consisted in a contrast enhancement, using a
Contrast-limited Adaptive Histogram Equalization (CLAHE) algorithm. It is an
adaptive histogram equalization, image is divided into small blocks called "tiles" and
each of these blocks are histogram equalized. In images after CLAHE processing
the features are more recognizable. Indeed in figure 5.6 can be seen that the feature
detector works better, finding more features, in the contrast enhanced image. A
detailed description of CLAHE with an application in facial feature detection can
be found in [39].
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Figure 5.6: Feature detection enhancement with CLAHE (using SURF as feature
detector/descriptor)

5.2.3 Results
The test was organized as follows: with a fixed offset n, every n frames in the
dataset the script picks the frame f and the f + n frame, applies over the frames
the pre-processing step, extracts and describes from them the features for each
method. Then it matches the features found in the f frame with the one in f + n
frame, computing the matching ratio and the elapsed time. The offset was fixed to
10 because the ROV moves at very low speed and since between two consecutive
frames there is a difference of acquisition time of 5ms the displacement is almost
zero, and so the scenario does not change significantly.
The feature detectors and descriptors compared were:

1. SIFT (Scale-Invariant Feature Transform)

2. SURF (Speeded Up Robust Features)

3. ORB (Oriented FAST and Rotated BRIEF)

4. Shi Tomasi as detector and SIFT as descriptor

5. Shi Tomasi as detector and SURF as descriptor
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6. Harris as detector and SIFT as descriptor

7. Harris as detector and SURF as descriptor

The results given by the script were:

1. Matches: features of frame f found in frame f + n (in figure 5.7)

2. Match ratio: ratio of features in the frame f successfully matched in the
consecutive frame (in figure 5.7)

3. Feature Detection and Description computational time (in figure 5.8)

4. Pre-Processing time (in figure 5.9)
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Figure 5.7: Perfomance of various methods over the dataset: number of matches
and match ratio
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Figure 5.8: Perfomance of various methods over the dataset: computing time for
each method
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Figure 5.9: Perfomance of various methods over the dataset: pre-process time

From figure 5.7 can be seen that over all the dataset the number of features found
increases after frame 8000, for all the methods. This is because the scenario became
more rich of elements of interest, such as amphorae.
From figure 5.6 it is clear that the robotic arm gives a large number of features
inside the image. To avoid biased results each frame was cropped in order to
exclude the robotic arm and focus only on scenario’s features. The result shows
that the best method for number of matches is SIFT but it has as drawback the
highest computational time(looking at figure 5.8. SURF has similar results for
detection and matching and has a smaller computational time, but it is still not
acceptable for the requirements.
Table 5.1 is useful to have a view in numbers of the performance. Looking at the
data of this table, ORB was chosen as method for feature detection and description.
Indeed it has the smallest computational time, keeping a good match ratio even if
the number of features is not too high. A valid alternative could be Shi Tomasi
with SURF even if it is slightly slower than ORB and has a lower match ratio but
compensates with a higher number of feature detected.
From figure 5.9 and table 5.1 is clear that the pre-process time affects a lot the
computational time of the complete algorithm of this study. Also for this reason
the choice fell on ORB.
Pre-process time is the same for each feature detection and description method
tested, since it was done before the feature detection step.
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Method Average
matches

Max
matches

Average
match
ratio

Max
match
ratio

Average
time [s]

Max
time [s]

SIFT 556.75 2306.0 0.517 0.763 1.403 2.681
SURF 551.17 1543.0 0.373 0.616 0.466 1.042
ORB 197.98 394.0 0.404 0.792 0.110 0.231
SHI
THOMASI
+ SIFT

143.53 380.0 0.092 0.245 0.475 0.638

SHI
THOMASI
+ SURF

534.57 828.0 0.334 0.401 0.232 0.361

HARRIS +
SIFT 52.81 273.0 0.439 1.0 0.301 0.483

HARRIS +
SURF 59.69 584.0 0.419 1.0 0.095 0.237

Pre Process 0.674 0.748

Table 5.1: Results of performance test
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5.3 Visual Odometry test
In this section is explained the second test done, which was centralized in VO
performance with the selected feature detection and description method. Dataset
for this test was created acquiring images in an submerged environment, using a
pre-built ROV. The ROV was tracked during the acquisition with a GPS antenna
in order to have a ground truth track. The first part of this work was focused on
path reconstruction with only VO, paying attention to the robusteness of the VO
algorithm and testing various frame rates. In the second part the algorithm was
modified introducing an Extended Kallman Filter (EKF) in order to improve VO
performance, using GPS data as additional sensor. This was made to test sensors
fusion in anticipation of the final step of the project which includes a sensors fusion
of monocular VO and IMU data.

