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1 OVERVIEW 

The aim of this thesis is to develop an efficient fluid-dynamic model of an electro-
hydrostatic actuator (EHA). Successively, in the second part, the system will be 
subjected to two different faults (demagnetization of the torque motor, increment of the 
static friction on the jack) and it will develop an algorithm that can autonomously detect 
these failures and predict the remaining useful life of the components. 

This is what is called Prognostic and Health Management (PHM). Nowadays, with the 
increasing complexity of the aircraft, this discipline is becoming important and 
important: companies, in fact, can be more competitive using the components for all the 
useful life, until the component will not perform its function anymore. 

In this way, scheduling of maintenances can be optimized without compromising the 
reliability of the components. With the model-based approach, used in the models of 
this thesis, it is possible to identify location, entity and mode of each failure; in 
particular, two different models of the same system have been used: the first one, more 
complicated and more reliable, has been used as reference for the second one, 
approximated respect to the previous one and less demanding in terms of computational 
effort, used for the prognostic purpose. 

The first step of this thesis has been the development of the fluid-dynamic model of the 
approximated one: reproduction of the characteristic curves of the servovalve was not 
sufficient to have the same behaviour in both models, since the first one has a time-
dependant response; for this reason, the model has been completed with the same time 
constant implementation. 

After the validation of the new fluid-dynamic model, the successive step has been the 
identification of parameters that can clearly show the presence of each fault. In both 
models, in fact, constants of damage are present, within the range from 0 to 1, where 0 
corresponds to nominal condition and 1 to totally compromised component (for the 
increasing friction on the jack only the value of the static friction has been changed). In 
the studied cases, the physical quantities used for the identification are the current 
absorbed by torque motor and the differential pressure across the chamber of the jack. 

Finally, these quantities have been used for the prognostic algorithm: the first model, 
more precise, have been used as a reference for the optimization algorithm that 
minimizes the objective function, calculated from these quantities, making the response 
of the simplified model match the first. The algorithm, trough iterations, simulate 
different entities of faults, until the reference is matched: once its task has been 
completed, it returns the constants of damage and can esteem the state of health of the 
system. 
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2 SERVO MECHANISM FOR FLIGHT CONTROL 

Movable command surfaces are necessary to grant the pilot in the cockpit to control and 
manoeuvre the aircraft: changing the external shape of wing surfaces, aerodynamic 
resultant forces and moments on the aircraft are modified.  

There are two different types of flight commands: primary and secondary.  

Primary commands are actuated continuously during the flight and they must have three 
fundamental characteristics: they must be instinctive, the aircraft must move on the 
same direction of the commands, proportional and reversible, so that a movement of the 
control bar corresponds to a precise deflection of the mobile surfaces and vice versa and 
finally sensitive, the pilot must have the sensation of resistance and stress of the mobile 
surfaces, as function of amplitude of the deflection and velocity of the aircraft. They 
comprehend ailerons, rudder and elevators. 

 

 

Figure 2.1: Primary and secondary fight commands. 

 

On the other hand, leading edge extensions (slats), trailing edge extensions (flaps), tail 
plane and air brakes (spoilers) are considered secondary commands. 

Secondary commands, in contrast to the primary ones, have a discrete positioning and 
are modified by the pilot only during certain flight phases, such as in the rolling phase, 
take-off or landing. Moreover, they must be irreversible and, for their limited use, have 
lower performances both in terms of magnitude and accuracy of actuation. 

The actuation system that permits to deflect the mobile surfaces is called flight control 
actuation system: in a great part of common commercial aircrafts, it is implemented 
with hydraulic actuators, thanks to their robustness, security and reliability. They are 
commanded by the computer that translates the analogical signal coming from the pilot 
to a digital one. However, these actuators have some disadvantages, as the high weight 
and complexity: because of this, localization and maintenance of a possible fault in the 
system is very difficult. 
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With the increasing complexity of modern systems, it is more and more difficult to 
reduce weight of components due to the necessary redundancies to satisfy the safety 
requirements. 

A possible solution is the use of servo electro-hydrostatic actuators (EHA): in these 
mechanisms, there is a great compaction of the components with a hydraulic circuit with 
lower dimensions respect to a centralized one. They convert electric energy into 
hydraulic one thanks to a fixed displacement pump actuated from an electric motor, a 
servo-valve and a hydraulic actuator. Not needing a hydraulic supply permits to save 
space and weight. 

Nowadays, another solution has been developed, the electro-mechanical actuators 
(EMA) that are rising and competing with the previous ones in terms of reliability and 
robustness. 

In the following paragraphs, the main characteristics of traditional hydro-mechanical 
actuators, EHA and EMA will be examined. 

 

2.1 HYDRO-MECHANICAL ACTUATORS 
 

 

Figure 2.2: Hydro-mechanical actuator scheme.  

 

Hydro-mechanical actuators were the most used actuation system. They are composed 
of the control element, amplification of the command (valve) and the actuator. 

The pilot’s input in transmitted to the valve by mean of a cinematic chain, connected to 
a three-centres lever: one lever is fixed to the spool of the valve and permits it to move, 
while the second one is connected to the control surface and represents the mechanical 
feedback. In this way, the valve is commanded with the geometrical difference between 
commanded position and surface position, to reach a stable displacement. The valve, 
once commanded, supply one chamber of the actuator and discharge the other. 
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2.2 ELECTRO-MECHANICAL ACTUATORS (EMA) 
 

 

Figure 2.3: Electro-mechanical actuator control scheme (Maré & Fu, 2017, p. 49).  

 

EMA transforms electrical power into mechanical one: it is composed of an electrical 
motor, a gear box, to reduce RPM and increasing the torque available and a cinematic 
chain to convert the rotatory movement into a linear one (usually a ball screw to reduce 
friction). 

This is an example of all-electric system and probably will take place on all the aircrafts 
in the future; however, there is still a great problem with this kind of actuation: if a 
single grip occurs in the ball screw, all the system can not move anymore, and the 
control surface remains blocked. This is the main reason why EMA are used now only 
for secondary commands. 
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2.3 ELECTRO-HYDROSTATIC ACTUATORS (EHA) 
 

 

Figure 2.4: Electro-hydrostatic actuator control scheme (Borghetto, 2016, p. 13). 

 

This is the actuator studied in this thesis. In this kind of actuators, the pump is positioned 
near the actuator and is driven by a brushless motor. There can be two different types 
of pump: a fixed displacement pump, where the regulation is made by controlling the 
speed of the motor and a variable step displacement pump, where the regulation depends 
on the plate of the pump. Thanks to the proximity of the pump to the actuator, weight 
can be saved, avoiding heavy hydraulic lines. Another quality of this actuator is that the 
pilot command is transmitted through fly-by-wire lines, avoiding friction losses or 
linkage flexibility, characteristic of reversible control lines. The feedback signal is 
obtained through a LVDT (linear variable differential transformer) or a RVDT 
(rotatory variable differential transformer), that give information about instantaneous 
position of the jack to the ACE (actuator control electronics). In this way the position 
error is given the PDE (power drive electronics) that regulates the motor angular 
velocity. 
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3 SERVO-VALVE FOR POSITION COMMAND 

The aim of a servo-valve is to regulate the flow rate of the fluid entering in the actuator. 
In this way, it is possible to control the position of the actuator and to equilibrate 
possible forces generated from the aerodynamic hinge moment. 

Servo-valves are widely used in aeronautical sector, since the second half of 20th 
century, both for primary and secondary commands. 

To accomplish the actuation, an electric input signal is sent to the torque motor of the 
servo-valve from the control unit, implemented in this thesis as a PID controller. It uses 
the error between the commanded position and the instantaneous position of the jack, 
derived from the closed loop structure of the system, to nullify the position error, leading 
to the commanded position. 

In the following paragraph the flapper-nozzle valve, used in this thesis, will be 
presented. 

3.1 FLAPPER-NOZZLE VALVE 
The flapper-nozzle valve is composed of two stages: the first stage consists in an electric 
torque motor, a flapper and two nozzles that connect the two stages, while the second 
one comprehends the sleeve, where the spool can move to close or open the four 
different passageways. 

Once the valve is commanded, the spool can move, dependently from the differential 
pressure caused by the nozzles, and, according to the design of the sleeve, it opens and 
closes two different passageways, one to supply a chamber of the jack and one to 
discharge the other one. Feedback between the two stages is represented from the 
feedback-spring. 

 

 

Figure 3.1: Section of a flapper-nozzle valve (Riva, 2019, p. 17). 
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More details are explained below. 

In the torque-motor, the stator is constituted by an upper and a lower yoke, on which a 
permanent magnet is fixed respectively; the rotor, instead, is formed by an armature 
with two coils, whose middle position corresponds to null current. The permanent 
magnets and the coils generate magnetomotive forces between the four airgaps. In the 
middle of the armature the upper part of a flapper is fixed, while its lower part is 
positioned between two nozzles equally spaced, so that a rotation of the rotor involves 
a rotation of the flapper that obstructs one of the nozzles. This rotation is contrasted by 
the hinge spring and the bending of the feedback spring, while the armature-flapper 
assembly is supported by a flexure tube, that prevents hydraulic fluid filters in the torque 
motor. 

 

Figure 3.2: Scheme of the torque motor and the first stage of the flapper-nozzle valve (Urata, 2004).  

 

A movement of the flapper on the right or left side, leads to a partial occlusion of one 
of the nozzles, in this way the fluid from a nozzle will be throttled while the other will 
be unconstrained. The partial occlusion of one nozzle will cause an increase of the 
pressure that is reported in the chamber of the spool: a differential pressure on the two 
surfaces of the spool will make it move in one direction. In the movement of the spool 
respect to the null position, two passageways will be opened, one supplying a chamber 
of the actuator and the other will be connected to the tank. The hydrostatic force caused 
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by the differential pressure is not the only force acting on the spool, but it is also 
subjected to the feedback spring, as shown in Figure 3.3. 

 

 

Figure 3.3: Scheme of the first and second stage of the flapper-nozzle valve (Riva, 2019, p. 23).  

 

In fact, the feedback spring is connected between the spool and the flapper and it acts a 
force to nullify the position error between them. This is a very important contribution 
to the stability of the system: if the valve is commanded, for example, with a step signal 
input, the flapper will occlude one of the nozzles causing a differential pressure on the 
spool chamber; once the jack reaches the new commanded position, the error tends to 
zero, thanks to the feedback spring that applies a force to report the spool in the null 
position. This corresponds to the unique position with null error. If the feedback spring 
were not acting on the spool, the jack would oscillate around the equilibrium position, 
leading to a limit cycle. 

It is important to avoid fluid contamination: the presence of small metal parts can 
compromise the correct valve functioning. These parts can reach the nozzles and they 
can be damaged due to the supersonic velocities of the fluid, compromising the null 
position; they can also reach the ball at the end of the feedback spring and the spool, 
reducing the precision of the valve. For these reasons, a filter is placed after the supply 
and return passageways. 

This type of valve is the best in commerce thanks to its reliability and dynamic 
performance in terms of reaction velocity. 
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3.2 TECHNICAL CHARACTERISTICS OF VALVES AND 

NON-LINEARITIES 
As described before, the aim of valves and servovalves is to control the fluid that 
supplies the chambers of the actuator: the control is applied through the position of the 
spool that close or open the different passageways. In general, both pressures and flow 
rates that supply the actuator depends on external conditions (load and pressures of 
supply and return): a useful way to describe all these aspects is with the characteristic 
curves of the valve. 

 

a) b) 
Figure 3.4: Characteristic curves of a valve, pressure-displacement (a), flow rate-displacement (b). 

(Dalla Vedova, 2007, p. 84-85). 

 

In Figure 3.4 a) the characteristic curves pressure P12-spool position XS are shown: 
given a fixed value of flow rate QJ (in this example equal to -6 m^3/s, -3 m^3/s, 0 m^3/s, 
+3 m^3/s, +6 m^3/s), the correspondence between the input XS and the output P12 is 
explained (controlled pressure is function also of the geometric characteristics of the 
valve, supply and return pressures). It is interesting to observe that, for great values of 
spool displacement XS, the pressure P12 is almost equal to the supply pressure, while 
for small values of XS the pressure can assume values greater than the supply pressure: 
this is the typical case of rapid closure of the spool, where the fluid still has velocity 
while the passageway is closed, leading to the water hammer. 

In Figure 3.4 b) the characteristic curves flow rate QJ-spool position XS are shown: 
given a fixed value of pressure P1 (equal to 0.6 MPa, 5.6 MPa, 10.6 MPa, 15.6 MPa, 
20.6 MPa), the correspondence between the input XS and the output QJ is explained. In 
this case, two different horizontal segments can be observed: the first represents the 
flow rate with a P1=0.6 MPa, while the second represents the flow rate with P1=20.6 
MPa; these are the case when the pressure P1 is equal to the return pressure in the first 
case and to the supply pressure in the second one, leading to null flow rate because no 
differential pressure is present. 

It can be convenient to adopt some simplifications: since this study is focused on 
proximity of the null spool position, it is possible to apply the superposition effect on 
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XS, considering two different contributions on the pressure and flow rate. These 
simplifications are adopted considering the flow rate gain GQ and the pressure gain GP. 
The flow rate gain is defined as the slope of the curve QJ-XS at null values of pressure 
P12, while the pressure gain is defined as the slope of the curve P12-XS at null value of 
flow rate QJ. 

 

 

Figure 3.5: Flow rate and pressure gains definition (Borghetto, 2016, p. 20).  

