POLITECNICO DI TORINO

Master Degree
in MECHATRONIC ENGINEERING

Master Degree Thesis

Model-based design of a test bench for electric
traction powertrain development

Candidate

Supervisor Gaetano Colombo

Prof. Stefano Carabelli

A.A.2020/2021

A Dio,
fonte di gioia e felicita;

A mio padre,
pilastro portante e sorgente di ispirazione;

A mia madre,
seme d’amore e maestra di vita;

A mio fratello,
fonte di spensieratezza e compagno di avventure;

Alla mia amata Sicilia,
terra di colori, sapori e odori
che non vorrebbe lasciar scappare i propri figli;

A me stesso e alla mia tenacia,
che mi hanno permesso di arrivare fin qui.

ACKNOWLEDGEMENTS

First, I would like to express my great gratitude to Prof. Stefano Carabelli
for his constant support and guidance, for his constructive suggestions and
his valuable knowledge during the development of this research work.

Also, I would like to thank PANDA G1 Electrical team’s components to
let me develop the final part of this thesis work and Panda 4WD-H PoliTO
team’s components to let me create the team and became the team leader.

Furthermore, I would like to thank all the people known in student resi-
dence Villa Claretta, roommates of Filadelfia 201 street, Jazz and BusyBox
team friends, tennis friends, all colleagues known during master’s degree
and all old friends for having supported all my changes and enthusiasm, for
showing that even those who are far away can be close, and for making me
laugh during all difficult moments.

Finally, I would like to thank my family for constant and affectionate
support of every day and for allowing me to reach this goal.

Thanks to all of you, this thesis work was developed with joy as well as
passion.

ABSTRACT

In electrified vehicles case, both in Battery Electric Vehicles (BEVs) case
and in Full- Hybrid or Plug-in Hybrid Electric Vehicles (FHEVs or PHEVSs)
case, electric motors testing is a crucial phase of the entire final vehicles
build-up process. This because tests allow to verify whether designed system
works properly and to check whether desired requirements are satisfied.For
testing electric motors, appropriate test benches, which can be used in two
cases, have to be considered: to verify designed motors’ performance, or to
diagnose experienced problems during the entire electric motors’ life. In the
first case, test benches are used to evaluate motors’ electrical and mechanical
characteristics that can help designers into the choice of proper motor during
electric vehicles development process. The choice is done taking into account
costs, dimensions and other motor physical characteristics too. Instead, in
the second case test benches are used to evaluate motors’ electrical and
mechanical characteristics by means causes of possible problems during
operation can be understood.

Usually, electric motor test bench costs are very high due to expensive
components used to build-up what it is called Human — Machine — Interface
(HMI), the most important part of the entire system. This because its purpose
is setting input data on the basis of test to be performed, managing system’s
status by means buttons and switches and storing interesting parameter
values. In general, HMI is made-up of control systems and motor drives
allowing to control and to manage brake motor’s behavior and computers
allowing to store data coming out from sensors.

In this thesis activities, the goal is designing a test bench for testing
electric motors where a control law is implemented in a Vehicle Management
Unit (VMU). This control law is responsible to evaluate actions to be taken
for piloting both bench and test motor on the basis of user input data and
data coming from feedback path (values sensed by sensors). VMU is adopted
to reduce costs to be addressed by companies for developing HMI’s control
system. Moreover, test bench is implemented in such a way that power
recirculation effect is always verified. This because the goal is designed a test
bench for testing also electric motors that require huge power (30 — 50 kW) by
using small power supplies that are able to provide only the total dissipated
power. To accomplish these goals, test bench’s design is done adopting System
Engineering methodology which integrates Model-based Design approach
which provides V-shaped model and Modular-Technical-Model tools. The
first tool allows to develop the final physical system performing sequentially
different phases which involve different tests that are intended to verify
whether initial requirements are satisfied and to understand whether user’s
idea is feasible. On the other hand, the second tool allows to subdivide
system’s devel- opment in modules in order to reduce development time and
to improve reusability.

TABLE OF CONTENTS

LIST OF FIGURE II1
CHAPTER 1: INTRODUCTION ..ot 1
CHAPTER 2: SYSTEM ENGINEERING APPROACH...... 3
2.1 V-shaped model..... ... 4
2.1.1 Hybrid V-shaped model........................oooiia.. 10

2.2 Modular-Technical Model (MTM)ccoviiiiiiiii.. 13
CHAPTER 3: TEST BENCH CONCEPT MODEL............ 17
3.1 USer requir€mentsoeueriinineneinenenneenenennanes 25
3.2 Concept model simulationcooiiiiiiiiiii... 27
3.3 Concept model simulation resultsooon.es. 30

CHAPTER 4: SYSTEM DESIGN PHASE: TECHNICAL

MODEL. ... 39
4.1 Preliminary technical modelo o 39
4.1.1 Some preliminary modification of concept model 39
4.1.2 Tabulated bench motorc.coiiiia... 53
4.1.3 Tabulated bench and test motor 77

4.2 Modular Technical model 97
4.2.1 Environment reference model............................ 98
4.2.2 Plant reference modelcciiiiL 105
4.2.3 Control interface refence model 114
4.2.3.1 Control Logic reference model 116

4.2.4 Human-Machine-Interface subsystem 124
4.2.5 User subsystemoooiiiiiiiiiniiiiiiiiiii i 145

4.3 Dashboard and control panel ..., 147
CHAPTER 5: System design: model-based testing 149
5.1 MIL tesSting ...vvveiiti e 150
5.1.1 Single working point MIL testing 156
5.1.2 Nominal power working point MIL testing 161
5.1.3 Torque curves MIL testing...............cooooiiiiiiiat. 163
5.1.4 3D maps MIL testingccviiiiiiiiiiiiiiinn, 166

I

TABLE OF CONTENTS TABLE OF CONTENTS

5.2 SIL teStING o vvtt ittt 171
CHAPTER 6: Rapid-Control-Prototyping code production .. 183
6.1 Rapid-Control-Prototyping MIL testing 189
6.1.1 RCP Single working point MIL testing 189

6.1.2 RCP Nominal power working point MIL testing....... 191

6.1.3 RCP Torque curves MIL testingco.... 193

6.1.4 RCP 3D maps MIL testingcooovviiiiie, 195

6.2 Rapid-Control-Prototyping SIL testingc..... 198
Bibliography 203

II

LIST OF FIGURE

2.1 Generic V-shaped model
2.2 Model-in-the-loop testing in V-shaped model
2.3 Software-in-the-loop testing in V-shaped model
2.4 Processor-in-the-loop testing in V-shaped model
2.5 Hardware-in-the-loop testing in V-shaped model
2.6 Hybrid V-shaped model
2.7 Modular-Technical-Model general architecture
3.1 Static Test Bench concept model
3.2 Bench mapped motor Simulink block in concept model
3.3 Test mapped motor Simulink block in concept model
3.4 Motor shaft Simulink block in concept model
3.5 PID controller Simulink block in concept model
3.6 Power supply in concept model
3.7 Control monitor for motors’ info output port
3.8 Viewer for battery current motors’ output port
3.9 Viewer for bench motor’s motor torque output port
3.10 Viewer for test motor’s speed command
3.11 Viewer for bench motor’s torque command
3.12 Viewer for test motor’s torque command
3.13 Scope for supply power and current in concept model
3.14 Concept model’s MATLAB script
3.15 Mapped motor Simulink block parameters window in concept
model
3.16 Total absorbed power in concept model
3.17 Total demanded current in concept model
3.18 Bench motor dissipated power in concept model
3.19 Test motor dissipated power in concept model
3.20 Bench motor torque command in concept model
3.21 Test motor torque command in concept model
3.22 Test motor speed command in concept model
3.23 Bench and test motor battery currents in concept model . . .
3.24 Bench and test motor generated torques in concept model . .
3.25 Bench motor mechanical and electrical parameters in concept
model

LIST OF FIGURE

LIST OF FIGURE

3.26

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41

Test motor mechanical and electrical parameters in concept
model
Preliminary technical model
Preliminary technical model’s control monitors
Preliminary technical model’s MATLAB script
Py, with both motors set in single efficiency measurement
P,,,, with both motors set in single efficiency measurement
Iy, with both motors set in single efficiency measurement . .

Py, with both motors set in single efficiency measurement
P,,,. with both motors set in single efficiency measurement

I, with both motors set in single efficiency measurement . .
w with both motors set in single efficiency measurement . . .
Tt with both motors set in single efficiency measurement . .
P,, P; with both motors set in single efficiency measurement
I with both motors set in single efficiency measurement
Electrical torque section of bench motor block parameters’window
Bench motor maximum torque and power curves
Bench motor electrical torque section’s MATLAB script
Bench motor electrical losses section in tabulated loss data way
Bench motor’s dissipated power map
MATLAB script with bench motor’s dissipated power map
Bench motor’s electrical losses section in tabulated efficiency
data way e
Bench motor’s efficiency map oL
MATLAB script with bench motor’s efficiency map
P, with bench motor set in tabulated loss data
Pg,, with bench motor set in tabulated loss data
I, with bench motor set in tabulated loss data
P, with bench motor set in tabulated loss data
P,,,, with bench motor set in tabulated loss data
I;,, with bench motor set in tabulated loss data
w with bench motor set in tabulated loss data
T, with bench motor set in tabulated loss data.
P,, P; with bench motor set in tabulated loss data
I with bench motor set in tabulated loss data
P4, with bench motor set in tabulated efficiency data
P,,, with bench motor set in tabulated efficiency data
Iy, with bench motor set in tabulated efficiency data
P4, with bench motor set in tabulated efficiency data
P,,,, with bench motor set in tabulated efficiency data
I+, with bench motor set in tabulated efficiency data
w with bench motor set in tabulated efficiency data
T}, with bench motor set in tabulated efficiency data

P,, P; with bench motor set in tabulated efficiency data . . .

bm

tm

tm

v

50

57

60
61
61
63
63
65
65
66
67
67
68

69
70
71
71
72
72
74
74
76
76

LIST OF FIGURE LIST OF FIGURE

4.42
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63
4.64
4.65
4.66
4.67
4.68
4.69
4.70
4.71
4.72
4.73
4.74
4.75
4.76
4.77
4.78
4.79
4.80
4.81
4.82
4.83
4.84
4.85

I with bench motor set in tabulated efficiency data 77
MATLAB script with tabulated bench and test motor 78
Pg, with both motors set in tabulated loss data 80
Pg,,, with both motors set in tabulated loss data 81
Iy, with both motors set in tabulated loss data 81
Pg4,,, with both motors set in tabulated loss data 83
P,,,, with both motors set in tabulated loss data 83
I, with both motors set in tabulated loss data 85
w with both motors set in tabulated loss data 85
Ty, with both motors set in tabulated loss data 87
P,, P; with both motors set in tabulated loss data 87
I with both motors set in tabulated loss data 88
Pg,,, with both motors set in tabulated efficiency data 89
Pg,, with both motors set in tabulated efficiency data 89
Iy with both motors set in tabulated efficiency data 90
Pg,,, with both motors set in tabulated efficiency data 91
P,,,, with both motors set in tabulated efficiency data 91
11y, with both motors set in tabulated efficiency data 93
w with both motors set in tabulated efficiency data 93
Tim with both motors set in tabulated efficiency data 95
P,, P; with both motors set in tabulated efficiency data . . . 95
I with both motors set in tabulated efficiency data 97
MTM Simulink template 98
Environment’s reference model 99
Torque sensor noise’s block parameters window 99
Torque sensor HGM T40B datasheet 101
Current sensor DHR 300 C420 datasheet 102
Round per minute measurement system datasheet 104
Environment reference model’s MATLAB script 105
Plant reference model 105
Sensor models subsystem 108
Torque sensor Simulink model 108
Current sensor’s Simulink model 110
Current sensor’s transfer characteristic 110
APICOM FR 250 RPM measurement system 111
RPM measurement system’s Simulink model 112
Plant reference model’s MATLAB script 113
Control reference model 114
Control reference model’s MATLAB script 116
Control logic reference Simulink model 117
Emergency task’s Simulink Stateflow 118
Supervisor task’s Simulink Stateflow 118
BM_ TrqCmd_ task’s Simulink stateflow 120
BM CONTROLLER ON state’s Simulink model 121

v

LIST OF FIGURE LIST OF FIGURE

4.86 TM_ TrqCmd_ task’s Simulink model 123
4.87 TM_CONTROLLER,_ ON state’s Simulink 123
4.88 Control Logic reference model’s MATLAB script 124
4.89 HMI’s Simulink model 125
4.90 Signal to parameters subsystem Simulink model 126
4.91 Cmd_ to_signal subsystem’s Simulink model 127
492 w—Toplane 128
4.93 Single_working_point subsystem’s Simulink model 129
4.94 bm_ cmd3 subsystem’s Simulink model L. 129
4.95 tm__cmd3 subsystem’s Simulink model 130
4.96 Single working point’s MATLAB script 130
4.97 Nominal power_working point subsystem’s Simulink model 132
4.98 bm_ cmd2 subsystem’s Simulink model L. 133
4.99 tm_ cmd2 subsystem’s Simulink model 134
4.100Nominal power working point’s MATLAB script 135
4.101Torque curves subsystem’s Simulink model 136
4.102bm__cmd1 subsystem’s Simulink model 137
4.103tm__cmdl subsystem’s Simulink model 139
4.104Torque curves’ MATLAB script 140
4.1053D_maps subsystem’s Simulink model 141
4.106bm__cmd0 subsystem’s Simulink model 142
4.107tm__cmd0 subsystem’s Simulink model 144
4.1083D maps’ MATLAB script 145
4.109User subsystem Simulink model 147
4.110User subsystem’s MATLAB script 147
4.111Dashboard and Control panel in MTM template 148
51 MTM’s MATLAB script 154
5.2 Single working point MIL testing path 157
5.3 Single_working point.m's MATLAB script 158
5.4 Single working point results in system design phase MIL testing160
5.5 Nominal__powe_working point.m’s MATLAB script 162
5.6 Nominal power working point results in system design phase

MIL testing 163
5.7 Torque_curves.m’s MATLAB script 164
5.8 Torque curves results in system design phase MIL testing . . 166
5.9 3D_maps.m’s MATLAB script 168
5.10 Dissipated power 3D map result in system design phase MIL

testing 169

5.11 Efficiency 3D map result in system design phase MIL testing 169
5.12 Test motor parameter trends in system design phase MIL testing170

5.13 Control Logic block parameters setting in SIL testing 171
5.14 Diagnostic viewer window in SIL testing 174
5.15 Dissipated power 3D map in SIL testing 175
5.16 Efficiency 3D map in SIL testing 176

VI

LIST OF FIGURE LIST OF FIGURE

5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

Control Logic reference model setting for test harness generation177

Control Logic’s test harness model 178
green__comparison.mlz’s MATLAB script 179
MIL and SIL Control Logic green signal comparison 179
red__comparison.mlz MATLAB script 180
MIL and SIL Control Logic red signal comparison 180
bm__trqemd__comparison.mlx’s MATLAB script 181
MIL and SIL Control Logic bm_ trgcmd signal comparison . . 181
tm__trqemd__comparison.mlz’s MATLAB script 182
MIL and SIL Control Logic tm_ trqemd signal comparison . . 182
Control interface reference model in RCP phase 184
dSpace ADC blcok model scheme 184
dSpace DAC blcok model scheme 185
Signal conditioning sections in Control Interface reference model185
slblocks.m MATLAB script 186
slblocks.m’s MATLAB script 187
Single working point results in RCP MIL testing 190
Nominal power working point results in RCP MIL testing . . 191
Torque curves results in RCP MIL testing 195
Efficiency map result in RCP MIL testing 196
Dissipated power 3D map result in RCP MIL testing 196
Test motor characteristics results in RCP MIL testing 197
Control Logic reference model setting in RCP SIL simulation 199
Efficiency 3D map result in RCP SIL testing 200
Dissipated power 3D map result in RCP SIL testing 200
Test motor characteristics results in RCP SIL testing 201

VII

Chapter 1

Introduction

The rapid development and spread of electric motors in automotive industry
and other sectors has involved the need to develop parallelly equipment
that allows to perform tests on them and to evaluate their characteristics in
order to be able to choose the best motor on the basis of requirements to be
satisfied. Moreover, this development has required equipment’s development
to perform quality control and to diagnose possible problems while they are
working.

A way for obtaining experimentally electrical and mechanical charac-
teristics of an electric motor is based on the use of a test bench which is
made up of a known electric motor, called also brake motor, connected to the
motor to be tested in order to perform all tests that allow to characterize
the electric motor under test. From this, it’s possible to understand that it’s
very important to have under control the brake motor because in that way
specific inputs can be imposed to the electric motor under test and all needed
output data can be obtained. Usually, brake motors are piloted by a motor
driver connected to a PC by means users is able to set input parameters
on the basis of test to be performed. In addition, a control system made
up of a computer is needed to control brake motor’s behavior piloting its
motor driver and to be able to acquire and store interesting data needed for
characterizing the electric motor under test.

The goal of these thesis activities is implementing a regenerative active
test bench for electric motor using a Vehicle Management Unit (VMU),
electronic control unit used to elaborate actions to be taken on the basis of
data coming from sensors used in automotive industry, in order to reduce test
bench’s costs that usually have to be addressed by companies for developing
a new test bench. Regenerative test bench means that mechanical energy of
under test electric motor has to be converted in electrical energy to be fed
into national electricity grid. This, for sure, allows to have significant energy
saving and a small power supply even if electric motors to be tested require a
very huge power (30 -50 kW). This because, in that way power supply must
be able to provide a power more or less equal to dissipated power by two

INTRODUCTION

motors. While, active test bench means that brake motor is not moved by
rotational movement imposed by under test electric motor, but it’s piloted
by user through its motor driver and its inverter. This, of course, allows to
obtain more precise measurements.

In the cases where brake motor is put in rotation by rotational movement
imposed by the under test electric motor, test bench is called passive test
bench. In that cases, the under test electric motor is piloted by an inverter
which manages voltage and frequency values to impose desired rotational
speed values to test motor’s shaft. Once test motor’s shaft starts to rotate,
also passive breaking motor starts rotating and what is called electromagnetic
brakes happens. This because, once the test motor’s shaft is put in rotation
there will be electromagnetic induction that will generate eddy currents that
are responsible of a flux variation that implies a breaking force. This breaking
force is contrasted by load cell that allows to obtain force and torque values
through which test motor’s shaft power values can be computed: multiplying
each other rotational speed and torque values.

Instead, in active test bench cases brake motor is used to generate a load
connected to test motor. Setting bench motor parameters, load dynamic can
be controlled so in that case an additional inverter with respect to passive
test bench cases is needed to pilot bench motor and generating desired loads.
From this, it’s possible to understand that in active test bench cases higher
costs have to be addressed by companies and more complicated system has
to be developed. This, due to the need of two different inverters: one for
piloting bench motor and another one for managing test motor. On the other
hand, this kind of test bench allows to improve measurements’ repeatability
and accuracy.

Moreover, in active test bench a dynamometer and a speed sensor con-
nected to shaft interconnecting two motors must be used to measure torque
and rotational speed values. Other specific sensors are adopted to measure
battery voltage and motor phase current values.

The following chapters allow to understand the procedure followed to
develop a regenerative active test bench’s model and to obtain corresponding
C code, implemented into VMU, to be used to build up final physical system.

Chapter 2

System Engineering approach

To develop regenerative active test bench introduced in previous chapter,
system engineering approach is followed in order to have standard procedure
that allows to build-up a prototype with all user’s required characteristics
starting from an initial concept model. This is also done because thanks to
this approach, different disciplines and tools needed to develop system can be
included. Moreover, it allows to reduce time and costs required for developing
the final system. In this thesis work two different system engineering tools
have been adopted in order to develop desired test bench for electric motors:
V-shaped model and Modular Technical Model (MTM).

The first one allows to define a procedure to be followed starting from
user’s concept for obtaining final system prototype with all desired character-
istics. So, V-shaped model tool defines all phases to deal with to develop the
final physical system in a way that guarantees user safety. Indeed, it implies
many tests during all development procedure.

Instead, the second tool allows to subdivide the system to be developed
in modules, different parts, such that development’s efficiency and quality
are improved. This because each module can be developed by a different
team having specific skills. Moreover, this tool allows to improve reusability
since developed modules in a specific project can be also adopted in other
project’s development. Obviously, this implies a reduction of development
time and costs to be held by companies, but on the other hand development’s
complexity is increased due to the fact that all modules must be able to
communicate each other so designers must develop them in such a way that
can be possible.

2.1 V-shaped model

V-shaped model allows to define development process for a system to be
developed with specific characteristics and requirements defined by the user.
This tool subdivides development process in phases that must be performed
on succession to proceed in schematic way and obtaining final build-up

3

ADOPTED MODEL

prototype. This, for sure, allows to improve user safety since in each phase
different tests are required in order to verify whether user’s requirements are
satisfied and to proceed with the V-shaped model phases.

From all this, it is possible to understand that V-shaped model tool
allows to organize in a better and more efficient way system’s development
in which debugging errors and problems is simpler.

User Acceptance
Test Plan

User Acceptance

Requirement Analysis 5
Testing

Functional
Specification

Integrated Test
Plan

Detailed Design /

Program Specification Lntiesng

Figure 2.1: Generic V-shaped model

Observing the V-shaped model reported above, three different branches can
be distinguished: descendent branch that represents verification phase that
starts with requirements analysis and ends with detailed design and program
specification; horizontal branch (the bottom part) that represents coding
phase during which corresponding model’s C code is obtained; ascendant
branch that represents validation phase where modules previously designed
are put together and tested to understand whether everything is working fine
or not on the base of initial user’s requirements.At the end of each phase,
specific tests are performed. Below, a brief description of all performed tests
is reported.

ADOPTED MODEL

e Model-in-the-loop testing

System Reguiremeants

Model-in-the-loop

testing /

System Design

Software Design

V

Figure 2.2: Model-in-the-loop testing in V-shaped model

It represents the first test performed during V-shaped model phases
and includes all verification phases in order to test designed controller
and plant. To perform it, both plant and controller are modelled in
native simulation tool and they are run in development machine where
they are fed with inputs to obtain corresponding outputs through which
designed system’s behavior can be evaluated in order to understand
whether it must be changed or not on the basis of user’s requirements.
Moreover, to perform this test, both controller and plant models are
run in development machine in no real- time.

o Software-in-the-loop testing

\ /

Figure 2.3: Software-in-the-loop testing in V-shaped model

ADOPTED MODEL

It represents the second test performed during V-shaped model phases.
It is performed during the last step of verification phase (descendant
branch of V- shaped model), during code V-cycle phase (horizontal
branch of V-shaped model) and during first step of validation phase
(ascendant part of V-shaped model). Thanks to it, obtained Control
Logic’s C-code is tested in order to verify whether it has the same
behavior of corresponding model before designed and tested. Also, in
this case, like MIL testing case, both plant model and controller C-code
are run in development machine and they are fed with inputs to obtain
corresponding outputs to be compared to those obtained in MIL testing
case to verify C-code’s behavior: it works properly if obtained results
are equal to each other.

e Processor-in-the-loop testing

\ /

Processor-in-the-
\ loop testing

HW/SvV Integration

Figure 2.4: Processor-in-the-loop testing in V-shaped model

It represents the third test performed during V-shaped model phases.
In particular, it is performed during the V-shaped model’s first two
steps of validation phase (ascendant branch). To perform it, plant’s
model is run in development machine while Control Logic’s C-code,
obtained in previous phase, is run in target or rapid prototype hardware
to verify its behavior.

ADOPTED MODEL

e Hardware-in-the-loop testing

\ Hardware-in-the-

loop testin e q
P y Vehicie Integration
and Calibration

HWISW integration

Figure 2.5: Hardware-in-the-loop testing in V-shaped model

It represents the last test performed during V-shaped model phases.
In particular, it is performed during last two steps of validation phase
(ascendant branch). To perform it, obtained and tested Control Logic’s
C-code is run in target or rapid prototyping hardware while plant is
simulated by real time simulator. This test allows to verify plant’s
behavior that is managed by Control Logic’s C-code implemented into
the hardware.

ADOPTED MODEL

2.1.1 Hybrid V-shaped model

Going through V-shaped model details, Hybrid V-shaped model must be
considered. Its scheme is reported below.

SYSTEM OVERALL SPECIFICATIONS PROTOTYPE
« Concept Model
« Indifferent

Major changes

Minor changes/Model validation

Minor changes/Model
validation

VMU ON TEST BENCH

+ MTM with modified
frame

© VMU

© HIL

* Real-time

PN

SYSTEM DESIGN n

. Modular Technical
Model (MTM)

. DWSs
. MiL
. SIL DWS Compiler
* Non real-time

RCP ON TEST BENCH
+ MTM with modified frame

VMU SELECTION
* MTM with modified
frame
+ Dws
* MIL
+ Non real-time

* Real-time

Action

Model type

Computing Platform
Procedure i
System H

RCP CODE PRODUCTION
+ MTM with modified frame
+ DWS and RCP
*« MIL
* SIL RCP Compiler
* PIL

- Non real-time

VMU PROCUREMENT & CODE PRODUCTION
+ MTM with modified frame

+ DWSand VMU

. siL

* PIL

* Non real-time

Figure 2.6: Hybrid V-shaped model

Here, phases to be followed for obtaining final build-up prototype are
highlighted where several models and tools are used. Below, a brief description
of each phase is reported.

o System Owerall specification

It is the first phase during which user develops what is called concept
model by means he presents his idea to design company that must
find a way to implement it. To do this, user can adopt any native
platform neglecting all related technical details. This because it is up
to designers evaluating technical details to be considered for obtaining
a system that allows to satisfy all user requirements.

o System design

It is the second phase during which Development Workstation (DWS)
is used for designing and simulating system’s model. Here, only no
real-time concept is considered and at the beginning, system’s design
and simulation are done neglecting target hardware’s characteristics.
During this phase MIL and SIL testing are performed using Modular
Technical Model (MTM). Below all System design sub-phases are listed
and described.

ADOPTED MODEL

— Project Environment

It allows to organize system’s development in a better way. Indeed,
during this sub- phase what is called project environment is created
that implies several folders: one for each performed step.
— Model-in-the-loop

It allows to evaluate system model’s behavior once it is imple-
mented starting form concept model upgraded considering all
technical details and characteristics. Results of this test must be
comparable with those obtained simulating concept model pro-
vided by user at the beginning. In this sub-phase, MTM frames

consist of generic interfaces because they are not intended for
Rapid Control Prototyping Platform (RCPP).

— Software-in-the-loop
It is performed once Control Logic’s C-code is automatically
generated in order to verify its behavior: to proceed its behavior
must be equal to that obtained in the previous case where model

is used.Here control law is run in DWS and on the basis of tool
to be used for obtaining code, DWS system target file is selected.

o Rapid control prototyping (RCP) code production

Here, both DWS and RCP platform are used to perform SIL, MIL and
PIL testing. To do this MTM standard architecture is used and system
is considered to be non-real-time. In this case, MIL testing, unlike MIL
testing performed in previous phase, is performed considering RCPP
interfaces which must be modelled. So, before to perform MIL testing
in this case MTM interfaces must be modified with respect to those
used in System Design MIL testing case. This allows to verify system
model’s behavior in presence of RCPP modelled interfaces. To do this,
simulation results obtained in this case must be compared to those
obtained in the previous phase during MIL and SIL testing. Once MIL
testing is done and verified that system’s model works properly Control
Logic’s C-code must be obtained and tested. For this reason, SIL testing
has to be performed setting rapid control prototyping system target
file and running everything in DWS. Also in this case, to understand
whether obtained C-code works properly or not, simulation results
must be compared to those obtained in previous MIL testing. Then,
PIL testing can be performed using RCP platform connected to DWS.
This is done using RCP tool of specific chosen platform which allows
communication between rapid prototyping hardware where C-code is
run and plant’s model which is run in DWS.

o Rapid control prototyping (RCP) on test bench

9

ADOPTED MODEL

In this case, like in PIL testing case of previous phase, RCP platform is
considered and connected to DWS by means the specific RCP tool. But
here, unlike what happens in PIL testing of previous phase, system is
considered being in real-time. This because interfaces are represented
by test bench so, for sure, they are real-time while control law is
taken from MTM and run in DWS. Even this phase is subdivided in
sub-phases, listed below.

— Build
Here, control law C-code is automatically generated selecting RCP
platform System Target File and compiled so that C-code, to be
implemented inside the chosen platform, is built.

— Hardware-in-the-loop

Here, control law C-code obtained in previous sub-phase is de-
ployed on RCP platform such that the entire system can be tested
using test bench which represents the real interface. To manage
input /output signals of RCP platform a proper RCP software is
used.

VMU Selection

During this phase, MIL testing is performed to analyze the characteris-
tics that VMU must have to build-up the final physical system.

VMU Procurement and Code Production

During this phase SIL and PIL testing are performed considering the
model developed during the previous phase. This procedure is similar
to what is done in RCP Code Production phase but this time instead
of considering RCP platform’s model, VMU’s model is considered.

VMU on Test Bench

Here, VMU is tested in real-time since it is connected to DWS where
control law is developed and interfaces, represented by test bench, are
real. So, during this phase an HIL testing is performed.

Prototype

This is the last phase of V-shaped model in which final system prototype
is built-up. This prototype has real-time interfaces.

2.2 Modular-Technical Model (MTM)

Modular Technical Model (MTM), like V-shaped model, is a tool used in
System Engineering approach. It allows to subdivide system to be developed
into what is called modules such that more than one team with different

10

ADOPTED MODEL

skills can be engaged to develop all modules and obtain the final physical
system’s model. This, for sure, allows designers to improve reusability since
developed modules can be adopted in different projects. At the same time,
this allows to reduce development time because the different system parts
(modules) are developed concurrently by more teams who at the end must
be put together for obtaining the final physical system.

This tool is called Modular since it provides modules that represent
the different parts on which the system is subdivided. So, each module is
developed independently from other modules and it must be able to work
without considering all system parts. Then, it is called Technical because
the standard structure, provided by this tool, contains all technical details
needed to be taken into care for developing desired system.

Standard architecture, shown in figure 2.7, never changes and it provides
always the same modules that must be filled on the basis of details and
characteristics of considered system.

Environment

Control Logic ’ Control Monitor ‘ i

Control

HMI Monitor | |
Dashboard 3

Figure 2.7: Modular-Technical-Model general architecture

From this scheme, the different modules below listed and described can
be distinguished.

11

ADOPTED MODEL

Environment

This module includes all disturbances and noises coming from ambient
in which system works that can impact system’s behavior.

Plant

This module contains system’s model whose behavior must be controlled
by control law. Moreover, it also includes monitors by means user is
able to observe measured parameter trends.

Control

Inside this modules Control Logic module is implemented that represents
application code to be implemented for managing plant’s behavior. Here,
besides to find Control Logic module, layer allowing interaction between
control law and target hardware is implemented. Moreover, a control
scope is implemented to take under control input and output signals.
So, Control module contains target hardware interface’s models that
are very important to be taken into care during Control Logic C-code
production procedure in order to verify obtained C-code’s behavior in
presence of real target hardware’s interfaces

Human-Machine-Interface

This module is intended for translating user commands into signal
commands to be transmitted to Control module. So, here, different
push-buttons and LEDs could be implemented through which user can
start/stop system and observe its system status. In other words, this
module is intended to implement dashboard by means user can manage
system’s status. Also in this case, a scope can be implemented to take
under control all interesting quantities coming out from plant and/or
control.

User

This module is intended to simulate all actions to be done by user to
set system before to start it.

In addition, arrows that interconnect each other all different modules

represent physical interconnections to be implemented for allowing commu-
nication among physical built-up system parts. These interconnections can
be implemented by means busses or cables allowing signals exchanges. These
signals can be either continuous or discrete: all modules work with continuous
signals except Control module in which Control Logic module is implemented
and works with only discrete signals. Layer modelled in Control module that
represents interfaces between control law and target hardware can work both
discrete and continuous signals.

12

Chapter 3

Test Bench Concept Model

As explained in previous chapters to develop and implement desired electric
motor test bench, V-shaped model tool is adopted. So, following standard
architecture provided by this tool the first phase is System Overall Specifica-
tion by means user presents to designers his idea using what is called concept
model where idea is modelled neglecting all technical details to be considered
for system’s development. Concept model presented by user in this case is
shown in figure 3.1.

Figure 3.1: Static Test Bench concept model

From this model, it is possible to understand that user presents his
idea by means a Simulink model where all specifications to be satisfied are
highlighted. Here, the different components to be designed and implemented
can be distinguished: bench motor, test motor, shaft, controller, inverter and
control monitors. Below a brief description of each element is reported.

13

TEST BENCH CONCEPT MODEL

Bench motor

(W)
— BattVolt — T Info ==
— MtrSpd BattCurr ——
—»{ TrqgCmid MtrTrg b——

Bench Motor

Figure 3.2: Bench mapped motor Simulink block in concept model

This, called also brake motor, is responsible to impose rotational speed
to electric motor to be tested. It is piloted by user who provides
rotational speed values that is compared to rotational speed values
coming from feedback path in order to evaluate corresponding error
to be provided to PID controller which is able to decide action to be
performed so that measured motor shaft’s rotational speed is equal to
rotational speed value desired by user. Moreover, it must be provided
by its own inverter which needs a specific input voltage value and by
means a motor shaft it must be interconnected to electric motor to be
tested in order to be able to impose desired rotational speed values.

Test motor

—p BattVolt — T T T Info =—
— | MtrSpd BattCurr ——
—p| TrgCmd MtrTrq p=—v—

Test Motor

Figure 3.3: Test mapped motor Simulink block in concept model

It represents the electric motor to be tested for obtaining its mechanical
and electrical characteristics. This electric motor, unlike bench motor,
is piloted by user through torque command. It, like brake motor, must
be provided by its own inverter which requires a constant input voltage
value and connected to motor shaft in order to be interconnected to
bench motor.

14

TEST BENCH CONCEPT MODEL

e Motor shaft

—p» RTrq
j v SpdpF——
—»| CTrq

Shaft

Figure 3.4: Motor shaft Simulink block in concept model

It represents interconnection elements between the two motors. It must
be considered because, for sure, it introduces mechanical loss that
cannot be neglected.

e PID controller

—> Pl(s) =

Varying PID Controller
Figure 3.5: PID controller Simulink block in concept model

PID controller stands for Proportional, Integral, Derivative controller
that represents a controller that is able to provide continuous variation
of output. It implements a control loop based on feedback in order to
control accurately system, increasing efficiency and removing oscilla-
tions. Thanks to feedback mechanism it is able to continuously compute
an error value between what is called setpoint (rotational speed desired
by user) and what is called measured process variable (bench motor
out rotational speed) and apply a correction on three different parts:
proportional part responsible to set a proportional correction on the
basis of computed error (if error is equal to zero no correction occurs);
integral part responsible for considering past error values and integrat-
ing them over time to evaluate integral term (I) to be multiplied for
current error value; derivative parts responsible to implement a sort of
anticipatory control because on the base of its change rate it is able to
estimate further signal trend. Integral term (I) decreases once error is
eliminated while derivative term (D) decreases once error variations
become less rapid.

15

TEST BENCH CONCEPT MODEL

o Power supply

‘Power Supply

V
96 IV

DC Bus

Figure 3.6: Power supply in concept model

It is modelled by means a constant because it represents constant
voltage provided by a battery that must be connected to bench and
test motor’s power supply port.

o Control monitors

Monitors are used to analyze interesting parameter trends. Simulink
model allows to analyze different parameter trends such as those coming
out from bench and test motor’s info output port. This output port
allows to analyze motors’ mechanical and electrical quantity trends
such as: mechanical power, power loss, motor power, electric power,
motor power loss and motor power stored. For this reason, user connects
a scope to info output port of both mapped motor Simulink blocks
(motif with a red rectangle in figure 3.7).

—p»{ BattVolt — Info

(A

—p MtrSpd BattCurr

(N-m)

— TrqCmd MtrTrg

Bench Motor

Figure 3.7: Control monitor for motors’ info output port

Below a brief description of all parameters coming out from info output
port is reported.

— Mechanical power
It is a signal coming out from bench and test motors’ info output
port that carries information about mechanical power produced
by motors starting from electrical power provided by power supply
and inverter. It is measured in rad.

— Power loss
This is another signal coming out from both motor blocks’ info
output port. It carries information about internal inverter and
motor’s power loss. It is measure in Nm.

16

TEST BENCH CONCEPT MODEL

— Power info

It represents another signal coming out from both motor blocks’
info output that carries information about four different parame-
ters such as: motor power, electric power, motor power loss and
motor power stored. The first parameter refers to mechanical power
produced by motor and it is measured in W while the second
one refers to electrical power produced by motor measured in W.
Instead, the third parameter refers to power loss due to friction
presence (mechanical loss), iron losses because of hysteresis and
eddy currents, copper losses because of conduction, additional
losses in metal masses near windings because of eddy currents and
in lamination because of imperfect insulation, losses in insulator
that usually can be overlooked.

Besides scope above described, user implements other scopes to verify
other parameter trends such as those below listed.

