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Abstract

Simultaneous Localization And Mapping (SLAM) is a well-known problem in a
variety of cases, such as ground robots, drones, cars, and underwater robots. To
perform efficiently SLAM is even more crucial when autonomous navigation must be
guaranteed. UAVs are widely taking the scene in many applications, like search and
rescue missions, real-estate applications, agriculture, system logistic, and package
delivery, thanks to their dexterity in movements, even in narrow environments.
Many of the state-of-the-art SLAM algorithms find a common factor in the usage
of Visual - Visual Inertial Odometry (VO-VIO).
Indeed, more and more solutions to the problem are developed, bringing new
approaches, or improving existing ones. Recent researches include neural-networks
too. [1][2]
The search for more information to integrate into SLAM algorithms has brought
to investigate systems with multiple agents that collaborate to build a global map
and use the shared information to improve the localization process.
The objective of this thesis is the development of a strategy to perform multi-agent
SLAM for a fleet of drones. Different combinations of inertial sensors, cameras,
and range finders are tested, along with sensor fusion algorithms with the idea of
improving the localization process as far as possible.
Then, general SLAM algorithms are described, analyzed, and tested. The develop-
ment is thought for a case in which each drone is provided with the same sensor
suite, that comprehends a tracking camera module, a depth camera module, and
a low-budget onboard computer. Anyway, it is possible to use the same logic
to combine data coming from different robots, e.g. system which combines both
ground robot and drones, with different sensor suites.
This project is carried on in the ROS environment, which allows taking advantage
of already existent libraries and communication protocols. Precisely, it is shown
how a ROS package has been created and developed to generate a set of nodes
that provide features for the multi-agent SLAM, such as data compression and
decompression, point cloud filtering, and concatenation. It is shown that, even with
limited computational resources and a standard wireless connection, it is possible
to share information without loss of data consistency and a global map can be
created and then forwarded to each agent.
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Chapter 1

Multi-UAV SLAM:
introduction

1.1 The SLAM problem
This section addresses the simultaneous localization and mapping problem, com-
monly known as SLAM. This problem arises when it is required for a robot to
construct or update a map and, simultaneously, keep track of its location. Given
those premises, it is easy to understand the complexity of the problem, especially
compared to the two main tasks taken singularly:

• Localization problem: the complexity lies on the unknown map, thus the
absence of a-priori information about the environment.

• Mapping problem: the complexity lies in the lack of information on the pose.

On top of this, there must be added project constraints, such as:

• Autonomy

• Computational cost

• Real-time requirements

• Memory management

• Available sensor suite

• Budget
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Multi-UAV SLAM: introduction

There are many applications in which SLAM is employed, such as self-driving cars,
unmanned ground vehicles (UGVs), and unmanned aerial vehicles (UAVs). The
last one is the subject of interest for this project.
Indeed, the SLAM problem is far more complex for a flying vehicle such as a drone
with respect to a ground vehicle, since both localization and mapping should be
performed in a three-dimensional fashion because a larger amount of data occurs,
other than more sources of noise and the difficult task of building a 3D map.

(a) UAV (b) Car (c) UGV

Figure 1.1: Examples of SLAM applications. The SLAM problem is of great
interest in many different areas

Even if SLAM suites are based on a variety of hardware and software possibilities
and different combinations of the two, the mathematical formulation of the problem
is quite the same.
Given a series of controls ut and sensor observations ot over discrete time steps t,
the SLAM problem is to compute an estimate of the agent’s state xt and a map of
the environment mt.
All quantities are usually probabilistic. If this problem only involves the estimation
of variables that persist at time t, it is called online SLAM, while it is called full
SLAM if past measurements and controls are not discarded, as in the online, but
processed. Statistical techniques used to estimate those variables include Kalman
filters and particle filters.
However, Visual SLAM is the main subject of interest here. Visual SLAM is a
framework that provides the fusion of landmark features obtained from both the
visual modalities within an environment.
For applications in mobile robotics (ex. drones, service robots), it is valuable to
use low-power, lightweight equipment such as monocular cameras. Visual SLAM
can also allow for the complementary function of such sensors, by compensating
the narrow field-of-view, feature occlusions, and optical degradation common to
lightweight visual sensors with the full field-of-view.
At the state of the art, there are a lot of different algorithms that allow achieving
visual SLAM, which will be briefly presented later.
The main differences between those algorithms are related to sensor interface,
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Multi-UAV SLAM: introduction

usually monocular or stereo camera and IMUs, data processing, map building
techniques, and output generation.
However, there is a factor that is quite common to all those algorithms, i.e. the
development platform ROS. The following section will describe its basics.

1.1.1 ROS basics
Although the name may suggest it, ROS is not properly an operating system,
but it’s a collection of software frameworks and it provides services designed for
a heterogeneous computer cluster such as hardware abstraction, low-level device
control, implementation of commonly-used functionality, message-passing between
processes, and package management.
At the core of ROS are four different concepts, underpinning its philosophy:

• Plumbing: which means that different programs can run at the same time and
ROS enables the communication between different pieces of software. ROS
acts as a "plumbing" in the sense that it provides the device drivers needed
for communication between software and hardware.

• Tools: the second core part of ROS is the set of tools that it provides. Many
basic tools are already implemented by ROS, being it simulations, visualization,
GUIs, or basic tools for data logging’.

• Capabilities: capabilities can be thought of as high-level tools. They are
software that can be installed on ROS and enable mapping, localization,
planning, etc. These capabilities are provided by the Open Source community
and enable the research teams to focus on single areas while being able to rely
on the state-of-the-art solution to be customized to their specific needs.

• Ecosystem: being the de facto research standard, ROS boasts vast documen-
tation, tutorials provided for most of its software, and great compatibility.

The inner-workings of ROS can be best understood by looking at its basic compo-
nents:

• Nodes: processes that perform computation. A robot control system usually
comprises many nodes. Nodes are used for different purposes, such as wheel
motors control, localization, path planning, graphical view, and so on.
Nodes are combined together into a graph and communicate with one another
using streaming topics. The use of nodes in ROS provides several benefits to the
overall system. Nodes architecture provides benefits: additional fault tolerance,
as crashes are isolated to individual nodes and reduced code complexity in
comparison to monolithic systems.

3



Multi-UAV SLAM: introduction

Figure 1.2: RQT graph: example of nodes architecture with one of the tools
provided by ROS

• Messages: ROS nodes communicate with each other with messages: they are
a simple data structure, comprising typed fields.
Standard primitive types (integer, floating-point, boolean, etc.) are supported,
as are arrays of primitive types. Messages can include arbitrarily nested
structures and arrays (much like C structs).