 

This can be a powerful method to understand the performance of a valve in a preliminary 
phase, but it could be necessary to study other aspects of the valve. In the paragraphs 
below are described the main. 
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3.2.1 Lapp Condition 
Three different constructive choices can be done in a valve about the lapp condition: 
null lapp, overlapping and underlapping.  

 

 

Figure 3.6: Different lapp conditions in a valve (Borghetto, 2016, p. 21).  

When the spool has the same dimension of the passageway, it is called zero-lapped: in 
this case there is only one position of the spool that closes completely the passageway, 
while a displacement leads to an immediate response of the valve in terms of pressure 
and flow rate. It is usually used to not create non-linearities in the null position 
neighbourhood, in this way the pressure and flow rates gain are almost constant in this 
interval. 

An overlapped valve is a condition where the spool has a width excess respect to the 
passageway: it is usually used to compensate the static leakage due to clearance; 
moreover, it creates a dead zone where an axial displacement of the spool does not 
create any flow rate.  

An underlapped valve, instead, is a condition where the spool is slightly smaller than 
the passageway, so even at null position, the passageway is not completely closed. It is 
usually used to prevent water hammer due to rapid closure of the valve. In this case, 
even in null position, the valve has a response in terms of pressure and flow rate. 

The responses to an input of all three conditions described above are shown in the figure 
below: 

 

 

Figure 3.7: Schemes of the response of the three lapp conditions (Borghetto, 2016, p. 21). 
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3.2.2 Threshold 
Threshold is defined as the minimal input current required by the valve to vary the fluid 
flow rate when a directional inversion is commanded; it can be seen also as the minimal 
variation of current that leads to a change in the response of the valve. It indicates how 
much a valve is sensible to a variation of the input current. 

 

Figure 3.8: Graphical interpretation of threshold (Borghetto, 2016, p. 22).  

 

3.2.3 Magnetic hysteresis 
Magnetic hysteresis is an important source of non-linearities and it is defined as the 
characteristic of a system to react, not only to instantaneous values of input, but also to 
time history of states. It is typical of magnetic materials and, obviously, of all their 
applications (transformers, electric motors and so on). In the graph below, typical 
response of a system with hysteresis is shown: 
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Figure 3.9: Typical hysteresis scheme of electric motors (Borghetto, 2016, p.30).  

 

Initially, when the system is not magnetized, the magnetization follows the first curve: 
in this case, increasing the current also the magnetization increases, but not in a direct 
proportionally way. Over a certain value of the current I, the magnetization B will reach 
a saturation value 𝐵௦௧: this is due to the fact that in the first magnetization curve, the 
Weiss domains of the material gradually orient themselves to the external magnetic 
field; this leads to an increase of the magnetization until they are all oriented in the same 
direction and reaching the saturation. Then, if the current is decreased to 0, it can be 
noticed that the curve is different from the first: in particular, B will not be equal to 0, 
but it will assume a positive value; in this phase some of the Weiss domains will 
maintain the previous orientation, leading to a residual magnetization of the material. 
To demagnetize the material, a current of opposite sign must be applied and, if the 
current is applied for more time, the material will be magnetized in the same direction, 
reaching a new value of saturation, opposite to the first. Finally, decreasing the current 
to 0 and increasing it in the opposite direction, the curve will be closed, as represented 
in Figure 3.9. 

Hysteresis diagrams can be quite different from the presented one, dependently from 
the analysed material: hard ferromagnetic materials usually have a higher residual 
magnetization respect to the soft one and for this reason, they have different 
applications. However, all the ferromagnetic materials can lose their magnetization due 
to the natural demagnetization in time (ductile iron case) or heating the material over its 
Curie temperature (recovery of permanent magnets case). 
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In the system analysed in this thesis, magnetic hysteresis affects the torque motor of the 
first stage of the servovalve, where, even if the current is no more applied, the magnetic 
field continues to attract the armature. 

 

3.2.4 Friction 
Friction is a crucial point in the study of the system, since it influences the whole system: 
it is a strong non-linear phenomenon that limits the position accuracy needed in the 
aeronautical sector.  

Friction is a force that is present between two surfaces that are in contact, opposing to 
their relative motion. If the surfaces have not relative velocity, static friction is present, 
in the other cases, there will be dynamic friction. There are three different types of 
friction: 

- Sliding friction, it is the case of two surfaces slipping. 
- Rolling friction, it is involved when a body roll on a surface. 
- Viscous friction, it is present when a body or a fluid layer has a relative velocity 

respect to the layer below. 

Considering only the static and dynamic friction, their expressions are: 

𝐹௦ = 𝜇௦ ∙ 𝑁 

𝐹ௗ = 𝜇ௗ ∙ 𝑁 

where 𝜇௦   and  𝜇ௗ   are respectively the dimensionless static and dynamic friction 
coefficients, depending by the materials on contact and N the normal reaction of the 
ground to the body. If a body in contact with a not lubricated surface is considered, 
applying a driving force, the friction force will have the sequent behaviour: 
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Figure 3.10: Friction force behaviour.  

 

As it can be seen from Figure 3.10, when a force smaller than the friction is applied, the 
body is still in quiet, but, as soon as it reaches the maximum value of the static friction, 
the body will move and the friction will decrease to an almost constant value, equal to 
the dynamic friction. In this case, to have a good friction model, four different situations 
must be discriminated: 

- Body in quiet that remains in quiet, 
- Body that starts moving, 
- Body in motion that continue to be in motion, 
- Body in motion that stops. 

One of the first friction models is the Coulomb model: neglecting the local dynamic 
phenomena, it grants a good global representation of the friction and it can be described 
by the sequent equations: 

𝐹𝐹 =

⎩
⎪
⎨

⎪
⎧

𝐹௧௧

𝐹𝑆𝐽 ∙ 𝑠𝑖𝑔𝑛(𝐹௧௧)

𝑖𝑓 𝑣 = 0 ∧  |𝐹௧௧| ≤ 𝐹𝑆𝐽

𝑖𝑓 𝑣 = 0 ∧  |𝐹௧௧| > 𝐹𝑆𝐽

𝐹𝐷𝐽 ∙ 𝑠𝑖𝑔𝑛(𝑣) 𝑖𝑓 𝑣 ≠ 0

 

Every situation identified before are visible in this mathematical description. 
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Figure 3.11: Graphical description of the Coulomb friction model (Borghetto, 2016, p. 26).  

 

As convention, the friction force FF is positive when it is opposite to a positive 
velocity. 

However, this model is not suitable for numerical simulations, because of the 
discontinuity in v=0: integrating the acceleration in the two different cases, two different 
velocities values of opposite sign are obtained; in this way, the model can not recognize 
when the speed reaches the null value, so it can not verify the possible arrest of the body. 
This verification can not be neglected as, if the body is in quiet, the resultant active force 
can be smaller than the static friction. These limits bring to the development of new 
friction models: in this thesis two different models will be analysed, Karnopp and 
Borello. 

Karnopp model compensates the discontinuity of the friction force in correspondence 
of null velocity, introducing a dead band centred in the origin. Through this dead band, 
it is possible to distinguish the cinematic differences between static and dynamic 
friction, in particular the static friction can equilibrate the external forces applied, 
maintaining the null value of acceleration and so, avoiding the start. 

The mathematical formulation of the model is shown below: 

𝐹𝐹 =

⎩
⎪
⎨

⎪
⎧

𝑚𝑖𝑛(𝑚𝑎𝑥(−𝐹𝑆𝐽, 𝐹), 𝐹𝑆𝐽)

𝑣 = 0

𝑖𝑓 |𝑣| ≤  𝜀  

𝑖𝑓 |𝑣| ≤  𝜀

𝐹𝐷𝐽 ∙ 𝑠𝑖𝑔𝑛(𝑣) 𝑖𝑓 |𝑣| > 𝜀 

 

where F is the driving force and ε is a small enough value of the velocity under which 
the velocity is considered equal to 0. It is very important to choose the right value of ε: 
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if it is chosen too high the simulation results will be very far from the real data, 
emphasizing the Karnopp model limits, while, on the other hand, if it is chosen too 
small, the model can not discriminate the static from the dynamic state. In other words, 
a value of ε too high brings the calculations to a limit cycle, while a value too small 
leads to numerical instability. 

A graphical representation of the Karnopp friction model is shown below: 

 

 

Figure 3.12: Graphical representation of the Karnopp model (Borghetto, 2016, p. 27).  

 

From the equations explained previously, the sequent Simulink model has been 
obtained: 

 

Figure 3.13: Simulink Karnopp model.  
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A new model of friction has been developed by professor of Politecnico di Torino 
Borello, overcoming the limits of the Karnopp model: it can, in fact, correctly 
distinguish the static condition from the adherence one, discriminating the four 
cinematic situations described at the beginning of this paragraph. 

Below, the mathematical and graphical representation of this model are reported: 

𝐹𝐹 =

⎩
⎪
⎨

⎪
⎧

𝐹௧௧

𝐹𝑆𝐽 ∙ 𝑠𝑖𝑔𝑛(𝐹௧௧)

𝑖𝑓 𝑣 = 0 ∧  |𝐹௧௧| ≤ 𝐹𝑆𝐽

𝑖𝑓 𝑣 = 0 ∧  |𝐹௧௧| > 𝐹𝑆𝐽

𝐹𝐷𝐽 ∙ 𝑠𝑖𝑔𝑛(𝑣) 𝑖𝑓 𝑣 ≠ 0

 

 

 

Figure 3.14: Graphical representation of Borello friction model (Borghetto, 2016, p. 28).  

 

Despite to the Karnopp model, this one does not need a dead band, in fact, if a change 
of sign in the velocity is detected in an integration interval, the algorithm resets the 
velocity, arresting the system; if an external force is present and the body would not 
arrest, at the following integration step a decompensation is created between the forces, 
enabling the system to move again. These characteristics do not only make the model 
more performing respect to the others in literature, but it is also easy developable on 
Simulink, obtaining the sequent scheme: 
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Figure 3.15: Simulink of Borello friction model. 

 

3.2.5 Backlash 
Backlash is a clearance between two coupled mechanicals components that allows their 
relative movement. It can be defined as the maximum distance or angle through which 
a mechanical component can move without transmitting any appreciating force or 
couple to the next component. Due to this, a time delay can be present in the system 
respect to an inversion of the input, in fact it is one of the most important factors that 
influences the system performances. It is an inevitable consequence of the mechanical 
processing of the component manufacturing, because every process leads to tolerances 
in the dimensions. Usually, it is also present to permit the coupling of two or more 
components or to compensate the thermal expansion of materials. Moreover, during the 
life of the component, backlash can increase because of continuous contact with other 
components, leading to a further deterioration of the system performances and to a 
decreasing precision in the relative positioning of components. 

 

3.2.6 Offset valve 
The offset usually indicates an error respect to a reference value. About the servovalve, 
it can affect the electric motor, even when it is not active. In fact, even if the motor is 
deenergized, a minimal input current can be present. This current can partially energize 
the torque motor and it can open partially the passageways of the servovalve, actuating 
the jack even if no input is present.  
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4 SIMULINK MODEL 

Traditionally, projects of aeronautical components were developed separately from the 
others to have just an estimation of their performances. Real interactions between 
components were validated successively through ground tests or flying tests: in this 
way, any error in the project phase was very expensive in terms of time and costs. 

Nowadays, aeronautical sector, as the automotive one and many others, needs 
instruments to prove new solutions or to improve applications of already existing 
components, without creating and testing any prototype; in this case, modern computers, 
that are becoming powerful and powerful, can give an important support to the design, 
simulating the interested behaviour of a system. 

In the new approach to design, all problems are solved before the flying testing, through 
numerical simulations. In this way, development of new models, more accurate, are 
essential to predict interactions and dynamic of systems. Moreover, models are very 
important in diagnostic and prognostic fields: through the model-based approach, it is 
possible to estimate useful life of a component, for example, comparing its time 
response, coming from a sensor, with the one coming from models. If the responses 
difference exceeds a security threshold, a fault signal is sent to the pilot during the flight; 
once landed, the same fault signal can be sent to the maintenance that can identify both 
location and entity of the fault and, eventually, substitute the damaged component 
preventively. In this way, useful lifetime of components is completely used, without 
replacing the whole mechanical assembly, saving both time and economic costs. 

To develop a satisfying model, several steps are needed: 

1) Mathematical modelling of the physic system. 
In this first phase, all the aspects, peculiar characteristics and components of 
the system are identified: it could be necessary to describe how a mass react to 
a force (application of the dynamic laws), the energy of the system, the heat 
transfer or electro-magnetic interaction (application of Maxwell’s laws). 
Because of high complexity of certain systems, it could be useful to apply some 
simplification or approximation in the model without losing its validity. In other 
words, it is necessary to find a compromise between complexity and usefulness.  

2) Formulation of the equations. 
Once the mathematical model has been developed, it is necessary to apply all 
the laws that govern the analysed phenomenon, also introducing the material 
and geometrical characteristics of the system: the result will be a set of 
independent differential equations that describe the system in all its main 
aspects (dynamic, cinematic, thermal, chemical and so on). 

3) Resolution of the equations. 
In aeronautical field, mathematical problems are usually defined in time or 
frequency domain: it is almost impossible to analytically solve a set of non-
linear differential equations, so a numerical integration must be adopted to 
evaluate the dynamic response of the system. Two important aspects must be 
chosen carefully: the first one is the order of the resolution numerical method 
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(ODE), where a higher order can lead to more accurate simulation results but 
with higher computational effort; the second one is the time interval chosen as 
integration time, that must be smaller than the smallest time constant of the 
system, other ways it can lead to numerical instability. 

