
POLITECNICO DI TORINO

Master’s degree in ICT for Smart Societies

Master’s Thesis

Lane Line Detection and Classification Based
on Deep Learning

Supervisors
Prof. Tao Huang
Dr. Jie Zhao

Candidate
Yuhao Chen

Abstract

In the 21st century, with the progress of computing capability and the rapid
development of machine learning, automatic driving technology is becom-
ing more and more advanced. Nowadays, the field of autonomous driving
technology has become a “strategic highland” for various vehicle companies.
Lane line detection is a key task in this field, which plays a vital role in
the decision-making of automatic driving. At present, deep learning has
made great achievements in various fields of computer vision, and it is also
widely used in the field of lane detection. Compared with traditional im-
age processing method, the deep learning method is less affected by weather
conditions and has higher generalization ability, so the lane line detected by
this method are more stable. Current lane line detection algorithms still face
some problems. For example, the detection is easily affected by illumination
and occlusion, which will have a significant impact on the segmentation re-
sults. Besides, there was almost no literature that simultaneously detects and
classifies lane lines. In this work, a two-stage end-to-end lane line detection-
classification model is proposed. The main contributions of this work are as
follows:

Lane line detection
The lightweighted semantic segmentation network ERFNet is used as the ba-
sic network to detect lane lines. The network has added a lane line existence
prediction module to assist in predicting whether the lane line exists, and to
guide the network to understand the differences among lane line instances.
Proposed a attention module called Balanced Attention Network to capture
the interdependence of global features in both channel and spatial dimen-
sions. While improving the segmentation performance of the model, there is
no significant increase the number of parameters.

Lane line classification
Labeled on CULane dataset, the largest public lane line dataset. The lane
line classification information was added on the basis of the original annota-

i

tions.
A lane line classification network is designed. After feature extraction and
reconstruction of images, each lane line is classified through the classification
network.

The proposed model is validated on the CULane benchmark and reaches
74.0 F1-Measure and The overall accuracy for lane line classification exceeds
90%. On the NVIDIA GeForce RTX 2080Ti GPU, the detection network
and classification network can reach speeds of 24 ms and 7 ms, respectively.

Keywords: lane detection, lane classification, deep learning, computer
vision

ii

Acknowledgements

First of all, I would like to thank to my supervisor Prof. Tao Huang. During
this work, he patiently listened to my stage report and proposed amendments
in time to ensure the smooth progress of the thesis. Without his strictness
and patience, this thesis would not have been possible.

I would also like to thank my co-director, Dr. Jie Zhao, the founder of
Borden Intelligent Technology. He put forward many suggestions for im-
provement of my thesis.

I would also like to thank my colleagues from the company and school for
their selfless help in this work.

The two-year master’s study at the Politecnico di Torino is coming to an
end. Finally, my thanks would go to my beloved family and girlfriend for
providing me deeply support.

iii

Contents

1 Introduction 1
1.1 Background . 1
1.2 State-of-the-Art . 2

1.2.1 The Traditional Methodologies 2
1.2.2 The Deep Learning Methodologies 3

1.3 Motivation and Task Description 6
1.3.1 Motivation and Objective 6
1.3.2 Contents Overview . 7

2 Data and Data Augmentation 9
2.1 Dataset Overview . 9
2.2 Data Annotation . 11
2.3 Data Augmentation . 14

3 Lane Line Detection-Classification Model 17
3.1 Convolutional Neural Network 17
3.2 Dilated Convolution . 21
3.3 Semantic Segmentation . 22
3.4 Attention Mechanism . 24
3.5 Model Overview . 27
3.6 Semantic Segmentation Module 28
3.7 Attention Module . 29
3.8 Lane Line Existence Prediction Module 31
3.9 Lane Classification Module . 32
3.10 Loss Function . 33

4 Experiments and Results 35
4.1 Experimental Environment . 35
4.2 Implementation Details . 36

4.2.1 Pre-processing . 36
4.2.2 Training Hyper-parameters 36

iv

4.2.3 Feature Extraction . 37
4.3 Evaluation Metrics . 39

4.3.1 Intersection-over-Union 39
4.3.2 Confusion matrix . 39
4.3.3 Precision, Recall and F1-Measure 40
4.3.4 Lane line model evaluation steps 41

4.4 Results . 42
4.4.1 Performance on lane segmentation 42
4.4.2 Ablation Study . 43
4.4.3 Performance on lane line classification 45

5 Conclusions and Future Work 50
5.1 Conclusions . 50
5.2 Future Work . 51

Reference 52

v

List of Figures

1.1 The traditional lane line detection process 2
1.2 The network structure of SCNN[1] 4
1.3 System overview of LaneNet[2] 5
1.4 System overview of PolyLaneNet[3] 5
1.5 Complex traffic scenarios . 6
1.6 Visualization of lane Line detection and classification 7

2.1 Scenarios distribution of CULane datasets: a)Dataset exam-
ples for different scenarios. b)Proportion of each scenario.[1] . 9

2.2 Common types of lane line in China 11
2.3 Boden Annotation Web platform(BAW) 12
2.4 An annotation example showing the attributes of the left lane

line . 12
2.5 Example of Random Lane Erasing 15
2.6 Example of Random Horizontal Flip 16

3.1 Architecture of LeNet-5[4] . 17
3.2 The 5x5 feature map passes the 3x3 convolution kernel[5] . . . 18
3.3 Pooling . 19
3.4 Dilated Convolution[6] . 21
3.5 Fully Connection Network . 23
3.6 The Network structure of SegNet[7] 23
3.7 Squeeze-and-Excitation Module[8] 24
3.8 Architecture of Self-Attention network 25
3.9 DANet[9] . 26
3.10 System architecture of the inference model 27
3.11 Architecture of ERFNet . 28
3.12 Comparison between residual module and Non-BN-1D module 29
3.13 Architecture of BANet . 29
3.14 The position of the Attention module in the network 30
3.15 Lane Existence Module. For the output result: 1 means that

the lane line exists, and 0 means that it does not exist. 31

vi

3.16 Architecture of LaneClsNet 32

4.1 Example of feature extraction of left lane line. From top to
bottom are the original image, the segmentation image, and
the lane line extraction image. 37

4.2 Outputs after feature extraction 38
4.3 IoU equation . 39
4.4 Confusion Matrix . 40
4.5 Segmentation Loss . 42
4.6 Visualization on the CULane dataset. 43
4.7 The position of the attention module in the semantic segmen-

tation network. a: After the second downsampling; c: After
the third downsampling; c: After the first upsampling 45

4.8 2 classes lane line classification training curves 46
4.9 3 classes lane line classification training curves 47
4.10 Confusion matrix for the 3 classes classification 48
4.11 Lane line detection and classification results of different scenes.

In (c), red represents solid line and green represents dotted line. 48

vii

List of Tables

2.1 The image distribution of CULane test dataset in each scene . 10
2.2 Lane line category label . 13
2.3 Information of training set . 14

3.1 Classification Network Architecture with the resolution of the
input image 128x128 . 32

4.1 Configuration information of server of Boden Intelligent Tech-
nology, LLC. 35

4.2 F1-measure performance of different algorithms on CULane
testing set. 44

4.3 Comparison results of different attention modules 44
4.4 Experimental results of attention modules in different positions 45
4.5 Distribution of 2-class lane line dataset 46
4.6 Distribution of 3-class lane line dataset 47
4.7 Inference time of the model 49

viii

Chapter 1

Introduction

1.1 Background

Automotive electronics is developing towards automation, intelligence and
network connection, and the autonomous driving industry has attracted in-
creasingly more attention. With the development of various technologies,
an increasing number of automobile manufacturers devote their energy to
the research and development of self-driving cars. Among them, ADAS: Ad-
vanced Driver Assistance System is an essential functionality for achieving
full autonomy. ADAS systems usually include automatic emergency braking
(AEB), adaptive cruise control (ACC), parking assistance (PA), lane line and
road detection, traffic signal and traffic sign recognition (RSR), and so on.
Various sensors mounted on the vehicle (camera, laser radar, satellite navi-
gation, millimeter-wave radar, etc.) can be used to precept the surrounding
environment anytime and anywhere during the driving process of the vehi-
cle. Meanwhile, through using those devices, the following processes can be
conducted: data collection, real-time inference, and decision making as well
as chassis control of vehicles. Thanks to them, driving comfort and safety of
vehicle has been highly promoted.