• Topics: Messages are routed via a transport system with publish-subscribe
semantics. A node sends out a message by publishing it to a given topic.
The topic is a name that is used to identify the content of the message.
A node that is interested in a certain kind of data will subscribe to the
appropriate topic.
There may be multiple concurrent publishers and subscribers for a single topic,
and a single node may publish and/or subscribe to multiple topics.
In general, publishers and subscribers are not aware of each others’ existence.
The idea is to decouple the production of information from its consumption.

• Services: the publish-subscribe model is a very flexible communication paradigm,
but its "one-way" transport is not appropriate for request-reply interactions,
which are often required in a distributed system.
Request-reply is done via services, which are defined by a pair of message
structures: one for the request and one for the reply.
A providing node offers a service under a name and a client uses the service
by sending the request message and awaiting the reply.

• Master : ROS master provides naming and registration services to the rest of
the nodes in the ROS system. It tracks publishers and subscribers to topics.
The role of the Master is to enable individual ROS nodes to locate one another

4



Multi-UAV SLAM: introduction

and to communicate with the peer-to-peer protocol.
Nodes connect to other nodes directly; the Master only provides lookup
information.
Nodes that subscribe to a topic will request connections from nodes that
publish that topic and will establish that connection over an agreed upon
connection protocol.

ROS’s core functionality is augmented by a variety of tools that allow developers to
visualize and record data, easily navigate the ROS package structures, and create
scripts automating complex configuration and setup processes.
The addition of these tools greatly increases the capabilities of systems using ROS
by simplifying and providing solutions to a number of common robotics development
problems.
These tools are provided in packages like any other algorithm, but rather than
providing implementations of hardware drivers or algorithms for various robotic
tasks, these packages provide task and robot-agnostic tools. Following, a brief
description of those tools, that will make the explanation of this project clearer.

• rviz : it is a three-dimensional visualizer used to visualize robots, the environ-
ments they work in, and sensor data. It is a highly configurable tool, with
many different types of visualizations and plugins.

• rosbag: it is a command-line tool used to record and playback ROS message
data.
It uses a file format called bags, which log ROS messages by listening to topics
and recording messages as they come in.
Playing messages back from a bag is largely the same as having the original
nodes which produced the data in the ROS computation graph, making bags
a useful tool for recording data to be used in later development.

• catkin: catkin is the ROS build system, it is based on CMake, and is similarly
cross-platform, open-source, and language-independent.

• roslaunch: it is a tool used to launch multiple ROS nodes both locally and
remotely, as well as setting parameters on the ROS parameter server.
roslaunch configuration files, which are written using XML can easily automate
a complex startup and configuration process into a single command.
roslaunch scripts can include other roslaunch scripts, launch nodes on specific
machines, and even restart processes that die during execution.

ROS contains many open-source implementations of common robotics functionality
and algorithms. These open-source implementations are organized into packages.
Many packages are included as part of ROS distributions, while others may be

5



Multi-UAV SLAM: introduction

developed by individuals and distributed through code-sharing sites.
Among the packages included in ROS, there are some worth mentioning, such as tf,
which provides a system for representing, tracking, and transforming coordinate
frames, and gazebo, which integrates tools to use a simulation environment.
The understanding of ROS functionalities, along with the possibility of creating
customized nodes, are important pre-requisites that allow to use or create a SLAM
package.

1.1.2 Sensing
This section will present different types of sensors and different sensor suite config-
urations, along with Sensor Fusion algorithms, which are best suited for SLAM.
Sensors are a fundamental component to achieve robust localization and detailed
mapping.
Of course, it doesn’t exist a unique solution, but it depends on the task a robot
must achieve, along with external factors.
When a sensor suite is chosen, it is always recommended to take into account:

• Types of robots: configurations might change a lot from a flying robot to a
ground robot or an underwater robot.

• Robot’s payload: usually this is a much bigger problem for flying robots, so
heavier or bulky sensors are highly not recommended.

• Available power supply: autonomy is an important issue, and some kinds of
sensors are quite demanding.

• Budget: some kinds of sensors are very expensive and not always suited for a
project.

• Environment information: e.g. indoor, outdoor, shadows, windows, lights.

Moreover, the task of each sensor might be related only to localization, only to
mapping or it can perform both.
At the state of the art, the most used solutions for the mapping task are based on
cameras and lasers.
Laser-based systems are one of the most popular choices for solving the SLAM
problem. Laser-based systems can obtain robust results in both indoor and outdoor
environments.
The high speed and high accuracy of laser range finders enable them to generate
highly precise distance measurements. The most popular laser-based system is
Lidar.
Lidar is commonly used to make high-resolution maps. It uses ultraviolet, visible,
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Multi-UAV SLAM: introduction

or near-infrared light to image objects. It can target a wide range of materials,
including non-metallic objects, rocks, rain, chemical compounds.
An example of 3D Lidar sensor is shown in Figure 1.3

Figure 1.3: Example of 3D Lidar sensor: this model is suited for indoor applica-
tions

This technology is being used in robotics for the perception of the environment
as well as object classification. The ability of lidar technology to provide three-
dimensional elevation maps of the terrain, high precision distance to the ground
and approach velocity can enable the safe landing of robotic and manned vehicles
with a high degree of precision.
If the mapping task is considered, nothing is better than Lidar: its level of details,
along with a very wide field of view and amazing precision is off the charts.
Moreover, all those perks might hide some drawbacks: not only it’s a very expen-
sive sensor, but also it is bulky, heavy and its power consumption isn’t negligible,
especially for a small/medium-sized drone.
For these reasons, it will not be considered in the further analysis on the sensor
suites, nor in the deepening of SLAM algorithms that are based on this technology.
There is, actually, another reason that justifies this choice: the research on SLAM
algorithms all over the world, even with few exceptions, is strongly focused on
visual or visual-inertial systems.
The progress in the computer vision field in the last years is remarkable and a lot of
environmental information can be extracted from images. A lot of the algorithms
that will be described later depend always on a camera, stereo or monocular, and
in many cases, on inertial sensors, i.e. IMUs.
An IMU is an electronic device that is used a lot in navigation systems, especially in
aircraft applications: it consists of a combination of an accelerometer, a gyroscope
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Multi-UAV SLAM: introduction

and, usually, a magnetometer.
The latter is used as a heading reference, other than provide data useful for cali-
bration procedures. Figure 1.4 illustrates an example of IMU.

