
POLITECNICO DI TORINO

Master of Science degree in ICT for Smart Societies

"In-The-Air" ML-Driven Optimization of UAV Coverage and

Resource Utilization

Thesis Supervisors:

Prof. Carla Fabiana Chiasserini

Prof. Enrico Natalizio

Candidate:

Lorenzo Bellone s258340

Academic Year 2020-2021

Abstract

Unmanned Aerial Vehicles (UAVs) are being deeply investigated because of the sev-
eral services and improvements they can provide in different application fields. They
have been considered as enablers of several applications, especially when the ground
users require them to complete specific tasks, such as target tracking, event iden-
tification or areas monitoring. Although several works have addressed numerous
challenges in using UAVs, their communication capabilities, their trajectories def-
inition and their constrained on-board computational resources still need a deeper
investigation. Furthermore, the need for distributed control solutions to foster UAVs’
cooperation in large scale scenarios is sharply increasing in the research community.
Reinforcement Learning (RL) has drawn a lot of interest within this context. The
application of this framework in decision-making problems has brought sensational
results in both single and multi-agent systems. Furthermore, state-of-the-art Deep
Reinforcement Learning (DRL) algorithms are constantly enlarging the application
domains in which this approach overcomes benchmarking solutions.
In this work, a scenario where ground users assign tasks to UAVs is considered,
each task requiring a certain computational effort. The aim is thus to envision a
distributed control solution for UAVs trajectories, which jointly maximizes the cov-
erage of ground users and the computational resource utilization of the individual
UAVs. A multi-agent deep reinforcement learning approach is used for the trajectory
definition, which will be based on a partial knowledge that UAVs can gather from the
environment. More in details, two different observation scenarios are considered and
compared: (i) a centralized observation, where each UAV knows the positions of all
the others, no matter where they are, and (ii) a more distributed observation, where
each UAV gather information only from its neighbors and from the ground users it is
covering. The performance evaluation based on the training of the models in prelim-

i

inary simulations presents a remarkable increase in terms of coverage and resource
utilization of the UAV network. Furthermore, the trained models are leveraged in
a realistic network simulation, observing the challenges that the DRL approach has
to face in a more sophisticated environment. Although the implementation of the
models presents main limitations in the application to a realistic scenario, the re-
sults show the potentials of the proposed approach, and encourage to look into it for
defining further improvements.

ii

Contents

List of Figures vi

List of Tables vii

List of Algorithms viii

1 Introduction 1

1.1 Context and Problem Statement . 2
1.2 Structure of the thesis . 4

2 Literature Review 7

2.1 Coverage and Connectivity Optimization 9
2.1.1 Reinforcement Learning Approaches 9
2.1.2 Evolutionary Computation Approaches 11

2.2 UAV Networks for Task Offloading 11
2.2.1 UAV-to-Infrastructure . 12
2.2.2 GU-to-UAV . 13

3 Theoretical Background 17

3.1 Unmanned aerial vehicles and multi-UAV Networks 17
3.1.1 FANETs . 19

3.2 Reinforcement Learning . 23
3.2.1 Fundamentals of Reinforcement Learning 23

iii

3.2.2 Tabular Methods . 27
3.3 Deep Reinforcement Learning . 31

3.3.1 Fundamentals of Neural Networks 32
3.3.2 Convolutional Neural Networks 36
3.3.3 Value-based DRL . 39
3.3.4 Policy Gradient Methods . 43

4 Problem Formalization and Algorithm Setup 47

4.1 Problem Formalization . 47
4.1.1 Observations . 48
4.1.2 Actions . 49
4.1.3 Reward . 50

4.2 Algorithm Setup . 51
4.2.1 Neural Networks Design . 51
4.2.2 Training Process . 53

5 Tools and Implementation 56

5.1 Tools . 56
5.1.1 PyTorch . 56
5.1.2 Network Simulator 3 (ns-3) 57
5.1.3 Ns-3 - Gym . 58

5.2 Outline of the Methodology . 61
5.3 Python Simulation Implementation 62
5.4 Ns-3 Simulation Implementation . 64

5.4.1 Network Architecture . 65
5.4.2 Mobility Models . 65
5.4.3 Applications . 66
5.4.4 Policy Transfer on ns-3 . 70

5.5 Limitations . 71

iv

6 Experimental Results and Discussion 74

6.1 Python Experiments . 75
6.1.1 Simulation with "Static Clusters" 75
6.1.2 Simulation with "Dynamic Clusters" 79
6.1.3 Simulation with "Dynamic Activity" 81

6.2 Ns-3 Experiments . 85
6.2.1 Centralized Observation Experiments 87
6.2.2 Partial Observation Experiments 88

7 Conclusions 92

7.1 Future Works . 94

A Reinforcement Learning Algorithms 97

A.1 Dynamic Programming . 97
A.2 Monte Carlo Methods . 99
A.3 Temporal Difference Methods . 99
A.4 Deep Deterministic Policy Gradient 100

v

List of Figures

1.1 Visual representation of the scenario presented in this work. 3

2.1 "Applications of Artificial Intelligence/Machine Learning in UAV-based
communication networks". 8

2.2 "Architecture of UAV-M3T". 14

3.1 Example of FANET application extending the scalability of a multi-
UAV system. 20

3.2 "Impression of a complete FANET architecture". 21
3.3 Interaction loop between the agent and the environment. 25
3.4 Architecture of a single neuron. 32
3.5 Fully connected feed forward neural network with one hidden layer. . 33
3.6 Example of a Convolution Operation. 38
3.7 Example of a MaxPooling Operation. 39
3.8 Architecture of LeNet, a CNN for digit recognition. 40
3.9 Example of a Q-Network. 41
3.10 Training step of the Q-Network exploiting a target network with pa-

rameters θ′. 42
3.11 The actor critic architecture. 45

4.1 Two different observation scenarios: centralized and partial. 49
4.2 Discrete action space of the modeled POMDP. 50
4.3 Neural Networks design for the multi-agent decision making problem. 54

vi

4.4 DQN Training Process with Multiple Agents 55

5.1 Architecture of ns-3 - Gym framework [45]. 59
5.2 Overview of the methodology for the framework design. 61

6.1 Screen shot acquired from the "static clusters" scenario 76
6.2 DQN Static Clusters Scenario Running Reward Plot. 78
6.3 DQN Dynamic Clusters Scenario Running Reward Plot. 81
6.4 Screen shot acquired from the "dynamic clusters" scenario. 82
6.5 DQN Dynamic Activity Scenario Running Reward Plot. 83
6.6 Screen shot acquired from the "dynamic activity" scenario. 85
6.7 DQN ns-3 Centralized Environment Coverage and Task Completion. . 89
6.8 DQN ns-3 Partial Observation Environment Coverage and Task Com-

pletion . 91

vii

List of Tables

6.1 Parameters used in the Python simulation with "static clusters". . . . 77
6.2 DQN hyper-parameters setup for the "static clusters" scenario. 78
6.3 Parameters used in the Python simulation with "dynamic clusters". . 79
6.4 DQN hyper-parameters setup for the "dynamic clusters" scenario. . . 80
6.5 Parameters used in the Python simulation with "dynamic activity". . 83
6.6 DQN hyper-parameters setup for the "dynamic clusters" Python en-

vironment. 84
6.7 Parameters used in the ns-3 simulation. 86

viii

List of Algorithms

1 Deep Q-Network with Experience Replay 43
2 Value Iteration Algorithm . 97
3 Policy Iteration Algorithm . 98
4 First Visit Monte Carlo Prediction 99
5 SARSA Algorithm . 99
6 Q-learning Algorithm . 100
7 DDPG Algorithm . 101

ix

Chapter 1

Introduction

UAV networks is an emerging technology that is drawing a lot of attention due to
the broad set of application domains it can provide. According to their role in a
wireless network, UAVs can be used for different purposes: on one hand, they can
operate as users of the network, and be exploited in applications such as surveillance,
package delivery or precision agriculture. On the other hand, they can serve as aerial
base stations, thus supporting and extending/replacing the existing communication
infrastructures in application fields where these facilities are hard to be deployed due
to the remote or inaccessible locations. Thanks to their ability to adjust their posi-
tion in the three-dimensional space, they can increase the likelihood of establishing
a line of sight link with the ground users, thus providing an actual enhancement of
the wireless network coverage and capacity.
Recent works on UAV networks have demonstrated how the communication chal-
lenges and open problems related to the deployment and utilization of this technol-
ogy are still in an early stage. However, their interest is sharply increasing in the
research community due to the enormous advantages they can bring, especially to-
wards the next generation wireless communication networks [1].
One of the main challenges that has been considered in the proper deployment of
UAV networks regards position related aspects. Since the main innovation brought

1

by UAV networks is the possibility to have highly dynamic nodes, their proper place-
ment in the space has to be correctly configured in order to take full advantage of
the system. Placement and trajectory design problems in UAV networks have been
notably studied in a wide range of applications. Nonetheless, there is still lack of
contributions for distributed control solutions that, according to a local understand-
ing of the current environment, drive each UAV towards an optimal position. In this
context, the use of Machine Learning (ML) frameworks can bring a level of intelli-
gence in the deployment of UAV networks that allows to identify valid information
and patterns, usually too complex to be derived by humans.
More in details, reinforcement learning approaches have acquired a considerable in-
terest in control design applications. RL is a field of machine learning whose aim
is to solve Markov Decision Processes (MDP), where an agent learns how to make
decisions according to observations of the surrounding environment and a correspon-
dent value of reward. In the past few years, this paradigm has achieved sensational
results by learning how to play games such as Go [2], chess [3] or Atari games [4].
Furthermore, it has been found to be particularly suited for other typologies of ap-
plications, such as collaborative tasks in multi-agent systems [5] and performance
enhancement in communication networks [6].

1.1 Context and Problem Statement

In this thesis, we propose a multi-agent reinforcement learning approach for the
placement of the nodes of a UAV network within a specific context that has rarely
been considered: besides extending/replacing communication infrastructures, fleets
of UAVs can provide computational support for ground users’ tasks, thus acting as
computational aerial servers and potentially reducing the delay the ground users
experience for their tasks to be processed. Our main contribution aims at proposing
a distributed framework based on multi-agent DRL that, by exploiting the UAVs as
agents of the system, leverages their mobility in order to provide ground users with

2

Figure 1.1: Scenario depicted in this work: a set of ground users send tasks requiring
computational effort towards a UAV network. The UAVs can share their
tasks to a more idle UAV in order to reduce the processing time.

a proper quality of task execution. Inspired by the work of Hu et al. [7], better
presented in chapter 2, the proposed scenario consists of the following components:

• UAVs: they are the flying nodes of the network. The communications between
them occur over a wireless ad-hoc network. The UAVs under analysis have
also sufficient on-board computing capabilities to process tasks that require
computational effort, which are forwarded from a set of ground users. However,
due to the limited computing capabilities of UAVs, we considered the possibility
to apply a resource sharing algorithm in order to relax the computational
stress.

• Ground Users (GUs): they are mobile terminals located on the ground, with the
ability to offload computational tasks directly to UAVs. GUs are not spatially
fixed and they are characterized by a level of activity, that is a number
representing the number of tasks they have to offload.

Figure 1.1 provides a visual representation of this scenario. According to this archi-
tecture, it is important to identify the metrics that mostly influence the performance

3

of the network and that can be improved by an effective placement of the UAVs. As
will be discussed in chapter 2, the placement and trajectory design problems in UAV
networks try to mostly deal with the optimization of coverage and connectivity

of the network, while other works introduce the possibility to exploit the UAVs in
order to offload tasks generated from the ground, using their mobility to directly
affect the task processing performance.
The contribution we want to give to the research consists in the formalization of a
dynamic and decentralized multi-agent decision-making problem addressed through
a multi-agent RL approach. Through this approach, two performance metrics that,
to the best of our knowledge, have never been tackled together, will be jointly opti-
mized. The aim is thus twofold:

1. maximize the probability that, when a new GU appears in the network, it is
already covered by one UAV;

2. maximize the resource utilization of UAVs, in order to properly cover the GUs
that require a higher computational effort, thus affecting the task processing
performance of the network.

Our algorithm is trained in a relatively simple simulated environment and then tested
in a more sophisticated network simulator in order to measure its performance within
a more realistic scenario.

1.2 Structure of the thesis

This section aims at presenting how this thesis has been organized.

Chapter 1 - Introduction

The current chapter contains an overview of the main motivations and contributions
of this work. Furthermore, the organization of the thesis is presented.

4

Chapter 2 - Literature Review

Chapter 2 aims at presenting the researches this work has been inspired from, high-
lighting our position and innovation with respect to the current approaches. It
presents the most recent works dealing with position and trajectory design prob-
lems in UAV networks, and organizes them into two main sections: coverage and
connectivity optimization for the capacity enhancement of a terrestrial network, and
computation offloading in UAV networks for the optimization of task processing
performance.

Chapter 3 - Theoretical Background

Chapter 3 provides a description of the main background concepts of this work. It
is mainly divided into two parts: firstly, an overview of the main applications and
architectures of UAV networks is provided. Secondly, a detailed description about
reinforcement learning is presented, in order to provide the reader with the basic
concepts to have a full comprehension of our approach.

Chapter 4 - Problem Formalization and Algorithm Setup

Chapter 4 presents the problem formalization through a mathematical framework
used to model the scenario described in section 1.1. Furthermore, our solution to
the decision-making problem is proposed and thoroughly described, motivating the
choice of the leveraged approach.

Chapter 5 - Tools and Implementation

Chapter 5 describes the tools implemented along this work and outlines the method-
ology followed to design our framework. The interaction between the different com-
ponents of the system, together with the description of the simulation implementa-
tions, is presented in detail. Furthermore, the limitations of the approach are also
explained and possible solutions to mitigate them suggested.

5

Chapter 6 - Experimental Results and Discussion

In chapter 6, the results obtained from the application of our algorithm in different
simulated scenarios are shown. Firstly, the training of the model is performed in a
simplified simulated environment. Secondly, the trained models are applied in the
more realistic scenario. All the results are discussed and interpreted, pointing out
the strengths but also the main limitations in the obtained outcomes.

Chapter 7 - Conclusions and Future Works

The final chapter includes a summary of the proposed approach and obtained results.
A dedicated section provides also a more detailed discussion on the main limitations
and future improvements to this work.

6

Chapter 2

Literature Review

An extensive literature review has been performed in order to understand which are
the main UAV networks related issues and how to cope with them with Artificial
Intelligence (AI) methods. The survey written by Bithas et al. [8] was truly inspiring
to have an overview of the current state-of-the-art and to orient our research. The
authors, asserting how the adoption of UAVs in communication-based applications is
going to become an integral part of the next generation wireless communication, and
how ML frameworks will be exploited to solve most of the problems related to them,
provide a very detailed survey on past research works that enlighten how different
AI/ML techniques have been applied to UAV networks (as also depicted in Figure
2.1). They identify four main application areas in which these frameworks have
proved to bring innovative solutions: Physical Layer Issues, Security and Safety

Issues, Resource Management and Network Planning and Position Related

Aspects. Our interest was mainly captured by the latter described application: the
determination of proper placements of UAVs as well as their trajectories in order to
achieve proper network performance. The authors argue how this is one of the most
challenging applications in UAV networks. Starting from this survey, we explored
several other studies to acquire proper knowledge about how the Placement and
Trajectory Design problem has been recently handled. We performed a meticulous

7

Figure 2.1: "Applications of Artificial Intelligence/Machine Learning in UAV-based
communication networks". Image by "A Survey on Machine-Learning
Techniques for UAV-Based Communications" from Bithas et al. [8].

selection of the existing works that could direction us towards the definition of a
proper scenario and a methodology to deal with it. The existing works that led us
to this achievement can be grouped into four main collections:

• Coverage and Connectivity optimization in UAV networks through RL ap-
proaches;

• Coverage and Connectivity optimization in UAV networks through Evolution-
ary Computation (EC) approaches;

• Task offloading from UAVs to fixed infrastructures (UAV-to-Infrastructure),
such as Mobile Edge Computing (MEC) [9] servers or fog nodes [10];

• Task offloading from ground users to UAVs (GU-to-UAV) for on-board pro-

8

cessing.

2.1 Coverage and Connectivity Optimization

In the first two collections, we can find works whose aim is to define the best place-
ment for a set of UAVs in order to maximize the coverage of ground users (i.e. the
number of users that are in range with at least one UAV) and/or to ensure a proper
connectivity between UAVs.

2.1.1 Reinforcement Learning Approaches

Klaine et al. [11] propose a RL-based approach in order to find the optimal positions
for multiple UAVs and to recover a cellular communication network whose main
base stations were partially destroyed. The authors propose a distributed Q-learning
[12] algorithm to optimally place the UAVs in the target area: the agents of the
environment correspond with the UAVs; the state that the agent observe is given by
its own position; the actions are given by seven possible three-dimensional discrete
movements and, finally, the reward is given by the summation of all the users under
coverage. In order to evaluate the network performance, the authors consider the
percentage of ground users in outage and the throughput that these users are able
to obtain. They compare their results with three other algorithms (Fixed Random
Position, Fixed Circular Position and Fixed Hotspot Position), showing how their
approach outperforms these methods in terms of number of users under coverage
and total achieved throughput. The work proposed by Venturini et al. [13] tries
to deal with the concept of scalability with respect to the number of possible states
a UAV can observe. The environment consists in a set of UAVs, flying within a
squared grid, whose goal is to track and hover over fixed targets that are randomly
positioned in the area. The system is modeled as a Partially Observable Markov
Decision Process (POMDP) [14]. A Multi Agent Reinforcement Learning (MARL)
[5] scheme is proposed through a multi-agent Deep Q-Learning (DQL) [15] approach,

9

where the partial observation is represented by three images and the Q function is
approximated by a Convolutional Neural Network (CNN). All the state information
is shared between the UAVs; hence, all the agents of the system have the same
observation of the environment. The reward depends on the distance between the
agent and a given target, and a penalty is applied when more UAVs move towards
the same cell. As presented in the results, this approach brings benefits especially
to the scalability of the environment (in terms of both number of agents and state-
space). Liu et al. [16] present a similar scenario proposed in [11], with the goal
of achieving a "long-term communication coverage" for ground users. The scenario
identifies a set of UAVs that are used as aerial base stations, which have to cover a
set of fixed Point of Interests (PoI) while keeping the UAV network connected. They
propose a distributed version of the Deep Deterministic Policy Gradient (DDPG)
[17] algorithm, modeling the scenario as a POMDP. Each agent only has a partial
observation that consists in its energy consumption, position, flying direction and
distance traveled. The action is given by two continuous parameters: the decision
from the agent regarding its flying trajectory and the distance that it will travel
in the next step. In the reward function, the algorithm encourages the increase
of coverage and geographical fairness while penalizing the decrease of connectivity
and high values of energy consumption. Their approach is compared with other
four baseline algorithms, namely DRL-EC3 [18] (presented in one of the previous
authors’ work), Greedy, mTSP [19] and Random, showing how their algorithm can
obtain better results with respect to the baseline approaches in terms of energy
efficiency and coverage score, while no metrics are provided for the connectivity of
the network.
This first group of researches only deals with coverage and/or connectivity in a UAV
network, considering UAVs as data relays. They were fundamental to understand
how modern methodologies can face a portion of the placement and trajectory design
problems with a DRL approach. However, all these researches present a scenario in
which the positions of the ground users that have to be covered are fixed along each

10

episode, and the state-space is either very limited or requires a potentially large
exchange of information in the network, without taking into account the wireless
communication of data between nodes. In our work, we include a more dynamic
scenario regarding the ground users’ behavior and we exploit the learned policy in
a network simulator (ns-3) in order to observe how the wireless communications
between the nodes of the network can affect the performance of the algorithm.