In particular, lane detection is an essential and significant task. Recently,
along with the development of semantic segmentation in deep learning, a
batch of state-of-the-art algorithms have continuously improved lane detec-
tion technology. However, applying such techniques to vehicles still faces
difficulties.

1

1.2 State-of-the-Art

Currently, there are two main methodologies in lane line detection: tra-
ditional one based on image processing and the new one relying on deep
learning algorithms. This section will introduce the State-of-the-Art of these
two methodologies.

1.2.1 The Traditional Methodologies

Lane line detection technology based on image processing has been widely
applied to the auxiliary driving system of modern vehicles by features (color
and shape) of lane lines. Figure 1.1 shows the main process of the first
methodology.

Figure 1.1: The traditional lane line detection process

Lane line detection algorithms based on traditional methods can be roughly
divided into two categories, one is lane line feature-based approach, and the
other is model-based approach.

Feature-based approach
In [10], the author used an inverse perspective transformation to convert the
original image in the world coordinate system into a top view. According to
the radical difference between the lane line and other targets on the road sur-
face, an adaptive threshold is used to convert the top view image into a binary
image. Finally, the lane line is extracted by Hough transform, and the lane
line is fitted by the Random Sample Consensus(RANSAC) algorithm[11].
Kang et al.[12] proposed to use Sobel operator[13] for edge detection to ob-
tain noisy lane line edge features. Then the road image was divided into
multiple sub-regions along the vertical direction of the image, and dynamic
programming was usedto extract the lane line . Collado et al.[14] proposed
an adaptive lane detection and classification algorithm based on spatial lane
features. The inverse perspective transform is used to convert the input

2

camera image into a perspective view of the road image, which removes the
distortion of the camera’s perspective.

Model-based approach
Model-based approaches usually assume that lane lines can be described
by specific models, such as linear models, parabolic models, or other spline
curves. In addition, most models are based on the assumption that the
ground is flat. Zhou et al.[15] proposed a lane line detection algorithm based
on geometric model and Gabor filter[16]. The inverse perspective transform
is used to project the photo to the bird’s-eye view, and the deviation caused
by the angle of view is removed, so that the lane lines on the picture become
parallel. Bosaghzadeh et al.[17] used principle component analysis (PCA) to
solve the image perspective problem, and used a rotation matrix model to
achieve lane line detection. Kim et al.[18] proposed to use HSV color space
and the shape of lane lines to identify candidate lane lines, and then use
Hough transform to determine the lane position.

Although the traditional methods has high processing speed, there are some
limitations. For the simple driving environment in ideal weather, the tra-
ditional scheme can achieve high precision and recall rate. However, when
the road condition is not ideal (such as traffic congestion, night traffic, lane
lines are not obvious, etc.) or the weather is poor (such as rain, snow, fog,
etc.), there is still shortages and imperfections on lane detection. In conclu-
sion, the traditional method can generate reasonable results only in specific
conditions, while it has visible disadvantages in other conditions.

1.2.2 The Deep Learning Methodologies

With the maturity of machine learning technology, neural networks have
made amazing achievements in the field of image recognition. A surging
number of people have begun to use deep learning to predict lane lines. Al-
though many SOTA models have achieved high detection accuracy, most
models need to consume more computational resources, which results in a
long detection time. As low cost in calculation and high accuracy are trade-
offs to each other, it is necessary to figure out a balance between them.

At present, the traditional image processing methods are unable to meet the
ultra-high requirements of automatic driving for lane detection accuracy and
speed. Compared with traditional methods, deep learning shows more ad-
vantages in the fields of computer vision. Seeing trends of development of
deep learning, lane detection deserves a more competitive method to achieve

3

the expectation of autonomous driving system.

Although convolutional neural networks have powerful feature extraction ca-
pabilities. However, due to the slender shape of the lane line and the long
distance in the space, convolutional neural networks occupy only a small
pixel in the image, which can be easily affected. Pan et al.[1] proposed a new
convolution method called Spatial CNN (SCNN), which slices and convolves
network blocks layer by layer in four directions, so that spatial information
is transmitted in different directions. In each direction, the current slice is
passed to the next slice after convolution to extract features. After complet-
ing the feature transfer in one direction, switching the convolution block to
the other direction and repeating the above steps. This method has a good
segmentation effect on slender structures such as lane lines and telephone
poles, and can solve the detection problem when lane lines are occluded.

Figure 1.2: The network structure of SCNN[1]

In 2018, Neven et al. proposed an end-to-end lane line detection model
LaneNet[2]. LaneNet consists of two branches: segmentation branch per-
forms binary semantic segmentation on lane lines to distinguish whether
pixels belong to lane lines or background, while embedding branch clusters
the segmentation results and assigning pixels to different lane line instances.
In addition, the author trained a neural network H-Net that can predict the
perspective transformation matrix H. This method of predicting parameters
through the network can adapt itself to terrain changes and improve the
robustness of the model.

4

Figure 1.3: System overview of LaneNet[2]

In 2020, Lucas Tabelini et al. proposed PolyLaneNet[3], a new end-to-end
lane line detection model. PolyLaneNet uses polynomials to describe lane
lines. After extracting image features through the convolutional network,
the model passes through a fully connected layer, and finally outputs the
confidence of each lane line and the relevant third-order curve coefficients.

Figure 1.4: System overview of PolyLaneNet[3]

Fabio Pizzati et al.[19] proposed to use two cascaded networks to detect and
classify lane lines. The first network outputs the segmentation results of the
lane line. According to the segmentation results, the lane lines are sampled
on the original image, and then the extracted pixels are put into a designed
descriptor in order. Finally, the descriptor is input into the second network
to classify the lane lines.

5

1.3 Motivation and Task Description

1.3.1 Motivation and Objective

Lane line detection and classification are challenging tasks. The lane lines
of urban roads vary widely, and the road conditions are complex. Figure
1.5 shows several scenes where the traffic situations are complex for lane line
detection. The followings are some difficulties of current lane line detection
tasks.

1) The lane lines occupy a small proportion in the image. Compared to other
targets, the shape of lane lines is slender and variable.

2) Lane lines are easily obstructed. When the lane line is sheltered from
other vehicles, it brings difficulties to detection.

3) The color and the shape of the lane line are similar to other lines and
signs on the ground.

4) The shape of the lane line is variable and the color differs from each other.
In various scenes (such as straights, curves, crossroads, etc.), different lane
lines are difficult to recognize.

5) In practical applications, in order to meet the needs of autonomous driv-
ing, real-time performance is the most important factor for detection
tasks, resulting in a low computing requirement during inference.

Figure 1.5: Complex traffic scenarios

For autonomous driving projects, the task of lane line detection is not only
to accurately detect the lane line itself, but also to be able to distinguish
the type of lane line and the location of the lane line. This information is
necessary for subsequent trajectory planning. There is almost no literature
that simultaneously detects and classifies lane lines. with this in mind, our
objective is to build a lane line detection-classification model that can detect

6

the lane line, the position of the lane line, and also can distinguish the types
of lane lines.

After understanding the characteristics of lane lines and the difficulty of lane
line detection tasks, the advantages and disadvantages of traditional method-
ologies and deep learning methodologies were compared. As the conclusion,
the deep learning method was decided to carry out the task of lane line de-
tection.

In this work, we propose a two-stage end-to-end lane line detection-classification
model. In the first stage, the network uses semantic segmentation to detect
lane lines. The lane lines are extracted from the image according to the seg-
mentation results. Then input the extracted lane line image into the second
stage network for classification.

(a) Image (b) Detection (c) Classification

Figure 1.6: Visualization of lane Line detection and classification

1.3.2 Contents Overview

This thesis consists of 5 chapters in total, this section will give a brief sum-
mary of these five chapters:

Chapter 1: Introduction
This chapter mainly introduces the research background of lane line detec-
tion. The State-of-the-Art of traditional methodologies and deep learning
methodologies were reviewed. Finally, some difficulties in current lane line
detection are listed.