4) Physical interpretation of the obtained data. 
To make a model valid, its results must be compared with the experimental data 
and, if any inconsistency is present, it must be reviewed. In other words, models 
can save time and money, but they cannot substitute experimental tests. 

In this thesis, two different models of the same EHA are present: the first, called High-
Fidelity, is developed by Ing. Dalla Vedova, it has a high level of accuracy and it is used 
as a reference for the second one, called Low-Fidelity, it uses some approximations, but 
it is quicker and less demanding in terms of calculation effort and for this reason it is 
used in the optimization algorithms (explained in the next chapter). 

Both models analysed in this thesis are developed on MATLAB-Simulink 2016b 
release. 

4.1 REFERENCE MODEL 
In this paragraph the whole High-Fidelity system and its functioning will be described. 

 

 

Figure 4.1: Simulink representation of the High-Fidelity model.  

 

The system is represented as a closed loop system, where the variable XJ (instantaneous 
position of the jack) is feedbacked to compute the error signal that entries in the PID 
controller. 

The first block is the command block: it is possible to provide different reference signals 
in time domain to the system; five different inputs can be provided: three standard 
signals (step, ramp and sine wave) and two custom signals (chirp signal, a sine wave 
with variable frequency in time, and Com signal composed of different subsequent step 
signals with variable amplitude). 
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Figure 4.2: Sub-system of the input block.  

 

The error between the instantaneous position of the jack and the selected command is 
elaborated from a PID controller: its aim is to stabilize the dynamic response of the 
system. The PID controller is composed by three parallel contribution: integrational 
gain (GAI), proportional gain (GAP) and derivative gain (GAD).  

 

 

Figure 4.3: Scheme of the PID controller.  
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In this case, only the proportional gain has a non-null value, so the PID controller is 
used only as a proportional controller, thanks to the already granted stability of the 
system. 

Then, the error signal feeds the hysteresis block of the torque motor: this block permits 
to introduce both an offset on the current input and a disturbance due to external factors. 

The output of the hysteresis block represents the actual current that supplies the valve. 
The flapper-nozzles servovalve is represented as a third order system and it is composed 
of other two sub-blocks: a second order dynamic system for the first stage and a first 
order dynamic system for the second. Also, the flow rate QJ is feedbacked to the second 
stage to calculate the flow force acting on flappers. 

The output XS is the spool position, but, as it can be observed in Figure 4.1, also the 
flow rate is feedbacked from the output of the whole system: these are two important 
physical quantities, since the first, with the pressures P1 and P2, is used to calculate the 
flow rate through each opening width, while the second one is used with Q1 and Q2 to 
calculate the differential pressure P12. 

Then, the differential pressure P12 is multiplied by the jack’s surface area to obtain the 
force supplying the actuator and it enters in the last block, the second order mechanical 
model of the actuator. Through the second principle of the dynamic, the position and 
the velocity of the jack are calculated, considering also external and aerodynamic forces, 
friction and displacement limits. 

 

4.1.1 Hysteresis, offset and interferences in the torque motor 
 

 

Figure 4.4: Torque motor hysteresis model.  
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This block’s aim is to represent disturbances and non-linearity of the current entering in 
the model of the torque motor. It receives as input the control signal CoEr, given by the 
controller. This signal is algebraically summed with the values of His and Ofs. If the 
signal is rising it will be decreased of the value His, while if it is falling it will be 
increased of His, to represent the hysteresis of the motor. The block Ofs, instead (shown 
in Figure 4.5), permits to impose an offset value of the current due to a bad setting of 
neutral command, but it is also possible to introduce an external source of interferences: 
this source is represented as a Band-Limited White Noise block, whose contribute is a 
random signal with constant power spectral density. At the end, the resulting current 
will be saturated, if necessary, to the maximum or minimum values CorM and -CorM, 
the current limits that can fed the servovalve. 

 

 

Figure 4.4: Different types of offset current model.  
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4.1.2 Electromechanical model of the servovalve 
 

 

Figure 4.5: Third order electromechanical model of the servovalve.  

 

This block represents the third order electromechanical model of the servovalve: it is 
composed by two sub-blocks describing the dynamic behaviour of the first and the 
second stage of the servovalve, respectively. As it can be seen in Figure 4.6, the signal 
Cor is sent to the block GM: it computes the gain of the torque motor (in (Nm/mA)/m). 

 

 

Figure 4.6: Calculation of the gain GM.  

 

Two different values of GM can be used: the first one is the fixed value already 
calculated, the second one considers the structure, the configuration and the magnetic 
circuits of the motor, accordingly to the sequent picture. 
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Figure 4.7: Magnet circuit of the torque motor.  

 

In the second branch of the calculation, there are two inputs: Cor, the value of the current 
from the previous block, and XF, the position of the flapper feedbacked from the second 
order dynamical model of the first stage. At first, XF is multiplied for the gain (La/2)/ls, 
where La is the total length of the anchor and ls represents the arm of the spool: in this 
way the rotation of the armature is calculated and, multiplied by La/2, the vertical 
displacement of the armature is obtained. These two values are used to calculate the 
magnet flux in all the airgaps: 

𝛷ଵ =  
𝑉

2𝑅

1 − 
𝑋𝐹
𝑙𝑔

𝜆 +  𝛼 ∗ 𝑟
+

𝐶𝑜𝑟 ∗ 𝑛

2𝑅
 

 

𝛷ଶ  =  
𝑉

2𝑅

1 +  
𝑋𝐹
𝑙𝑔

𝜆 +  𝛼 ∗ 𝑟
−

𝐶𝑜𝑟 ∗ 𝑛

2𝑅
 

Where: 

n = number of winding in the armature; 

𝑅 = reluctance of the airgap in null current condition; 

𝑉 = residual magnetic induction; 

lg = total length of the air-gap; 

λ, α , r = correction factors that consider the edge effects of the magnetic flux in the 
extremity of the armature. 
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As it can be seen by the formulas above, there are two contributions in the magnetic 
flux: the first term represents the magnetic flux given by the permanent magnets of the 

yokes through air gaps with reluctance 𝑅 =  
ଶோబ

ଵ ± 
ಷ



,  while the second term with opposite 

sign represents the contribution to the flux created by the current in the coils. 

Once fluxes through airgaps are calculated, the total torque can be obtained from the 
formula: 

𝑇 =  
(𝛷ଵ

ଶ − 𝛷ଶ
ଶ) ∗ 𝐿𝑎

2 𝐴𝑔 µ
 

Where 

La = length of the anchor; 

Ag = section of the air-gap; 

µ = magnetic permeability in vacuum. 

To find the value of the force applied to the centre of the flapper, the torque is finally 
divided by the length of the anchor; moreover, to obtain a stable model, another gain, 
constant in time, is added, equal to the value of GM.  

To simulate the behaviour of the system in presence of demagnetization of the torque 
motor, the force is multiplied by 1-KGM, with KGM in the range from 0 (torque motor 
in normal condition) and 1 (motor completely demagnetized). 

Going on next block, the model of the first stage of the servovalve will be analysed. 
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Figure 4.8: Second order dynamical model of the first stage of the servovalve.  

 

The force applied to the flapper enters in the second order dynamic block; this is not the 
only input used, since also the variable XS, the instantaneous position of the spool, is 
feedbacked from the second stage dynamic model: this feedback has a physical 
meaning, because it represents the information carried out by the feedback spring that, 
proportionally to its bending stiffness, report a force to the flapper. This bending effect 
is considered by summing, and not subtracting, the spool position to the flapper position 
due to the opposite reference systems of the two. Multiplying the result for the elastic 
constant, the resultant force of the feedback spring is obtained; there is also a dead zone 
dynamic mask to simulate the backlash between the spool and the ball. To simulate the 
degrading of this backlash another parameter has been introduced: Kgioco can be 
imposed from the associated data file and it is expressed in micron. 

Considering the intermediate closed loop branch of the model, the position of the flapper 
is used to calculate its elastic return, by multiplying it for the constant KF, the stiffness 
armature-bolt.  

Finally, in the inner closed loop branch, the viscous reaction of the fluid to the flapper 
displacement is calculated: it is proportional to the velocity of the flapper and the 
proportionality constant is CF (in N/m/s), obtained from the formula above: 

𝐶𝐹 =  2 ∗ 𝑍𝐹 ∗  ඥ𝑀𝐹 ∗ (𝐾𝑆𝐹 + 𝐾𝐹) 
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Where 

ZF = dimensionless viscous coefficient; 

MF = equivalent mass of the flapper; 

KSF = linear term of the translational stiffness of the feedback spring between first and 
second stage of the servovalve; 

KF = stiffness armature-bolt. 

These three forces are subtracted to FF, to obtain the net force acting on the flapper. 
Dividing it for the equivalent mass of the spool MF, its acceleration is calculated; with 
two successively integrations also the velocity and the position of the spool are obtained. 
Robustness is given to the model by inserting saturation: if the flapper reaches the limit 
positions +XFM or -XFM, the displacement integrator switches to +1 or -1 the saturation 
port; this value is passed successively to the acceleration reset block, cancelling any 
acceleration and velocity. 

It is also possible to impose a hydraulic offset to shift the working point in another 
equilibrium condition. 

Analysing the second stage of the servovalve, it is represented as a first order dynamic 
model. 

 

 

Figure 4.9: First order dynamic model of the second stage of the servovalve.  

 

To simplify the model in the interaction between the flapper and the nozzles, it has been 
assumed a behaviour of a simple valve, with its own pressure and flow rate gains.  
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About the dynamical behaviour of the valve, the hydraulic force acting on the spool is 
given by 

𝐹ௗ = (𝑃ଵ − 𝑃ଶ) · 𝐴𝑆𝑉 

where ASV is the lateral area on which the differential pressure acts. 

Considering all the forces acting on spool, a second order differential equation can be 
written: 

𝑀ௌ�̈�ௌ + 𝐶ௌ�̇�ௌ + 𝐾ௌ(𝑥ௌ − 𝑥ி) = 𝐹ௗ − 𝐹௧ − 𝐹 

Substituting the expressions of the hydraulic force and the flow force and neglecting the 
elastic force, the equation below is obtained: 

𝑀ௌ�̈�ௌ + 𝐶ௌ�̇�ௌ = 𝐴𝑆𝑉 · 𝑃ଵଶ − 𝐹௧ − 𝐾௪ · 𝑄𝐽 

This represents a second order differential equation with a time constant too small: the 
inertial effects are neglectable with respect to the others and an integration interval 
smaller than the smallest time constant of the model must be adopted, resulting in a 
calculation time too long. To make the algorithm faster, the mass of the spool is 
neglected, degrading the system in a first order system (pressure P12 has been expressed 
combining the expressions of pressure gain and flow gain and considering  𝑄𝐽 = �̇�ௌ ·

𝐴𝑆𝑉): 

𝐶ௌ�̇�ௌ = 𝐴𝑆𝑉 ൬𝑥ி −
�̇�ௌ · 𝐴𝑆𝑉

𝐺𝑄𝐹
൰ 𝐺𝑃𝐹 − 𝐹௧ − 𝐾௪ · 𝑄𝐽 

and collecting all terms in �̇�௦: 

�̇�௦ ൬𝐶ௌ + 𝐴𝑆𝑉ଶ
𝐺𝑃𝐹

𝐺𝑄𝐹
൰ = 𝐴𝑆𝑉 · 𝐺𝑃𝐹 · 𝑥ி − 𝐹௧ − 𝐾௪ · 𝑄𝐽 

 The theoretical velocity of the spool is given as input to the Borello’s friction model: 
this block provides as output the friction force, that is feedbacked and subtracted to the 
theoretical force acting on the flapper, and the actual velocity of the flapper; it is then 
integrated to obtain the flapper position, also considering the limit positions +XSM and 
-XSM.  

The degradation of the filter has an important role in these calculations and a coefficient 
 𝐾௧௦ has been introduced, varying from 0 (filter in nominal conditions) to 1 (filter 
completely clogged); the quantity   𝑖𝑛𝑡𝑎𝑠 = 1 − 𝐾௧௦  has been used to correct the 
pressure gain with respect to the nominal conditions through the sequent relation: 

𝐺𝑃𝐹௧௨ = 𝐺𝑃𝐹 · ൬𝑖𝑛𝑡𝑎𝑠 ·
𝑃𝑆𝑅

𝑃𝑆𝑅
൰ 

where: 

𝑃𝑆𝑅 = nominal differential pressure supply-return; 

PSR = actual differential pressure supply-return. 
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The value intas is used also to correct the flow rate gain, according to the relation: 

𝐺𝑄𝐹௧௨ = 𝐺𝑄𝐹 · ඨ𝑖𝑛𝑡𝑎𝑠 ·
𝑃𝑆𝑅

𝑃𝑆𝑅
 

These two relations allow to consider a variable pressure on the line (in this case 
constant) by modifying associated data files. 

 

4.1.3 Fluid dynamic model 
The presented fluid-dynamic model has been developed by Ing. Dalla Vedova during 
his PhD research.  

In this paragraph the mathematical fluid-dynamic model of a servovalve with 
proportional control will be presented. With this model it is possible to calculate, having 
a defined spool position XS, flow rates sent to the actuator based on the pressures it 
defines, considering all the geometric details of the cross sections and the actual 
pressure drops through them. The model consider only the fluid-dynamic part and it has 
general validity, regardless of the way in which the spool is moved, so it can be used to 
simulate both hydromechanical and electromechanical valves. This fluid-dynamic 
model is referred to Figure 4.10 in a typical configuration with four ways, supply (S) 
and return (R): 

 

 

Figure 4.10: 4/3-way directional control valve scheme (Dalla Vedova, 2007, p. 65).  