2.1.2 Evolutionary Computation Approaches

Although we decided to exploit a multi-agent RL-based approach, another point of
view was provided by the second collection of works, whose aim is still to improve the
coverage and connectivity of the network, but with an EC approach. The researches
carried out by Giagkos et al. [20] and Leu and Tang [21] are worth to be mentioned.
They both explore the concept of survivable networks, trying to maximize the two
metrics (coverage and connectivity) through Genetic Algorithms (GA). The former
presents a centralized approach, where one UAV executes the algorithm, sending
instructions about which manoeuvre to perform to all the others. The latter presents
a decentralized GA, where each agent decides on its own how to tune the parameters
of its mobility model. These approaches have very interesting results, since they
show near-optimal outcomes in terms of coverage and connectivity, exploiting simple
rules that lead to fast convergence and scalability. The discussion regarding whether
it is better to use a RL or EC based approach is not in the purpose of this thesis. In
fact, the investigation of the applications of evolutionary computation algorithms in
UAV networks is one of our objectives for future researches.

2.2 UAV Networks for Task Offloading

Given the recently increasing need for the offloading of delay sensitive and compu-
tationally demanding applications, which is moving from the user equipment to the
edge of the network, the other focus of this thesis is represented by the role that

11

UAVs can play in these scenarios.

2.2.1 UAV-to-Infrastructure

In the third collection of analyzed works we investigated the concept of computation
offloading from UAVs to a fixed infrastructure at the edge of the network, in order
to process delay sensitive tasks. In these scenarios, one or more UAVs gather data
from the ground through their sensors and generate tasks that, due to the limited
computational resources and battery lifetime, are offloaded to a near fixed infras-
tructure with sufficient computing resources. Kim et al. [22] propose an offloading
solution based on k-means and RL. They analyze a scenario where a set of UAVs
fly over a target area and acquire data from a set of ground locations. Since these
data should be analyzed through computationally intensive techniques, the UAVs
will have to select the best MEC server for the data offloading according to: the
CPU requirements of the task, the queue status of the MEC server and the quality
of the channel between the UAV and the MEC server itself. The objective of this
work is twofold: firstly, the authors propose a k-means algorithm to associate each
UAV to a set of ground locations, exploiting, subsequently, a Q-learning algorithm to
decide the order of visiting for each task of this set; secondly, they exploit another Q-
learning algorithm to select the MEC server that can process the task fastest. In the
reward functions of the two RL approaches, the authors consider the total distance
traveled by the UAV and the total waiting time for a task to be processed, respec-
tively. The obtained results show how the proposed approach brings better outcomes
in terms of energy consumption and total task processing time, when compared to
a greedy algorithm. A similar scenario is investigated by Yao and Ansari [23]. A
"Fog-aided Internet of Drones (IoD)" is presented. The fog nodes have to provide
computational resources to the UAVs. In this scenario, a UAV has to visit a fixed
number of locations in an already provided order, collect data from these locations,
generate the tasks and offload them to the proper fog node. The authors formu-
late a mixed-integer non-linear programming problem, with the goal of minimizing

12

the overall journey completion time, considering the speed of the UAV, the wireless
transmission time, and the fog node processing time. Given the complexity of the
problem, the authors propose an online learning algorithm by splitting the main ob-
jective function into two sub-problems: an integer linear programming problem for
the task allocation, which is solved with a heuristic approach, and a continuous opti-
mization problem for the flying speed control between two locations. The proposed
online algorithm is compared with baseline approaches, namely "energy-only" and
"delay-only". The first one fixes the speed of the UAV to the minimum value and
assigns each task to the fog-node that is providing the minimum energy consumption
at each location. In the second one, the flying speed is fixed to the maximum one and
each task is assigned to the fog-node that is providing the minimum task completion
delay. The online algorithm performance has proved to be closer to the delay-only
baseline, which opportunely minimizes the overall journey completion time, always
keeping the energy consumption below the UAV’s battery capacity.
To the best of our knowledge, these two works provide the most recent methodologies
to deal with the proper placement and trajectory design in a UAV network where
tasks have to be offloaded to the edge of the network from the UAVs. It is important
to notice how these works do not deal with the coverage and connectivity, but only
with the computation offloading of tasks directly created by the UAV, which has an
a-priori knowledge of the locations for the data collection.

2.2.2 GU-to-UAV

Starting from this specific application, we wonder whether UAVs could be exploited to
directly process computationally intensive tasks that are generated by ground users,
instead of relying on fixed infrastructures. In fact, given the constantly improving
computational platforms that can be embedded in UAVs, the on-board processing
of relatively complex tasks with stringent delay constraints is an option that can be
taken into account. As argued by Hu et al. [7], real-time applications such as vehic-

13

ular Virtual Reality (VR) and Augmented Reality (AR) gaming are not suited for
the previously described UAV networks. The interactions between UAVs and MEC
servers considerably increase the system’s overhead, consequently causing a low qual-
ity of experience of the ground users. Furthermore, the MEC servers might not be
properly positioned, causing failures when ground users are placed in unreliable loca-
tions. The authors propose a new computing architecture called "UAV-M3T", whose
aim is to enhance the cooperation between UAVs, detaching the network from the
need of external and fixed infrastructures. This architecture relies on the coordina-
tion of computing, caching, and communication resources between UAVs in order to
efficiently exploit their limited capabilities. Figure 2.2 represents the architecture
of this system. A proper AI decision framework based on the use of historical and

Figure 2.2: "Architecture of UAV-M3T". Image by "Ready Player One: UAV-
Clustering-Based Multi-Task Offloading for Vehicular VR/AR Gaming"
from Hu et al. [7]. Three possible scenarios can occur: 1) one task
is executed by one single UAV, which has sufficient 3C capabilities; 2)
Multiple similar tasks should be processed by one single UAV since they
could have very similar results; 3) multiple UAVs can process one single
task by sharing their resources.

social data to forecast the future demand is proposed to facilitate this cooperation.
However, this approach is not very reliable in more dynamic scenarios, as the UAVs

14

cannot properly adapt with respect to the real current users’ demand. Hence, more
efficient algorithms for a dynamic resource coordination between UAVs have still to
be implemented. In our work, we decided to exploit a similar architecture, where no
MEC servers are present. The UAVs share their computing capabilities, thus trying
to efficiently utilize the network resources, enabling cooperation between neighboring
UAVs, and possibly increasing the users’ perceived quality of experience.
Two other interesting works that consider the possibility to offload a computing task
directly to a UAV are Ti and Bao Le [24] and Li et al. [25]. The former presents
a hierarchical Fog Computing System (FCC) where a set of mobile users can decide
whether to locally process their computational tasks or to offload them to the cloud
or the cloudlets (UAVs with integrated computing platforms), with the aim of mini-
mizing the total power consumption of all the users. The problem is formalized as a
non-convex mixed-integer non-linear programming problem, and it is solved by sep-
arately and iteratively optimizing the continuous variables and the integer variables,
thus solving the underlying non-convex and integer linear programming subprob-
lems. The latter proposes a framework in which UAVs can be seen as MEC servers
(so-called "UAV-assisted MEC networks"). Their system consists in one single UAV
and multiple users that can upload computing tasks to it. The possible positions
that the UAV can have are fixed, and the goal is to maximize the throughput migra-
tion of user tasks by letting the agent decide which one of the fixed points to cover.
The problem is formulated as an MDP, and it is solved with a DRL-based scheme,
having as a state the locations of UAV and users, the energy level of the UAV and
the Channel Gain State between all the users and the UAV. The reward is given by
the gain obtained for the computation of a certain task, then penalized by its energy
consumption.
While in the just presented works each UAV could process one task at a time, an
alternative solution is suggested by Yang et al. [26]. In this scenario, a UAV-assisted
MEC network has to provide an offloading strategy to a set of IoT ground nodes, aim-
ing at minimizing the total average tasks processing time, while achieving a proper

15

offloading fairness among UAVs and satisfying coverage constraints. One UAV can
receive more tasks at a time, and a proper scheduling algorithm is carried out, with
the objective of task average waiting time minimization. The overall optimization
problem formalization leads to an NP-hard problem. Hence, the authors, model the
task allocation between IoT nodes and UAVs as a Generalized Assignment Prob-
lem (GAP), solving it with an approximate algorithm; the tasks are then scheduled
within each UAV through a DRL approach, and finally, the near-optimal locations
for UAVs are found through different iterations of a Differential Evolution (DE) al-
gorithm. The just presented scenario is similar to the one proposed in this work:
while providing a proper level of coverage, UAVs have to process tasks coming from
a set of ground nodes, trying to minimize the waiting time for the task processing.
However, while in [26] the authors present a centralized scenario, in which all the
environment state is well known and the positions of the ground nodes are fixed, we
deal with a decentralized approach, where each UAV has a partial knowledge of the
environment state and takes decisions accordingly. Furthermore, the ground nodes
that require tasks to the UAVs are mobile users, able to change their position in
time, thus providing a much more dynamic scenario.
This chapter presented the most relevant works we considered in order to direction
our research and to explain our main contributions with respect to the already exist-
ing works. To the best of our knowledge, there are no current researches that try to
jointly optimize the coverage of ground users with unknown and dynamic locations,
together with the utilization of the computing resources of UAVs, able to process
computational demanding tasks forwarded from the ground users. We formalized
the coverage and resource optimization problem as a Decentralized POMDP, and
applied a multi-agent DRL approach, taking into account the advantages of these
algorithms in similar scenarios.

16

Chapter 3

Theoretical Background

In this chapter, we provide an overview of the basic concepts this thesis is dealing
with. Firstly, an outline on what exactly a UAV is intended to be and how UAV
networks are deployed and used nowadays is given. Secondly, an analysis of the main
algorithms of RL and DRL is provided in order to have a better understanding on
our final approach.

3.1 Unmanned aerial vehicles and multi-UAV Net-

works

Unmanned aerial vehicles are aircrafts capable of fly without the on-board control
of any human operator. The level of control they need to fly establishes their degree
of autonomy, that can be remote, semi-autonomous and autonomous control. Apart
from the level of autonomy, several classification proposals were suggested in order
to properly differentiate the various typologies of vehicles. Typically, the most used
classification is based on the altitude they can reach, dividing them into High Altitude
Platforms (HAP) and Low Altitude Platforms (LAP) [1]. The former usually fly at
altitudes above 17km and are used for long term operations, while the latter can
fly at altitudes between tens of meters up to few kilometers. The deployment of

17

LAPs is much more rapid, given their higher flexibility and dynamicity [27]. For
this reason, they are usually exploited for time-sensitive applications (e.g., natural
disaster scenarios). Another common classification for UAVs splits them between
"fixed-wings" and "rotary-wings". Fixed wing UAVs have higher speeds and they
can only move forward in order to fly. In contrast, rotary-wings have the ability to
hover on a certain area and perform quick change of directions.
An important limiting factor for the deployment of UAV systems is given by the
regulation. Several concerns regarding privacy, security, safety and data protection
have been expressed in these years, and new regulations continue to be developed
to restrict the operations with UAVs according to the country and the typology of
vehicle [28].
In this work, a low altitude platform will be considered, made of UAVs that can
dynamically move in the space (as the rotary-wings) in order to achieve a given
goal. LAPs have already been considered in a wide range of applications. The most
common are:

• Aerial Photography: UAVs can be equipped with nice cameras able to cap-
ture footage and register videos that otherwise would require expensive infras-
tructures.

• Shipping and Delivery: the delivery of different items (packages, groceries,
medicine and so forth) exploiting UAVs is already used by different major
companies, saving time and relieving the traffic congestion.

• Disaster Management: after a natural disaster, UAVs can efficiently be
exploited to gather information on the target area thanks to different sensors
they can be equipped with.

• Precision Agriculture: UAVs can help farmers to monitor the health of their
crops through properly tuned sensors.

• Search and Rescue: when equipped with cameras or thermal sensors, UAVs
are a powerful tool for surveillance. They can discover the location of lost or

18

injured people in harsh environments, as well as drop supplies to unreachable
places.

Other significant applications of LAPs concern their use in wireless networking.
As discussed in chapter 2, UAVs can be used as flying aerial base stations, supporting
or replacing an existing terrestrial communication network and improving its level
of coverage and capacity. The possibility to have a dynamic deployment of base
stations, also varying their position in the three-dimensional space, allows for a better
communication link between ground users and UAVs, thus having high chances to
enhance the network performance. Another example is given by the use of UAVs
with IoT networks. The flying nodes can provide an efficient uplink communication
to the energy-limited devices, and, as already seen in chapter 2, forward this data
to the cloud (or to the edge of the network) to process them. The main differences
between these UAVs applications and the applications described in the previous list
is given by the role the UAV has in the network. While in the former case the UAVs
are seen as users of a wireless network (e.g. delivery or surveillance), in the latter
applications they act as infrastructures to provide ground users with additional and
enhanced services.

3.1.1 FANETs

One of the most common architectures for UAV networks consists in the centralized
communication with a ground station. Each UAV is directly connected with a fixed
infrastructure and all the messages must be routed through it. More distributed
systems can rely on the ad-hoc networking between UAVs, so-called, Flying Ad-Hoc
Networks (FANETs).
In the infrastructure-based approach, each UAV must be equipped with a sophisti-
cated hardware in order to communicate with the correspondent base station. The
stability of this communication link is not reliable, due to the nodes’ movement
and the typology of terrain. Furthermore, the dynamicity of the flying nodes is
strictly constrained by the coverage range of the fixed infrastructure, and the gen-

19

eral performance of the network is correlated to one single entity, which represents a
vulnerability for the network acting as single point of failure. As illustrated in Figure
3.1, FANETs relax the coverage constraint between UAVs and ground base stations
by providing a direct communication between the flying nodes of the network.
FANETs are still deeply investigated in current researches; hence, it is difficult to

Figure 3.1: Example of FANET application extending the scalability of a multi-UAV
system. Image by "Flying Ad-Hoc Networks (FANETs): a Survey" from
Bekmezci et al. [29].

provide a proper background for this particular subject. After the highlight of the
major applications in which flying ad-hoc networks can be exploited, we limit to give
the reader an overview of the main FANET communication architectures.
As represented in Figure 3.2, UAV communications approaches can be different: di-
rect communication with a ground station, communication in a satellite network,
communication in a cellular network and, finally, communication via an Ad-Hoc
network can be exploited. Despite in FANETs the communications between UAVs
should occur over an ad-hoc network, other infrastructures can still be leveraged in
order to keep the network connected to existing terrestrial wireless systems.

In UAV direct communication with a ground station, each flying node is
connected to a ground control station through a star topology. This centralized ap-
proach brings several benefits to the network: fault tolerance when any of the UAVs
incurs in a failure, easy synchronization of the entire network and global knowledge

20

Figure 3.2: "Impression of a complete FANET architecture". Image by "Future
FANET with application and enabling techniques: Anatomization and
sustainability issues" from Srivastava and Prakash [30].

of the state of each node. On the other hand, the approach is not scalable with
the growing number of UAVs, as the ground station becomes the bottleneck of the
network. Another drawback is related to the presence of a single point of failure,
whose breakdown would cause the failure of the entire flying network [31].
Communications in satellite networks are considered when the presence of a
ground station is not possible due to the harsh terrain conditions (like mountains
or oceans) [32]. These networks provide communication over long ranges and line of
sight communicating nodes.
Connecting UAVs with the cellular network is a nice option to exploit already
existing infrastructures and allow the incorporation of UAVs in LTE networks. Al-
though the several advantages this solution brings, UAVs cannot be seen as normal
ground user equipment, since they undergo a very different radio propagation. The

21

Third Generation Partnership Project (3GPP) has recently concluded its work to
produce measurements aiming at the integration of UAVs communication in LTE
networks [33].
UAV communication via ad-hoc networks is the main concept defining a
FANET. The UAVs directly communicate between each other through an ad-hoc
wireless network in a flat or hierarchical mesh topology, which brings scalability ad-
vantages with respect to a star topology. Furthermore, while single-UAV systems
or centralized approaches have single point of failure, FANETs provide network sur-
vivability: if one UAV is no more capable of operating in the network, the FANET
mission can still proceed with the remaining nodes.
These scalability and flexibility features make FANETs suited for working in the
distributed scenario we want to propose, where each node can take decisions based
on a local exchange of information.

22

3.2 Reinforcement Learning

Reinforcement Learning is a branch of Machine Learning that have always aroused
the interest of many researchers. Recently, this interest has increased due to the
progresses of Deep Learning (DL), which enabled the utilization of function approx-
imators in RL algorithms; this technique is better known as deep reinforcement
learning. Together with supervised and unsupervised learning, RL represents a ma-
chine learning paradigm that, instead of exploiting historical data as the previous
two, uses a trial and error rule in a decision-making problem to gather information
from the previously taken decisions. In these problems, an agent has to face a series
of valuable decisions in a given environment according to a reward function that is
returned after each action.
The aim of this section is to provide a complete understanding of the RL paradigm,
in order to have a smooth transition towards the description of our approach.

3.2.1 Fundamentals of Reinforcement Learning

Reinforcement learning is a computational approach whose aim is to solve decision-
making problems through a sequence of actions based on the interaction between an
agent and the environment.

Agent, environment, and reward

The agent is an entity that interacts with the environment by performing actions (at)
that are based on what it can observe of the current state st of the environment. The
agent can choose over a set of possible actions, called action space (A). The action
space can be either discrete, thus the agent can decide over a finite number of possible
actions, or continuous, where the actions are vectors of real values. The action space
can strongly affect the performance of the algorithm, and different frameworks have
been proposed according to the need for discrete or continuous action spaces.
The environment represents everything that is outside the agent. It provides an

23

observation of the current state and a value of reward every time the agent performs
an action.
The reward (rt) is identified by a scalar value that allows the agent to distinguish
positive and negative actions. It defines the objective of the RL problem. It is very
important to underline how the reward only refers to the current action performed
in the current state; hence, it has not a global meaning. The achievement of a large
immediate reward does not exclude the possibility to obtain very low rewards in the
next steps. The agent has not to learn how to maximize the immediate reward, and
sometimes it has to give up to large immediate rewards in order to achieve the global
objective of the problem. Therefore, the main purpose of the agent is to maximize
a value of cumulative reward, called return (Gt), defined as the total discounted
reward starting from timestep t.

Gt = rt+1 + γrt+2 + · · · =
∞∑
k=0

γkrt+k+1, γ ∈ [0, 1) (3.1)

In Equation 3.1, the concept of return is represented. The parameter γ ∈ [0, 1) is the
discount factor ; it is mathematically useful towards the convergence of an infinite-
horizon sum of rewards to a finite value. Furthermore, it shows the natural behavior
of agents to prefer immediate rewards rather than future ones.