Figure 1.4: Example of IMU: to make the usage easier, it is mounted on a PCB
which already provides all the needed pins

The algorithms that are based on cameras and IMUs technologies are part of what
it’s called Visual SLAM or V-SLAM.
The main drawbacks of those solutions lie in the fact that the complexity of the
algorithm is way higher, since cameras have a limited field of view, in opposition
to Lidars, that allows 360° mapping.
Besides, these algorithms require that the 3D pose of the camera over time should
be estimated with enough precision.
Even if IMUs are quite useful when it is required to track the motion of an object,
it is quite clear that an inertial sensor, even a high-quality one, tends to provide
divergent data.
The choice has then switched to the usage of cameras to perform tracking. Moreover,
a lot of approaches use a combination of camera and image data to obtain reliable
tracking.
This is one of the great advantages of the visual approach: with just one sensor it
is possible to carry on both localization and mapping tasks.
The firsts works in the V-SLAM area were based on monocular cameras and a
features-based approach.
Then, the evolution of camera technologies and vision has brought to the usage of
more and more detailed images, which now carry on depth information too.[3]
This is done through stereo cameras, based on the stereo vision concept: it is the
extraction of 3D information from digital images; by comparing information about
a scene from two vantage points, 3D information can be extracted by examining
the relative positions of objects in the two panels.
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It is necessary to describe how a V-SLAM approach works before going any further
in the description of monocular and stereo cameras.
First of all, it is necessary to pay attention to coordinate systems: a global reference
frame should be defined, along with a reference frame attached to the camera, to
allow camera pose estimation and perform environment reconstruction.
Tracking and mapping are performed to continuously estimate camera poses.
The tracking task is carried on using correspondences between the image and the
map through feature matching or feature tracking in the image. Then, the camera
pose is computed by solving the Perspective-n-Point (PnP) problem.
Usually, V-SLAM algorithms assume that intrinsic camera parameters are previously
calibrated. Some of the most recent devices don’t even need calibration or, in worst
cases, the SDK provides all the tools. This allows defining the camera pose as a
roto-translation in the global reference frame.
There are two more features inside V-SLAM algorithms that recur very often:

• Re-localization

• Global map Optimization

Re-localization is the ability of an algorithm to find the robot pose when, for some
reason, the tracking is lost. This problem is also known as the "kidnapped robot
problem".
Losing track usually happens when fast camera motion, bumps, or external dis-
turbances occur. If it happens, the robot should recover its pose from the map,
otherwise, any SLAM algorithm becomes useless.
Another important feature that, as well as re-localization is always integrated into
SLAM algorithms, is the "global map optimization". As the robot, therefore the
camera, keeps moving, the produced map can include more and more errors. If
this error accumulates and keeps growing, the map is useless.
Global map optimization comes in handy in this situation: the map is refined by
taking into account the whole map information. To make this happen, the region of
the map in which the starting point of the robot movement is should be re-visited.
This allows global optimization to calculate the error and adjust the map. The
improvement is not limited to that region, but all the map is corrected accordingly.
Loop closing is a technique to acquire reference information. A closed-loop is
defined by searching for a match between a current image and a previously acquired
one.
If the loop is detected, it means that the camera captures a previously seen scene.
In this case, the accumulative error can be estimated.
Bundle adjustment (BA) is another content that can minimize the error of the
map by optimizing both the map and the camera poses. When a task requires
to inspect a large environment, this procedure minimizes estimation errors in the
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most efficient way. In small environments, since the error is small, BA may be
performed without loop closure.
Cameras are responsible of visual odometry too. Odometry is to estimate the
sequential changes of sensor positions over time using sensors such as wheel encoder
to acquire relative sensor movement.
Visual odometry brings quite a different approach, providing the same information
as classic odometry, but with cameras.
The advantage of this solution is the independence from encoder data: it is well
known that wheel odometry is not always reliable, since the estimation of a robot
pose from wheels suffers from measurement errors due to encoders and external
factors such as friction and rough environments.
Moreover, classic odometry cannot be applied to robots that have no wheels, such
as underwater robots or flying ones, like drones.
The usage of visual odometry does not rule out the usage of wheel odometry when
it’s available. This usually depends on the task a robot is required.
One of the most efficient products available on the market is the Intel Depth
Camera.

(a) D435 Front view

(b) D435 Modules

Figure 1.5: Intel D435 Depth Camera: front view of the device and single module
description
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The Intel RealSense depth camera D435 is a stereo solution, offering reliable depth
data. Its wide field of view is perfect for applications such as robotics or augmented
and virtual reality.
With a range of up to 10 meters, this small form factor camera can be integrated
into any solution with ease.
The combination of a wide field of view and global shutter sensor on the D435
make it the preferred solution for applications such as robotic navigation and object
recognition. The global shutter sensors provide great low-light sensitivity allowing
robots to navigate spaces with the lights off.
Other than the remarkable hardware specifications, the sensor is paired with a
standalone application that, not only allows to visualize all the images but also lets
the user explore among a large variety of configurations, resolutions, data format,
calibration, filtering, and many post-processing tools.
Moreover, there’s also a version of this product that embeds a motion module,
employing an IMU, which makes it even a better fit for SLAM. It seems obvious
that this product fits perfectly in Visual SLAM applications. Indeed, the presence
of a ROS wrapper, called realsense-ros, and the presence of a wide SKD, called
librealsense, makes the integration in SLAM systems as easy as possible. More
details will be discussed later.
Another important detail about cameras is that with new technologies a lot of
producers included graphic processors inside their hardware.
In this way, image acquisition, pre-processing, and post-processing can be performed
on the camera, by avoiding this kind of burden to the main embedded hardware of
the robot.
The Intel RealSense tracking camera T265, which is shown in Figure 1.6, belongs
to this category.

Figure 1.6: T265 module: two fisheyes and an IMU to provide robot tracking
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This sensor is born with the intent to run VIO algorithms completely on the camera.
To do this the hardware set-up consists essentially of two wide fisheye cameras
165-degree circular FOV.
It also incorporates an IMU and the Intel® Movidius™ Myriad™ 2 VPU. The
embedded processor runs the entire SLAM algorithm onboard, analyzes the stereo
images, and fuses all sensor information.
This device is intended to take care of an important part of SLAM by itself, but it
allows to explore alternatives too, since it is possible to manage all the modules
inside this camera, included the IMU.
Obviously, in that case, the main difference between the two described products is
related to the fact that D435 cameras have a smaller field of view. Indeed, SLAM
should be run on the embedded platform, increasing the required power and cost.
The producer usually suggests using these two products together.
There is another sensor that it’s worth mentioning, i.e. the ZED 2 camera, shown
in Figure 1.7.