 



40 

This model calculates the flow through each cross section depending on the position of 
the spool position, the geometric details of the valve and the differential pressure across 
them. There are two contributions on the differential pressure drop: the first is linear 
with the flow rate and expresses the laminar condition of the fluid, while the second, 
quadratic with the flow rate, expresses the turbulent condition. In the first case the 
pressure loss is caused by the viscous friction of the fluid and it is present only when 
the passing section is covered by the spool, while in the second case it is caused by the 
discharge of kinematic energy through the passing section and always present because 
it is related to the passing area, greater than zero. The two terms are defined as: 

∆𝑝 = 𝑅𝐿   𝑄 

∆𝑝௨ௗ = 𝑅  𝑄  |𝑄| 

where RL is the pressure drop linear coefficient and RQ is the pressure drop quadratic 
coefficient. RQ and RL can be expressed as: 

𝑅𝐿 =
6 𝜇 𝑙

𝜋 𝑟 𝑐ଷ  1 +
3
2

ቀ
𝑒
𝑐

ቁ
ଶ

൨  
 

𝑅𝑄 =  
𝜌

2 𝐶ௗ
ଶ 𝐴ଶ

 

where: 

𝜇 = dynamical viscosity; 

𝑙 = length of the covering; 

c = radial clearance; 

e = eccentricity; 

𝜌 = density of the fluid; 

𝐶ௗ = efflux coefficient; 

A = area of the passing section. 

Moreover, the circumferential opening  𝑤 ≅ 2 𝜋 𝑟   (𝑟 ≫ 𝑐) can be introduced and, 
expressing the length of the covering with X0 (varying with the spool position XS), RL 
can be expressed as: 

𝑅𝐿 =
12 𝜇 𝑋0

𝑤 𝑐ଷ  1 +
3
2

ቀ
𝑒
𝑐

ቁ
ଶ

൨  
 

In this way, only the covering X0 and the area of the passing sections must be calculated. 

In the calculation of X0, also lapping of the valve must be considered: OSSV represents 
the lapping in the supply side and ORSV the lapping in the return side. Moreover, this 
notation is valid also for the flow rate: Q1S represents the flow rate from the supply to 
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chamber 1, Q1R the flow rate from chamber 1 to the return and similarly for Q2S and 
Q2R; Q1L represents the net flow rate entering in chamber 1 and Q2L the net flow rate 
exiting from chamber 2 (these are assumed always positive as shown in Figure 4.10). In 
general, every passing section will assume the characteristic of an annular orifice of 
length X0, that is nullified only when the displacement of the spool is opposite to the 
lapping and greater of it. Lengths of the four passing sections can be expressed as:  

𝑋01𝑆 = 𝑂𝑆𝑆𝑉 − 𝑋𝑆 

𝑋01𝑅 = 𝑂𝑅𝑆𝑉 + 𝑋𝑆 

𝑋02𝑆 = 𝑂𝑆𝑆𝑉 + 𝑋𝑆 

𝑋02𝑆 = 𝑂𝑅𝑆𝑉 − 𝑋𝑆 

where X01S represents the length of the passageway from supply to chamber 1, XO1R 
from chamber 1 to return, X02S from supply to chamber 2, X02R from chamber 2 to 
return. 

Areas of the passing section, instead, will assume a minimum value of w*c (annulus) 
when the corresponding lapping is greater than spool displacement XS, but it will grow 
assuming the value of a truncated cone area: 

 

 

Figure 4.11: Section of passing section of the fluid when XS>0 for zero-lapping valve (Dalla Vedova, 
2007, p. 71).  
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Finally, it is possible to express areas of the passing sections as: 

𝐴1𝑆 = 𝑤ඥ𝑐ଶ + (𝑋𝑆 − 𝑂𝑆𝑆𝑉)ଶ 

𝐴1𝑅 = 𝑤ඥ𝑐ଶ + (𝑋𝑆 + 𝑂𝑅𝑆𝑉)ଶ 

𝐴2𝑆 = 𝑤ඥ𝑐ଶ + (𝑋𝑆 + 𝑂𝑆𝑆𝑉)ଶ 

𝐴2𝑅 = 𝑤ඥ𝑐ଶ + (𝑋𝑆 − 𝑂𝑅𝑆𝑉)ଶ 

with the limitation to consider these areas equal to w*c when XS is greater than the 
correspondent lapping. 

Now it is possible to express the pressure drops across each passing area as functions of 
the flow rates as: 

∆𝑝1𝑆 = (𝑝௦ − 𝑝ଵ) = ∆𝑝1𝑆 + ∆𝑝1𝑆௨ௗ = 𝑅𝐿1𝑆 𝑄1𝑆 + 𝑅𝑄1𝑆 𝑄1𝑆 |𝑄1𝑆| 

∆𝑝1𝑅 = (𝑝ଵ − 𝑝ோ) = ∆𝑝1𝑅 + ∆𝑝1𝑅௨ௗ = 𝑅𝐿1𝑅 𝑄1𝑅 + 𝑅𝑄1𝑅 𝑄1𝑅 |𝑄1𝑅| 

∆𝑝2𝑆 = (𝑝௦ − 𝑝ଶ) = ∆𝑝2𝑆 + ∆𝑝2𝑆௨ௗ = 𝑅𝐿2𝑆 𝑄2𝑆 + 𝑅𝑄2𝑆 𝑄2𝑆 |𝑄2𝑆| 

∆𝑝2𝑅 = (𝑝ଶ − 𝑝ோ) = ∆𝑝2𝑅 + ∆𝑝2𝑅௨ௗ = 𝑅𝐿2𝑅 𝑄2𝑅 + 𝑅𝑄2𝑅 𝑄2𝑅 |𝑄2𝑅| 

From these equations, it is possible to obtain flow rates through each passing area as: 

𝑄1𝑆 =
−𝑅𝐿1𝑆 + ඥ𝑅𝐿1𝑆ଶ + 4 𝑅𝑄1𝑆 |𝑝௦ − 𝑝ଵ| 

2 𝑅𝑄1𝑆
 SIGN(𝑝௦ − 𝑝ଵ) 

𝑄1𝑅 =
−𝑅𝐿1𝑅 + ඥ𝑅𝐿1𝑅ଶ + 4 𝑅𝑄1𝑅 |𝑝ଵ − 𝑝ோ| 

2 𝑅𝑄1𝑅
 SIGN(𝑝ଵ − 𝑝ோ) 

𝑄2𝑆 =
−𝑅𝐿2𝑆 + ඥ𝑅𝐿2𝑆ଶ + 4 𝑅𝑄2𝑆 |𝑝௦ − 𝑝ଵ| 

2 𝑅𝑄2𝑆
 SIGN(𝑝௦ − 𝑝ଶ) 

𝑄2𝑅 =
−𝑅𝐿2𝑅 + ඥ𝑅𝐿2𝑅ଶ + 4 𝑅𝑄2𝑅 |𝑝ଶ − 𝑝ோ| 

2 𝑅𝑄2𝑅
 SIGN(𝑝ଶ − 𝑝ோ) 

As it can be noticed, only the value of the pressure drop across each passing area 
influences the value of the flow rate and this explains the presence of the absolute value, 
while its sign influences only the verse of the flow rate and this explains the 
multiplicative term  𝑆𝐼𝐺𝑁(∆𝑝). Once each flow rate is calculated, it is possible to obtain 
the useful flow rates to the actuator as algebraic sum of the flow rates through the 
respective passing areas as: 

𝑄1𝐿 = 𝑄1𝑆 − 𝑄1𝑅 

𝑄2𝐿 = 𝑄2𝑅 − 𝑄2𝑆 
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The model obtained from this treatment is shown below: 

 

Figure 4.12: Simulink model of the subsystem “Fluid dynamic model”.  

 

Moreover, it has been inserted another coefficient Khsv that multiplies the nominal 
clearance HSV to simulate its degrading condition in time. 

As it can be observed in Figure 4.12, it is present another block called “CRH + 
abbreviation of each section name”: this subsystem permits to calculate the actual value 
of the efflux coefficient Cd as multiplication of two terms: the first one (Cd0), expressed 
through an empirical relation, is a function of the Reynolds number, which considers 
the actual values of the fluid density and cinematic viscosity through look-up tables and 
represents the nominal efflux coefficient, while the second one (C’) represents the 
correction of the first coefficient, calculated from the variable geometry of the passing 
area. The scheme is reported below: 
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Figure 4.13: Scheme of the subsystem CRH, relative to the passing area S2.  

 

The mathematical model presented above permits to obtain the characteristic curves of 
the flow rate, trend of the regulated flows as function of the spool position XS and the 
pressures P1 and P2, but it is not possible to directly obtain the characteristic curves of 
pressures (at given flow rate). To solve this problem, a calculation routine has been 
implemented where, simulating effects of the fluid compressibility in the circuit after 
the servovalve, it is possible to calculate the temporal derivative of regulated pressures 
on the two outlet of the valve as functions of the net regulated flow rates: they can be 
written as: 

𝑃1(𝑡 + 𝐷𝑇) = 𝑃1(𝑡) + [𝑄1𝐿(𝑡) − 𝑄𝑀(𝑡)] ∗
𝐵𝑒𝑡

𝑉𝑜𝑙
∗ 𝐷𝑇 

𝑃2(𝑡 + 𝐷𝑇) = 𝑃2(𝑡) + [𝑄𝑀(𝑡) − 𝑄2𝐿(𝑡)] ∗
𝐵𝑒𝑡

𝑉𝑜𝑙
∗ 𝐷𝑇 

where P1 and P2 represent the regulated absolute pressures in the outlet valve, Q1L and 
Q2L the flow rates disposed of by the actuator, DT the sample time, Bet the 
compressibility coefficient of the fluid, Vol the volume of the two hydraulic capacity 
and QM the total absorbed flow rate from the actuator that can be expressed as function 
of possible leakage as: 

𝑄𝑀(𝑡) = 𝐴𝐽 ∗ 𝐷𝑋𝐽(𝑡) + 𝐶𝑙𝑘 ∗ [𝑃1(𝑡) − 𝑃2(𝑡)] 
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Further, these equations have been modified to simulate accurately cavitation 
phenomena in the fluid that can influence very much the dynamic behaviour of the 
system as: 

𝑃1𝑇(𝑡 + 𝐷𝑇) = 𝑃1𝑇(𝑡) + [𝑄1𝐿(𝑡) − 𝑄𝑀(𝑡)] ∗
𝐵𝑒𝑡

𝑉𝑜𝑙
∗ 𝐷𝑇 

𝑃1(𝑡 + 𝐷𝑇) = MAX[PVap, 𝑃1𝑇(𝑡 + 𝐷𝑇)] 

𝑃2𝑇(𝑡 + 𝐷𝑇) = 𝑃2𝑇(𝑡) + [𝑄𝑀(𝑡) − 𝑄2𝐿(𝑡)] ∗
𝐵𝑒𝑡

𝑉𝑜𝑙
∗ 𝐷𝑇 

𝑃2(𝑡 + 𝐷𝑇) = MAX[PVap, 𝑃2𝑇(𝑡 + 𝐷𝑇)] 

P1T and P2T represent two auxiliar terms that permit to consider possible formation of 
vapor bubbles: it is possible to have memory of eventual negative picks of pressure 
(even if these picks are fictitious) that highlight vapor bubble formation in the fluid. If 
this routine were not considered, calculation would lose memory of oil vapor volume, 
formed in cavitation, that first must come back to the liquid state to let to pressure grow 
over the value PVap. From a physic view of the phenomena, this is equivalent to not 
consider vapor bubble in the fluid and, after the cavitation condition, the pressure would 
grow positively, while, with these assumptions, the cavitation effect is progressively 
reduced, letting the real pressure grow only when the theoretical pressure is greater than 
PVap. 

The dynamical system expresses the calculated pressures as functions of the 
corresponding net flow rates through fluid capacities. It is a first order model so, 
reducing the capacities, the constant time τ is proportionally reduced: in particular, if 
the capacities were too small, the model would be unstable because of incompatibility 
between the constant time τ and the sample time DT. 
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The derived model of the pipe capacities is shown below: 

 

 

Figure 4.14: Pipe capacity model.  

 

In this way, the complete fluid dynamic model is shown in Figure 4.15: 

 

 

Figure 4.15: Complete fluid dynamic model.  
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The characteristic curves, used as a reference for the design of the Low-Fidelity fluid-
dynamic model, have been obtained from this model. In particular, the characteristic 
curves P12-XS, shown in Figure 4.16, have been obtained simulating, point by point, 
from the whole fluid-dynamic model, imposing as inputs XS (from -0.6 mm to 0.6 mm) 
at different values of QJ (equal to -6 m^3/s, -3 m^3/s, 0 m^3/s, 3 m^3/s, 6 m^3/s); the 
characteristic curves QJ-XS, shown in Figure 4.17, instead, have been obtained from the 
first part of the fluid-dynamic model, imposing as inputs the same values of XS as before 
and P1 and P2 so that, imposing P1, their sum is maintained constant and equal to 22 
MPa (that is also the sum of the supply and return pressures). 

 

 

Figure 4.16: Characteristic curves P12-XS.  

 

 

Figure 4.17: Characteristic curves QJ-XS. 
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4.1.4 Mechanical model of the jack 
The last block analysed is mechanical model of the jack. The differential pressure P12 
from the fluid-dynamic model is multiplied by the equivalent jack surface, obtaining the 
force acting on the jack. This represents the input for the jack’s model in Figure 4.18: 

 

 

Figure 4.18: Model of the jack.  