Markov Decision Process

Markov Decision Process (MDP) is a mathematical framework to model decision-
making problems. RL is widely adopted to solve problems formalized as MDPs,
which are defined by a set < S,A,P ,R, γ > where:

• S is a finite set of states of the environment;

• A is the set of actions;

• P is a state transition probability matrix, which describes the probability of

24

Figure 3.3: Interaction loop between the agent and the environment. Every action
the agent performs results in a state and a reward, which are the input
for the next iteration.

transition to a new state given the previous state and action: Pa(s, s′) =

P [st+1 = s′ | st = s, at = a];

• R is the reward function associated to the action performed in a given state:
Ra(s) = E [rt+1 | st = s, at = a];

• γ is the discount factor.

Figure 3.3 shows how the agent interacts with the environment in a MDP problem.
Formally, the probability for a given state to occur only depends on the previous
state of the environment and not on the entire history of transitions. This property
is commonly known as Markov property, formalized in eq. 3.2.

P [st+1 | st] = P [st+1 | s1, . . . , st] (3.2)

Partially Observable MDP (POMDP)

Partially observable MDP is a generalization of MDP, where the state of the envi-
ronment is not directly observable. At each step, the agent can only acquire a partial
observation ot that includes only a portion of the information about the current state.
A POMDP is defined by a seven-tuple T = (S,A, P,R, γ,Ω,O). The first five ele-
ments have the exact same meaning they have in a MDP. O is the set of possible
observations oi while Ω is the set of conditional observation probabilities P(o | s′, a),

25

that is, the probability for the agent to observe o, given the new state s′ after action
a has been performed.

Model, policy, value function

The agent is basically defined by these three components: the a-priori model of
the environment, the policy (π) and the value function (V). The model consists
in the a-priori information the agent has with respect to the environment. It can
influence the behavior of the agent by providing a belief about the environment’s
state transition, thus biasing from the beginning the agent decisions. A model of the
environment can be provided or not. In the former case, the problem is tackled with a
model-based approach. Otherwise, the method is called model-free-based. The policy
is the mapping between the observed state and the action the agent will perform. It
can be either deterministic (at = π(st)) or stochastic (π(at|st) = P [at|st]). Naturally,
the aim of RL is to allow the agent to find the optimal policy (π∗) in order to maximize
the return, and hence, to find the best possible action to perform according to the
current observation. The value function represents an expected value of the return gt
starting from the current state. While the reward is just an immediate feedback from
the environment, the value function shows how the current action will also affect the
future rewards.
There are two typologies of value functions:

1. the State Value Function (V π(s)) (eq. 3.3) is the return that is expected by
being in a certain state of the environment following the current policy π;

Vπ(s) = Eτ∼π [gt | s0 = s] (3.3)

2. the Action Value Function (Qπ(s)) (eq. 3.4) is the return that is expected by
taking action a starting from a state s, following the policy π.

Qπ(s, a) = Eτ∼π [gt | s0 = s, a0 = a] (3.4)

26

Bellman Equations

Bellman equations (3.5) give the possibility to split equations 3.3 and 3.4 into two
terms: the immediate reward r and the discounted future value functions (γV π(s′), γQπ(s′, a′)).
This gives the opportunity to solve those equations through simple and recursive sub-
problems.

V π (s) =
∑
a∈A

π(a | s)
∑

s′∈S,r∈R

P (s′, r | s, a) [r + γV π (s′)]

Qπ (s, a) =
∑

s′∈S,r∈R

P (s′, r | s, a)

[
r + γ

∑
a′∈A

π(a′ | s′)Qπ (s′, a′)

] (3.5)

The demonstration of the Bellman equations is beyond the purpose of this thesis and
can be found in [34]. From Bellman equations, the Bellman optimality functions can
be derived. Since the goal is to find the optimal policy π∗, at each step our agent
has to choose the action that brings him to the state with the highest state value
function (V ∗(s)) or that carries the highest action value function (Q∗(s, a)) (eq. 3.6).

V ∗ (s) = max
a

∑
s′∈S,r∈R

P (s′, r | s, a) [r + γV ∗ (s′)]

Q∗ (s, a) =
∑

s′∈S,r∈R

P (s′, r | s, a)
[
r + γmax

a′
Q∗ (s′, a′)

] (3.6)

The Bellman optimality equations do not present a linear or closed-form solu-
tion; hence, they are solved with iterative methods. In the next section, a brief
introduction on the most common iterative methods used in RL problems will be
provided.

3.2.2 Tabular Methods

Tabular methods are iterative algorithms used to obtain an approximation of the
value functions presented in eq. 3.5. These iterative algorithms are efficient when
the state and action space of the MDP problem is small enough in order to represent

27

the value functions as arrays or tables.

Dynamic Programming

Dynamic Programming (DP) applies only to model-based problems, where the tran-
sition probability matrix P is defined. The general purpose of dynamic programming
is to separate a single problem into several simpler subproblems. Once each of these
subproblem is solved, their solutions are merged in order to obtain a result for the
original problem. DP approaches can be divided into Policy Iteration and Value
Iteration.
Policy Iteration consists of two steps: evaluation and improvement. In the first
step, the algorithm evaluates how good the current policy is according to the esti-
mation of the state value function V π(s) for each state. Since V π(s) is recursive, the
algorithm starts from an initial value (e.g., 0) and performs several updates until a
good approximated value, V π

k (s), with k ∈ N, is found.
The second step is called policy improvement. Once the current policy is evaluated,
the objective is to find a better policy by taking actions that do not belong to the
current policy and that lead to an improvement of V π(s). The new action can be
evaluated through the action value function Qπ(s, a) (eq. 3.5). If Qπ(s, a) is higher
than V π(s), then the current action a is better than the one chosen by the policy,
that now has to be updated. Each policy is iteratively updated every time the action
value function associated to the new action is higher than the state value function
related to the previous policy in a given state. The iterations stop when the improved
policy does not differ from the previous one.
While Policy Iteration switches between the evaluation and the improvement step
in order to return the best policy, the Value Iteration updates the V π(s) at each
state without passing by the evaluation of any Qπ(s, a). In this case, the Bellman
Optimality functions are exploited (eq. 3.6). At each iteration, the algorithm up-
dates the V function of all the states according to the equation of V ∗(s), until all the
V functions converge towards the optimal one. The pseudocodes for policy iteration

28

and value iteration algorithms are presented in the Appendix at section A.1.

Monte Carlo Method

DP methods are based on the knowledge of the probability transition matrix P of
the environment. However, this knowledge is not always easy to achieve, given that
in real-world scenarios it is very hard to understand how a system may evolve. In
these cases, the agent can try to learn this information directly interacting with the
environment, exploiting model-free based algorithms.
Monte Carlo (MC) Method is one of them. The agent interacts with the envi-
ronment by learning states and rewards. Then, according to the average return, it is
able to evaluate the value functions. This method only works with episodic problems,
where there is not an infinite time-horizon. Two learning policy evaluation methods
exist:

1. First Visit: the evaluation of the value function for state s is given by the ratio
between the total return over N episodes and the number of "first visits" of
the agent in s. The pseudocode of this approach is presented in section A.2.

2. Every Visit: the evaluation of the value function for state s is given by the
ratio between the total return over N episodes and the total number of visits
of the agent in s.

Once the value function of each state is estimated, the policy is updated by making
it greedy with respect to the value function (V ∗(s) in eq. 3.6) and another step of
value estimation is performed, until the convergence of value function is met.
Monte Carlo methods are very simple to implement and they present a good conver-
gence property. However, they can only be applied in episodic environments and the
variance related to the value function is usually large.

29

Temporal Difference

Temporal Difference (TD) is another model-free approach that combines ideas from
both DP and MC methods. It does not need a model, learning from sampled expe-
rience as in MC method, while it does not need to wait for the end of an episode
to learn the estimates, like in DP. TD makes use of temporal error, which is the
difference between two value function estimates of the same state. In its simplest
form, TD updates the value function by combining it with the reward and the value
function of the next state, as it is shown in Eq. 3.7.

V (st)← V (st) + α(rt + γV (st+1)− V (st)) (3.7)

Eq. 3.7 represents how the value function of each state is updated every time the
agent visits state s. The member inside the brackets is called TD-error, and, through
a proper learning coefficient α, the value function is updated towards that error until
convergence. The most common TD algorithms are SARSA and Q-learning.
SARSA is an on-policy method where the agent passes from a state-action pair to
another state-action pair collecting a reward, thus generating the tuple (st, at, rt+1,
st+1, at+1) from where the name of the approach comes from. In this TD method,
the agent tends to learn the action value function Qπ(s, a) instead of V π(s), using an
ε-greedy policy [35] in order to guarantee a proper trade-off between exploitation of
the policy and exploration of the environment. At each step, the Qπ(s, a) is updated
according to eq. 3.8.

Qπ(st, at)← Qπ(st, at) + α(rt + γQπ(st+1, at+1)−Qπ(st, at)) (3.8)

Finally, Q-learning is an off-policy method that differs from SARSA in the up-
date of the Q(s, a) function. At each step, the agent selects the action a according to
an ε-greedy policy and updates the current action value function through a maximum
function that always select the action returning the highest value of Q(st+1, at+1), as
better presented in eq. 3.9

30

Q (st, at)← Q (st, at) + α
[
rt + γmax

a
Q (st+1, a)−Q (st, at)

]
(3.9)

The main difference of Q-learning with respect to SARSA is that, while the latter
updates the current Q(s, a) according to a given policy (on-policy method), the for-
mer always performs this update through the action at+1 that maximizes the action
value function in the next state (off-policy method).
The advantages in using TD methods lay in their ability to work in infinite time-
horizon environments with a lower variance with respect to MC methods. In lit-
erature, also combinations of these two methods have been proposed (TD(λ) algo-
rithms), but they are out of the scope of this chapter, as the description of tabular
methods learned so far just aims at clarifying the need for DRL approaches. The
pseudocodes for the TD methods can be found in section A.3.

3.3 Deep Reinforcement Learning

Tabular methods are suited for those MDP problems with a well-defined state-space
and action-space, where the main strategy is to create a look-up table in order to
define the state value function for each state of the environment or the action value
function for each state-action pair. It is straightforward that tabular methods do not
scale with the potential high number of states and actions the problem may have. In
environments presenting large or even continuous state and/or action space, problems
regarding memory requirements for the look-up table storage as well as the slowness
of convergence for the definition of the value functions in each possible state arise.
Tabular methods are efficient when the agent is able to visit all the states once at
least, thus updating the correspondent value functions. This is hard to achieve in
continuous problems.
DRL was introduced for the first time by DeepMind, with the work "Playing Atari
with Deep Reinforcement Learning" [36]. The main idea behind DRL is the ex-
ploitation of function approximators (i.e., neural networks), that, through a vector

31

of parameters θ, map each state or state-action pair into the correspondent value
function (eq. 3.10).

V (s, θ) ≈ Vπ(s)

Q(s, a, θ) ≈ Qπ(s, a)
(3.10)

The use of neural networks as function approximators reduces the training time
and the memory required by the algorithm. In the next sections, an overview of
neural networks will be presented together with the theory behind deep reinforcement
learning, in order to explain the main algorithm exploited in the experiments of this
thesis: the Deep Q-Network.

3.3.1 Fundamentals of Neural Networks

A neural network is a function approximator whose structure is made of artificial
neurons. An artificial neuron, similarly to the biological one, consists in a set of input
(dendrites) and one output (axon). The aim of the neuron is to process the input
xi though a weighted sum

∑
xiwi, add a given bias b and apply an activation

function f . The output of the neuron y is given by: y = f(
∑

nwixi + b). Figure
3.4 represents the architecture of a single neuron.

Figure 3.4: Architecture of a single neuron.

An artificial neural network is a structure of neurons organized in processing
layers. In order to approximate the function of our interest (e.g., Qπ(s, a)), the
parameters of all the artificial neurons, w and b, must be properly adjusted through

32

a learning process.

Figure 3.5: Fully connected feed forward neural network with one hidden layer.

In the simple feed forward neural network shown in Figure 3.5, the input layer
receives the input vector of size n ∈ N with features xi. Each feature is passed to
the hidden layer and processed according to Eq. 3.11

h = f(w1x+ b1) (3.11)

where h refers to the column vector of size m ∈ N, correspondent with the number of
neurons in the hidden layer. The matrix w1 of size m×n corresponds to the weights
of all the neurons present in the hidden layer, b1 is the bias vectors of dimension
m and f is the activation function used in the hidden layer. Similarly, the output
vector will be obtained through eq. 3.12

o = g(w2h+ b2) (3.12)

where this time, o is the vector of the output dimension, g is the output activation
function, and w2 and b2 are the weights and biases of the output layer.

33

Activation Functions

The activation function determines the output of each neuron. A proper choice
must be done in the activation function of a given layer, since they can affect the
convergence speed as well as the ability of the model to converge in the first place.
The proper role of the activation function is to "fire" the neuron, which means to
give an idea of how much the neuron’s input is relevant for the model’s prediction.
The most used activation functions are listed below.

• Sigmoid → f(x) = 1
1+e−x

• Hyperbolic Tangent → f(x) = ex−e−x

ex+e−x

• Rectified Linear Unit (ReLU) → f(x) = max(0, x)

Activation functions does not show discontinuous behaviors since they have to smoothly
respond to input variations.

Learning Process

The learning process aims at setting the best set of parameters θ of the neural network
in order to better approximate the function of interest. In traditional supervised
learning, the learning process is split into three phases:

1. training;

2. validation;

3. testing.

For each input of the network X , the correspondent output Y is already known and,
during the training phase, it is used to update the parameters of the neural network.
The validation phase is an intermediate step, where the current model is evaluated
with input it never saw in order to fine-tune the hyper-parameters. In the testing
phase, the final evaluation of the model is provided once it is completely trained.
The learning process for neural networks consists in the four steps that are going to
be presented in the following sections.

34

Forward Propagation

The training data X are passed as input to the network and cross the entire structure
until the predicted output Ŷ is evaluated.

Loss Function

A loss function L(Y , Ŷ) estimates the error between the true value Y correspondent to
input X , and Ŷ . The lower the value of this estimation and the better the prediction
of the model. In the learning process, parameters θ are adjusted until sufficiently
small values of loss function are obtained. A common example of loss function is
given by the Mean Squared Error (MSE) (eq. 3.13)

L(Y , Ŷ) =
1

N

∑
n

(yn − ŷn)2 (3.13)

where N is the total number of input samples.

Backpropagation

Once the loss function is evaluated, this information is backpropagated in the network
to update each weight and bias. The backpropagation algorithm [37] explains how
the gradient of the loss function ∇L(θ) is evaluated with respect to the parameters of
the neural network. This global gradient is then propagated backwards in order for
each single neuron to evaluate the local gradient of the loss function with respect to
its weights and bias (i.e., the relative contribution of the neuron in the loss function).

Update

The final learning step consists in the update of θ. The most commonly adopted
approach is the gradient descent. In simple terms, gradient descent tries to update
the parameters of the loss function moving towards the negative direction of its
gradient. In this way, the function will get closer to its minimum at every step,

35

according to a given learning coefficient α. The main update step is presented in Eq.
3.14.

θ ← θ − α∇θL(θ) (3.14)

In the gradient descent method, the update step is performed every time the entire
training set has been fed into the neural network, thus evaluating the gradient of
the loss function as the gradient of the average loss obtained from each of the input
samples (eq. 3.13).
Several approaches have been proposed over the years to improve the update step
of the simple gradient descent algorithm. An example is given by the Stochastic
Gradient Descent (SGD), that instead of using the whole training data to perform
the update step, uses one training sample at a time to compute the loss and update
θ. In the Mini-Batch Gradient Descent (MBGD), which lays in between the two
previous methods, the gradient of the loss function is evaluated with a mini-batch of
a given number of samples. Other common and more sophisticated optimizers are
ADAM, AdaGrad or AdaDelta [38]. They improve the convergence of the gradient
descent methods by introducing an adaptive learning coefficient.

3.3.2 Convolutional Neural Networks

Convolutional Neural Networks are a specific type of feed-forward neural network
typically used to process and classify images or, more in general, any data structure
with a two-dimensional topology. One of the pioneers of CNN is Yann LeCun, who,
in 1988, proposed LeNet [39], a neural network for digits recognition. A typical CNN
has the following architecture:

• Convolution Layer;

• ReLU Activation Function;

• Pooling Layer;

• Fully Connected Layer;

36

Convolution Layer

In a convolution layer, different filters (also called "kernels") are shifted over the
image in order to perform a convolution operation. This operation consists in a
dot product of the input data with the weights defined in the kernel, followed by
the summation of the results. Different kernels learn different features of the input
vector (e.g., edges, patterns), and they update their weights at every update step of
the learning process. The output of the convolution step consists in as many feature
maps as the number of defined kernels, containing all the results of the convolution
operations.
When dealing with CNN, the following terms must be defined:

• Stride S: the number of input pixels the kernel shifts after every convolution
operation;

• Padding P : consists in adding 0 values to the input vector in order to make
the feature map’s dimension of the same size of the input map.

Given these two definitions, and provided the dimension of the input vector, (W,H),
and the size of the filter, F × F , the size of the feature map is evaluated as follows:

Wmap = (W − F + 2P)/S + 1

Hmap = (H − F + 2P)/S + 1
(3.15)

A representation of the convolution operation is shown in Figure 3.6

ReLU Activation Function

After the creation of the feature maps, the ReLU activation function is usually ap-
plied to all the generated values, in order to see if a given feature has been detected
or not. Eq. 3.16 represents the activation function applied to the hidden neurons of
a feature map, in a case where the kernel has dimension 5× 5, with b being the bias
associated to that feature map, σ the activation function, wl,m the kernel weights at

37

Figure 3.6: Convolution operation on a 4x4 input vector through a 2x2 kernel. Ac-
cording to eq. 3.15, the feature maps have dimension 3x3.

position (l,m), and aj+l,k+m the input values on which the convolution operation is
performed resulting in the hidden neuron at position (j, k).

σ

(
b+

4∑
l=0

4∑
m=0

wl,maj+l,k+m

)
(3.16)

The great innovation brought by CNN consists in the possibility to take into ac-
count the spatial structure of the image, thus finding inner patterns that would be
impossible to determine with a traditional neural network.

Pooling Layer

It is good practice to insert a pooling layer after a convolution layer. Its main
objective is to simplify the information brought by the output of the convolution layer
by condensing the feature map in a smaller dimension. This operation is useful to
lighten the computational cost of the learning process as well as to prevent overfitting.
Each unit of the pooling layer summarizes a given sub-region of the previous feature
map by keeping only the maximum value of that sub-region (max-pooling, Figure
3.7) or the average (average-pooling).
The main idea behind pooling layers is that, after a given feature is detected, its
exact position is not as important as its relative position with respect to the other

38

detected features.

Figure 3.7: Example of max-pooling applied on a 4x4 matrix with stride factor equal
to 2 and filter dimension of 2x2.

Fully Connected Layer

The last part of a CNN architecture is a fully connected layer, which is used to flatten
the results. Every neuron of the last pooled matrix is connected to every flat neuron.
The outcome of the neural network at this point is exactly the same of a traditional
neural network, and the learning process does not differ.
Figure 3.8 shows the specific architecture used for LeNet [39], where all the layers of
a CNN can be appreciated.

3.3.3 Value-based DRL

Value-based DRL are the first class of DRL algorithms, putting together the strengths
of reinforcement learning and deep learning. This application is not straightforward,
given the different learning processes of the two paradigms: while DL requires large
amounts of already labeled data, RL learns from a noisy and delayed reward that
follows every action. Furthermore, DL assumes every input data to be independent

39

Figure 3.8: Architecture of LeNet, a CNN for digit recognition. It presents two
sequential convolution and pooling layers and two fully connected layers.

from the others, while the observations of RL are highly correlated between them.
The strategy behind value-based DRL overcomes these challenges by learning an
approximator Qθ(s, a) to infer the optimal action value function Q∗(s, a). The ap-
proximator is a neural network with parameters θ, generally called Q-Network.