5.3.1 Data acquisition
The creation of this dataset was done using an ROV, the BlueROV2 built by
BlueRobotics [40]. It is a compact and low-cost ROV, equipped with a monocular
camera, a Raspberry Pi and various sensors.
The acquisition site chosen was a park in front of Polytechnic of Turin. It was
selected in order to have an ideal dataset, with the possibility to record in a simple
way the ground truth track, using a GPS receiver.
The ROV was placed over a cart and moved by hand for the length of the path.
The GPS antenna was situated on the left side of the ROV, alined with the center
of the camera, as can be seen in figure 5.10. The GPS receiver employed was the
Tersus Precis BX316, the software used for the acquisition of the video-stream
was QGroundControl, an open-source program developed by BlueRobotics. The
acquisition rate of the camera was fixed to 25Hz, and for each frame acquired its
timestamp was stored.
Some markers were put on the asphalt in order to have referring points over the
track and to have more features to be detected on the bottom side of the image.
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Figure 5.10: BlueROV2 with GPS antenna

Camera was calibrated as illustrated in 4.1, retrieving its intrinsic parameters.

5.3.2 Visual Odometry Algorithm
In this section is described the algorithm used for this test, focusing in details on
the Visual Odometry part.
The complete VO sequence is shown in figure 5.11. The first step is to enhance the
contrast in the frame, applying CLAHE algorithm as described in 5.2.2.
From the frame features are extracted and described, using ORB as detector and
describer. Then, using KLT, the features extracted are compared and tracked with
the ones of the previous frame. KLT is used to get the optical flow of the features
matched from frame n and frame n+ 1. In this step a backtracking check is done
to ensure good features: it consists in tracking the set of features fn of frame n
into the successive frame n+ 1 obtaining the corresponding fn+1 features. Then,
this set is tracked in the frame n and the set of features f Í

n is generated. Then
the difference between fn and f Í

n is done and if it is below a certain threshold the
features are considered good. Good features are returned for frame n and n+1 and,
if there are not enough good features for the pair of frames a warning is returned.
Indeed, if there are no good features for the pair an error is generated. In addition
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of that, this step, returns also the difference between the frames, meant as the
distance between the tracked features in the pair.
This distance is used to check if the pair of frames is too similar, indicating that
very likely the ROV is stopped. If this condition is verified, the algorithm skips
this frame and goes to the successive one.
Otherwise, the next steps are the estimation of the essential matrix E and, from
that, the rotation matrix R and the translation matrix t are extracted.
Matrices R and t are used in the triangulation step. A cloud of point is generated
from them in order to derive the scaling factor. In details, from the cloud generated
by frame n, the distance between two corresponding points is calculated. This
distance is then dived by the corresponding points’ distance in the point cloud
generated by frame n+ 1, obtaining scaling factor s.
Last stage of the VO algorithm is the one responsible of the path’s reconstruction.
It concatenates the translation and rotation matrices, applying the scale factor to
the translation matrix.
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Figure 5.11: Visual Odometry algorithm

This sequence is iterated through all frames with a downscale factor of the camera
frame rate fixed to 20. This choice was made in order to gain robustness against
fake detected movements caused by rapid changes in the scenario (for example a
pedestrian that passes in front of the camera). Another advantage of this choice
is the reduced computational time. With this criteria the update rate of this
algorithm was 1.25Hz, an acceptable choice considering ROV’s slow movement.
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5.3.3 Sensors Fusion
In this second part the outputs of VO algorithm and the measurements given by
GPS were fused using an Extended Kalman Filter (EKF) in order to achieve a
more reliable motion’s estimation. In figure 5.12 is shown how was made.