 

As it can be seen, the structure is very similar to the model of the first stage of the 
servovalve. The actual force is calculated subtracting the dissipative forces to the input: 
the viscous force, obtained multiplying the velocity of the jack by the viscosity 
coefficient CJ and, through a manual switch, the sum of possible external and 
aerodynamic forces; this last one is calculated multiplying the position of the jack by 
the aerodynamic coefficient Kaer, that simulates the opposition of aerodynamic to 
displacement of mobile surfaces. The theoretical net force is then passed to the Borello’s 
friction model, that also receives the velocity of the jack from the integrator and the 
value of its saturation port: the outputs are the real friction force and the reset value of 
the first integrator. Again, a saturation block is present, to nullify the velocity of the jack 
when it reaches upper or lower limit of displacement. Then, the actual net force is 
divided by the mass of the jack to obtain its acceleration and, through two successive 
integrations, velocity and displacement of the jack are obtained. Moreover, a backlash 
block is present after the second integrator in the closed loop; it is used to simulate any 
possible backlash due to usury in the kinematic chain that joins the jack to mobile 
surfaces. It has been inserted in the closed loop because it has been assumed the sensor 
to be installed in the mobile surface and, for this reason, subjected to possible backlash. 
Finally, a quantizer block is inserted before the output XJ to consider discretization 
problem due to digital acquisition. 
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4.2 MONITORING MODEL 
In this paragraph, the simplified model, used in the iterative process of optimal solution 
research, will be analysed. Even if the task is the same, the monitoring model (called 
Low-Fidelity), present some approximations to be quicker and less demanding in terms 
of computational effort. 

 

 

Figure 4.19: Low-Fidelity model.  

 

Main differences between the models will be briefly analysed. 

In the first block, all the dynamical behaviour of the servovalve is represented and 
shown below: 

 

Figure 4.20: Electromechanical model of the servovalve.  

 

The electrical part of the motor is collapsed to a fixed torque gain in (N*m/mA)/m, 
while the main difference from the High-Fidelity servovalve model consists in the first 
stage. This stage, in fact, is represented as a second order dynamical system through a 
transfer function between the flapper displacement and the net torque, ignoring all the 
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physical phenomena: this is possible due to the fact Simulink can impose concurrently 
conditions both in time and frequency domain. The transfer function is expressed as: 

𝑋𝐹

𝑇
=

1

𝐾𝐹𝑚 + 𝐾𝑆𝐹𝑚

1

1
𝑆𝑁𝐹ଶ 𝑠ଶ + 2

𝑍𝐹
𝑆𝑁𝐹

𝑠 + 1
  

where the DC gain  
ଵ

ிାௌி
  represents the equivalent stiffness of the flapper, KFm 

is the translational stiffness of the spring in the first stage, KSFm the translational 
stiffness of the feedback spring, SNF the natural frequency of the first stage and ZF its 
dimensionless dumping factor. 

Another important difference is represented from the friction: to differentiate the Low-
Fidelity model from the High-Fidelity, Karnopp’s friction model is used in the monitor, 
less accurate but simpler. 

The main difference between the models is represented, instead, from the fluid 
dynamical model that will be analysed in the next chapter, while the mechanical model 
of the jack is almost identical.  
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5 DEVELOPMENT OF MONITORING FLUID-
DYNAMIC MODEL 

Many different fluid-dynamic models have been developed to match the High-Fidelity 
performances, more accurate respect to the previous. Here, they are presented in order 
of increasing complexity. 

 

5.1 SIMPLE LINEARIZED FLUID-DYNAMIC MODEL  
According to the linearization approach described above, it is possible to assume that, 
as first approximation, the function P12(XS) for a generic flow rate QJ is obtainable 
from that curve for null QJ only translating it, in parallel, for a quantity proportional 
with QJ itself; it is possible to assume the same approach for the function QJ(XS) 
depending on P12. 

This means the principle of superposition is valid for XS, seen as sum of two 
contribution: the first producing differential pressure (𝑋𝑆) and the second flow rate 
(𝑋𝑆ொ). 

𝑋𝑆 = 𝑋𝑆 + 𝑋𝑆ொ =
𝑃12

𝐺𝑃
+

𝑄𝐽

𝐺𝑄
 

From this equation, it is possible to obtain two other relations to suit model 
requirements: 

𝑃12 = 𝐺𝑃 ൬𝑋𝑆 −
𝑄𝐽

𝐺𝑄
൰ 

𝑄𝐽 = 𝐺𝑄 ൬𝑋𝑆 −
𝑃12

𝐺𝑃
൰ 

The first relation is used when the fluid-dynamic model is thought to obtain the 
differential pressure P12 from spool position XS and flow rate QJ (it is a typical case in 
models that do not consider possible hydraulic capacities between the valve and the 
actuator); the second one is used when the fluid-dynamic model is thought to obtain 
flow rates QJ for each value of position spool XS and differential pressure P12 (it is a 
typical case in models that consider hydraulic capacities between the valve and the 
actuator). 

From the first relation, a first linearized model has been deduced for control application 
or first approximation analysis:  
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Figure 5.1: Simulink linearized fluid-dynamic model.  

 

As it can be seen in Figure 5.1, a saturation block is present before the output: in this 
way, the differential pressure P12 is limited between the values +PSR and -PSR, the 
supply-return pressure.  

In figure 5.2, characteristic curves P12-XS can be observed. 

 

 

Figure 5.2: Characteristic curves P12-XS of the first linearized model.  
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5.2 SECOND SIMPLIFIED MODEL 
To obtain a more faithful model, able to consider saturation of P12 for greater values of 
XS, the linearized model must be set aside, introducing instead the variable pressure 
gain GPS. 

It is possible to obtain the differential pressure commanded at null flow rate from the 
spool position XS with the relation: 

𝑃12𝑃 = 𝐺𝑃 ∙ 𝑋𝑆     with     −𝑃𝑆𝑅 ≤ 𝑃12𝑃 ≤ +𝑃𝑆𝑅 

where PSR is the provided differential pressure supply-return: the maximum values of 
P12 obtained from the simulations are similar to the real and to the High-Fidelity ones. 
However, an uncompleted consideration of the saturation effect can lead to an 
underestimation of developed flow rates, so to an underestimation of the actuation 
velocities. It is possible to calculate the available P12 from the commanded differential 
pressure P12P, subtracting the differential pressure P12Q, lost because of the flow rate 
QJ. A modified value of the pressure gain GPS is introduced, related to the 
corresponding pressure gain GP and variable with the spool position XS, defined as: 

𝐺𝑃𝑆 =
𝑃12𝑃

𝑋𝑆
 

In non-saturation condition of the pressure, it will be equal to GP, while in the other 
case it will be equal to PSR/XS. In this way, considering the main branch and the flow 
rate feedback branch, it is possible to model quite well the pressure P12 peaks at given 
flow rate QJ, typical of small values of XS and, at the same time, to reduce the pressure 
drops at greater values of XS. The regulated pressure P12 is expressed as: 

𝑃12 = 𝑃12𝑃 −
𝐺𝑃𝑆

𝐺𝑄
∙ 𝑄𝐽 

The main quality of this formulation is the capability to model the pressure P12 peaks 
for small value of XS with great values of flow rate QJ: it is the typical case when a 
rapid closure of the spool is commanded while the motor is still moving, causing the 
water hammer. 

The differential pressure lost due to the flow rate is: 

𝑃12𝑄 = 𝑄𝐽 ∙
𝐺𝑃𝑆

𝐺𝑄
 

This is not the only pressure lost, in fact another flow rate does not work due to leakage 
presence: as first approximation, it can be considered proportional to the pressure P12, 
according to the leakage coefficient Clk:  

𝑃12𝐿𝑘 = 𝑃12 ∙ 𝐶𝑙𝑘 ∙
𝐺𝑃𝑆

𝐺𝑄
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In Figure 5.3 below, the relative block scheme is reported: 

 

Figure 5.3: Leakage loop representation (Dalla Vedova, 2007, p. 95).  

 

To let simulations work correctly, a suitable integration interval DT must be chosen, 
smaller than the smallest time constant of the system, but, in this case, if the feedback 
branch dynamic is instantaneous, the only suitable value for the integration time is the 
null value (in this way it is not possible to apply numeric integration). 

To avoid numerical instability due to the instantaneous dynamic of the leakage loop, it 
is necessary to analytically solve it, substituting the branch with a single block with 
equivalent transfer function: 

𝑜𝑢𝑡𝑝𝑢𝑡

𝑖𝑛𝑝𝑢𝑡
=

1

1 + 𝐶𝑙𝑘 ∙
𝐺𝑃𝑆
𝐺𝑄

 

To have a model that can consider possible variations of the supply differential pressure, 
it is assumed that also the flow rate gain GQ and the pressure gain GP are linearly 
dependant from the supply-return differential pressure: 

Two quantities, invariant with PSR are introduced: 

𝑋𝑆𝑆 =
𝑃𝑆𝑅

𝐺𝑃
 

𝐺𝑃𝑄 =
𝐺𝑃

𝐺𝑄
 

with XSS saturation position of the spool and GPQ ratio of pressure gain to flow rate 
gain. 
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From these, it is possible to obtain: 

𝐺𝑃 =
𝑃𝑆𝑅

𝑋𝑆𝑆
                 and                 𝐺𝑃𝑆 =

𝑃𝑆𝑅

𝑀𝐴𝑋(|𝑋𝑆|, 𝑋𝑆𝑆)
 

Now, the relation GPS/GQ is expressed as: 

𝐺𝑃𝑆

𝐺𝑄
=

𝑃𝑆𝑅

𝑀𝐴𝑋(|𝑋𝑆|, 𝑋𝑆𝑆)
∙

𝐺𝑃𝑄

𝐺𝑃
=

𝑃𝑆𝑅

𝑀𝐴𝑋(|𝑋𝑆|, 𝑋𝑆𝑆)
∙ 𝐺𝑃𝑄 ∙

𝑋𝑆𝑆

𝑃𝑆𝑅

= 𝐺𝑃𝑄 ∙
𝑋𝑆𝑆

𝑀𝐴𝑋(|𝑋𝑆|, 𝑋𝑆𝑆)
 

Finally, considering the block scheme in Figure 4.3, the transfer function below is 
obtained: 

𝑃12 =
𝑃𝑆𝑅 ∙ 𝑋𝑆 − 𝐺𝑃𝑄 ∙ 𝑋𝑆𝑆 ∙ 𝑄𝐽

𝑀𝐴𝑋(|𝑋𝑆|, 𝑋𝑆𝑆) + 𝐺𝑃𝑄 ∙ 𝑋𝑆𝑆 ∙ 𝐶𝑙𝑘
 

From this transfer function, the sequent Simulink scheme is obtained: 

 

 

Figure 5.4: Simulink evolved fluid-dynamic model.  
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Below the associated characteristic curves P12-XS are shown: 

 

Figure 5.5: Characteristic curves P12-XS of the evolved fluid-dynamic model.  
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5.3 DEVELOPED FLUID-DYNAMIC MODEL 
This new fluid-dynamic model has been developed in collaboration with Ing. Berri. 

This new model uses a different definition of the commanded differential pressure: a 
mathematical function that better remarks the behaviour of the differential pressure at 
null flow rate is used, expressed as: 

𝑃12𝑃 = 𝑃𝑆𝑅 ∙ 𝑡𝑎𝑛ℎ ൬
𝑋𝑆

𝑋𝑆𝑆
൰ 

In this way, the P12P is limited between -PSR and +PSR, depending on the spool 
position XS normalized respect to the saturation position XSS. This normalization is used 
also in the definition of the variable pressure gain: 

𝐺𝑃𝑆 = 𝐺𝑃 ∙ ൬
𝑋𝑆𝑆

𝑋𝑆
൰

ଶ

 

With this new definition, the pressure lost because of flow rate can be defined as in the 
previous model: 

𝑃12𝑄 = 𝑄𝐽 ∙
𝐺𝑃𝑆

𝐺𝑄
= 𝑄𝐽 ∙

𝐺𝑃

𝐺𝑄
∙ ൬

𝑋𝑆𝑆

𝑋𝑆
൰

ଶ

 

So, the available pressure is obtained as: 

𝑃12 = 𝑃𝑆𝑅 ∙ 𝑡𝑎𝑛ℎ ൬
𝑋𝑆

𝑋𝑆𝑆
൰ − 𝑄𝐽 ∙

𝐺𝑃

𝐺𝑄
∙ ൬

𝑋𝑆𝑆

𝑋𝑆
൰

ଶ

 

Through this new equation, it is possible to model in a better way the P12 peaks at small 
values of XS and greater values QJ. However, not all the flow rate is available in the 
passageway, in fact a small part is lost due to leakage: taking the previous definition, 
the pressure lost due to leakage is: 

𝑃12𝐿𝑘 = 𝑃12𝑄 ∙ 𝐶𝑙𝑘 ∙
𝐺𝑃𝑆

𝐺𝑄
= 𝑃12𝑄 ∙ 𝐶𝑙𝑘 ∙

𝐺𝑃

𝐺𝑄
∙ ൬

𝑋𝑆𝑆

𝑋𝑆
൰

ଶ
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The resulting control scheme is shown below: 

 

Figure 5.6: Control scheme relative to P12 dissipation.  