Figure 1.7: ZED 2 camera: combination of tracking and depth functions in one,
high-performance sensor

It’s safe to say that the performances of this stereo module are excellent with
respect to most of the products on the market, which makes the ZED 2 one of the
most recommended stereo cameras available.
It benefits a 9-DOF IMU, that includes an accelerometer, gyroscope, and magne-
tometer, a wide field of view camera, a long baseline, and thermal calibration.
If compared to the devices described previously, it can be said that most of the
features of the tracking camera and the depth camera are included in this device.
Unfortunately, the ZED 2 camera is quite large and its power consumption is
considerable.
Therefore, it is not recommended for applications like drones, in which the volume,
weight, and power are relevant constraints.
The last solution that it will be presented is one of the most recent products by
Intel, i.e. the Intel RealSense L515 Lidar camera. Figure 1.8 illustrates this device.
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Figure 1.8: Lidar camera L515: it consists of a RGB camera and a laser scanner.

This product consists of a laser scanner based on Lidar technology, a full-HD RGB
camera, and an IMU. The combination of these sensors makes it a state-of-the-art
solution in many fields, such as logistics and environmental scanning.
Since its depth range is quite limited, especially if compared to the ones of the
depth cameras available on the market, it is best suited for indoor operations.
Even if its main purpose is related to tasks like 3D object scanning, it possesses
all the characteristics to be a source of information for SLAM algorithms, since it
provides depth information and it has a motion module.
Its reduced size and limited power consumption are features that make the L515
Lidar camera a potential best fit for drone applications.
Anyway, in this case, it is not considered for some reasons. The first one is the
price: if compared with the D435 and T265 suite, it is very expensive.
Moreover, it has a practical range that is very limited (about 4 meters). Finally, it
is a quite recent product, therefore it is hard to find a lot of algorithms that are
suited for its usage and, even if some packages available online can use the L515
data, only a few users tried to do it. Thus, it is hard to find online support in the
SLAM community.
With this in mind, the Lidar camera solution has been discarded, but it might be
analyzed in the future.
Among all the presented solutions, the choice fell on the Intel suite, which consists
of T265 and D435 cameras.
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1.2 ROS packages

1.2.1 Sensor Fusion Packages
At the state-of-the-art, many SLAM packages are based on VIO technologies, which
basically can be seen as a fusion between the graphic, odometric input, and inertial
measurement. However, nothing prevents using, on the side, other localization
inputs that increase the robustness of the system.
Involving a sensor fusion package in the SLAM system is very convenient, especially
if there’s a concrete chance that the primary localization system fails, or if the
robot has two (or more) comparable sources of localization data.
In this context, comparable means that their accuracy is quite similar, i.e. the
noises affecting data are all more or less in the same range.
Aerial vehicles usually must respect, more than other cases, tight weight and size
constraints, so it is rare to see a large sensor suite.
Indeed, it might not be so uncommon to find a drone that embeds a camera, one
or more IMUs, and global position sensors, like GPS.
Another thing to keep in mind is that many of the state-of-the-art sensors used
for localization already include some sensor fusion functionalities, calibration tools,
and noise filtering tools.
With these functionalities, some basic operations, like extracting orientation from
IMU data, are already implemented and streamed by the sensor itself.
ROS supports some packages that can perform sensor fusion.
Usually, those packages are based on well-known filters, such as median, Madgwick,
or Kalman filters. A possible flow chart for a sensor fusion package is shown in
Figure 1.9.

Figure 1.9: Example of sensor fusion algorithm based on the Kalman Filter
technology
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Among those packages, it will be discussed Robot Localization.
It is a collection of state estimation nodes, each of which is an implementation of a
nonlinear state estimator for robots moving in 3D space.
It contains two state estimation nodes, based on Extended Kalman Filter (EKF)
and Unscented Kalman Filter (UKF). Also, the package provides another node,
which aids in the integration of GPS data.
The state estimation nodes use an omnidirectional motion model to project the
state forward in time and correct that projected estimate using perceived sensor
data.
Among the many perks of this package, it is worth mentioning some important
ones:

• unlimited number of input

• complete freedom in the choice of the variable to fuse for a single sensor

• many possible configurations

• advanced parameter tuning

In the drone context, especially if the primary source of the system for what
concerns localization is VO, it might be considered the hypothesis to fuse odometry
and external IMU data.
Another idea might be the usage of multiple odometry sources, such as the T265
tracking camera and a VO package, or the usage of two odometry data from the
T265 camera and, for example, the ZED 2 camera.
This package doesn’t put a limit to the testable configurations, anyway the set-up
of all the parameters and the choice of the right configuration is not an easy task.
Moreover, it must be taken into account, as a rule of thumb, that the basic working
principle of Robot Localization takes into account just the least noisy sensor.
To fuse different sensors, with noise values of a different order, might be needed
some data manipulation.

1.2.2 SLAM packages
The first step in a project that requires a SLAM algorithm is the choice of the
algorithm itself, i.e. the selection of a SLAM package. The goal is to find a package
that grants the best trade-off between performances and computational cost. There
are a lot of possible reasons that can make the decision easier:

• sensor interface: some packages don’t allow to interface with certain kinds of
sensors or they allow the usage of different sensor suites, but they are best
inclined to work with a type of sensor instead of another.

15



Multi-UAV SLAM: introduction

• external resources: SLAM packages can run completely on board, or they can
run completely on a ground station, or there even exists some mixed solutions.

• computational effort: the first thing to understand before choosing a package
is if that package will be able to run on the selected device.

• documentation: the presence of detailed documentation must not be taken
for granted. The wider is the documentation and the number of tutorials,
the easier is the installation, the configuration, the usage, and the parameter
tuning

• 3D-SLAM support: not every package is designed to perform 3D-SLAM,
therefore, if the project requires it, it is necessary to rule out some packages.

• releases: SLAM packages keep being released for over a decade by now and
this doesn’t seem to stop any soon.
Therefore, one must pay attention to each release date and the number of
releases: the tendency is to rule out the oldest packages, deemed as obsolete,
in favor of the newest.
Anyway, recently released packages present drawbacks as well: the newer is
a package, the higher is the chance to encounter bugs and issues of different
kinds.
Moreover, time helps to create a community of users that report bugs, propose
fixes and discuss different strategies, with the consequence that it becomes
easy to find useful information by browsing online.

Eventually, even ruling out the packages that don’t match a project requirements,
there are a lot of possible choices for a package.
Possibly, the best choice is to try to install and use different packages and select
the best possible fit. Following, a list of the most promising packages analyzed.