Deep Q-Network (DQN)

DQN is a value-based DRL method that can be seen as an improvement of the
Q-learning algorithm (section 3.2.2). At every step of the DQN approach, the Q-
Network takes as input the observation of the agent and outputs one value per
each possible action, correspondent with its action value function. Figure 3.9 shows
an intuition of a Q-Network architecture. The learning process of the Q-Network
consists in the minimization of the loss function L(θ) defined as follows:

L (θi) = Es,a∼π
[
(yi −Q (s, a; θi))

2] (3.17)

The loss function depends on the current predicted Qθ(s, a) and the target value y,
which is presented in eq. 3.18.

yi = Es′∼E
[
r + γmax

a′
Q (s′, a′; θi) | s, a

]
(3.18)

40

Figure 3.9: Example of a Q-Network. The input vector corresponds with the ob-
servation of the agent. The network has one output per each possible
action, correspondent with the Q function associated with that action.

The argument of the loss function has exactly the same meaning of the TD-error
presented in section 3.2.2. It is interesting to highlight how the target value is not
fixed, but strongly depends on the parameters of the Q-network, in contrast with the
learning process exploited in deep learning.
The continuous changing in the target parameters brings high instability to the con-
vergence of the loss function. The first solution to improve the learning process is to
evaluate the target value y with a different neural network called Target Network.
This network has the exact same architecture as the actual function approximator,
but its parameters θ′ are updated much more slowly than the function approximator’s
ones θ, usually through a Polyak averaging (eq. 3.19).

θ′ = τ · θ′ + (1− τ) · θ, τ ∈ [0, 1] (3.19)

As shown in Figure 3.10, when the Q-Network has to be trained, the target value is
evaluated through the target network, while the prediction through the Q-Network.

Another fundamental concept of DRL is the experience memory replay buffer.
The learning process performed with data obtained as soon as they are acquired from
the agent observations is not a proper strategy, since, while neural networks expect

41

Figure 3.10: Training step of the Q-Network exploiting a target network with pa-
rameters θ′.

their input samples to be independent between them, subsequent observations are
temporally correlated. At every new step performed by the agent, the transition
made of the state st, the action at, the obtained reward rt and the next state st+1 is
stored in a buffer of a given size. During the learning process, a random mini-batch
of transitions is sampled from the buffer and used to perform one training step. In
this way, a wider and independent set of possible state-action pairs is taken into
account, thus improving the network update.
The DQN algorithm applying the concept of target network and experience mem-
ory replay buffer is presented in Algorithm 1. Once the replay buffer and the two
neural networks are initialized, the agent gets the first observation from the environ-
ment. According to an ε-greedy policy, the next action is selected and the transition
(ot, at, rt, ot+1) is stored in the replay buffer. When the latter is full, a mini-batch
of transitions are sampled at every step and used to update the parameters of the
Q-network according to Eq. 3.17. Finally, also the parameters of the target network
are updated through the Polyak averaging presented in Eq. 3.19. The loop continues

42

Algorithm 1 Deep Q-Network with Experience Replay
Initialize Replay Memory D to capacity N
Initialize Q-Network Qθ with random parameters
Initialize the target network Qθ′ with θ′ = θ
for episode = 1, M do
Initialize the state s0 and the observation of the agent o0
for t=1, T do

with probability ε select a random action at
otherwise select at = argmaxaQ(ot, a; θ)
execute action at and get the next observation ot+1 and reward rt
store the transition (ot, at, rt, ot+1) in D
sample a random mini-batch of transitions (oj, aj, rj, oj+1) from D
set yj = rj + γargmaxaQ(oj+1, a; θ′)
perform gradient descent step on (yj −Q(oj, aj; θ)) updating θ
update θ′ through eq. 3.19.

end for
end for

over several episodes, until a maximum number of episodes is reached.
Two variants of DQN that are worth to be mentioned have been proposed over the
years: Double DQN [40] and Dueling DQN [41], but they have not been considered
in this work.

3.3.4 Policy Gradient Methods

Although the approach used in this thesis is based on the DQN algorithm (a value-
based approach), it is necessary to deal with the main concepts of another approach
of DRL given its importance: the policy gradient methods [42].
Policy gradient methods aim at directly finding the best policy π(a | s) instead
of focusing on the action value functions. They operate by optimizing a policy
performance metric, J(θ), which depends on the current policy and the expected
reward (eq. 3.20).

J(θ) = E

[
N∑
t=0

r (st, at) ;πθ

]
(3.20)

43

The maximization of the objective function J(θ) is performed through gradient
ascent. It updates the parameters θ towards the direction of the gradient of J(θ),
according to eq. 3.21.

θt+1 ← θt + α∇θJ (θt) (3.21)

Actor-Critic Architecture

One of the most adopted policy gradient methods is the Actor Critic [43]. In DRL,
two neural networks, namely actor and critic, are the components of this architecture.
The actor has to define the proper policy πθ, while the critic estimates the action
value function (similarly to the Q-network) associated to a state-action pair. In
simple terms, the critic estimates the value function and the actor updates its policy
in the direction suggested by the critic through a policy gradient approach. Both
networks train their parameters through the TD error discussed in section 3.2.2.
Figure 3.11 represents the typical actor-critic architecture.

Deep Deterministic Policy Gradient (DDPG)

DDPG is a policy gradient algorithm that exploits the actor-critic architecture. The
actor learns the policy π while the critic learns the Q(s, a) given a specific state-
action pair. It is applied to those environments presenting a continuous state and
action space, where a DQN algorithm cannot be exploited given the structure of
its Q-network. In fact, when the optimal value-function Q∗(s, a) is known, the best
action the agent can perform is given by: a∗(s) = argmaxaQ

∗(s, a). When the
action space is continuous, this operation is not trivial anymore.
DDPG exploits four neural networks:

• actor π with parameters θ;

• critic Q with parameters σ;

• target actor π′ with parameters θ′;

• target critic Q′ with parameters σ′.

44

Figure 3.11: The actor critic architecture. The actor is the policy that directly re-
turns the action to take according to the input state. The critic is
represented by the "Value Function". The critic is used only during the
training. Once the policy is trained, it will be the only one to infer the
actions that the agent has to perform.

At the beginning, all the networks have random parameters, and the agent starts to
explore the environment by exploiting its actor network and populating the replay
buffer. When the buffer contains sufficient samples, the learning process can start:
a mini-batch of size N is sampled and used to update the parameters of the critic
(σ) computing the loss function L between the predicted Q and the target value y
obtained from the target critic and target actor.

L =
1

N

∑
i

(yi −Q (si, ai | σ))2

yt = r (st, at) + γQ′ (st+1, π
′ (st+1 | θ′) | σ′)

(3.22)

Eq. 3.22 represents the loss function obtained in order to train the critic. It shows
how the target value yt is obtained from the target actor to derive the action to be
performed in the next state a′ = π′(st+1 | θ′) and from the target critic to get the Q′.

45

After the update of σ, also the actor performs a training step. Its aim is to select the
action that maximizes the Q value given the state. Hence, the policy performance
metric J(θ) that has to be maximized is evaluated as the Q(s, a) value, where s is the
current state and a is the action chosen by the current policy π. In order to calculate
the policy loss, the gradient of the policy performance metric can be obtained with
respect to the policy parameters θ (eq. 3.23). Finally, the weights and biases of the
network are updated using the gradient ascent as optimizer.

J(θ) = E
[
Q(s, a)|s=st,a=π(st)

]
∇θJ(θ) ≈ 1

N

∑
i

[
∇aQ(s, a | σ)|s=si,a=π(si)∇θπ(s | θ)

∣∣∣
s=si

] (3.23)

A complete explanation of DDPG and demonstration of the equations presented
in this section can be found in the original paper presented by Google DeepMind:
"Continuous Control with Deep Reinforcement Learning" [17].
The main advantages in using this method rely on the possibility to deal with con-
tinuous action spaces and to learn stochastic policies. However, DQN is the best
option when the environment presents a large state-space but a limited and discrete
action-space. An idea of DDPG algorithm is presented through its pseudocode in
section A.4.

46

Chapter 4

Problem Formalization and

Algorithm Setup

The aim of this chapter is to provide the mathematical framework exploited to model
the decision-making problem described in section 1.1 in terms of observations from
the environment, actions of the agents and gained rewards. Subsequently, the re-
inforcement learning approach allowing each agent to map a given observation to a
reasoned action is presented and described in detail.

4.1 Problem Formalization

As stated in section 3.2.1, MDPs are one of the most common and convenient meth-
ods to model a decision-making problem. Also, all the previous research on similar
scenarios showed how the formalization of a problem through a MDP or a POMDP
is the proper approach when RL is the chosen methodology to tackle it.
Since multiple agents are considered in this scenario, the proper model that has to
be chosen is a Decentralized-POMDP, which is the multi-agent variant of a POMDP.
Multiple agents acquire partial observations of the environment and may share their
local knowledge with the others in order to learn how to cooperate and reach a

47

common goal.

4.1.1 Observations

The observation consists in the partial knowledge that the agent is able to acquire
about the entire state. The decision regarding the typology of observation for each
agent has been tackled according to what actually a UAV is able to observe thanks to
its communication capabilities. We decided to propose two slightly different POMDP
models that only change in their observation:

1. in the first model, the partial observation of the agent consists only in its
position and the position of all the other agents of the system. No information is
provided regarding the covered GUs and their level of activity. This observation
can be seen as a linear vector of coordinates (Figure 4.1a);

2. in the second model, the observation is more similar to the actual perception
that the UAVs can have in the network. It consists of: the relative positions of
the detected neighbors, the relative positions of the GUs that are in range with
that UAV, and the level of activity of the GUs that the UAV is covering at the
very moment. This observation can be seen as a sequence of relative maps of
the environment (Figure 4.1b) whose size is limited by the agent’s observation
range. Each relative map is a discretization of a part of the environment in a
given number of cells; hence, the partial observation will return the summation
of neighbor UAVs, GUs and levels of activities detected in each cell.

The main differences between the two typologies of observations lie in the number of
input that have to be passed to the learned policy. While in the first case this input
is fixed, assuming that the number of UAVs does not change in time, the second
scenario presents a much more variable situation. The relative positions of neighbor
UAVs, as well as the relative position of near GUs, has not a constant size; hence,
the storage of this information in discrete maps significantly helps in dealing with
the observation of these variable-size input.

48

(a) (b)

Figure 4.1: Two different observation scenarios: in (a) each agent has the complete
knowledge about the position of all the other UAVs. The observation is
represented by a scalar vector. In (b), the observation is represented by
a sequence of maps, each map bringing the relative information of: (i)
relative position of neighbor agents, (ii) relative position of near GUs
and (iii) relative level of activity of the covered GUs.

The main motivation behind the decision of two different typologies of observations
is to investigate whether a partial observation with only relative information can
achieve similar results when compared to a more global and centralized information
about the environment. Despite both observations consist of a partial knowledge of
the environment, in this dissertation we will refer to the first observation case as
centralized while the second observation case will be indicated as partial.

4.1.2 Actions

The formalization of the action space is another fundamental step of the designing
process, in order to properly define how the agent interacts with the surrounding
environment. Given the wide degree of freedom a UAV can have in terms of mobility,
we decided to reduce the space of possible actions by defining nine different and
discrete movements the UAV can perform at each time step. This limit allows the
agent to take simple decisions in the environment and to reduce the complexity that a
continuous action space would have brought. The nine possible actions that the agent
can take correspond with nine possible discrete movements in a two-dimensional

49

Figure 4.2: Discrete action space of the modeled POMDP. At every time step, the
agent can decide between nine possible actions corresponding with a
movement in the two-dimensional space.

space (Figure 4.2), while the altitude of the UAVs is considered as a fixed parameter.

4.1.3 Reward

The reward function represents the most crucial feature in the formalization of a
MDP. After the study of how previous works (proposed in chapter 2) modeled their
reward functions, and a consistent trial and error procedure, we defined it as the
summation of two components returned every time an action is performed:

• the number of GUs that the current UAV is associated with, normalized by the
total number of GUs present in the network;

• the resource utilization of the current UAV, normalized by the total workload
required from the GUs.

With the term resource utilization, we refer to the total level of GUs’ activity that
the UAV is handling at the moment. Given this value of reward function, each agent
will try to maximize its own level of cumulative coverage and resource utilization
over time. The UAVs should learn either to find undiscovered GUs, in order to
improve their level of coverage, or to place themselves near other UAVs in order to

50

share computing resources through the implemented resource sharing algorithm, and
hence, improve their level of utilization.

4.2 Algorithm Setup

The next step in the design of the system is the formalization of the exploited rein-
forcement learning algorithm. The aim is to make all the agents in the environment
select the optimal action at every timestep, in order to maximize the return in terms
of coverage and resource utilization.
DQN has been the proposed RL approach to deal with this problem. This choice was
driven by the astonishing results obtained by deep reinforcement learning in the past
few years, together with the intrinsic structure of the problem itself: a large observa-
tion space, in addition to the limited action space, make DQN the perfect approach
to solve this decision-making problem. Even though several already implemented
algorithms are available in the open-source community, none of them can be directly
applied on the specific environment previously presented. Hence, starting from the
main idea of how DQN works, we decided to implement the algorithm from scratch,
using the ready-made implementations as guidelines. The reason behind this choice
is twofold: (i) the implementation of an algorithm from scratch is the best way to
understand how the algorithm actually works in every aspect; (ii) the algorithm can
be specifically designed for the architecture of the proposed environment.

4.2.1 Neural Networks Design

The two different observations the agents can get from the environment, described in
sub-section 4.1, necessitate two different neural network structures. The first obser-
vation type only returns the positions of all the agents. Considering the guidelines
provided by already implemented algorithms, and, more importantly, the original
work presenting DQN [4], we decided to implement a shallow fully-connected Q-
network with one single hidden layer (same structure presented in Figure 3.9). This

51

simple architecture is also justified by a trial and error procedure, that revealed how
the performance of the training has not a significant impact with respect to the num-
ber of implemented hidden layers, especially if compared to the additional training
time needed as the number of layers increases. Furthermore, we also investigated the
proper activation function and loss function. We decided to apply the ReLU as non-
linearity, given its computational simplicity and the reduced likelihood of vanishing
gradients. The adopted loss function has been the smooth l1 loss (Eq. 4.1), which
combines the advantages of the l1 loss and the l2 loss (Eq. 4.2). Finally, the Adam
optimizer has been exploited for the update of the network’s parameters.

L1; smooth (y, ŷ) =

 |y − ŷ| if |y − ŷ| > α

1
|α|(y − ŷ)2 if |y − ŷ| ≤ α

(4.1)

L1(y, ŷ) = |y − ŷ|

L2(y, ŷ) = (y − ŷ)2
(4.2)

The second observation type is closer to a more realistic perception a UAV can have
in the environment. Given that the number of covered GUs and neighbor UAVs may
change over time, we organized this observation into two-dimensional maps (Figure
4.1b), passing them as the input of the Q-Network with a CNN architecture. This
approach allows to overcome two main problems:

1. dealing with input of variable dimensions;

2. considering the spatial correlation of features in the neural network.

The first problem emerges when a flat neural network architecture is considered.
The input neurons should vary according to the variable number of neighbor UAVs
or covered GUs. If this information is organized in two-dimensional maps and passed
to a CNN, this problem is completely addressed. Furthermore, the use of a CNN
allows the automatic detection of spatial features and the relative orientation between
them, thus making this structure particularly suited for our purposes. The design of

52

the CNN architecture has been inspired by [4] and [13], in addition to an extensive
trial and error procedure. We opted for a CNN with one convolution layer with 9
filters of 3x3 dimension and one max-pooling layer with kernel size 2x2 and stride of
2 for computational efficiency and robustness enhancement. After these operations,
the results are flattened and given as input to the last part of the CNN, which is made
of three fully connected layers. The first one is made of 10+3 hidden neurons, where
the additional three elements correspond with the vector (xu, yu, t), containing the
global coordinates of the agent and the value of timestep. This information has to be
added since the only knowledge of relative information is not enough for the agent
to orient itself in the target area. The last hidden layer’s size is 80 neurons and the
output layer has exactly the action space dimension. The graphical representation
of the two implemented neural network architectures is provided in Figure 4.3.

4.2.2 Training Process

The algorithm proposed for the designed Q-networks training has been presented in
Alg. 1. The only difference is that multiple agents interact with the environment
at the same time, mutually affecting their decisions and fostering their cooperation.
Given the homogeneous capabilities of the agents considered so far, they will leverage
the same policy through the training of a single Q-network. The use of the same
policy fosters the scalability and the time complexity of the algorithm, by avoiding to
train one Q-network per each agent of the system. Figure 4.4 schematizes the DQN
training procedure over the simulation. The agents interact with the environment
following the current policy and creating transitions. These transitions are appended
to the replay buffer, whose batches are used to train the Q-network through the loss
function presented in Eq. 3.17. The target network’s parameters are then updated
using the Polyak averaging (Eq. 3.19).

53

(a)

(b)

Figure 4.3: Neural Networks design for the multi-agent decision making problem.
(a) represents the structure of the shallow neural network, which takes
as input the positions of all the agents in the systems. (b) represents
the design of the CNN, where the input is the concatenation of the three
relative maps that the agent can build together with its absolute obser-
vation. For both the architectures, the output is the Q-value for each of
the nine possible actions.

54

Figure 4.4: DQN Training Process with Multiple Agents. On the right part, the
agents exploit the learned policy by using Q-networks with the same
parameters. While they interact with the environment, the Q-network
is trained (left part) according to the DQN algorithm (1), leveraging on
the replay buffer and target network.

55

Chapter 5

Tools and Implementation

This chapter aims at describing the main tools that have been exploited in this
work and how they have been merged together in order to implement the proposed
approach. Once each tool has been properly presented, the followed methodology
will be outlined in order to provide a detailed overview of the designed framework.
Its main strengths as well as some relevant problems that we encountered will be
also highlighted towards the end of the chapter.

5.1 Tools

Before explaining how the scenario has been simulated, the main tools used in this
work should be described. They allowed us to: (i) develop the multi-agent RL
algorithm, (ii) to train it on a simplified scenario and, (iii) to test it in a more
realistic environment.

5.1.1 PyTorch

PyTorch is a fast machine learning library developed by Facebook’s AI Research Lab
[44]. It provides a very intuitive framework in a Pythonic programming style for
the development of deep learning models. The two most important features that

56

distinguish PyTorch from other deep learning libraries consist in the computation
of tensors with a strong GPU acceleration and the automatic differentiation for the
creation and the training of the neural networks.
Tensors are data structures (like arrays) that can run on GPU. In this way, the time
for numerical computations is speed up by a factor of fifty at least.
The automatic differentiation consists in the possibility to numerically compute
the derivative of a function. It allows to adjust all the parameters of a neural net-
work during the backpropagation and update steps (section 3.3.1). The "autograd"
feature of a tensor object supports this automatic differentiation, thus allowing the
network training.
Apart from tensors and automatic differentiation, other fundamental features of Py-
Torch are:

• nn.Module Class: module for the neural network creation. It defines the
structure of the model by providing layer architectures (linear, convolutional,
recurrent), activation functions and loss functions.