— Battery current

It represents another bench and test motor blocks’ output port
from which a signal carrying information about draw or demand
current by motors comes out. It represents demand current if
its value is negative or draw current if its value is positive. It is
measured in A and its trend is taken under control by means a
viewer connected directly on bus as highlighted in figure 3.8.

=3 BattVolt _— Info =——
—p MitrSpd BattCurr
— TrgCmd MtrTrg ———

Bench Motor

Figure 3.8: Viewer for battery current motors’ output port

This viewer allows to control both motors’ battery current trend
and comparing them to each other.

— Motor torque
It represents another mapped motor Simulink blocks’ output port
from which a signal carrying information about motor output shaft
torque. It is measured in Nm. This signal, like battery current
case, is taken under control by means a viewer directly connected
on bus as shown in figure 3.9.

17

TEST BENCH CONCEPT MODEL

—»{ BattVolt — Info =—
—p MtrSpd BattCurr ——
—» TrqCmd MtrTrg ;

Bench Motor

Figure 3.9: Viewer for bench motor’s motor torque output port

This viewer allows to control motor torque signal trend of both
motors and compare them to each other.

— Motor speed
It represents signal coming out from motor shaft’s speed output
port that carries information about speed control signal for test
motor. It is measured in rad/s and taken under control by means
a viewer directly connected to bus as shown in figure 3.10.

—»(RTrq rad/s)
i v |Spd *

—»| CTrq

Shaft

Figure 3.10: Viewer for test motor’s speed command

— Bench motor torque command
It represents signal coming out from PID controller that carries
information about torque command used to pilot bench motor and
obtaining user’s desired rotational speed at motor shaft’s output
port. It is measured in Nm and taken under control by means a
viewer directly connected to bus as shown in figure 3.11.

(N-m)

— Pl(s)

Varying PID Controller

Figure 3.11: Viewer for bench motor’s torque command

18

TEST BENCH CONCEPT MODEL

— Test motor torque command
It represents a signal coming out from transfer function Simulink
block used to pilot test motor. It is measured in Nm and taken
under control by means a viewer directly connected to bus as
shown on figure below.

1 (N-m)
35+ 1

40 >

Torque Transfer Fcn

Figure 3.12: Viewer for test motor’s torque command

— Supply power and current

They represent parameters computed starting from signals coming
out from some mapped motor Simulink blocks’ output ports. In-
deed, supply current parameter is computed starting from battery
current signals coming out from “BattCurr” output ports that
must be added together while supply power is computed starting
from supply current, before described, that has to be multiplied
by power supply voltage value.

x
. Supply Power
G*) C Supply Current

Figure 3.13: Scope for supply power and current in concept model

3.1 User requirements

User asks for different requirements to be satisfy for test bench to be designed
and implemented. All these requirements can be summarized in: static active
regenerative test bench. Below a detailed explanation is reported.

o Regenerative

This means that user requires an electric motor test bench in which
total absorbed power is more or less equal to the sum of bench and test
motor’s dissipated power. This is required by user because it requires
a test bench that is able to test motors that require very huge power
(30 — 50 kW) using a small power supply. For this reason, in concept
model user implements a control monitor allowing to take under control
absorbed power and demanded current trends.

19

TEST BENCH CONCEPT MODEL

o Active

This means that user requires a test bench in which both motors (bench
and test motor) are piloted by an own inverter. This because user wants
an electric motor test bench with a very high accuracy into evaluating
test motor characteristics. This can be reach only if bench motor is
piloted by its own inverter, like test motor, because in that way user
is able to control bench motor’s behavior on the basis of test to be
performed. This is very important since in those cases bench motor
represents the load connected to test motor.

o Static

This means that user is asking for a test bench where dynamic that can
affect test motor’s behavior has not to be considered. This, in turns,
means that interesting parameters must be measured in steady state
condition.

Besides all these requirements, another very important user’s request is
the fact that electric motor test bench must be designed and implemented
in such a way that both motors are piloted by using a Vehicle Management
Unit (VMU) in order to reduce very high costs to be addressed by companies
in standard situation. Indeed, in standard situation companies must address
high costs for building up what is called Human Machine Interface (HMI)
that is constituted of two different drivers, one for each motor, different
computers for storing data and setting desired parameters on the basis of
test to be performed. In addition, VMU usage must allow to automatize test
bench in order to be able to obtain 3D efficiency and dissipated power map
of electric motor under test.

20

TEST BENCH CONCEPT MODEL

3.2 Concept model simulation

To simulate concept model shown at beginning of this chapter, a MATLAB
script must be run before to start Simulink simulation. This MATLAB script
(figure 3.14) must contain all needed parameters for parametrizing mapped
motor Simulink blocks used to implement model.

Panda_BEVintage_VPE_S_Data.m +
14 %% Mapped Motor ||
15
16 % Electrical Torque - Nominal & Maximal
17 |- w_n = 2895 /60%2x%pi;
18 - T_m_n = 40;
19 - eta_n = 0.91 %100; %@ w_n & T_m_n
20 - P_m_n = w_n % T_m_n
2l |= T_m_max = 66;
22 - P_m_max = w_nxT_m_max*x1.1
23 - tau_m = 0.02;
24
25 % Electrical Losses - Single Efficiency
26 - Pl_iron = @; %IPM
2] |= Pl_eln = 100;
28 - P1l_copper_n = (1-eta_n/100)*P_m_n -P1_eln -Pl_iron
29 - k_T = Pl_copper_n /T_m_n"2
30
31 % Mechanical
32 - J_m = .005e-3;
33 - beta_m = le-5;
34

Figure 3.14: Concept model’s MATLAB script

Here, a mapped motor section can be distinguished where all parameters
needed to parametrize bench and test mapped motor Simulink blocks are
defined. To do this user consider the same electric motor to model both
brake and test motor. Indeed, in MATLAB script above reported there is
no distinction between two motors. This can be also verified from Simulink
model opening block parameters’ window of each mapped motor Simulink
block where the same variables’ name is defined.

21

TEST BENCH CONCEPT MODEL

0 T v _static_Test_Bench

LEV_Static_Test_Bench -

Mappedtoror (mask) (Ink) ® I Block Parameters: Test Motor I

and arive ppe) (k)

©
«Q
[}
=
Block Parameters: Bench Motor
=]
=
[l

made,
maximm motor irSupay

ochicn s ol

Parameterized by: s

)

Maximun toraue, torque_max (Nm]:

Torque control tme constant, T, s}

v |

e e e

(]
-]
»
[E2E 00 T Lev_static_Test_Bench

LEV_Static_Test_Bench -

Mappeaboror (mask) (Ink) ® I Block Parameters: Test Motor I

ang arive

©
«Q
[}
=
Block Parameters: Bench Motor
=}
=
[l

mode,
maximum motor [TSupay

by: | Single efficiency meas:

arameterize lasses by: | Single efficlency measurement B
Motor and crive overal effciency, eff [%]: Parameterize losses by: | Sing o <)

Speed at which efficlency Is measured, w_ef, ragjs]:

wn Bl

Torque at which sfficlency Is measured, _ft, [N}

Motor and drive overall efficiency, eff [%]:
1
. B Torque at which sfficlency Is measured, T_sff, [N}

== 1 B

Iron fosses, iron [W):

Figure 3.15: Mapped motor Simulink block parameters window in concept
model

Below all needed parameters to be defined in MATLAB script are listed
and described.

o Nominal rotational spped (w_n)

It represents rotational speed value assumed by motors in nominal
conditions. So, it represents the rotational speed value for which electric
motor can work for an “infinite period” guaranteeing always perfor-
mances declared in rating plate by designer. It is measured in rad/s.

22

TEST BENCH CONCEPT MODEL

Nominal mechanical torque (T_m_n)

It represents torque value provided by electrical motor in nominal con-
ditions. So, it represents torque value for which electric motor can work
for an “infinite period” without problems guaranteeing performances
declared in rating plane. It is measured in Nm.

Nominal efficiency (eta_n)

It represents electric motor efficiency’s value in nominal conditions. So,
it represents efficiency’s value guaranteed by electric motor when it
works at nominal rotational speed and nominal mechanical torque.

Nominal mechanical power (P_m_n)

It represents electric motor’s mechanical power at crankshaft when
motor works in nominal conditions. Indeed, it can be computed as the
product between nominal mechanical torque and nominal rotational
speed. It is measured in W.

Mazimum mechanical torque (T _m__mazx)

It represents the maximum torque value that can be provided to electric
motor without causing problems to electric and mechanical circuit inside
motor. It is measured in Nm.

Mazimum mechanical power (P_m__mazx)

It represents the maximum mechanical power that can be provided by
electric motor without causing problems to electric motor’s electrical
and mechanical parts. It can be computed as product between maximum
mechanical torque and maximum rotational speed. It is measured in

W.

Mechanical time constant (tau_m)

It represents time constant measuring time needed by electric motor
to reach about 63measures electric motor’s responsiveness.

Iron power loss (Pl_iron)

This variable defines all power loss in the iron. So, it defines power loss
due to Joule effect which depends on absorbed current by load, power
loss due to ferromagnetic material’s hysteresis, power loss due to eddy
currents’ presence. It is measured in W.

Nominal electric power loss (Pl_eln)

This variable defines all power loss that are independent from torque
and rotational speed. It is measured in W.

23

TEST BENCH CONCEPT MODEL

o Torque constant (k_T)

This constant is specified by motor’s designer. It depends on magnetic
strength and on wire’s number. Moreover, it determines the slope of
torque-current curve.

o Mechanical moment of inertia (J_m)
This variable defines moment of inertia generated by mechanical masses
in rotation with respect to rotational axis. It is measured in kgm2.

e Mechanical constant (beta_m)

This variable defines friction generated between electric motor’s rotating
part. It allows to compute resistant torque applied to motor shaft.

3.3 Concept model simulation results

Running MATLAB script, shown in figure 3.14, all defined variables will
be loaded in RAM memory so that Simulink model blocks can refer to
them during simulation. Before to start Simulink simulation, simulation
time must be set so that when it is expired simulation stops. Considering a
simulation time of 50 seconds and running Simulink concept model results
below reported are obtained.

o Total absorbed power

‘Supply Power

Figure 3.16: Total absorbed power in concept model

Here, total absorbed power’s steady state value is about 2.621e4+03 W.

24

TEST BENCH CONCEPT MODEL

o Total demanded current

[——Suppy Curet.

| |
W5 2

Figure 3.17: Total demanded current in concept model

Here, total demanded current steady-state value is about 2.730e+1 A.

e Bench motor dissipated power

T

——— Banch Motor o, Pt Puross

| |
2 B)

Figure 3.18: Bench motor dissipated power in concept model

Here, bench motor’s dissipated power steady-state value is about -1.172
kW.

25

TEST BENCH CONCEPT MODEL

o Test motor dissipated power

T T T T T T T

Figure 3.19: Test motor dissipated power in concept model

Here, test motor’s dissipated power steady-state value is about -1.199
kW.

Summing bench and test motor’s dissipated power, total dissipated power
is obtained that at steady-state assumes a value equal to -2.371e+03 W.
Comparing this value with total absorbed power value, user’s regenerating
requirement is demonstrated. Absorbed power, of course, is a little bit bigger
due to motor shaft presence that, for sure, introduce mechanical losses that
are not considered in summing bench and test motor’s dissipated power.

Besides above parameter trends, other parameters trends can be obtained
from concept model such as: bench motor torque command, test motor torque
command, test motor speed command, battery currents, generated motor
torques and all bench and test motor parameters coming out from their info
output ports.

26

TEST BENCH CONCEPT MODEL

e Bench motor torque command

T T T T T T T

Figure 3.20: Bench motor torque command in concept model

Here, bench motor torque command’s steady-state value coming out
from PID controller is about -39.5 Nm.

e Test motor torque command

T T T T T T T T

Figure 3.21: Test motor torque command in concept model

Here, test motor torque command’s steady-state value coming out from
transfer function is about 40 Nm as desired since user set 40 Nm as
torque value to pilot test motor.

27

TEST BENCH CONCEPT MODEL

o Test motor speed command

T T T

Figure 3.22: Test motor speed command in concept model

Here, test motor speed command’s steady-state value coming out from
motor shaft is about 500 rad/s as desired since user set 500 rad/s as
speed value to pilot bench motor.

e Bench and test motor battery currents

|
E)

Figure 3.23: Bench and test motor battery currents in concept model

Here, bench motor battery current’s steady-state value is about -193.485
A (demanded current) while test motor battery current’s steady-state
value is about 220.787 A (draw current).

28

TEST BENCH CONCEPT MODEL

e Generated motor torques

| L L | | L | | |

Figure 3.24: Bench and test motor generated torques in concept model

Here, generated bench motor torque’s steady-state value is about -
39.492 Nm (negative because bench motor is braked) while generated
test motor torque’s steady-state value is about 39.992 Nm. Test motor
generated torque is less than torque values set by user (40 Nm) due to
mechanical losses inside motor, while bench motor’s generated torque
is less than test motor’s generated torque since part of torque is used
to put in rotation motor shaft interconnected to both motors.

e Bench motor mechanical and electrical parameters

Figure 3.25: Bench motor mechanical and electrical parameters in concept
model

Here, bench motor’s mechanical and electrical parameter trends such
as mechanical power, internal invert and motor power loss, mechanical

29

TEST BENCH CONCEPT MODEL

power, electrical power, motor power loss and motor power stored can
be seen.

e Test motor mechanical and electrical parameters

3

Figure 3.26: Test motor mechanical and electrical parameters in concept
model

Here, test motor’s mechanical and electrical parameter trends such as
mechanical power, internal invert and motor power loss, mechanical
power, electrical power, motor power loss and motor power stored can
be seen.

30

Chapter 4

System design phase: technical model

This is the first phase performed by designer during which user requirements
must be carefully analyzed in order to find the best solution to implement
final physical system that is able to satisfy them. Here, designer must consider
technical details that are neglected by user during concept model’s production,
described in previous chapter, and found the most efficient solution taking
also into account costs to be addressed by company. But in doing so, designer
neglects details about target hardware to be used. So, during this phase,
the designer, starting from concept model given by user, must build-up a
technical model that is able to satisfy all user’s requirements considering all
technical details. For this reason, during this phase often Technical model
term is used and Modular Technical Model tool is considered to realize it.

4.1 Preliminary technical model

In this thesis work, before to consider Modular-Technical-Model, a preliminary
technical model has been created to understand whether what is asked by
the user is feasible or not and whether all his requirements can be satisfied.

4.1.1 Some preliminary modification of concept model

First of all, concept model has been modified in such a way that what is
asked by user is clearly visible. For this reason, modifications shown in figure
4.1 have been done in concept model provided by user.

31

SYSTEM DESIGN PHASE: TECHNICAL MODEL

Figure 4.1: Preliminary technical model

Here, part highlighted in violet on the right part of model (figure 4.2) is
added and named Control Monitors.

Figure 4.2: Preliminary technical model’s control monitors

32

SYSTEM DESIGN PHASE: TECHNICAL MODEL

It contains all scopes that allow to take under control all relevant bench
motor parameters such as dissipated power, current demanded or draw and
absorbed power; all relevant test motor parameters such as dissipated power,
demanded or drawn current, absorbed power, rotational speed and torque.
By means the biggest scope, reported in this new part, power recirculating
effect can be verified since it shows total absorbed and total dissipated power
trends so comparison between them is done. Moreover, an additional scope
shows total demanded current.

Then, a new power supply with respect to concept model has been im-
plemented. This because, instead of considering the same electric motor
both in bench and test motor case, like happens in concept model, two
different electric motor have been considered which are characterized by an
own voltage power supply value. This time in fact, Sitemm motor has been
considered for bench motor which is provided by its own inverter requiring
a 96 V DC voltage supply while SMFE motor has been considered for test
motor that, like Sitem motor, is provided by its own inverter requiring a 66
V DC voltage supply.

This, for sure, implies that also MATLAB script, provided by user, needs
to be upgraded defining all SME motor’s mechanical and electrical data. In
figure 4.3 upgraded MATLAB scrip is shown.

5- close all

7 %% Bench_motor
% Electrical Torque - Nominal & Maximal
9- w_n_bench= 4000 /60%2%pi;
10- T_m_n_bench = 28;
11- eta_n_bench = 0.91 x100; %@ w_n & T_m_n

12 P_m_n_bench = w_n_bench * T_m_n_bench

13- T_m_max_bench = 55;

14 - P_m_max_bench = w_n_bench x T_m_max_bench *1.1
15 - w_max_bench=w_n_bench¥1.1;

16 - ‘tau_m_bench= 0.02;

17 % Electrical Losses - Single Efficiency

18- Pl_iron_bench= 0; %IPM

19- Pl_eln_bench= 100;

20 - Pl_copper_n_bench= (1-eta_n_bench/100)xP_m_n_bench -P1_eln_bench -P1_iron_bench
21- Kk_T_bench= P1_copper_n_bench /T_m_n_bench*2

2 % Mechanical

23- J_m_bench= .005e-3;

24- beta_m_bench= le-5;

25

26- i_max_bench=T_m_max_bench/k_T_bench;

27

28 %% Test motor

29

30 sElectrical Torque - Nominal & Maximal

31- w_n_test = 5000 /60%2%pi;

ol P_m_n_test=10500;

33- T_m_n_test = P_m_n_test/w_n_test;

34 - 6; %V

35 I_n_test=115; %A

36 cos_fi_test=0.86;

37 - eta_n_test =(P_m_n_test/(sqrt(3)xV_n_test+I_n_testxcos_fi_test))*100;
38 - w_max_test=7500/60x2%pi;

39- T_m_max_test = 83;

40- P_m_max_test = w_max_test % T_m_max_test

41- tau_m_test = 0.02;

2

a3 sElectrical Losses - Single Efficiency

44~ PLiron_test = 0;

45- Pleln_test = 100;

46 - Pl_copper_n_test= (1-eta_n_test/100)*P_m_n_test -P1_eln_test -P1_iron_test
47- Kk_T_test= P1_copper_n_test /T_m_n_test~2

49 - i_max_test=T_m_max_test/k_T_test;

Figure 4.3: Preliminary technical model’s MATLAB script

For obtaining desired parameter trends, MATLAB script shown in previ-
ous figure must be run before to run Simulink model. Once MATLAB script
is run, a simulation time must be defined in Simulink model in order to
decide how many time simulation must last. Below results are listed.

33

SYSTEM DESIGN PHASE: TECHNICAL MODEL

e Bench motor dissipated power Py,

bench_motor.dissipated_power

Figure 4.4: P;, ~with both motors set in single efficiency measurement

This variable, at steady-state, is approximately -2.211 kW. Its value is
negative since it represents a lost power.

e Bench motor absorbed power Fy,

bench motor_absorbed_power

2000 [—— bencn motor_absarbed pover] |

Figure 4.5: F,, , with both motors set in single efficiency measurement

This variable, at steady-state, is approximately -17.55 kW. It assumes
a negative value since it represents provided power.

34

SYSTEM DESIGN PHASE: TECHNICAL MODEL

e Bench motor demanded or drawn current Ip,,

bench_motor_curent

—— v moter curren]

Figure 4.6: I, with both motors set in single efficiency measurement

At steady-state, this variable is approximately -182.785 A. Its value is
negative since it represents a demanded current.

o Test motor dissipated power Py,

test_motor_dissipated_power

Figure 4.7: Py, with both motors set in single efficiency measurement

This variable, at steady-state, is approximately -2.911 kW. Its value is
negative since it represents a lost power.

35

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Test motor absorbed power P,,,

test_motor_absorbed_power

Figure 4.8: P,,,, with both motors set in single efficiency measurement

At steady-state it results to be approximately 22.92 kW. In this case,
unlike bench motor absorbed power, a positive value is reached since it
represents an absorbed power.

o Test motor demanded or drawn current I,

test_motor_current

— st motor_curen]

Figure 4.9: I, with both motors set in single efficiency measurement

At steady-state, it is approximately since it is a drawn 347.262 A. In
this case current value assumes a positive value current.

36

SYSTEM DESIGN PHASE: TECHNICAL MODEL

e Motor shaft rotational speed w

test_motor_rotational_speed

Figure 4.10: w with both motors set in single efficiency measurement

At steady-state, it results to be approximately 500 rad/s as expected
since at beginning a rotational speed command of 500 rad/s has been
set for piloting bench motor which is responsible to impose rotational
speed to test motor.

o Test motor torque Ty,

—— st motor omus

Nm
—

Figure 4.11: T}, with both motors set in single efficiency measurement

At steady-state, it results to be approximately 40 Nm as expected since
at beginning a torque command of 40 Nm has been set to pilot test
motor.

37

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Power recirculating effect

total_dissipated_power, total_absorbed_power

Figure 4.12: P,, P; with both motors set in single efficiency measurement

Here, absorbed and dissipated power are not perfectly equal to each
other as expected for verifying power recirculating effect. This does
not mean that effect is not verified since difference between two powers
is due to motor shaft presence that, of course, requires some power
that must be added to absorbed power. Indeed, absorbed power at
steady-state is more or less equal to 5.372 kW while dissipated power
is more or less equal to -5.122 kW.

o Total demanded current (I)

total_demanded_curent

! ! [somnes i
-

|
E)

Figure 4.13: I with both motors set in single efficiency measurement

Here, the sum between bench and test motor current (Ibm and Itm) is
shown. At steady- state it assumes a value equal to 164.5A.

38

SYSTEM DESIGN PHASE: TECHNICAL MODEL

4.1.2 Tabulated bench motor

After checking that modifications above described work properly, preliminary
technical model can be modified again. This time modifications concern bench
mapped motor Simulink block that must be tabulated. This means that bench
motor must be parametrized considering its efficiency and/or dissipated power
3D maps in order to obtain interesting parameter values as close as possible
to those that can be obtained in practice. This because, tabulating bench
mapped motor Simulink block, it is possible to obtain a more accurate bench
motor behavior during simulations. So, this modification is very important to
understand technical details to be considered for implementing final physical
System.

First of all, only bench mapped motor Simulink block has been tabulated
while test mapped motor Simulink block has been set in single efficiency
measurements. To tabulate bench mapped motor Simulink block "ICE Test
Bench Upgrading For Hybrid and Electrical Powertrain" thesis is considered
where all needed data are reported. Below list of all needed variables is
reported.

o Vector of rotational speeds w_t [rad/s]

o Vector of mazimum torque values T _t [Nm)]

o Torque control time constant Tc [s]

o Vector of speed for tabulated losses w__eff bp [rad/s]
o Vector of torques for tabulated losses T _eff bp [Nm]
o Corresponding efficiency efficiency__table [%]

o Corresponding losses losses__table [W]

To find these parameters, bench mapped motor Simulink block’s block
parameters window has to be opened by clicking two times on block. Once,
window is opened two possible subsections can be selected: Flectrical Torque
and Electrical Losses.

Considering Electrical Torque section, “Tabulated torque-speed envelope”
from drop-down menu can be selected in order to define parametrization way
for bench mapped motor Simulink block. Doing this, the three above listed
parameters must be defined.

39

SYSTEM DESIGN PHASE: TECHNICAL MODEL

° Block Parameters: Bench Motor

Figure 4.14: Electrical torque section of bench motor block parame-
ters’window

o Vector of rotational speeds w__t [rad/s]

It is a vector to be defined in MATLAB script considering rotational
speed values that can be used for permissible steady-state operation.
Values reported in this vector have to be defined in rad/s.

o Vector of mazimum torque values Tt [Nm)]

It is a vector to be defined in MATLAB script considering maximum
torque values that can be used for permissible steady-state operation.
Here, torque value must be defined in Nm.

o Torque control time constant Tc [s]

It represents time constant defining seconds used by motor driver for
tracking a torque demand.

To define w_t and Tt vectors, maximum torque and maximum power’s
graph must be considered form which rotational speed and torque values
reported in table 4.1 can be read.

Max. T - P Curve with Efficiency: Flux Weakening
Air Cooling — 300 Arms

—=—Torque - = Torque Id —e— Power -==Power_Id [

60 25
582% 719% 77,8% g12% 835% 851%

50 | 20
= 40 —
2 158
% 30 &
5 10 g
B 20 A~

10 | 5

1
0 0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

[RPM

Figure 4.15: Bench motor maximum torque and power curves

40

SYSTEM DESIGN PHASE: TECHNICAL MODEL

Speed [rad/s] | Torque [Nm]
52.4 52.5
104.7 52.5
157.1 52.5
209.4 52.5
261.8 52.5
314.2 52.5
366.5 52.5
418.9 52.5
471.2 47
523.6 42
575.9 38
628.3 35

Table 4.1: Bench motor maximum torque values reachable at steady-state

At this point two vectors can be defined on MATLAB script, shown in
figure 4.16, where w_t vector is defined as w_t wvec bench while Tt vector
is defined as Tt wec_bench. In addition among all other bench motor
parameters, torque control time constant Tc is defined as tau__m__bench.

aaaaa

_n_bench/100)*P_m_n_bench -P1_eln_bench -P1_iron_bench
n_bench /T_m_n_bench~2

orque_section
W_t) ench=[52.3599 104.7198 157.0796 209.4395 261.7994 314.1593 366.5191 418.8790 471.2380 523.5088 575.0587 628.3185]; %rad/s
_vec_bench=[52.5 52.5 52.5 52.5 52.5 52.5 52.5 52.5 47 42 38 35]; *\n

Figure 4.16: Bench motor electrical torque section’s MATLAB script

Instead considering FElectrical Losses section of block parameters window,
two different ways for parameterizing losses can be chosen: Tabulated loss
data and Tabulated efficiency data. The first way is used when bench mo-
tor’s dissipated power 3D map is considered to parametrize mapped motor
Simulink block while the second way is used when bench motor’s efficiency
3D map is considered.

Selecting Tabulated loss data way, only three of previous listed parameters
must be defined in MATLAB script.

41

SYSTEM DESIGN PHASE: TECHNICAL MODEL

[] Block Parameters: Bench Motor
MappedMotor (mask) (link)

Implements a mapped motor and drive electronics operating in torque-control mode.
Specify electrical torque range with a torque-speed envelope or maximum motor power and
torque. Output torque tracks a torque reference demand and includes a motor and drive
response time constant. Specify electrical losses as a single operating point that estimates
loss across the operating range, measured loss, or measured efficiency.

Block Options

Port configuration: | Speed (<]

Calibrate Maps

Parameters

Electrical Torque Electrical Losses
Parameterize losses by: | Tabulated loss data &

Vector of speeds (w) for tabulated losses, w_eff_bp [rad/s]:

w_eff_bp_vec

Vector of torques (T) for tabulated losses, T_eff_bp [Nm]:

T_eff_bp_vec

Corresponding losses, losses_table [W]:

losses_table

- Cancel Help Apply

Figure 4.17: Bench motor electrical losses section in tabulated loss data way

o Vector of speed for tabulated losses w__eff _bp [rad/s]

It is a vector to be defined in MATLAB script considering rotational
speed values that must be taken into care as rotational speed break-
points for lookup table used for calculating losses. Here, rotational
speed values must be defined in rad/s.

o Vector of torques for tabulated losses T _eff _bp [Nm]

It is a vector to be defined in MATLAB script considering torque values
that must be taken into care as torque breakpoints for lookup table
used for determining losses. Here, torque values must be defined in
Nm.

o Corresponding losses losses__table [W]

It is a matrix containing electrical losses values as function of rotational
speed values defined in w__eff _bp vector and torque values defined in
T _eff bp vector. This matrix must be constituted of a number of raw
equal to w__eff bp vector elements and a number of columns equal to
T eff bp vector elements. Electrical losses values in this matrix must
be defined in W.

For defining these three variables, dissipated power map shown in figure 4.18
must be considered.

42

SYSTEM DESIGN PHASE: TECHNICAL MODEL

Dissipated Power Map [W]

T [Nm]

26.9
20.9

15.2 ! 556.8
13.8 | 12658 2236 3114 3517 3957 458.9
114 | 1519 2237 8112 4844 5720 5452 4903

4.3 85.1 133.4 104.8 240.7 244.1 342.5 466.8 432.3

2.4 52.4 1151 155.1 175.3 200.1 2241 240.1 _ 260.3
1000 2000 3000 3500 4000 4500 5000 6000

[RPM]

Figure 4.18: Bench motor’s dissipated power map

Considering this map, MATLAB script must be upgraded as below shown
where w__eff __bp vector is defined as w_eff bp wvec_ bench, T eff bp
vector is defined as T eff bp_wvec_bench and losses table is defined as
losses__table bench.

28 % Tabulated_bench_motor

29

30 sElectrical_torque_section

31- w_t_vec_bench=[52.3599 104.7198 157.8796 209.4335 261.7994 314.1593 366.5191 418.8790 471.2389 523.5988 575.9587 628.3185]; %rad/s
32 - T_t_vec_bench=[52.5 52.5 52.5 52.5 52.5 52.5 52.5 52.5 47 42 38 35]; %Nn
3

34 sElectrical_losses_section

35 sTabulated_loss_data

36 - w_eff_bp_vec_bench=[104.72 209.44 314.16 366.52 418.88 471.24 523.6 628.32];
37 - T_eff_bp_vec_bench=[2.4 4.3 11.4 13.8 15.2 20.9 26.9];

38

39 - b=2000;

40 - losses_table_bench=[52.4 85.1 151.9 126.8 304.9 468.1 712.5;

41 115.1 133.4 223.7 223.6 350.5 701.4 801.2;
42 155.1 104.8 311.2 311.4 693.4 1005.9 1299.9;
43 175.3 240.7 434.4 351.7 556.3 1056.4 1407.6;
a4 200.1 244.1 572.9 395.7 813.2 1204.9 1013.4;
a5 224.1 342.5 545.2 458.9 732.2 864.7 b;

46 240.1 466.8 499.3 b b b b;

47 260.3 432.3 b b b b bl;

48

49 sTabulated_efficiency data

50 - d=85;

51- efficiency_table_bench=[82.8 85.8 88 91.9 84.5 82.6 84.5;

52 79.6 88.4 90.5 92.2 90.2 86.2 89.2;

53 80.2 93.1 90.9 93.3 87.3 86.7 91.2;

54 80.3 87.4 89.3 93.5 90.9 87.8 91.6;

55 80.2 88.8 88.1 93.5 88.7 88.1 91.9;

56 78.9 88.1 89.2 93.2 9.3 92.4 d;

57 79.5 87.191.8 d d d d;

58 78.7 85.2 d d d d d];

59

Figure 4.19: MATLAB script with bench motor’s dissipated power map

Selecting Tabulated efficiency data way, the only thing that changes with
respect to previous case is related to the fact that instead of considering
bench motor’s power losses matrix, efficiency matrix is considered. In this
case, block parameters’ window is the one shown in figure 4.20.

43

SYSTEM DESIGN PHASE: TECHNICAL MODEL

[] Block Parameters: Bench Motor
| MappedMotor (mask] {link)
Implements a mapped motor and drive electronics operating In torque-control mode.
Specify electrical torgue range with a torque-speed envelope or maximum motor power and
torgue. Qutput torgue tracks a torque reference demand and Includes a motor and drive
response time constant. spacn‘y electrical losses as a single operating point that estimates
loss across the operating range, measurad |0ss, or measured ETTlClQI'ICY.
Block Optlons

Port conflguration: Speed e

Faramaters
Electrical Torque Electrical Losses

Parameterize losses by: = Tabulated efficlency data e

vector of speeds (w) for tabulated losses, w_eff_bp [rad/s]:
w_eft_bp_vec_bench

wvector of torques (T) for tabulated losses, T_eff_bp [Nm]:
T_eff_bp_vec_bench

Con y_table [%]:

aefficlency_table_bench

| - cancel Help Apply

Figure 4.20: Bench motor’s electrical losses section in tabulated efficiency
data way

Here, the same variables described in previous case appears (w_eff _bp and
T_eff _bp) but instead of having losses_table, efficiency table must be
defined.

o Corresponding efficiency (ef ficiency_table) (%]

It is a matrix containing efficiency values as function of rotational
speed values defined in w_eff bp vector and torque values defined
in T eff bp vector. This matrix must be constituted of a number of
raw equal to number of w__eff bp vector elements and a number of
columns equal to T__eff _bp vector elements. Efficiency values in this
matrix must be defined in %.

T eff bp and w_eff bp vectors are defined as described in previous case
while efficiency matrix is defined considering bench motor’s efficiency map
(figure 4.21). Taking into care this map, MATLAB script must be upgraded
defining efficiency_table variable. This is done as shown in figure 4.22 where
that variable is defined as efficiency_table _ bench.

44

SYSTEM DESIGN PHASE: TECHNICAL MODEL

Efficiency Map [%]

T [Nm]
269 |845% 89.2% 912% 91.6% 91.9%
209 |s26% 862% 867% 87.8% 88.1% 924%
152 | 8a5% 902% 87.3% 909% 887% 903 %
138 |oro% 922%
114 | ss0% 905% 90.9% 893% 881% 89.2% O918%
43 |858% 884% 87.4% 88.8% 881% 87.1% 852 %
24 |s28%

1000 2000 3000 3500 4000 4500 5000

6000

[RPM]

Figure 4.21: Bench motor’s efficiency map

3- cle O a7 260.3 432.3 b b b b bl;

4- clear all 48

. close all T | a9 %%Tabulated_efficiency_data

6 50 - d=85;

7 %% Bench_motor S efficiency_table_bench=[82.8 85.8 88 91.9 84.5 82.6 84.5;
8 % Electrical Torque - Nominal & Maximal Z | s2 79.6 88.4 90.5 92.2 90.2 86.2 89.2;
9 - w_n_bench= 4000 /60+2+pi; 53 80.2 93.1 90.9 93.3 87.3 86.7 91.2;
10 - T_m_n_bench = 28; _ | 54 80.3 87.4 89.3 93.5 90.9 87.8 91.6;
11 - eta_n_bench = 0.91 %100; %@ w_n & T_m_n — | s5 80.2 88.8 88.1 93.5 88.7 88.1 91.9;
12 - P_m_n_bench = w_n_bench * T_m_n_bench 56 78.9 88.1 89.2 93.2 90.3 92.4 d;
13- T_m_max_bench = 55; 57 79.5 87.1 91.8 d d d d;

14 - P_m_max_bench = w_n_bench * T_m_max_bench ¥1.1 58 78.7 85.2 d d d d dl;

15 - w_max_bench=w_n_benchx1.1; 59

16 - tau_m_bench= 0.02; 60 %% Test motor

17 % Electrical Losses - Single Efficiency 61

18 - P1_iron_bench= 0; %IPM 62 %Electrical Torque - Nominal & Maximal

19 - P1_eln_bench= 100; 63 - w_n_test = 5000 /60%2%pi;

20 - P1_copper_n_bench= (1-eta_n_bench/100)%P_m_n_bench —P1_eln_bench -P' 64 - P_m_n_test=10500;

21- K_T_bench= P1_copper_n_bench /T_m_n_bench*2 65- T_m_n_test = P_m_n_test/w_n_test;

22 % Mechanical 66 - V_n_test=66; %V

23- J_m_bench= .005e-3; 67 - I_n_test=115; %A

24 - beta_m_bench= 1le-5; 68 - cos_fi_test=0.86;

25 69 - eta_n_test =(P_m_n_test/(sqrt(3)*V_n_testxI_n_testxcos_fi_test))*1
26 - i_max_bench=T_m_max_bench/k_T_bench; 70 - w_max_test=7500/60%2*pi;

27 71- T_m_max_test = 83;

28 %% Tabulated_bench_motor 72 - P_m_max_test = w_max_test * T_m_max_test

29 = | 73- tau_m_test = 0.02;

30 sElectrical_torque_section 74

31 - w_t_vec_bench=[52.3599 104.7198 157.0796 209.4395 261.7994 314.1593 = | 75 %Electrical Losses - Single Efficiency

32- T_t_vec_bench=[52.5 52.5 52.5 52.5 52.5 52.5 52.5 52.5 47 42 38 35] 76 - Pl_iron_test = 0;

33 77- Pl_eln_test = 100;

34 %Electrical_losses_section 78 - Pl_copper_n_test= (1-eta_n_test/100)*P_m_n_test -P1_eln_test -P1_i
35 s%Tabulated_loss_data 79 - k_T_test= P_copper_n_test /T_m_n_test~2

36 - w_eff_bp_vec_bench=[104.72 209.44 314.16 366.52 418.88 471.24 523.6 80

shile T_eff_bp_vec_bench=[2.4 4.3 11.4 13.8 15.2 20.9 26.9]; 81 - i_max_test=T_m_max_test/k_T_test;

38 82

39 - b=2000; 83 %Tabulated_test_motor

40 - losses_table_bench=[52.4 85.1 151.9 126.8 304.9 468.1 712.5; 84

41 115.1 133.4 223.7 223.6 350.5 701.4 801.2; 85 %Electrical_torque_section

42 155.1 104.8 311.2 311.4 693.4 1005.9 1299.9; 8 - w_t_vec_test=[52.3599 104.7198 157.0796 209.4395 261.7994 314.1593
43 175.3 240.7 434,4 351.7 556.3 1056.4 1407.6; 87 - T_t_vec_test=[83 82.5 82 81.5 80.5 80.5 77.5 68 56 46.5 39.5 34.5]
44 200.1 244.1 572.9 395.7 813.2 1204.9 1013.4; 88 - tau_m_test = 0.02;

45 224.1 342.5 545.2 458.9 732.2 864.7 b; 89

Figure 4.22: MATLAB script with bench motor’s efficiency map

Here, on the right bottom part also SME motor’s mechanical and electrical
parameters are defined. Once it is run, simulation time must be set in
Simulink model and bench motor’s parameterization way both for electrical
torque and electrical losses section must be selected as before described.
Selecting Tabulated loss data as losses’ parametrization way in Flectrical
Losses section of bench motor parameters’ window, results below shown have
been obtained.