• Cartographer [4]: Cartographer is a lidar-based system that provides real-
time SLAM in 2D and 3D across multiple platforms and sensor configurations,
it is used by Google Street View for mapping building interiors.
It was built for backpack mapping platforms and achieves real-time mapping
and loop closure at a 5 cm resolution.
To achieve real-time loop closure, a branch-and-bound approach has been used
for computing scan-to-submap matches as constraints.
Experimental results and comparisons to other well-known approaches show
that, in terms of quality, Cartographer is competitive with established tech-
niques. Among its perks, it should be reported that this package already
supports 3D mapping, the sensor suite it has so far used to map 3D environ-
ments includes an IMU too, there is large and well-detailed documentation.
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The critical problems with Cartographer are related to the fact that it is a
lidar-based approach mainly focused on 2D map construction, that it requires
a considerable computational effort, and that it cannot receive any information
from cameras.
Indeed, it looks clear that, although it is not impossible to use this package
for drone applications, it’s not quite recommended, especially as a first choice.

• Gmapping[5]: GMapping is a highly efficient Rao-Blackwellized particle filter
to learn grid maps from lidar data. Rao-Blackwellized approaches associate to
every particle an individual map of the environment, accordingly, the main
focus of the package is to reduce the number of particles needed to produce
the occupancy grid map.
GMapping achieves this goal using a proposal distribution that considers the
accuracy of the robot’s sensors to draw particles in a highly accurate manner,
and an adaptive resampling technique that maintains a reasonable variety of
particles and in this way enables the algorithm to learn an accurate map while
reducing the risk of particle depletion.
GMapping is designed for ground robots. It assumes that the laser is mounted
horizontally and at a fixed height, and it makes a 2D map based on those
assumptions.
When the UAV wobbles or changes height while it is moving, the UAV breaks
those assumptions. It has nevertheless been used with MAVs before but the
sensor suite consisted of lidar and an IMU.
Moreover, GMapping yields a 2D occupancy grid, not a 3D one, it can however
build 2.5D maps. The limited possibilities of configuration, as long as the poor
documentation, don’t make this package a reasonable solution for drones.

• Hector[6]: Hector is a package designed with the idea to get a low-computational
cost algorithm capable of combining a 2D SLAM approach based on lidar with
a 3D inertial sensor (IMU).
This package consists of a set of tools mainly used for mapping purposes and
IMU managing. Hector is a SLAM approach that finds its main perk in the
fact that it can be used without odometry as well as on platforms that exhibit
roll/pitch motion (of the sensor, the platform, or both).
It leverages the high update rate of modern lidar systems and provides 2D pose
estimates at the scan rate of the sensors. While the system does not provide
explicit loop closing ability, it is sufficiently accurate for many real-world
scenarios.
The system has successfully been used on Unmanned Ground Robots, Un-
manned Surface Vehicles, Handheld Mapping Devices, and logged data from
quadrotor UAVs.
At first sight, this package shows some drawbacks. Except for some tutorials,
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it does not have detailed documentation and its sensor interface appears to
be limited to laser sensors and IMU.

• MRPT[7]: MRPT project is a set of cross platform C++ libraries and
applications that can allow multiple third-party libraries to work together.
The main focus of MRPT are Simultaneous Localization and Mapping (SLAM),
computer vision, and motion planning algorithms.
Interesting SLAM algorithms are provided by this library but only one is able
to perform 3D SLAM, 3D Kalman Filter-based Range-Bearing SLAM. This
means that there is no choice about the SLAM algorithm to implement with
MRPT libraries. The main features of this algorithm are:

1. The initial probability density of a feature is approximated with a partic-
ular weighted sum of Gaussians.

2. This initial state is expressed in the robot frame, and not in the global
map frame, so that it is decorrelated from the stochastic map, until it is
declared as a landmark and added to the map

3. Many features can enter the initial estimation process at a low computa-
tional cost, and the delay can be used to select the best features

Regarding sensor interface, most common sensors can be used without any
kind of incompatibility problems, but despite the wide hardware interface
most of them are dated.
This package is however quite complex in its usage and it doesn’t allow, if
necessary, to decouple the SLAM problem from the path planning and the
computer vision part. Even if this could be possible, it doesn’t look like the
best solution.

• Vins-Fusion[8][9]: VINS-Fusion is an optimization-based multi-sensor state
estimator, which achieves accurate self-localization for autonomous applica-
tions.
VINS-Fusion is an extension of VINS-Mono, which supports multiple visual-
inertial sensor types (mono camera + IMU, stereo cameras + IMU, even stereo
cameras only).
It, if needed, allows GPS integration as well. The approach of the core of this
package, i.e. VINS-Mono, is based on the idea of calibrating temporal offset
between visual data and IMUs measurements.
This kind of dynamic calibration has proven to get better results in terms of
calibration than offline tools. Indeed, the main characteristic of this package,
if compared with other state-of-the-art packages, regards the improved fusion
algorithm, which is capable of fusing efficiently local pose information (e.g.
IMUs) through the VIO with global information, such as GPS, magnetometer,
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barometer. Its computational cost is bearable even for low-budget embedded
systems.

• ORB-SLAM2[10]: ORB-SLAM2 is a SLAM package for Mono, Stereo, and
RGB-D cameras. It can detect loops and relocalize the camera in real-time.
It provides a ROS node to process live monocular, stereo, or RGB-D streams.
It includes a lot of the features of a complete SLAM package, as the presence
of an efficient feature descriptor (ORB), the usage of local BA for estimation,
and the possibility of relocalization.
It requires a medium computational effort, it cannot be used on low-budget
and low-memory boards. There are some versions adapted for low-budget
systems, but they are not as performing as the complete version.
The drawbacks lie in the most common visual-based SLAM problem, i.e. the
loss of track in environments with low features too fast movements, and the
impossibility to integrate IMU data.

• ORB-SLAM3[11]: If compared with its previous version, ORB-SLAM3
shows some clear improvements. First of all, it has been integrated a VIO
system, which allows integration of IMU data as well.
Indeed, it has a lot of possible configurations, such as Mono, Stereo, Mono +
IMU, stereo + IMU, fisheye. Moreover, an improved place recognition method
has been included in the package, by letting the system work properly even in
situations with poor visual inputs from the environment.
From the data collected on the most used datasets, it appears that the package
assures accuracy and robustness level off the charts if compared with similar
solutions.
The only drawback that stands out is the fact that an official 1.0 version of
the package has yet to be released. There is a beta version, but it might be
still too unstable.