 

As in the previous model description, numerical instability must be avoided, analytically 
solving the leakage closed loop and obtaining, after some mathematical passages, the 
final transfer function of the model: 

𝑃12 = 𝑃𝑆𝑅 ∙ 𝑡𝑎𝑛ℎ ൬
𝑋𝑆

𝑋𝑆𝑆
൰ − 𝑄𝐽 ∙

1

ቀ
𝑋𝑆

𝑋𝑆𝑆
ቁ

ଶ 𝐺𝑄
𝐺𝑃

+ 𝐶𝑙𝑘 

 

To best fit the High-Fidelity characteristic curves, a quadratic dependence of the flow 
rate losses with respect to the flow rate itself has been added, calibrating it respect to a 
fixed value: 

𝑃12 = 𝑃𝑆𝑅 ∙ 𝑡𝑎𝑛ℎ ൬
𝑋𝑆

𝑋𝑆𝑆
൰ − 𝑄𝐽 ∙

|𝑄𝐽|

4.5 ∙ 10ି
∙

1

ቀ
𝑋𝑆

𝑋𝑆𝑆
ቁ

ଶ 𝐺𝑄
𝐺𝑃

+ 𝐶𝑙𝑘 
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Figure 5.7: Simulink model of the new fluid-dynamic model (first version).  

It has been possible to obtain the best fit value of GP from the characteristic curves P12-
XS for QJ=0, while the best values of Clk and GQ have been obtained by a trial-and-
error procedure to find an acceptable compromise between the fit of the characteristic 
curves P12-XS and QJ-XS. In this way, the sequent curves have been obtained: 

 

Figure 5.8: Comparison of the High-Fidelity and Low-Fidelity models characteristic curves P12-XS.  
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Figure 5.9 Comparison of the High-Fidelity and Low-Fidelity models characteristic curves QJ-XS.  

 

However, even if this model should be able to reproduce more accurately the P12 peaks, 
it was not possible to find a working point that remarks the time response of the High-
Fidelity model in an acceptable way, because of its instant dynamic. 

A function that introduces a time dependant behaviour (in this case a first order dynamic 
response) have been inserted before the output: a map of the time constants, typical of 
every value of P12 at given XS and QJ, have been obtained from Simulink simulations 
of the High-Fidelity model for a time sufficient to let all quantities reach the steady state 
(because of the integrator in the pipe capacity model). 

The sequent curves have been obtained, with a tolerance of 5000 Pa due to fast dynamic 
of the valve at great values of XS. 
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Figure 5.10: Time constants map of the HF model.  

 

As it can be seen, the curves with same absolute value of flow rate are symmetrical 
respect to the y axis and very similar for higher values of QJ; decreasing QJ, they are 
still symmetrical but less similar. Moreover, a descendant peak can be observed at XS=0 
and QJ=0, where the time constant is equal to zero: this is due the fact that, for null 
value of QJ and XS, the response of the system is also zero. From this map, it can be 
deduced that two different contributions are present in the dynamic behaviour of the 
system: the first is related to the spool position XS, that gives this bell-shaped behaviour; 
the second is given, with some simplifications, from the absolute value of the flow rate 
QJ and it increases the value of the peak of the bell.  

To model the bell-shaped behaviour, a rational function has been adopted, in the form 

𝑦 =
𝑎

𝑏 ∙ ቀ
𝑋𝑆

𝑋𝑆𝑆
ቁ

ଶ

+ 𝑐

 

with a=5.6, b=1.2 and c=4. The approximated curve is shown in Figure 5.10. 

 



63 

 

Figure 5.11: Approximation of the bell-shaped behaviour of time constants at QJ=0.  

 

If time constants determined by only XS are considered as a reference, the contribution 
given by the absolute value of QJ can be assumed as a multiplicative factor. For this 
reason, peaks of the bell at |QJ|≠0 have been analysed, looking for an approximating 
polynomial function; in this way, it has been observed that the contribution of QJ has a 
quite linear behaviour, so it can be approximated as 

𝑦 = 𝑎|𝑥| + 𝑏 , 

where a=0.5/ (3 ∙ 10ି) and b=1 have been chosen to best interpolate the bells peaks. 
Results of interpolation are shown below: 
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Figure 5.12: Approximation of tau from the High-Fidelity model.  

 

Once the map of the HF time constants has been replicated, a first order dynamic has 
been introduced in the model before the output. The final fluid-dynamic model is 
shown in Figure 5.12: 

 

 

Figure 5.13: New developed fluid-dynamic model.  
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Due to the complexity of P12 peaks modelling and approximations, it has been 
impossible to perfectly remark the HF time response for all kind and amplitude of input, 
but it has been calibrated for great values of flow rate, having almost the same 
behaviour. Time responses of both models are shown below for 0.1 m step amplitude, 
0.1 m/s ramp slope and 0.1 m sine semi-amplitude reference signals. 

 

 

Figure 5.14: Time response of HF and LF models for step with amplitude of 0.1 m. 

 

 

Figure 5.15: Time response of HF and LF models for ramp with slope of 0.1 m/s. 
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Figure 5.16: Time response of HF and LF models for sine with semi amplitude of 0.1 m. 
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6 FAULT ANALYSIS 

In this chapter, system responses under different conditions will be studied. In the 
previous chapter, the response of the system in perfect condition is shown, while in 
presence of different failures it may change, even compromising its performances. 

Two different failures will be analysed: demagnetization of the torque motor and 
increasing static friction on the jack. At first, these failures will be simulated separately 
with different inputs and, after, characteristic physical quantities that clearly show the 
presence of each failure will be identified. Finally, both failures will be combined. The 
difficult part of this analysis is the identification of a quantity that unequivocally shows 
the failure because different failures can influence the same aspect of the dynamic 
response. 

Each failure will be analysed for reasonable values of fault since a high value will never 
be reached, thanks to the preventive maintenance. 

 

6.1 DEMAGNETIZATION OF THE TORQUE MOTOR 
In this paragraph, the demagnetization of the torque motor will be analysed. This fault 
is simulated varying the gain of the torque motor, multiplying it by the coefficient (1-
KGM), with KGM sensibility factor of the torque motor that ranges from 0 (nominal 
condition) to 1 (completely demagnetized). KGM has been assumed reasonably from 0 
to 0.4, so from its total capacity to 60%. 

 

6.1.1 Response to a step input signal 
Due to the operational range of the model, calibrated for high values of flow rate, a step 
command of 0.1 m amplitude is imposed. Below, behaviours of current absorbed by the 
torque motor (Cor), spool position (XS), differential pressure across the servovalve 
(P12), position and velocity of the jack (XJ and DXJ) are reported. 
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Figure 6.1: Cor response to a step input signal.  

 

 

Figure 6.2: DXJ response to a step input signal.  
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Figure 6.3: P12 response to a step input signal.  

 

 

Figure 6.4: XJ response to a step input signal.  
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Figure 6.5: XS response to a step input signal.  

 

It is possible to observe that a higher value of demagnetization leads to a slower system, 
as it can be seen from DXJ, XJ and XS diagrams; on the other hand, the servovalve will 
consume more current, presenting a delay during the transient of both P12 and Cor. 
Even if a trend can be identified in all the quantities, it is not so relevant for the 
prognostic purpose. 
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6.1.2 Response to a ramp input signal 
Below, responses to a ramp signal input, with slope of 0.1 m/s, of the analysed physical 
quantities are reported. 

 

 

Figure 6.6: Cor response to a ramp input signal.  
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Figure 6.7: DXJ response to a ramp input signal.  

 

Figure 6.8: P12 response to a ramp input signal.  
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Figure 6.9: XJ response to a ramp input signal.  

 

 

Figure 6.10: XS response to a ramp input signal.  
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For higher values of KGM, it is possible to observe that the error between the ramp 
command and the jack position increases. XS and DXJ graphs show the same decrease 
in terms of system velocity, while P12 shows only a little higher oscillation respect to 
the increasing demagnetization. Finally, the current Cor shows how the 
demagnetization leads to a higher consumption of current that is visibly increasing with 
the KGM value. 

 

6.1.3 Response to a sine input signal 
Below, responses to a sine signal input, with amplitude of 0.2 m and frequency of 5 Hz, 
of the analysed physical quantities are reported. 

 

 

Figure 6.11: Cor response to a sine input signal.  
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Figure 6.12: DXJ response to a sine input signal.  

 

Figure 6.13: P12 response to a sine input signal.  
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Figure 6.14: XJ response to a sine input signal.  

 

Figure 6.15: XS response to a sine input signal.  
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The sine input signal does not show a visible trend on Cor, DXJ and P12 graphs while 
it shows how, almost with the same current, the degraded system has a lower amplitude 
respect to XS and XJ displacements.  

 

6.1.4 Prognostic parameter for KGM failure 
The previous study shows how the ramp signal is the most suitable for the identification 
of this failure; in particular, the current absorbed by the torque motor shows a marked 
trend and its steady state can be assumed as the characteristic quantity for the 
identification. It is also an easy-to-read quantity, since an ammeter can be installed 
upstream of the torque motor. Not having a real system, the estimation of the absorbed 
current has been conducted with the High-Fidelity model in Simulink ambient. 

The table reported below shows the steady state values of the absorbed current for 
different values of KGM: 

 

KGM Cor [mA] 
0  

0.1  
0.2  
0.3  
0.4  

6.2 INCREASING STATIC FRICTION ON THE JACK 
In this paragraph, increasing static friction on the jack will be analysed. This fault is 
simulated varying the static friction from its nominal value of 200 N to a reasonable 
value of 1000 N. Since the ratio between static and dynamic friction is fixed and equal 
to 2, it is possible to obtain the correspondent dynamic friction force, having a total 
overview of the friction condition of the component. 

As the previous fault, several simulations have been executed for different entities of 
the fault and different type of input signals, plotting the same quantities used before. 

 

6.2.1 Response to a step input signal 
A step command with amplitude of 0.1 m is imposed. Below, behaviours of current 
absorbed by the torque motor (Cor), spool position (XS), differential pressure across the 
servovalve (P12), position and velocity of the jack (XJ and DXJ) are reported. 
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Figure 6.16: : Cor response to a step input signal.  

 

Figure 6.17: DXJ response to a step input signal.  
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Figure 6.18: P12 response to a step input signal.  

 

Figure 6.19: XJ response to a step input signal.  
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Figure 6.20: XS response to a step input signal.  

It can be observed that all the quantities shown above do not show an appreciable trend 
respect to the increasing friction, except for the differential pressure P12, where, after 
an oscillating transient, a visible increase in the steady state value is present: this is due 
to the fact that the jack needs a higher force to overcome frictional forces. 
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6.2.2 Response to a ramp input signal 
Below, responses to a ramp signal input, with a slope of 0.1 m/s, of the analysed physical 
quantities are reported. 

 

 

Figure 6.6: Cor response to a ramp input signal. 
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Figure 6.7: detail of DXJ response to a ramp input signal.  

 

 

Figure 6.8: detail of P12 response to a ramp input signal.  
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Figure 6.9: XJ response to a ramp input signal.  

 

 

Figure 6.10: XS response to a ramp input signal. 

As it can be seen, no physical quantity can be useful as prognostic parameter. 
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6.2.3 Response to a sine input signal 
Below, responses to a sine signal input, with amplitude of 0.2 m and frequency of 5 Hz, 
of the analysed physical quantities are reported. 

 

 

Figure 6.11: Cor response to a sine input signal.  
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Figure 6.12: DXJ response to a sine input signal.  

 

 

Figure 6.13: P12 response to a sine input signal.  
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Figure 6.14: XJ response to a sine input signal.  

 

 

Figure 6.15:XS response to a sine input signal.  

Also in this case, a marked variation on the quantities is not present, making the sine 
input signal not effective for the diagnostic procedure. 
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6.2.4 Prognostic parameter for KGM failure 
The previous study shows how the step signal is the most suitable for the identification 
of this failure; in particular, the differential pressure across the two chambers of the jack 
shows a marked trend and its steady state can be assumed as the characteristic quantity 
for the identification. It can be measured through a pressure-meter that can be easily 
installed in the system. 

The table reported below shows the steady state values of the pressure P12 for different 
values of FDJ: 

FDJ [N] P12 [] 
200  
400  
600  
800  
1000  

 

6.3 FAULT COMBINATION ANALYSIS 
In the previous analysis, considered faults have been simulated one by one. In the 
reality, all faults can appear simultaneously and they can influence each other. 
Moreover, it must also consider the external factors that can lead to a premature wear 
of the components, such as an increment of the temperature that can compromise the oil 
properties. For these reasons, the final analysis must consider both faults 
simultaneously. 

The two quantities considered for the diagnostic procedure are the ramp response of the 
current absorbed by the torque motor and the step response of the pressure across the 
two chambers of the jack so, the command used in this paragraph is composed of the 
following sequence: 

- Ramp signal with slope equal to 0.1 m/s for the identification of the steady state 
current, starting from 0 to 2 seconds; 

- Step signal with amplitude -0.2 m, that leads the signal again to 0 m to avoid 
saturation in the second useful part of the input signal; 

- Step signal with amplitude 0.1 m, applied at 4 seconds and maintained until the 
finish of the simulations at 6 seconds. 
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Figure 6.16: Input signal used.  