• Optimizer: the optim package defines the optimizer used to update the pa-
rameters of the network. It automatically implements common optimization
algorithms (ADAM, gradient descent, AdaGrad) on the tensor that is storing
them.

The choice of using PyTorch as deep learning framework has been based on all these
convenient features. Furthermore, PyTorch provides a strong community support,
which is fundamental to increase the developers’ productivity.

5.1.2 Network Simulator 3 (ns-3)

Ns-3 is a free and open source discrete-event network simulator that runs on Unix and
Linux-based systems and is developed in C++. It provides models for packet data
networks, tools for their analysis and an engine to handle the simulation experiments.
This simulator is based on the following key simulation objects:

57

• Node: it is the connection point of the network, that can be associated with
network devices, protocol stacks, mobility models and applications. It is defined
by the class Node;

• Channel: it represents the propagation medium of the signal. It defines the
condition of propagation in terms of delay and propagation loss.

• NetDevice: it represents the physical network interface of the node. It is
defined by the class NetDevice and has to be associated with a Node Pointer
and attached to a Channel.

• Application: it is the user defined process that generates the traffic and guide
the whole simulation. Several already prepared frameworks for different types
of applications are present in the simulator. However, by inheriting from the
class Application, it is possible to customize traffic patterns.

• Mobility Models: they allow the nodes to have a mobility pattern. There are
several already defined mobility models, such as the Constant Position, Ran-
dom Position, Random Velocity, Waypoint. One can always define a custom
mobility model through the class Mobility.

The software infrastructure allows the development of sufficiently realistic simulation
models, which can be even used as network emulators and interconnected with the
real-world.
This simulator has been useful towards the end of this work, in order to define a
more realistic scenario where UAVs exchange packets with ground nodes and between
themselves while exploiting the policy learned in Python. It has been useful to have
an idea of how the learned model would behave in a more realistic scenario, without
changing the structure of the observation that the agents could get.

5.1.3 Ns-3 - Gym

The last tool that has been implemented in this thesis is called ns-3-Gym [45]. This
toolkit provides a framework to apply RL in the networking environments that are

58

simulated with ns-3. It allows to represent an ns-3 simulation as an environment in
the OpenAI Gym framework [46], a toolkit for developing and comparing RL algo-
rithms. Ns-3 - Gym has been developed in order to foster the application of ML
approaches to modern networking environments, by allowing the feeding of RL mod-
els with data generated by the simulator. The motivations are multiple: the training
of novel RL-based networking algorithms needs for several experiments, that usu-
ally are not affordable in real-world scenarios. Furthermore, provided the realistic
networking environments that are implementable in ns-3, the policy learned in sim-
ulation may be sufficiently robust also in real-world implementations.
The architecture of ns-3 - Gym (Figure 5.1) is made of three main components:
the network simulator, OpenAI Gym and a middleware that handles the exchange
of messages (i.e., the observations and the actions) between the simulation and a
Python agent.
The middleware is made of two elements: the Environment Proxy and the

Figure 5.1: Architecture of ns-3 - Gym framework [45].

Environment Gateway. The core of this toolkit consists in these two software

59

components, who take care of the exchange of the messages and the management of
the ns-3 simulation timings in a completely transparent way for the developer.
The environment gateway is responsible for the gathering of states from the sim-
ulation into numerical structures and the translation of received numerical actions
into simulation functions. The main functions that have to be exposed in ns-3 in
order to properly implement the gateway are:

• GetObservationSpace(): defines the environment observation space;

• GetActionSpace(): defines the environment action space;

• GetObservation(): collects the observed simulation variables or parameters in
predefined data-structures that are sent to the Python agent;

• GetReward(): evaluates the reward achieved during the last step;

• GetGameOver(): checks whether the episode is terminated or not;

• ExecuteActions(action): maps the numerical action received by the Python
agent into the proper simulation action.

The communication between the two frameworks is implemented through the ZMQ
socket [47]. The data structures supported in this communications can be: a discrete
number (type Discrete), a matrix of single-type values (type Box) and a tuple or a
dictionary of discrete or matrices structures (type Dict or Tuple).
The environment proxy receives the observations from the ns-3 environment and
exposes them to the Python agent through the Gym API. Then, it translates the
Gym function calls into messages, sending them to the gateway through the ZMQ
socket. From the Python perspective, the creation of the environment has exactly
the same interface functions of the standard Gym API. The exchange of messages
between C++ and Python is completely automatic and transparent to the developer
once that the previous functions are correctly implemented. This makes ns-3 - Gym
a very easy to use tool for the implementation of RL algorithms on ns-3 simulations.

60

5.2 Outline of the Methodology

This section provides an overview of the methodology that has been followed for
the framework design. The first step consists in the problem formalization, already
described in section 4.1. After the problem formalization, a Python simulation is im-
plemented in order to train a set of Python agents via the proposed DQN algorithm.
The policies learned by these agents are then saved, allowing their direct application
in similar environments without the need for a re-training procedure. Finally, the
trained agents are interfaced with an ns-3 simulation that implements: a specific net-
work architecture, mobility models for the nodes, and applications installed
on each of them. The interface between the network simulation and the trained
agents is handled by the ns-3 Gym middleware. The ns-3 environment provides the
exact observation and action space defined in the problem formalization, thus avoid-
ing to adjust the agents’ interface. Figure 5.2 displays a visual representation of the
designed framework, together with the interactions that occur between the different
components. A more detailed explanation of the presented methodology is described

Figure 5.2: Overview of the methodology for the framework design. The three blocks
represent the main steps we performed in order to formalize the problem
and implement two simulations: (i) the Python simulation for policy
training, and (ii) the ns-3 simulation for the policy transfer in a more
realistic scenario.

in the next sections.

61

5.3 Python Simulation Implementation

The first simulation of the environment has been developed entirely on Python. This
choice has been made in order to train the model on a simplified scenario with respect
to a more sophisticated simulation that could take days in order to properly train
the agents. Therefore, we propose a Python environment emulating the scenario
described in section 1.1 and implementing the observations, actions and rewards
described in the problem formalization (section 4.1.
The Python environment consists in M clusters of GUs that are created according
to a bivariate gaussian distribution within a two-dimensional grid, whose number of
cells is limited by given bounds. The GUs do not have a mobility within the grid,
but they can appear and disappear from the environment according to a probability
that depends on: the cluster in which they are and the episode timestep. Each GU
is characterized by a four-dimensional tuple (xg, yg, c, act), where:

• (xg, yg) ∈ R+ represent the geographical coordinates of the GU;

• c ∈ Z is the identifier of the UAV that is covering the given GU. If no UAVs
are in range with this user, then c = −1;

• act ∈ R+ is the level of activity of that GU. It can be interpreted as a number
proportional to the data rate of the GU.

In the same grid, Nu UAVs discretely move in a two-dimensional space. While GUs
are characterized by the four-dimensional tuple, the Nu agents are described by a
two-dimensional one (xu, yu), where xu and yu are the geographical coordinates.
The simulation behaves as follows: at each timestep, the agents can individually per-
form one of the nine actions previously described in the formalization of the problem.
Following this action, each agent will receive a reward, which is based on its level of
coverage and resource utilization achieved in the new state. The coverage is evalu-
ated according to the number of GUs the agent can observe within a given range.
It is important to underline that two or more agents cannot cover the same GU;
the resource utilization is evaluated as the summation of the level of activities of the

62

covered GUs for each UAV. Furthermore, if the resource utilization of a UAV is above
a certain threshold, the agent offloads a part of this value to a more idle neighbor
agent until either the utilization of the former comes back below the threshold or the
latter reaches it. In this way, even if a UAV is not covering any GUs, it still gets the
chance to be rewarded by being close to another agent.
While at every timestep each agent can decide where to move, the size of the clusters
tend to change according to the current timestep. A given cluster could be very
populated in a given interval, while nearly desolated during another one. Further-
more, the activity of each GU can change over time as well. Hence, we expect the
agents to find a reasonable trade-off between level of coverage and utilization of their
computational resources. This behavior allows to emulate a scenario where variable
hot-spots have to be covered in a dynamic way over time according to the number
of users and their level of activity. The variability of the clusters’ size and level of
activity only depends on the timestep of the simulation and does not change over dif-
ferent episodes. In this context, we expect the agents to dynamically cover different
clusters over time, in order to maximize their cumulative reward. The parameters
that completely describe the implemented simulation are resumed below:

• Number of UAVs: the total number of agents in the simulation. It remains
fixed over the episodes;

• Number of GUs Clusters: the number of clusters of GUs. Each of them
has a mean position and a given variance in order to place new GUs;

• Average Cluster Size: the variable average number of GUs that populate a
cluster;

• Bounds: determine the limits of the grid topology;

• Coverage Range: the maximum distance between a GU and a UAV in order
to be associated;

• Connectivity Range: the maximum distance between two UAVs in order to
be connected;

63

• Resource Utilization Threshold: the total level of activity after which the
UAV starts sharing its resources with a neighbor;

• GUs’ level of activity: the variable average value of a GU’s level of activity;

• Total Timesteps: number of steps within an episode;

The interface functions that have been implemented for the agents to interact with
the environment, thus allowing the Q-network training, are:

• def step(self, action): through this function, the agents can perform the selected
discrete movement. The input action is a vector of bi-dimensional movements,
one per each agent, with dimension (Nu, 2). The value returned by this function
consists in a complete observation of the next state of the environment, made
of both the agents and GUs tuples, together with the value of reward achieved
by each agent. The observation is then limited for each agent according to the
considered level of observability.

• def reset(): while the agents take actions, the internal variables of the environ-
ment change accordingly. The reset() function allows to restart the episode,
by resetting all the environment variables. While the position of the agents is
re-initialized randomly, the one of the GUs clusters does not change.

5.4 Ns-3 Simulation Implementation

In this section, the implemented ns-3 simulation is described. This simulation has
been realized to propose a more realistic wireless network scenario, where the obser-
vations that the agent acquire depend on actual messages exchanged by the nodes
of this network. The policies, which are learned in the Python environment, are
tested also in this simulation, in order to observe how a more realistic environment
affects the performance of the implemented algorithm. The observations acquired
by the ns-3 agents have the same structure and meaning with respect to the ones
observed in Python, but the dynamics are more sophisticated, affecting the quality

64

of the observations that the agents can get. The first step towards the implementa-
tion of the ns-3 simulation is the definition of the typologies of nodes that are going
to be considered: how they communicate, how they move and what messages they
exchange during the simulation.
Given the scenario presented at the beginning of this chapter, the network has two
typologies of nodes: UAVs and GUs. These nodes have been characterized by key
simulation objects (described in section 5.1.2), that completely define the Network

Architecture, the nodes’ Mobility and the Applications installed on each of
them.

5.4.1 Network Architecture

Two main typologies of communications occur in our scenario: (i) UAV to UAV and
(ii) UAV to GU. The architecture of the network can be implemented through a fly-
ing ad-hoc wireless network that is able to directly communicate with GUs devices.
This architecture has been simulated by deploying a Wi-Fi network in Ad-Hoc mode
for the communications between UAVs. The communications between UAVs and
GUs, instead, present a different structure. In this case, taking a leaf from the work
of Mayor et al. [48], we implemented an infrastructure-based Wi-Fi network, exploit-
ing UAV-mounted IEEE 802.11 Access Points (APs). This configuration allows the
UAVs to communicate with the other UAVs over an ad-hoc wireless network on one
interface, and with the GUs that are associated to that AP on the other one.

5.4.2 Mobility Models

As explained in the outline of the scenario, the mobility of the two typologies of nodes
is well defined; hence, in order to reproduce that behavior, the installed mobility
models must present specific characteristics. The GUs should appear in the network
according to a bivariate gaussian distribution at different rates over time. This

65

mobility behavior has been implemented by installing a Constant Position mobility
model on the GU nodes, and grouping them in clusters according to aDisc Position

Allocator, which assigns to each node random positions within a disc according to
a normal distribution applied to the polar coordinates (angle and radius). Then,
in order to emulate the rates at which the GUs appear and disappear from the
network, the nodes’ interface is periodically deactivated or activated according to
different probabilities depending on the cluster and timestep of the simulation.
The mobility of the UAVs depends on the action that the learned policy will generate
according to the input observation. As explained in section 4.1.2, the actions are
defined by nine possible discrete movements in the two-dimensional space. Hence,
the mobility model implemented for the UAV nodes is the Waypoint Mobility

Model. This model allows to set, at every moment of the simulation, the next
position of the node. Whenever an agent has to decide the action to perform, a new
waypoint is added in the model according to the chosen direction of movement and
distance to cover. Since in the ns-3 simulation the space is continuous, the distance
that the agent covers at each action corresponds to the chosen cell size obtained after
a space discretization.

5.4.3 Applications

The applications that have been installed provide abstractions of user programs that
generate the activities of the nodes. UAVs and GUs have different roles in the
simulation; hence, different applications have been installed on them.

GUs Applications

The GUs are characterized by two fundamental actions they have to perform in this
framework: (i) sending tasks to the UAV they are connected with, and (ii) periodi-
cally broadcast information regarding their position and level of activity. These two
behaviors are implemented by installing on each GU node two specific applications
that will handle the task forwarding and the information sharing.

66

The task forwarding application consists in a client application that sends UDP pack-
ets with a given payload. Each of these packets corresponds with one task whose
payload contains information about: the required processing time, the time it has
been sent, and a task identifier. The parameters that completely define this applica-
tion are:

• Socket Address: the combination of IP address and port that completely
identify the destination of the UDP packets. This destination corresponds
with the AP the GU is connected with;

• Packet Size: a random variable that defines the size of each task in bytes;

• Processing Time: a random variable that identifies the computational effort
of the task in terms of time that will be required by the UAV to process it;

• Time Interval between Packets: a random variable that defines the fre-
quency at which the GUs forward tasks;

• Maximum Number of Packets: the maximum number of tasks that the
GUs can send.

The task forwarding application also handles the answers from the network corre-
spondent to each task. For each GU, this application will provide three interesting
output that can be exploited to analyze the performance of the network: the number
of tasks sent, the number of tasks processed and the average waiting time per each
task.
The second application that has been installed on the GU nodes provides a periodic
broadcasting, towards the associated UAV, of information regarding their position
and the level of activity. This message is useful for the UAVs in order to acquire
the partial observation of the covered users’ position and the correspondent level
of activity, which has been identified as the average number of bytes sent per unit
of time for task forwarding purposes. The tunable parameter for this application
consists in the time interval between two packets. The higher this frequency is and
the more updated the observations of the UAVs will be with respect to the GUs

67

they are covering. This frequency parameter tuning should be properly set in order
to guarantee an updated observation for the agents without excessively increase the
network overhead.

UAVs Applications

The UAVs are provided with four applications that define their behavior in the
network. Three of them handle the periodic exchange of network information and
observation acquirement while the other one characterizes the procedure that the
agents follow when a new task is received. The first UAV application is a server
application that handles the periodic information received by the covered GUs. This
server will receive packets, describing the GU’s state, with the following payload:

• identity ;

• position;

• level of activity.

This information is stored in a local database that constantly updates the entries re-
garding the GUs that are in range with the UAV and their characteristics. From this
database, the agent is able to acquire the information regarding its level of coverage,
the position of the GUs and their level of activity, thus having all it needs to create
the partial observation with respect to the covered GUs. Other two applications deal
with the exchange of network information between UAVs. They are a client and a
server application respectively. The client will periodically broadcast UDP packets
over the flying ad-hoc network, in order to share information with neighbor UAVs.
The payload of these packets contains:

• the UAV position;

• the number of tasks that the UAV currently has to process;

• the expected time that a new task should have to wait in queue in order to
be processed by that UAV.

68

The server application that receives these packets, stores and updates this informa-
tion in a "neighbor table", which allows to determine the agent’s level of connectivity,
the positions of its neighbors and the status of their queue, whose relevance will be
explained in the following application.
The last installed application handles the task receipt at the UAVs, allowing them to
decide whether to locally process the task or offload its computation to a neighbor.
When a UAV node receives a task, the decision of where to process it is driven by a
simple Least Load task dispatching algorithm. The current UAV checks the expected
waiting time at its queue and compares it with the waiting time at the queues of
its neighbors. The chosen UAV that is charged to process the current task is the
one with the shorter waiting time. A finer approach could have also considered the
additional time for the extra hop that the task has to take, but we consider that
the sending time of tasks between two UAVs is much shorter than the correspondent
processing time.
Once the task is stored in a queue, its scheduling is performed through a First In
First Serve (FIFS) algorithm and the status of the queue, identified with the number
of waiting tasks and the expected waiting time for a new task, is updated. The pro-
posal of an optimal task scheduling and dispatching approach is out of the scope of
this work. FIFS is a standard task scheduling algorithm in which the tasks are pro-
cessed according to the order they arrive. It represents the proper baseline approach
to start with, since, despite more sophisticated algorithms can be implemented, we
consider all the tasks to carry a similar computational effort without any priorities.
Once a task has been processed, the UAV network has to send an answer back to the
GU. This answer will always come from the UAV who received the task in the first
place, either by processing the task and sending back the answer or by forwarding
the answer coming from the neighbor node where the task was offloaded to. Task re-
transmission algorithms have not been implemented; if a task, or the correspondent
answer, is lost, it cannot be retrieved. Furthermore, when the UAV loses connec-
tivity with a GU that is waiting for a task’s answer, there is no possibility to route

69

this answer through multiple UAVs to reach it. These choices have been made in the
simulation implementation phase in order to simplify and speed up the realization
of the simulated environment.

5.4.4 Policy Transfer on ns-3

The ns-3 Gym toolkit takes care of the exchange of messages (observations and ac-
tions) between ns-3 and the python agents. In order to properly apply this interface,
we had to implement the environment proxy and environment gateway that have
been discussed in section 5.1.3. The environment gateway has to expose the func-
tions that define: (i) how observations are gathered from the simulation and (ii)
how actions are applied on it:

• GetObservationSpace(): the observation space is defined as a two-dimensional
tuple (U,G). The first entry of this structure U ∈ RNu×2 contains UAV-related
information while the second entry G ∈ RNg×4 describes the status of the GUs
according to the knowledge of the UAVs. The observations collected from the
ns-3 simulation have exactly the same structure of the observations returned
in the simpler Python implementation;

• GetActionSpace(): the action space is given by an array a ∈ RNu . Each entry
is an index corresponding with one of the nine possible discrete actions the
agent can perform in the space;

• GetObservation(): the U matrix is filled with the position of each agent (xu, yu),
while the GUs’ status G includes their position (xg, yg), the AP they are con-
nected with (c) and their level of activity (act);

• GetGameOver(): the episode terminates only after a determined number of
timesteps which depend on the duration of the simulation and the frequency
of observation acquirement;

• GetReward(): this function has not to be implemented for the moment, since
the policy the agents exploit is entirely trained on Python.

70

• ExecuteActions(action): this function acquires the action each agent has to
perform and turns it into an actual movement. Firstly, each index is mapped
with the correspondent two-dimensional vector (Figure 4.2). Secondly, a new
waypoint is added to the mobility model of the correspondent UAV, by sum-
ming its current position with the action vector. The agent will move towards
this new position at constant velocity.