45

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Bench motor dissipated power (P,)

bench_motor_dsipated_power
T T

|
E)

Figure 4.23: P4, =~ with bench motor set in tabulated loss data

At steady-state, it is approximately -2 kW. Its value has negative sign
since it represents lost power and it assumes smaller value with respect
to the case where both mapped motor Simulink blocks are set in single
efficiency measurements (-2.211 kW as shown in figure 4.4)

o Bench motor absorbed power (P,)

bench motor_absorbed_power

o

1 1 1 L
0)) w0 E) E) £ w %

Figure 4.24: P,, ~with bench motor set in tabulated loss data

At steady-state, it results to be approximately -17.75 kW. It assumes
exactly the same value obtained in case where both mapped motor
Simulink blocks are set in single efficiency measurements and its nega-
tive sign means that bench motor provides power.

46

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Bench motor demanded or drawn current (Ip,,)

bench motor_current
T

Figure 4.25: I,,, with bench motor set in tabulated loss data

At steady-state, this variable is approximately -184.941 A. Its value is
negative since it represents a demanded current and it is bigger than
the value obtained in case where both mapped motor Simulink blocks

are set in single efficiency measurements (-182.785 A as shown in figure
4.6).

o Test motor dissipated power (Py,,)

test_motor_dissipated_power
T

Figure 4.26: P4, with bench motor set in tabulated loss data

At steady-state, it results to be approximately -2.901 kW. Its value is
negative since it represents lost power and it assumes smaller value
than that obtained in case where both mapped motor Simulink blocks

are set in single efficiency measurements (-2.911 kW as shown in figure
4.7)

47

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Test motor absorbed power (P,,,)

test.motor_ absorbed_power
T

Figure 4.27: P, with bench motor set in tabulated loss data

At steady-state, it assumes exactly the same value measured in case
where both mapped motor Simulink blocks are set in single efficiency
measurements, 22.92 kW. In this case, unlike bench motor absorbed
power, it assumes a positive value since it represents absorbed power
instead of provided power.

o Test motor demanded or drawn current (Iiy,)

test_motor_current
T

Figure 4.28: I, with bench motor set in tabulated loss data

At steady-state, this variable is approximately 347.178A. Here, unlike
bench motor current’s case, current value assumes a positive value
since it represents drawn current and it is a bit smaller that the value
obtained in case where both mapped motor Simulink blocks are in in
single efficiency measurements (347.262 A as shown in figure 4.9)

48

SYSTEM DESIGN PHASE: TECHNICAL MODEL

Motor shaft rotational speed w

ot
T T T T T T T T

Figure 4.29: w with bench motor set in tabulated loss data

Here, like the case in which both mapped motor Simulink blocks are set
in single efficiency measurements, at steady state rotational speed value
assumes exactly the same value of rotational speed command, set at
beginning, that is chosen to pilot bench motor (500 rad/s), responsible
to brake and impose rotational speed to test motor connected to it

Test motor torque Ty,

Figure 4.30: T}, with bench motor set in tabulated loss data

Also in this case, like the case where both mapped motor Simulink
blocks are set in single efficiency measurements, at steady state torque
value measured at the output of test motor assumes exactly the same
value of torque command set at beginning to pilot test motor, 40 Nm.

49

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Power recirculating effect

Figure 4.31: P,, P; with bench motor set in tabulated loss data

Here, like the case where both mapped motor Simulink blocks are
set in single efficiency measurement, absorbed and dissipated power
are not perfectly equal to each other as expected. This, due to motor
shaft presence that, of course, requires some power that must be added
to motors’ absorbed power. Indeed, at steady state absorbed power
results to be about 5.159 kW while dissipated power is about -4.909
kW. In this case, both powers assume smaller value with respect to case
where both mapped motor Simulink blocks are set in single efficiency
measurements (5.371 kW and -5.121 kW as shown in figure 4.12).

o Total demanded current (I)

Figure 4.32: I with bench motor set in tabulated loss data

This graph shows the sum between bench and test motor’s current
from which its steady- state value can be read (about 162.2 A). Com-
paring this value with that obtained in case where both mapped motor
Simulink blocks are set in single efficiency measurement a difference
can be observed since this time total demanded current assumes smaller
value with respect to previous case (about 164.5 A).

50

SYSTEM DESIGN PHASE: TECHNICAL MODEL

Instead, setting bench mapped motor Simulink block considering Tabu-
lated efficiency data as losses parameterization way in parameters window’s
Electric Losses section and performing Simulink simulation choosing the
same simulation time considered for performing simulation in case where
only bench mapped motor Simulink blocks is set in tabulated losses (100 s),
results shown in following figures have been obtained that can be compared
to those obtained in previous case.

o Bench motor dissipated power (P,)

bench_motor_dissipated_power
T T

Figure 4.33: P4, , with bench motor set in tabulated efficiency data

At steady-state, it results to be approximately -2.017 kW. Also in this
case, it assumes negative sign since it represents dissipated power and
it is more or less equal to value obtained in case where only bench
motor is set in tabulated loss data (-2 kW as shown in figure 4.23)

o1

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Bench motor absorbed power (P,)

bench motor_ absorbed_power
2000 [— T

Figure 4.34: P,, . with bench motor set in tabulated efficiency data

At steady-state, it assumes a negative sign approximately equal to
-17.74 kW which means it represents bench motor’s provided power. Its
value is more or less equal to that obtained in case where only bench
mapped motor is set in tabulated loss data (-17.75 kW as shown in
figure 4.24)

o Bench motor demanded or drawn current (Ipy,)

bench motor curent

T T

Figure 4.35: Iy, with bench motor set in tabulated efficiency data

At steady-state, it is approximately -184.759 A that is a bit smaller
that value obtained in case where only bench mapped motor is set in
tabulated loss data (-184.941 A as shown in figure 4.25). Its negative
sign means that it represents demanded current.

52

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Test motor dissipated power (Py,,)

test_motor.dissipated_power
T

Figure 4.36: P4, with bench motor set in tabulated efficiency data

Here, at steady-state variable results to be approximately -2.909 kW,
so it is very similar to value obtained in case where only bench mapped
motor Simulink blocks is set in tabulated loss data (-2.901 kW as shown
in figure 4.26). Its negative sign means that it is lost power.

o Test motor absorbed power (P,,,)

‘ost. motor absorbed power
T

Figure 4.37: P,, . with bench motor set in tabulated efficiency data

atm

At steady-state, it is approximately 22.91 kW, so it results to be equal
to value obtained in case where only bench mapped motor Simulink
block is set in tabulated loss data. In this case, unlike bench motor
absorbed power, its value is positive since it represents absorbed power
instead of provided power.

53

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Test motor demanded or drawn current (1)

test_motor_current
T

|
0

Figure 4.38: I3, with bench motor set in tabulated efficiency data

At steady-state, it results to be approximately 347.178A like value
obtained in case where only bench motor is set in tabulated loss data.
In this case, unlike bench motor case, current value assumes a positive
value since it represents drawn current instead of demanded current.

e Motor shaft rotational speed w

test motor_roational_speed
T

radls

|
0

Figure 4.39: w with bench motor set in tabulated efficiency data
At steady-state, it assumes the expected value 500 rad/s that results
to be equal to rotational speed command set at beginning to pilot

bench motor that is responsible to impose rotational speed value to
test motor.

o4

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Test motor torque Ty,

1 |

Figure 4.40: T}, with bench motor set in tabulated efficiency data

At steady-state, it reaches desired value that is equal to torque command
value set at beginning by user to pilot motor under test, 40 Nm.

e Power recirculating effect

total_dssipatod_power,total_absorbed power
f

w00 — s T i T : -

Figure 4.41: P,, P; with bench motor set in tabulated efficiency data

Here, like previous case where bench mapped motor Simulink block is
set in tabulated loss data, absorbed and dissipated power steady-state
values are not perfectly equal between them as expected. This, due
to motor shaft presence which requires power that must be added to
motors’ absorbed power. This time absorbed power at steady-state
assumes is more or less equal to 5.177 kW, a bit bigger than value
obtained in case where only bench mapped motor Simulink model is set
in tabulated loss data (5.159 kW), like also happens in dissipated power
case indeed here it assumes a value of -4.927 kW while in previous case
it is more or less equal to 4.909 kW.

55

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Total demanded current (I)

tolal_demandad curent
T

Figure 4.42: I with bench motor set in tabulated efficiency data

Here, the sum between bench and test motor phase current (Ibm, Itm)
is shown. At steady- state it assumes a value more or less equal to that
obtained in case where only bench motor is set in tabulated loss data.
Indeed, here it is approximately 162.4A while in the other case it is
about 162.2 A.

4.1.3 Tabulated bench and test motor

Once model with only bench mapped motor Simulink block sets in tabu-
lated loss data is tested and validated, next step can be performed. Here,
test mapped motor Simulink block has to be tabulated by using the same
procedure adopted for bench mapped motor Simulink block. So, also in this
case the two parameters window’s section must be considered: FElectrical
Torque and Electrical Losses. In the first section only one parameterization
way can be chosen while in the second section two different parameterization
way can be chosen. Indeed, opening test mapped motor Simulink block and
selecting Electrical Torque section, only Tabulated torque-speed envelope can
be chosen as parameterization way from drop-down menu while considering
Electrical Losses section two different options can be chosen as parameter-
ization way: Tabulated loss data in case test motor’s dissipated power map
is chosen or Tabulated efficiency data in case test motor’s efficiency map is
chosen. Each section is characterized by different variables to be defined in
MATLAB script as described in bench motor’s tabulation case. So, corre-
sponding MATLAB script to be run for starting Simulink simulation is the
one shown in figure 4.43.

56

SYSTEM DESIGN PHASE: TECHNICAL MODEL

1 O [58 78.7 85.2dddd dl;

2 sTechnical_model 59

3- clc 60 %% Test motor

4- clear all 61

5= close all 62 %Electrical Torque - Nominal & Maximal

3 63 - 60%2%pi;

7 %% Bench_motor 64 -

8 % Electrical Torque - Nominal & Maximal 65 - |_n_test/w_n_test;

9- w_n_bench= 4000 /60+2+pi; 66 -

10- T_m_n_bench = 28; 67 -

11- eta_n_bench = 0.91 %100; %@ w._n & T_n_n 68 - H

12 - P_m_n_bench = w_n_bench * T_m_n_bench 69 - eta_n_test =(P_m_n_test/(sqrt(3)*V_n_testxI_n_testxcos_fi_test))*1
13- T_m_max_bench = 55; 70 - w_max_test=7500/6@x2xpi;

14- P_m_max_bench = w_n_bench * T_m_max_bench 1.1 71- T_m_max_test = 83;

15- w_max_bench=w_n_bench+1.1; 72- P_m_max_test = w_max_test * T_m_max_test

16 - tau_m_bench= 0.02; 73- fau_m_test = 0.02;

17 % Electrical Losses - Single Efficiency 7

18- Pl_iron_bench= @; %IPM 75 sElectrical Losses - Single Efficiency

19- Pl_eln_bench= 100; 76 - Pl_iron_test = o;

20 - P1_copper_n_bench= (1-eta_n_bench/10@)+P_m_n_bench -Pl_eln_bench -P = Pl_eln_test = 100;

21 - k_T_bench= P1_copper_n_bench /T_m_n_bench~2 78 - P1_copper_n_test= (l-eta_n_test/100)*P_m_n_test -P1_eln_test -P1_i
2 % Mechanical 79 - k_T_test= P1_copper_n_test /T_m_n_test~2

23- 1_m_bench= .0@5e-3; 80

24 - Dbeta_m_bench= le-5; 81- i_max_test=T_m_max_test/k_T_test;

25 82

26 - i_max_bench=T_m_max_bench/k_T_bench; 83 %Tabulated_test_motor

27 84

28 %% Tabulated_bench_motor 85 sElectrical_torque_section

29 86 - w_t_vec_test=[52.3599 104.7198 157.0796 209.4395 261.7994 314.1593
30 %Electrical_torque_section 87 - T_t_vec_test=[83 82.5 82 81.5 80.5 80.5 77.5 68 56 46.5 39.5 34.5]
31- w_t_vec_bench=[52.3599 104.7198 157.0796 209.4395 261.7994 314.1593 88 - tau_m_test = 0.02;

32- T_t_vec_bench=[52.5 52.5 52.5 52.5 52.5 52.5 52.5 52.5 47 42 38 35] 89

33 90 sElectrical_losses_section

34 sElectrical_losses_section 91 sTabulated_loss_data

35 %%Tabulated_loss_data 92 - w_eff_bp_vec_test=[104.7198 209.4395 314.1593 366.5191 418.879 471
36 - w_eff_bp_vec_bench=[104.72 209.44 314.16 366.52 418.88 471.24 523.6 93 - T_eff_bp_vec_test=[15 24 43 62 83];

37 - T_eff_bp_vec_bench=[2.4 4.3 11.4 13.8 15.2 20.9 26.9]; £

38 95 - losses_table_test=[143.8356 290.4494 954.5455 1.9857e+@3 2.8393e+l
39 - b=20080; 96 157.8947 311.1702 972.2222 2.0326e+@3 3.5795e+¢
49 - losses_table_bench=[52.4 85.1 151.9 126.3 304.9 468.1 712.5; 97 236.8421 381.5789 1.8419e+03 2.0833e+03 3.6286¢
a 115.1 133.4 223.7 223.6 350.5 701.4 801.2; 98 204.5455 434.2105 1.1290e+03 2.4167:

%2 155.1 104.8 311.2 311.4 693.4 1005.9 1299 99 219.1558 510.5263 1.3784e+03 2.7333

43 175.3 240.7 434.4 351.7 556.3 1056.4 1407 100 335.5263 689.3617 1.5326e+03 2.7809

4 200.1 244.1 572.9 395.7 813.2 1204.9 1013 101 454.7872 846.7742 1.6781e+03 2.9659

45 224.1 342.5 545.2 458.9 732.2 864.7 b; 102 564.5161 912.1622 1.9111e+@3 3.2880

16 240.1 466.8 490.3 b b b b; 103 632.4324 978.2609 1.8750e+03 2.9138e+83 2.8143e
47 260.3 432.3 b b b b b]; 104

28 105 s%Tabulated_efficiency_data

49 s%Tabulated_efficiency data 106

50 - d=85; 107 - efficiency_table_test=[91.25 89 82.5 76.25 7@;

51- efficiency_table_bench=[82.8 85.8 88 91.9 84.5 82.6 84.5; 108 95 94 90 86.25 82.5;

52 79.6 88.4 90.5 92.2 90.2 86.2 89.2; 109 95 95 92.5 90 87.5;

53 80.2 93.1 90.9 93.3 87.3 86.7 91.2; 110 96.25 95 93 90 87;

54 80.3 87.4 89.3 93.5 90.9 87.8 91.6; 11 96.25 95 92.5 90 86.25;

55 80.2 B88.8 88.1 93.5 88.7 88.1 91.9; 112 95 94 92 89 86.66;

56 78.9 88.1 89.2 93.2 90.3 92.4 d; 113 94 93 91.25 88 86.66;

57 79.5 87.1 91.8 d d d d; 114 93 92.5 90 86.25 87;

58 78.7 85.2 dddd d]; 115 92.5 92 90 87 87.51;

Figure 4.43: MATLAB script with tabulated bench and test motor

Here, all needed variables to parametrize Simulink model blocks are
defined so that, once it is run, they are loaded into workspace and Simulink
blocks can use them during simulation. In this MATLAB script, besides to
find needed variables to parametrize bench mapped motor Simulink block,
all needed variables to parameterize test mapped motor Simulink block are
defined. Indeed, variables below listed must be added.

e w_t wec test, added to define w_t vector for test motor
e T t wec test, added to define Tt vector for test motor

tau__m_ test, added to define Tc constant for test motor

o w_eff bp wec test, added to define w__eff bp vector for test motor
o T eff bp_ wvec test, added to define T eff wec vector for test motor
e loss table_test, added to define test motor losses table

o cfficiency_table_test, added to define test motor efficiency_table

Before to start Simulink simulation, simulation time must be defined in
order to decide how many time simulation must last to evaluate parameter

o7

SYSTEM DESIGN PHASE: TECHNICAL MODEL

trends. To obtain trend easily comparable with the ones obtained in previous
cases, it is set equal to 100s, like previous cases. Moreover, bench and test
mapped motor Simulink blocks must be set in proper way in order to tabulate
them. For this reason, first of all Tabulated torque-speed envelope parameteri-
zation way from electrical torque section and Tabulated loss data or Tabulated
efficiency data parameterization way from electrical losses section must be
chosen in order to parametrize both bench and test mapped motor Simulink
block considering either their dissipated power maps or their efficiency maps.

In case user decides to consider dissipated power maps to parametrize
both mapped motor Simulink blocks, Tabulated loss data parameterization
has to be selected from electrical losses section of block parameters’ window.
At that point running Simulink model, parameter trends below shown are
obtained.

o Bench motor dissipated power (Py,,)

bench_motor_dissipated. L power

Figure 4.44: P4, ~with both motors set in tabulated loss data

At steady-state, it results to be approximately -2 kW. It reaches that
value assuming the same trend obtained in case where only bench
mapped motor Simulink model is set in tabulated loss data (figure
4.23). Its value has negative sign since it represents dissipated power.

o8

SYSTEM DESIGN PHASE: TECHNICAL MODEL

« Bench motor absorbed power (P,,,)

motor_a
T T T T

Figure 4.45: P, with both motors set in tabulated loss data

At steady-state, it assumes a value more or less equal to -17.75 kW that
results to be exactly equal to value obtained in case where only bench
mapped motor Simulink block is set in tabulated loss data (figure 4.24).
Its negative value means that it represents provided power.

e Bench motor demanded or drawn current (Ip,,)

bench metor_curert.

Figure 4.46: I,,, with both motors set in tabulated loss data
At steady-state, it is about -184.947 A. Its negative sign means that
it represents demanded current and its value is very similar to that

reached in case where only bench mapped motor Simulink block is set
in tabulated loss data (-184.941 A as shown in figure 4.25).

59

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Test motor dissipated power (Py,,)

test motordissipated_power
of T T

Figure 4.47: P4, with both motors set in tabulated loss data

At steady-state, it results to be approximately -1.481 kW which means
that it is smaller than value obtained in all other cases. Its negative
sign means that it represents lost power.

o Test motor absorbed power (P,)

test_mofor_absorbed_power
T

Figure 4.48: P,,,, with both motors set in tabulated loss data

At steady-state, it assumes a value approximately equal to 21.49 kW,
smaller than those obtained in previous cases. In this case, unlike bench
motor absorbed power, it assumes a positive sign since it represents
absorbed power instead of provided power.

60

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Test motor demanded or drawn current (1)

test_ motor_curent
T

| |
0)

Figure 4.49: 1y, with both motors set in tabulated loss data

At steady-state, it assumes a value approximately equal to 325.542 A,
smaller than steady-state values obtained in other cases. In this case,
unlike bench motor case, current value assumes positive sign since it
represents drawn current instead of demanded current.

e Motor shaft rotational speed w

test motor_rotational_speed

Figure 4.50: w with both motors set in tabulated loss data
At steady-state, is approximately equal to desired value (500 rad/s)
that corresponds to rotational speed’s command set at beginning by

user to pilot bench motot which is responsible to impose rotational
speed to test motor.

61

SYSTEM DESIGN PHASE: TECHNICAL MODEL

Test motor torque Ty,

Figure 4.51: T}, with both motors set in tabulated loss data

At steady-state, it assumes desired value (40 Nm) which corresponds
to torque value’s command set at beginning by user to pilot test motor
is approximately 40 Nm.

Power recirculating effect

total_dssipated_power, total_absorbed power

Figure 4.52: P,, P; with both motors set in tabulated loss data

Here, like all cases previously analyzed, absorbed and dissipated power
steady-state values are not perfectly equal between them, as expected.
This due to motor shaft presence which absorbs power that must be
added to motors’ absorbed power. This time absorbed power at steady-
state is about 3.731 kW, while dissipated power steady-state value is
about -3.481 kW. Both are smaller that values obtained in previous
cases.

62

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Total demanded current (I)

el demanded curent

Figure 4.53: I with both motors set in tabulated loss data

Here, sum between bench and test motor current (Ibm, Itm) is shown.
At steady-state it is about 140.6A, smaller than steady-state values
obtained in all other cases.

Instead, in case where user decides to parametrize bench and test mapped
motor Simulink blocks considering their efficiency maps, Tabulated efficiency
data parameterization way from electrical losses section must be chosen.
Doing this and performing Simulink simulation setting the same simulation
time considered in previous cases, parameters trends below shown have been
obtained that can be compared to those obtained in previous cases.

o Bench motor dissipated power (Py,)

bench_motor_dssipated_power
T T T T

Figure 4.54: P4, ~with both motors set in tabulated efficiency data

At steady-state, it results to be approximately -2.017 kW which is the

63

SYSTEM DESIGN PHASE: TECHNICAL MODEL

same value obtained in case where only bench mapped motor Simulink
block is tabulated in efficiency data (figure 4.33). Its negative sign
means that it represents dissipated power.

o Bench motor absorbed power (P,)

ench metor absorbed power
= T T

Figure 4.55: P4, with both motors set in tabulated efficiency data

Apm

At steady-state, it assumes the same value obtained in case where
only bench mapped motor Simulink block is tabulated in tabulated
efficiency data (figure 4.34), about -17.74 kW. Its negative value means
that it represents provided power.

o Bench motor demanded or drawn current (Ipy,)

bench motor_ourert

Figure 4.56: I, with both motors set in tabulated efficiency data

At steady-state, it is approximately equal to -184.765 A which means
that it is perfectly equal to value obtained in case where only bench
mapped Simulink block is set in tabulated efficiency data (figure 4.35).
Its negative sign means that it represents demanded current.

64

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Test motor dissipated power (Py,,)

test_motor.dissipated_power

2000 | L L | |

Figure 4.57: P4, with both motors set in tabulated efficiency data

At steady-state, it assumes bigger value than those obtained in previous
cases, about -1.801 kW. Its negative value means that it is lost power.

o Test motor absorbed power (P,,,)

tost. motor_absorbod_power

Figure 4.58: P,,,, with both motors set in tabulated efficiency data

At steady-state, it reaches smaller value with respect to those obtained
in previous cases but at the same time reached value is bigger than
that obtained in case where both mapped motor Simulink blocks are
set in tabulated loss data, about 21.81 kW. Here, unlike bench motor
case, absorbed power assumes positive sign since it represents absorbed
power and not provided power.

65

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Test motor demanded or drawn current (1)

st motor_current

Figure 4.59: I}, with both motors set in tabulated efficiency data

At steady-state, it is approximately equal to 330.399 A, smaller than
those obtained in previous cases but at the same time it is bigger than
value obtained in case where both motors are set in tabulated loss data.
Here, unlike bench motor’s phase current case, current value assumes
positive sign since it represents drawn current.

e Motor shaft rotational speed w

test motor_rotational_speed
T

Figure 4.60: w with both motors set in tabulated efficiency data

At steady-state, it assumes desired rotational speed value, 500 rad/s
which represents rotational speed command’s value set at beginning
by user to pilot bench motor that is responsible to impose rotational
speed to test motor.

66

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Test motor torque Ty,

T T | [[]] —vamerons)]

Figure 4.61: T}, with both motors set in tabulated efficiency data

At steady-state, it assumes desired torque value since it results to be
more or less equal to torque value command set at beginning by user
to pilot motor under test, approximately 40 Nm.

o Power recirculating effect

total_dissipated_ power, total_absorbed_power
so00 = T i f T

Figure 4.62: P,, P; with both motors set in tabulated efficiency data

Here, the sum between bench and test motor’s phase current (Ibm,
Itm) is shown. At steady- state its value is approximately equal to
145.6A, smaller than those obtained in all other cases but, at the same
time it is bigger than value obtained in case where both mapped motor
Simulink blocks are set in tabulated loss data.

67

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Total demanded current (I)

total_demanded_current
T

Figure 4.63: I with both motors set in tabulated efficiency data

Here, sum between bench and test motor phase current (Ibm, Itm) is
shown. At steady- state its value is approximately equal to 145.6A,
smaller than steady-state values obtained in all other cases whose
simulation results are reported in previous subsections but, at the same
time, it is bigger than steady-state value obtained in case where both
motors are set in tabulated loss data.

4.2 Modular Technical model

Once preliminary technical model, described in previous subsections, is com-
pleted in order to highlight in a better way user requirements, modular
technical model tool can be adopted to simplify electrical motor’s test bench
development. This because, MTM tool allows to subdivide development in
modules that can be developed by different designers and/or teams with
different skills in order to reduce development time and in turns costs to
be addressed. This is what happens from one hand but in the other hand
MTM tool requires designers/teams’ higher efforts since each module must be
developed in such a way that it is able to communicate with other modules,
so they need to be constituted of specific interfaces that allow communication
to other modules. During this thesis work to build modular technical model,
Simulink template shown in figure 4.64 has been adopted. Here, five modules
can be distinguished: Environment, Plant, Control, Human-Machine Inter-
face, User. Some of these modules such as Environment, Plant and Control
must be implemented as r eference models, models that are able to work
independently from other ones, while other modules such as Human-Machine

68

SYSTEM DESIGN PHASE: TECHNICAL MODEL

Interface and User must be implemented as subsystems, models that allows
to arrange in a better way different system parts in order to obtain a more
intelligible model.

mmmmmmmmm
-
-
DASHBOARD Constant:Ve
o
On [cor] CONTROL_MIL_INTERFACE_2 0
Buton
e e .
grean red -
o
MMMMMMM
aaaaaaaaaaaaaaaa
:m °°°°°° im
_
comosn P]
() s
usec MMI HMILuser| _
™ g P RRTETER 0 o]
user_HMI]
L Juwsems s
.............

Figure 4.64: MTM Simulink template

4.2.1 Environment reference model

This module allows to implement noises, disturbances and loads coming from
external ambient which, for sure, influence plant’s behavior so they have to
be considered for obtaining more realistic results from Simulink simulation.
In this case, this module includes noises’ model that influence sensors used
in plant to measure interesting parameters such as rotational speed, torque
and current. In figure 4.65 model implemented inside this module is shown.

69

SYSTEM DESIGN PHASE: TECHNICAL MODEL

oooo

) O
00

Torque_sensor_noise

environment

Current_sensor_noise

oooo

00

Rotational_speed_sensor_noise

Figure 4.65: Environment’s reference model

Here, noises are modeled using signal generator Simulink blocks that
need different parameters to be parametrized. To know needed parameters to
be defined in MATLAB script a double click on Simulink block is sufficient
so that block parameters’ window opens (figure 4.66).

[] Block Parameters: Torque_sensor_noise
Signal Generator

Output various wave forms:
Y(t) = Amp*Waveform(Freq, t)

Parameters

Wave form: | square (]
Time (t): Use simulation time e
Amplitude:

0.05

Frequency:

1/(1e-4)

Units: Hertz e

Interpret vector parameters as 1-D

2 G o v e

Figure 4.66: Torque sensor noise’s block parameters window

In this case, square and Use simulation time from "wave form” and "time”
drop-down menus are chosen such that signal generator signal Simulink
blocks implement a square wave that lasts for all simulation time. Then,
other parameters such as amplitude and frequency have to be defined in
order to implement signals with desired characteristics. These parameters
are defined considering sensor’s datasheets below reported.

70

SYSTEM DESIGN PHASE: TECHNICAL MODEL

e Torque sensor HBM T40B

Dati tecnici

HBM M Dati tecnici
13 Dati tecnici Coppia nominale Myom Nm 50 | 100 | 200 | s00
Influenza della temperatura, ogni 10
K, nel campo nominale di tempera-
13.1 Coppia nominale da 50 N-m a tura
500 N'm sul segnale di uscita, riferita al valore
effettivo dellestensione del segnale
Classe di precisione o1 | 0,05 Uscita in frequenza % 0,1 0,05
Sistema di misura della Coppia Uscita in tensione % 0,4 0,2
Coppia nominale Myom Nm 50 | 100 200 500 sul segnale di zero, riferita alla sensibi-
—— e . Iita nominale
Velocita nominale di rotazione min't 20000 X
e rom™ . . Uscita in frequenza % 01 | 0,05
Velocita nominale, opzionale min't 24000 22000
— e — Uscita in tensione % 02 | 0,1
Deviazione della linearita, isteresi T —
compresa, Sensibilita nominale
riferita alla sensibilita nominale (campo fra la coppia = Zero e la cop-
Ueditaint pia nominale)
scita in frequenza
per coppia massima nel campo: ;J:gn:g; frequenza 10 kHz /60 kHz/ | KkHz 5/30/120
0% di Mnom © 20 % di Mnom % <001 Uscita in tensione v 10
>20% di Moo © 60 % di Mom % <20,02 Tolleranza della sensibilita
>60 % di Mom & 100 % di Myom % <40,03 (deviazione fra la grandezza di uscita
Uscitain tensione effettiva a Moom e la sensibilita nomi-
per coppia massima nel campo: nale)
0 % di Mnom © 20 % di Myom % <20,01 Uscita in frequenza % 0,1
>20 % di Myom @ 60 % di Mo % <£0,02 Uscita in tensione % 0,1
> 60% di Myom @ 100% di Moom % <40,03 Segnale di uscita per coppia = Zero
Deviazione relativa standard della Uscita in frequenza kHz 10/60/240
ripetibilita, Uscita in tensione % 0
secondo DIN 1319, riferita alla
variazione del segnale di uscita
Uscita in frequenza % <40,03
Uscita in tensione % <£0,03
56 A4189-3.0 HBM: public T40B T40B ‘A4189-3.0 HBM: public 57

Figure 4.67: Torque sensor HGM T40B datasheet

Here, accuracy section must be considered to obtain amplitude value.
Since to implement final built-up electrical motor test bench, a torque
sensor whit 500 Nm nominal torque is needed an accuracy of 0.05 must
be selected. Instead, to obtain frequency value to be set, datasheet’s
output frequency section must be considered where 10 kHz value can
be read and set in MATLAB script.

71

SYSTEM DESIGN PHASE: TECHNICAL MODEL

Current sensor DHR 300 C420

SLEM
i

AC/DC Current Transducer DHR-C420

The transducer for the electronic measurement of DC & distorted AC
waveform currents, with galvanic isolation between the primary circuit
(power) and the secondary circuit (measurement). True RMS 4-20 mA
current output.

Electrical data

Primary Nominal Primary AC Current QOutput current Type
DC &AC Current Max. Peak Value "
1, (ALRMS) 1 (A) 1,,. (MADC)

100 600 4-20 DHR 100 C420
200 600 4-20 DHR 200 C420
300 1000 4-20 DHR 300 C420
400 1000 4-20 DHR 400 C420

R Load resistance <300 Q

vV, Supply voltage? +20..50 vDC

Io Current consumption 30mA+I,

Iy, Output current limitation <25 mA

IF Overload capability (Ampere Turns) 30000 At

Performance data

X Accuracy @ I, T, =25°C (excluding offset) <t1 % of I,
& Linearity error (1% of I .. £ 1) <:1.0 % of I,
loyr Output current @ 1,=0, T, = 25°C 4 mA+- 1
loe Electrical offset current @ T, = 25°C <+1.0 % of L,
TCl,. Temperature coefficient of I, (0..+60 °C) +3.2 WAKK

(-40..470 °C) 6.4 WAK
TCl,,; Temperature coefficient of I, (% of reading) +0.1 %IK
t, Response time to 90 % of I, step <150 ms

BW Frequency bandwidth (+ 1 dB) DC 20..6000 Hz

General data

T, Surrounding operating temperature -40 .. +70 °C
T, Surrounding storage temperature -40 .. +85 °C
m Mass 260 g
IPxx Protection degree P20

Notes :") The Max. Peak AC Current is the highest peak level of the primary
signal that is taken into account for accurate True RMS calculation. Yet
the device is designed for maximum continuous True RMS value equal to
1., Whereas the output is limited by the above specified output limitation.
2) According to the UL 508 Standard for Safety for Industrial Control

I, =100 .. 400 A

L 2

Features

VFD and SCR waveforms current
measurement

True RMS output

4-20 mA current output

Panel mounting

Eliminates insertion loss

Isolated plastic case recognized
according to UL94-V0

Advantages

e Large aperture for cable up to
232mm

High isolation between primary
and secondary circuits

Easy installation

Applications

VFD Controlled Loads

VFD output indicates how the
motor and attached load are
operating.

SCR Controlled Loads
Acurate measurement of phase
angle fired or burst fired (time
proportioned) SCRs. Current
measurement gives faster
response than temperature
measurement.

Switching Power Supplies and
Electronic Ballasts

True RMS sensing is the most
accurate way to measure power
supply or ballast input power.

Application domain

e Energy and Automation

Equipment, the supply voltage must not exceed 42VDC.

Paga 14
www.lem.com

120426/21

LEM reserves the ight to carry out modfications on ts transducars, in ordar to Improve them, without prior notice.

Figure 4.68: Current sensor DHR 300 C420 datasheet

Here, accuracy sensor is declared to be smaller than +1% of rated
current and since current sensor with 300A rated current has to be
considered to build-up final physical system, accuracy’s value to be
considered for modelling sensor is + 3 A. Instead, frequency is declared
between 20 and 6000 Hz and since to model sensor it is better to
consider the worst case a frequency of 6kHz has been considered.

72

SYSTEM DESIGN PHASE: TECHNICAL MODEL

e Round per minute measurement system

apicom

Foglio 11

DISPOSITIVO DI MISURA DEI GIRI/MINUTO

1. STRUTTURA E FUNZIONAMENTO

Il misuratore del numero di giri consiste in una ruota con 60 denti posta sulla
flangia posteriore del freno ed in un rilevatore del numero di giri. Gli impulsi
del rilevatore vengono trasmessi tramite un convertitore di frequenza in
tensione allo strumento di misura.

[

DATI TECNICI DEL RILEVATORE DEL NUMERO DI GIRI TIPO MP 62 TA

Traferro sulla ruota dentata = 0,7 + 1 mm.

Temperatura ambiente ammessa = da —50°C a + 120°C.
Campo di misurazione da 50 + 17.000 giri.

Dimensioni: lunghezza totale mm 76;

filettatura 5/8 - 18 UNF - Lunghezza mm 60.

ruota

rilevatore
giri/min

Mantenere pulita
questa distanza

3. ATTENZIONE

Verificare che il rilevatore dei giri sia ad una distanza di 0,7+1 mm. dal dente
della ruota Z = 60.

Manuale serie FR Rev.13 ITA.doc Data: 14/01/11

Figure 4.69: Round per minute measurement system datasheet

In “ICE Test Bench Upgrading For Hybrid and Electrical Powertrain”
thesis, accuracy of this system is declared to be equal to +-1rpm. For
this reason, corresponding signal generator amplitude is set equal to
1. Instead, for frequency value 10 kHz is chosen in order to have a
disturbance that changes its value quickly.

In figure 4.70 corresponding MATLAB script is shown where all needed
variables to parametrize signal generator Simulink blocks implemented inside
Environment reference model are defined.

73

SYSTEM DESIGN PHASE: TECHNICAL MODEL

Environment Data

Define the parameters related to the Environment

Figure 4.70: Environment reference model’s MATLAB script

4.2.2 Plant reference model

This module is implemented as reference model so that it is able to work
independently from rest parts. Here, plant’s model to be controlled is imple-
mented which is constituted of two mapped motor Simulink blocks connected
each other by means motor shaft and sensors used to measure interesting
parameters during testing. Implemented model inside Plant reference model
is shown in figure 4.71.

Figure 4.71: Plant reference model

On the left model’s side, three different inputs are modelled that represent
interface through which plant is able to communicate to other parts (refence
model or subsystem) such as Environment, Control and User.

e first input
It represents interface by means plant is able to communicate to Envi-
ronment reference model, before described. From it, plant receives noise
signals characterizing adopted sensors whose models are implemented
on the right part.

74

SYSTEM DESIGN PHASE: TECHNICAL MODEL

e second input

It represents interface by means plant is able to communicate to user
subsystem but, since in this case user and plant do not exchange signals
each other they are connected each other through which a discrete
delay Simulink block that allows to avoid algebraic loop errors during
simulations.

o third input

It represents interface by means plant is able to communicate to Control
reference model. From it, plant receives below listed signals.

— bench motor torque command signal
It represents used signal to pilot bench motor coming out form
control law implemented inside Control Logic refence model (ana-
lyzed in subsection 4.2.3.1) that is able to evaluate this signal on
the basis of rotational speed value set at beginning by user and
on the basis of rotational speed value coming from feedback path.