 

Steady state values of Cor (ramp response) and P12 (step response) are reported in the 
table below (values of Cor for FDJ>600 have been obtained through a mean value, 
since it presents a little oscillation): 

 

KGM FDJ [N] Cor [mA] P12 [MPa] 
0 200 9.4089 250.972 
0 400 9.4726 501.076 
0 600 9.5324 751.027 
0 800 9.6221 1001.011 
0 1000 9.6944 1251.038 

0.1 200 10.4586 251.259 
0.1 400 10.5258 501.294 
0.1 600 10.5934 751.163 
0.1 800 10.6862 1001.361 
0.1 1000 10.7662 1251.460 
0.2 200 11.7648 251.625 
0.2 400 11.8406 501.718 
0.2 600 11.9156 751.816 
0.2 800 12.0198 1001.920 
0.2 1000 12.1045 1251.821 
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0.3 200 13.4388 252.216 
0.3 400 13.5283 502.112 
70.3 600 13.6169 752.319 
0.3 800 13.7141 1002.392 
0.3 1000 13.8309 1252.352 
0.4 200 15.6703 253.348 
0.4 400 15.7684 503.585 
0.4 600 15.8739 753.395 
0.4 800 16.0122 1003.799 
0.4 1000 16.1249 1253.851 

 

As it can be seen, each fault does not influence in a significant way the quantity chosen 
for the other, making these parameters very effective for the fault identification. 
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7 OPTIMIZATION ALGORITHMS 

Nowadays, it happens often, in different scientific fields, that is necessary to find a way 
to minimize or maximize a variable that bonds two or more complex systems. In this 
thesis, it is necessary to compare the High-Fidelity system, used as reference, and the 
Low-Fidelity model, in order to have a complete procedure for the diagnostic and 
prognostic of the electro-hydraulic actuation system. To do this, it is fundamental to set 
a comparative method that, through simulations and iteratively, can calculate a scalar 
value that represents the degree of match of the models, receiving as input the HF. This 
is the aim of the objective function. 

The identification of the most useful objective function for the considered system is the 
most important problem for the optimization algorithms. It represents the conjunction 
between the physic properties of the system and the mathematical aspect of the 
algorithm: choosing the wrong objective function, it can compromise the reliability of 
the results. Once the objective function is defined, it is used by the optimization 
algorithm in order to identify the faults that affects the system, minimizing its own 
value. The results of the optimization process correspond to the real conditions of the 
system. 

There are several algorithms that can accomplish this task, but different aspects must be 
considered in order to choose the proper one for the considered problem: robustness, 
that is the reliability of the method in reaching the absolute minimum or maximum of 
the objective function, accuracy, that is the capability to calculate its exact value and 
the velocity of convergence, that indicates how much time the algorithm needs to reach 
the correct value. 

There are three different classes of optimization algorithms: enumerative, deterministic 
and heuristic. 

The enumerative method consists in searching the optimal solution in all points of the 
domain without any specification, but with a trial-and-error procedure. It is not so much 
demanding in terms of computational effort but is very time consuming.  

The deterministic method, instead, calculates the value of the objective function in 
specific points, starting from a fixed one. The algorithm, successively, tests the points 
in the neighbourhood of the reference and it calculates the gradient of the fitness 
function in these directions. This can be a very useful algorithm for objective functions 
that do not present local minima or maxima or discontinuities. However, it is not 
recommended for problems with too many variables since the process can be very 
demanding in terms of computational effort in calculating the gradient of the objective 
function. 

Finally, heuristic methods can be very useful in finding solutions that are impossible or 
very demanding to be found. These algorithms do not guarantee an exactly optimal 
solution, but they can be used to find an acceptable solution in a reasonable time. In this 
thesis, the genetic algorithm will be used. 
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7.1 GENETIC ALGORITHM 
Genetic algorithms are powerful instruments to solve optimization problems. They are 
heuristic methods that take inspiration from genetics and natural selection principle of 
Darwin.  

Genetic algorithms use a set of solutions that evolve in intervals, called generations, 
where the evolution is guided by the research of the optimal solution through the 
“goodness” of the individual or generation: through the objective function it is possible 
to compare best individuals and use them to create the successive generation. According 
to this theory, in fact, each individual has its own characteristics and properties that can 
be observed: this is the phenotype. These characteristics are determined by genetic 
setup, not visible, called genotype, that are the fundamental unit of chromosomes. 

The base structure of a genetic algorithm has a cyclic functioning, where every cycle 
represents a generation and at each step all operations to generate a new population are 
made. At the first step, an initial population is created, while the successive steps are 
repeated at each generation: best individuals are chosen in base of their fitness function 
value, while the successive steps create the new generation through the operations of 
crossover and mutation, which combine or modify the characteristics of individuals. 

The structure of the algorithm is shown below. 

 

 

Figure 7.1: Basic scheme of a genetic algorithm (Singh, 2013, p. 57).  
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The first step of the problem consists in the definition of the fitness function. It 
represents the objective function that the algorithm must minimize and indicates how 
much an individual is far from the optimal solution; it represents the external ambient 
for the biological individuals where they can survive or not. However, the objective 
function can have local and global minimum, so, if the initial population is concentrated 
in the local minimum, the algorithm will converge to this point. For this reason, it is 
important to have a sufficient high number of individuals covering most of the domain 
to explore all the possible solutions, but, at the same time, this number must not to be 
very high to not make the algorithm very time consuming. There are several options to 
obtain an initial population in MATLAB: the default option creates a random initial 
population that satisfies the bounds, if present, and well-dispersed in the domain; as 
alternative, it is possible to specify totally or partially the initial population to have 
interesting individuals, already in the first population. If it is wanted to specify only a 
part of the initial population, the algorithm calls the function CreationFcn to fill the 
remaining individuals. 

Once the initial population is defined, the fitness value of each individual is calculated 
and a sub-population is chosen to generates new solutions. There are different criteria 
for the selection: the default option is set on the rank scaling function. It consists in 
sorting the raw scores of each individual and scaling them respect to their position. It 
results a conservative method, since also less fit individuals have a chance to be chosen 
for the reproduction, so important genetic portions can be used, but, at the same time, 
the convergence of the algorithm is slower. 

Another widely used technique is the proportional selection that selects the best 
individuals in base of a probability, proportional to the fitness function value: at first the 
total fitness function value of the population is calculated as: 

𝐹௫ =  𝑓(𝑥)



ୀଵ

 

𝐹 = 
1

𝑓(𝑥)



ୀଵ

 

 

Where 𝑥  represents the ith individual. The first one is used for the research of the 
maximum of the fitness function, while the second for the minimum. With this value, it 
is possible to obtain the probability of selection of each individual according to 

𝑝 =
𝑓(𝑥)

𝐹௫
                 𝑝 =

1

𝐹௫

1

𝑓(𝑥)
  

The results can be represented as a wheel divided into segments, where each segment is 
proportional to the probability associated at each individual. The scheme is reported 
below. 

 



95 

 

Figure 7.2: Proportional selection scheme.  

 

At this point, the wheel is spun k times to choose the individuals for the reproduction. 

The new generation P(n+1) is obtained from the previous one P(n) through several steps: 

1) Selection for reproduction, the selected best individuals are introduced into an 
intermediate population P1 and after into the mating pool, as already described 
above; 

2) Crossover: the crossover operator is applied to the individuals in the mating 
pool to obtain a new population P2; 

3) Mutation, the mutation operator is applied to the individuals P2 to obtain 
another population P3; 

4) Selection for replacement and survival, the new generation P(n+1) will contain 
mostly individual from P3, but it can contain also individuals from P(t) that 
have not be chosen for reproduction or the best ones. 

New chromosomes are generated from the parents that transmit their genetic heritage, 
in this way new solutions are similar to the parents, otherwise the convergence of the 
algorithm would not be guaranteed. Crossover considers these aspects, recombining 
genetic material of two or more chromosomes and it is described exactly as the exchange 
of homologue genetic material.  

 

 

Figure 7.3: Crossover in genetics and binary single point crossover (Simi, 2007, p. 11).  
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There are several crossover options: scattered, single point, two points, arithmetic, 
intermediate, heuristic. 

Scattered function creates a random binary vector, where a bit from the first parent 
corresponds to 1 and a bit from the second one corresponds to 0. For example, if the 
parents are defined as  

P1=[12345678] 

P2=[abcdefgh] 

And the reproduction vector is 

Reproduction=[10101010] 

The new child will be 

Child=[1b3d5f7h] 

Single point function chooses an integer number i between 1 and n-1 number of bits, 
dividing the genes from the parents into two parts: the first part composed by genes with 
index less or equal to i and the second by genes with index greater than i. The resulting 
child will have the first part from the first parents and the second part from the second. 
For example, if the parents are  

P1=[12345678] 

P2=[abcdefgh] 

And the crossover point is 3, the resulting child is 

Child=[123defgh] 

Two points crossover works similarly, but it chooses two integer numbers, obtaining 
three portions of genes; the resulting child will have for example the middle portion of 
genetic code from the second parent and the complementary part from the first one. 

The options illustrated so far work on binary codification, while the remaining ones 
work on real numbers.  

Arithmetic crossover creates children that are the weighted arithmetic mean of two 
parents.  

Intermediate crossover creates children by taking a weighted average of the parents; it 
is possible to specify the parameter ratio of the formula 

Child = p1 + rand * ratio * (p1 - p2) 

Finally, heuristic crossover returns a child that lies on the line containing the two 
parents, a small distance away from the parent with the better fitness value and farther 
from the parent with the worse fitness value. It is possible to specify the same parameter 
ratio, as the intermediate crossover, of the formula 

Child = p2 + ratio * (p1 – p2) 



97 

About the last operator, mutation, it introduces little changes in the genetic heritage to 
create new chromosomes. The effect of this operator is to modify the chromosomes of 
an individual, in order to explore new areas of the domain of the solutions still not 
explored: this is made to also avoid the convergence in a local minimum. However, an 
excessive use of the mutation leads to an instability of the algorithm that can not 
converge anymore and for this reason, it is applied with a very small probability, that 
oscillates in [0.001,0.01]. The optimization tool has several options: gaussian, uniform 
and adaptive feasible function. Gaussian mutation adds a random number taken from a 
Gaussian distribution with mean 0 to each entry of the parent vector. Uniform mutation 
is a two-step process: first, the algorithm selects a fraction of the vector entries of an 
individual for mutation, where each entry has a probability rate of being mutated, while 
in the second one, each selected entry is replaced by a random number selected 
uniformly from a specified range. Adaptive feasible function randomly generates 
directions that are adaptive with respect to the last successful or unsuccessful 
generation, satisfying bounds and linear constraints. 

 

7.2 PROGNOSTIC ANALYSIS THROUGH GENETIC 

ALGORITHM 
In the following paragraph, setting and details of genetic algorithm used for the 
prognostic analysis will be illustrated. 

At first, the genetic algorithm has been tested on single faults, respectively the 
demagnetization of the torque motor and the increasing static friction on the jack. The 
first one is the demagnetization of the torque motor. 

As pointed in the previous paragraph, the physical quantity useful for the identification 
of this fault is the response of the current absorbed by the torque motor to a ramp of 
slope 0.1 m/s as input. In this perspective, differences between High-Fidelity and Low-
Fidelity models current responses have been analysed for different values of KGM, 
obtaining the sequent responses. 
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Figure 7.4: HF and LF Cor responses for KGM=0.  

 

 

Figure 7.5: HF and LF Cor responses for KGM=0.1 
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Figure 7.6: HF and LF Cor responses for KGM=0.2 

 

 

Figure 7.7: HF and LF Cor responses for KGM=0.3.  
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Figure 7.8: HF and LF Cor responses for KGM=0.4 

 

As it can be noticed, a difference of 0.15 mA between the two responses can be noticed 
in all the simulations. For this reason, the objective function adopted for the prognostic 
analysis has been chosen as the absolute value of the difference between the steady state 
of the High-Fidelity current and the steady state of the current in the Low-Fidelity model 
evaluated at the same time interval; an additional value of 0.15 mA is subtracted from 
the current difference to have a better correspondence. In Figure 7.9, code of the 
function used by the genetic algorithm is shown, where the variable fitness corresponds 
to the objective function. 

 

 

Figure 7.9: Code of the objective function.  
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Below the results of this preliminary analysis are reported. 

 

KGM KGMm Err_%_KGM 
0 0,0187 - 

0.1 0,0997 0,3 
0.2 0,2009 0,45 
0.3 0,3022 0,7333333 
0.4 0,4058 1,45 

 

The results approximate very well the values of KGM, with a percentual error lower 
than 1% in all cases, except for the last one where the error is 1,45%. 

 

After the demagnetization of the torque motor, the second fault analysed is the 
increasing static friction on the jack. As already said before, the characteristic quantity 
of this fault is the pressure across the chambers of the jack, in response to a step of 
amplitude 0.1 m. In this perspective, differences between High-Fidelity and Low-
Fidelity pressure responses have been analysed for different values of FDJ in both 
models, obtaining the sequent responses. 

 

 

Figure 7.10: HF and LF P12 responses for FDJ=200 N 
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Figure 7.11: HF and LF P12 responses for FDJ=400 N 

 

Figure 7.12: HF and LF P12 responses for FDJ=600 N 
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Figure 7.13: HF and LF P12 responses for FDJ=800 N 

 

 

Figure 7.14: HF and LF P12 responses for FDJ=1000 N 
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As it can be seen by the figures above, there is a good correspondence between the two 
responses for all the values of static friction, making the quantity P12 a good 
characteristic for the identification of the friction increase. In this way, the objective 
function can be defined as the absolute value of the difference between the mean value 
of the High-Fidelity pressure, evaluated in the neighbourhood of 1.1 seconds after the 
new input thanks to the great correspondence between the two models, and the mean 
value of the pressure in the Low-Fidelity model evaluated in the same time interval. In 
Figure 7.15, code of the function used by the genetic algorithm is shown, where the 
variable fitness corresponds to the objective function. 

 

 

Figure 7.15: Code of the objective function.  

Below the results of this second preliminary analysis are reported. 