The definition of these functions is fundamental to use a Python agent on the ns-
3 simulation. The agents are implemented exactly as in the Python simulation,
interacting with the environment through the OpenAI Gym functions step(action)
and reset(). The only difference is that the Q-networks have not to be trained
again. They can observe both a centralized scenario, where it is possible to know the
positions of all the other agents independently on the actual connectivity (matrix
U), or the partial scenario, where the observations depend on information that the
nodes in the network are exchanging along the simulation. For this second case,
each observation is given by the knowledge that the UAV currently has through the
periodic broadcasting of information among the nodes. The partial connectivity,
coverage and level of activities are retrieved from the matrices U and G.

5.5 Limitations

The design and implementation of this framework has not been free of questions and
problems. Despite our original intention was to propose a reinforcement learning ap-
proach able to learn good policies for an agent directly in a realistic environment, the
steps towards this goal took more time than expected. Firstly, the learning curve for
an implementation of a multi-agent reinforcement learning algorithm together with
an ns-3 simulation, from scratch, is quite long. Furthermore, one single episode of the
ns-3 simulation can last minutes, without considering the additional time required
for the training process. Hence, the learning of a policy through RL directly on this
framework, without a proper computational power, could take days. This has been

71

the main reason why we decided to keep the training of the DQN entirely on the
simpler Python environment and, subsequently, to apply the already learned policy
directly on the network simulation. The policy transfer from an environment to a
slightly different one brings the performance of the approach to the sub-optimality.
Even though the agents observe the same input, the way in which these observations
are acquired is very different, causing a reduction in the achieved return.
Other limitations regard the implementation of the algorithm in the Python envi-
ronment. The first problem we faced has been the hyper-parameters tuning. Since
previous works that consider similar scenarios do not present any comprehensive
hyper-parameters tuning approach, we had to start from known configurations that
are successfully applied in completely different environments. Starting from here,
through several runs with different parameters, we were able to orient ourselves on
a discretely suited set of parameters, despite the long time it took to find them.
Furthermore, the learned policy has shown a low level of scalability with respect to
the bounds of the target area where the agents operate. This problem needs to be
addressed through a deeper study of methods that could make the training of the
DQN more robust to these variations without spending too much time and money in
a careful hyper-parameter tuning. The other main limitation relies in the resource
sharing approach and its contribution in the reward of the agent. As discussed in
section 5.3, the resource sharing between UAVs should allow an agent to increase
its reward by being connected to another agent. Hence, in the case in which the
number of UAVs is higher than the number of clusters, their behavior should allow
more agents to converge towards the most active or populated clusters in order to
share their computational resources. Unfortunately, keeping the same structure of
reward and neural networks, the policy is not able to learn such behavior. Therefore,
the resource sharing approach does not improve any metric and its contribution in
the learning process of the policy is limited. However, recalling the limited on-board
computing capabilities of UAVs, the implementation of a resource sharing approach
enhances the realism of the simulation, and we plan that it will play an active role

72

in future improvements to this work.
In the next chapter, the results obtained from specific scenarios will be presented,
being aware of the limitations that have been discussed so far, which bring the learn-
ing of the policy to quite poor performance in some of the presented scenarios.
In chapter 7 some possible solutions to these limitations will be proposed as future
works of this thesis.

73

Chapter 6

Experimental Results and Discussion

So far, the description of the simulated environments together with the designed
reinforcement learning control system has been carried out. We also discussed about
the main limitations of the system, which have to be taken into account in order to
make this approach more robust and, hopefully, to exploit it in a real-world use case.
The aim of this chapter is to present the adopted experimental methodology in order
to clearly describe the scenarios on which we applied our approaches.
The first section focuses on the training of our models. Keeping the same neural
network architectures and the same reward, we wanted to observe whether the agents
are able to learn a proper policy in three slightly different scenarios, namely "static
clusters", "dynamic clusters" and "dynamic activity", which differ according to the
level of dynamicity of the clusters’ size and GUs’ level of activity. Furthermore, a
comparison between the policies learned by the two different POMDPmodels (section
4.1) is going to highlight the main differences and challenges brought by a partial and
limited observation. The results are going to be presented and compared in terms of
reward (section 4.1.3) achieved by the agents along the policy training.
The second section is dedicated to the policy transfer on ns-3. The main limitations
will be highlighted again, together with a more detailed description of the parameters
used for the network simulation. Once again, the comparison between the different

74

results obtained from the two policies will be presented in terms of achieved network
coverage and task completion ratio, focusing on the problems that come out when
the trained policies have to be applied on the more realistic environment.

6.1 Python Experiments

In section 5.3 we already provided an overview of how the Python environment has
been developed and what are the observations, actions and rewards that completely
characterize the reinforcement learning approach. However, our goal is to observe
how the policy that the agents learn can adapt to variations in the scenario according
to different behaviors that the GUs might have. In this section, these environments
are going to be carefully described, together with a schematic presentation of the
parameters characterizing them.

6.1.1 Simulation with "Static Clusters"

In the first scenario, we wanted to test the simple case where the agents have to
cooperate in order to cover all the clusters that are present in the area and that
have, on average, a constant size. Furthermore, the number of agents is equal to the
number of clusters. This is a coverage problem that has been widely discussed in
literature, and several algorithms can be found to efficiently solve it. The objective
was to start applying our reinforcement learning approach in a simple environment
in order to orient ourselves towards an initial set of proper hyper-parameters, neural
network architectures and reward function.
The parameters of this scenario are resumed in Table 6.1. Two clusters appear in the
target area. The average size of each cluster is constant, meaning that all of them
should be equally covered by the agents over the entire duration of the episode. Two
agents are considered in the environment. Each of them does not have any a-priori
knowledge about the cluster positions. They can only move in the space according
to nine possible actions (Figure 4.2) and get their observation of the environment

75

(a) (b)

Figure 6.1: Screen shot acquired from the "static clusters" scenario. (a) represents
the initial configuration, where the agents (red dots) are placed in random
position. The agents tend to move towards the clusters (blue dots) and
cover them (b) for the entire duration of the episode.

according to the centralized or partial approach that is being considered. The level
of activity of each GU is not so important in this scenario since the agents have just
to learn to statically cover the two different clusters. Figure 6.1 displays a Screen
shot taken from this scenario.

The position of the clusters is fixed over different episodes, while the starting state
of the agents is random every time the environment is reset. One episode terminates
when the total number of epochs is reached.
The hyper-parameters we exploited for this scenario are represented in Table 6.2.
The tuning of this first set of hyper-parameters has been quite straightforward. We
started by taking a leaf from [4], that already gave us good performance of the algo-
rithm in terms of convergence and reward. Given the relatively simple environment
we are testing as our first scenario, very simple architectures have proved to achieve
proper results.
Figure 6.2 shows the mean value and the 99% confidence interval of the running
rewards (Eq. 6.1) obtained by each agent during the training of the policy, for five

76

Parameters Value

Number of Agents 2

Number of Clusters 2

Average Cluster Size [20, 20]

Bounds 15x15

Coverage Range 2

Connectivity Range 4

Resource Utilization Threshold 100

Level of Activity N (4, 1)

Epochs 180

Seeds 5
Table 6.1: Parameters used in the Python simulation with "static clusters".

different runs of the simulation.

running reward = 0.9× running reward + 0.1× episode reward (6.1)

The sharp increase of the running reward after the 400th episode (when the noise
starts to decrease) represents how fast the agents tend to learn the clusters that have
to be covered. The two agents will never occupy the same cluster, no matter their
initial position. The satisfying results obtained in this first simple scenario pushed
us to train the Q-networks in more complicated and dynamic environments.

77

Hyper-
parameters

Value (Centralized) Value (Partial)

Q-Network Learning Rate: 10−3

Architecture:
1 hidden layer of size = 80;
9 output values;

Learning Rate: 10−3

Architecture:
1 CONV Layer 3×3×9, stride=1,
padding=1;
1 MaxPooling Layer;
2 FC Layers of size = 13 and 80;
9 output values;

Epsilon Decay Start: 1, End: 0.1
ε← ε× 0.999, after 400thep.

Start: 1, End: 0.1
ε← ε× 0.999, after 400thep.

Gamma (γ) 0.95 0.95

Tau τ 0.05 0.05

Observation Input Size: 5
Input Structure: 1× 5

Input Size: 4
Input Structure: 3 of 8× 8 and
1 of 1× 3

Batch Size 65 100

Replay Buffer 12× 103 12× 103

of Episodes 1500 2000
Table 6.2: DQN hyper-parameters setup for the "static clusters" scenario.

(a) (b)

Figure 6.2: DQN Static Clusters Environment Running Reward Plot. The two
graphs report the running reward achieved by the agents with centralized
(a) and partial (b) observations in the "static clusters" scenario.

78

6.1.2 Simulation with "Dynamic Clusters"

In the second simulated scenario, we wanted to increase the dynamicity of the ground
users, in order to observe if the training of the policy can adapt to variations in the
behavior of the GUs. The size of the clusters can change over time and the number of
agents is smaller than the number of clusters. Hence, the UAVs should cover different
clusters over time, by learning which are the hot-spots in the target area according
to the simulation timestep. The parameters of this second scenario are presented in
Table 6.3. In this case, three clusters have been deployed, with their size changing
over the episode according to the timestep. In detail, the simulation time has been
divided in three equally large intervals. In each of them, a different couple of clusters
will be the most populated one. The two agents have to learn how to dynamically
cover the hot-spots, in order to maximize the coverage of the GUs. Apart from this
slightly different GUs behavior, the other characteristics of the environment remain
exactly the same.
By keeping the initial configuration of the hyper-parameters that we used for the

Parameters Value

Number of Agents 2

Number of Clusters 3

Average Cluster Size [2,20, 20]

Bounds 15x15

Coverage Range 2

Connectivity Range 4

Resource Utilization Threshold 100

Level of Activity N (4, 1)

Epochs 180

Seeds 5
Table 6.3: Parameters used in the Python simulation with "dynamic clusters".

static scenario, the policy learned by the agents is sub-optimal. Either the agents find

79

two clusters and statically cover them for the entire duration of the simulation, or
both agents cover the same cluster. This issue was addressed by increasing the level
of initial noise applied to the policy, in order to let the agent explore the surrounding
environment for a longer time. All the hyper-parameters used for this scenario are
presented in Table 6.4. The architectures of the two neural networks, together with

Hyper-
parameters

Value (Centralized) Value (Partial)

Q-Network Learning Rate: 10−3

Architecture:
1 hidden layer of size = 80;
9 output values;

Learning Rate: 10−3

Architecture:
1 CONV Layer 3×3×9, stride=1,
padding=1;
1 MaxPooling Layer;
2 FC Layers of size = 13 and 80;
9 output values;

Epsilon Decay Start: 1, End: 0.1
ε← ε× 0.999, after 400thep.

Start: 1, End: 0.1
ε← ε× 0.9995, after 400thep.

Gamma (γ) 0.95 0.95

Tau τ 0.05 0.05

Observation Input Size: 5
Input Structure: 1× 5

Input Size: 4
Input Structure: 3 of 8× 8 and
1 of 1× 3

Batch Size 65 100

Replay Buffer 12× 103 12× 103

of Episodes 2000 2000
Table 6.4: DQN hyper-parameters setup for the "dynamic clusters" scenario.

the other parameters, are exactly the same as before, except for the epsilon decay
noise and the batch size, whose higher value shown better results for the partial
observation approach.

80

(a) (b)

Figure 6.3: DQN Dynamic Clusters Scenario Running Reward Plot. The two graphs
report the running reward achieved by the agents with centralized (a)
and partial (b) observations in the "dynamic clusters" scenario over 2000
episodes.

The plots reported in Figure 6.3 describe how the two approaches tend to reach
the same level of running reward. The learning curve smoothly increases until reach-
ing convergence on the 1250th episode for both approaches. With these results, it
is possible to appreciate how the agents move towards the most populated clusters,
which are not fixed over time. Figure 6.4 gives an idea of the positions that the
agents should occupy in order to optimize the return.
The "dynamic clusters" scenario has been the one implemented in the ns-3 simula-
tion, thus using the same policy learned in these experiments to let the agents move
in the more realistic scenario.

6.1.3 Simulation with "Dynamic Activity"

The first two scenarios have as main goal the optimization of the coverage, while
the level of activity of GUs is kept on average constant. As the reward function
described in section 4.1 suggests, the agents have to optimize their coverage as well
as their resource utilization. Hence, they should also move according to the variable
number of tasks that the GUs are sending, thus trying to find a trade-off between

81

(a) (b)

Figure 6.4: Screen shot acquired from the "dynamic clusters" scenario. The three
clusters (blue dots) tend to change their average size over the simulation,
so the agents (red dots) learn how to dynamically cover different clusters.

coverage and utilized resources. The third scenario aims at testing the flexibility of
our approach when the clusters have the same size but different activities over time,
with a number of agents that is smaller than the number of clusters. The optimal
policy the UAVs should learn corresponds with which GUs not to cover in order to
maximize both coverage and resource utilization. The set of parameters used for this
simulation is presented in Table 6.5.
This environment has revealed a bit more challenging for the proper policy training.
Neither increasing the noise nor changing the batch size brings the agents to learn
how to cover the clusters according to their level of activity. After several trials, where
we performed a grid search over other hyper-parameters, we decided to try to slightly
change the value of reward, by doubling the term that reflects the utilization factor.
This small change, together with a proper hyper-parameters re-tuning, brought the
policy to better adapt with respect to different activities of the GUs. The hyper-
parameter setup and the results obtained from this third scenario are represented in
Table 6.6 and Figure 6.5 respectively.

82

Parameters Value

Number of Agents 2

Number of Clusters 3

Average Cluster Size 20

Bounds 15x15

Coverage Range 2

Connectivity Range 4

Resource Utilization Threshold 100

Levels of Activity [2,10,10]

Epochs 180

Seeds 5
Table 6.5: Parameters used in the Python simulation with "dynamic activity".

(a) (b)

Figure 6.5: DQN Dynamic Activity Scenario Running Reward Plot. The two graphs
report the running reward achieved by the agents with centralized (a)
and partial (b) observations in the "dynamic activity" scenario.

The results obtained in this scenario present how the centralized approach better
behaves when the agents have to learn more complicated policies. However, even if
the partial observation case shows a lower reward and larger confidence interval, the
learned policy guides each agent towards the most active cluster. The lower reward

83

Hyper-
parameters

Value (Centralized) Value (Partial)

Q-Network Learning Rate: 10−3

Architecture:
1 hidden layer of size = 80;
9 output values;

Learning Rate: 10−3

Architecture:
1 CONV Layer 3×3×9, stride=1,
padding=1;
1 MaxPooling Layer;
2 FC Layers of size = 13 and 80;
9 output values;

Epsilon Decay Start: 1, End: 0.1
ε← ε× 0.999, after 400thep.

Start: 1, End: 0.1
ε← ε× 0.9995, after 400thep.

Gamma (γ) 0.95 0.95

Tau τ 0.05 0.05

Observation Input Size: 5
Input Structure: 1× 5

Input Size: 4
Input Structure: 3 of 8× 8 and
1 of 1× 3

Batch Size 65 100

Replay Buffer 12× 103 12× 103

of Episodes 1500 3000
Table 6.6: DQN hyper-parameters setup for the "dynamic clusters" Python environ-

ment.

is given by the wrong positioning of the UAVs, that do not place themselves in the
middle of the cluster but close to it (Figure 6.6). These results suggest how the
architecture of the convolutional neural network should be better designed in order
to let the agents understand the precise position they have to occupy.
The results achieved so far in the Python environments show that the training of a
DQN that runs in a multi-agent system can be used to enhance the collaboration be-
tween agents in order to reach the maximization of coverage and resource utilization
of the network. However, relatively simple environments have been considered so far,
and a deeper study regarding the robustness of the policy with respect to the number
of agents and the size of the target area should be carried out. Given the obtained
results, we are confident that this approach can be improved through a more intense

84

(a) (b)

Figure 6.6: Screen shot acquired from the "dynamic activity" scenario. The most
active clusters (green dots) are covered by the agents (red dots). The
placement obtained in the centralized case (a) is more precise than the
one obtained from the partial case (b).

hyper-parameters tuning and neural network design. We did not further focus on
this part in order to move to the second goal of our work: the application of the
trained policy in the network simulator.

6.2 Ns-3 Experiments

The ns-3 simulation details and implementation have been presented in section 5.4.
The objective is to exploit the same policy that has been already trained in Python
on a very similar scenario developed in ns-3, which provides a more realistic envi-
ronment under the wireless communication point of view. For this reason, we had to
carefully set the parameters of this simulation in order to be as close as possible to
the Python one. We decided to reproduce the "dynamic clusters" scenario presented
in section 6.1.2, where the agents have to learn how to optimize the coverage of the
network, while the activity of the GUs is on average the same. The parameters that
fully describe the implemented ns-3 simulation are presented in Table 6.7. These
parameters highlight some similarities as well as major differences with respect to

85

Parameter Value

Number of UAVs 2

Number of Clusters 3

Cluster Size 10

Switch On/Off Probabilities [0.1, 0.9, 0.9]

Probabilities Shift (s) 20

On/Off Evaluation Frequency (s) 5

Bounds (m) 90x90

Action Step (m) 6

Observation Timestep (s) 1

Task Size (bytes) Uniform(1024, 2048)

Task Processing Time (s) Uniform(0.5, 1)

Task Forwarding Frequency (s) Uniform(3,5)

Ground Info Frequency (s) 1

UAVs Info Frequency (s) 1

Simulation Time (s) 60
Table 6.7: Parameters used in the ns-3 simulation.

the Python environment. The agents have to learn how to dynamically cover clus-
ters of variable size. The maximum number of GUs per cluster is ten, and every five
seconds the size of each cluster is updated according to a Switch On/Off probabil-
ity: depending on the cluster and on the current timestep, the probability for a GU
to be activated or deactivated depends on the value of this parameter. The Switch
On/Off probabilities are then shifted over the clusters every twenty seconds. Given
the continuous state space available in ns-3, the bounds are not evaluated according
to a number of cells, but according to the size of the target area evaluated in meters.
Since the policy does not know how to deal with a continuous state space, we divided
this area in cells of dimension 6m×6m, thus discretizing the continuous bounds into
a grid with dimension 15×15. The bounds and actions discretization allows the pol-

86

icy to deal with the same state and action space it was trained with in the Python
environment. The other simulation parameters describe the time interval between
the agent’s observations/actions (Observation Frequency), the behavior of the GUs
in terms of task forwarding, and the frequency of information broadcasting between
the nodes of the network, thus specifying the application parameters seen in section
5.4.
Every Observation Timestep, the observation of the environment is sent to the
Python agents through the GetObservation() function exposed in the environment
gateway. The Python agents receive this observation and, according to the central-
ized or partial scenario that is being considered, they get the correspondent policy
input. Once the input has been processed by the DQN, the actions are gathered
in the action vector and sent back to the ns-3 environment through the function
step(action). Finally, the ns-3 nodes perform the movements returned by their poli-
cies through the ExecuteActions(action) function.