— test motor torque command signal
It represents used signal to pilot test motor coming out from
control law implemented inside Control Logic reference model on
the basis of initial torque value set by user.

— bench motor battery voltage signal

It represents used signal to set bench motor power supply value.
Since it is a voltage signal coming out from Control reference
model it has to be translated into voltage value to be provided
to bench mapped motor Simulink block. This is done by a gain
implementing a constant that multiplies voltage signal to obtain
corresponding voltage value.

— Test motor battery voltage signal

It represents used signal to set test motor power supply value.
Also in this case, like bench motor battery voltage signal, since it
is a voltage signal coming out form Control reference model it has
to be translated in voltage value to be provided to test mapped
motor Simulink block. This is done by means a gain implemented
to multiply voltage signal for obtaining corresponding voltage
value.

In the middle bench and test mapped motor Simulink blocks, connected
each other by means motor shaft, are implemented. They work exactly in
the same way described in preliminary technical model section. Instead on
the right part, two subsystems are implemented: the first one, on upper
part, is dedicated to sensor models while the second one, on bottom part, is

75

SYSTEM DESIGN PHASE: TECHNICAL MODEL

dedicated to round per minutes measurements system’s model.

Opening sensor models’ subsystem, scheme shown in figure 4.72 can be
observed where gains, constants and sum Simulink blocks are implemented
to model torque and current sensors.

T sensor

Figure 4.72: Sensor models subsystem

Torque sensor HBM T/0B

[~
0

sssssss

Figure 4.73: Torque sensor Simulink model

Gain allows to convert torque value measured in Nm into voltage value
that has to be added to disturbance coming from Environment reference
model. The result of the sum goes through a saturator Simulink block
that allows to set upper and down limits for voltage signal coming out
from sensor. To define gain value, sensor datasheet shown in figure 4.67
has to be considered where maximum output voltage value is reported
(10 V). So, k__torque gain is computed thinking that when the maximum
torque value measurable by sensor is sensed the maximum voltage value
is emitted. Indeed, it is computed as ratio between maximum voltage
value and maximum torque value. Instead, for setting upper and lower
limits by saturator Simulink blocks maximum and minimum voltage
value that voltage signal can reach at the output of sensor (respectively
10V and -10V) have to be considered.

76

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Current sensors DHR 300 C420

Figure 4.74: Current sensor’s Simulink model

To implement this model, sensor datasheet has to be considered which
contains implemented transfer function for measuring current. This
transfer characteristic, shown in figure 4.75, allows to obtain below
reported equation which must be considered to build-up sensor’s model
as before shown.

Output in mA

Figure 4.75: Current sensor’s transfer characteristic

Tout = 4+ %Izn (41)
So, k_current gain in previous shown Simulink model is set equal to
16/300 while “current offset” constant is set equal to 4. Saturator block
is implemented to limit current coming out from sensor indeed it is
used to set upper limit equal to 20 mA which represents the maximum
current value acceptable by sensor. The second gain (R _ load) is
implemented to model resistance put at sensor’s output that allows to
convert current signal into voltage signals. Resistance value is taken
from datasheet where it is declared smaller that 300 €2 so, in MATLAB
script it is defined equal to 250 €.

77

SYSTEM DESIGN PHASE: TECHNICAL MODEL

Rotational speed is measured by APICOM FR 250 RPM Measurement
System, shown in figure 4.76, which is constituted of a gear wheel having
sixty cogs and an rpm detector that is able to send impulse such that rpm
can be evaluated by means following relation.

Pulse_ Frequency_in_ pulses sec
(sec)JT (60 min)
(Sensor__pulses)
revolution

RPM =

(4.2)

wheel

rpm
detector T

Keep this distance
clean

Figure 4.76: APICOM FR 250 RPM measurement system

In Simulink, this system is not modelled since rotational speed values are
already given in rad/ s, so first of all they have to be converted in rpm and
then in voltage signal. To do this, scheme shown in figure 4.77 is implemented
which is constituted of two gains and a sum block: the first gain allows to
convert rad/s into rpm, the second one allows to convert rpm into voltage
values while sum block allows to consider noise coming from Environment
reference model. The value of second gain is computed as ratio between
maximum admitted voltage value and maximum measurable rotational speed
value.

T~ - ~—_
@ > 60 > »Q i speed » D
lllllllll |_speed / w

Figure 4.77: RPM measurement system’s Simulink model

Always on the right part of plant reference model, besides the two before
described subsystems an output port is implemented. It represents interface
by means Plant reference model communicates to Control reference model.
Indeed, thanks to it Plant sends to Control below listed signals.

78

SYSTEM DESIGN PHASE: TECHNICAL MODEL

e Bench motor battery voltage signal
It is a voltage signal used by Plant to communicate to Control reference
model measured voltage value provided to bench motor.

o Test motor battery voltage signal
It represents voltage signal sent by Plant to communicate to Control
reference model measured voltage value provided to test motor.

e Bench motor phase current signal
This is a voltage signal allowing Plant to communicate to Control
reference model measured bench motor’s phase current.

o Test motor phase current signal
It is a voltage signal by means Plant sends to Control reference model
measured test motor’s phase current.

o Torque signal
It is a voltage signal coming out from torque sensor that has to be sent
to Control reference model.

e Rotational speed signal

It represents voltage signal coming out from round per minute mea-
surement system that has to be sent to Control reference model.

Corresponding MATLAB script containing all needed variables to parametrize
Simulink blocks implemented in Plant reference model is shown in figure
4.78.

79

SYSTEM DESIGN PHASE: TECHNICAL MODEL

Plant Data [Move here to reveal toolstrip)

sDefine the characteristics of the system that has to be controlled|
%Bench_motor

sElectrical Torque - Nominal & Maximal

19 v_n_bench= 4000 /60+2+pi;
20 T 28;
21 0.91 x100; %@ v_n & T_n_n
2 1_bench + T_m_n_bench;
23 55;
24 = w_n_bench % T_n_max_bench *1.1;
25 w_max_bench=w_n_benchx1.1;
26 tau_n_bench= 0.02;
sElectrical Losses - Single Efficiency
29 PL_iron_bencl 5%
30 PLeln_benci
31 P1_copper_n_bench= (1-eta_n_bench/180)+P_n_n_bench ~P1_eln_bench -P1_iron_bench;
32 K_T_bench= P1_copper_n_bench /T_m_n_bench"2;
sdlechanical
35 J_n_bench= .005e-3;
36 -
37 _m_max_bench/k_T_bench;

sTabulated_bench_motor

sElectrical_torque_section
a2 w_t_vec_bench=[52.3599 104.7198 157.0796 209.4395 2617994 314.1593 366.5191 418.8790 471.2389 523.5988 575.9587 628.3185]; %rad/s
3 52,5 52.5 52.5 52.5 52.5 52.5 52.5 52.5 47 42 38 351; *\n

sElectrical_losses_section
sTabulated_loss_data

104.72 209.44 314.16 366.52 418.88 471.24 523.6 628.32];
8 T_eff_bp_vec_bench=[2.4 4.3 11.4 13.8 15.2 20.9 26.9];

49 1n(T_eff_bp_vec_bench);
50 _n_max._t iax(T_eff_bp_vec_bench);
51 w_max_bench=max(w_eff_bp_vec_bench) ;
= Ml 8
54 losses_table_bench=[52.4 85.1 151.9 126.8 304.9 468.1 712.5;
115.1 133.4 223.7 223.6 356.5 701.4 801.2;
155.1 104.8 311.2 311.4 693.4 1005.9 1299.9:
175.3 240.7 434.4 351.7 556.3 1056.4 1407.6:
200.1 244.1 572.9 395.7 813.2 1204.9 1013.4;
224.1 342.5 545.2 458.9 732.2 864.7 b;
240.1 466.8 490.3 b b b b;
260.3 432.3 b b b b bl;
sTabulated_efficiency_data
64 d=85;
65 efficiency_table_bench=[82.8 85.8 88 91.9 84.5 82.6 84.5;
79.6 88.4 90.5 92.2 90.2 86.2 89.2;
80.2 93.1 90.9 93.3 87.3 86.7 91.2;
80.3 87.4 89.3 93.5 90.9 87.8 91.6;
80.2 88.8 88.1 93.5 88.7 88.1 91.9;
78.9 88.1 89.2 93.2 90.3 92.4 d;
79.587.191.8 d d d d;
78.7 85.2d d d d dl;
sTest motor
«Electrical Torque - Nominal & Maximal
76 v_n_test = 5000 /60x2+pi;
77 P_n_n_test=10500;
78 T_n_n_test = P_m_n_test/w_n_test;
79 V. 6; %V
80 T 15; A
81 cos_fi_test=0.86;
82 eta_n_test =(P_m_n_test/(sqrt(3)+V_n_test«I_n_test«cos_fi_test))+100;
83 500/60+2+p1;
84 83;
85 w_max_test * T_n_max_test;
86 tau_m_test = 0.62;
89
90
91 P1_copper_n_test= (1-eta_n_test/100)+P_m_n_test -P1_eln_test —P1_iron_test;
92 PL_copper_n_test /T_n_n_test~2;
93 _n_max_test/k_T_test;
sElectrical_losses_section Move here to reveal toolstrip
sgTabulated_loss_data
102 w_eff_bp_vec_test=[104.7198 209.4395 314.1503 366.5191 418.879 471.2389 523.5088 575.9587 628.3185
103 T_eff_bp_vec_test=[15 24 43 62 83];
104 T_n_min_test=nin(T_eff_bp_vec_test)
105 T_n_max_test=nax(T_eff_bp_vec_test);
106 w_max_bench=max(w_eff_bp_vec_bench) ;
108 losses_table_test=[143.8356 290.4494 954.5455 1.9857e+03 2.8303e+03
157.8947 311.1702 972.2222 2.0326e+83 3.5795e+03
236.8421 381.5789 1.0419e+03 2.0833e+03 3.6286+03
204.5455 434.2105 1.12000+03 2.4167e+03 4.0905¢+03
219.1558 510.5263 1.3784e+03 2.7333e+03 4.2007e+03
335.5263 689.3617 1.5326e+03 2.7809e+03 3.8022¢+03
454.7872 846.7742 1.6781e+03 2.9650e+03 3.5405¢+03
564.5161 912.1622 1.9111e+03 3.2880e+03 3.1379e+03
632.4324 978.2609 1.8750e+03 2.9138e+03 2.8143e+03];
sTabulated_efficiency_data
120 efficiency_table_test=[91.25 89 82.5 76.25 70;

94 90 86.25 82.5;
95 95 92.5 00 87.5;
96,2595 93 90 87;
96.25 95 92.5 90 86.25;
95 94 92 89 86.66;
94 93 91.2588 86.66;
93 92.590 86.25 87;
9.5 92 9% 87 87.5];

Figure 4.78: Plant reference model’s MATLAB script

4.2.3 Control interface refence model

It represents MTM'’s part allowing interactions between Control Logic (de-
scribed in subsection 4.2.3.1) and target hardware. These interactions are
allowed including device specifications without affecting control law imple-
mented inside Control Logic reference model to control plant’s behavior on
the basis of what desired by user.

80

SYSTEM DESIGN PHASE: TECHNICAL MODEL

DO0DDD D

[

Figure 4.79: Control reference model

Here, on the left part two different inputs are implemented that represent
interfaces allowing Control reference model to communicate to Plant and
Human-Machine-Interface. Indeed, the first input allows Control to receive
signals coming out from Plant such as bench and test motor battery voltage
signals, bench and test motor phase current signals, torque and rotational
speed signals, while the second one allows Control reference model to receive
signals coming out from HMI such as emergency and on/off button signals,
bench motor command signal used to pilot bench motor on the basis of
rotational speed value decided by user, test motor command signal used
to pilot motor under test that is evaluated on the basis of torque value
decided by user, bench and test motor power supply signals that represent
voltage values to be provided to mapped motor Simulink blocks. Among all
these signals there are signals that enter to Control Logic reference model,
positioned on the middle, and other that go directly to outputs positioned
on the right part. Indeed, between all signals coming from Plant (input 1)
only rotational speed signal goes to Control Logic refence model while all
other go directly to output 1 that represents interface that allows Control
reference model to send signals to HMI subsystem. Instead, between all
signals coming from HMI (input 2) only bench and test motor power supply
signals go directly to output 2 that represent interface that allows Control
reference model to send signals to Plant while all other go to Control Logic
reference model. In case of signals going directly to outputs discrete delay
block is implemented to avoid algebraic loop errors during simulation due to
the fact that signals constantly update their values. Instead in case of signals

81

SYSTEM DESIGN PHASE: TECHNICAL MODEL

that go to Control Logic reference model, Analog to Digital Converters
(ADCs) are implemented to discretize signals since Control Logic works
only with digital signals. They are implemented using discrete filter and
quantizer: the first one allows data averaging since sensors produce high
changes in output values that is unacceptable for Control Logic inputs while
the second one allows to pass from large to small values’ set and to set ADCs’
quantization. Quantization parameters is set by means MATLAB script on
the basis of maximum voltage values entering to ADCs. Instead in Control
Logic outputs, Digital to Analog Converters (DACs) are implemented since
an inverse conversion is needed to be performed. This because signals coming
out from Control Logic are digital and they have to be sent to plant or HMI
where only analog signals are acceptable, so digital to analog conversion is
needed. Also in this case, quantizer and discrete filter blocks are used but
this time discrete filter is used to implement what is called reconstruct filter
whose goal is reconstructing original analog signal starting from digital signal
while quantizer block is used for the same reason for which it is used in ADC
case. The DACs are not implemented in cases of LED signals (green and
red signal) because they are sent to dashboard LEDs that work with digital
signal, so in that case conversion is not needed.

Before to run Simulink reference model for performing simulation, cor-
responding MATLAB script has to be run. This scrip, shown in figure
4.80, contains all needed variables to parametrize Simulink blocks used to
implement model.

Control Data

% ADC
% LP filter

159 Tsl=le-4;

160 wel=23e3424pi;

161 s=tf('s');

162 z=tf('z',Tsl);

163 H_s1=wc1%2/ (s+uc1)~2;

164 H_z1=zpk(c2d(H_s1,Ts1, 'zoh'));

165 [NUM_LPF, DEN_LPF]=tfdata(H_z1,'v');

%srotational_speed_sensor
168 Vp_w=10;
169 N=16;
170 quant_w=Vp_w/(2"N-1) ;

%bm_trqcmd_signal
173 Vp_bm_trqcmd=5;
174 N=16;
175 quant_bm_trqcmd=Vp_bm_trqcmd/ (2°N-1) ;

sstm_trqcmd_signal
178 Vp_tm_trqemd=5;

179 N=16;

180 quant_tm_trqcmd=Vp_tm_trqcmd/ (2°N-1) ;

%bm_cnd_signal
183 Vp_bm_command_signal=5;

184 N=16;

185 quant_bm_cmd_signal=Vp_bm_command_signal/(2"N-1) ;

sstm_cmd_signal
188 Vp_tm_cmd_signal=5;
189 N=16;
190 quant_tm_cmd_signal=Vp_tm_cnd_signal/(2"N-1);

% DAC
% LP filter

194 Ts2=1e-4;

195 WC2=500e3%2:pi ;

196 s=tf('s');

197 z=tf('z',Ts2);

198 H_s2=wc2"2/(s+wc2)"2;

199 H_z2=2pk(c2d(H_s2,Ts2, 'zoh'));

200 [NUM_LPF2, DEN_LPF2]=tfdata(H_z2,'v');

Figure 4.80: Control reference model’s MATLAB script

82

SYSTEM DESIGN PHASE: TECHNICAL MODEL

4.2.3.1 Control Logic reference model

Inside this reference model, control law that controls and manages plant’s
behavior is implemented in such a way that user requirements are satisfied.
It works only with discrete signals and manages bench and test torque
commands to pilot mapped motor Simulink blocks implemented inside Plant
reference model. These commands must be evaluated on the basis of rotational
speed and torque values set at beginning by user.

e
greer »(i
. 5
" TEp rea ‘_d)
=
EMERGENCY TASK Tourion] suton
supervisory |—

—
3 [button] SUPERVISOR TASK
ON_OFF _button

fom_command_signal]

bm_command_signal

tm_trqemd

TASK TM_TrqCmd

Figure 4.81: Control logic reference Simulink model

Here, on the left part five inputs are implemented which represent in-
terfaces by means Control Logic communicates to Control refence. Indeed,
by means these inputs Control Logic receives signals coming from Control
interface reference model such as rotational speed signal, emergency and
on/off button signals and bench and test motor torque command signals.
Instead, on the right part four outputs are implemented that allow Control
Logic to send signals to Control interface such as green and red signals that
must be sent to dashboard LEDs and bench and test torque command that
have to be sent to Plant. In the middle four below list and described tasks
are implemented using control logic Stateflow tool to define control law to be
used by ECU to control and manage plant’s behavior on the basis of what
desired by user.

83

SYSTEM DESIGN PHASE: TECHNICAL MODEL

e Emergency task

EMERGENCY_OFF [em_switch==1] EMERGENCY_ON
en:emergency=0; en:emergency=1;
[em_switch==0]

Figure 4.82: Emergency task’s Simulink Stateflow

It allows user to stop system by an opportune dashboard switch in
case something goes wrong during test. Here, two states are imple-
mented: EMERGENCY __OFF that represents initial state during which
emergency variable is set equal to 0 and FMERGENCY _ON that is
responsible to set emergency variable equal to 1. To switch from initial
to second state or vice versa, defined conditions over arrows connecting
two states have to be verified: em_ switch == 1 which means that
switch from initial state to EMERGENCY__ON state happens when
emergency dashboard switch is toggled from 0 to 1 while inverse switch
happens when em_ switch == 0 condition is verified which means
that to have switch from EMERGENCY ON to EMERGENCY OFF
emergency dashboard switch has to be toggled from 1 to 0.

o Supervisor task

Figure 4.83: Supervisor task’s Simulink Stateflow

It allows the user to pilot and check system’s behavior by using dash-
board pushbutton and LEDs. It is constituted of below listed states.

— OFF state
It represents initial state, set at beginning when system is not
working and user is not using dashboard. Thanks to this state
red, green and supervisor signals are set equal to 0 and nothing
happen until [button == 0]{ flag = 1; } condition is verified. This
means that until on/off dashboard button is not pushed by user,
task state does not change and no change happens ({flag = 1; }).
State’s change happens when [flag == 1&&duration(button ==
1) > 0.01&&emergency == 0|{ flag = 0; } condition is verified
which means that change happens when on/off pushbutton is

84

SYSTEM DESIGN PHASE: TECHNICAL MODEL

pushed by user for a duration greater than 0.01s and emergency
switch state remains always 0. At this point some change is verified
({flag = 0; }) and task state switches from OFF to ON.

— ON state

Once task state switch in ON, red signal remains set equal to 0
while green and supervisory signals will be set equal to 1 such that
green dashboard LED will switch on and TASK BM_ TrqCmd and
TASK TM__TrqCmd are activated. This task state can change
returning in OFF or switching in EMERGENCY on the basis
of what happens. Indeed, if [(flag == 1&&duration(button ==
1) > 0.01){flag = 0;} condition is verified, task state return
to OFF which means that if any variation happens and on/off
dashboard button is pushed for a duration greater than 0.01s,
task state switches from ON to OFF while if [emergency == 1]
condition is verified, which means that emergency dashboard
switch has to be toggled from 0 to 1, task state switches from
ON to EMERGENCY. This state does not change if [button ==
0]{flag = 1; } condition is verified which means that task state
does not change if on/off dashboard button is not pushed.

— EMERGENCY state

Once [emergency == 1] condition is verified, task state switches
from ON to EMERGENCY where red signal will be set equal to 1
in order to switch on red dashboard LED and green signal will be
set equal to 0 in order to switch off green dashboard LED. This
task state changes when [emergency == 0] condition is verified
which means that emergency dashboard switch has to be toggled
from 1 to 0. At that point task state return to be OFF in which
red, green and supervisory signals return to be equal to 0.

e Bench motor torque command task

[l = BM_CONTROLLER_ON
[supervisory y==0]

Figure 4.84: BM_ TrqCmd_ task’s Simulink stateflow

It allows to evaluate torque command to be used for piloting bench mo-
tor on the basis of user’s desired rotational speed value. It is constituted
of below listed states.

85

SYSTEM DESIGN PHASE: TECHNICAL MODEL

— BM_CONTROLLER__OFF state

It represents task state active when supervisor signal is set equal
to 0, so when system does not work. In this state, bench motor
torque command is set equal to 0 (bm__trqemd = 0) such that
bench motor is kept stopped. When [supervisory == 1] condition
is verified, upervisor signal switch from 0 to 1, task state switches
from BM_CONTROLLER_OFF to BM_CONTROLLER _ ON.

— BM CONTROLLER_ON state

ey - .)
= @% o
| Lee | T M
Ve
@ .@

Figure 4.85: BM__ CONTROLLER_ ON state’s Simulink model

This state is used once [supervisory == 1] condition is verified
since at that point bench motor must be piloted by a torque
command that has to be computed on the basis of user’s desired
rotational speed value. Here, on the left part two inputs are imple-
mented to receive bench motor command signal (bm__command
__signal) carrying rotational speed value set by user and rota-
tional speed signal (w) carrying rotational speed value coming
from feedback path. bm __command__signal goes through a gain
in order to convert voltage signal into rad/ s signal and then it
goes through discrete filter to perform data averaging since PID
controller does not accept high changes in input variable. Instead,
w signal goes through two gains: the first one allows conversion of
voltage signal, coming out from round per minute measurement
system, into rpm signal while the second one allows conversion
of rpm in rad/s. Once conversions are done, the two obtained
results can be added each other to obtain error that has to enter
to PI controller block. On the basis of this error PI controller is
able to evaluate bench motor torque control signal needed to be
provided for obtaining desired rotational speed value at motor
shaft’s output in order to have an error equal to zero. This task
state changes once [supervisory == 0] condition is verified, su-
pervisory signal switches from 1 to 0, and at that point task state
returns to BM CONTROLLER OFF state.

86

SYSTEM DESIGN PHASE: TECHNICAL MODEL

Test motor torque command task

TM_CONTROLLER_OFF)\ [supervisory==1] 'TM_CONTROLLER_ON

en:
tm_trqcmd=0;

[supervisory==0]

Figure 4.86: TM_ TrqCmd__ task’s Simulink model

It allows to evaluate torque command to be used for piloting test motor
on the basis of user’s desired torque value. It is constituted of below
listed states.

— TM CONTROLLER OFF state

It represents task state active when supervisor signal is set equal
to 0, so when system does not work. This state sets test motor
torque command equal to 0 (tm__trgqemd=0) so that test motor
is kept stopped. When [supervisory == 1] condition is verified,
supervisor signal switches from 0 to 1, task state switches from
TM _CONTROLLER _OFF to TM_CONTROLLER_ON.

— TM_CONTROLLER__ON state

num(z)
> den(z) d

tm_command_signal

Figure 4.87: TM_CONTROLLER_ ON state’s Simulink

This state is considered once [supervisory == 1] condition is
verified since at that point test motor has to be piloted by torque
command that has to be evaluated on the basis of torque value set
by user. Here, on left part a single input is implemented in order
to receive test motor command signal (tm__command_signal)
carrying torque value set by user. This is a voltage signal going
through a gain in order to be converted into Nm signal that
represent discrete filter’s input signal such that data averaging
is performed and high changes in output signal (tm _ trgemd)
are avoided. This task state changes when supervisory signal
is switched from 1 to 0. At that point task state return to be
TM_CONTROLLER _ OFF.

87

SYSTEM DESIGN PHASE: TECHNICAL MODEL

Inside Control Logic model besides what before described, two different
switches are implemented that allow to set equal to 0 bench and test motor
torque command once emergency signal becomes equal to 1 so, when user
toggles emergency dashboard switch from 0 to 1. This allows to stop system
in cases something wrong happens, and it is better to stop system in order
to avoid serious problem for plant elements.

To parametrize all block used for implementing this reference model, a
MATLAB script containing all needed variables has to be implemented and
run before to start running Simulink model.

Control Logic Data

The Control Logic must contain the control algorithm that is intended to be deployed on the target hardware.

196 sampling_time=1e-2;
197 s=tf('s");
198 z=tf('z"',sampling_time);
199 H_s=1/(3%s+1);
200 H_z=zpk(c2d(H_s,sampling_time, 'zoh'));
201 [NUM, DEN]=tfdata(H_z, 'v');
%w_signal
204 Vp_w=10;
205 rpm_max=6000;
206 |k_speed:Vp_w/ rpm_max;
%bm_cmd_signal
209 Vp_bm_cmd_signal=5;
210 bm_cmd_signal_max=6000x2xpi/60; %rad/s
211 k_bm_cmd=Vp_bm_cmd_signal/bm_cmd_signal_max;
%tm_cmd_signal
214 Vp_tm_cmd=5; %V
215 tm_cmd_max=100; %Nm
216 k_tm_cmd=Vp_tm_cmd/tm_cmd_max;

Figure 4.88: Control Logic reference model’s MATLAB script

4.2.4 Human-Machine-Interface subsystem

It allows the user to send command to plant and monitoring what happens
while system works. This part is implemented as subsystem that allows to
have a better elements’ arrangement such that a more intelligible model is
obtained. This reference model, whose scheme is shown in figure 4.89, is
constituted of two inputs that represent interfaces by means HMI is able
to receive signals from Control reference model and from User subsystem.
Indeed, the first input allows HMI to receive height signals coming from
Control reference model such as bench and test motor battery voltage signals
that are connected to displays that allow user to check whether two motors
are provided by right voltage value (the one set at beginning by user), bench
and test phase current signals coming from current sensors, torque signal
coming from torque sensor, rotational speed signal coming from rounds per
minute measurement system and green and red signals connected to displays
in order to allow user to check their status (1 means LED on while 0 means

88

SYSTEM DESIGN PHASE: TECHNICAL MODEL

LED off). Instead, the second input allows HMI to receive signals from User
subsystem such as bench and test motor power supply values that have to
be sent to plant to set properly inverters that provide motors.

0

Figure 4.89: HMI’s Simulink model

Here, signal_to_parameters subsystem is implemented to convert voltage
signals coming out from Control reference model into user interesting param-
eters such as bench and test motor phase currents, torque and rotational
speed. Inside this subsystem model shown in figure 4.90 is implemented
where in the first two rows inverse relation considered in current sensor
model case, below reported, is implemented that allows to compute current
values starting from voltage signals coming out from current sensors. Before
to apply this relation, voltage signals coming out from current sensors must
be translated in current signals. For this reason, a gain whose value is defined
as the inverse of current sensor’s output resistance is implemented.

300
Iin = (Iout - 4) * E (43)

The same thing happens in torque and rotational speed signals case since
they are voltage signals coming out from torque sensor and rounds per minute
measurement system that have to be converted into Nm and rpm values.
These conversions are done by gains whose values are computed as ratio
between maximum measurable torque and rpm values and the maxim voltage
values that can be provided at the output of corresponding sensor. These
values have to be defined in corresponding MATLAB script.

89

SYSTEM DESIGN PHASE: TECHNICAL MODEL

bm_I_sensor_signal

tm_I_sensor_signal

current_offset

(D)
T_signal

(&)

» 1/k_torque

w_signal

» 1/k_speed

Figure 4.90: Signal to_ parameters subsystem Simulink model

Then, cmd__to__signal subsystem is implemented to convert bench and
test motor commands, carrying rotational speed and torque values to be
considered for piloting bench and test motors (computed by subsystems
reported on bottom part of HMI’s model on the basis of what is desired
by user), in voltage signals to be sent to Control reference model. The
same thing happens for bench and test motor power supply values. This,
as shown in figure 4.91, is done by gains whose values are computed as
ratio between voltage signals’ peak value and the maximum reachable value
of corresponding parameters (bench motor rotational speed command, test
motor torque command, bench motor power supply, test motor power supply).

>

tm_pws

k_bm_cmd

bm_cmd_signal

k_tm_cmd
tm_cmd_signal
k_bm_pws
bm_pws_signal

k_tm_pws

tm_pws_signal

Figure 4.91: Cmd_ to_ signal subsystem’s Simulink model

On right part (figure 4.89), two output ports are implemented: the first
one represents interface by means HMI reference model sends signals to

90

SYSTEM DESIGN PHASE: TECHNICAL MODEL

Control interface reference model while the second one represents interface
by means HMI is able to send signals to User subsystem (in this case it is not
used). Among signals sent to Control reference model there is: emergency and
on/off button signals that are digital signal because they can assume either
0 or 1 as value coming out from constant blocks linked to dashboard switch
and push button, bench and test motor command signals and bench and
test power supply signals. Instead, on bottom part, four other subsystems
are implemented by means user is able to perform a different test to test
motors. This because, user requires an electrical motors’ test bench by means
electric motors can be tested both for a specific selected working point and for
obtaining their torque curves and 3D maps (efficiency 3D map and dissipated
power 3D map).

Observing Speed-Torque plane, shown in figure 4.92, different working
points can be selected that can be selected by means a pair of rotational
speed and torque values. User would like to have the chance to test motors
in different ways: selecting a single working point, selecting a single torque
value and different rotational speed values in order to consider different
working points and obtaining torque curves, selecting different torque and
different rotational speed values in order to cover all admissible w-T plane and
obtaining 3D maps, selecting different torque values and different rotational
speed values for reaching working point where motor works at nominal power
which is defined by nominal rotational speed value and nominal torque value.

T A
['(Nm)
T EEEE, SRCER TUUUR TUCER TURRR SRR RESSY SERR SUREY SRR .
I PR ST T T T T T T e | .
(R SRt SEt TS SUIEE S ot SR IR e .
|- g T G O S S
™ (FEPY TR S DO TOTY OO TR G SOTTE STTRE TSR RS)
Al SRS TUUT TUUUY Tt TIRTEY TETIY LT TEEER TIIE SRR TEREY TR)
|- e e e g e S et e =g
|- TR T e et St
T e . L TERRY SN‘....
. S-S W U W W W W " — _— —"
min ’ ' '
ettty Pmec (TPM)
L s @ e & s 8 8 s s s s >
0/ t
- >
. m,. ..
®Opmin A max

Figure 4.92: w — T plane

So, different tests can be performed to evaluate test motor characteristics
and for this reason inside HMI subsystem, on bottom part, four subsystems
are implemented by means user can choose the test to be performed.

91

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o Single working point test

In this scenario, user must define a single torque and a single rotational
speed value in order to select working point to be considered for
evaluating test motor characteristics. To perform this kind of test, user
must uncomment Single working point subsystem and comment out
other three subsystems. This subsystem contains model shown in figure
4.93 that is constituted of two subsystems: bm__cmd3 and tm__cmd3.

w_incfeasing bm_Yommand
w_increasing bm_command
bm_cmd3
T_ingfeasing tm_gommand
T_increasing tm_command
tm_cmd3

Figure 4.93: Single__working point subsystem’s Simulink model

bm__cmd3 subsystem is intended to evaluate bench motor command and
it is constituted of a single input and a single output. Input represents
rotational speed value set by user to pilot bench motor and it is directly
connected to the output since it does not need any operation to become
a bench motor command.

D >

w_increasing bm_command

Figure 4.94: bm__cmd3 subsystem’s Simulink model

Instead, tm__cmd3 subsystem is intended to evaluate test motor com-
mand and it is constituted of a single input representing torque value
defined by user to pilot test motor and a single output representing test
motor command to be sent to Control reference model after conversion
in voltage signal. They are connected directly each other since input
does not need any transformation to become test motor command.

92

SYSTEM DESIGN PHASE: TECHNICAL MODEL

& >

T_increasing tm_command

Figure 4.95: tm_ cmd3 subsystem’s Simulink model

To perform this test, user must define needed variables in corresponding
MATLAB script and run it before to start simulation so that they
are load on MATLAB workspace and Simulink blocks can use them
to be parametrized during simulation. Before to run MATLAB script,
user must define some parameters’ value such as w_increasing and
T increasing that represents respectively rotational speed and torque
values to be considered for selecting working point to be considered
for performing test, T'_sim representing simulation time and sample
that represents sample time to be considered for storing interesting
variables to be considered for computing desired motor parameters and
characteristics.

Single_working_point

% bm_cm3 & tm_cmd3 blocks

365 w_increasing=3500/60*2*xpi; S%rad/s

366 T_increasing=20; %Nm

367 T_sim=100; %s

369 sample=0.1; %sample time of variables to be stored

Figure 4.96: Single working point’s MATLAB script

Nominal power working point

In this case, the goal is reaching the working point in which motor
works at nominal power. This means that working point to be reached is
the one corresponding to nominal rotational speed and nominal torque
values that are reached increasing time by time both rotational speed
and torque values. To perform this kind of test, user must uncomment
Nominal_power_working__point subsystem and comment out other
three subsystems. This subsystem contains model shown in figure 4.97
that is constituted of two subsystems: bm__cmd2 and tm__cmd2.

93

SYSTEM DESIGN PHASE: TECHNICAL MODEL

P w_increasing l bm_command
w_increasing bm_command
bm_cmd2
T_increasing — tm_command
T_increasing tm_command
’*;:17 —
tm_cmd2

Figure 4.97: Nominal power_working point subsystem’s Simulink model

bm__cmd?2 subsystem is intended to evaluate bench motor command and
it is constituted of a single output representing rotational speed value to
be considered for piloting bench motor. Since minimum and maximum
rotational speed values are known user can define an increment to
be considered for moving along rotational speed axis and selecting
new working point where evaluating test motor characteristics. This
increment can be computed as ratio between nominal rotational speed
value and rotational speed values’ number to be considered to move from
initial to final rotational speed value. It can be used to compute time
by time new working point since it can be added to previous rotational
speed for obtaining new rotational speed value to be considered for
selecting new working point. In Simulink this logic is implemented by
means model shown in figure 4.98 where a sum block is implemented
with an input port connected to a constant block (computed increment)
and other input connected to discrete delay’s output. Discrete delay’s
output value changes each time a time delay is expired such that every
time rotational speed value to be considered for computing bench motor
command is computed as the sum between previous rotational speed
value and rotational speed increment. Time delay is defined by user on
the basis of transient phase that characterizes interesting parameters’
trend (time needed to reach steady- state value). Sum Simulink block’s
output represents bench motor command that must be sent to Control
reference model after being converted in voltage signal. Moreover,
discrete delay’s output is defined by means an external port which
is connected to product block’s output port that allows to compute
increment opposite value such 0 rad/ s is the first rotational speed
value considered to select a working point.

94

SYSTEM DESIGN PHASE: TECHNICAL MODEL

>

w_increasing

()

bm_command

zd

o "]

Figure 4.98: bm__cmd2 subsystem’s Simulink model

Instead, tm__cmd2 subsystem is intended to evaluate test motor com-
mand and it is implemented in the same way of bm_ cmd2 subsystem.
But, this time instead of considering rotational speed, torque is consid-
ered to evaluate test motor command that has to be sent to Control
refence model after being converted in voltage signal. Indeed, also in
this case an increment is defined to move along torque axis for selecting
new working point. This increment is defined as ratio between nominal
torque value and torque values’ number to be considered to move from
initial to final torque value. It can be used to compute time by time
new working point since it can be added to previous torque value to
obtain new torque value to be considered for selecting new working
point. In Simulink, this is implemented by means model shown in figure
4.99 that is the same to that described in bm cmd2 case.

D *

T_increasing

1)

tm_command

zd

. < ﬂ

Figure 4.99: tm_ cmd2 subsystem’s Simulink model

95

SYSTEM DESIGN PHASE: TECHNICAL MODEL

To parametrize Simulink blocks implemented in Nominal power
working point subsystem a MATLAB script, containing all needed vari-
ables, has to be defined and run in order to load parameter values into
MATLAB workspace. Among all these variables there is w_increasing
and T _increasing which represent respectively rotational speed and
torque increment defined as before described, delay T representing
time delay to be considered for discrete delay implemented in tm_ cm2
subsystem whose value is decided by user, delay w that represents time
delay to be considered for discrete delay implemented inside bm_ cmd2
subsystem whose value is defined in function of delay T, number of
rotational speed and of torque values, sample defining sample time to
be considered for ToFile Simulink blocks used to store interesting vari-
ables and T _sim that represents simulation time duration computed
as function of delay T and number of torque values considered for
performing test.

Nominal_power_working_point

348 w_n_test = 5000 /60x2xpi,;

349 w_sampling=10;

350 w_increasing=w_n_test/w_sampling;
352 P_m_n_test=10500;

353 T_m_n_test = P_m_n_test/w_n_test;
354 T_sampling=10;

355 T_increasing=T_m_n_test/T_sampling;

%bm_cm2 & tm_cmd2 blocks

358 delay_T=25;

359 delay_w=(T_samplingxdelay_T)/w_sampling;
361 sample=0.1;

362 T_sim=delay_T+(T_samplingxdelay_T)

Figure 4.100: Nominal power working point’s MATLAB script

Torque curves test

In this scenario, user must define a single torque value and a vector of
rotational speed values in order to select different working points for
which evaluating test motor behavior and characteristics. To perform
this kind of test user must uncomment Torque curves subsystem and
comment out other three subsystems. This subsystem contains model
shown in figure 4.101 that is constituted of two different subsystems:
bm__cmdl and tm__cmdl.