• S-PTAM[12][13]. S-PTAM: is a Stereo SLAM system. It separates the
time-constrained pose estimation from less pressing matters such as map
building and refinement tasks.
On the other hand, the stereo setting allows the reconstruction of a metric 3D
map for each frame of stereo images, improving the accuracy of the mapping
process with respect to monocular SLAM.
Different versions are available, which present slightly different approaches.
Anyway, the dated information available, along with the lack of documentation
don’t suggest this as the primary choice for a SLAM package.

• RTAB-Map[14]: RTAB-Map (Real-Time Appearance-Based Mapping) is
an RGB-D, Stereo, and Lidar Graph-Based SLAM approach based on an
incremental appearance-based loop closure detector.
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The loop closure detector uses a bag-of-words approach to determine how
likely a new image comes from a previous location or a new location.
When a loop closure hypothesis is accepted, a new constraint is added to the
map’s graph, then a graph optimizer minimizes the errors in the map.
A memory management approach is used to limit the number of locations used
for loop closure detection and graph optimization so that real-time constraints
on large-scale environments are always respected.
RTAB-Map can be used alone with a handheld stereo camera, or a 3D lidar
for 6DoF mapping, or on a robot equipped with a laser rangefinder for 3DoF
mapping.
There are a lot of perks using RTAB-Map, starting from the fact that, even if it
is relatively old compared to other famous packages, it has been continuously
updated, and its structure is well prepared to be modified as new VO-VIO
algorithms are developed.
Moreover, its detailed documentation, along with a discrete number of tuto-
rials, and an active community, makes the usage as easy as possible. Unlike
most of the packages presented above, RTAB-Map doesn’t perform VO by
itself, but relies on external packages to do it: the main node can take as an
input an odometry message, that can come out of wheel odometry as well as
tracking modules, like T265 and ZED 2 camera ones.
If none of these messages are provided, the package allows performing VO
starting from subscribed images. The package presents many possible configu-
rations: it can work with cameras as well as with lidars, the produced map
can be visualized and saved in different formats, the parameter tuning enables
the user to manage parameters on both the VO and the mapping side.
Finally, its contained computational effort guarantees the possibility to run
the package in real-time situations, even on low-budget embedded devices.
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1.3 The Multi-agent SLAM problem
Even if the research about SLAM is mainly focused on the development of more
and more accurate, robust, and portable packages, recently the implementation of
some systems for multi-agent SLAM have been studied and there already exists
some implementations.
First of all, it is important to make clear why these kind of systems have been
studied, and, to do that, the first thing is to understand the reasons behind the
employments of robots’ fleets.
The possibility to use a large number of robots, even of different kind, which are
able to communicate and accomplish a task together, opens up to a lot of options in
a large variety of applications, such as security systems, logistics, delivery, farming,
search and rescue, exploration.

(a) Delivery (b) Logistic (c) Farming

Figure 1.10: Applications of robots fleets on different tasks: multiple robots open
to the possibility of multi-robot SLAM

There is a certain number of missions that require a system in which a fleet of mobile
robots, usually autonomous robots, is required to accomplish tasks in unknown
environments. In autonomous applications, SLAM represents a key role in assuring
safe and successful navigation.
The idea behind collaborative SLAM consists of taking advantage of the data
produced by each robot and use them to get a consistent boost in the performance
of each robot of the fleet.
From the mapping point of view, it is possible to merge the maps produces by each
agent to get a global map, that can be then forwarded to all the agents. In this
way, a mobile robot can acquire environmental information about a certain zone
even if it hasn’t ever been there. Not only mapping, but localization benefits of
multi-agent SLAM too, getting an increased accuracy and, most of all, robustness.
These systems usually adopt a centralized architecture, in which a ground station
manages the entire fleet, it is responsible for the data networking and performs the
most resource-demanding parts of the SLAM algorithm.
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Figure 1.11: Sketch diagram for Multi agent logic. Each agent is able to send
and receive data from the ground station, i.e. a notebook

To be more precise, the agents usually compute the local map and perform the
essential tasks, kine real-time VO.
Tasks as bundle adjustment and place recognition are usually performed on the
ground station, along with map fusion and optimization.
The advantage of the centralized architecture lies in the possibility to perform all
of these tasks on a powerful machine, by reducing the computational power needed
on the drones.
Simultaneously, it must guarantee data consistency, data access from the agent, and
time delays managing, which is quite a challenge, especially for wireless networks.
Indeed, the system must guarantee that each drone can, eventually, perform SLAM
on its own: if a loss of connection or data inconsistency happens, the single agent
must be able to react properly.
To achieve independence from any kind of ground station, some systems tried to
implement a decentralized system too. However, the data consistency and the
process of sharing information is way more difficult.
Therefore, it does not appear to be the best possible solution yet, especially
considering that there’s also the problem that a decentralized system requires more
powerful on-board computers.
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Package Development

2.1 Project Structure

This section addresses the structure of the proposed solution to the multi-agent
SLAM problem. It will be discussed all the premises, preliminary hypothesis, and
the choices behind the development of the package.
The system is thought to work in an environment in which the communication
among a ground station (server) and the drones (agents) is enabled, with the goal to
exchange information about localization and mapping and enhance the robustness
of the SLAM algorithm. The information flow is managed by ROS.
The idea on which this system is based is to get a simple, efficient and with
low-computational effort package to share information among the server and the
agents with a wireless network.
In the following paragraphs, it will be described the hardware configuration, both
for what concerns the agents and the server, and the software development, carried
on with the creation of a ROS package, starting from well-known libraries.

2.1.1 Hardware set-up

In this section it will be described the hardware set-up and the specification of
each member of this system. In Figure 2.1 it is shown the configuration of the
hardware components mounted on the agent.
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Figure 2.1: Single-agent hardware architecture. It is a battery-powered Jetson
Nano, a USB wireless module and the RealSense D435 and T265 cameras

A brief about the devices is reported in Table 2.1:

Device Connectivity Tech Specs

Nvidia Jetson Nano USB,Ethernet CPU: Quad-core ARM,
Memory: 4 GB 64-bit LPDDR4

TP-Link wireless adapter USB Wireless 150Mbps, 2.4GHz

D435 Depth Camera USB 3.0
RGB module
Depth module

Size: 90 mm x 25 mm x 25 mm

T265 Tracking Camera USB 3.0
2 x Fisheye module
Motion module

Size: 108 mm x 24.5 mm x 12.5 mm

HRB LiPo battery XT60 Capacity : 6000 mAh
Output Voltage : 11.1 V

Matek UBEC DUO Dual T plug Ouptut: 4 A - 5 V

Table 2.1: Hardware components: brief description
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As described above, the core of the system is represented by the Jetson Nano
onboard computer. As well as all the Nvidia Jetson products, and some of the
most diffused embedded devices on the market, this board is based on the ARM
architecture. ARM processors are best suited for a device designed with the idea
of guaranteeing high portability, since their low cost, reduced power consumption,
and low heating dissipation.
Moreover, the Jetson Nano is way cheaper than the other Jetson models, and its
size is comparable to the Jetson Xavier NX, but it is a lot smaller than the Jetson
TX2. The boards are shown in Figure 2.2.