Figure 5.12: Sensors fusion using an EKF

Model

For this system was considered as center of the ROV the center of the camera, since
its negligible dimensions. The GPS antenna was placed at the same height and was
distanced from the camera center by 29.5cm. In order to simplify the computation
this difference between the two centers was considered equal to 0. Since the ROV
was moved upon a cart, the displacement was tracked only in two dimensions.
The cartesian diagram of this system is shown in figure 5.13. In this figure Xw and
Zw are world’s coordinates and correspond to northing and easting, respectively.
The ROV is represented in world’s coordinates by xt and zt at instant t, with
heading orientation θt.
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Figure 5.13: Movement of the ROV in the plane with respect to world’s coordi-
nates

The following ROV’s evolution model was derived:
xt = xt−1 + dxrtcos(θt−1 + ωt)
zt = zt−1 + dzrtsin(θt−1 + ωt)
θt = θt−1 + ωt

(5.10)

where dxrt and dzrt are the ROV’s displacement between t−1 and t in its coordinates
provided by the transitions matrix of the VO. ωt is the yaw angle of the ROV,
in its coordinates and it is recovered by the rotation matrix R with the following
equation:

ω = arctan R21

R11
(5.11)

The state vector of this system chosen is Xt = [xt, zt, θt] and the control input
ut = (dxrt , dzrt , ωt), provided by VO. State update equation can be rewritten as:

Xt = f(Xt−1, ut) + αt (5.12)

with αt as model noise. Since state update equation is not linear, as explained
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in 3.4, the Jacobian of the state update was computed, with respect Xt−1 and ut,
obtaining the covariance matrix of the motion Pt (see 3.11).
As measurement input were used GPS observations, properly converted for the
world’s reference system. The H matrix of observations (see 3.9) derived was:

H =
C
1 0 0
0 1 0

D
(5.13)

Since GPS has a measurement rate of 1Hz and VO inputs have a rate of 1.25Hz a
synchronization was made. The EKF performs the measurement step only when a
GPS input is available, meanwhile it predicts each time a new input arrives from
VO. With this criteria, the system is robust when a VO frame is not available (due
to some skipped frames in the VO algorithm) or if a GPS input is missing (caused
by reception problems).
Experimentally were assigned values of the covariances for process noise and
measurement noise. The process noise covariance selected was: σprocess = 0.1,
implying a lot of confidence in the model evolution. Covariances of VO inputs
were assigned in the following way: σV Ox = 0.1, σV Oz = 0.1 and σV Oω = 2 as
consequence of VO results (see 5.3.4). Covariance of GPS measurement was assigned
as σGPS = 1.

5.3.4 Results
In this section the results of the Visual Odometry algorithm alone and its fusion
with the GPS, using the EKF are illustrated.

Visual Odometry

The results proposed in this section are focused on the difference between perfor-
mances of the VO algorithm at various frame rates.
Four different frame rates were tested:

1. Figure 5.14 shows 25Hz as update rate for the camera

2. Figure 5.15 shows 5Hz as update rate for the camera

3. Figure 5.16 shows 2.5Hz as update rate for the camera

4. Figure 5.17 shows 1.25Hz as update rate for the camera
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Figure 5.14: VO track compared with GPS ground truth with frame rate fixed
to 25Hz
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Figure 5.15: VO track compared with GPS ground truth with frame rate fixed
to 5Hz
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Figure 5.16: VO track compared with GPS ground truth with frame rate fixed
to 2.5Hz
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Figure 5.17: VO track compared with GPS ground truth with frame rate fixed
to 1.25Hz