Chapter 2: Data and Data Augmentation
This chapter offers the overview of the dataset used in this work, as well
as the production process of the lane line classification dataset. To further
improve the generalization performance of the model for various scenario
detection, we expanded the amount of data. In this section, we describe the
data augmentation operations we used in detail.

7

Chapter 3: Lane Line Detection-Classification Model
At the beginning of this chapter, we introduce the related deep learning tech-
niques used in this work. First, the basic structure of convolutional neural
network techniques is introduced. Then two important semantic segmenta-
tion networks are described in detail. Finally, the application of Attention
mechanism in computer vision is introduced.

Then, we present a detailed description of the lane line detection-classification
model proposed in this work. Firstly, the overall structure of the model is
introduced. Then the semantic segmentation module, the Attention module,
the lane line presence prediction module and the lane line classification mod-
ule of the network are described in detail. Finally, the loss function used in
this experiment is introduced.

Chapter 4: Experiments and Results
The environment of the experiment is introduced. Then the data prepro-
cessing, the setting of training parameters and the process of extracting lane
line features are described. Then the evaluation metrics and evaluation steps
are introduced. In the results part, a series of comparative experiments are
carried out to verify and evaluate the performance of the improved part pro-
posed by this work.

Chapter 5: Conclusions and Future Work
This chapter concludes the lane line detection-classification model proposed
in this work and provides suggestions for future work.

8

Chapter 2

Data and Data Augmentation

2.1 Dataset Overview

In this project, we choose CULane[20] as our datasets. CULane datasets is
a large-scale lane line detection datasets published by the Multimedia Lab
at Chinese University of Hong Kong. All the video data was taken from the
dashcams of six taxis in Beijing over a total of 55 hours. The entire datasets
captured 133235 frames of images from the recorded video. Among them,
88880 frames are the training set, 34680 frames are the test set, and 9675
frames are the validation set. Compared to the TuSimple datasets[21], which
is also widely used, the CULane dataset’s scene is much richer, with diverse
urban, rural and high-speed scenarios, more data, and more complex road
conditions.

Figure 2.1: Scenarios distribution of CULane datasets: a)Dataset examples
for different scenarios. b)Proportion of each scenario.[1]

9

Table 2.1: The image distribution of CULane test dataset in each scene

Category Description # Images
Normal Lane lines are clear and there are fewer vehicles on the road. 9621

Crowded There are more obstructed parts of the lane line; more vehicles on the road. 8113
Night The overall ambient light is low. 7029

No-line Lane line is not obvious or does not exist. 4067
Shadow Shadows of other objects are projected on the lane line. 930
Arrow Arrow signs on the road. 890

Dazzle light Brighter light. 486
Curve Curved road line. 422

Crossroad At an intersection, there is no lane line. 3122
Total 34680

Each image is labeled up to four lane lines: the left lane line of the current
driving lane, and the outer lane line of the adjacent lane, but not the oppo-
site lane line. Besides, if the lane line is blocked (such as traffic jams, etc.),
the lane line is also marked artificially, which is conducive to improving the
robustness of detection.

10

2.2 Data Annotation

On the basis of the original CULane dataset, we marked the category of lane
lines in each picture. After collecting statistics on the types of lanes on Chi-
nese roads, we divide the lanes into 3 categories in our dataset: dotted line ,
solid line , and undefined line .

It should be pointed out that for the dotted-solid line, if solid side of the
dotted-solid line is close to the current traffic lane of the data collection vehi-
cle, the dotted-solid line is considered as a solid line. Otherwise, it is marked
as a dotted line.

(a) Dotted line (b) Solid line

(c) Dotted-solid line (d) Double solid line

Figure 2.2: Common types of lane line in China

All labeling work is done on the Boden Annotation Web platform(BAW) de-
veloped by Boden Intelligent Technology Co., Ltd[22] Figure 2.3. According
to the type of lane line directly in front of the vehicle at the current position,
a label is given to each lane line.

Since the images in the CULane dataset are obtained from video clips, there
are many repeated scenes. We selected a total of 10060 images to label
the types of the lane lines. Among them, 9060 for training and 1000 for
validation.

11

Figure 2.3: Boden Annotation Web platform(BAW)

Figure 2.4: An annotation example showing the attributes of the left lane
line

After labeling is completed, export the result. Each image has a correspond-
ing json file containing the relevant labeling information. Figure 2.4 shows

12

an example.

In the subsequent training and inference of the model, we need to create
a mapping between label information and computer language. When gener-
ating the label of the lane line category, we will use a number to indicate the
corresponding lane line category. The category is shown in Table 2.2.

Category Number
Not Exist 0

Dotted Line 1
Solid Line 2

Undefined Line 3

Table 2.2: Lane line category label

13

2.3 Data Augmentation

Deep learning usually requires a large amount of training data to get more
desirable results. In the case of limited amount of data, the amount of data
can be expanded by data augmentation to increase the diversity of training
samples to reduce the reliance of the model on certain attributes. At the
same time, data augmentation can improve the generalization ability of the
model to avoid overfitting.

Number of video clips 763
Total frames 88000

Max number of frames 180
Min number of frames 8

Average number of frames 115

Table 2.3: Information of training set

From Table 2.3 we can see that the CULane training set has 763 video clips
with 88000 frames. Each clip contains 115 frames on average, so most of the
data scenes are duplicated. In order to improve the generalization ability of
the model, the data needs to be augmented.

Crop and Resize
For lane line detection tasks, real-time is an important factor that must be
considered. Reducing the size of the input image can improve the inference
speed of the model. Before the image is input to the model, the image needs
to be cropped and resized. it is known by common sense that the lane lines
do not appear in the sky, so that the sky part is first cropped before the
image is input to the model, about 240 pixel points in height. And then
resized the cropped image to 208x976.

Random Rotation
Curve detection has been one of the difficulties in lane line detection. The
main reason for the low accuracy of segmentation for curved scenes is that
most lane lines are straight, and the amount of data for curved scenes is
relatively low.In the CULane datasets, the curved lane scenes only account
for 1.2% of all training sets. During the training process, the model is unable
to learn the characteristics of curved lanes, and instead, it is more likely to

14

ignore this part of data as noise. In order to increase the amount of data for
the curved scenes, a random rotation data augmentation method was used
in the preprocessing stage. The rotation range is from -30 to +30 degrees
with a probability of 0.5. In this way, it is possible to increase the amount
of data of the curved scenes by 50%, thus improving the performance of the
model in segmenting the curved scenes.

Random Lane Erasing
Traffic jam is a common scenario in lane line detection task. Therefore, there
are scenarios where the lane lines are partially or completely blocked by other
vehicles. In this case, it is extremely important to accurately predict the
location of the blocked lane lines. In this work, a data augmentation method
is called random lane erasing designed: by cropping some areas in the original
image, we simulate the scene of lane blocking when the road is congested.
This method can improve the robustness of the model for lane line detection.

(a) Origin Image (b) Random Lane Erasing

Figure 2.5: Example of Random Lane Erasing

Figure 2.5 shows an example of Random Lane Erasing augmentation. The
position of each erase block is randomly generated in the image, while the
edge length of each erase block is between 50 and 100 pixels. Up to 3 erasure
blocks will appear in each image. It should be noted that Random Lane
Erasing only works on the original image and does not perform this opera-
tion on the ground truth.

Random Horizontal Flip
Flip is the most commonly used method in data augmentation. By flipping
the image in the horizontal or vertical direction, the positional relationship
between the pixels in the original image would be changed. Since lane lines
will only be on the ground and not in the air, the data can be augmented by
horizontal flipping to increase the diversity of the images.

15

(a) Origin Image (b) Random Horizontal Flip

Figure 2.6: Example of Random Horizontal Flip

Figure 2.6 shows the example of random horizontal flip. After the picture is
flipped, the position of the lane line also changed. We can see that the solid
line originally on the left is flipped to the right of the image and the dotted
line that was originally on the right came to the left of the image. While
flipping the original image, we also need to flip the ground truth and change
the value of the lane line pixels to reorder the position of the lane lines.