FDJ FDJm Err_%_KGM 
200 200,0129 0,00645 
400 400,0169 0,004225 
600 600,019 0,0031667 
800 800,0244 0,00305 
1000 1000 0 

 

The results approximate very well the values of FDJ, with a percentual error lower than 
0.006% in all cases. 

 

Finally, after the validation of the algorithm for each fault, a complete procedure for the 
estimation of both faults simultaneously has been implemented. The new objective 
function will be the union of the objective functions used previously: it will be, in fact, 
the sum of the two different parameters that identify the faults. 

A minimal modification has been applied to the first part of the objective function, about 
the monitoring of the current absorbed by the torque motor: Low-Fidelity model, in fact, 
can not perfectly remark the behaviour of the High-Fidelity model. 
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Figure 7.16: Cor and Corm ramp responses with FDJ=200 N.  

 

 



106 

Figure 7.17: Cor and Corm ramp responses with FDJ=400 N.  

 

 

Figure 7.18: Cor and Corm ramp responses with FDJ=600 N.  
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Figure 7.19: Cor and Corm ramp responses with FDJ=800 N.  

 

 

Figure 7.20: Cor and Corm ramp responses with FDJ=1000 N.  
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Since the steady state value of the current has been chosen as diagnostic parameter, 
transient has been ignored. About the steady state value, as it can be seen from the 
figures above, the current of the High-Fidelity presents an oscillation for FDJ>600 N 
during the entire simulation period. For this reason, the objective has been modified in 
a way this oscillation can not influence the individuation of the steady state, so adding 
the mean of the values in the last 0.01 seconds. 

In conclusion, the new objective function has been chosen as the absolute value of the 
difference between the steady state of the currents Cor summed to the absolute value of 
the difference between the pressures P12. To have an objective function that gives the 
same weight to both faults, the singular objective functions have been modulated to the 
same order of magnitude. The final objective function is shown below. 

 

 

Figure 7.16: Code of the final objective function.  

 

It is interesting, also, to take a look at the settings of the algorithm. 

 

 

Figure 7.17: Genetic algorithm options.  

 

The algorithm outputs are the optimized variables and the relative value of the fitness 
function, while it receives several inputs:  

- f represents the function that the algorithm calls at every simulation and it 
calculates the fitness function of the individual of every generation; 



109 

- nvar is the number of variables that have to be optimized, in this case equal to 
2; 

- lb represents the lower bound of the optimization variables, in this case a vector 
where the first value is 0 (nominal condition of the torque motor) and the second 
one is equal to 200 [N] (nominal condition of the static friction on the jack); 

- ub represents the upper bound of the optimization variables, in this case a vector 
where the first value is 1 (complete demagnetization of the torque motor) and 
the second one is equal to 2000 [N] (maximum value of the static friction on 
the jack); 

- options contains all the detailed settings of the algorithm, in particular a 
population of 40 has been chosen, to have a large number of combinations that 
can spaces in a great part of the domain, while a number of 10 generations is 
sufficient to let the algorithm converge. Mutationadaptfeasible and 
fitscalingprop are respectively the options for the mutation of the individuals 
and the method the method to choose the parents of the next generation. The 
final option is fmincon: thanks to this option of the hybrid functions, once the 
genetic algorithm finishes its task, another optimizer is run to refine the results. 

This procedure has been applied to a wide range of combinations of faults, in order 
to test the robustness and the reliability of the algorithm. Even if ranges of the 
variables have been considered in their totality, realistic values have been chosen 
for the fault variables, in particular KGM has been simulated from 0 to 0.4, while 
the friction from 200 N to 1000 N. The obtained results are shown below. 

 

Case KGM FDJ 
[N] 

KGMm FDJm [N] Err_%_KGM Err_%_FDJ 

1 0 200 0 200.0017 - 0.00085 
2 0 400 0,0002 403.2076 - 0.8019 
3 0 600 0 600.0125 - 0.0020833 
4 0 800 0 800.0113 - 0.0014125 
5 0 1000 0 1000 - 0 
6 0.1 200 0.0997 200.0076 0.3 0.0038 
7 0.1 400 0.1024 399.9534 2.4 0.01165 
8 0.1 600 0.1023 599.9788 2.3 0.0035333 
9 0.1 800 0.0953 800.0377 4.7 0.0047125 
10 0.1 1000 0.1 1000 0 0 
11 0.2 200 0.2011 200.0030 0.55 0.0015 
12 0.2 400 0.2037 400.1682 1.85 0.04205 
13 0.2 600 0.2019 599.9800 0.95 0.0033333 
14 0.2 800 0.2016 800.0123 0.8 0.0015375 
15 0.2 1000 0.2 1000 0 0 
16 0.3 200 0.3022 199.9796 0.73 0.01202 
17 0.3 400 0.3026 394.0467 0.87 1.488325 
18 0.3 600 0.3025 600.1320 0.83 0.022 
19 0.3 800 0.3036 799.9437 1.2 0.0070375 
20 0.3 1000 0.3 1000.1 0 0.01 
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21 0.4 200 0.4027 201.0354 0.675 0.5177 
22 0.4 400 0.3998 400.9092 0.05 0.2273 
23 0.4 600 0.4041 610.4446 1.025 1.7407667 
24 0.4 800 0.4031 799.9047 0.775 0.0119125 
25 0.4 1000 0.4021 999.9511 0.525 0.00489 
 

The percentage errors have been calculated as follow: 

𝑒𝑟𝑟_% =
|𝑣𝑎𝑙𝑢𝑒 𝑡𝑜 𝑏𝑒 𝑓𝑜𝑢𝑛𝑑 −  𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑢𝑛𝑑|

𝑣𝑎𝑙𝑢𝑒 𝑡𝑜 𝑏𝑒 𝑓𝑜𝑢𝑛𝑑
 ∗  100 

Looking at the table reported above, it can be observed that the results of the genetic 
algorithm are mostly acceptable: in particular, it provides better results for the static 
friction FDJ, where the error maximum value is equal to 1.74% for the case 23; also in 
case 19 the error results equal to 1.49%, while in the other cases the values found are 
always under 1%, with case 5, 10 and 16 that have error equal to 0 (this can be explained 
as an approximation in the display of the results). For the demagnetization of the torque 
motor KGM, instead, the maximum value is higher than the previous one and equal to 
4.7%, but acceptable; cases 7, 8, 12, 19 and 23 shows an error equal respectively to 
2.4%, 2.3%, 1.85%, 1.2% and 1.025%, while the remaining are always under 1%. The 
greater errors on KGM respect to FDJ could be explained by referring to the values to 
be found: they are coefficients included between 0 and 1, so a an imprecision on the 
second or third significant digit can lead to a non-negligible error. 

To test the robustness of the genetic algorithm, two more conditions have been 
simulated. In the first case, a disturbance has been added to the current absorbed by the 
torque motor; in particular, a band-limited white noise with a power of  5 ∗ 10ି  W 
has been added before the output of the sub-block Offset Current. Below the results of 
this condition are reported. 

 

Case KGM FDJ [N] KGMm FDJm [N] Err_%_KGM Err_%_FDJ 
1 0 200 0,00553 202,2831 - 1,14155 
2 0 400 0,0071 408,8124 - 2,2031 
3 0 600 0,0055 603,2838 - 0,5473 
4 0 800 0,0029 802,2355 - 0,2794375 
5 0 1000 0 1002,2 - 0,22 
6 0.1 200 0,1051 201,3833 5,1 0,69165 
7 0.1 400 0,1039 401,4297 3,9 0,357425 
8 0.1 600 0,1047 600,8366 4,7 0,1394333 
9 0.1 800 0,1051 801,3042 5,1 0,163025 
10 0.1 1000 0,1 1001,3 0 0,13 
11 0.2 200 0,205 200,6825 2,5 0,34125 
12 0.2 400 0,2046 384,0253 2,3 3,993675 
13 0.2 600 0,2062 600,7393 3,1 0,1232167 
14 0.2 800 0,2081 800,6676 4,05 0,08345 
15 0.2 1000 0,2 1000,7 0 0,07 
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16 0.3 200 0,305 200,5101 1,66666667 0,25505 
17 0.3 400 0,3045 397,5125 1,5 0,621875 
18 0.3 600 0,3053 600,5438 1,76666667 0,0906333 
19 0.3 800 0,3083 800,4509 2,76666667 0,0563625 
20 0.3 1000 0,3 1000,6 0 0,06 
21 0.4 200 0,4036 198,8702 0,9 0,5649 
22 0.4 400 0,3934 411,5263 1,65 2,881575 
23 0.4 600 0,4061 600,7341 1,525 0,12235 
24 0.4 800 0,4061 800,6385 1,525 0,0798125 
25 0.4 1000 0,4 1000,8 0 0,08 

 

Respect to the previous case where no noise was simulated, the current disturbance 
influences the results, especially the error in the evaluation of KGMm: in these 
simulations, in fact, from 4.7% to 5.1%, but in general all cases show an increment of 
about 2-3%. About the error in the evaluation of FDJm, no visible variations are present, 
except for case 12 that shows an error of 3.99% (this can be an outlier of the genetic 
algorithm). 

In the second case, a clearance of 30 micron has been introduced in the sleeve of the 
valve, in this way the flow rate losses because of the leakage are increased. The results 
obtained from the genetic algorithm are shown below. 

 

Case KGM FDJ [N] KGMm FDJm [N] Err_%_KGM Err_%_FDJ 
1 0 200 0 200,062 - 0,031 
2 0 400 0 396,5122 - 0,87195 
3 0 600 0,0004 620,3062 - 3,3843667 
4 0 800 0 800,0702 - 0,008775 
5 0 1000 0 1000,1 - 0,01 
6 0.1 200 0,0994 200,0601 0,6 0,03005 
7 0.1 400 0,0964 396,0623 3,6 0,984425 
8 0.1 600 0,1023 600,0622 2,3 0,0103667 
9 0.1 800 0,096 800,0864 4 0,0108 
10 0.1 1000 0,1 1000,1 0 0,01 
11 0.2 200 0,2009 200,0432 0,45 0,0216 
12 0.2 400 0,1982 398,4136 0,9 0,3966 
13 0.2 600 0,1997 598,5198 0,15 0,2467 
14 0.2 800 0,2028 800,0416 1,4 0,0052 
15 0.2 1000 0,2006 999,9904 0,3 0,00096 
16 0.3 200 0,302 200,0102 0,66666667 0,0051 
17 0.3 400 0,2944 402,829 1,86666667 0,70725 
18 0.3 600 0,3141 602,921 4,7 0,4868333 
19 0.3 800 0,3038 799,7181 1,26666667 0,0352375 
20 0.3 1000 0,3 1000 0 0 
21 0.4 200 0,4002 197,6048 0,05 1,1976 
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22 0.4 400 0,4037 404,3952 0,925 1,0988 
23 0.4 600 0,4021 600,9824 0,525 0,1637333 
24 0.4 800 0,4013 800,0246 0,325 0,003075 
25 0.4 1000 0,4027 1000,1 0,675 0,01 

 

In these simulations, a decrease in the error in the evaluation of KGM can be noticed: 
this is because of the clearance that influences the current absorbed by the torque motor, 
decreasing the difference between High-Fidelity and Low-Fidelity currents (it must be 
considered that the clearance is not present in the Low-Fidelity model and the value of 
0,15 mA subtracted in the objective function is the minimal difference between them). 
About the evaluation of FDJ, an increasing error is present respect to the previous cases, 
as expected.  
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8 CONCLUSIONS AND FUTURE WORKS 

The principal aim of this thesis was to model, in a satisfying way, the fluid-dynamic 
part of the flapper-nozzle valve.  

The resultant model accomplishes very well this task, but its functioning range is limited 
at high values of the flow rate. This can be due to its mathematical formulation that can 
be calibrated on lower or higher values of the flow rate, but not on both; also, the 
approximation of time constants, that is not so precise for lower values, can influence 
this behaviour.  

It could be interesting to start from the approach used in this thesis, reproducing the 
response of the High-Fidelity model for every input, with a different mathematical 
formulation.  

To solve this problem in a different way, look-at-tables that reproduce in a more precise 
way the characteristic curves of flow rate and pressure and the time constant map could 
be implemented. Using a totally different approach, this task could be also carried out 
by a neural network, even if more demanding from a computational point of view. 

The successive step has been the development of the optimization algorithm for 
diagnostic and prognostic purpose. Firstly, it was necessary to study how the analysed 
faults, the demagnetization of the torque motor and the increasing static friction on the 
jack, influence the behaviour of the system. Two different quantities have been 
identified for the faults: the steady state value of the current response to a ramp and the 
steady state value of the differential pressure response to a step. It can be observed as 
these two quantities identify very well the presence of each fault; since one fault does 
not influence the parameter of the other, they are very useful in the formulation of the 
objective function of the genetic algorithm. The results obtained in this way are more 
precise for the static friction FDJ than for the demagnetization KGM, under 2% for the 
first, but anyway under 5% for the second, making the algorithm adapt for this analysis.  

It could be interesting studying the effects of other faults, in particular the ones present 
in the servovalve, and try to expand this procedure. Moreover, the genetic algorithm 
results can be refined more, trying to combine aspects of other algorithms, such the best 
aspects of the first compensate the bad ones of the second; for example, a deterministic 
algorithm, that can converge to a local minimum, can provide a good initial population 
for the genetic algorithm that can converge to the total minimum. Alternatively, it could 
be possible to use another optimization algorithm as Particle Swarm Optimization, Grey 
Wolf Optimization or Dragonfly Algorithm. 

In conclusion, the results of this thesis meet the initial purposes and it represents a 
possible way to detect and predict the state of fault in the electro-hydraulic actuator, 
even from their initial appearance.  
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