In each graph are represented Visual Odometry’s position estimation and GPS
ground truth for the XZ plane, and the comparison for the two axes over the time,
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in order to have a more detailed indication of the error in the position’s estimation.
From these results it can be pointed out that the performance of the VO algorithm
are inversely proportional to the frame rate. With higher frame rates, the algorithm
has a tendency to register important drifts. The consequence of these drifts is that
the estimated track derives from ground truth track, with position’s estimation that
is wrongly guessed up to 10 times with respect GPS track. This is caused, most
likely, by the fact that the drifting is correlated with the total number of frames.
With the high frame rate there will be a elevate number of consecutive frames to
analyze and since VO is a dead reckoning method there is no way to correct these
errors. Since the displacement sequence was recorded for approximately 7 minutes,
to keep the number of total frames limited, the frame rate was fixed to 1.25Hz.
Looking at figure 5.17 it is clear that the heading estimation is not correct. In
particular in the X axis, at the beginning, heading is almost the opposite of the
ground truth but after that error, starts again to estimate correctly the trend. A
possible explanation of that is that during one of the turns the movement speed
was too fast and the frames captured during this interval had not many common
features between them, causing an error in the tracking phase of the features
between two consecutive frames.
The results shown that the VO algorithm alone is not too accurate and, for this
reason, the integration with the EKF was implemented.

Visual Odometry and GPS fusion

In figure 5.18 are represented the results obtained with the integration of VO inputs
with GPS measurements using the EKF described in 5.3.3. The outcome of this
test is very promising. It is clear that the position’s estimation given by the output
of the EKF follows the evolution of the GPS ground truth track. This is caused
by the high confidence that the filter has on the measurements, and also by the
little confidence assigned to the heading input given by VO. There is a little bit
of oscillation of the estimate where input of VO has the opposite direction of the
GPS measurement, caused by the correction of the prediction estimate.
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Figure 5.18: Comparison of filtered track, VO track and GPS track
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5.4 Underwater test
In this section is presented the underwater test of the visual-inertial algorithm,
previously described. In details, is elucidated the construction of the waterproof
platform and how the data was acquired. Finally, the results of the test are
illustrated.

5.4.1 Waterproof platform
Due to the pandemic situation undergoing during this thesis’s project, underwater
test’s were not possible, since all the public pools were closed, and was not feasible
to install a temporary one inside the Polytechnic. A workaround for this problem
was found, making the underwater acquisition in a pre-existing drain situated in the
hydraulic laboratory, which is typically used for wave tests. The drain has a length
of about 40 meters, it can be filled with water for a depth of 1 meter, but has a
width of 0.9 meters. That characteristic prevented to use the previously employed
BlueROV2. An acquisition platform of reduced dimensions was constructed for
this reason. The waterproof enclosure employed was an acrylic tube of 4” provided
by BlueRobotics. Inside this tube were placed a Raspberry Pi 4, responsible of
the acquisition of the images from the Raspberry Pi Cam, and of the IMU’s data.
The IMU employed was the MPU 6050, connected with the Raspberry through
I2C protocol. The camera was placed behind the acrylic dome to minimize the
distortion effects induced by the difference between water and air refractive indices.
The system was powered using an inside battery. In order to place the components
in fixed positions, to prevent from misreadings and change of orientations, 3D
customs parts were designed and printed, with the help of Team PoliTOcean’s
1 mechanical department. Details of the assemblage are shown figure 5.19. The
green led that can be seen is the one of the IMU, that is fixed to the bottom.

1PoliTOcean is a student team of Polytechnic of Turin that works on underwater robotics
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Figure 5.19: Construction phase of the underwater platform

The Raspberry Pi Camera is a low cost camera, that mounts a Sony IMX219 sensor.
Its integration with the Raspberry is easy to do with a dedicated Python library
that offers the possibility to change its default parameters on various settings such
as: exposure, ISO value, saturation and contrast. This camera was calibrated as
illustrated in 4.1, retrieving its intrinsic parameters. To simplify the acquisition
part, a Python script was developed: it starts camera acquisition, storing the
starting timestamp, whilst it stores every data sent from the IMU with the relative
timestamp. In this way the data from the two sensors are synchronized.