96

SYSTEM DESIGN PHASE: TECHNICAL MODEL

w_increasin, J ‘bm,command
al

w_increasing bm_command
[]
bm_cmd1
T_increasing
T_increasing
w_change T_input
w_change tm_command
G
w
tm_cmd1

Figure 4.101: Torque curves subsystem’s Simulink model

bm__cmd1 subsystem is intended to evaluate bench motor command
and it is constituted of a single output representing rotational speed
value to be considered for evaluating bench motor command signal.
Since minimum and maximum rotational speed values are known user
can define an increment to be considered for moving along rotational
speed axis and selecting new working point where evaluating test motor
characteristics. This increment can be computed as ratio between
maximum and minimum rotational speed value difference and rotational
speed values’ number to be considered to move from initial to final
rotational speed value. It can be used to compute time by time new
working point since it can be added to previous rotational speed for
obtaining new rotational speed value which corresponds to new working
point. In Simulink, this logic is implemented by means model shown
in figure 4.102 where sum block is implemented with an input port
connected to a constant block (rotational speed increment) and other
input connected to discrete delay’s output whose value changes each
time a time delay is expired in order to compute rotational speed value
as sum between previous rotational speed value and rotational speed
increment. Time delay is defined by user on the basis of transient phase
that characterizes interesting parameters’ trend (time needed to reach
steady-state value). Sum Simulink block’s output represents bench
motor command that must be sent to Control reference model after
being converted in voltage signal. Moreover, discrete delay’s initial
output is defined by means an external port which is connected to
product block’s output port that allows to compute increment opposite
value such 0 rad/s is the first rotational speed value considered to select
a working point.

97

SYSTEM DESIGN PHASE: TECHNICAL MODEL

w_increasing

> 1)

bm_command

.]

Figure 4.102: bm_ cmdl subsystem’s Simulink model

Instead, tm__cmd1 subsystem is intended to evaluate test motor com-
mand and this time it is constituted of a more complex model. Indeed,
this time on right part Switch Simulink block is implemented that
allows to select torque value to be considered for selecting working
point. This because two different working areas in w — 1" plane can be
distinguished: constant torque working area in which motor works at
constant torque value and constant power working area where motor
works at constant power. Switch from one area to other one happens at
nominal rotational speed and at that point test motor torque command
must be computed in such a way that its power remains constant. In
Simulink model, condition to switch from one area to other one is set by
a GreaterThan Simulink block that allows to compare rotational speed
value read by rounds per minute measurement system and w_ change
that represents rotational speed value at which motor working condition
must change and once switch happens test motor torque command is
computed dividing the result of product between considered torque
value and w__change for rotational speed sensed by rounds per minute
measurement system that must be converted in rad/s.

98

SYSTEM DESIGN PHASE: TECHNICAL MODEL

1
T_increasing

Figure 4.103: tm__cmdl subsystem’s Simulink model

To parametrize Simulink blocks implemented inside Torque_ curves sub-
system a corresponding MATLAB script has to be defined and run be-
fore to start Simulink simulation in order to load variables in workspace.
Among all variables to be defined there are w_eff bp_wvec bench and
w__eff bp_wvec test representing rotational speed values’ vector to
evaluate bench and test motor power loss matrix, w_sampling repre-
senting number of rotational speed values to be considered during test,
w__increasing representing rotational speed increment, T _ increasing
representing torque value to be considered for performing test, w_n
_ test representing test motor nominal rotational speed, delay_w that
defines for how long test motor must be tested in each working point,
sample representing sample time to be considered for ToFile Simulink
blocks used to store interesting variables.

Torque_curves

%w_increasing

349 w_eff_bp_vec_bench=[104.72 209.44 314.16 366.52 418.88 471.24 523.6 628.32];
350 w_max_bench=max(w_eff_bp_vec_bench);
351 w_eff_bp_vec_test=[104.7198 209.4395 314.1593 366.5191 418.879 471.2389 523.5988 575.9587 628.3185];
352 w_max_test=max(w_eff_bp_vec_test);
353 w_max=min(w_max_bench,w_max_test);
355 w_sampling=20;
356 w_increasing=w_max/w_sampling;
%T_increasing
359 T_increasing=20;
%w_change
362 w_n_bench= 4000 /60%2*pi;
363 w_n_test = 5000 /60%2*pi;
364 w_change=min(w_n_bench,w_n_test); %rotational speed at which the area change happens
%bm_cmd1
367 delay_w=25;
369 sample=0.1; %sample time for interesting parameters to be stored
370 T_sim=(delay_w+(delay_w+w_sampling))

Figure 4.104: Torque curves’ MATLAB script

99

SYSTEM DESIGN PHASE: TECHNICAL MODEL

o 3D maps tests

In this case, test motor’s behavior has to be evaluated in entire coverable
area of w — T plane so, a very huge number of working points has
to be considered. For this reason, both torque and rotational speed
values time by time have to be changed in order to select working
points belonged to entire coverable w — T' plane area and test motor
characteristics can be evaluated. Usually, to do this a constant torque
value is considered and time by time rotational speed value is increased
until its maximum value is reached. At that point, torque value has
to be increased and the same procedure for rotational speed value has
to be reaped again in order to select other working points and test
motor characteristics can be evaluated. Test must be stopped once
maximum torque value is reached to avoid mechanical and electrical
problems for electric motor under test. To perform this kind of test user
must uncomment 3D __maps subsystem implemented on the bottom
part of HMI subsystem and comment out other three subsystem. This
subsystem contains model shown in figure 4.105 and it is constituted
of two subsystems: bm__cmd0 and tm__cmd0.

>

w

P w_max bm_command

w_max bm_command

P w_increasing

w_increasing

bm_cmdo

@—P T_increasing

T_increasing

P w_change tm_command

w_change tm_command

»w

tm_cmdo

Figure 4.105: 3D__maps subsystem’s Simulink model

bm__cmd0 subsystem is intended to evaluate bench motor command
and it is constituted of a Switch Simulink block which allows to select
rotational speed value to be considered for evaluating bench motor
torque command. This because rotational speed value has to increase
until to reach its maximum value and once it is crossed rotational
speed value has to set equal to initial rotational speed value (0 rad/s).
Switch condition is set by means GreateThan Simulink block that
allows to compare rotational speed value sensed by rounds per minute
measurement system and w__maz that represents maximum rotational
speed value that can be considered for testing electric motor under test.

100

SYSTEM DESIGN PHASE: TECHNICAL MODEL

Since minimum and maximum rotational speed values are known user
can define an increment to be considered for moving along rotational
speed axis and selecting new working point where evaluating test motor
characteristics. This increment can be computed as ratio between
maximum and minimum rotational speed value difference and rotational
speed values’ number to be considered to move from initial to final
rotational speed value. It can be used to compute time by time new
working point since it can be added to previous rotational speed for
obtaining new rotational speed value which corresponds to new working
point. In Simulink, this logic is implemented by means model shown
in figure 4.106 where sum block is implemented with an input port
connected to a constant block (rotational speed increment) and other
input connected to discrete delay’s output whose value changes each
time a time delay is expired in order to compute rotational speed value
as sum between previous rotational speed value and rotational speed
increment. Time delay is defined by user on the basis of transient phase
that characterizes interesting parameters’ trend (time needed to reach
steady-state value). Sum Simulink block’s output represents bench
motor command that must be sent to Control reference model after
being converted in voltage signal. Moreover, discrete delay’s initial
output is defined by means an external port which is connected to
product block’s output port that allows to compute increment opposite
value such 0 rad/s is the first rotational speed value considered to
select a working point while delay reset is implemented by means a
pulse generator that each time maximum rotational speed value is
reached allows to reset delay block. This is done taken into care how
log each rotational speed value lasts to stay in specific working point
and evaluating test motor’s characteristics.

mmmmmmmmmm

Figure 4.106: bm_ cmd0 subsystem’s Simulink model

101

SYSTEM DESIGN PHASE: TECHNICAL MODEL

Instead,tm__cmd0 subsystem is intended to evaluate test motor com-
mand and this time it is constituted of a more complex model. Indeed,
this time on right part Switch Simulink block is implemented that
allows to select torque value to be considered for selecting working
point. This because two different working areas in w — 7" plane can be
distinguished: constant torque working area in which motor works at
constant torque value and constant power working area where motor
works at constant power. Switch from one area to other one happens at
nominal rotational speed and at that point test motor torque command
must be computed in such a way that its power remains constant.
In Simulink model, condition to switch from one area to other one
is set by a GreaterThan Simulink block that allows to compare rota-
tional speed value read by rounds per minute measurement system
and w__change that represents rotational speed value at which motor
working condition must change and once switch happens test motor
torque command is computed dividing the result of product between
considered torque value and w__change for rotational speed sensed by
rounds per minute measurement system that must be converted in
rad/s. When motor stays in constant torque working area, torque value
to be considered for computing test motor torque command is com-
puted by a Sum Simulink block that allows to sum torque increment,
computed as ration between maximum and minimum torque value
difference and torque values’ number to be considered to test motor,
and discrete delay’s output whose value changes each time a time delay
is expired in order to compute torque value as sum between previous
torque value and torque increment. Time delay is defined by user on
the basis of transient phase that characterizes interesting parameters’
trend (time needed to reach steady-state value). Sum Simulink block’s
output represents bench motor command that is connected to Switch
Simulink block. Moreover, discrete delay’s initial output is defined by
means an external port that is connected to a Constant Simulink block
whose value is defined by user through corresponding MATLAB script
(initial _condition_ delay) such that user is able to decide whether ONm
value has to be considered to select working points or not.

102

SYSTEM DESIGN PHASE: TECHNICAL MODEL

Figure 4.107: tm__cmd0 subsystem’s Simulink model

To parametrize all Simulink blocks implemented inside 3D maps sub-
system a corresponding MATLAB script must be defined and run
before to start Simulink simulation such that all variables are load
into workspace and Simulink blocks can use them. Among all needed
variables there are: w_eff bp_wvec bench and w_eff bp_ wvec __test that
represent vectors containing rotational speed values considered to eval-
uate bench and test motor power and efficiency matrices, w_sampling
defining how many rotational speed values have to be considered be-
tween minimum and maximum rotational speed values during test,
w__increasing that represents rotational speed increment, T sampling
that defines how many torque values must be considered during test
between minimum and maximum torque values, T'_eff bp_vec_bench
and T _eff bp_ wvec test that represent vector containing torque values
considered to evaluate bench and test motor power and efficiency
matrices, w_mn _ bench that represent bench motor nominal rota-
tional speed, w_n_ test that represents test motor nominal rotational
speed, w__change that represents rotational speed value at which motor
switches from constant torque working area to constant power work-
ing area, delay__w and delay T that represents time duration to be
considered for each rotational speed and torque value, pulse _ genera-
tor_period and pulse_generator_phase__delay that represent variables
to parametrize pulse generator block used to reset discrete delay of
bm_ c¢mO0 subsystem, initial condition delay that represents initial
output value of discrete delay implemented in tm_ cmd0O subsystem,
sample representing sample time to be considered for ToFile Simulink
block used to store interesting variables, T _sim that defines simulation
time.

103

SYSTEM DESIGN PHASE: TECHNICAL MODEL

3D_maps
%w_increasing & w_max

262 w_eff_bp_vec_bench=[104.72 209.44 314.16 366.52 418.88 471.24 523.6 628.32];
263 w_max_bench=max(w_eff_bp_vec_bench);
264 w_eff_bp_vec_test=[104.7198 209.4395 314.1593 366.5191 418.879 471.2389 523.5988 575.9587 628.3185];
265 w_max_test=max(w_eff_bp_vec_test);
266 w_max=min(w_max_bench,w_max_test);
268 w_sampling=20;
269 w_increasing=w_max/w_sampling;

%T_increasing

272 T_sampling=10;
273 T_start=0;
274 T_eff_bp_vec_bench=[2.4 4.3 11.4 13.8 15.2 20.9 26.9];
275 T_m_max_bench=max(T_eff_bp_vec_bench);
276 T_eff_bp_vec_test=[15 24 43 62 83];
277 T_m_max_test=max(T_eff_bp_vec_test);
278 T_end=min(T_m_max_bench,T_m_max_test);
279 T_increasing=(T_end-T_start)/(T_sampling);
%w_change
282 w_n_bench= 4000 /60*2*pi;
283 w_n_test = 5000 /60*2*pi;
284 w_change=min(w_n_bench,w_n_test); %rotational speed at which the area change happens
%bm_cmd@
287 delay_w=25;
288 pulse_generator_period=(delay_w+(delay_wkw_sampling));
289 pulse_generator_phase_delay=(delay_w+(delay_wxw_sampling));
%tm_cmd@
291 delay_T=(delay_w+(delay_wkw_sampling));
292 initial_condition_delay=-T_increasing; %=0 in cases T=0 must not be considered during simulation...
. otherwise put it equal to -T_increasing
295 sample=0.1; %sample time for interesting parameters to be stored
296 T_sim=(delay_w+(delay_wkw_sampling))*T_sampling

Figure 4.108: 3D maps’ MATLAB script

4.2.5 User subsystem

It contains model shown in figure 4.109 including all user actions to be
performed for starting to use system. Since user could need to send signals
both to Plant reference model and to Human-Machine-Interface subsystem,
two output ports are implemented in order to model interfaces by means
User is able to communicate to Plant reference model (user_plant output
port) and to HMI subsystem (user_HMI output port). Then, two input ports
are implemented to model interfaces by means User subsystem can receive
signals form Plant (plant_user input port) and HMI (HMI _user input port).
In this case, since User does not receive signals from Plant reference model
and does not need to send signals to it, plant_ user inpurt port and user
plant output port are connected each other by means a discrete delay that
allows to avoid algebraic loop error during simulation while HMI__user input
port is connected to a terminator Simulink block because in this case User
subsystem does not receive signals from HMI subsystem. Output port 1
(user__HMI) is connected to Mux Simulink block’s output port such that
two signals can be sent to HMI subsystem: bench and test motor’s voltage
power supply values.

104

SYSTEM DESIGN PHASE: TECHNICAL MODEL

HMI_user
>z
plant_user user_plant

user_HMI

Figure 4.109: User subsystem Simulink model

To parametrize User subsystem a corresponding MATLAB script has to
be defined and run before to start simulation such that variables are loaded
into MATLAB workspace and Simulink blocks can use them. Here, only two
variables are defined: bm_ pws and tm__pws which are defined to set voltage
values to be provided respectively to bench and test motor.

User Data

Define the parameters related to the User.
%scollect user action

%%bm_tm_pws

262 bm_pws=96; %V
263 tm_pws=66; %V
265 return

Figure 4.110: User subsystem’s MATLAB script

4.3 Dashboard and control panel

Observing MTM template (figure 4.64), two different panes highlighted in
blue on left part are implemented. The one on upper part represents what
is called dashboard which represents physical commands by means user is
able to pilot system while the one on bottom part represents control panel
through which user is able to check system’s behavior while it works. In
dashboard panel different physical components are implemented: on/off
button by means user can start/stop system to work, indeed it is connected
to constant 0 put inside HMI so that when it is pushed constant changes its
value from 0 to 1 such that control law implemented inside Control Logic

105

SYSTEM DESIGN PHASE: TECHNICAL MODEL

reference model is perturbated and specific action is taken to start or stop
system (on the basis of logic described in section 4.2.3.1); emergency switch
by means user can stop system while it is working when something goes
wrong, indeed it like on/off button case is connected to constant Simulink
block implemented inside HMI subsystem whose initial value is 0 such that
when it is toggled from Off to On state constant value changes from 0 to
1 causing a perturbation in control law implemented inside Control Logic
reference model that is designed in such a way that when that perturbation
happen controller is able to stop system working; green LED and red LED
by means user is able to understand system’s state (working or stopped);
floating scope by means user is able to check sent or received signals by
components implemented in dashboard. Instead, in panel control two floating
scopes are implemented by means user can check signals coming out from
plant and from HMI.

DASHBOARD Caonstant:V:
an
- D
grean red B
Off

DASHBOARD_MONITOR

Control panel

L [

PLANT_MONITOR PARAMETERS_MONITOR

Figure 4.111: Dashboard and Control panel in MTM template

106

Chapter 5

System design: model-based testing

Once model is built some tests must be performed to validate it. For doing
this model-based approach establishes three different tests by means designers
can understand whether their considered technical details are able to satisfy
user’s requirements. These three tests are listed and described below.

o MIL testing

MIL stands for Model-in-the-loop and it represents test by which de-
signed controller is tested in development ambient, like Simulink, adopt-
ing plant model. So, in this case both designed controller and plant
models are run in the same development machine to test designed
controller’s behavior.

o SIL testing

SIL stands for Software-in-the-loop and it represents test by which
designed controller’s corresponding C code is tested in development
ambient, like Simulink, using always plant’s model. So, also in this case
both controller’s corresponding C code and plant’s model are run in
the same development machine to check whether obtained controller
C code works properly: obtained results must be the same to those
obtained in MIL testing case.

e PIL testing

PIL stands for Processor-in-the-loop and it represents test where ob-
tained controller’s C code is run in a target hardware (rapid prototyping
hardware) while plant’s model is run in development machine. Here,
controller C code’s behavior is tested inside hardware before to test
system’s performance by using real plant. In this thesis work, this
test is not performed because dSpace (considered rapid prototyping
hardware) implies a very expensive license to perform it that is not
available.

107

System design: model-based testing

5.1 MIL testing

To perform this test, MATLAB script containing needed variables to parametrize
all Simulink blocks used to implement M'TM, described in chapter 4, has
to be run. This is needed to load all variables into workspace such that
Simulink blocks can use them during simulation for performing computations
and gets results. Once this is done, Simulink model can be run pressing run
pushbutton implemented in “SIMULATION panel” and when simulation
starts user has to press on/off dashboard button to start system working.
On/off dashboard button must be keep pressed for at least 0.01 s until green
LED is switched on. At that point, user can wait for simulation end in order
to obtain interesting variable values stored in .mat file positioned in selected
path.

MATLAB script to be defined and run, shown in figure 5.1, is constituted
of different sections as described in previous chapter: the first section contains
all needed variables to parametrize Simulink blocks implemented inside all
reference models and subsystems and it must be always run to load all
defined variables in MATLAB workspace while the other sections are related
to the four subsystems implemented on bottom part of HMI subsystem so on
the basis of what test user wants to perform (single working point, nominal
power working point, torque curves, 3D maps) corresponding section has to
be run in order to load into MATLAB workspace needed parameters.

Environment Data Move here to reveal toolstrip
Define the parameters related to the Environment.
% Environment actions
sstorque_sensor_noise
4 amplitude_T_noise=0.05;
5 frequency_T_noise=1/(le-4);
%scurrent_sensor_noise
8 amplitude_I_noise=3;
9 frequency_I_noise=6000;
srpm_measurement_system_noise
12 amplitude_w_noise=1;
13 frequency_w_noise=1/(le-4);
Plant Data
%Define the characteristics of the system that has to be controlled
sBench_motor
sElectrical Torque — Nominal & Maximal
19 w_n_bench= 4000 /60%2%pi;
20 T_m_n_bench = 28;
21 eta_n_bench = 0.91 x100; %@ w_n & T_m_n
22 P_m_n_bench = w_n_bench * T_m_n_bench;
23 T_m_max_bench = 55;
24 P_m_max_bench = w_n_bench % T_m_max_bench *1.1;
25 w_max_bench=w_n_benchx1.1;
26 ‘tau_m_bench= 0.02;

%Electrical Losses - Single Efficiency

29 P1_iron_bench= 0; %IPH
30 Pl_eln_bench= 100;
31 P1_copper_n_bench= (1-eta_n_bench/100)P_n_n_bench -P1_eln_bench -P1_iron_bench;
32 k_T_bench= P1_copper_n_bench /T_m_n_bench"2;
sdlechanical
35 J_m_bench= .005e-3;
36 beta_m_bench= 1le-5;

37 i_max_bench=T_m_max_bench/k_T_bench;
%Tabulated_bench_motor

108

System design: model-based testing

sElectrical_torque_section
40 v_t_vec_bench=[52.3599 104.7198 157.6796 209.4395 261.7994 314

71,2389 523.5988 575.9587 628.3185]; %rad/s
a1 T_t_vec_bench=[52.5 52.5 52.5 52.5 52.5 52.5 52.5 52.5 47 42 1Move here to reveal toolstrip

sElectrical_losses_section
%%Tabulated_loss_data

45 w_eff_bp_vec_bench=[104.72 209.44 314.16 366.52 418.88 471.24 523.6 628.32];
46 T_eff_bp_vec_bench=[2.4 4.3 11.4 13.8 15.2 20.9 26.9];

47 T_m_min_bench=min(T_eff_bp_vec_bench);

48 T_m_max_bench=max(T_eff_bp_vec_bench);

a9 w_max_bench=max(w_eff_bp_vec_bench) ;

51 b=200

52 losses_table_bench=[52.4 85.1 151.9 126.8 304.9 468.1 712.5;

115.1 133.4 223.7 223.6 350.5 701.4 801.2;
155.1 104.8 311.2 311.4 693.4 1005.9 1299.
175.3 240.7 434.4 351.7 556.3 1056.4 1407.
200.1 244.1 572.9 395.7 813.2 1204.9 1013.
224.1 342.5 545.2 458.9 732.2 864.7 b;
240.1 466.8 490.3 b b b b;
b b bl;

8.
b
260.3 432.3 b b bl
wTabulated_efficiency_data
62 d=85;
63 eff;uency_tahle bench=[82.

sTest motor
sElectrical Torque - Nominal & Maxinal
5000 /60x2xpi;

75 P_m_n_test/w_n_test;
76
77 St=115; %A
78 .86;
79 P_m_n_test/(sqrt(3)#V_n_test+I_n_testkcos_fi_test))x100;
80 v_max_test=7500/60+2+pi;
81 T_m_max_test = 83;
82 P_m_max_test = w_max_test * T_m_max_test;
83 tau_m_test = 0.02;
sElectrical Losses - Single Efficiency
85 Pl_iron_test = 0,
86 PLeln_test = 100;
87 P1_copper_n_test= (1-eta_n_test/100)+P_m_n_test -P1_eln_test -P_iron_tes

88 K_T_test= PL_copper_n_test /T_m_n_test"2; alEan S
89 i_max_test=T_n_max_test/k_T_test; love here to reveal too'strip

sTabulated_test_motor
sElectrical_torque_section

93 52.3599 104.7198 157.0796 209.4395 261.7994 314.1593 366 5191 418.8790 471.2389 523.5988 575.9587 628.3185]; %rad/s
94 83 82.5 82 81.5 80.5 80.5 77.5 68 56 46.5 39.5 34.5];
sElectrical_losses_section
saTabulated_loss_data
98 w_eff_bp_vec_test=[104.7198 209.4395 314.1593 366.5191 418.879 471.2389 523.5988 575.9587 628.3185];
99 15
100
101 T_n_max_test=nax(T_eff_bp_vec_test);
102 w_max_bench=max (w_eff_bp_vec_bench) ;
104 losses_table_test=[143.8356 200.4494 954.5455 1.9857e+03 2.8393e+03
57.8047 311.1702 972.2222 2.0326e+03 3.5795e+03
236.8421 381.5789 1.0419e+03 2,0833e+03 3.6286e+03
204.5455 434.2105 1.1290e+03 2.4167e+03 4.0905e+03
210.1558 510.5263 1.3784e+03 2.7333e+03 4.2007e+03
335.5263 689.3617 1.5326e+03 2,7809e+03 3.8022e+03
454.7872 846.7742 1.6781e+03 2.9650e+03 3.5405e+03
564.5161 912.1622 1.9111e+03 3.2880e+03 3.1379e+03
632.4324 978.2609 1.8750e+03 2.9138e+03 2.8143e+03];
sgTabulated_efficiency_data
116 efficiency_table_test=[91.25 80 82.5 76.25
95 94 90 86.25
95 95 92.5 90
96.2595 93 90
96.25 95 92.5 90
95 94 92 89 ;
94 93 91.2588 86.66;
93 92.590 86.25 87;
9.5 92 9 87 87.5];
“Sensors
OIS
127 max_T=500; % max torque value that can be measured by sensor
128 % max voltage value at the output of the sensor
129 i tm—qu =Vp_T/max_T.
sgscurrent_sensor
132 up_T_limit=20;
133 B
134
135 current_offset=4;
o R
sarotational_speed_conversion
139 Vp_w=10;
140 rpn_nax=6000;
141 K_speed=Vp_w/rpm_max;
bn_pus_signal
144
145
146 p_bm_pws /bm_pus;
stn_pus_signal
149 Vp_tm_pus
150 tm_puis=66;
151 K_tm_pus=Vp_tm_pws/tm_pus;
Control Data
5% ADC
% LP filter
154 Tsi=le-4;
155
156
157
158 H Ls1=wc1 2/ (s+uc1)"2;
159 {_21=2pk(c2d(H_s1,Ts1, 'zoh'));
160 [NUM LPF, DEN_LPF]=tfdata(H_z1,'v');
ssrotational_speed_sensor
163 Vp_vrlb'
164 =16;
165 quant W=Vp_w/ (2°N-1) 5
b trqcmd annal
168 vo.b
169 8
170 quant,bm,t racmd=Vp_bm_trgcmd/ (2N-1) ;
sstn_trqend_signal
173 tn_trqend=5;
174 N=16;
175 quant_tm_trqcmd=Vp_tm_trgemd/ (2°N-1) ;
sbm_cnd_signal
178 Vp_bm_command_signal=

109

System design:

model-based testing

179 N=16;

180 uant_bm_cmd_signal=Vp_bm_command_signal/(2"N-1);
USSR TR LY ignalAEL Move here to reveal toolstri
stm_cmd_signal

183 Vp tm_cmd_signal:

184 6;

185 quant tm_cmd_signal=Vp_tm_cmd_signal/(2"N-1);

% DAC
% LP filter

189 ~le-4;

190 WC2=500e3+2+pi;

191 s=tf('s');

192 (12, Ts2);

193 H_s2=uc2"2/ (s+wc2)"2;

194 H_z2=2pk(c2d(H_s2,Ts2, 'z0n')) ;

195 [NUM_LPF2,DEN_LPF2]=tfdata(H_z2,'v');

Control Logic Data
“The Control Logic must contain the control aigorithm that is intended to be deployed on the target hardware.

196 sampling_time=le-2;

197 s=tf('s');

198 ('2', sampling_time) ;

199 H_s=1/(3xs+1);

200 H_z=zpk(c2d(H_s, sampling_time, 'zoh'));

201 [NUM, DEN]=tfdata(H_z,'v');

N Slgr\al

204 Vp_y

205 rpn_nax=6000;

206 k_speed=Vp_w/rpm_max;

%bm_cmd_signal

209 Yp_bn_cnd_signa

210 bm_cmd_signal_max=6000+2+pi/60; %rad/s

211 K_on.cid=vp.bn end_ signat/bm._cnd_ Sgnal_nax;
stm_cmd_signal

214 Vp_tm_cmd=5; %V

215 tm_cmd_ma: 00; sNm

216 k_tm_cmd=Vp_tm_cmd/tm_cmd_max;

HMI Data

Define the parameters related to the HMI Ercli e GaE
% HMI actions
smsignal_to_parameters
scurrent_signal

22 k_current=16/300;

223 current_offset=4;

224 R_load=250;
aw_signal

227 Vp_w=10;

228 m_nax=6000;

229 k_speed=Vp_w/rpm_nax;

%T_signal

232 max_T=500; % max torque value that can be measured by sensor

233 Vp. ; % max voltage value at the output of the sensor

234 Kk_torque=Vp_T/max_T;
s%end_to_signals

237 Vp_bm_cnd=5;

238 bm_cmd_max=6000%2%pi/60; %rad/s

239 k_bm_cnd=Vp_bn_cnd/bm_cnd_nax;

241 Vp_tm_cnd:

242 tm_cmd_ma

243 k_tm_cmd=Vp_1 tm cmd/tm cmd_max;

b pus._signal

246 Vp_bi _p

247 bm_pws=9

248 k_bm_pws—VD_bm_Dws/ bm_puis;
tm_pws_signal

251 Vp_tm_pws=5;

252 tm_pws=66

253 K_tm_pws=Vp_tm_pws/tm_pus;

User Data
[Move here to reveal toolstrip|
Define the parameters related to the User. METSbEEItahEreallio St
%scollect user action
5%bm_tm_pws

258 bm_pws=96; %V

259 tm_pws=66; SV

260 return
Constant_torque_growing_rotational_speed
%w_increasing & w_max

262 w_eff_bp_vec_bench=[104.72 209.44 314.16 366.52 418.88 471.24 523.6 628.32];

263 w_max_bench=max(w_eff_bp_vec_bench);
264 w_eff_bp_vec_test=[104.7198 209.4395 314.1593 366.5191 418.879 471.2389 523.5988 575.9587 628.3185];
265 w_max_test=max(w_eff_bp_vec_test);
266 w_max=min(w_max_bench,u_max_test) ;
268 w_samplin
269 W 1ncreasmg e T
%T_increasing
72 T_sampling=10;
273 T_start=0;
274 T_eff_bp_vec_bench=[2.4 4.3 11.4 13.8 15.2 20.9 26.9];
275 T_m_max_bench=max(T_eff_bp_vec_bench
276 T_eff_bp_vec_test=[15 24 43 62 83];
277 T_m_max_test=nax(T_eff_bp_vec_test);
278 T_end=nin(T_m_max_bench,T_m_max_test);
279 T_increasing=(T_end-T_start)/(T_sampling) ;
sw_change
282 w_n_bench= 4000 /60%2%p.
283 w_n_test = 5000 /60#2%pi;
284 w_change=min{w_n_bench,w_n_test); %rotational speed at which the area change happens
%bn_cndo
287 delay. 5;
288 pulse_generator_period=(delay_w+(delay_wi_sampling)) ;
289 pulse_generator_phase_delay=(delay_w+(delay_w_sanpling));
%tm_cmd®
201 delay_T=(delay_w+(delay_ww_sampling));
202 initial_condition_delay=-T_increasing; %=0 in cases T=0 must not be considered during simulation...

... otherwise put it equal to -T_increasing

110

System design: model-based testing

295 sample=0.1; %sample time for interesting parameters to be stored

ple
206 T_sim=(delay_w+(delay_wk_sampling))¥T_sampling e e il avallton s

Constant_rotational_speed_growing_torque

su_increasing & v_max
208 w_eff_bp_vec_bench=[104.72 209.44 314.16 366.52 418.88 471.24 523.6 628.321;

299 w_max_bench=nax(u_eff_bp_vec_bench) ;

300 w_eff_bp_vec_test=[104.7198 209.4395 314.1503 366.5191 418.879 471.2389 523.5088 575.9587 628.3185];
301 V_nax_test=max(v_eff_bp_vec_test);

302 w_max=min(w_nax_bench,w_max_test

304 w_sampling=20;

305 w_start=0;

307 w_end=u_max;

308 w_increasing=(w_end-w_start)/w_sampling;
309 initial_condition_delay=0; %=0 in cases w=0 must not be considered during simulation...
. otherwise put it equal to -w_increasing

%T_increasing

313 T_sampling=10;

314 T_start:

315 T_etf_bp_vec_bench=12.4 4.3 11.4 13.8 15.2 20.9 26.91;

316 T_m_max_bench=max (T_eff_bp_vec_bench) ;

317 T eff_bp_vec_test=[15 24 43 62 83];

318 _max_test=max(T_eff_bp_vec_test);

319 T end=nin(T_n_max_bench, T_m_max_test);

320 T_increasing=(T_end-T_start)/(T_sampling) ;
su_change

323 w_n_bench = 4000 /60x2%pi;

324 W_n_test = 5000 /60+x2%pi;

325 w_change=min(w_n_bench,w_n_test); %rotational speed at which the area change happens
sbm_cnl & tm_cmdl blocks

328 delay_T=25;

329 delay_w=T_samplingkdelay_T;

330 pulse_generator_period=T_samplingsdelay_T;

331 pulse_generator_phase_delay=T_sanpling+delay_T;

333 sample=0.1; %sample time for interesting parameters to be stored

334 T_sim=T_sampling+delay_T+u_sampling;

Torque_curves
Move here to reveal toolstri
%w_increasing
337 w_eff_bp_vec_bench=[104.72 209.44 314.16 366.52 418.88 471.24 523.6 628.32];
338 w_eff_bp_vec_bench) ;
339 104.7198 209.4395 314.1593 366.5191 418.879 471.2389 523.5988 575.9587 628.3185];
340 w_max_test=max(w_eff_bp_vec_test);
341 W_max=nin (w_max_bench,w_max_test) ;
343 w_sampling=20;
344 w_increasing=w_max/w_sampling;
%T_increasing
347 T_increasing=20;
%w_change
350 _bench= 4000 /60%2%pi;
351 5000 /60+2+pi;
352 W change in(w_n_bench,w_n_test); %rotational speed at which the area change happens
sbm_cmd1
355 delay_w=25;
357 sample=0.1; %sample time for interesting parameters to be stored
358 T_sim=(delay_w+(delay_wrw_sampling))
Nominal_power_working_point
359 5000 /60%2+pi;
360 0;
361 I_n_test/w_sampling;
363 |_n_test=10500;
364 _m_n_test/w_n_test;
365 =
366 T_increasing=T_m_n_test/T_sampling;
%bm_cm2 & tm_cmd2 blocks
369 delay_T=25;
370 delay_w=(T_samplingkdelay_T) /u_sampling;
372 sampl.
373 T_sim: delay_T+(T samplingxdelay_T)
Single_working_point
% bn_cn3 & tm_cnd3 blocks
376 w_increasing=: SDO/EO*Z*D), %rad/s
377 T_increasin
378 T_sim=100; %s
380 sample=d.1; %sample time of variables to be stored

Figure 5.1: MTM’s MATLAB script

Each time a new electric motor has to be tested below listed variables
must be defined by user in the first section of previous reported MATLAB
script.

w_n_test

e P m n_ test

V_n_test

e I n test

111

System design: model-based testing

e cos_fi test

e w_max_test

o T m_mazx test

e tau_m_test

e Pl idron_test

o Pl eln_ test

e w_ 1t wec test

o T t wec test

o w_eff bp_ wvec_test
o T eff bp wvec test
o losses_table test

o cfficiency_table__test

o tm_pws

While in sections related to variables to be load into MATLAB workspace on
the basis of test to be performed besides to define some of previous variables
below listed must be defined.

o w_sampling

o T sampling

o T increasing

o delay w

o delay T

o initial__condition__delay
e sample

Once all needed variables are load into MATLAB workspace, Modular-
Technical-Model Simulink file can be open and run in order to start simulation.
At that point on/off dashboard button has to be pressed to start system
and obtain corresponding results. Indeed, at the end in selected path four
.mat files are created containing interesting parameters that can be used
to evaluate test motor mechanical and electrical characteristics. Results for
each kind of test that can be performed are shown below.

112

System design: model-based testing

5.1.1 Single working point MIL testing

To perform this kind of test, procedure described in subsection 4.2.4 related
to Single working point test must be adopted to set properly MTM Simulink
model and to load needed variables into MATLAB workspace. At the end
of simulation, four .mat files in selected path, as shown in figure 5.2, are
created: T.mat file containing torque values sensed by torque sensor on
test motor’s shaft, w.mat file containing rotational speed values measured
by rounds per minute measurement system attached to test motor’s shaft,
bm__ I sensor.mat and tm__I sensor.mat files containing respectively bench
and test motor phase current values sensed by current sensors.

Current Folder ®
E Name &
slprj
H bm_I_sensor.mat
@ CONTROL_LOGIC.slxc
_ﬂ CONTROL_LOGIC_msf.mexmaci64
ﬂ CONTROL_MIL_INTERFACE_2_0_msf.mexmaci64
% CONTROL_MIL_INTERFACE_2_0.sIxc
| ENVIRONMENT.slxc
ﬂ ENVIRONMENT_msf.mexmaci64
@ ModularTechnicalModel_MIL.sIxc
@ PLANT.sIxc
#] PLANT_msf.mexmaci64
| single_torque_single_rotational_speed_value.m
H T.mat
22} tm_|_sensor.mat
] w.mat

Details v

Select a file to view details

Figure 5.2: Single working point MIL testing path

Once these files have been obtained, single_working point.m file, whose
MATLAB code is shown in figure 5.3, can be used to obtain desired test motor
mechanical and electrical characteristics related to that considered working
point. Before to run this file, some specific variables have to be defined: V__bm
and V__tm representing voltage values used to provide respectively bench
and test motor Simulink blocks, n representing stored samples’ number for
each interesting parameter, ¢ representing considered simulation time, sample
representing sample time considered for Simulink ToFile blocks implemented
in HMI subsystem to store interesting values,theta__amb and theta_tm_ max
representing respectively ambient temperature and maximum reachable test
motor temperature (measured in K), ¢_tm representing specific heat capacity
that is evaluated on the basis of used materials to build test motor (measured
in J/(K kg)), m_tm representing test motor weight (measured in kg).