6.2.1 Centralized Observation Experiments

In the first experiment, the centralized observation was tested. The initial positions
of the clusters and the variability of their size are the same used in the Python
environment, and, since the observation that the agents get are the same, also the
positions and the order of visited clusters returned by the policy remains identical.
The correspondent movements do not depend on the actual GUs positions and ac-
tivities; hence, the policies tend to move the UAVs towards the same positions they
visited in the Python environment. Figure 6.7 shows the level of coverage and task
completion ratio achieved by the UAV network along the ns-3 simulation, when the
policy exploiting the centralized observation is used. It is possible to appreciate how
the two UAVs always reach around the 50% of coverage each, meaning that nearly
the 100% of GUs are covered along the entire duration of the simulation. The un-
covered GUs left correspond with the active ones that are still present in the less

87

populated clusters. The level of task completion ratio gives an idea of the resource
utilization of the network. It corresponds with the ratio between the tasks that have
been processed by the UAVs and the total number of tasks sent by the GUs. The
actual value of this metric is not very meaningful, but it gives an idea of the different
network resource utilization when compared with other approaches.

6.2.2 Partial Observation Experiments

When the agents observe the partial information about coverage, level of activity
and connectivity directly from their current knowledge of the environment, differ-
ently from the centralized observation scenario, the results happen to be worse. While
in the Python environment, each agent learns how to equally split the clusters and
hover on the most populated ones, the same policy applied on ns-3 returns a sub-
optimal outcome. In fact, both agents tend to converge towards the same cluster,
leaving the other active one completely uncovered. Figure 6.8 perfectly represents
this situation: the summation of the coverage level for both UAVs is always between
the 40% and 60%, never reaching the same values of coverage appreciated in Figure
6.7. Furthermore, the tasks completion ratio is much lower, given that the uncovered
clusters keep sending tasks that will never be received and processed.
This outcome was not surprising. In the centralized scenario, all the decisions are
based only on the positions of the agents, which are supposed to be instantaneously
known at every moment. In the partial scenario, each agent relies only on the par-
tial observation it can create out of its local databases. The observations are not
synchronized with the information broadcasting and database update, meaning that
some observations may contain out-of-date network information. Furthermore, the
level of activity associated to the GUs plays a very important role in this scenario.
Just like the position of agents and GUs is a well-defined observation that has been
made coherent to the Python observation by simply organizing the ns-3 space in a
grid area, so the level of activity must have the same meaning and range of values in

88

(a)

(b)

Figure 6.7: DQN ns-3 Centralized Environment Coverage and Task Completion. The
two plots represent level of coverage (in percentage) reached by the two
UAVs (a) and the task completion ratio achieved in the UAV network (b)
in the ns-3 simulation when the centralized observation policy is applied.

89

both environments. In ns-3, we have actual packets that are sent from the ground to
the network; hence, the level of activity has been interpreted and set as the average
number of bytes sent per unit of time, differently from the meaning it has in the
Python environment.
These two issues have been tackled by setting the information broadcasting frequency
higher than the GetObservation() frequency and by re-training the policy with the
proper range for the levels of activity: given the interval between two packets Ip and
the average size of these packets Sp, this parameter can be defined as act = Sp

Ip
. Fur-

thermore, in order to add some noise, this value has been considered as the mean of
a normal distribution N (act, 100), whose samples correspond with the GUs levels of
activity. However, the solution obtained still remains sub-optimal, which is probably
given by: (i) the lack of synchronization between the observation acquired by the
agents and the update of its local databases, and (ii) the more unpredictable trend
that the levels of activity may have on the network simulator with respect to the
much more predictable ones applied in Python.

The convolutional neural network exploited for the partial observation case has
already shown a higher variance in terms of performance concerning the "dynamic
activity" scenario described in section 6.1.3. The poorer performance obtained in
ns-3 could potentially be solved by better designing the neural network, making it
more robust to more noisy and delayed observations. Furthermore, a deeper tuning
of hyper-parameters and setup of the ns-3 simulation could also improve the level
of coverage and resource utilization of the network. These preliminary results ob-
tained from the ns-3 simulation aimed at proposing an alternative approach for the
application of multi-agent deep reinforcement learning in a UAV network, taking into
account the possibility for the agents to acquire their observations directly through
the periodic exchange of messages with the other nodes.

90

(a)

(b)

Figure 6.8: DQN ns-3 Partial Observation Environment Coverage and Task Com-
pletion. The two plots represent the level of coverage (in percentage)
reached by the two UAVs (a) and the task completion ratio achieved in
the UAV network (b) in the ns-3 simulation when the partial observation
policy is applied.

91

Chapter 7

Conclusions

The wide set of applications in which UAV networks have proved to be effective in
wireless communication networks represents the main motivation that inspired this
work. Once investigated on the several challenges that still have to be addressed,
we decided to focus on a placement and trajectory design problem in order to foster
the performance of the network through the mobility and flexibility of the UAVs.
We considered a scenario in which a set of GUs dynamically assigns tasks to UAVs,
each task requiring a certain computational effort. Through their proper placement,
UAVs have to maximize the coverage of the network and their resource utilization,
to guarantee a proper quality and reliability in task execution. A DRL approach was
leveraged in order to address this decision-making problem, taking into account the
promising results achieved by these frameworks in multi-agent systems and intelli-
gent communications.
The main contribution of this thesis consisted of the design of a distributed control
framework in order to properly place the UAVs of the network and jointly optimize
the previously mentioned metrics. Firstly, we formalized the multi-agent decision-
making problem as a POMDP and implemented a relatively simple simulated en-
vironment in Python, able to interact with the agents by exchanging observations,
rewards, and actions. This simulation allowed us to perform reinforcement learning

92

experiments according to the centralized or partial observations that were consid-
ered and compared. A multi-agent DQN algorithm with two different neural net-
work structures was proposed: a shallow neural network with a flat topology for
the centralized observations, and a convolutional neural network for the partial ob-
servations. Furthermore, three slightly different scenarios were tested while keeping
the same DQN architectures and parameters, in order to assess the flexibility of the
algorithm according to different GUs behaviors. We run experiments of more than
1500 episodes for both of the observation typologies in order to train the respec-
tive policies. As we expected, the results obtained from the centralized observations
tended to converge faster and with a lower variance than the partial observation case.
Despite their worse performance, the more limited observations enable the scalability
and flexibility of the algorithm, which is no further constrained to an a-priori knowl-
edge of the total number of agents in the environment. In addition, the knowledge
of the current environment state can rely on other important information that are
derived from variable sized observations. The trained models were then tested in
the ns-3 environment. The differences in terms of coverage and resource utilization
achieved by the UAV network between the two observation scenarios were evident.
While in the centralized case, the UAVs tend to equally cover the most populated
and active clusters, always maintaining a total level of coverage close to 100%, the
policy reaches a sub-optimal behavior in the partial observation case, providing a
lower network coverage and task completion ratio.
The results obtained from these experiments showed main limitations that should
be considered and addressed. Firstly, the implemented neural network architectures
present a very simple structure. A deeper examination of more robust structures
and hyper-parameters tuning would benefit our approach to adapt to different GUs’
behavior and, eventually, to a variable number of agents and clusters. Furthermore,
the reward function has also to be better designed. We noticed how, in the "dy-
namic activity" scenario, a higher weight associated to the resource utilization in
the reward function improved the performance of the algorithm. A better trade-off

93

between coverage and resource utilization should be found, in order to make the
reward more suitable for a larger set of possible environments. Finally, the poor
results achieved in the ns-3 simulation for the partial observation scenario have also
to be analyzed. Apart from the need for a better tuning, the range of observation
values acquired in ns-3 should be more coherent with the observations the agents
acquire in Python. Furthermore, the lack of synchronization between observation
acquisition and network message broadcasting for the establishment of the agent’s
partial knowledge leads the agents to take sub-optimal actions. A broad set of im-
provements can be injected in this approach in order to develop a much more scalable
and realistic framework. Considered the limitations encountered along this project,
the last section of the thesis is dedicated to promoting some of the many possible
future works that can contribute to the enhancement of this framework.

7.1 Future Works

Starting from the just described limitations, a set of future improvements is worth
to be proposed in the last part of this thesis. As already discussed, our DRL ap-
proach has weaknesses in terms of robustness with respect to small changes in the
simulated environment and its application in a more realistic one. It is important
to highlight that our proposal for agents’ observations only represents one example
among many others that might be implemented. Therefore, together with more so-
phisticated neural network architectures, other typologies of observations related to
the environment state may be tested. Furthermore, the reward function should also
be better investigated in order to allow the agents finding the best trade-off between
coverage and resource utilization. Another fundamental contribution that could im-
prove the current methodology from the DRL side relies on the implementation of
recent upgrades of DQN, such as Double DQN or Dueling DQN. They would help
the algorithm to be trained faster and have a more stable learning procedure, other
than provide a comparison with the current baseline methodology.

94

The second group of future possible advancements includes ns-3 simulation improve-
ments. Firstly, the simulation realism can be enhanced by including proper channel
models for the Air-to-Air (A2A) and Air-to-Ground (A2G) communications. This
implementation would make the simulated environment much more similar to a real-
world scenario, thus allowing to fit the DRL algorithm to a more realistic scheme.
The proper definition of channel models can also improve the resource sharing al-
gorithm reliability. Even though its implementation was not fundamental in the
proposed environments, the importance of a resource sharing approach in UAV net-
works is well motivated by their limited on-board computation resources. The task
offloading criterion should not only be based on the least load server concept, but
also consider the cost of sending the task over the network, which strongly depends
on the quality of the channel.
The last two ideas regard the interface between the ns-3 and DRL frameworks.
Firstly, our ns-3 simulation returns observations that were suited to our DQN al-
gorithm. However, this makes the implementation of other algorithms to the same
environment challenging, thus preventing a comparison between different solutions.
A proper generalization and standardization of this environment would allow to
easily implement benchmarking or innovative solutions in order to compare the per-
formance and track the algorithm progresses. Secondly, the policy exploited in ns-3
was already trained in a simpler environment and just applied in the network sim-
ulation. However, thanks to transfer learning, we can allow the agents to leverage
the previously acquired knowledge in the more accurate network simulation, while
the policy itself keeps learning in the new environment. This approach would be a
proper trade-off between the amount of time needed to train the model entirely on
ns-3 and the level of realism the policy learns to deal with.

The proposed multi-agent DQN approach implemented in a simulated UAV net-
work showed promising results in the joint optimization of the coverage and resource
utilization of the network. However, further work is still needed in order to propose

95

this approach as a baseline solution. The suggested improvements of the algorithm,
the standardization of the environment and the proper comparisons with benchmark-
ing solutions, could bring an important contribution in order to foster the application
of distributed DRL approaches in the placement and trajectory design of UAV net-
works.

96

Appendix A

Reinforcement Learning Algorithms

A.1 Dynamic Programming

Algorithm 2 Value Iteration Algorithm
Initialize V (s) ∀s ∈ S and π(s) ∈ A
repeat

∆← 0
for each s ∈ S do
v ← V (s)
V (s)← maxa

∑
s∈S,r∈R P (s′, r | s, a) [r + γV (s′)]

∆← max(∆, |v − V (s)|)
end for

until ∆ < θ (a small positive number)
π(s) = arg max

a

∑
s′∈S,r∈R P (s′, r | s, a) [r + γV (s′)]

97

Algorithm 3 Policy Iteration Algorithm
Initialize V (s) ∀s ∈ S and π(s) ∈ A
repeat
// Policy Evaluation
repeat

∆← 0
for each s ∈ S do
v ← V (s)
V (s)← V (s)←

∑
a∈A π(a | s)

∑
s′∈S,r∈R P (s′, r | s, a) [r + γV (s′)]

∆← max(∆, |v − V (s)|)
end for

until ∆ < θ (a small positive number)
//Policy Improvement
policy_stable ← true
for each s ∈ S do
previous_action← π(s)
π(s)← arg max

a

∑
s′∈S,r∈R P (s′, r | s, a) [r + γV (s′)]

if previous_action 6= π(s) then
policy_stable ← false

end if
end for

until policy_stable is true

98

A.2 Monte Carlo Methods

Algorithm 4 First Visit Monte Carlo Prediction
Initialize V (s)∀s ∈ S and π(s) ∈ A
Initialize Return(s)← [] ∀s ∈ S
while true do
Generate a episode following π: s0, a0, r1, s1, a1, r2...sT−1, aT−1, rT
G← 0
for each step t = T − 1, T − 2...0 do
G← G+Rt+1

if st /∈ s0, s1...st−1 then
Return(st).append(G)
V (st)← average(Return(st))

end if
end for

end while

A.3 Temporal Difference Methods

Algorithm 5 SARSA Algorithm
Initialize Q(s, a) ∀s ∈ S and ∀a ∈ A
for episode=1, M do
Receive initial state s0
for t=1, T do

Select action at from st using policy derived from Q (e.g., ε-greedy)
Get the next state st+1 and reward rt
Select action at+1 from st+1 using policy derived from Q
Update Q(st, at)← Q(st, at) + α[rt + γQ(st+1, at+1)−Q(st, at)]
st ← st+1

at ← at+1

end for
end for

99

Algorithm 6 Q-learning Algorithm
Initialize Q(s, a) ∀s ∈ S and ∀a ∈ A
for episode=1, M do
Receive initial state s0
for t=1, T do

Select action at from st using policy derived from Q (e.g., ε-greedy)
Get the next state st+1 and reward rt
Update Q(st, at)← Q(st, at) + α[rt + γmaxaQ(st+1, a)−Q(st, at)]
st ← st+1

end for
end for

A.4 Deep Deterministic Policy Gradient

100

Algorithm 7 DDPG Algorithm
Initialize critic network Q(s, a|σ) and actor network π(s|θ)
Initialize target critic Q′ and actor π′ with parameters σ′ ← σ and θ′ ← θ
Initialize Replay Buffer D
for episode = 1, M do
Initialize Random Process N for action exploration
Receive initial state s0
for t=1, T do

Select action at = π(st|θ) +Nt
Execute at and observe st+1 and rt
Store the tuple (st, at, rt, st+1) in D
if D is full then

Sample mini-batch of N transitions (sj, aj, rj, sj+1) from D
Set the target yj = rj + γQ′(sj+1, π

′(st+1|θ′)|σ′)
Update the critic minimizing the Loss L = 1

N

∑
i (yj −Q (sj, aj | σ))

Update the actor using the sampled policy gradient:

∇θJ(θ) ≈ 1

N

∑
j

[
∇aQ(s, a | σ)|s=sj ,a=π(si)∇θπ(s | θ)

∣∣∣
s=sj

]

Update target critic σ′ ← τ · σ + (1− τ) · σ′
Update target actor θ′ ← τ · θ + (1− τ) · θ′

end if
end for

end for

101

Bibliography

[1] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A Tutorial
on UAVs for Wireless Networks: Applications, Challenges, and Open Prob-
lems”, en, arXiv:1803.00680 [cs, math], Mar. 2019. [Online]. Available: http:
//arxiv.org/abs/1803.00680.

[2] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural net-
works and tree search”, Nature, vol. 529, pp. 484–489, Jan. 2016. doi: 10.1038/
nature16961.

[3] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M.
Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D.
Hassabis, Mastering chess and shogi by self-play with a general reinforcement
learning algorithm, 2017. arXiv: 1712.01815 [cs.AI].

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, “Playing Atari with Deep Reinforcement Learning”, en, p. 9,

[5] L. Busoniu, R. Babuska, and B. De Schutter, “Multi-agent reinforcement learn-
ing: An overview”, in. Jul. 2010, vol. 310, pp. 183–221, isbn: 978-3-642-14434-9.
doi: 10.1007/978-3-642-14435-6_7.

102

http://arxiv.org/abs/1803.00680
http://arxiv.org/abs/1803.00680
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1712.01815
https://doi.org/10.1007/978-3-642-14435-6_7

[6] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and
D. I. Kim, “Applications of Deep Reinforcement Learning in Communications
and Networking: A Survey”, en, IEEE Communications Surveys & Tutorials,
vol. 21, no. 4, pp. 3133–3174, 2019, issn: 1553-877X, 2373-745X. doi: 10.1109/
COMST.2019.2916583. [Online]. Available: https://ieeexplore.ieee.org/
document/8714026/.

[7] L. Hu, Y. Tian, J. Yang, T. Taleb, L. Xiang, and Y. Hao, “Ready Player One:
UAV-Clustering-Based Multi-Task Offloading for Vehicular VR/AR Gaming”,
en, IEEE Network, vol. 33, no. 3, pp. 42–48, May 2019, issn: 0890-8044, 1558-
156X. doi: 10.1109/MNET.2019.1800357. [Online]. Available: https://
ieeexplore.ieee.org/document/8726071/.

[8] P. S. Bithas, E. T. Michailidis, N. Nomikos, D. Vouyioukas, and A. G. Kanatas,
“A Survey on Machine-Learning Techniques for UAV-Based Communications”,
en, Sensors, vol. 19, no. 23, p. 5170, Nov. 2019, issn: 1424-8220. doi: 10.3390/
s19235170. [Online]. Available: https://www.mdpi.com/1424-8220/19/23/
5170.

[9] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on Architecture
and Computation Offloading”, en, IEEE Communications Surveys & Tuto-
rials, vol. 19, no. 3, pp. 1628–1656, 2017, issn: 1553-877X. doi: 10.1109/
COMST.2017.2682318. [Online]. Available: http://ieeexplore.ieee.org/
document/7879258/.

[10] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and applications”,
in 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies
(HotWeb), 2015, pp. 73–78. doi: 10.1109/HotWeb.2015.22.

[11] P. V. Klaine, J. P. B. Nadas, R. D. Souza, and M. A. Imran, “Distributed
Drone Base Station Positioning for Emergency Cellular Networks Using Rein-
forcement Learning”, en, Cognitive Computation, vol. 10, no. 5, pp. 790–804,
Oct. 2018, issn: 1866-9956, 1866-9964. doi: 10.1007/s12559-018-9559-8.

103

https://doi.org/10.1109/COMST.2019.2916583
https://doi.org/10.1109/COMST.2019.2916583
https://ieeexplore.ieee.org/document/8714026/
https://ieeexplore.ieee.org/document/8714026/
https://doi.org/10.1109/MNET.2019.1800357
https://ieeexplore.ieee.org/document/8726071/
https://ieeexplore.ieee.org/document/8726071/
https://doi.org/10.3390/s19235170
https://doi.org/10.3390/s19235170
https://www.mdpi.com/1424-8220/19/23/5170
https://www.mdpi.com/1424-8220/19/23/5170
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.1109/COMST.2017.2682318
http://ieeexplore.ieee.org/document/7879258/
http://ieeexplore.ieee.org/document/7879258/
https://doi.org/10.1109/HotWeb.2015.22
https://doi.org/10.1007/s12559-018-9559-8

[Online]. Available: http://link.springer.com/10.1007/s12559- 018-
9559-8.

[12] B. Jang, M. Kim, G. Harerimana, and J. Kim, “Q-learning algorithms: A com-
prehensive classification and applications”, IEEE Access, vol. PP, pp. 1–1, Sep.
2019. doi: 10.1109/ACCESS.2019.2941229.

[13] F. Venturini, F. Mason, F. Pase, F. Chiariotti, A. Testolin, A. Zanella, and
M. Zorzi, “Distributed reinforcement learning for flexible uav swarm control
with transfer learning capabilities”, in Proceedings of the 6th ACM Workshop
on Micro Aerial Vehicle Networks, Systems, and Applications, ser. DroNet ’20,
Toronto, Ontario, Canada: Association for Computing Machinery, 2020, isbn:
9781450380102. doi: 10.1145/3396864.3399701. [Online]. Available: https:
//doi.org/10.1145/3396864.3399701.