With the above several data augmentation operations, the amount of data is
effectively expanded, especially for lane lines in curved scenes and obscured
scenes. As a result, the generalization ability of the model in different sce-
narios and the robustness of the model are further improved.

16

Chapter 3

Lane Line
Detection-Classification Model

3.1 Convolutional Neural Network

Convolutional Neural Network (CNN) has been widely studied in various
computer vision tasks because of its powerful feature extraction capability
and excellent performance in experiments.

Figure 3.1: Architecture of LeNet-5[4]

Figure 3.1 is the structure of the classic image classification network LeNet-5,
which clearly shows the basic structure of Convolutional Neural Network:

1) Convolution layer As a core part of CNN, the convolutional is respon-
sible for extracting image features. By inputting the feature map to the
convolutional layer, the convolution kernel will slide on the convolutional
layer, and the distance of each sliding is called strip. The convolution
kernel and the element at the current coverage position are weighted and
summed at the corresponding position to obtain the value of the element

17

on the new feature map. Figure 3.2 shows the process of convolution op-
eration.

Figure 3.2: The 5x5 feature map passes the 3x3 convolution kernel[5]

2) Pooling layer Pooling can further reduce the image size obtained by
convolution without changing the depth of the channel. The pooling can
convert a higher-resolution picture into a lower-resolution picture, reduc-
ing the number of parameters of the network.

Common pooling operations include max pooling and average pooling.
When doing the maximum pooling operation, a spatial neighborhood was
designed and took the largest element from this spatial neighborhood as
the output. And average pooling was to output the average of all ele-
ments in that spatial neighborhood. The pooling operation only targets
the two dimensions of height and width, without changing the channel of
the feature map.

Figure 3.3 shows the pooling operation with 2x2 kernel size and strip
is 2.

18

Figure 3.3: Pooling

3) Fully connected layer While the convolutional layer and pooling layer
implement the feature extraction function, the fully connected layer maps
the learned features to the label space of the input data. In the recognition
task, the fully connected layer functions as a classifier.

Convolution layers extract the local features, and the pooling layer is used to
decrease the network size while preventing overfitting. The fully connected
layer integrates the extracted features. Finally, the classification result is
obtained through the softmax layer.

Convolutional neural networks mainly have the following characteristics: lo-
cal connection, weight sharing and multi-core convolution.

• Local Connectivity The receptive field is defined as the region in the
input space that a particular CNN’s feature is looking at[23]. In the
matrix data of the image, the value of each position is usually highly
correlated with the surrounding values: the closer pixels are more cor-
related, the features are more similar, and the probability of belonging
to the same object is greater; the farther pixels are correlated weaker.
The correlation between local pixels in the image is relatively high, and
the characteristics of the image can be obtained by strengthening the
connection between the local pixels.

• Weight Sharing Weight sharing means that each position on the
feature map shares a convolution kernel weight instead of having all
the independent weights for each position. By sharing weights, the
network size could be further reduced.

• Multi-kernel Convolution For extracting the features of the pic-
ture, multiple convolution kernels are used for computing convolution

19

on the image, where the number of extracted features is the same as
the number of convolution kernels.

20

3.2 Dilated Convolution

In general, semantic segmentation, we usually use convolutional layers and
pooling layers that in semantic segmentation were used to increase the num-
ber of channels to adjust the area of the receptive field. Each convolution
process will decrease the resolution of the feature map. In the process of
upsampling, there will be a loss of accuracy. In order to reduce this loss of
precision, the dilated convolution[24] has emerged. The dilated convolution
can keep the resolution of the features unchanged while the receptive field is
increased, thereby replacing the downsampling and upsampling operations.
The information obtained on a large scale is very important in computer
vision tasks, especially for semantic segmentation. Introducing a larger re-
ceptive field can improve the accuracy of segmentation.

Figure 3.4: Dilated Convolution[6]

Since the kernel size of the dilated convolution is the same as the ordinary
convolution, the size of the neural network remains unchanged. The dilated
convolution has a larger receptive field than the ordinary convolution, which
is adjusted by a dilation rate parameter. When different dilation rates are set,
the receptive fields will be different, thus obtaining multi-scale information.
The calculation formula for the output resolution of the feature map based
on dilated convolution is as follows:

kerneldilated = (DilationRate− 1) ∗ (kernel − 1) + kernel (Eq.3.1)

Featureout = (Featurein − kerneldilated + 2 ∗ padding)/stride+ 1 (Eq.3.2)

21

3.3 Semantic Segmentation

Semantic segmentation is another important research direction in computer
vision fields. A pixel-wise classification is conducted in semantic segmenta-
tion, while image-wise classification is performed in image recognition tasks.
This section will introduce two remarkable semantic segmentation models:
Fully Convolution Networks and SegNet.

Fully Convolution Network
Fully Convolution Network(FCN) [25] is a representative work of deep learn-
ing application in the image segmentation field. And it has become the basic
framework of semantic segmentation.

For a general CNN network, the last few layers are composed of fully con-
nected layers, and then the category information of the image is obtained
through Softmax. However, this one-dimensional result is the classification
information of the entire image, not the classification information of each
pixel. FCN proposes to replace the last few fully connected layers with the
convolutional layers. Then generate a two-dimensional feature map, and
output a segmentation map with the same size as the original image after
upsampling. However, FCN also has obvious shortcomings:

• Since the upsampling process is a simple deconvolution, the result ob-
tained is not fine, and the accuracy of image segmentation is not high
enough.

• Did not consider the relationship between pixels, lack of spatial consis-
tency.

22

Figure 3.5: Fully Connection Network

SegNet
The SegNet[7] proposed by Vijay et al. in 2015 provides an Encoder-Decoder
idea for the semantic segmentation network.

Figure 3.6: The Network structure of SegNet[7]

As shown in Figure 3.6, the network is designed as a symmetrical structure.
The Encoder part extracts features of the input image, while the Decoder
is used to restore the image detail information lost due to pooling during
the Encoder process. Compared with the skip architecture of FCN, the
recovery of spatial information in the Encoder-Decoder structure in SegNet
is a process of multiple gradual recoveries. In this way, multiple scales of
shallow semantic information can be combined to make the restoration of
spatial information more accurate. The Encoder-Decoder structure is widely
used in the field of semantic segmentation.

23

3.4 Attention Mechanism

Nowadays, inspired by a promising success in natural language processing
tasks, the attention mechanism concept has been increasingly studied and
adopted in diverse applications, including natural language processing and
computer vision. The attention mechanism can be autonomously learned by
the neural network, turning to help the public understand the world that
the neural network sees. The so-called Attention mechanism is a mechanism
that focuses on local information, such as a certain area in an image. As
the task changes, the area of attention is also changing. In the task of road
segmentation, an attention mechanism is often necessary to distinguish some
confusing targets, such as roads and sidewalks. The attention mechanism
helps the network focus on more critical features and suppress unnecessary
features, improving the ability of the model to segment objects.

SENet
SENet[8] is a typical channel attention mechanism network, and proposes
the Squeeze-and-Excitation Module(Figure 3.7). Channel attention can be
understood as what the neural network is looking at. Each layer of the CNN
has many convolution kernels, and each convolution kernel corresponds to
a characteristic channel. Score the features generated by each channel, and
suppress irrelevant features and enhance useful features according to the
corresponding score.

Figure 3.7: Squeeze-and-Excitation Module[8]

• Squeeze operation : Apply a Average Pooling to the feature map X
with C channels and output a 1x1xC feature map.

Fsq(xc) =
1

H ×W

WX
i=1

HX
j=1

xc(i, j), Fsq(xc) ∈ RC (Eq.3.3)

• Excitation operation : After two fully connected layers, the sigmoid
activation function is applied to limit the range of values between 0

24

and 1. Multiply this value as the scale to the C channels of X and use
it as the input data of the next stage.