113

System design: model-based testing

1- clear all EE P_shaft_vec(i,1)=T_vec(i,1)xw_rads_vec(i,1);
2- close all a4
3- cle 45- lend
a 46
5 sssinput_data 47 sdissipated_power
6- load('bm_I_sensor.mat') 48 - O for i=l:1:n
7- load('tm_I_sensor.mat') 49
8- load('T.mat') 50 - P_d_bm_vec(i,1)=-P_a_bm_vec(i,1)-P_shaft_vec(i,1);
9- load('w.mat") 51 - P_d_tm_vec(i,1)=-(P_a_tm_vec(i,1)-P_shaft_vec(i,1));
10 52
ilil|= T_vec=(T(2,:))"; EB)|= end
12 -)Y 54
8= T) bm_I_sensor(2,:))'; 55 %srendimento
14 - tm_I_sensor_vec=(tm_I_sensor(2,:))'; 56 - for i=1:1:n
15 57
16 %set parameters 58 - eta_tm_vec(i,1)=P_shaft_vec(i,1)*inv(P_a_tm_vec(i,1));
17 - 59
18 - 60 - end
19 61
20 - 001; %number of samples stored for each interesting parameters 62 stotal_current_demand
21- t=200; %s considered to perform simulation 63- o for i=l:1:n
22- sample=0.1; %sample time used to store interesting variables 64
23 65 - T_tot_vec(i,1)=bm_I_sensor_vec(i,1)+tm_I_sensor_vec(i,1);
24 - theta_amb=293.15; %K ambient temperature 66
25- theta_tm_max=453.15; %K max temperature that can be reached by moto 67- Lend
2 ... (isulation class H) 68
27 69 sstotal_absorbed_power
28 - 00; %specific heat capacity (J/(K kg)) considering iron and c 70 - for i=1:1:n
29 - 5; %test motor weight (kg) 71
30 72|= P_a_tot_vec(i,1)=P_a_bm_vec(i,1)+P_a_tm_vec(i,1);
31 73
2 sesparameters_computation: 74 - Lend
33 75
34 ssabsorbed_pover 76 stotal_dissipated_power
35- P_a_bm_vec=-V_bmkbm_I_sensor_vec; 77- Sfor i=l:1:n
36 - P_a_tm_vec=V_tmktm_I_sensor_vec; 78
37 79 - P_d_tot_vec(i,1)=P_d_bm_vec(i,1)+P_d_tm_vec(i,1);
38 smechanical_power 80
39 - w_rads_vec=w_rpm_vec*2*pi/60; 81 - end
40 82
41- G for i=l:1:n 83
2 84 %eta_percentage
43 - P_shaft_vec(i,1)=T_vec(i,1)*w_rads_vec(i,1); 85
4 86 - eta_tm_perc_vec=10@xeta_tm_vec;
45- lend a7
87 o[- extiie
88 %temperature 115 - plot(t_vec,T_vec,'r'), grid on
pos 116 - title('Test motor Torque')
90 - for i=l:1:n 117 - xlabel('t [s1')
91 118 - ylabel('T [Nm]*)
9 - R_th_tm_vec(i,1)=theta_tm_max/P_d_tm_vec(i,1); 119 - legend('T')
o3 120 - nexttile
94- lend 121 - plot(t_vec,tm_I_sensor_vec), grid on
e 122 - title('Test motor current')
96 - C_th_tm=c_tmxm_tm; S%termal capacity 123- xlabel('t [s]')
97 - tau_th_tm_vec=C_th_tmxR_th_tm_vec; 1247 ylabel("I [A]*")
98- tau_th_tm_vec=—tau_th_tm_vec; 125 - legend('I')
99 126 - nexttile
100 - © for i=1:1:n 127 - plot(t_vec,eta_tm_perc_vec,'r'), grid on
101 128 - title('Test motor efficiency')
102 - theta_tm_vec(1,1)=theta_amb+((P_d_tm_vec(i,1)*R_th_tm_vec(i,1)): 129 - xlabel('t [s1')
103 130 - ylabel('\eta [%]')
204- Lend 131- legend('\eta')
105 132 - nexttile
106- t_vec=0:sample:t; 133- plot(t_vec,P_a_tm_vec,'r'), grid on
107 - tiledlayout(4,2) 134 - title('Test motor absorbed power')
108 - nexttile SIS xlabel('t [s]')
109 - plot(t_vec,w_rpm_vec,'r'), grid on 136 - ylabel('P_{a} [kW]')
110 - title('Test motor speed rotational speed') 137 - legend('P_{a}')
11~ xlabel('t [s]') LER nexttile
112- ylabel('\omega [rpn]') 139 - plot(t_vec,P_d_tm_vec,'r'), grid on
13- legend('\omega') 140 - title('Test motor power shaft')
114 - nexttile 141 - xlabel('t [s]')
115 - plot(t_vec,T_vec,'r'), grid on 142 - ylabel('P_{d} [kW]')
116 - title('Test motor Torque') 13- legend('P_{d}')
17- xlabel('t [s]*) LUy nexttile
18- ylabel('T [Nml') 145 - plot(t_vec,theta_tm_vec,'r'), grid on
119~ legend('T') 146 - title('Test motor temperature')
120 - nexttile 147 - xlabel('t [s]')
121- plot(t_vec,tm_I_sensor_vec), grid on 148 - ylabel('\theta [K]')
122 - title('Test motor current') 149 - legend('\theta')
123- xlabel('t [s]*) SOy nexttile
14~ ylabel('I [A]") 151 - plot(t_vec,P_a_tot_vec,'b'), grid on, hold on
125 - legend('I") 152 - plot(t_vec,P_d_tot_vec,'r")
126 - nexttile 153 - title('Power recirculating effect')
= plot(t_vec,eta_tm_perc_vec,'r'), grid on 154 - xlabel(:t [s1"))
128 - title('Test motor efficiency') 155 - ylabel(*P_{a} P_{d} [Wl")
129 - xlabel('t [s]') 156 - legend('P_{a}','P_{d}")
130 - ylabel('\eta [%]') 157
131- legend('\eta') 35

Figure 5.3: Single__working_point.m’s MATLAB script

Once this is done, MATLAB single working_point.m script can be run to
obtain results below shown (figure 5.4) where test motor is tested considering
the working point that corresponds to intersection between 20 Nm and 366.52
rad/s in w”T plane. Chosen torque value is used to pilot test motor while
chosen rotational speed value is used to pilot bench motor.

114

ing

model-based test

System design

(il °d

[s]1 [s]1
00} 06 08 oL 09 0 oy 0 0z ot 0 004 06 08 oL 09 0s oy 0 0z ot 0
O T T T T T T T T T 7 0002- T T T T T T T T T ove
r Zee1- — -+ 0001~
v2Eek- A J o L ooz
€3ILX N . <
L =0 o =
YZECL A K E 3
- = - 082
S - 000k 99€'862 A
[—] £2LX |
; ; ; 4 0002 — 1 ooe
10940 Bunenaioal Jamod ainjesodway Jojow 33
[s]+ [s]1
06 08 oL 09 0 oy 0 0z ot 0 004 06 08 oL 09 0s oy 0 0z ot 0
T T T T T T T T T T T T T T T T T T 0005~
. I
—|
r 199'V25- A 70 - L o
€3ILX o
=
= - 0002 .
= L 88'LLOL A - 000§
€3ILX
- M
P — { ooor s |
I | | . I | | | 00001
yeys somod Jojow 3so) Jomod paglosqe J0jow IsaL
[s]+ [s]1
00} 06 08 oL 09 0 oy 0 0z ot 0 004 06 08 oL 09 0s oy 0 0z ot 0
T T T T T T T T T 0 T T T T T T T T T 00}~
W = - 0s-
| = L 0o =
= ,, - 08 Wu >
2191°€6 A ,, [WZ'oLE A 1%
€3ILX \
“ -] ezLX iy 1 oot
N I I I I 001 I I I | —
Aouaroye Jojow 3so) juUa.UNS Jojow 3S91
[s]+ [s]1
00} 06 08 oL 09 0 oy 0 0z ot 0 004 06 08 oL 09 0s oy 0 0z ot 0
F T T T T T T T T T \\ 0 T T T T T T T T T 0
L 1g = - 000+
4 €
L {012 F o000z g
3 . 3
= S0°00S€ A =
H S'6L A BT - £2LX - 000€
0z - - - - - - 000%
anbuao] Jojow 3sa) peads |euonejos paads Jojow 3s9)

ing

int results in system design phase MIL test
115

ing po

Single worki

Figure 5.4

System design: model-based testing

5.1.2 Nominal power working point MIL testing

To perform this test, procedure described in subsection 4.2.4 related to
Nominal power working point test must be adopted to set properly MTM
Simulink model and to load needed variables in MATLAB workspace. At the
end of simulation, the same .mat file described in previous case are generated
inside selected path that can be used to obtain desired test motor mechanical
and electrical characteristics related to working points covered during testing.
To obtain these desired characteristics nominal _power__working point.m
file, shown in figure 5.6, can be used where the same variables described in
previous case have to be defined before to run MATLAB script.

1- clear all O

2- close all 6 «dissipated_power

3- cle a7

4 48 - Cfor isl:lin

5 sesinput_data 49

6- load('bn_I_sensor.nat') 50 - P_d_bn_vec(i,1)=-P_a_bn_vec(i,1)-P_shaft_vec(i,1);
7- load('tn_I_sensor.mat') 51 - P_d_tn_vec(i,1)=—(P_a_tm_vec(i,1)-P_shaft_vec(i,1));
8- load('T.nat') 52

9- load('w.mat')| 53- “end

10 54

1 - T_vec=(T(2,:))"; 55 %rendimento

12 - w_rpm_vec=(w(2,:))"; 56

13- bm_I_sensor_vec=(bn_I_sensor(2,:))"; 57- cfor i=lilin

14 - tm_I_sensor_vec=(tm_I_sensor(2,:))"'; 58

15 59 - eta_tm_vec(i,1)=P_shaft_vec(i,1)*inv(P_a_tm_vec(i,1));
16 sset parameters 60

17 - B 61- “end

18 - B 62

19 63 stotal_current_demand

20 - snunber of samples stored for each interesting parameters 64

21 - %s considered to perform simulation 65 - Cifor i=l:lin

22- sample=d.1; %sample time used to store interesting variables 66

23 67 - J_tof_vec(i,1)=bm_I_sensor_vec(i,1)+tn_I_sensor_vec(i,1);
24- theta_amb=293.15; %K ambient temperature 68

25- theta_tm_max=453.15; % max temperature that can be reached by moto 69- end

2 ... (isulation class H) 70

27 7 stotal_absorbed_pover

28~ c_tm=400; %specific heat capacity (J/(K kg)) considering iron and ci 72

29- m_tm=25; %test motor weight (kg) 73- Gfor islilin

30 2

E sssparameters_computation: 75 - P_a_tot_vec(i,1)=P_a_bn_vec(i,1)+P_a_tm_vec(i,1);
2 76

3 ssabsorbed_power 77- “end

34~ P_a_bm_vec=-V_bmxbm_I_sensor_vec; 78

35 - tmktm_I_sensor_vec; 79 stotal_dissipated_power

36 80

37 ssmechanical_power 81- Sfor islilin

38~ w_rads_vec=w_rpm_veck2+pi/60; 8

39 8- P_d_tot_vec(i,1)=P_d_bm_vec(i,1)+P_d_tm_vec(i,1);
40 - Cfor isl:lin 84

a 85 - -end

a2- P_shaft_vec(i,1)=T_vec(i,1)#_rads_vec(i,1); 86

3 87

4= lend 88 seta_percentage

4 20

7 L] (5= PUUTTI_VEC, (I SENSuT_veCs; grIo or
8 eta_percentage 127 - title(Test motor current')

@ 18- xlabel('t [s]')

9 - eta_tm_perc_vec=100xeta_tm_vec; 1297 ylabel('1 [Al')

o 130 - legend('I')

92 sstemperature oy nexttile

& 132~ plot(t_vec,P_shaft_vec,'r'), grid on
95~ @for iclilin 133~ title("Test motor power shaft')

& 134~ xlabel('t [s]')

9% - R_th_tm_vec(i,1)=theta_tm_max/P_d_tm_vec(i,1); 135 - ylabel(*P_{shaft} [iW]®)

o7 136 - legend('P_{shaft}')

o5~ Lend 137 - nexttile

a0 138 - plot(t_vec,P_a_tm vec,'r'), grid on
108 - C_th_tmec_tmm_tm; Sternal capacity 139 - title("Test motor absorbed power')
101 tau_th_tm_vec=C_th_tmR_th_tm_vec; 140 - xlabel('t [s1')

102 - tau_th_tm_vec=—tau_th_tm_vec; 141 - ylabel('P_{a} [kil')

ap 142 - legend('P_{a}')

104 - ©for i=l:lin qasiy nextrile

105 144 - plot(t_vec,P_d_tm_vec,'r'), grid on
106 - theta_tm_vec(i,1)=theta_amb+((P_d_tm_vec(i,1)R_th_tm_vec(i,1)) 145 - title('Test motor dissipated power')
107 146 - xlabel('t [s]")

- 147 - ylabel('P_{d} [kul')

i 148 - legend('P_{d}')

o splots 149 - nexttile

1U1- tovecs[o:sampleit]'; 150 - plot(t_vec,eta_tm_perc_vec,'r'), grid on
12~ tiledlayout(3,3) 151 - title(Test motor efficiency')

13- nexttile 152~ xlabel('t [s]")

114 - plot(t_vec,w_rpm_vec,'r'), grid on 153 - ylabel('\eta [%]')

115 - title(Test motor speed rotational speed') 154 - legend("\eta')

16~ xlabel('t [s]') 155 - nexttile

107~ ylabel('\omega [rpn]') 156 - plot(t_vec, theta_tm_vec,'r'), grid on
18- legend('\omega') 157 - title(Test motor temperature')

19- nexttile 158 - xlabel('t [s]")

120 - plot(t_vec,T_vec,'r'), grid on 159 - ylabel('\theta [K]")

121- title('Test motor Torque') a6a - legend(*\theta’)

122- xlabel('t [s]') Pl nextrile

13- ylabel('T (Nml') 162 - plot(t_vec,P_a_tot_vec,'b’), grid on, hold on
124~ legend('T') 163 - plot(t_vec,P_d_tot_vec,'r')

125- nexttile 164 - title("Power recirculating effect')
126 - plot(t_vec,tm_I_sensor_vec), grid on 165 - xlabel('t [s]')

127 - title('Test motor current') 166 - ylabel('P_{a} P_{d} [w]")

128 - xlabel('t [s]') 167 - legend('P_{a}','P_{d}')

129~ ylabel('I [A]') s

130 - legend('I') 150

131- nexttile 10

Figure 5.5: Nominal__powe_working point.m's MATLAB script

Running this MATLAB file, results shown in figure 5.7 can be obtained.

116

System design: model-based testing

Here, rotational speed and torque values increase with a step trends until
their nominal values are reached (523.6 rad/s and 20 Nm). Each step lasts
25 s that is equal to user considered delay value to change used rotational
speed and torque values to pilot bench and test motor. For each pair of
rotational speed and torque values a working point is defined and for it test
motor characteristics are computed. Here, a very interesting parameter to
be considered is reached temperature once nominal power working point is
selected (last step). In that point, reached temperature is 319.86 K (about
47 °C) so it is far from acceptable maximum temperature value (453.15 K,
about 180 °C).

300
300
300

[—
250
250
4‘ f—
.
250

t
200

150
tlsl
Test motor dissipated power

100
Power res

100

300
300

250
250
==
250

200
200

150
tls)
150
tls)

Test motor Torque

100
100

Test motor absorbed power
Test motor temperature

g = o v o e

15000
10000

300

—
250 300
=

200

100

Test motor speed rotational speed
150
tis]
Test motor power shaft

Figure 5.6: Nominal power working point results in system design phase MIL
testing

117

System design: model-based testing

5.1.3 Torque curves MIL testing

To perform this test, procedure described in subsection 4.2.4 related to Torque
curves test must be adopted to set properly MTM Simulink model and to
load needed variables in MATLAB workspace. In this case, like previous
ones, at the end of simulation the same four .mat files are created in selected
path that can be adopted to evaluate desired test motor torque curves. To
obtain these, Torque__curves.m file shown in figure 5.6 must be used where
besides to define the same variables considered in previous cases, T test
variable must be defined that represents torque value considered to pilot

electric motor under test.

1- clear all U [a6 - P_d_bm_vec(i,1)=-P_a_bm_vec(i,1)-P_shaft_vec(i,1);
2- close all a7 - P_d_tm_vec(i,1)=-(P_a_tm_vec(i,1)-P_shaft_vec(i,1));
3- cle 8

4 49- lend

5 swinput_data 50

6- load('bm_I_sensor.mat') 51 srendimento

7- load('tm_I_sensor.mat') 52 - ©for i=l:l:n

8- load('T.mat') 53

9- load('w.mat') 54 - eta_tm_vec(i,1)=P_shaft_vec(i,1)*inv(P_a_tm_vec(i,1));
10 55

1- T_vec=(T(2,:))'; 56- end

12 - vi_rpm_vec=(w(2,:))"; 57

13- bm_I_sensor_vec=(bn_I_sensor(2,:))'; 58 stotal_current_demand
14 - tm_I_sensor_vec=(tm_I_sensor(2,: B for i=1:1:n

15 60

16 %set parameters 61- I_tot_vec(i,1)=bm_I_sensor_vec(i,1)+tm_I_sensor_vec(i,1);
17- V_bm=96; %V 62

18- V_tm=66; %V 63- lend

19 - T_test=20; %torque value considered to perform test 64

20 - snumber of samples stored for each interesting parameters 65 sstotal_absorbed_power
21- t=500; %s considered to perform simulation 66 - [for i=l:lin

22- sample=25; %sample time used to store interesting variables 67

23- theta_amb=293.15; %K ambient temperature 68 - P_a_tat_vec(i,1)=P_a_bm_vec(i,1)+P_a_tm_vec(i,1);
24 - theta_tm_max=453.15; %K max temperature that can be reached by moto 69

25 ... (isulation class H) 70- lend

26 - c_tm=400; %specific heat capacity (J/(K kg)) considering iron and ci 7

27 - m_tm=25; %test motor weight (kg) 72 %total_dissipated_power
28 73- for i=l:lmn

20 sssparameters_computation: 74

30 %absorbed_power 75 - P_d_tot_vec(i,1)=P_d_bm_vec(i,1)+P_d_tm_vec(i,1);
31- P_a_bm_vec=-V_bmkbm_I_sensor_vec; 76

32- P_a_tm_vec=V_tmktm_I_sensor_vec; 77- lend

33 78

34 smechanical_power 79 weta_percentage

35- w_rads_vec=w_rpm_vecx2+pi/60; 80

36 81- eta_tm_perc_vec=100xeta_tm_vec;
37- Gfor i=l:lin 82

38 83 stemperature

39 - P_shaft_vec(i,1)=T_vec(i,1)#w_rads_vec(i,1); 84

40 85 - [for i=l:l:n

41- lend 86

2 87 - R_th_tm_vec(i,1)=theta_tm_max/P_d_tm_vec(i,1);
43 sdissipated_power 88

44 - for i=l:l:n 8- lend

a5 an

%

91 - _th_tm=c_tm#m_tm; %termal capacity

92 - tau_th_tm_vec=C_th_tmR_th_tm_vec;

93- tau_th_tm_vec=-tau_th_tm_vec;

94

95 - G for i=l:l:n

9%

97 - theta_tm_vec(i,1)=theta_amb+((P_d_tm_vec(i,1)*R_th_tm_vec(i,1))*(1-exp(~(t/(tau_th_tm_vec(i,1))))));
98

99 - lend

100

101 splots

102 - t_vec=[0:sample:t]';

103 - tiledlayout(3,1)

104 - nexttile

105 - [hAX,hLinel,hLine2] = plotyy(w_rpm_vec,eta_tm_perc_vec,w_rpm_vec,P_shaft_vec), grid on, hold all;

106 - plot(w_rpm_vec,T_vec,'n')

107 - set(hLinel,'color','red');

108 - set(hLine2,'color’,'blue’);

109 - set(hAx,{'ycolor'},{'k';'k'})

110 - set(hAx(1),'YTick',[0:5:100])

11 - set(hAx(2),'YTick',[0:1:20])

112~ title(['Results considering T = ', num2str(T_test), ' Nm'l)

13- xlabel('\omega [rpm]’)

114 - ylabel(hAx(1),'\eta [%] T [Nml') % left y-axis

115 - ylabel(hAx(2),'P_{shaft} [kW]') % right y-axis

116 - legend('\eta','T','P_{shaft}')

117 - nexttile

118 - plot(t_vec,P_a_tot_vec,'b'), grid on, hold on

119 - plot(t_vec,P_d_tot_vec,'r')

120 - title('Power recirculating effect')

121- xlabel('t [s]')

122 - ylabel('P_{a} P_{d} [W]")

123~ legend('P_{a}','P_{d}')

124 - nexttile

125 - plot(t_vec,theta_tm_vec,'r'), grid on

126 - title('Test motor temperature')

127 - xlabel('t [s]')

128 - ylabel('\theta [K]')

129 - legend('\theta')

130

Figure 5.7: Torque__curves.m’s MATLAB script
Running this MATLAB file, results shown in figure 5.8 can be obtained.

118

System design: model-based testing

Here, in the first graph efficiency, motor shaft power and torque trends
are shown while in second graph temperature trend is shown by means
test motor’s temperature can be taken under control (it is very important
that it does not overcome maximum admissible value to avoid problems
with electrical circuits implemented inside), and in third graph absorbed
and dissipated power trends are shown in order to check whether power
recirculating effect is verified or not.

o0 Thm)

Tost motortomperature.

Figure 5.8: Torque curves results in system design phase MIL testing

119

System design: model-based testing

5.1.4 3D maps MIL testing

To perform this test, the procedure described in subsection 4.2.4 related
to 3D maps test must be adopted to set properly MTM Simulink model
and to load all needed variables into MATLAB workspace. Also in this case,
like all the previous cases, at the end of simulation in selected path four
.mat files are generated containing interesting parameter values that can be
used to obtain desired test motor 3D efficiency and dissipated power maps
and electric and mechanical characteristics related to all working points
considered during test. To do this, at the end of simulation maps.m file can
be used to obtain desired efficiency and dissipated 3D maps. Here, besides
to define all variables described in the first case, some parameters have
to be defines such as: T_sampling representing considered torque values’
number for selecting all desired working points, w__sampling representing
considered rotational speed values’ number to select desired working points,
w_eff _bp_wvec _test and T eff bp wvec test that represent respectively
considered rotational speed and torque.

clear all @

1
2 close all a7 smechanical_power

3 cle 48 - w_rads_vecsw_rpn_veck2+pi/60;

4 49

5 ssinput_data 50 - o for i=l:1:n

6- load('bm_I_sensor.mat') 51)))

7 Toad("tm_I_sensor.mat') 52 - P_shaft_vec(i,1)=T_vec(i,1)#w_rads_vec(i,1);

8- load('T.mat") 53

9- load('w.mat') 54- lend

10 55

1- T_vecs(T(2,:))'; 56 ssdissipated_power

12 - w_rpm_vec=(w(2,:))"; 57- @ for i=l:lin

13- bm_I_sensor_vec=(bn_I_sensor(2,:))"; 58))

14 - tm_I_sensor_vec=(tm_I_sensor(2,:))"'; 59 - P_d_bm_vec(i,1)=-P_a_bm_vec(i,1)-P_shaft_vec(i,1);
15 o - o 60 - P_d_tn_vec(i,1)=-(P_a_tm_vec(i,1)-P_shaft_vec(i,1));
16 - T_vec(1,:)=[1; G

17 - w_rpm_vec(1,:)=[1; 62- lend

18- bm_Isensor_vec(1,:)=[1; s

19- tm_I_sensor_vec(1,:)=[1; 64 ssrendimento

20 65 - [for i=l:l:n

21 %set parameters 66 . .
2- V_bm=96; %V 67 - eta_tm_vec(i,1)=P_shaft_vec(i,1)xinv(P_a_tm_vec(i,1));
23- V_tm=66; %V 68

24 69 - end

25 - n=52500; %number of samples stored for each interesting parameters 70

26 - t=525; %s considered to perform simulation 71 %total_current_demand

27 - sample=@.1; %sample time used to store interesting variables 7§ - for i=l:l:n

28 K&

20- theta_amb=293.15; %K ambient temperature 74 - I_tot_vec(i,1)=bm_I_sensor_vec(i,1)+tm_I_sensor_vec(i,1);
30 - theta_tm_max=453.15; %K max temperature that can be reached by moto I

31 «+«(isulation class H) 76 - “end

32 77

33- c_tm=400; %specific heat capacity (J/(K kg)) considering iron and ci 78 sstotal_absorbed_power

34- m_tm=25; %test motor weight (kg) 79 - ©for i=l:l:n

35 80

36 - T_sampling=10; 81 - P_a_tot_vec(i,1)=P_a_bm_vec(i,1)+P_a_tm_vec(i,1);
Ly w_sampling=20; 82

38- w_eff_bp_vec_test=[104.7198 209.4395 314.1593 366.5191 418.879 471.! 8= "end

39- T_eff_bp_vec_test=[15 24 43 62 83]; &

40 85 stotal_dissipated_power

41 %%parameters_computation: 86 - for i=1:1:n

42 87

a3 ssabsorbed_power 88 - P_d_tat_vec(i,1)=P_d_bm_vec(i,1)+P_d_tm_vec(i,1);
44 - P_a_bm_vec=-V_bm«bm_I_sensor_vec; 89

45 - P a tm vec=V tmxtm I sensor vec; 90 - end

120

System design:

model-based testing

0 [] [136= yt@ueTy \Omega TP T
92 seta_percentage 137 - legend('\omega')

93 138 - nexttile

9 eta_tm_perc_vec=100+eta_tm_vec; 139 - plot(t_vec,T_vec,'r'), grid on

9 140 - title('Test motor Torque')

% stemperature 141- xlabel('t [s]')

97 142 - ylabel('T [Nm]')

%8 for i=1lilin 143- legend('T')

% 144 - nexttile

100 R_th_tm_vec(i,1)=theta_tm_max/P_d_tm_vec(i,1); 145 - plot(t_vec,tm_I_sensor_vec), grid on

101 146 - title('Test motor current')

102 end 147 - xlabel('t [s]')

103 148 - ylabel('I [A]")

104 C_th_tm=c_tmkn_tm; Sstermal capacity 149 - legend('I')

105 tau_th_tm_vec=C_th_tm+R_th_tm_vec; 150 - nexttile

106 tau_th_tm_ve tau_th_tm_vec; 151 - plot(t_vec,eta_tm_perc_vec,'r'), grid on

107 152 - title('Test motor efficiency')

108 for i=l:l:n 153 - xlabel('t [s]')

109 154 - ylabel('\eta [%]')

110 theta_tm_vec(i,1)=theta_amb+((P_d_tm_vec(i, 1)*R_th_tm_vec(i,1)): 155 - legend('\eta')

m 156 - nexttile

12 end 157 - plot(t_vec,P_a_tm_vec,'r'), grid on

113 158 - title('Test motor absorbed power')

114 splots 159 - xlabel('t [s]')

115 t_vec=[0:sample: t+T_sampling]'; 160 - ylabel('P_{a} [kwl')

116 t_vec(1,:)=[]; 161 - legend('P_{a}')

117 tiledlayout(3,3) 162 - nexttile

118 nexttile 163 - plot(t_vec,P_d_tm_vec,'r'), grid on

119 [hAx,hLinel,hLine2] = plotyy(w_rpm_vec,eta_tm_perc_vec,w_rpm_vec,P_: 164 - title('Test motor dissipated power')

120 plot(w_rpm_vec,T_vec, 'm') 165 - xlabel('t [s]*)

121 set(hLinel, 'color’, 'red'); 166 - ylabel('P_{d} [kw]l')

122 set(hLine2, ‘color’, ‘blue'); 167 - legend('P_{d}')

123 set(hAx,{'ycolor'},{'k"'; 'k'}) 168 - nexttile

124 set(hAx(1),'YTick", [00]) 169 - plot(t_vec,theta_tm_vec,'r'), grid on

125 set(hAx(2),'YTick", [0]) 170 - title('Test motor temperature')

126 T_test=20; 171~ xlabel('t [s]')

127 title(['Results considering T = ', num2str(T_test), ' Nm']) 172 - ylabel('\theta [K]')

128 xlabel('\omega [rpm]') 173 - legend('\theta')

129 ylabel(hAx(1), '\eta [%] T [Nml') % left y-axis 174 - nexttile

130 ylabel(hAx(2),'P_{shaft} [kW]') % right y-axis 175 - plot(t_vec,P_a_tot_vec,'b"), grid on, hold on
131 legend('\eta','T"','P_{shaft}') 176 - plot(t_vec,P_d_tot_vec,'r')

132 nexttile 177 - title('Power recirculating effect')

133 plot(t_vec,w_rpm_vec,'r'), grid on 178 - xlabel('t [s]*)

134 title('Test motor speed rotational speed') 179 - ylabel('P_{a} P_{d} (W]")

135 xlabel('t [s]") 180 - legend('P_{a}','P_{d}'

177 title('Power recirculating effect') Ll [z = xo=u;

178 xlabel('t [s]') b x1=max(speed(:))+0.05*max (speed(:));

179 ylabel('P_{a} P_{d} [W]') @ toolstrip| nx=x1/w_increasing;

180 - legend(‘P_{a}', P_{d}' e

= 224 - yl=max(torque(:))+0.01xmax(torque(:));

182 T_matrix=reshape(T_vec, [t/sample,T_sampling]); 225 - y1/((T_end-T_start)/T_sampling);

183 w_rpm_matrix=reshape(w_rpm_vec, [t/sample,T_samplingl); 226 - x=linspace(x@,x1,nx);

184 w_rads_matrix=reshape(w_rads_vec, [t/sample, T_samplingl); 227 - y=linspace(y8,y1,ny);

185 eshape (P_a_bm_vec, [t/sample,T_sampling]); 228 - [X,Y]=meshgrid(x,y);

186 _tm_vec, [t/sample,T_samplingl); 220 - z=griddata(speed,torque,efficiency,X,Y);
187 reshape(P_a_tot_vec, [t/sample, T_sampling]l); 230 - contourf(X,Y,Z), grid on, hold all

188 eshape (P_d_bm_vec, [t/sample, T_sampling]); 231 - Vs :5:100];

189 _tm_vec, [t/sample,T_sampling]); 232 - [ontour(X,Y,Z,val, "k--");

190 >_d_tot_ reshape(P_d_tot_vec, [t/sample, T_sampling]); 233 - clabel(C,val);

191 P_shaft_matrix=reshape(P_shaft_vec, [t/sample, T_sampling]); 234 - xlabel('Speed [rpm]','fontweight','bold","fontsize',10);
192 bm_I_sensor_natrix=reshape(bm_I_sensor_vec, [t/sanple,T_sampling]); 235~ ylabel('Torque [Nm]','fontweight','bold',"fontsize',10);
193 tm_I_sensor_matrix=reshape(tm_I_sensor_vec, [t/sample,T_sampling]); 236 - colormap(jet);

194 I_tot_matrix=reshape(I_tot_vec, [t/sample, T_sampling]); 237 - h=colorbar;

195 eta_tm_perc_matrix=reshape(eta_tm_perc_vec, [t/sanple, T_sampling]); 238 - set(get(h, 'label’), 'string’, 'Efficiency map (%)', ‘fontweight’,
196 239

197 ssubstitute_first_column_elements: 2% %dissipated_power_map

198 241 - figure,

199 T_matrix(:,1)=I0]; 242 - speed=(w_rpm_matrix)."

200 P_shaft_matrix(:,1)=[0]; 243 - torque=(T_matrix)."

201 eta_tm_perc_matrix(:,1)=[0]; 244 - dissipated_power=(P_d_tm_matrix)."

202 245 - x0=0;

203 semaps : 246 - x1=max(speed(:))+0.05nax(speed(:));

204 w_eff_bp_vec_bench=[104.72 209.44 314.16 366.52 418.88 471.24 523.6 62 247 - nx=x1/w_increasing;

205 w_max_bench=max (w_eff_bp_vec_bench); 248 - y0=0;

206 W_max_test=max (w_eff_bp_vec_test 249 - yl=max(torque(:))+0.01xmax(torque(:));

207 w_max=min(w_max_bench,w_max_test); 250 - y1/((T_end-T_start)/T_sampling) ;

208 w_increasing=w_max/w_sampling; Lif inspace(x@,x1,nx);

209 T_start=0; 252~ y=linspace(y®,yl,ny);

210 T_eff_bp_vec_bench=[2.4 4.3 11.4 13,8 15.2 20.9 26.9]; 253 - [X,Y] = meshgrid(x,y);

211 T_m_max_bench=max(T_eff_bp_vec_bench); 254 - 7 = griddata(speed, torque,dissipated_power,X,Y)
212 T_m_max_test=max(T_eff_bp_vec_test); 255 - contourf(X,Y,Z), grid on, hold all

213 T_end=min(T_m_nax_bench, T_m_max_test); 2

o1 257 - [Cl=contour(X,Y,Z,val," 5

215 sefficiency_map 258 - clabel(C,val);

216 figure, 259 - xlabel('Speed [rpm]','fontweight','bold",'fontsize',10);
217 speed=(w_rpm_natrix).* 260 - ylabel('Torque [Nm]','fontweight','bold','fontsize',10);
218 torque=(T_matrix)." 261 - colormap(jet);

219 efficiency=(eta_tm_perc_matrix)." 262 - h=colorbar;

220 x0=0; 263 - set(get(h, 'label'), 'string', 'Dissipated power (W)', 'fontweight
221 x1=max (speed(:))+0.054max (speed(:)) : 254

Figure 5.9: 3D_ maps.m’s MATLAB script

Running this MATLAB script, results shown in following figures are
obtained. Here, besides dissipated power and efficiency 3D maps also me-
chanical and electrical characteristics are shown from which all selected
working points to evaluate test motor’s behavior can be distinguished and
for each of them corresponding parameter values can be read. Moreover, also
temperature trend is shown where reached temperature values are shown.

121

System design: model-based testing

Torque [Nm]

00

00

o 1000 2000 3000
Speed [pm]

Figure 5.10: Dissipated power 3D map result in system design phase MIL
testing

%
£
70
60
50
£
2
)
g -
s 0
30

4000 5000 6000

0 1000 2000

3000
Speed [rpm]

Figure 5.11: Efficiency 3D map result in system design phase MIL testing

122

Efficiency map (%)

System design: model-based testing

Islh [s]+ [s]+
0009 000G 000y O00OE 000Z 00Ok 0 0009 0005 000y O00OE 000Z 00Ok 0 0009 0005 000y O00OE 000Z 00Ok 0
000e- 062 . oopk-
f ,J A 0002~ 1 1 4 00e oozt~
ALY \ / \ / \ i
\J \. /f _,; // R \ ook / \\ J { \ aray aie ; / | J / 000k
| R ARNIRANIAN AN NI ® {1/ | | foze o /_ 008~
P A [s i k u
5 / [h I | | oso \ / k, | / \ 009
/ \ 000k [| - I Jove / ,/ A f L \ / oop-
\ /
0002 \ \ | 00z-
] =) == AN ARV A AR
000e 098 0
100y)0 BuneNoIval JeMmod ainjesadwe} Jojow 1S9 Jamod pajedissip Jojow }sa)
[T+ [sh [s]%
0009 0005 000y 00OE 000Z 00Ok o 0009 0005 000y 00OE 000Z 00Ok L 0008 0002 00Ok °%

T~
\\ <\ |/ o

T = i
\ ;\

,;H i \ / 0007 \

I 0009 x ,/ 0o = 00k 5
| z = =
] H ¥ z =
f \ \ 0008
\ 05 ost
k 00004 ¥ ¥ \
P— A NN i
00024 00k 00z
Jemod pagiosqe 010w 1sa) Kouaioyge Jojow 1sa) uaLN Jojouysal
[s]+ [l [wdi] »
0009 0005 000F 000S 0002 00Ok o 0009 0005 000F 000S 000Z 00Ok 0 o 0005 000y 000E 0002 00Ok 0
N\
| o 0 P \\ D
bL/L . 000+ - -
i o =
*/L = ooz £ % K
A ﬁ/[o0z N .
A ﬁ,l EX oooe 3. B — =
st
/ \ 7 ; = 000% 2
\
- 0z 0008
L—] = ————
4 0009 L
@nbioy Jojow s8] paads [euonejos paads Jojow i3s3 WN 02 = 1 Bulapisuoo synsay

il °d

Figure 5.12: Test motor parameter trends in system design phase MIL testing
123

System design: model-based testing

5.2 SIL testing

This test allows to check corresponding Control Logic C code’s behavior to
understand whether it allows to obtain the same results obtained in MIL
testing case. Here, first of all Control Logic’s C code has to be obtained
and then running it in development machine such as also plant’s model
results have to be obtained in order to compare them to those obtained in
MIL testing case. To obtain Control Logic’s C code, reference model’s block
parameters window must be opened and from Simulation mode drop-down
menu Software- in-the-loop (SIL) must be chosen, as shown in figure 5.13.

[

J7]
I [] Block Parameters: CONTROL_LOGIC
— Model Reference
o2 Reference the specified model.