5.4.2 Data acquisition
For this test four different datasets were created. The platform was anchored to a
cart at fixed height that can be moved by hand, with the help of a rope. The cart
slides, taking advantage of the binary that are fixed on the top of the drain, as can
be seen in figure 5.20.
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Figure 5.20: Movement system for the platform

With the illustrated architecture the only possible motion of the platform was
alongside its X-axis. The objective was to produce a motion that was the most
ideal possible, in order to test the effectiveness of the combination of VO and INS
with the proposed hardware in an underwater environment.
To the summit of the car, perpendicular to the center of the acquisition platform,
a 360 degrees Leica prism was anchored. This prism was needed to track the
movement of the platform, in order to have a ground truth track.
A Leica total station 2, placed in a way that had in its field of view the prism, was
employed to perform the tracking phase, as can be seen from figure 5.21

2Total station is an electronic/optical instrument used for surveying and building construction
that can be used to retrieve the coordinates of an unknown point relative to a known coordinate

65



Data Integration and Positioning

Figure 5.21: Tracking the movement of the platform with the total station

The four datasets created were repetitions of the same forward movement, having
a total lenght each time of about 18 meters. The movement was characterized by
a non uniform acceleration and velocity, so the each set has a different duration.
Inside of the drain were placed, on the internal sides, several markers that were
measured in absolute coordinates with the total station. This choice was made to
have additional points that can be used as features for the VO algorithm. Datasets
were acquired setting camera frame rate to 25Hz and IMU sampling rate to 200Hz.
Camera’s settings were kept to default values whilst IMU’s LPF was set to 10Hz.

66



Data Integration and Positioning

5.4.3 Results
In figure 5.22 is illustrated the the output of the Kalman filter (in red), derived
in 5.1, compared to the ground truth track, the VO alone estimation and the
INS navigation. IMU navigation is reconstructed integrating trough the time
IMU’s readings, after the process of mechanization, in order to simulate the path
reconstruction obtained with only the inertial sensor and focus on the contribution
of the sensor to the VO-Inertial fusion. It is clear that the output is not quite
comparable with respect the ground truth. The cause of this large error in the
estimation is attributable to the large derives of the IMU’s readings and the wrong
estimations of the VO. This results are relative to the first dataset created, but are
quite similar to the one obtained with the remaining three.

Figure 5.22: Position’s estimate: planar path

To understand better the behavior of the algorithm and the cause of the errors the
plots for X-axis and Y-axis of the global frame were plotted.
Figure 5.23 shows that the estimation alongside the X-axis is almost similar to the
ground truth. The algorithm in this case estimates correctly the position for the
first half of the path, then it starts to drift away from the ground truth, changing
the slope, particularly from 20s to 30s. This is caused by the combination of the
erroneous VO’s reconstruction, that worked sufficiently good for the first half, with
the fully improper inertial reconstruction.
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Figure 5.23: Position’s estimate: X axis

In figure 5.24 is visible the incorrect estimation of the VO alongside Y-axis that
combined with the inertial navigation gives a non acceptable result.
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Figure 5.24: Position’s estimate: Y axis

Figure 5.25 is remarkably useful to understand better the causes of this result.
From X-accelerometer and velocity graphs it can be noticed that the readings
are mostly noisy, with a important oscillation when the platform is moving. This
oscillations cause, when they are integrated, a completely wrong evaluation of the
velocity. In the tested scenario, even a small error on the measure of the acceleration
can cause a disastrous effect. On the other hand, VO’s velocities reading are similar
to the ground truth ones, and at each measurement step of the filter correct the
prediction done with IMU’s reading.
Similar discussion can be made for the Y-axis: the acceleration’s readings suffers
from biases and noises that affects the velocity estimation. Even in this case, VO’s
readings are used to correct the prediction.
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Figure 5.25: Velocity results of the algorithm and inputs of the accelerometer

Poor performances of this system can be credited to untrustworthy IMU’s outputs.
This inertial sensor is not indicated for small variations of acceleration, such as the
one registered in this test.
Visual Odometry performance, on the other side, is not the best in this underwater
environment. This is caused by the low image quality, that leads to a reduced
number of features that can be found. In figure 5.26 is visible that the mean value
of features found over the video recording is reduced compared to the one obtained
with the Aqualoc dataset in 5.2.3. It can be noticed that in some cases the ORB
matcher fails to find similar features between consecutive frames, and even when it
accomplish that, the overall number of matches is limited.
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Figure 5.26: Performances of ORB over the dataset acquired
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Chapter 6