DANet
The self-attention mechanism is an improvement of attention mechanism.
It selects more significant information for the target task from the global
information. Therefore, all the feature information of the image can be used
well. At the same time, the self-attention makes the network be concentrated
on itself without other additional information so as to better deal with the
dependence of long-distance or multi-level information in the image. Figure
3.8 is a network diagram of the self-attention mechanism.

Figure 3.8: Architecture of Self-Attention network

DANet[9] is a classic application of the self-attention mechanism. DANet is
a classic application of the self-attention mechanism, where the spatial and
channel feature dependencies are captured separately:

• Spatial dimension:. The spatial attention module tells the network
to look where. Spatial attention adjusts the attention of each position
of the feature map, so that the model pays more attention to the area
that deserves more attention.

• Channel dimension: The channel attention module tells the network
to look what. First calculate the relationship between all channels on
the feature map. Then a weighted summation is used for all channels
to aggregate the channel characteristics and redistribute the weight of
each channel.

The network architecture of DANet is shown in Figure 3.9. First, the output
dimensions of the two attention modules are converted through the convolu-
tional layer, and an element-wise summation is performed to achieve feature

25

fusion. Finally, convolution is followed to obtain the final predicted feature
map.

The DANet establishes interdependency between features to obtain global
contextual information, which helps to obtain more accurate segmentation
results.

Figure 3.9: DANet[9]

26

3.5 Model Overview

For the semantic segmentation part, we chose ERFNet[26] as the backbone
for feature extraction. ERFNet is a lightweight real-time semantic segmen-
tation network. Since the shape of the lane line is slender and the number of
pixels only occupies a small part of the whole picture, we add an improved
attention module between the encoder and the decoder. Since this is the
highest level of the network feature extraction part, the receptive field of
each point is large, the semantic information is also richer, and more mean-
ingful semantic representations can be obtained.

After extracting the features by an encoder, a lane line prediction model
is layered to detect if all lane lines exist or not. Through this module, the
network can be guided to acquire the global information of the entire picture.

After the decoder outputs the segmentation map of the lane line, we com-
bine the output segmentation map with the input original image for feature
extraction, and pass it through a lane line classification network to classify
the type of each lane line.

Finally, the outputs of these three modules are merged to get the final re-
sult. The overall architecture of the lane line detection-classification model
is shown in Figure 3.10:

Figure 3.10: System architecture of the inference model

27

3.6 Semantic Segmentation Module

In this work, a lightweight semantic segmentation network ERFNet[26] is
selected as the backbone after comprehensive weighting the segmentation
precision, inference time and model size. Thus, high efficiency and accuracy
of real time segmentation can be achieved by only few layers.

Figure 3.11: Architecture of ERFNet

Figure 3.11 depicts the network architecture of ERFNet, which adopts end-
to-end Encoder-Decoder structure. The model has 23 layers, of which, layers
1-16 are the encoder stage, and layers 17-23 are the decoder stage. The En-
coder part is similar to the conventional classification network. After each
downsampling layer, the number of channels increase as the image resolution
lowers. Finally, output the 128-dimensional feature map. For the Decoder
part, upsamples these feature maps to the original resolution, and the output
is the segmentation results of the same size as the original picture. Because
of the use of hierarchical upsampling, there is no need to use skip joins to
optimize the output as with FCN.

In the encoding stage, the Non-BN-1D module[26] is used to extract features.
The Non-BN-1D module is a convolution with a 1-dimensional decomposi-
tion kernel constructed using a non-bottleneck structure. Non-bottleneck-1D
decomposes the two 3 × 3 convolution kernels in the conventional residual
module into two sets of 3 × 1 and 1 × 3 one-dimensional convolutions. Using
the residual connection to fuse the input feature and the convolved feature
map, which strengthens the expressive ability of the network. Some specific
layers in the Non-BN-1D module utilize dilated convolution with expansion
rates of 2, 4, 8, and 16, respectively, in order to expand the receptive field
without increasing the amount of parameters, resulting in an obvious im-
provement on detection effect. The comparison between Non-BN-1D module
and residual module is shown in Figure 3.12.

28

(a) Residual module (b) Non-BN-1D

Figure 3.12: Comparison between residual module and Non-BN-1D module

3.7 Attention Module

The attention module used in this work refers to the SENet and DANet struc-
tures, and proposes a Balanced Attention Network (BANet) that combines
channel-dimension attention and spatial-dimension attention.

Figure 3.13: Architecture of BANet

Figure 3.13 shows the architecture of BANet. In the channel attention part,
the Squeeze and Excitation operations of SEnet are used. BANet integrates
and compresses channel information by applying pooling in the channel di-
mension for each point in the space, and finally redistributed the channel
weights.

In the spatial attention part, for an input feature map SA, SA ∈ RC×H×W .
First of all, pass SA through a convolutional layer, a BatchNorm layer

29

and a Relu activation to generate three new feature maps Q,K, V , where
Q = K = V = SA ∈ RC×H×W . Reshape Q,K into Q ∈ RC×N , K ∈ RN×C ,
where N = H×W . Then multiply the two matrices of Q and K, and get the
final spatial attention map with shape RN×N through a Softmax layer. Then
do matrix multiplication of the spatial attention map and V , and transpose
it back to shape RC×H×W . Finally, the outputs of the two attention modules
are added to obtain a further enhanced feature expression.

The attention module can be added to any position of the network. In
this work, after experimental comparison, we found that the segmentation
performance is best when BANet is placed after the last downsampling layer.
As it contains the richest feature information at that position.

Figure 3.14: The position of the Attention module in the network

30

3.8 Lane Line Existence Prediction Module

For the semantic segmentation task of lane lines, the CULane dataset used in
this project has no more than four lane lines labeled on each picture. There-
fore, a branch is added after the encoder extracts the features in order to
predict whether the lane line exists.

The semantic segmentation network essentially performs category prediction
for each pixel. Furthermore, global information is not sufficient to perform
the prediction task. It is more difficult to understand contextual informa-
tion without global information. By adding the lane line existence prediction
branch after the encoder extracts the features, the network can be guided
to understand the differences among lane line instances, and can assist in
predicting whether the lane line exists.

The structure of the lane line existence prediction module is shown in the
Figure 3.15. From the output of the feature map from the encoder, the
features are further extracted through two consecutive convolution modules.
The Softmax was used to normalize the output feature map in the channel
dimension. In the end, two continuous fully connected layers and the sigmoid
activation are used to obtain a vector with a dimension of 1x4. Each value
represents the probability that the network predicts the existence of each
lane line.

Figure 3.15: Lane Existence Module. For the output result: 1 means that
the lane line exists, and 0 means that it does not exist.

31

3.9 Lane Classification Module

For autonomous driving, it is insufficient to only detect the position of the
lane lines. The type of lane line must also be taken into consideration. Only
by providing correct lane line position information and category information,
the subsequent trajectory planning can make correct decisions.

In this work, we designed a lane line classification network to classify the
lane line images after feature extraction.

(a) LaneClsNet (b) ConvBlock

Figure 3.16: Architecture of LaneClsNet

The structure diagram of lane line classification network is shown in Figure
3.16, which is mainly composed of three successive convolutional blocks(ConvBlock)
and two fully connected layers. The final lane line is divided into 3 classes:
dotted line, solid line and undefined line.

Layer Out Channels Out Resolution
ConvBlock 16 64x64
ConvBlock 32 32x32
ConvBlock 64 16x16

FC,BN,Relu 1024
FC 3

Table 3.1: Classification Network Architecture with the resolution of the
input image 128x128

32

3.10 Loss Function

The loss function is used in the neural network to calculate the bias between
the ground truth and the predicted value. It is a criterion for evaluating
the performance of the network and can guide the optimization direction of
network parameters. In this work, the following two loss functions are mainly
employed.

Cross Entropy Loss
For multi-classification tasks, the softmax activation function is generally
applied to normalize the output before the cross entropy loss function is
applied, so that the sum of the predicted probabilities of each category is 1.
The calculation formula of softmax is shown in Eq.3.4:

Softmax(ai) =
eaiPn
i=1e

ai
(Eq.3.4)

Among them, i represents the ith category, and ai represents the score of
category i predicted by the network.

The formula of cross entropy loss is shown in Eq.3.5. ai is the ground truth
of category i, while pi is the probability value of category i, and N is the
number of categories.