=
T
{5} M Instance paramet
g
= Model name:

1 . CONTROL_LOGICslx Browse... Open Model

f ‘

mode: i he-loop (SIL) [C)

Code interface: | Model reference ()

Model events sil

Show mod
Show m

Schedule rates

= ?) oK Ccancel Help Apply

& -]
- 1

Figure 5.13: Control Logic block parameters setting in SIL testing

Once this is done, one of the four possible tests that can be chosen
must be selected setting properly MTM Simulink model and running the
corresponding MATLAB section to load needed parameters in MATLAB
workspace. At that point Simulink model can be run and on/off dashboard
button has to be pressed to start system and obtain both corresponding
Control Logic’s C code and simulation results stored in four .mat file inside
selected path, like MIL testing case. To check C code generation status,
diagnostic viewer window can be opened from Simulink model in order to see
what is shown in figure 5.14 and understand whether Control Logic’s C code
is successfully generated or not. This could be sufficient to understand that
obtained C code works properly but in order to be more precise simulation
results have to be compared to those obtained in MIL testing case.

124

System design: model-based testing

Diagnostics

ELELEL&]) ¥ -

ModularTechnicalModel_MIL 5,

©
‘
©

Updating Model Reference Simulation Targets
Elapsed: 2 sec

~ Updating Model Reference Cade Generation Targets @ 1
Eiapse: 302 min

Starting serial model reference code generation build

444 Starting build procedure for: CONTROL_IOGT

#4# Genera

to "Model specific' folder stru
Generating code into build folder: /Users/gastanocolombo/Downloads/Test bench project/slpri/ert/CONTROL _LOGIC
Invoking Target Language Compiler on CONTROL LOGIC.rtw
484 Using System Target File: /Applicaliors/MATLAR_R2020b.app/ris/c/ert/art.tlc
484 Loading TLC fu
Initial pass through medel to cache user defined c
Caching model source code

414 Writing header file CONTROL_LOGIC_types.h

#i# Writing source file CONTROL_LOGIC.c

ion libraries

#44 Writing header file CONTROL_LCGIC_private.h
#44 Writing header file CONTROL LOGIC.h
#1# Writing header file rtwtypes
Writing header file model reference types.h

444 TIC code generation complete

Using oo Clang v3.1 | gmake (64-bit Mac

Creating '/Users/gaezanccolombo/Downloads/Test_bench_project/slprj/ert/CONTROL_LOGIC/CONTEOL_LOGIC.mk'

Building 'CONTROL_LOGIC_rtwlib': "/Applications/MATLAB_R2020b.app/bin/macisd/gnake” ~f CONTROL_LOGIC.mk all

xerun clang sroot /Applications/Xcode.app/Contents/Developer/Plat forms /MacOSX.plat forn/Sevel oper/3DKs /MacOSX11.1.5dk —arch xB6_64 -fno-common -fexceptions -
mmacosx-version-min: 4 -00 -DCLASSIC INTI N=0 ~DTERMFCN=-1 SMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTZGER CODE=0 -DMT=0 -
DTIDO1EQ=0 -DHODEL=CONTROL_LOGIC -DNUMS' c -DUODEL_HAS_DYNAMICALLY LOADED_SFCNS=0 -I/Users/gaetanocolombo/Downloads/Test bench project -

I/Users/gastanccolonbe /Downloads/Test_bench_project/slprj/ert/CONTROL_LOGIC ~1/Agplications/MATLAB_R2020b. app/extern/include -
T/Applications/MATLAR R2020b.app/simulink/include ~1/Applications/MATLAE R20205.app/rtw/c/src -T/Applications/MATLAR R2020b.app/rtu/c/sze/ext _node/common -
I/Applications/MATLAB_R2020b.app/rtw/c/ext -1/Users/gaetanocolombo/Downloads/Test_bench_project/slpri/ert/_sharedutils CONTROL_LCGIE. 0"

IC/CONTROL_LOGIC.c"

"/Users/gastanccolombe/Downloads /Test_bench_project/slpri/ert/CONTROL_LOS
444 Crealing static library ./CONTROI_LOGIC_riwlib
xcrun ar ruvs . /CONTROL_LOGIC_rtwlib.a CONTROL_LOGIC.o
ar: creating archive ./CONTROL LOBIC rtwlib
a - CONTROL_LOGIC.o

444 Created: ./CONTROT_LOGTC_rtwlib.a

11y generated all binary outputs
1 completion of build procedize &

CONTROL_10GIC

uil mary © 1
Elapsed: 0.598 soc

Code generation targets built

Model Action Rebuild Reason

CONTROL_LOGIC Code generated ard compiled CONTROL_LOGIC.c does not exist.

1 of 1 models bullt (0 medels already up to date)
Build duration: Ch 3m 7.18ls

#4# Proparing to start SIL simalation
Building with 'Xcode with Clang'.

MEX completed successfully

#4 Using toolchain: Clang v3.1 | gmake (64-bit Ma

)

#48 Creating */Users/gactanocolonio/Downloads/Test_bench project /sip:]/ert/CONTROL 10GTC/coderassunpt ions/11b/CONTROL LOGTC_ca.nk'
#4# Building 'CONTROL LOGIC ca': "/Appl Laz 164/gnake” -f CONTROL_LOGIC_ca.mk all
xerun clang

-isysroot /Applications/Xcode.app/Contents/Developer/F. 5 tform/Developer/SDKs/MacOSK:1. 1. 5dk -arch x86_64 -fao-common -fexceptions -mmacosx-
10.11 -00 -DINTEGER_CODE=0 -DUA_CHECK_FLOATING_FOINT ENAS HECK_LONG_LONG_NASLE] _cHC: v CHECK_DAZ_ENABLED=L -
T/Users/gaetanocol onbo/Townloads/Test_bench_project ~T/App1ications/MATIAR_R70208.app/Loolbox/riw/targets/pil/c ~

1/Users/gaetanocolonbo/Dounloads /Test_bench_project/s1pri/ert/CONTROL_LOGIC ons -I/Users/gactanocolonbo/Daunloads/Test_bench project/sipzs/ert/CONTROL LOC
1/applications/MATLAR R2020b.app/extern/include ~I/applications/MATLAR_R2020b. app/simulink/include ~1/Applications/MATLAR R2020h.app/rtw/c/src -

ers/gactanccolonbo/bownlcads

i
"/hpplications/MATLAR R2020b toolbox/rtuf s/pilfe/coder . _nwinpl.c"

xerun clang -c -isysroot /Applications/Xcode.app/Contents/Developer/E. tform/Developer/s) 0SX11.1.sdk -arch x86_64 ~fexceptions -mmacosx-
version-min=10.14 -00 -DINTEGER CODE-0 -DCA_CHECK FLOATING POINT ENASLED-1 -DCA CHECX LONG_LONG SNASLED-1 -DCA_CHSCK DYNAMIC MEMORY-0 -DCA_CHECX DAZ_ENABLED-1 -
1/Users/gaetanocolonbo/Downloads /Test_bench_project -1/Applications/MATLAB R2020b.app/toolbox/rtu/targets/pil/c
T/Users/gaetanocolombo/Downloads/Tast_bench_project/s1pr)/ert/CONTROL_LOGTC/coderassunpt ions 4/umn,g,m,mmm,n/mwnmm;/mmJm{ n_project/sips] /ert /CONTROL_LOGT
I/hpplications/MATLAS R2020b.app/extern/include -I/Applications/MATLAS R2020b.app/simalink/include -I/Applications/MATLAS X2020b.app/rtu/c/sre -
1/Applications/MATLAS_R2020b.app/rtu/c/src/ext_mode/comnon ~1/hpplications/MATLAR_22020k.app/rtw/c/ext -

1/Users/gaetanocolonbo/Downloads /Test_bench_project/slpri/ert/_sharedutils -o "coder_assumptions_flt.o"

"/Applicalions/MATIAR_R2020b. app/Loolbox/ rw/Largets/pi1/c/coder_assungtions_f1L.c"

_beneh_project/s1pr]/ert/ sharedutils —o ”(u(!évia;

xerun clang ~c isysroot /Apelications/¥eods.app/Contents/Daveloper/F 5X.platform/Developer/SDKs/MacOSX:1.1.sdk -arch xB6_64 -fno-common -foxceptions —mmacosx—
0 -DCA_CHECK FLOATING POINT ENABLED-1 -DCA_CHECK LONG_LONG_ZNASLID-1 -DCA_CHECK DYNAMIC MEMORY-0 -DCA %_DAZ ENABLED-1 -

1/Users/gastanocolonbo/Downloads /Test bench project -1/Applications/MATLAS R20205.app/toolbox/rtu/targets/pil/c —

1/Users/gaetanocolonbo/Downloads /Test_bench_project/slpr]/ert/CONTROL_LOGIC/coderassunptions ~1/Users/gaetanocolonbo/Downloads/Test_bench_project/slps:/ert/CONTROL_LOGTC -

1/3gplications/MATLAR R2020.3pp/extern/ dncluds ~1/Agplications/MATLAR R20200.app/simulink/Lncluds -2/Appiications/MATLAR R2020b. app/xtu/c/sre -

I/hpplications/MATLAS R2020b.app/rtu/c/sro/ext mode/common ~1/hpplications/MATLAR

220205 app/rtw/c/e
1/Users/gactanccolonbe/ Downloads/ Test_bench_project/slpr3/ert/ _sharedutils -o "CONTROL_LOGIC_ca.o"
"/Users/gastanocolonbo/ bomnloads /Test_bench _project/slpri/ert/CONTROL L0GIC/coderassunpt ions/CONTROL LOGIC ca.c"

#4% Creating static library ./CONTROT_LOGTC ca.a
xerun ar ruvs ./CONTROL LOGIC ca.a coder_assamptions_hwimpl.o coder assumptions f£1t.o CONTRCL LOGIC ca.o
creating archive ./CONTROL_LOBIC_ca.a

- coder

ssunptions hwimpl.o
& - coder_assumptions_f1t.o

¥ Creacads . /coNTRCS, 20570 cae
#4¢ Suscesstully generated all hinary outpute.

#4§ Using toolchain: Clang v3.1 | gmake (64-bit Mac
#4# Creating '/Users/gastanccolombo/Downloads/Test_bench_project/sLprj/ert/CONTROL_LOGIC/sil/CONTROL _LO
#44 Buildin: /Applicaticns/MATIAR_R2020b.app/bin/maci 5¢/gnake® ~f CONTRO™,_TOGTC.mk a
xerun clarg -c -isysroot /Applications/Xeode.app/Contents/Developer/Platforms/MacOSX. platform/Developer/SDKs/Mac0SX11.1.5dk -arch x86_64 ~fno-common ~fexceptions —mmacosx-
version-nin-10.14 -00 -DCLASSIC_INTERFACE-0 -DALLOCATIONFCN-O -DTERMECN-1 -DONESTE?ECN-1 -DMAT_FILE-0 -DMUL! TANCE_CODE-0 -DINTEGER_CODE-0 -DMT-0 -DTIDOIEQ-0
GNAL_HANDLER=L -DCODER_ASSUMPTIONS_ENASLED=1 -DRTICSTREAM_RX_BUFFER_BYTE_SIZE-50000 -DRTIOSTREAM_TX_SUFFSR_BYTE SIZE=S0000 ~DMEM_UNIT_BYTES=1 -DiemUnit T
DMODRL=CONTROT,_TOGTC ~DNUMST=3 ~DNCSTATES=0 ~DHAVES™ ~1/Users/gaetanocolonbo/Downlpads /Test_banch
1/Usezs/gactanocolombo/Downloads /Test_bench_project/sip ons/MATLAR_X2020b.app/extern/include -
1/hpplications/MATLAB_R2020b.app/simulink/include -1/ Ob.app/rtu/c/src ~1/kpplications/MATLAB_E2020b.app/rtw/c/sre/ext_mode/common -
1/App1ications /MATLAB_R2020b. app/rtu/c/ert ~1/Users/aastanocolombo/Downloads /Test_bench_sroject/slpr/ert/ _sharedutils -
T/hpplications/MATLAB_R2020b.app/teolbox/rtu/targets/pil/e ~7/Users/gastanocolombo/Downloads/Test_bench_project/slprj/ert/CONTROL_LOGTC/sil ~
tions/MATLAR_R2020b.app/extern/include/coder /6T ve ~1/ppl \ %2020b.app/ toolbox/coser/rt Jutils -

cations/MATLAB_R2020b.app/toolbox/coder/ src -1/Epplications/MATLAB_R2020) ivity/CoderAssumpTgtAn)
s/gaetanocol ombo/ Downoads/Test_bench_project/s pr]/ert/CONTROL_LOGIC/ coderassu
" /hpplications /MATLAB_R2020b.app/toolbox/rtu/targets/pil/e/x L, Jn[:rAaccillb. J
xcrun clang -c -isysroot /Applications/Xcode.app/Contents/Deve:
version-nin=10.14 -00 -DCLASSIC_INTERFACE=) -DALLOCATIONFCN=0 -DTERMF
DT ~DCODFR_ASSUMPTTONS_ENARTED=1 ~DRTTOSTREAM_RX_BUFFFR_BYTF.
DMODEL=CONTROL_LOGIC -DNUMST=3 -DNC: ~DHAVESTDIO ~DMODEL_HAS | 5
/gaetanocol ombo/Downloads/Test_bench_project/sipri/ert/CONTROL_LOGIC -1/Appli
cations/MATLAB_R2020b.app/simulink/include ~1/Apslications/MATLAB_R2020b.app/rtu/s/src ~1/Asplicat ons/MATLAB_R2020b. app/rtv/c/s
T/Rpplications/MATLAB_R2020b.app/rtu/c/art ~T/Users/gaetanocolonbo/Downloads/Test_bench_project/slpr)/ert/_shareduti
1/hpplications/MATLAB_R2020b.app/toolbox/rtu/targets/pil/c ~1/Users/gactanocolombo/Downloads/Test_bench_project/slpr:
I/Bpplications/MATLAB_R2020b tern/include/coder/ ty/xI Sve ~1/#ppl ILAB_R2020b.app/toolbox/coder
1/App] ications /MATLAB_R2020b. app/ toolbox /coder/rt iost rean/src ~1/Appl ications /MATLAR R2020
1/Usezs/gactanocol ombo/Downloads /Test_bench_project/siprs/ert/CONTROL_LOGIC/coderassu
cations/MATLAB_R2020b.app/toolbox/rtu/targets/pil/c/xil_data_stream.c
xcrun clarg ¢ -isysroot /Applications/Xcode.asp/Contents/Developer/Platforms/HacOSX. platform/Developer/EDKs/MacosK11.1.5dk ~arch x86_51 ~Efno-comron ~fexceptions —mmacosx—
version-nin=10.14 ~00 ~DCTASSTC_TNTERFACE=0 ~DATIOCATTONFCN=0 ~DTERMFCN=1 ~DONFSTRFCN=1 ~DMAT_FTIF=0 ~DMULTI_TNSTANCF_CODE=0 ~DTNTEGFR_COM o

. SIGNAL_HANDLER=1 -DCODER_ASSUMPTIONS ENABLE TOSTREAM_EX _BUFFER_BYTE_STZE=50000 -DRTIOSTREAM TX_SUFFER_BYTE_SIZE:
DMODEL~CONTROL -DNUMST- -DHAVESTDIO ~DMODEL_HAS I _LOADED_SFCNS-0 -1/Users/gastanocolonbo/Downloads /Test |
1/Users/gaetanocolonbo/Downloads/Test_bench_project/spri/ert/CONTROL_LOGIC ~1/Applications/MATLAB R2020b. app/extern/include -
T/Rgplications /MATLAB_R2020b.app/simulink/include ~T/Applications/MATLAR R2020b.app/riu/c/sre ~1/Applicat ons/MATLAB_R2020b. app/rtu/c/sre/axt_node/connon ~
1/hpplications/MATLAB_R2020b.app/rtw/c/ert ~1/Users/gactanocolombo/Downloads/Test_bench_project/slpry/ert/_skaredutils -
1/hpplications/MATLAB_R2020b.app/toolbox/rtu/targets/pil/c ~2/Users/gastanocolonbo/Downloads/ Test_bench_project/slprj/ert/CONTROL_LOGIC/sil -
1/AgpLications/WATLAB R2020b. app/extarn/ include/codor/Gonnect ivi ty/XTLTGtAPRSve. ~1/AppLications/MATLAR_RZ020b.agp/ toolbor/coser/ rticstrsan/sro/utils

extern/include/coder/conn

fons —o "xil_interface_1ib.o"

-fexceptions -mmacosx-
-DTIDOZEQ=0
—Dientnit. T

-DMAT_FILE=0 -DMULTI_INSTANCE_C
S17F=50000 ~DRTI0STRAAN_TX_AUFFAR_BYTF_

ro

ons/MATLAB_R2020b.app/extern/include -

plextarn/

Tude/coder /connectivity/C:

ions —o "xil data_stream.o"

tions /MATLAR 1 teolbox/coder/ src -I/Applications/MATLAR R2 extern/include/coder/connect Lyl ty/CoderhssumsTathopdve -
/gaetanocolonbo/Downloads/Test_bench_project/slprs/ert/CONTROL_LOGIC/coderassumptions -o "xil_services.o"
cations/MATLEB R2020b.app/toolbox/rt/targets/pil/e/x 1 _services.c*

xerun clarg —c -isysrool /Applications/Xcode.app/Contents/Devel oper/Platforms /MacOSX. platform/Developer /SDKs/MacOSX11 .1, 5dk -arch xB8_84 —fno-common -fexcepl’ons -mnacosx-
version-min=10.14 -0 -DCLASSIC_INTERE ~DALLOCATIONFCN=0 = -DONESTE2FCN=1 ~DMAT_FILE=0 -DMUL STANCE_CODE:
DXIL SIGNAL HANDLEE-1 -DCODER_ASSUMPTIONS ENASLED-1 -DRTICSTREAM RX BUFFER_BYTE SIZE-50000 -DRTIOSTREAM TX SUFFSR BYTE SIZE-

Gastanocolombo/Downloads/Test_bench_sroject -

DHODE; 51 -DNUMST=3 ~DNCSTATE WESTDIO ~DMODEL_HAS_DYNAMICALLY_LOADED_SFCNS=0 -1/Users,
1/0sars/gastanocol oibo/ Downl0ads /Test_bench_praject/s pr3/ert/CONTROL LOGTC ~T/Applicaticns/MATLAR R2020b.app/extern/ include —
1/hpplications/MATLAB_R2020b.app/simulink/include ~I/A tions/MRTLAB R2020b.app/rtw/c/sre -I/Applications/MATLAE R2020b.app/rtu/c/sre/ext mede/conmon -

125

System design: model-based testing

1/Applications/MATLAZ_R2020b.app/rtw/c/ert ~I1/Users/gactanocolonbo, Townloads/Test_bench_project/slprj/ert/_sharedutils -
Cb.app/ toslbox/rtw/cargets/pil/c ~1/Users/gactanocolonbo/Downloads/Test _bench_project/s
1/App1 ications/MATLAR_R2020b. app/extern/include/coder /connect ivi Ly/XTL7gtAppSve ~1/Applications/MATLAB_R20205. app/Loolbox/coder /rLiostrean/sre/utils -
1/Applications /MATLAR_R2020b.app/ toolbox/coder/rtiostrean/sre ~1/ tions/MATLAB_R2020b.app /include/coder. pSve -
1/Users/gactanocolonbo/Dowrloads /Test_bench_project/slpr3/ert/CONTROL_LOGIC/coderassumptions
“/Users/gastanocolombo/ Dowrloads/Test_bench_project/slpri/ert/CONTRCL_LOGIC/sil/xil int
xerun lang = ~lays-ool. /Appl icalions/Xcoda.app/Contenta/Devalopar/Platforns MacOSK. plat form/Deval opar /SDKs/MacOSX 1.1 . sdk ~arch xA6_64 ~fno-common =fexcestions -mracosx=
version-min=10.14 00 ~DCLASSIC_T N=0 -DTZRMPCN-1 -DMAT_FTLE=0 ~DMULTI_INSTANCZ_CODE=0 -DINTEGER_CODE=0 ~DMT=0 -DTTDO1EQ=0
DXIL_SIGNAL_HAND: -~DCODER_ASSUMPTIONS_ENABLED-1 -DRTIOSTREAM_RX_BUFFSR_BYTE SIZE- 5I2E-50000 -DMEM_UNIT_BYTES-1 -DiemUnit_T-uint8_T -
DMODEL=CONTROL_LOGZC ~3NUMST=3 ~DNCSTATES=0 -DHAVESTDIO ~DKODEL_HAS_DYNAMICALLY_LOADED_S¥CNS=0 -1/Users/gastanccolonbo/Downloads/Test_bench_project -
T/0Users/gaetanocolonbo/Down Loacis/Test_bench_project/slprj/ert/CONTROL_LOGTC ~T/Applications/MATLAR R2020b.app/extern/ine’ude ~
1/Applications/MATLAR_R2020b.app/simulink/include ~I/Applications/MATLAS E2020b.app/rtw/c/sre ~1/Applications/MATLAS_R2020b.app/rt
1/Apolications/MATLAS_R202Ch.app/rtw/c/ert -1/Users/gastanocolonbo, Downloads/Test_bench_project/slpri/ert/ sharedutils -

%il_interface.o!

/src/ext_mode/common -

1/aps]ications /MATLAS_R2020h. app/Loslbox/riw/targets/pil/c ~1/Users/gaetanocolombo/Downloads/Test_bench_pro 3/@rL/CONTROL_|
1/Applications/MATLAR_R2020b. app/extern/include. sve -1/ /toolbox/coder,

I/applica ATLAS_R2020b.app/toolbox/coder/ crean/. MATLEE R . 7include/coder. ur pSve -
1/Users/gaetanocolonbo/DovrLoads/ Test_bench_project/slpri/ert/CONTROL_LOGIC/coderassumptions -o "xilcomms rtiostrean.o"

"/ApET icalions/MATIAR_R2020b. app/ Loolbox/riu/targets/ei1/c/xilconns_rl osLrean.c”

xerun clang -c ot /ppiications/icodc.app/Contents Leveloper /Plat fomns/MacOS.plat forn/ Developer/SDKs /acSil .
version-min-10.14 -00 -DCLASS

€4 -Zno-commen -fexceptions -mmacosx-
SRIFCN-1 -DMAT_FILE-0 -DMULTI_INSTANCE CODE-0 -DINTEGER CODE-0 -DMT-0 -DIIDO1EQ-0 -
DXIL_SIGNAL HANDLSR=1 -DCODER_ASSUMPTIONS_ENABLED=1 -DRIIOSTREAM RX_BUFFSR_BYTE_SIZE=50000 -DRTIOSTREAN TX_BUFFERX_5YTS_851ZE=50000 -DMEM UNIT_BYTES=] -DMemUnit T=uint® 7 -
DMODFL=CONTROT,_10GTC ~DNUMST=3 ~DNCSTATES=0 -DHAVESTDIO ~DMODEL_HAS_DYNAMICALLY LOARED_SFCNS=0 —T/Users/gaatanocolombo/Downloads/Test_bench_project -
1/Users/gaetanocolonbo/DowrLoads /Test_bench_project/slprj/ert/CONTROL_LOGIC -I/Applications/MATLAB_R2020b.app/extern/include -
1/Applications/MATLAS R2020h.app/sinulink/include -1/Applicat MATLAB_R2020b.app/rtw/c/sre ~1/Appl MATLEB_R2020b rtw/c/sre/ext_mode/common -
72020b. tanocolonbo/ Downloads/Test_bench_project/slprj/ert/_sharedutils -

1/c ~T/Users/gactanocolonbo/Downloads /Test_bench_project /sipr]/ert /CONTROL_LOG

ivity/: nppSve -I/Applications/MATLAB R2020b.app/toolbox/codex/rtiostrean/s
- Scations/MATLAB_R2020b.app/extern/include/coder/conect ivity/Coderassunplgthppsve -

T/Aps1icat ions MATLAR R2020b . app/ toolbox/r tu/targets
2 ATLAB_R202Cb extern/i g
b.app/ toslbox/coder/ ste

T/Users/gaetanccol onbo/Dowr 1 vads/Test,_bench_project/s1pr]/ert /CONTROT, LOGTC/coderassumptions -0 "xil_rtiostrear.o”

"/npplications/MATLAS R2020b.app/toolbox/rtu/targets/pil/e/xil_rtiostzean.c”

xcrun clang -c -isyszoot /Applications/Xcode.app/Contents/Developer/Platfarns/M: 1 Loper. 1.1.5dk -arch x86_64 -Zno-c . -nmacosx-
wersion-min=10.11 -00 -DCLASSIC_INTERFACE=0 - ~DTERMECI “DNAT_FILE=0 Di ~DINTEGER_CODE=0 -DI -DTIDO1EQ=0 -

DXTI,_STGNAT_HANDLE:

—DCODFR_ASSUMPTTONS_FNARLED=1 -DRTTOSTREAM_RX_RUFFFR_RYTE_ST7R=30000 ~DRTT 0000 ~DMRM_UNTT_PYTES=1 ~DMenOnit_T=uint8_7 -
~DNCSTATES=0 -DHAVESTDIO -DMODEL HAS_DYNAMICALLY LOADED_SFCNS=0 rI/LMH/q_cmmco,unm/nuwrmns/r:s:jg ch_|
/slprj/ert/CONTROL_LOGIC -I/Bpplications/MATLAB_R2020b.2, sde -

st_ben

tanocelonbo/ Dounloads /T _project/slpri/ert/_sharedutils -
1/c -1/Users/gaetanocolombo/Downloads/Test_bench_project/siprj/ert/CONTROL_LOGIC/sil -
ivity/XILTgtAppSve -1/Bpplications/MATLAE R20205.app/toolbox/codes/rtiostrean/sre,
O app/ LooTbox/coder /rUiost rean/src - /App ications/MATLEB_K2020b. ape/extarnd include/coder/comnectivi Ly/CoderAssunpTgtAp
1/Usexs/gactanocolonbo/Dovnloass/ Teat bench project/slp)/ert/CONTROL LOGIC/ coderassunptions ~o "rticstrean utils.o"

. 22020b.app/ toolbox/coder/ /utils,
ot /Applications/Xcode.app/Contents/Developer/Platforns/HacoSX. platforn/Des
00 -DCLASSTC_TNTFRFACF=0 ~DALLOCATTONFCN=0 —DTERMFCH=1 -DONRSTRPFCI

ostream utils.c"

11.1.sdk -azch x86_61 -Zno-comm
ZDMAT_FTIR=0 ~DMUTAT_TNSTANCE_COD

DXTL, STONAL_HANDLER~1 -DCODER, ASSUMPTIONS ENABLED-1 ~DRTIOSTREAM. R SUFFER_BYTE STZE-50000 -DRFIOSTREMM. X SUFFER_BYrs 572 MM UNIT_BYTES~1 ~DHentinit, Tmuintd 7 -
PMODFL-CONTROL_LOGTC. ~DNUMST=3 ~DNCETATRS=0 ~DRAVESTDTO ~DHODRL_FAS_ DYNAMTCALLY FORDED_SFCNG=0 ~1/Usera/gastanoaoTonbosbounloads/ Tast_banch_ project -
L/0sezs/gacsanacolonbo/ Dowr Loads /Test, bench_project /alpes /ert (CONTRGL, LOGIC ~1/RpplLeations/MNTLAD R2020p. o !

b app/s LT ink/include ~1/App]icat ons/MATLAD R2020b. app/ctu/e/see ~1/AFpL -z ctw/e/sxe/exe_mods /conmon -

t -1/Users/gaetanocolonbo/ Downloads/Test_bench_projec ,/gpw/sm/ sharedutils -
1/c -I/Users/gactanocolombo/Downloads /Teat_bench_project /siprj/ert/CONTROL_LOGIC/sil -
ivity/XILTgtAppSve -1/Applications/MATLAE R20205.app/toolbox/codes/rtiostrean/s

Z/applications MATLAR_R2020b.app/extern/include/coder/connect ivity/CoderassunpTgtappsve ~

e ——
i

1/ap5l

b

Y/stm/q,-skvn)(n\om\)o/howvhm i5/Test_bench_project/s1 /CONTROT._TLOGTC/ coderassumplions —o "coder_assumplions_app.o”
x_assumptions_app.c"
DpEx/Platf:\ s /Mac0SX. pl Loper. 1 -nmacosx-

-DTID01EQ=0
~DMerUnit_T=uints " -

X S
3 ONCSTATES 0 ~DEAVESTDIO ~DHODEL_5AS_ X
I/Usexi/qeersﬁncﬂ'Bmhﬂ’Dﬂwrloais/Testibenchipxcj /s1pr3/ert /CONTROL_LOGIC - /ApplLcat)onS/MATLlBin2ﬂ29b.a
/g b.app/sinulink/include ~1/Apelications/MATLAR_R2020b. app/rtw/c/src ~1/Applications/KATLAB_R:
pp/rtu/c/ert -1 mbo/Downloads/Test_bench_project/slpri/ert/_sharedutils -
T/Applications MATLAS_R202Ch. app/ tosLbox/ztu/ carqets/pil/c ~1/Users/GaetanocoLonbe/Sovnloads/Test_bench project /sipr3/ert/CONTROL LOSTC/sil -
/801 GthppSve -1/Applications/MATLAE R2020b.app/ toolbox/cod
1/8pel ications /AppT ications/MATLAB_R2020b. app/extern/ include/coder /connect.ivi Ly /<
1/Users/gactanocolonbo/DowrLoads /Test_bench_project/slpr] /ert/CONTROL_LOGIC/ o “coder_
*/Applications/MATLAS_R2020h.app/ toolbox/ztu/ 1/c/coder_assumptions_data_stream.
scrun clang ~c -isyszoot /Applications/Xcose.app/Contents/Developer/Platforns/Hacosi. plattorn/oer s
version-min=10.14 ~00 ~DCLASSTC_TNTERFACF=0 -DALI(, 0 ~DMAT_FTLR=0 ~DMULTT_TNSTANCE_COD L -or
DXTL_SIGNAL HANDLER=1 ~DCODER_ASSUMPTIONS ENABLE! 17X 3
DHODEL-CONTROL_LOGZC ~ONUMST-3 -DNCSTATES-0 -DHAVESTDIO ~DODEL_FAS_DYNAMICALLY _LOADED_SECNS-0 -1/Users/gastanccolonbo) bownloads/Test_bench project -
1/Users/gaetanocolonbo/DowrLoads /Test_bench_projest/slori/ert/CoN G1C -1/Applications /M
T/Applications/MATLAR_R2020b.app/simulink/include ~1/Applications/MATLAR R2020b.app/rtw/c/sre ~1/Applications/MATLAR R2020b. app/rt/
T/pplications /MATLAS 20020, app/rtw/c/ert ~1/Users/gaatanocslonbo/Dounloads/ Test_hench_project /slpr)/ert/ sharedutils
1/Applications/MATLAS_R2020h.app/ toolbox/rtw/targets/pil/c ~1/Users/gactanocolonbo/Downloads/Test_bench_project/slpri/ert/CONTROL_LOGIC/sil -

polications/MATLAR R2020b.app/extern/ include/coder/connect iviLy/X L gLAppSve ~1/Appl ications /MATLAB_R20205. app/Loolbox/coder/rtiostraan/sre/utils ~
1/Applications /MATLAR_R2020b.app/toolbox/coder/rtiostrean/sre ~1/ tions/MATLAB_R2020b.app/e /include/coder -
1/Users/gactanocolombo/Dowrloads /Test_bench_project/slpry/ert/CONTROL_LOGIC,
*/Applications/MATLAS_R2020b.app/ toolbox/rtw/targets/pil/c/coder_assumptions_rtiostream.c”
Concents,Developer /Plal forns/MacOSK plat.forn/ Bevel oper /0Ka/MacOSX 1.7 sk ~arch X35 64 ~no=comnon ~fexcept ions —macos<=

0 -DINTEGER_CODE=0 -DMT=0 -DTIDO1EQ=0 -

2E-50000 -~DMEM_UNIT_BYTES-1 -DMemUnit_T-uint8 T -
5=0 'J’Jsers/g=etangcu onbo/ Downloads/Test_banch_project -
GTC ~T/Applications/MATLAR_R2020b.app/extern/ine’ ude ~
1/Applications/MATLAZ_R2020b.app/simulink/include ~I/Applications/MATLAS E2020b.app/rtw/c/sre ~I/Applications/MATLAS_R2020b.app/rt
1/Applications/MATLAS_R2020h.app/rtw/c/ert -1/Users/gaetanocolonbo, Townloads/Test_bench_proje /Slpxj/extlishsxedut 1s -
1/Agplications Cb.app/Loolbox/rtw/targets/pil/c ~1/Users/gaetanocolonbo/ Downloads/Test_bench_project/slpri/ert/CONTROL_LO
/applic rxonsﬂVATLAa 2020b.app/extern/include o Svity/xT Sve -1/Applications/MATLAE_RZ ape/tootbox /cod
1/applica R2020b. app/ tooLbox/coder/ <ream/sre -1/Applications/MATLAE R2020b exn/include/coes
I/Users/gaetanocolonbo/DowrLoads /Test_bench_project/slpri/ert/CONIRUL_LOGLC/ coderassumptions — "sil main.o"
" /App1 icalions MATLAR_R2020b. app/Lool box/riu/targets/pil/e/si1_nain.c"

ivity/

MATLAR_R2020b. app/Loolbox/coder/rt iost rean/src

ata_stream.o"

~DTIDO1EG=0 -

ro/ext_mode/common -

oder rtiostream.o”

xerun \:ng e -isysrool /Applications/Xcode. app,

version-min=10.14 -00 -DCLASSIC_ T
Dxu;myﬂx)asu: ~DCODER_ASSUMPTIONS ENABLED-1 -DRTIOSTREAM XX _BUFFER BYTE_SIZE-
DHODEL=CONTROL_LOGZC -DNUMST CSTATES=0 -DHAVESTDIO -DRODEL HAS_DYNAMICALLY LOADED !
T/Users/gaetanocolombo/Dowr 1 oads/Test_bench_projest/slpr]/ert /CONTROT. .