[14] G. E. Monahan, “A survey of partially observable markov decision processes:
Theory, models, and algorithms”, Management Science, vol. 28, no. 1, pp. 1–16,
1982, issn: 00251909, 15265501. [Online]. Available: http://www.jstor.org/
stable/2631070.

[15] H. Y. Ong, K. Chavez, and A. Hong, Distributed deep q-learning, 2015. arXiv:
1508.04186 [cs.LG].

[16] C. H. Liu, X. Ma, X. Gao, and J. Tang, “Distributed Energy-Efficient Multi-
UAV Navigation for Long-Term Communication Coverage by Deep Reinforce-
ment Learning”, en, IEEE Transactions on Mobile Computing, vol. 19, no. 6,
pp. 1274–1285, Jun. 2020, issn: 1536-1233, 1558-0660, 2161-9875. doi: 10.
1109/TMC.2019.2908171. [Online]. Available: https://ieeexplore.ieee.
org/document/8676325/.

[17] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, Continuous control with deep reinforcement learning, 2019.
arXiv: 1509.02971 [cs.LG].

104

http://link.springer.com/10.1007/s12559-018-9559-8
http://link.springer.com/10.1007/s12559-018-9559-8
https://doi.org/10.1109/ACCESS.2019.2941229
https://doi.org/10.1145/3396864.3399701
https://doi.org/10.1145/3396864.3399701
https://doi.org/10.1145/3396864.3399701
http://www.jstor.org/stable/2631070
http://www.jstor.org/stable/2631070
https://arxiv.org/abs/1508.04186
https://doi.org/10.1109/TMC.2019.2908171
https://doi.org/10.1109/TMC.2019.2908171
https://ieeexplore.ieee.org/document/8676325/
https://ieeexplore.ieee.org/document/8676325/
https://arxiv.org/abs/1509.02971

[18] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, “Energy-efficient uav control
for effective and fair communication coverage: A deep reinforcement learning
approach”, IEEE Journal on Selected Areas in Communications, vol. 36, no. 9,
pp. 2059–2070, 2018. doi: 10.1109/JSAC.2018.2864373.

[19] M. Assaf and M. Ndiaye, “Multi travelling salesman problem formulation”, in
2017 4th International Conference on Industrial Engineering and Applications
(ICIEA), 2017, pp. 292–295. doi: 10.1109/IEA.2017.7939224.

[20] A. Giagkos, M. S. Wilson, E. Tuci, and P. B. Charlesworth, “Comparing ap-
proaches for coordination of autonomous communications UAVs”, en, in 2016
International Conference on Unmanned Aircraft Systems (ICUAS), Arlington,
VA, USA: IEEE, Jun. 2016, pp. 1131–1139, isbn: 978-1-4673-9334-8. doi:
10.1109/ICUAS.2016.7502551. [Online]. Available: http://ieeexplore.
ieee.org/document/7502551/.

[21] G. Leu and J. Tang, “Survivable Networks via UAV Swarms Guided by Decen-
tralized Real-Time Evolutionary Computation”, en, in 2019 IEEE Congress on
Evolutionary Computation (CEC), Wellington, New Zealand: IEEE, Jun. 2019,
pp. 1945–1952, isbn: 978-1-72812-153-6. doi: 10.1109/CEC.2019.8790353.
[Online]. Available: https://ieeexplore.ieee.org/document/8790353/.

[22] K. Kim, Y. M. Park, and C. Seon Hong, “Machine Learning Based Edge-
Assisted UAV Computation Offloading for Data Analyzing”, en, in 2020 Inter-
national Conference on Information Networking (ICOIN), Barcelona, Spain:
IEEE, Jan. 2020, pp. 117–120, isbn: 978-1-72814-199-2. doi: 10.1109/ICOIN48656.
2020.9016432. [Online]. Available: https://ieeexplore.ieee.org/document/
9016432/.

[23] J. Yao and N. Ansari, “Online Task Allocation and Flying Control in Fog-
Aided Internet of Drones”, en, IEEE Transactions on Vehicular Technology,
vol. 69, no. 5, pp. 5562–5569, May 2020, issn: 0018-9545, 1939-9359. doi:

105

https://doi.org/10.1109/JSAC.2018.2864373
https://doi.org/10.1109/IEA.2017.7939224
https://doi.org/10.1109/ICUAS.2016.7502551
http://ieeexplore.ieee.org/document/7502551/
http://ieeexplore.ieee.org/document/7502551/
https://doi.org/10.1109/CEC.2019.8790353
https://ieeexplore.ieee.org/document/8790353/
https://doi.org/10.1109/ICOIN48656.2020.9016432
https://doi.org/10.1109/ICOIN48656.2020.9016432
https://ieeexplore.ieee.org/document/9016432/
https://ieeexplore.ieee.org/document/9016432/

10.1109/TVT.2020.2982172. [Online]. Available: https://ieeexplore.
ieee.org/document/9043589/.

[24] N. T. Ti and L. Bao Le, “Joint Resource Allocation, Computation Offloading,
and Path Planning for UAV Based Hierarchical Fog-Cloud Mobile Systems”, en,
in 2018 IEEE Seventh International Conference on Communications and Elec-
tronics (ICCE), Hue: IEEE, Jul. 2018, pp. 373–378. doi: 10.1109/CCE.2018.
8465572. [Online]. Available: https://ieeexplore.ieee.org/document/
8465572/.

[25] J. Li, Q. Liu, P. Wu, F. Shu, and S. Jin, “Task Offloading for UAV-based Mobile
Edge Computing via Deep Reinforcement Learning”, en, in 2018 IEEE/CIC In-
ternational Conference on Communications in China (ICCC), Beijing, China:
IEEE, Aug. 2018, pp. 798–802, isbn: 978-1-5386-7005-7. doi: 10.1109/ICCChina.
2018.8641189. [Online]. Available: https://ieeexplore.ieee.org/document/
8641189/.

[26] L. Yang, H. Yao, J. Wang, C. Jiang, A. Benslimane, and Y. Liu, “Multi-UAV-
Enabled Load-Balance Mobile-Edge Computing for IoT Networks”, en, IEEE
Internet of Things Journal, vol. 7, no. 8, pp. 6898–6908, Aug. 2020, issn: 2327-
4662, 2372-2541. doi: 10.1109/JIOT.2020.2971645.

[27] A. Al-Hourani, S. Kandeepan, and A. Jamalipour, “Modeling air-to-ground
path loss for low altitude platforms in urban environments”, in 2014 IEEE
Global Communications Conference, 2014, pp. 2898–2904. doi: 10 . 1109 /

GLOCOM.2014.7037248.

[28] C. Stöcker, R. Bennett, F. Nex, M. Gerke, and J. Zevenbergen, “Review of the
current state of uav regulations”, Remote Sensing, vol. 9, no. 5, 2017, issn:
2072-4292. doi: 10.3390/rs9050459.

[29] İ. Bekmezci, O. K. Sahingoz, and Ş. Temel, “Flying Ad-Hoc Networks (FANETs):
A survey”, en, Ad Hoc Networks, vol. 11, no. 3, pp. 1254–1270, May 2013, issn:
15708705. doi: 10.1016/j.adhoc.2012.12.004.

106

https://doi.org/10.1109/TVT.2020.2982172
https://ieeexplore.ieee.org/document/9043589/
https://ieeexplore.ieee.org/document/9043589/
https://doi.org/10.1109/CCE.2018.8465572
https://doi.org/10.1109/CCE.2018.8465572
https://ieeexplore.ieee.org/document/8465572/
https://ieeexplore.ieee.org/document/8465572/
https://doi.org/10.1109/ICCChina.2018.8641189
https://doi.org/10.1109/ICCChina.2018.8641189
https://ieeexplore.ieee.org/document/8641189/
https://ieeexplore.ieee.org/document/8641189/
https://doi.org/10.1109/JIOT.2020.2971645
https://doi.org/10.1109/GLOCOM.2014.7037248
https://doi.org/10.1109/GLOCOM.2014.7037248
https://doi.org/10.3390/rs9050459
https://doi.org/10.1016/j.adhoc.2012.12.004

[30] A. Srivastava and J. Prakash, “Future FANET with application and enabling
techniques: Anatomization and sustainability issues”, en, Computer Science
Review, vol. 39, p. 100 359, Feb. 2021, issn: 15740137.

[31] M. Bacco, P. Cassarà, M. Colucci, A. Gotta, M. Marchese, and F. Patrone,
“A survey on network architectures and applications for nanosat and uav
swarms”, in Wireless and Satellite Systems, P. Pillai, K. Sithamparanathan,
G. Giambene, M. Á. Vázquez, and P. D. Mitchell, Eds., Cham: Springer Inter-
national Publishing, 2018, pp. 75–85, isbn: 978-3-319-76571-6.

[32] M. Marchese, A. Moheddine, and F. Patrone, “Iot and uav integration in 5g
hybrid terrestrial-satellite networks”, Sensors, vol. 19, no. 17, 2019, issn: 1424-
8220. doi: 10.3390/s19173704. [Online]. Available: https://www.mdpi.com/
1424-8220/19/17/3704.

[33] A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano, A. Garcia-Rodriguez,
and J. Yuan, “Survey on uav cellular communications: Practical aspects, stan-
dardization advancements, regulation, and security challenges”, IEEE Commu-
nications Surveys Tutorials, vol. 21, no. 4, pp. 3417–3442, 2019. doi: 10.1109/
COMST.2019.2906228.

[34] R. Bellman, “The theory of dynamic programming”, Bulletin of the American
Mathematical Society, vol. 60, no. 6, pp. 503–515, 1954. doi: bams/1183519147.
[Online]. Available: https://doi.org/.

[35] A. Slivkins, Introduction to multi-armed bandits, 2019. arXiv: 1904 . 07272
[cs.LG].

[36] “Playing Atari with Deep Reinforcement Learning”, Dec. 2013.

[37] “Learning representations by back-propagating errors.”, Nature 323, pp. 533–
536, 1986. doi: https://doi.org/10.1038/323533a0.

107

https://doi.org/10.3390/s19173704
https://www.mdpi.com/1424-8220/19/17/3704
https://www.mdpi.com/1424-8220/19/17/3704
https://doi.org/10.1109/COMST.2019.2906228
https://doi.org/10.1109/COMST.2019.2906228
https://doi.org/bams/1183519147
https://doi.org/
https://arxiv.org/abs/1904.07272
https://arxiv.org/abs/1904.07272
https://doi.org/https://doi.org/10.1038/323533a0

[38] E. M. Dogo, O. J. Afolabi, N. I. Nwulu, B. Twala, and C. O. Aigbavboa,
“A comparative analysis of gradient descent-based optimization algorithms on
convolutional neural networks”, in 2018 International Conference on Com-
putational Techniques, Electronics and Mechanical Systems (CTEMS), 2018,
pp. 92–99. doi: 10.1109/CTEMS.2018.8769211.

[39] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition with
gradient-based learning”, in Shape, Contour and Grouping in Computer Vision,
Berlin, Heidelberg: Springer-Verlag, 1999, p. 319, isbn: 3540667229.

[40] H. van Hasselt, A. Guez, and D. Silver, Deep reinforcement learning with double
q-learning, 2015. arXiv: 1509.06461 [cs.LG].

[41] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas,
Dueling network architectures for deep reinforcement learning, 2016. arXiv:
1511.06581 [cs.LG].

[42] R. Sutton, D. Mcallester, S. Singh, and Y. Mansour, “Policy gradient meth-
ods for reinforcement learning with function approximation”, Adv. Neural Inf.
Process. Syst, vol. 12, Feb. 2000.

[43] V. Konda and J. Tsitsiklis, “Actor-critic algorithms”, Society for Industrial and
Applied Mathematics, vol. 42, Apr. 2001.

[44] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S.
Chintala, Pytorch: An imperative style, high-performance deep learning library,
2019. arXiv: 1912.01703 [cs.LG].

[45] P. Gawłowicz and A. Zubow, “Ns-3 meets OpenAI Gym: The Playground for
Machine Learning in Networking Research”, en, in Proceedings of the 22nd In-
ternational ACM Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems - MSWIM ’19, Miami Beach, FL, USA: ACM Press, 2019,
pp. 113–120, isbn: 978-1-4503-6904-6. doi: 10.1145/3345768.3355908.

108

https://doi.org/10.1109/CTEMS.2018.8769211
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1912.01703
https://doi.org/10.1145/3345768.3355908

[46] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, Openai gym, 2016. arXiv: 1606.01540 [cs.LG].

[47] ZeroMQ. [Online]. Available: https://zeromq.org/socket-api/.

[48] V. Mayor, R. Estepa, A. Estepa, and G. Madinabeitia, “Deploying a Reliable
UAV-Aided Communication Service in Disaster Areas”, en,Wireless Communi-
cations and Mobile Computing, vol. 2019, pp. 1–20, Apr. 2019, issn: 1530-8669,
1530-8677. doi: 10.1155/2019/7521513.

109

https://arxiv.org/abs/1606.01540
https://zeromq.org/socket-api/
https://doi.org/10.1155/2019/7521513

Acknowledgements

Permettetemi di scrivere quest’ultima parte del mio lavoro di tesi nella mia lingua
madre, al fine di poter ringraziare in maniera chiara e trasparente le persone che mi
sono state vicine, sia fisicamente che spiritualmente, non solo durante la stesura di
questo elaborato, ma in tutti i cinque anni del mio percorso universitario.
Il primo ringraziamento lo rivolgo ai miei relatori: la Professoressa Carla Fabiana
Chiasserini e il Professor Enrico Natalizio. In realtà, il ruolo che hanno ricoperto è
andato ben oltre quello di relatore. Nei miei confronti si sono comportati da vere e
proprie guide, un costante punto di riferimento che mi ha orientato e portato non solo
fino al raggiungimento di questo obiettivo, ma anche verso una crescita personale,
fatta di nuove esperienze e preziosi consigli. Un sentito grazie anche al Professor
Claudio Zito, il cui supporto è stato di fondamentale importanza nella realizzazione
di questo lavoro. La sua professionalità e passione per la ricerca mi hanno ispirato e
accompagnato nell’approfondimento di diversi aspetti di questa tesi.
Adesso tocca a voi, mamma Lucia e papà Raffaele. Grazie per l’amore, la fiducia e il
sostegno che mi avete sempre dimostrato, non solo in questi anni universitari, ma da
sempre. E comunque, non pensate sia finita qui! Tra me e Marco, ne avrete ancora
molte da passare. E a proposito, grazie a te, Marco. Da bravo fratello maggiore mi
hai sempre saputo dare la spinta che mi serviva, specialmente nei momenti di forte
indecisione. Ci siamo sempre fatti forza a vicenda, tra una litigata e una risata,
avendo costantemente la certezza di poter trovare in te la giusta dose di sincerità,
saggezza, ma anche stravaganza, a seconda delle situazioni.
Non potrebbe mai mancare il ringraziamento per la mia compagna di viaggio (e di

110

viaggi ne abbiamo fatti parecchi), Elisa. Trovo difficilissimo racchiudere in qualche
riga le cose per cui voglio dirti grazie. Sai già quanto mi ritenga fortunato ad averti
avuta accanto in questi anni e quanto tu sia stata per me una costante fonte di
ispirazione, per la tua tenacia, intelligenza e schiettezza. Una buona parte di ciò che
sono oggi lo devo a te. Nonostante le distanze fisiche che ci hanno costantemente
separato, sei sempre riuscita a farmi sentire la tua vicinanza. Adesso però, sappiamo
entrambi qual è il prossimo obiettivo.
Un grazie ad Antonio e Loredana, che mi hanno sempre trattato come un figlio,
consigliandomi e supportandomi in ogni momento. Grazie a voi per avermi aiutato
più volte ad affrontare decisioni importanti con lo spirito giusto.
Grazie a tutti i miei amici sparsi per l’Italia. Senza di voi, dubito sarei riuscito ad
arrivare fino a qui (completamente) sano di mente. In particolare, grazie ai miei
fratelli adottivi, Fabio e Andrea, la cui distanza non riesce ad influire sul nostro
legame. Grazie al mio gruppone Torinese: Angelica e Marco, Aldo e Valeria, Fetta
e Fabio, Simona, Elania e Salvatore, Jessica e Donato, Ilaria e Angioletta. Grazie
perché ciascuno di voi mi ha regalato momenti indimenticabili nel corso della mia
esperienza universitaria che porterò per sempre nel cuore.
Un grazie anche a tutti i miei colleghi universitari, incontrati durante gli anni di
triennale e di magistrale. Ho sempre ritrovato in tutti loro dei compagni affiatati,
determinati, ma soprattutto generosi ed altruisti. Che fosse una battuta durante una
lezione, un ripasso di gruppo prima di un esame o un’uscita la sera, mi avete sempre
dato la giusta motivazione, o distrazione, di cui avevo bisogno.
Grazie ai miei zii Luca, Leonardo e Licia, a Giancarlo e Paola, a Davide e Sofia, ai
miei cuginetti Federica, Stefano e Gabriele. Grazie per la vostra vicinanza e affetto
che non mi avete fatto mai mancare.
Infine, vorrei dedicare l’ultima sezione ai miei nonni: Franco e Teresa, Gino e Clara.
I primi due non ho mai potuto conoscerli, ma sono sicuro che mi siano sempre stati
vicini, in tutte le strade che ho scelto e che sceglierò di percorrere. Nonno Gino e
nonna Clara si sono sempre presi cura di me e Marco ogni singolo giorno da quando

111

siamo nati, e sono sempre stati l’incarnazione dell’amore che i nonni provano per i
propri nipoti. Nonno, tu sei e sarai sempre un esempio per me. Nonna, a te dedico
questo mio lavoro. Ti ho persa proprio in questi mesi, e rimpiango di non averti
potuto salutare come avrei voluto, ma sento che sei sempre stata al mio fianco da
quel momento, e mi hai dato una spinta in più per andare avanti e concludere questo
percorso. So che ci sarai sempre.

112

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Context and Problem Statement
	Structure of the thesis

	Literature Review
	Coverage and Connectivity Optimization
	Reinforcement Learning Approaches
	Evolutionary Computation Approaches

	UAV Networks for Task Offloading
	UAV-to-Infrastructure
	GU-to-UAV

	Theoretical Background
	Unmanned aerial vehicles and multi-UAV Networks
	FANETs

	Reinforcement Learning
	Fundamentals of Reinforcement Learning
	Tabular Methods

	Deep Reinforcement Learning
	Fundamentals of Neural Networks
	Convolutional Neural Networks
	Value-based DRL
	Policy Gradient Methods

	Problem Formalization and Algorithm Setup
	Problem Formalization
	Observations
	Actions
	Reward

	Algorithm Setup
	Neural Networks Design
	Training Process

	Tools and Implementation
	Tools
	PyTorch
	Network Simulator 3 (ns-3)
	Ns-3 - Gym

	Outline of the Methodology
	Python Simulation Implementation
	Ns-3 Simulation Implementation
	Network Architecture
	Mobility Models
	Applications
	Policy Transfer on ns-3

	Limitations

	Experimental Results and Discussion
	Python Experiments
	Simulation with "Static Clusters"
	Simulation with "Dynamic Clusters"
	Simulation with "Dynamic Activity"

	Ns-3 Experiments
	Centralized Observation Experiments
	Partial Observation Experiments

	Conclusions
	Future Works

	Reinforcement Learning Algorithms
	Dynamic Programming
	Monte Carlo Methods
	Temporal Difference Methods
	Deep Deterministic Policy Gradient