LossCE = − 1

N

NX
i=1

ailog(pi) (Eq.3.5)

Binary Cross Entropy Loss
In the lane line existence prediction module, it is necessary to determine
whether each lane line exists. Since it is a binary classification problem,
therefore, the binary cross entropyEq.3.6 is applied.

LossBCE = − 1

N

NX
i=1

ailogâi − (1− ai)log(1− âi) (Eq.3.6)

N represents the total number of lane lines, while xi indicates the probability
of predicting whether the i − th lane line exists, and x̂i indicates the true
value of whether the i− th lane line exists.

Weighted Loss Function
In computer vision tasks, category imbalance is a common problem. Imbal-
anced categories can easily cause the model to focus on categories with a

33

large number of samples, while ignoring categories with a small number of
samples. In view of this situation, different weights can be set for the mi-
nority sample category and the majority sample category, so that the model
can pay more attention to the minor sample.

In the task of lane line segmentation, because the shape of the lane line is
slender, the pixels of the lane line in the image only occupy a small area, and
the rest are the background. Therefore, In order to reduce the weight of the
background category, the weighted cross entropy loss function is introduced
in this work, so that the model training pours more attention into the lane
line part.

34

Chapter 4

Experiments and Results

4.1 Experimental Environment

The training, testing and evaluation of this project are all done on the
servers of Boden Intelligent Technology, LLC. The experimental environ-
ment is Ubuntu operating system, and the GPU model is NVIDIA GeForce
GTX 2080Ti. There are 6 GPUs in total, the video memory size of each
piece is 11GB. The characteristics listed in Tabel 4.1.

All the code is implemented based on the PyTorch deep learning framework.

OS Ubuntu 16.04
CPU Model Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz
Computing Cores 48
Number of Nodes 2
Sustained Performance 1920 FLOPs
GPU Model NVIDIA GeForce RTX 2080Ti Graphics Card
Number of GPUs 6
Single GPU Memory 11GB

Table 4.1: Configuration information of server of Boden Intelligent Technol-
ogy, LLC.

35

4.2 Implementation Details

4.2.1 Pre-processing

First of all, we cut off the sky part of the images because the lane line will
not appear in the sky. Then we resized the new input images to 208x976.
The smaller size of the input image is, the more efficiency can we get from
the inference model in real-time performance.

As to data augmentation, in this work, random scale, random crop, random
rotation, random flip, random erasing and normalize are used to process the
input images. During the experiments, we set the same data augmentation
strategies to the method.

4.2.2 Training Hyper-parameters

The entire training process is divided into 2 steps. First, trained the seman-
tic segmentation module, a total of 15 epochs, and 50000+ iterations. After
the training of the semantic segmentation module is completed, the lane line
classification branch is trained.

We apply SGD[27] optimizer to update all layers in the model and the initial
learning rate is set to 0.01. The learning rate update strategy is exponential
decay:

lr = lrinit ∗ (
1− epoch
epochtotal

)0.9 (Eq.4.1)

The total number of training epochs is 15 and the batch size is set to 20.
Because of the slender shape of the lane line, the pixel area occupied by it
is very small in the whole image. Therefore, when classifying each pixel, a
weighted cross entropy loss function is applied. Among them, the weight of
the background part is set to 0.4 to reduce the impact of category imbalance.

36

4.2.3 Feature Extraction

Due to the slender shape of the lane line, it only occupies a small amount of
pixels in the image. Therefore, it is necessary to pre-process the road image
to eliminate the noise that affects the lane line detection. After that, high-
lighting the contour information of the lane line and improve the accuracy
of the subsequent algorithm.

In the field of computer vision, according to different detection tasks, a part
of the image is generally taken as the area to be processed. This part of the
area is also called the Region of Interest (RoI). In the lane line classification
task, what we need to predict is the type of the lane line directly in front
of the vehicle. When dividing the area of interest, it is necessary to remove
the areas that interfere with the classification results, such as the sky, build-
ings, and the hood of the ego-car. The robustness of the algorithm can be
improved after the interference is effectively eliminated. Moreover, reducing
the image size can speed up the inference speed of the model.

Figure 4.1: Example of feature extraction of left lane line. From top to
bottom are the original image, the segmentation image, and the lane line
extraction image.

The steps for feature extraction of lane lines are as follows:

1) Since the lane line will only exist on the road, the sky in the original
image is cropped first.

2) According to the segmented image of each lane line, the corresponding
pixel need to be found out in the original image.

37

3) Move all non-zero pixels to the leftmost side of the image.

4) Since the type of lane line in the picture is determined by the type of
lane line directly in front of the hood of the vehicle. Therefore, the image
needs to be further cropped, and finally cropped to a picture with a height
of 128 pixels and a width of 32 pixels.

(a) LL (b) L (c) R (d) RR

Figure 4.2: Outputs after feature extraction

38

4.3 Evaluation Metrics

The CULane dataset uses F1-measure to evaluate the ability of the model to
predict lane lines.

4.3.1 Intersection-over-Union

To evaluate the accuracy of the predicted lane lines, the first step is to cal-
culate the Intersection-over-Union (IoU). In the semantic segmentation task,
IoU is the overlap rate between the segmentation result and the ground truth.

Figure 4.3: IoU equation

4.3.2 Confusion matrix

Confusion matrix is the most basic and intuitive index to measure the accu-
racy of classification model.

39

Figure 4.4: Confusion Matrix

In the lane line segmentation task:

• TP : Lane lines detected, the number of the correct predictions.

• FN : The number of lane lines that are not detected but actually exist.

• FP : Lane lines detected, the number of the wrong predictions.

• TN : This situation is not considered for lane line detection.

4.3.3 Precision, Recall and F1-Measure

With this confusion matrix, we can calculate the Precision, Recall and F1-
Measure. The calculation formulas are as follows:

Precision =
TP

TP + FP
(Eq.4.2)

Recall =
TP

TP + FN
(Eq.4.3)

F1 =
2× Precision×Recall
Precision+Recall

(Eq.4.4)

40

The Precision represents the precision of the model and is the ratio of the
number of correct predictions to the total number of predictions.

The Recall is the ratio of the number of targets detected in the data to the
total number of targets actually present.

The Precision and Recall cannot reflect the real level of model capability, so
F 1-Measure should be used for comprehensive consideration. F 1-Measure is
the weighted harmonic average of Precision and Recall.

4.3.4 Lane line model evaluation steps

The lane line model evaluation process is as following:

1) Get the predicted segmentation diagram of lane line by neural network;

2) Sampling at a fixed height of the segmentation diagram to obtain the
sampling point of each lane line;

3) Connect the sampling points of each lane into a line with a width of 30
pixels;

4) The lines connected by the sampling points were compared with the
ground truth, then calculate the IoU between them. If the IoU is larger
than a certain threshold, we considered the predicted lane line was correct,
which was True Positive(TP). Otherwise, it is False Positive(FP);

5) Count TP, FP and FN. Finally, calculate F1-Measure.

41

4.4 Results

To validate our method, we will show the experimental results from two
parts.

4.4.1 Performance on lane segmentation

In the lane line segmentation task, the loss formula of this project is as Eq.4.5:

Losstot = αLossseg + βLossexist (Eq.4.5)

Among them, Lossseg uses the Cross Entropy loss while Lossexist uses the
Binary Cross Entropy loss. Figure 4.5 shows the loss during the training
process with a total of 500000k iterations. In this experiment, we set α equal
to 1, while β equal to 0.1

(a) Total Loss (b) Segmentation Loss (c) Lane Existence Loss

Figure 4.5: Segmentation Loss

It can be observed from the Figure 4.5 that due to the loading of the pre-
trained model, the losses drop very quickly at the beginning. The Lossseg
reaches the optimum when it is close to 50,000 iterations. Due to the simple
data structure of the lane line existence prediction branch, Lossexist con-
verges quickly and is close to the optimum after 10000 iterations of training.

42

(a) Image (b) Ground truth (c) ERFNet (d) Our model

Figure 4.6: Visualization on the CULane dataset.