/sre/ext_mode/common -

/sil -

xerun clang -c -isysroot /Applications/Xcode.app/Cortents/Developar/Pl
version-min=10.14 -00 -DCLASSIC_INTERFACE=0 -DALLOCATIONECN=C -DTERMEC)
DXIL_SIGNAL HANDLEE-1 -DCODER_ASSUMPTIONS ENASLED
DMODEL=CONTROL_LOGIC ~DNUMST=3 -DNCSTATES=0 -DHAVE

orms /Mac08X. plat forn/Developer/SDKs/Mac0SK11. 1. sdk -arch x36_64 - no-common - fexc —nnacosx-
~DONESTEPFCN=1 ~DMAT_FILE=0 -DMULTI_INSTANCE_CODE=0 -DINTEGER CODE=0 -DMf -DTIDO1EG=0 -
-DRTIOSTREAM RX_BUSFER EYTE SIZE-50000 -DRTIOSTREAM TX_BUFFER_EYTE SIZZ-50000 -OMEM UNIT BYTES-1 -DMemUnit T-uints T -

DI -DMODEL_HAS_DYNAMICALLY LOADED_SFCNS=C -1/Users/gactanoc

s

Tombo/Dowaloads/Test_bench_project -
T/Users/gaetanocol ombo/Downl oads /Test_bench_project /s1pr]/art/CONTROL_LOGTC ~T/Agplicalions/MATIAR_R2020b. app/extern/include -
I/hpplications/MATLAE R20205.app/simulink/include -I/Applications/MATLAE R20205.2pp/rtu/c/sre ~I/Applications/MATLAR R2020b.app/rtw/c/sre/ext mode/common -

I/applications/MATLAE R2020b.app/rw/c/ert -1/Users/gaetanocolombo/Downloads/Test_bench
1/Applications /MATLAB_R2020b. app/ toolbox/rtu/targets/pil/c ~1/L:
1 _R20200. tern/inelude/coder,
1/Applications/MATLAB_R2020b.app/toolbox/coder/:
1/Users/gaetanocolonbo/Downloads /Test_bench_project/sipri/
Agplicalions /MATLAR_R2020b. app/ LooTbox/ riw/Largets/pi /c/Larget_io

_project/slpri/ert/_sharedutils -
1enio/DownToads /Test,_bench_project/s1pri/ert /CONTROL

-1/ tions/MATLAB_R2020b. app/co
NATLAE 320200 app/ extern/include) codes /connect ivity/CodexhasunpTItAPPSVE -
oderassumptions -o "target_io.

c/sil -
box/coder/rtlostzean/sre/uzils -

xerun clang —c -isysroot /Applications/Xcode.app/Contents/Developer/2L

orms /MacOSX.plat forn/Developer/SDKs /MacOSX11.1.5dk ~arch x36_64 -Zno-common -fexceptions -mmacosx-
version-min=10.14 -00 ~DCLASSIC_INTERE ~DALLOCATIONFCN=0 - -DONESTEPFCN-1 ~DMAT_FILE-0 -DMULTI_INSTANCE CODE-0 -DINTEGER CODE-Q -DMI-0 -DIIDOIEC-
DXTL_SIGNAL_HANDLER=1 ~DCODER_ASSUMPTIONS_ENASLED=1 ~DRTIOSTREAM_RX_BUFFER_BY 0 -DRTIOSTREAU_TX_BUFFER_BYTE_S8123-50000 ~OMEM_UNIT_BYTES=1 ~DMemUnit_T=uirt " -
DMODEL=CONTROL_LOGIC ~DNUMS 2/gaczanozolombo/Downloads/Test_banch_project -
1/0sexs /gastanosolanho/ Dovaloads/Test_bench projsct/slpi/ert/CONTROL LOGIC -1 /AepLications/ MATLAR R20205 . app/extern/incLuds -
1/Asplications/HATLAB_R2020b.app/simulink/include ~I/Applications/MATLAE R20205.app/rtw/c/szc -1/Applications/MATLAS R2020b.app/rtu/c/sre/ext : -
T/Agp1ical ions /MATL.AR_R20200. app/rtw/c/ert ~1/Users/gaetanocol ombo/ Downlcads /Test_bench_project /s1pr]/ert/_sharedutils

1/App1ications/MATLAB R2020b.app/Eoolbox/xtu/tazgeta/pil/c ~1/Usera/gactanocolonbo/Dour Loads,/Teat_bench_project/slpr) /ext/CONTROL_LOGIC/ail =

1/85p1 TLAE_R20205 cern/include/codex/ ey /xT ~1/AppLications/MATLAB_R2020b. app/toolbox/coder/reiostrean/'s 15

1/A591 ications/MATLAR_R2020b. app/ toolbox /coder /Tt iostrean/sr ~1/Applications/MATLAB_R2020h. app/extern/ include/coder /connect ivity/CoderAssumpligtApSve —
1/Usexs /gaetanocolonbo,/Downlosds/Tast_bench_project /sipe] /art/CONTROL_IOGIC/coderassumpt ions ~o "rtiostream tepip.o”

"/Applications/MATLAB_R2020b.app/toolbox/coder/! sre/re pis . topip.c
#4% Creating standalone executable ./CONTROL LOGIC
xarun clang=+ -arch xi6 64 -isysrost /hpplicalions

Xeode. app/Contents/Developer /Flat forms/MacOSK . plat form/Developer /SDKs MacOSX11.1 . dk ~31,~

1, ~zpath, Gexecutable_path -K1,-rpath, Gexecctable_path/../../ 2 /AppLCELons WITLAD R0200.spo/sin/macie” -0
. /CoNTROL_LoGZ _lib.o xil data_stream.o xil services.o xil interface.o xilcomms_rtiostream.o xil € utils o coder _app.o
coder_assunptions_data_stream. Sostrean.o sil_main.o target_i0.0 rtiostzean Lepip.o el ert/CONTROL LOBIC/ CONTROLLOGTC, rewl .
/sera/Gastanoco onbo/Downsads, Taat. bench oroject /olpss /ar L/ CONTROL, 1061/ codarassunptions/ 1 b/ CONTROL, 1061 ca. a

44 Created: ./CONTROL_LOGIC

#4¢ Successfully generate

roath, /Applications/MATLAB_R2020b.app/oin/maci 64

5il int

all binary outputs.

Starting SIL simulation for component: CONTROL LOGIC

ivity.Hos table with host process idencifier 7004
Lconnectivity.HostLauncher: stopped exscutable with host process identifier 1084
Stopping SIL simulation for compenent: CONTROL LOGIC

Figure 5.14: Diagnostic viewer window in SIL testing

126

System design: model-based testing

Here, SIL testing is done considering only 3D maps test, which represents
the most complex test, that can be done with designed model. So, whether
the corresponding Control Logic’s C code works properly in this case for sure
it will work properly in all the other cases. Performing this test, again, the
four .mat files seen in all the other cases are obtained. These files contain
interesting parameter values that can be used to obtain desired test motor
efficiency and dissipated power 3D maps. To do this, the same maps.m file
described in subsection 5.1.4 can be used to obtain the corresponding results
to be compared to those obtained in 3D maps MIL testing case (results
reported in subsection 5.1.4).

1000

700

Torque [Nm]

500

200

3000
Speed [rpm]

Figure 5.15: Dissipated power 3D map in SIL testing

127

Dissipated power (W)

System design: model-based testing

Torque [Nm]

0 1000 2000 3000 4000 5000 i 6000
Speed [rpm]

Figure 5.16: Efficiency 3D map in SIL testing

Comparing these results to those obtained in 3D maps MIL testing case
reported in subsection 5.1.4 it is possible to observe that results are perfectly
equal to each other. This means that obtained Control Logic’s C code works
properly and it is validated. For one more confirmation, test harness can
be performed. To do this Control Logic refence model has to be translated
into subsystem such that treat as atomic unit option from block parameters
window can be check. Once this is done, signals coming out and entering
to subsystem must be logged in order to see their trends over the time. To
store these trends Logging Signal option in model setting must be checked,
and a name and save format must be chosen. In this way, at the end of
simulation in MATLAB workspace a new variable is created (out variable)
containing logged signal values. This variable can be stored in .mat file
digiting save(‘out_SIL’, ‘out’) command in MATLAB command window.
Out__SIL is the name of new .mat file while out is MATLAB workspace
variable to be stored in that file. After this, Control Logic test harness can be
created by right click on Control Logic subsystem and selecting test harness
option from drop-down. Then, create for Control Logic option must be chosen
in order to open a new window from which a name and SIL option from
Verification Mode drop-down menu can be selected as shown in figure 5.19.

128

oy map (%)

Efficien

System design: model-based testing

S e e

) - e e ‘) - e

EQ Variablestephut EQ Variblestephut

Figure 5.17: Control Logic reference model setting for test harness generation

Once Control Logic test harness is created (figure 5.18), out variable before
stored must be loaded in workspace in order to obtain before logged signals.
This can be done through SIL__signals=out.get(‘SIL__signals’) command
where SIL_signals before equal signal represents name used for creating new
variable in MATLAB workspace while the one in brackets represents variable
to be extracted from out variable. Then, Control Logic input signals have to
be obtained from new defined variable by using command before described.
Among these signals there is w signal, emergency signal, ON_OFF__button
signal, bm __cmd__signal and tm__cmd__ignal. Then, Control Logic test harness
signals must be set through model setting input section while output signals
must be logged in order to store their values and trends. Also in this case
Signal Logging option from Control Logic test harness model setting must
be checked and a name and save format must be defined.

CONTROL_LOGIC
(SIL: Top)
@
; D
)
. e
red
3 ON_OFF_button
ON_OFF_buttor
bn -
=

4 bm_command_signal
bm_command_signal

5 tm_command_signal tm_trgomd
tm_command_signal

Signal spec.
Signal spec CONTROL_LOGIC and routing
and routing

Figure 5.18: Control Logic’s test harness model

Once Control Logic test harness is set, it can be run to obtain a new
out variable into MATLAB workspace that must be stored by means the

129

System design: model-based testing

same command before described. At that point, Control Logic subsystem
output signals obtained in test harness case must be compared to those
obtained in MIL testing case to check whether obtained Control Logic’s
C code works properly or not: if output signals are perfectly overlapped
each other, for sure, obtained C code works properly and designer can go
ahead with design procedure, otherwise it must stop and go back for doing
again system design. To perform comparison between MIL Control Logic
output signals and test harness Control Logic output signals, four differ-
ent .m file can be used: green__comparison.mlx file to compare green LED
output signal, red __comparison.mlz file to compare red LED output signal,
bm__trgemd__comparison.mlz file to compare bench motor command output
signal, tm__trqecmd__comparison.mlz file to compare test motor command
output signal.

In figure 5.21 green__comparison.mlz’s MATLAB script is shown that
allows to obtain results shown in figure 5.22. Here, the two signals result
perfectly overlapped each other so in this output signal case for sure obtained
Control Logic C code works properly.

Move here to reveal toolstrip

clear all
close all
clc

load('out_SIL.mat')
SIL_signals=out.get('SIL_siganls');
green_SIL=SIL_signals.get('green');
clear out

9 clear SIL_signals

NV EWN R

11 load('out_harness.mat"')

12 harness_signals=out.get('harness_signals');
13 green_harness=harness_signals.get('green');
14 clear out

15 clear harness_signals

17 figure,
18 plot(green_SIL.Values,'r'), hold on
19 plot(green_harness.Values,'b")

21 grid on

Figure 5.19: green_ comparison.mlx’s MATLAB script

Time Series Plot:green

09

08

07

06

green

05

0.4

03

02

0.1

I I I
0 1000 2000 3000 4000 5000
Time (seconds)

Figure 5.20: MIL and SIL Control Logic green signal comparison

130

System design: model-based testing

In figure 5.23 red__comparison.mlz’s MATLAB script is shown that allows
to obtain results shown in figure 5.24. Also in this case, the two signals result
perfectly overlapped each other so also in this output signal case obtained
Control Logic C code works properly.

[Move here to reveal toolstrip |

1 clear all

2 close all

3 clc

5 load('out_SIL.mat"')

6 SIL_signals=out.get('SIL _siganls');

7 red_SIL=SIL_signals.get('red');

8 clear out

9 clear SIL_signals

11 load('out_harness.mat")

12 harness_signals=out.get('harness_signals');
13 red_harness=harness_signals.get('red');
14 clear out

15 clear harness_signals

17 figure,

18 plot(red_SIL.Values,'r'), hold on

19 plot(red_harness.Values, 'b")

21 grid on

Figure 5.21: red__comparison.mlx MATLAB script

Time Series Plot:red
T

datal
data2

06 b

04 B

02 b

red
o
|

A 1 1 I 1 I
0 1000 2000 3000 4000 5000 6000

Time (seconds)

Figure 5.22: MIL and SIL Control Logic red signal comparison

In figure 5.25 bm__trqemd__comparison.mix’s MATLAB script is shown
that allows to obtain results shown in figure 5.26 where the two signals are
perfectly overlapped each other so also in this output signal case the proper
Control Logic C code operation is verified.

131

System design: model-based testing

| Move here to reveal toolstrip |

1 clear all
2 close all
3 clc
5 load('out_SIL.mat"')
6 SIL_signals=out.get('SIL_siganls');
7 bm_trqcmd_SIL=SIL_signals.get('bm_trgcmd');
8 clear out
9 clear SIL_signals
11 load('out_harness.mat"')
12 harness_signals=out.get('harness_signals');
13 bm_trqcmd_harness=harness_signals.get('bm_trgcmd');
14 clear out
15 clear harness_signals
17 figure,
18 plot(bm_trgcmd_SIL.Values,'r'), hold on
19 plot(bm_trqcmd_harness.Values, 'b")
21 grid on

Figure 5.23: bm_ trqemd__comparison.mlz’s MATLAB script

Time Series Plot:bm_trgcmd
T T T T T T

data2

bm_trgecmd
o

-15

1 1 1 1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Time (seconds)

Figure 5.24: MIL and SIL Control Logic bm_ trqecmd signal comparison

In figure 5.27 tm__trqcmd__comparison’s MATLAB is shown that allows
to obtain results shown in figure 5.28. Here, the two signals result perfectly
overlapped each other which means that also in this case obtained Control
Logic C code works in a proper way.

132

System design: model-based testing

| Move here to reveal toolstrip |

1 clear all
2 close all
3 clc
5 load('out_SIL.mat')
6 SIL_signals=out.get('SIL_siganls');
7 tm_trqcmd_SIL=SIL_signals.get('tm_trqgcmd');
8 clear out
9 clear SIL_signals
11 load('out_harness.mat')
12 harness_signals=out.get('harness_signals');
13 tm_trqcmd_harness=harness_signals.get('tm_trgcmd');
14 clear out
15 clear harness_signals
17 figure,
18 plot(tm_trqcmd_SIL.Values,'r'), hold on
19 plot(tm_trqcmd_harness.Values,'b")
21 grid on

Figure 5.25: tm_ trqgemd__comparison.mlx’s MATLAB script

25 Time Series Plot:tm_trgemd
T T T

20

15

tm_trgcmd

10

1 1 1 1 1
0 1000 2000 3000 4000 5000 6000
Time (seconds)

Figure 5.26: MIL and SIL Control Logic tm_ trqcmd signal comparison

133

System design: model-based testing

134

Chapter 6

RCP code production

Once System design phase is completed physical system’s model is obtained
and validated. At that point, Rapid Control Prototyping code production
V-shaped model’s phase has to be performed in order to develop, optimize
and test Control Logic’s C code in real-time by using what is called Rapid-
Control-Prototyping-Platform (RCPP) without manual programming. This is
very useful because in System design phase physical system’s model has been
built in no real-time conditions and before to decide which kind of VMU
has to be chosen to implement final physical system, system’s behavior has
to be verified in presence of real interfaces. So, this time what has to be
changed are interfaces implemented in Control Interface refence model that
allow communication between control law and other parts of system in order
to perform both MIL testing and SIL testing in presence of real interfaces
to verify system model and corresponding Control Logic C code’s behavior.
To do this, before modelled interfaces in Control interface reference model
have to be substituted with new models that allow to simulate behavior of
interfaces implemented in physical hardware. For this reason, dSpace library,
described in 210128 dSPACE_ interfaces _ documentation file, is adopted
that allows to substitute discrete filters and quantization blocks, described
in subsection 4.2.3, with ADC and DAC blocks as shown in figure 6.1.

135

Rapid-Control-Prototyping code production

=
ol
,,,,,,,, =
1
=
()
el
{=}
[z |
1
=
()
o o v
J i
=4 | =
e [
- > >
\ o
()
i
()

Figure 6.1: Control interface reference model in RCP phase

Opening ADC block, model reported in figure 6.2 can be observed. Here,
three different blocks are implemented to convert analog input signals into
digital signals: the first block is an analog filter that is intended to filter
input voltage signals, the second one is a quantizer block whose quantizer
interval is set on the basis of desired resolution while the third one is a gain
that divides by ten signal values.

butter

o b

Figure 6.2: dSpace ADC blcok model scheme

Instead opening DAC block, model reported in figure 6.4 can be observed
where the same blocks described in ADC block case are implemented. Indeed,
a quantizer block is implemented to set quantization interval on the basis
of desired resolution, a gain that multiplies by ten entering signals and an
analog filter that allows to reconstruct original signal.

136

Rapid-Control-Prototyping code production

butter

f

Figure 6.3: dSpace DAC blcok model scheme

Since dSpace ADC blocks divide by ten entering analog signals and dSpace
DAC blocks multiply by ten entering digital signal, two signal conditioning
sections must be implemented to adapt signals entering to Control Logic
reference model and signals coming out from that reference model. Indeed, as
highlighted in figure 6.4, a signal conditioning section is implemented at the
input of Control Logic reference model while the other one is implemented
at the output of Control Logic reference model.

el lc

1[4

|

Figure 6.4: Signal conditioning sections in Control Interface reference model

This, obviously, implies a change in Control Data section of MATLAB
script used to parametrize all implemented Simulink blocks in MTM. This
time, indeed, no data must be defined in that section because to implement
dSpace interfaces, slblocks.m and dSPACE _ data.mlz files must be run in
order to add dSpace library among all other libraries in Library Browser
section and to load needed parameters for parametrizing those blocks in
MATLAB workspace. In figure 6.5 and 6. slblocks.m and dSPACE_ data.mlx
files MATLAB script are shown.

137

Rapid-Control-Prototyping code production

| slblocks.m* | + |
] =
2
3 function blkStruct = slblocks
4 - Browser.Library = 'dSPACE_interfaces';
5- Browser.Name = 'dSPACE INTERFACES';
6 - blkStruct.Browser = Browser;
7
8
9
Figure 6.5: slblocks.m MATLAB script
HARDWARE INTERFACES DATA

ADC TYPE1 DATA

butter

@—»

LOW-PASS FILTER

1 order=1;
2 cut_f_AD=23e3%2#pi; %rad/s
QUANTIZER

V_ADC — peak voltage. Input Voltage Range +10 V
N_ADC —> number of bits/ resolution

quant_AD — quantization interval

3 V_ADC=10;
4 N_ADC=16;
5 quant_AD=V_ADC/ (2*N_ADC-1) ;
GAIN
6 ADC=0.1;
Move nere 10 reveal 100IStNp
DAC TYPE1 DATA
butter
QUANTIZER
V_DAC — peak voltage. Output Voltage Range 10 V
N_DAC —> number of bits/ resolution
quant_DA — quantization interval
7 V_DAC:
8 N_DAC=
9 quant_DA=V_DAC/(2*N_DAC-1) ;
GAIN
10 DAC=10;
CONTINOUS TRANSFER FUNCTION
11 cut_f_DA=500e3+2kpi;

Figure 6.6: slblocks.m’s MATLAB script

138

Rapid-Control-Prototyping code production

All parameters to be load into MATLAB workspace to parametrize
dSpace ADC and DAC blocks are listed and described below.

order

It defines low-pass filter’s order. In this case, since a first order low-pass
filter must be implemented inside ADC blocks it is set equal to 1.

cut_f AD

It defines low-pass filter’s cut-off frequency implemented inside ADC
block.

V_ADC

It defines peck voltage with which ADC can deal. In this case, input
voltage range is set between -10 and 10 V

N_ADC

It defines ADCs’ resolution since it represents number of bits to be
considered for computing quantization interval.

quant_AD

It defines quantization interval computed by means relation defined in
MATLAB script

ADC

It represents gain’s value implemented inside ADC block

V_DAC

It defines peck voltage with which DAC can deal. In this case, input
voltage range is set between -10 and 10 V.

N_DAC

It defines DACs’ resolution since it represents number of bits to be
considered for computing quantization interval.

quant__DA

it defines quantization interval computed by means the same relation
used in quant_ AD case defined in MATLAB script.

DAC
It defines gain’s value implemented in DAC block.

cut_f DA

It defines low-pass filter’s cut-off frequency implemented inside DAC
block.

139

Rapid-Control-Prototyping code production

Once real interfaces have been modelled, tests must be done to understand
whether system’s behavior changes or not with respect to that found during
System Design phase. So, MIL and SIL testing must be done to understand
whether implemented model and Control Logic’s C code work properly in
presence of modelled real interfaces.

6.1 Rapid-Control-Prototyping MIL testing

This test allows to verify system model’s behavior in presence of modelled
real interface. To understand whether implemented model during System
design phase behaves properly or not, obtained results must be compared to
those obtained during System design MIL testing: if they result equal to each
other, for sure, implemented system’s model behaves properly and designer
can go away with design based on V-shaped model. So, also in this case to
perform MIL testing the four different way to test motor must be considered
in order to obtain results that have to be compared to those obtained during
System Design V-shaped model phase.

6.1.1 RCP Single working point MIL testing

To perform this kind of test, like System design single working point MIL
testing case, procedure described in subsection 4.2.4 related to Single working
point test must be adopted to set properly MTM Simulink model and to
load needed variables into MATLAB workspace. At the end of simulation,
four .mat files in selected path are created that contain interesting parameter
values that can be used to evaluate desired test motor’s electrical and
mechanical characteristics related to considered working point. To obtain
these test motor’s characteristics the same single _ working point.m file used
in System Design MIL testing case has to be used where some variable values
must be defined before to run MATLAB script. Parameters to be defined are
the same to those described in subsection 5.1.1 and once MATLAB script is
run results shown in figure 6.7 are obtained. Obviously, since these results
must be compared to those obtained in System Design single working point
MIL testing case, the same working point of w — T' plane is considered: 20
Nm value is considered to pilot electric motor under test and 366.52 rad/s
value is considered to pilot bench motor.

140

Rapid-Control-Prototyping code production

[s14
00k 06 08 oL 09 05 or oe 0z ok 0
= T T T T T T T T = 0002-
[OL'EEEL- A R Rl
£eLX ®
[oL'EEEL A A° a®
L[y £2LX /" oo E
d
C I L Il L I It -J 000z
1000 Bupenaoal Jamod
[s]s
06 08 [09 05 oy e 0z ok 0
T T T T T T T T 7
r 185926~ A o
£2LX
o
0002 &
z
= -
N J
Weys Jemod Jojouws 3sa)
[s1+
[06 08 oL 09 05 oy oe 0z oL 0
r T T T T T T T T 0
]
05 g
219186 A
—] £2LX
N b} I N I I 00k
Kousjoyye Jojow 18]
[s14
06 08 oz 09 05 or 0e 0z oL 0
T T T T T T T T T 70
L Hs
4
0Lz
El
F S0G6E A st
L £1LX)
E i T T T L it i 40z
enbio Jojow 3se)

[sls
06 08 oL 09 0g oy og 0z ok
T T T T T T T T T
S9E'86Z A
— £TLX
E i T ; r ;i : ; ;i —
anjesadwal J0jow Isa)
[shy
06 08 oz 09 0g or oe 0z oL
r T T T T T T T T T
L 92°0L9L A
£2LX
v _
d . -
I . I . | . |
Jamod pagiosqe J0jow 3sa)
[s]+
06 08 (73 09 0s oy oe 0z oL
T T T T T T T T T
9Z9LL A
: : . . : : ———
JueLIND Jojow 3saL
[sls
oot 06 08 oz 09 0g or oe 0z oL
T T T T T T T T
£0°66YE A
r[= £2LX

. \ . .
poads [euonE0l paads Jojow 3591

Figure 6.7: Single working point results in RCP MIL testing

Results shown in above figure are perfectly the same to those shown in
figure 5.4 so, system’s model works properly in presence of modelled real

interfaces.

141

Rapid-Control-Prototyping code production

6.1.2 RCP Nominal power working point MIL testing

To perform this test, like System design nominal power working point MIL
testing case, procedure described in subsection 4.2.4 related to Nominal
power working point test must be adopted to set properly MTM Simulink
model and to load needed variables in MATLAB workspace. At the end of
simulation, like all other cases, in selected path four .mat files are created
that contain interesting parameter values that can be used to obtain de-
sired test motor mechanical and electrical characteristics related to working
points considered during testing. To obtain these characteristics the same
nominal_power_ working point.m file described in subsection 5.1.2 has to
be used where some variables must be defined before to run the MATLAB
script. Of course, parameters to be defined are the same to those described
in subsection 5.1.2 and once MATLAB script is run, results shown in figure
6.8 are obtained.

‘Test motor speed rotational speed Test motor Torque Test motor current

000 20 200
4000 - N @ 15 ~ T 150 b
3000 - f - 100 -
— —10 _
E E =
£ 2000 B Z sof _
3 . —
1000 — 0 ——
o— o/ -50 [
1000 | | | | | . | | | | | 00 | | | | |
o s 10 10 20 20 a0 o s 0 w0 20 20 00 o s 100 1 20 20 a0
il ts] til
Test motor power shaft Test motor absorbed power Test motor dissipated power
12000 > ! : 15000 3 g ° s000 : ! g . .
— —t
10000 & 4000
8000 10000 3000
s _ ", -
2 eo00 et s g 2000
B} Z 5000 — 2
2 4000 a® i a® 1000
o
2000 — S I — [y n
o —— 1000 -
2000 5000 2000
o s 10 10 20 20 a0 o s 10 10 20 20 w00 o s 10 1 20 20 a0
t[s] tls] tls]
Test motor efficiency Test motor Power recirculating effect
100 350 2000
80 | —, 00 — = 2000 {
60 - 1000 I —P,
- 250 i — R
| < = —t — s
£ £ s o
200 —_—
20 1000 -
0F 150 -2000

o 50 100 150 200 250 300 o 50 100 150 200 250 300 o 50 100 150 200 250 300

s tls tls)

Figure 6.8: Nominal power working point results in RCP MIL testing

Comparing these results to those obtained in System Design Nominal
Power Working Point MIL testing case (figure 5.6) it is possible to observe
that they are equal to each other so for sure also in this case system’s model
works properly in presence of modelled real interfaces.

142

Rapid-Control-Prototyping code production

6.1.3 RCP Torque curves MIL testing

To perform this test, like System design torque curves case, procedure
described in subsection 4.2.4 related to Torque curves test must be adopted to
set properly MTM Simulink model and to load needed variables in MATLAB
workspace. In this case, like previous ones, at the end of simulation the same
four .mat files are created in selected path that can be used to evaluate
desired test motor torque curves. To obtain these, the same Torque__curves.m
file can be adopted where parameters described in subsection 5.1.3 must be
defined before to run MATLAB script and once this is done results shown in
figure 6.9 are obtained

Results considering T = 20 Nm

— o =

20%] TNm)

P W]

Slpm)

Test motor temperature
|

200 00
tls)

143

Rapid-Control-Prototyping code production

Power recirculating effect

1500

Figure 6.9: Torque curves results in RCP MIL testing

Comparing these results to those obtained in System Design Torque
Curves MIL testing case it is possible to conclude that also in this case
designed system’s model works properly in presence of modelled real interface.

6.1.4 RCP 3D maps MIL testing

To perform this test, like System design 3D maps MIL testing case, procedure
described in subsection 4.2.4 related to 3D maps test must be adopted to set
properly MTM Simulink model and to load all needed variables into MATLAB
workspace. Also in this case, like all other cases, at the end of simulation in
selected path four .mat files are generated that contain interesting parameter
values that can be used to obtain desired test motor 3D efficiency and
dissipated power maps and electric and mechanical characteristics related to
all working points considered during test. To do this, at the end of simulation
the same maps.m file described in subsection 5.1.4 can be used where some
parameters must be defined before to run MATLAB script. Running that
script results shown in following figures are obtained.

144

Rapid-Control-Prototyping code production

- B
Figure 6.10: Efficiency map result in RCP MIL testing

£ i

H Son 3

- 500

Speed [rpm]

Figure 6.11: Dissipated power 3D map result in RCP MIL testing

145

Rapid-Control-Prototyping code production

s s s
8 8 8
g g g
8 8 o 2
Q Q “l o
g g8 T 718
2 g - g
=
5 , L =
E g8 3 g & — = 18
gl g 2 g 3% ~ g
g’ — 3 2 = ‘—-{‘_t
o — e B o & el 9=
5 — 8@ 2 8z 3 s 8=z
2 [g8~ 8 g= g P 8=
£ e 3 8 —
% q 2 P
g L s B s B ™ s 2
= = g t g e g
[§ 3 & 8 P g
- S §~7
L 8 8 L g
z g g = S
=
W ° J o [°
e o © o w o w s 8 8 8 8 g ©° s 8 3 °© 8 8 8
e 2 7 8 8 8 8 8 8 g8 8 8 g8 8 8
g 8§ 8 8 8 8 g 8 8 g8 8 8
[wN] L § 8 8 8 § 8 8 & ¢ 2 8 8
e P,®
wil “d m"d "d
s s
8 8
— g g
8 S 8
s s s
8 8 8
g H
3 8 NS g 8
& o .
= 7 =) 13 o
] g 3H g 3 8
5 ¥ e\ B] S
S HE
5 gI(g
3 \ £
2 gz o7 gz ¢ gz
g g g
3 8= & 8v it g2
2 s g
g E H
<[4 £
] g B> g ¥ g
2 L
-4 S P S o S
g & { 54 & S
] o —
- S 8 8
—— g g B
— (=] o o
S & 8 8 8 8§ o S s 3 3 o
g 88888 g8 8 2 8 2
8 88 8 8] ¢ s < &
[wdi] » [%] &
yeys
il " e
s s
8 8
= g g
‘ 8 8
8 L 8 8
g f g g
8 8 8
£]
| s s 3 g
[S g 8 2 g
n <+ c < <
o °
Ll E 2
2 £ 3 H
£ gE ¢ g5 & o=
s 8L £ g2 3 gz
3 8s 2 8= & g%
I 3 £
8 H g
3
2 g & g8 E 8
= S =1 S
F « « % «
2 3
< L
8 —/8 8
g Nk B
N
, SSSSNG / \ o~
- = o ‘o o
Jr—— E— s 3 ° c g 8 8 8 8 8 8
e g8 8 g 8 g8 888828 s8
& g = E §§8 8 88 ¢
[wNl L [9%] V11

Figure 6.12: Test motor characteristics results in RCP MIL testing

Comparing these results to those obtained in System Design 3D maps MIL
testing case it is possible to understand that designed system model works
properly in presence of modelled real interfaces since results are perfectly
equal to each other.

146

Rapid-Control-Prototyping code production

6.2 Rapid-Control-Prototyping SIL testing

After being designed, the system model is tested in presence of modelled
real interface and verified that its behavior does not change with respect to
the case where real interface are not modelled (model considered in System
Design V-shaped model phase), corresponding Control Logic C code has
to be obtained and to its behavior in presence of modelled real interfaces
must be tested. Here, as explained in chapter 5 both plant’s model and
Control Logic’s code are run in development machine. Also in this case to
obtain Control Logic’s C code, Software-in-the-loop must be selected from
simulation mode drop-down menu that can be find in block parameters
window of corresponding reference model, as shown in figure 6.13. Once this
is done, all possible tests can be considered to perform simulation and obtain
corresponding results to be compared to those obtained in MIL testing case
and understand whether obtained C code works properly or not: if results are
equal to each other, for sure, obtained Control Logic’s C code works properly,
otherwise there is something that does not work as desired and designer
has to go back to find errors to be solved. Actually, if C code generation
procedure ends in successfully manner the C code will work properly. Status
of C code generation procedure can be observed by means diagnostic viewer.

1 \—‘
B L
=} o i
Lo [) Block Parameters: CONTROL_LOGIC
] Model Reference
[} Reference the specified model.
=]
dal,
M Instance paramef ters
« Model name:
CONTROL_LOGIC sl Browse... Open Model
Simulation mode: Software-in-the-loop (SIL)
iz — B sl Codeinterface: Model reference
e [R—
== e Model events simulation:
L em > | Show model initialize port
t
\ =
T

=1 9 oK Cancel Help Apply
Figure 6.13: Control Logic reference model setting in RCP SIL simulation

To avoid being repetitive only a single kind of test is reported: 3D maps
test which represents the hardest test due to the very huge quantity of
working points that is considered. To perform this test, besides to do what
before described the same procedure explained in subsection 4.2.4 related to
3D maps test has must be followed in order to set properly MTM Simulink
model and to load needed variables in MATLAB workspace. Once simulation
is performed in selected path always the same four files are created that

147

Rapid-Control-Prototyping code production

contain interesting parameter values that can be used to obtain results shown
in following figures that can be compared to those obtain in RCP 3D maps
MIL testing case for understanding whether obtained Control Logic’s C code
works properly or not such that designer can decide whether it is possible to
go away with design or not. Performing this test results shown in figure 6.14
are obtained.

Torque [Nm]
Efficiency map (%)

o 1000 2000 3000 4000 5000 6000
Speed [pm]

Figure 6.14: Efficiency 3D map result in RCP SIL testing

Torque [Nm]

3000
Speed [pm]

Figure 6.15: Dissipated power 3D map result in RCP SIL testing

148

Rapid-Control-Prototyping code production

9 9 s
8 8 g8
g g g
g g g
1
| o 9 s
g — g 18
8 — 18 . 8
:{// L —
5] e el
— 8 2 | e —— -] § - — |8
H § 8 R I ~ g
a— -) ——
g0 z — £ -
I <
5 — 8w @ o 8@ 3 - 8z
2 [8= 2 T |B% B p 8%
E = K] LS 3 —
H 1 8
ki C g £ o« —lg % Fa——
g % —__ 18 3 o &
e ~ | o 4
L L
Y\\» /
[g /8 8
g 8 P g
u N [
) ’
(=) (=) L =}
e & w = ® o w s & 8§ 8 8 § © s 8 3 © 8 8 =2
e e 8 8 8 8 8 8 8 8 8 8 8 8
s 8 8 8 ¢ § g g 8 g§ g §
[wN] L & 8 8 8 8 & 8 & 2 2 & 8
e pP.®
wil "d M 'dd
g s s
g g 8
g g g
g - g g
g I g s
8 8 8
g L g g
3 g o g 2
7
2| 1
8 .
K s 5 s 2
5 g 3 g £ g
s g el < H S
5 gl
8 8| g
£ P g B .
3 g8Z o (sz 2 s@
g g% T g=
H o 5
5 s - s E o
- = ——
g g R g k g
2] (g &]
o
2
8 = 8 g
g & g g
|
- |
—
B
o — o o
—— s s = 5 =8 = s o
8 88 8 8 8 8 8 8 8 H
g 8 8§ & g B = &
g 8 § 8 S
[%] &
s
8
g
g
g s
8 8
g g
g 2
£l]
gl g g g
8 3 8
W g g
o o
L E o
2 g 2
£ = i3
5 8§ 3 = g 8=
3 3= 3 = g 8=
] 3 £
2 4
S
8 1] £
2 g & E g
3 { o &
4 o
& ©
8 8
g g
N
1
° ° -
s = 8 8§ o - s
8 8 8 =8 8
g§ & 8 g
[wNl L [9%] 4 [N g

Figure 6.16: Test motor characteristics results in RCP SIL testing

Comparing these results to those obtained in RCP 3D maps MIL testing
it is possible to observe that nothing changes so for sure also in this case
obtained Control Logic’s code works properly and designer can proceed with
design.

149

Rapid-Control-Prototyping code production

150

Bibliography

[1]

Fratino Thesis. ICE TEST BENCH REDEVELOMENT FOR HYBRID
AND ELECTRIC POWERTRAIN. Ttaly, 2019.

Coletta Thesis. Model-based Design of an Automotive Control Code with
a modified V-cycle and Modular Model approach. Italy, 2019.

The MathWorks, Inc. Signal Generator
https://www.mathworks.com /help /simulink /slref/signalgenerator.html

The MathWorks, Inc. Mapped Motor
https://www.mathworks.com /help /autoblks/ref/mappedmotor.html

The MathWorks, Inc. Rotational Inertia
https://www.mathworks.com /help/vdynblks/ref/rotationalinertia.html

The MathWorks, Inc. Delay
https://www.mathworks.com/help /simulink /slref/delay.html

The MathWorks, Inc. Discrete Filter
https://www.mathworks.com /help /simulink /slref/discretefilter.html

The MathWorks, Inc. Quantizer
https://www.mathworks.com/help/simulink/slref/quantizer.html

The MathWorks, Inc. State charts for modeling control logic
https://www.mathworks.com/discovery /state-chart.html

[10] The MathWorks, Inc. Switch

https://www.mathworks.com /help /simulink /slref /switch.html

[11] The MathWorks, Inc. Create Subsystems

https://www.mathworks.com /help/simulink /ug/creating-
subsystems.html

[12] The MathWorks, Inc. Model References

https://www.mathworks.com /help /simulink /model-reference.html

[13] The MathWorks, Inc. Dashboard

https://www.mathworks.com/help/simulink /dashboard.html

151

https://www.mathworks.com/help/simulink/slref/signalgenerator.html
https://www.mathworks.com/help/autoblks/ref/mappedmotor.html
https://www.mathworks.com/help/vdynblks/ref/rotationalinertia.html
https://www.mathworks.com/help/simulink/slref/delay.html
https://www.mathworks.com/help/simulink/slref/discretefilter.html
https://www.mathworks.com/help/simulink/slref/quantizer.html
https://www.mathworks.com/discovery/state-chart.html
https://www.mathworks.com/help/simulink/slref/switch.html
https://www.mathworks.com/help/simulink/ug/creating-subsystems.html
https://www.mathworks.com/help/simulink/ug/creating-subsystems.html
https://www.mathworks.com/help/simulink/model-reference.html
https://www.mathworks.com/help/simulink/dashboard.html

Rapid-Control-Prototyping code production

[14] The MathWorks, Inc. Generate C Code from Simulink Model
https://www.mathworks.com /help/dsp/ug/generate-c-code-from-
simulink-model.html

[15] The MathWorks, Inc. dSpace interfaces DAUIN - Vehicle Management
Unit 210128 dSPACE__interfaces__documentation. Italy, 2021.

152

https://www.mathworks.com/help/dsp/ug/generate-c-code-from-simulink-model.html
https://www.mathworks.com/help/dsp/ug/generate-c-code-from-simulink-model.html

	LIST OF FIGURE
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: SYSTEM ENGINEERING APPROACH
	V-shaped model
	Hybrid V-shaped model

	Modular-Technical Model (MTM)

	CHAPTER 3: TEST BENCH CONCEPT MODEL
	User requirements
	Concept model simulation
	Concept model simulation results

	CHAPTER 4: SYSTEM DESIGN PHASE: TECHNICAL MODEL
	Preliminary technical model
	Some preliminary modification of concept model
	Tabulated bench motor
	Tabulated bench and test motor

	Modular Technical model
	Environment reference model
	Plant reference model
	Control interface refence model
	Control Logic reference model

	Human-Machine-Interface subsystem
	User subsystem

	Dashboard and control panel

	CHAPTER 5: System design: model-based testing
	MIL testing
	Single working point MIL testing
	Nominal power working point MIL testing
	Torque curves MIL testing
	3D maps MIL testing

	SIL testing

	CHAPTER 6: Rapid-Control-Prototyping code production
	Rapid-Control-Prototyping MIL testing
	RCP Single working point MIL testing
	RCP Nominal power working point MIL testing
	RCP Torque curves MIL testing
	RCP 3D maps MIL testing

	Rapid-Control-Prototyping SIL testing

	Bibliography