Conclusions

UUVs are nowadays more and more used to perform visual inspections, mainte-
nance and repair of dams, pipes, tunnels, structures as well as the analyses of the
underwater environments in lakes,rivers and seas.
Underwater positioning represents a huge challenge, since the impossibility to
exploit common radio-based techniques, used in terrestrial environments, such as
GPS. The reason of this problem is that the radio signals are jammed from the
water.
Alternative positioning systems are used to overcome this obstacle. They are
typically based on active acoustic signals. These solutions are expensive and the
sensor’s size specifications prevent their integration within small mobile systems,
requiring also a high computational power.
In this study was presented a low-cost positioning system for an underwater envi-
ronment, using a combination of Inertial Navigation and Visual Odometry based
navigation. The sensor’s fusion was done with an Extended Kalman Filter. The
hardware employed consisted in a Raspberry Pi 4, which is a common andaffordable
embedded computer, a low-cost digital camera and an entry level IMU.
The initial part of this study, focused on sensor’s characterization showed that
IMU’s measurements were affected by drifts and noises. The inputs were denoised,
and the offset observed in stationary conditions was removed, in order to have the
highest precision possible of IMU’s readings.
Feature detectors, from the test done on the AQUALOC dataset (5.2.3), performed
well in the underwater scenario, especially after the image enhancement done on
each frame, showing an good average match ratio over the dataset.
The work done on VO performance, evaluated in the terrestrial scenario, revealed
good results, specially with the pairing of the VO output with the GPS measure-
ments, reaching an high accuracy of path estimation (5.3.4).
Unfortunately the results obtained working in the underwater environment (5.4)
proved that the combination of camera and inertial sensor is not suitable for this

72



Conclusions

application, with the selected hardware. Indeed the path’s reconstruction is not as
good as expected, since the estimation over the Y-axis derives from ground truth
by almost 5 meters, as shown in figure 5.24. Therefore the trajectory’s estimation
is not reliable over the underwater navigation. The Extended Kalman Filter works
well, since the dynamic motion in its prediction phase, filters as high as possible
the noise from inertial’s readings and VO’s estimations, as can be seen in the
estimation of X-axis path in figure 5.23.
Explanation of this performance can be found in poor camera’s image quality
(as shown in figure 5.26) and in the noises plus drifts of IMU’s measurements.
IMU’s noises cause, when they are integrated, a completely wrong evaluation of
the velocity estimation that itself leads to an erroneous position estimation. In the
tested scenario, even a small error on the measure of the acceleration can cause a
disastrous effect, since the slow dynamic of the ROV and the short overall length
of the movement.
To overcome this problem a suitable solution might be to replace the camera
employed with a more powerful one. For example a stereo camera would ideally
improve quality of VO estimations, since it can retrieve object’s scale accurately.
This will increase the cost of the hardware, since this kind of camera is quite
expensive and its integration requires an high-performance on board computer, the
low cost one used would not be sufficient to accomplish this task. As discussed
in [41], stereo VO’s performances in an underwater environment are promising,
showing a good accuracy of pose estimation. Furthermore, it might be useful to
replace the IMU with a model that has more accuracy of its measurements. As
well as replacing the camera, this operation will increase the cost of the hardware,
considering that high precision IMUs cost up to 100 times the value of the one
employed in this project.
The above presented solutions are beyond the purpose of this master’s thesis work,
since the challenge was to find an alternative of underwater positioning using
affordable components.
Moreover, an alternative solution might be the addition of more low-cost sensors
to the ones used, for example a depth sensor and a compass sensor can give an
improvement of the estimation of the position. The addition of the depth sensor
can give an extra input in the Kalman Filter, providing the measurement of the
displacement alongside the Z-axis. The compass sensor, instead, would be useful to
correct the heading estimation of the Kalman Filter, since it returns the orientation
of the ROV. However the challenging part would be to keep a low computational
time using the same embedded computer, in order to work in a nearly real-time
application, since more measurements steps will increase the computational load of
the algorithm.
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