The results of the lane segmentation on the CULane datasets are given in
Figure 4.6. From left to right are the origin image, the ground truth, the
prediction of ERFNet model, the prediction of our model. Using different
colors to indicate lane lines at different positions. Among them, red repre-
sents the left lane line of the left lane, yellow represents the left lane line of
the ego-lane, green represents the right lane line of the ego-lane, and blue rep-
resents the right lane line of the right lane. Comparing the ERFNet model to
our model, we can see that the segmentation results of our model in various
situations have a more robust performance.

4.4.2 Ablation Study

Comparison with other models
The performance of different models on the CULane testing set is shown
in Table 4.2. From the results, the performance of our lane detection-
classification model outperform the baseline. The F1-Measure value reached
74.0, which is higher than SCNN algorithm and ERFNet algorithm.

43

Category Proportion ERFNet[28] SCNN[1] Our Model
Normal 27.7% 91.5 90.6 91.6

Crowded 23.4% 71.6 69.7 72.2
Curve 1.2% 71.6 64.4 65.1
Night 20.3% 67.1 66.1 69.7

No-line 11.7% 45.1 43.4 46.1
Shadow 2.7% 71.3 66.9 75.1
Arrow 2.6% 87.2 84.1 85.8

Highlight 1.4% 66.0 58.5 64.8
Crossroad 9.0% 2199 1990 2320

Total 100.0% 73.1 71.6 74.0

Table 4.2: F1-measure performance of different algorithms on CULane test-
ing set.

Comparison with other attention modules
In order to further verify the effectiveness of the attention module proposed
in this work, we compared it with several commonly used attention modules.
The ERFNet semantic segmentation network is regarded as the baseline. The
insertion position of the attention module is after the last downsampling.
The hyperparameters used during training are all the same, and the data
augmentation used is also the same. The experimental results are shown in
Table 4.3.

Model Precision Recall F1-Measure Param.(M) Flops(GMac)
Baseline 73.1 2.61 11.30

+CBAM[29] 73.8 73.6 73.6 2.64 11.69
+DANet[9] 74.1 74.2 74.2 2.93 12.58

+SE[8] 74.1 72.5 73.3 2.61 11.57
Ours 74.4 73.5 74.0 2.65 11.64

Table 4.3: Comparison results of different attention modules

From the table 4.3, we can see that adding the SE module to the model
has hardly effect on the parameters. However, since SE only considers the
attention in the channel dimension, its performance improvement on the
model is very limitedand it is only increased by 0.2 compared with the base-
line F1-Measure. DANet performs better than other attention modules in
segmentation performance. But compared with other attention modules,
DANet brings the largest amount of parameters. Our model increases the
F1-measure by 0.9 while only increasing the amount of 0.2M parameters.

44

Comparison of attention modules in different positions
In this project, we also compared the performance of adding attention mod-
ules to different positions on the network. In this project, we also compared
the performance of adding attention modules to different positions on the
network. The position where the attention module can insert is shown in the
Figure 4.7. From the table 4.4, we can see that adding the attention module
proposed in this article to the Encoder’s last downsampling brings the most
segmentation performance gain. This shows that at the end of the encoder,
the network is the deepest and contains the richest semantic information.
BANet can let the model focus on critical semantic information.

Figure 4.7: The position of the attention module in the semantic segmenta-
tion network. a: After the second downsampling; c: After the third down-
sampling; c: After the first upsampling

a b c
F1-Measure 73.6 74.0 73.3

Table 4.4: Experimental results of attention modules in different positions

4.4.3 Performance on lane line classification

Two different experiments are carried out for the lane line classification ex-
periments.

45

2 classes lane line classification
In the first experiment, we trained a binary classification network that can
distinguish between dotted and solid lines. To achieve this, the lane line
category information is reclassified. The white single dotted line, yellow single
dotted line, dotted-solid line(the dotted line is close to the side of the ego-
lane) are regarded as dotted lines. Meanwhile, white single solid line, yellow
single solid line, yellow double solid line, dotted-solid line(the solid line is
close to the side of the ego-lane) are regarded as solid lines. This part of
the experiment ignores the situation that the lane features are not obvious
and the lane line cannot be defined. By distinguishing whether the lane line
is a dashed line or a solid line, it can be determined whether the current lane
can be crossed.

Dataset Number Lane type Number

Training 15303
Dotted Line 8647
Solid Line 6656

Validation 1670
Dotted Line 974
Solid Line 696

Table 4.5: Distribution of 2-class lane line dataset

(a) Loss of training set (b) Training accuracy (c) Validation accuracy

Figure 4.8: 2 classes lane line classification training curves

The training curves are shown in Figure 4.8. The network tends to converge
in about 70 epochs. Finally, the accuracy of the two-class lane line classifica-
tion model on the training set is 92.5%, and the accuracy on the validation
set is 91%.

3 classes lane line classification

46

In the second experiment, the Undefined Line category was added. Lane
lines in this case often appear at the entrances and exits of buildings. Lane
lines exist but are not marked.

Dataset Number Lane type Number

Training 16649
Dotted Line 8647
Solid Line 6656
Undefined 1346

Validation 1806
Dotted Line 974
Solid Line 696
Undefined 136

Table 4.6: Distribution of 3-class lane line dataset

(a) Loss of training set (b) Training accuracy (c) Validation accuracy

Figure 4.9: 3 classes lane line classification training curves

The training curves are shown in Figure 4.9. The training parameters are
set to a total of 150 epochs, the initial learning rate is 0.001, and the loss
function adopts the cross entropy loss function. The network tends to con-
verge in about 90 epochs. Finally, the accuracy of the three-class lane line
classification model on the training set is 90.7%, and the accuracy on the
validation set is 90.2%. The confusion matrix for the 3 classes classification
is shown in Figure 4.10.

Figure 4.11 shows the segmentation and classification results of lane lines in
different scenarios. We can see that under the ideal condition, such as the
light is brighter and the lane line is not sheltered, the classification prediction
of the lane line is more accurate. And in the darker or more crowded scene,
the accuracy of the classification result is relatively low.

47

Figure 4.10: Confusion matrix for the 3 classes classification

(a) Input (b) Segmentation (c) Classification

Figure 4.11: Lane line detection and classification results of different scenes.
In (c), red represents solid line and green represents dotted line.

In this case, we infer that since the input image resolution is only 128x128,
it is easy to be occluded when extracting features. And there are many dark
scenes in the data set, and the lane lines are not clearly displayed, which may
easily cause misdetection of the classifier.

Table 4.7 is the average inference time on the test set. Among them, lane

48

line detection takes an average of 24ms, and lane line classification takes an
average of 7ms. A total of 31ms, which meets the real-time requirements of
lane line detection task.

Detection Classification Total
Time(ms) 24 7 31

Table 4.7: Inference time of the model

49

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work, we first analyze and compare the lane line detection algorithms
based on the traditional methodologies and the deep learning methodologies.
Aiming at the difficulties in current lane line detection tasks, we propose a
two-stage end-to-end lane line detection-classification model based on deep
learning. The main contributions are as follows:

1) Labeled on CULane dataset, the largest public lane line dataset. Among
them, 10600 images were selected, and the lane line classification infor-
mation was added on the basis of the original annotations.

2) The Balanced Attention Network is proposed to capture the mutual de-
pendence of global features in space and channel dimensions. While im-
proving the segmentation performance of the model, it does not signif-
icantly increase the amount of network parameters, achieving a balance
between performance and efficiency.

3) The lane line existence prediction module and the Balanced Attention
Network are added to the ERFNet network. The final F1-Measure is
74.0%. Achieving comparable performance with other models with even
less computation cost.

4) Designed a lane line classification network. The original image and the
semantic segmentation result are combined to extract and reconstruct the
image of lane line. Then use the lane line classification network to predict
the category. In the two-class and three-class experiments, the accuracy
on both verification sets exceeded 90%.

50

5.2 Future Work

The lane line detection algorithm proposed in this work has a good detection
effect. Although it has been improved compared with the baseline, there are
still following aspects that can be improved in future works:

1) Due to the imbalance of the data set, there are fewer scenes in the curve,
which leads to the low accuracy of the model’s prediction of the curve. If
there are sufficient data of curve scenes for training, the robustness of the
model will be further strengthened.

2) The ERFNet semantic segmentation network used in this work can only
predict a fixed number of lane lines, which limits practical road applica-
tions. In the future, the network structure can be modified and corre-
sponding post-processing can be added to predict a variable number of
lane lines;

3) In the lane line classification part, we currently only divide the output into
3 categories: dashed line, solid line and non-existent. But there are more
kinds of lane lines in real life scenes, and they have different meanings.
In the future, if it can output more lane line classifications, it will be able
to bring greater improvements to autonomous driving.

4) The collection and labeling of data sets are costly. There are few open
lane line datasets and their labeling standards are different, which brings
us greater difficulties in preprocessing the data. In the future, we can
combine unsupervised learning methods such as GAN[30] to generate the
road images we need, which can greatly reduce the cost of labeling.

51

Reference

[1] Xingang Pan, Jianping Shi, Ping Luo, Xiaogang Wang, and Xiaoou
Tang. Spatial As Deep: Spatial CNN for Traffic Scene Understanding.
arXiv e-prints, page arXiv:1712.06080, December 2017.

[2] Davy Neven, Bert De Brabandere, Stamatios Georgoulis, Marc Proes-
mans, and Luc Van Gool. Towards End-to-End Lane Detection: an In-
stance Segmentation Approach. arXiv e-prints, page arXiv:1802.05591,
February 2018.

[3] Lucas Tabelini, Rodrigo Berriel, Thiago M. Paixão, Claudine Badue,
Alberto F. De Souza, and Thiago Oliveira-Santos. PolyLaneNet: Lane
Estimation via Deep Polynomial Regression. arXiv e-prints, page
arXiv:2004.10924, April 2020.

[4] Yann Lecun, Leon Bottou, Y. Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the
IEEE, 86:2278 – 2324, 12 1998.

[5] Xue Bing. . https://images.app.goo.gl/7vGpKxT5WCSPC9ej6.

[6] Fisher Yu and Vladlen Koltun. Multi-Scale Context Aggregation by
Dilated Convolutions. arXiv e-prints, page arXiv:1511.07122, November
2015.

[7] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A
Deep Convolutional Encoder-Decoder Architecture for Image Segmen-
tation. arXiv e-prints, page arXiv:1511.00561, November 2015.

[8] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7132–7141, 2018.

[9] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang, and
Hanqing Lu. Dual Attention Network for Scene Segmentation. arXiv
e-prints, page arXiv:1809.02983, September 2018.

52

https://images.app.goo.gl/7vGpKxT5WCSPC9ej6

[10] A. Borkar, M. Hayes, and M. T. Smith. Polar randomized hough trans-
form for lane detection using loose constraints of parallel lines. In 2011
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 1037–1040, 2011.

[11] M. Fischler and R. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography. Communications of the ACM, 24(6):381–395, 1981.

[12] Dong-Joong Kang and Mun-Ho Jung. Road lane segmentation using
dynamic programming for active safety vehicles. Pattern Recognition
Letters, 24(16):3177–3185, 2003.

[13] M. Heath, S. Sarkar, T. Sanocki, and K. Bowyer. Comparison of edge
detectors: a methodology and initial study. In Proceedings CVPR IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition, pages 143–148, 1996.

[14] Juan M. Collado, Cristina Hilario, Arturo de la Escalera, and Jose M.
Armingol. Adaptative road lanes detection and classification. In Jacques
Blanc-Talon, Wilfried Philips, Dan Popescu, and Paul Scheunders, ed-
itors, Advanced Concepts for Intelligent Vision Systems, pages 1151–
1162, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[15] S. Zhou, Y. Jiang, J. Xi, J. Gong, G. Xiong, and H. Chen. A novel lane
detection based on geometrical model and gabor filter. In 2010 IEEE
Intelligent Vehicles Symposium, pages 59–64, 2010.

[16] I. Fogel and D. Sagi. Gabor filters as texture discriminator. Biological
Cybernetics, 61:103–113, 2004.

[17] A. Bosaghzadeh and S. S. Routeh. A novel pca perspective mapping
for robust lane detection in urban streets. In 2017 Artificial Intelligence
and Signal Processing Conference (AISP), pages 145–150, 2017.

[18] J. Kim, S. Kim, S. Lee, T. Lee, and J. Lim. Lane recognition algorithm
using lane shape and color features for vehicle black box. In 2018 Inter-
national Conference on Electronics, Information, and Communication
(ICEIC), pages 1–2, 2018.

[19] Fabio Pizzati, Marco Allodi, Alejandro Barrera, and Fernando Garćıa.
Lane detection and classification using cascaded cnns. In Roberto
Moreno-Dı́az, Franz Pichler, and Alexis Quesada-Arencibia, editors,

53

Computer Aided Systems Theory – EUROCAST 2019, pages 95–103,
Cham, 2020. Springer International Publishing.

[20] Ping Luo Xiaogang Wang Xingang Pan, Jianping Shi and Xiaoou Tang.
Spatial as deep: Spatial cnn for traffic scene understanding. In AAAI
Conference on Artificial Intelligence (AAAI), February 2018.

[21] Tusimple datasets. https://github.com/TuSimple/tusimple-bench

mark.

[22] Boden intelligent technology co., ltd. https://www.bodenai.com.

[23] Dang Ha The Hien. A guide to receptive field arithmetic for Convolu-
tional Neural Networks. https://medium.com/mlreview/a-guide-t

o-receptive-field-arithmetic-for-convolutional-neural-net

works-e0f514068807, 2017.

[24] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Mur-
phy, and Alan L. Yuille. Semantic Image Segmentation with Deep
Convolutional Nets and Fully Connected CRFs. arXiv e-prints, page
arXiv:1412.7062, December 2014.

[25] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convo-
lutional Networks for Semantic Segmentation. arXiv e-prints, page
arXiv:1411.4038, November 2014.

[26] Eduardo Romera, Jose M. Alvarez, Luis Bergasa, and Roberto Arroyo.
Erfnet: Efficient residual factorized convnet for real-time semantic seg-
mentation. IEEE Transactions on Intelligent Transportation Systems,
PP:1–10, 10 2017.

[27] Sebastian Ruder. An overview of gradient descent optimization algo-
rithms. arXiv e-prints, page arXiv:1609.04747, September 2016.

[28] Tong Liu, Zhaowei Chen, Yi Yang, Zehao Wu, and Haowei Li. Lane De-
tection in Low-light Conditions Using an Efficient Data Enhancement :
Light Conditions Style Transfer. arXiv e-prints, page arXiv:2002.01177,
February 2020.

[29] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon.
CBAM: Convolutional Block Attention Module. arXiv e-prints, page
arXiv:1807.06521, July 2018.

54

https://github.com/TuSimple/tusimple-benchmark
https://github.com/TuSimple/tusimple-benchmark
https://www.bodenai.com
https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807
https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807
https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807

[30] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative Adversarial Networks. arXiv e-prints, page arXiv:1406.2661,
June 2014.

55

	Introduction
	Background
	State-of-the-Art
	The Traditional Methodologies
	The Deep Learning Methodologies

	Motivation and Task Description
	Motivation and Objective
	Contents Overview

	Data and Data Augmentation
	Dataset Overview
	Data Annotation
	Data Augmentation

	Lane Line Detection-Classification Model
	Convolutional Neural Network
	Dilated Convolution
	Semantic Segmentation
	Attention Mechanism
	Model Overview
	Semantic Segmentation Module
	Attention Module
	Lane Line Existence Prediction Module
	Lane Classification Module
	Loss Function

	Experiments and Results
	Experimental Environment
	Implementation Details
	Pre-processing
	Training Hyper-parameters
	Feature Extraction

	Evaluation Metrics
	Intersection-over-Union
	Confusion matrix
	Precision, Recall and F1-Measure
	Lane line model evaluation steps

	Results
	Performance on lane segmentation
	Ablation Study
	Performance on lane line classification

	Conclusions and Future Work
	Conclusions
	Future Work

	Reference