(a) Jetson Nano (b) Jetson Xavier NX (c) Jetson TX2

Figure 2.2: Jetson boards: the three main onboard computers produced by
Nvidia, organized (from left to right) from least to most expansive and powerful

Indeed, getting high portability inevitably affects the performance. Anyway, the
Jetson Nano is one of the best products on the market, especially considering its
cost-quality ratio. This is a low-cost platform, which is provided with support for
full desktop Linux. Its reduced power consumption, along with the small size, makes
it a perfect candidate for drone applications. This device is usually employed in a
variety of scenarios: AI, deep learning, and robotics. One of the most interesting
features is the presence of NVIDIA CUDA-X, a collection of over 40 acceleration
libraries that enable modern computing applications to benefit from NVIDIA’s
GPU-accelerated computing platform.
Unfortunately, the Jetson Nano doesn’t embed a wireless module, therefore in this
project has been decided to adopt an external adapter, connected via USB port.
It is clear that this is not the best possible choice, especially considering that the
cost of higher-performance wireless adapters is only slightly higher than the one
employed, and a lot of products on the market take up lesser space. Hence, the
final system deployment should include a more adequate wireless adapter.
The power supply is realized with a LiPo battery and a buck regulator.
The sensor suite consists of two Intel cameras, the D435 depth camera and the
T265 tracking camera, both connected with a USB cable. Moreover, the T265
camera embeds a VPU, that allows the camera to perform image processing and
stereo-visual odometry on-board, by lifting this burden from the Jetson Nano.
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The possibility to insert more sensors to improve the localization or the mapping
procedure has been considered, but it has been discarded, since the Intel products
already add to the system visual and inertial information, and they keep to a low
level the total volume occupation and weight of the sensor suite.
These cameras take advantage of the USB 3.0 connection, which guarantees a
continuous image flow and it reduces possible time delays.
The devices are mounted together through 3D-printed support, as shown in Figure
2.3, which usage is recommended by Intel since it makes easier not only for a safer
and more compact assembly, but because this support helps with the set up of the
reference frames on the software side.

Figure 2.3: T265 + D435 camera 3D-printed support: it helps both in the testing
phase and in the real-time usage

This set-up has the advantage of using a low-budget board, with limited hardware
capacity, with two advanced sensors that guarantee small volume, high performance,
and low power consumption. Anyway, the onboard computer and the sensors are
powerful enough to run some SLAM packages completely on board, which means
that this can guarantee if needed, independence from any kind of ground station.
This system is suited to work well in a multi-agent architecture since it keeps
acceptable the overall cost of the fleet. Moreover, the proposed solution doesn’t
even require a very powerful ground station.
All the experiments that will be shown in the next sections have been realized by
using, as a server, a laptop with an Intel Core i7 processor of 8th generation, along
with a reduced amount of RAM, 8 GB.
Theoretically, there is a possibility that might make the overall cost even lower,
especially if the drone swarm is large. The usage of monocular cameras for SLAM
could reduce the cost of the sensor suite by far, other than implying a reduction of
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the power consumption and a reduction of volume and weight.
All these advantages might suggest that the monocular camera is an even more
portable solution than the one proposed in this project, but it has its drawbacks,
which not only regards the well-known differences between monocular and stereo
vision.
The usage of the T265 camera is not just related to its accuracy, especially because
in some contexts it might be less precise than other open-source VIO packages.
As shown in [15] and [16], when it’s a matter of which VIO algorithm to choose,
there isn’t an unique solution.
Some algorithms guarantee better performances in terms of accuracy, but they may
imply high computational demands to ensure real-time.
Indeed, the accuracy also depends strongly from the kind of movement that the
robot should be able to do: there are algorithms that work well with slow movements,
and other that provide better performances with fast ones.
All of these assumptions suggest that a system with a monocular camera and
an IMU, with a VO algorithm, for example Vins-Mono, might guarantee better
performances.
The issue of this solution consists in the fact that all the effort weights on the
onboard computer. A low-budget device such as the Jetson Nano is not powerful
enough to handle it. The T265, on the contrary, allows decoupling the workload,
by taking care of VO. The result might be as not as precise, but it is cheaper and
it allows to use of the Jetson Nano, being less power demeaning.

2.1.2 Software set-up
This section addresses the preliminary work that led to software development.
There will be a focus on the set-up of the working environment, the ROS installation,
some preliminary tests, packages installation, and generation of a new package.
The main idea behind this project is to use ROS as a global framework for the
multi-agent system, in the sense that a ROS master will run on the server and each
agent will be able to communicate with it.
Indeed, some other issues need to be taken care of, such as the choice of the SLAM
package for the single agent.
Since the objective of this project is not the development of a SLAM algorithm
for a single mobile robot, there’ no need to explore the hypothesis to create a new
package from scratch.
The advantage of this choice is that the system development could be adapted
to more than one SLAM package, other than the fact that the creation of a new
package is very complex and time-demanding.
The disadvantage of this idea is that the SLAM package is not easily manageable
and open to be edited, when necessary, but it can be considered as a black box: it
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is possible to modify its input and its outputs, but not the package itself.
To be precise, editing a package is a possibility, especially since many of them are
released with an open-source license.
However, the structure of these packages is very nested, with a high level of com-
plexity
Therefore, modifying a code is not easy and it might have dangerous consequences
on the entire package.
Anyway, it is necessary to specify that these changes, intended as code editing, are
referred to as changes in the logic of the algorithm: the parameter tuning usually
it is possible and it allows to modify of a lot of parameters of a package, but the
main logic remains the same.
Other than the choice of the package, it is important to understand how to generate
a new package, to be able to get an interface between the multi-agent logic and
the single agent SLAM package.
Moreover, the generation of a package allows the development of a nodes architec-
ture, which is helpful for what concerns possible bugs, errors, or system failures.
This structure is also useful in this problem since if, for example, one of the nodes
responsible for the multi-agent logic stops working, the nodes responsible for the
SLAM on each agent can keep running, by avoiding further problems.
To start analyzing these problems it is necessary to start by installing ROS on the
server and the agents to create an environment on which to develop the algorithm.
First of all, it is necessary to pick a ROS distribution to be installed.
No limitation is forced, since all the releases have an open-source license.
ROS allows to install anyone of the available versions. Some of the distributions
are older and provided with long-term support, which makes them more stable,
while others are newer and provided with shorter support, but they can work with
recent platforms and more recent versions of the ROS packages.
It is obvious that the oldest versions have been ruled out, both because of com-
patibility reasons and because they are no longer supported by ROS developers.
Indeed, the ROS community for these versions is no longer existent, since it is
focused on the newest releases.
It has been also considered the hypothesis to use a release of ROS2, but this
hypothesis has been ruled out as well, exclusively for compatibility reasons.
The upgrade of the system to ROS2 is a concrete possibily for the future.
Actually, ROS recommends one of the following distribution:

• ROS Kinetic Kame, released in 2016, supported until 2021

• ROS Melodic Morenia, released in 2018, supported until 2023

• ROS Noetic Ninjemys, released in 2020, supported until 2025
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(a) ROS Kinetic Kame (b) ROS Melodic Morenia (c) ROS Noetic Ninje-
mys

Figure 2.4: ROS distributions: ROS recommend the installation of one of these
three distribution

Among these releases, the choice has fell on ROS Melodic Morenia (ROS Melodic),
since ROS Noetic is too recent and it does not support all the packages, which
doesn’t make it a stable release.
ROS Kinetic has been ruled out as well, since, even if it’s the more stable release,
it’s older then Melodic, and the long term support for this version will end very
soon. To be able to install ROS both on the server and on the Jeton Nano, Ubuntu
has been installed.
For compatibility reasons, the Linux distribution Ubuntu 18.04.5 LTS (Bionic
Beaver) has been chosen.
ROS makes available different kinds of installations, based on the needs of the user.

• Desktop-Full Install: ROS, rqt, rviz, robot-generic libraries, 2D/3D simula-
tors and 2D/3D perception

• Desktop Install: ROS, rqt, rviz, and robot-generic libraries

• ROS-Base: ROS package, build, and communication libraries. No GUI tools.

For development purposes, the Desktop-Full version has been installed on both the
onboard computer and the server. In the final deployment, it might be sufficient to
install the Desktop version.
Once ROS is installed, it is necessary to create a workspace. To do that, it is used
the catkin package. Catkin is the build system of ROS.
A build system is responsible for generating ’targets’ from raw source code that
can be used by an end-user.
These targets may be in the form of libraries, executable programs, scripts, inter-
faces (e.g. C++ header files). In ROS terminology, source code is organized into
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’packages’ where each package typically consists of one or more targets when built.
To build targets, the build system needs information such as the locations of
toolchain components, source code locations, code dependencies, external depen-
dencies, where those dependencies are located, which targets should be built, where
targets should be built, and where they should be installed.
This is expressed in a configuration file read by the build system. With CMake, it is
specified in a file typically called CMakeLists.txt. The build system utilizes this
information to process and build source code in the appropriate order to generate
targets.
ROS utilizes a custom build system, catkin, that extends CMake to manage depen-
dencies between packages.
Catkin combines CMake macros and Python scripts. This package is designed with
the idea to allow better distribution of packages, better cross-compiling support,
and better portability. It allows building multiple, dependent projects at the same
time.
The catkin package is used to create a catkin workspace. A catkin workspace is
a folder where it is possible to modify, build, and install catkin packages. It can
contain up to four different spaces which each serve a different role in the software
development process.

• Source space: it contains the source code of catkin packages. Each folder
within the source space contains one or more catkin packages.
This space should remain unchanged by configuring, building, or installing.
The root of the source space contains a symbolic link to the CMakeLists.txt
file. This file is invoked by CMake during the configuration of the catkin
projects in the workspace.

• Build space: it is where CMake is invoked to build the catkin packages in
the source space. CMake and catkin keep their cache information and other
intermediate files here.

• Development space: it is where built targets are placed before being in-
stalled. This provides a useful testing and development environment which
does not require invoking the installation step.

• Install space: it is the space in which built targets are installed.

Once ROS is installed and the catkin workspace has been created, the user can
create, edit, build its own packages, and/or clone and install packages from the
ROS library or source git.
Among the necessary packages for SLAM, it is important to install the SLAM
packages, along with their dependencies, and the packages that allow handling
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sensors. realsense-ros belongs to the latter category: it is the package that allows
communication with RealSense cameras.
Properly, realsense-ros is a ROS Wrapper, which contains all the needed nodes and
nodelets to get camera data in the ROS format: messages.
The installation, other than the package, will install all the needed dependencies,
included the RealSense SDK: librealsense.
The SDK allows depth and color streaming and provides intrinsic and extrinsic
calibration information.
The library also offers synthetic streams (point cloud, depth aligned to color, and
vice-versa), and built-in support for record and playback of streaming sessions.
The SDK also includes a viewer, a screenshot of which is shown in Figure 2.5,
that allows to view depth stream, visualize pointclouds, configure some settings,
post-processing, and more.

Figure 2.5: RealSense Viewer: one of the SDK tools, useful for visualize, configure
and post-processing data. Here it’s shown a depth image acquired with D435 camera

Moreover, librealsense includes some debug tools, along with tools that can test
the quality of the depth image. Finally, the SDK is provided with some other code
examples, which are thought to use some advanced features of the cameras or to
simply use multiple cameras together.
Once the ROS Wrapper is downloaded and installed, it will be possible to access a
folder that contains a series of .launch files. Those files are the method used to
start the camera node.
When the node is launched, the node starts the cameras and enables the data
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stream. From that moment on, it is possible to see a list of all the published
topics, which depends on the setting of the parameter that has been specified in
the .launch file. Usually, for what concerns the D435 camera, it can be present a
depth, infrared, and/or color stream, along with a point cloud stream, while the
starting of the T265 camera enables the stream of fisheye, odometry, and IMU
topics. Figure 2.6

Figure 2.6: D435 camera launched from a terminal. On the right Rviz, vi-
sualization tool. Here it’s used to show color and depth image, and the topic
selection

If the user wants to launch both cameras simultaneously, it can, by using a unique
.launch file. The Wrapper will generate in every case just one node, that handles
everything.
Starting the camera in this way allows to calibrate a lot of parameters, such as the
FPS, or it allows to enable/disable certain streams, or it allows to manage some
post-processing tools and filters. More detail on this will be discussed later.
There is another information that the cameras provide, and it is stored in the tf
[17]. The tf library is one of the most important features of ROS: it can manage and
keep track of coordinate frames. Thanks to this library, it is possible to transform
any kind of data among different reference frames. It aims to simplify the managing
of coordinate frames since the manual application of a transformation to certain
data can easily be affected by errors.
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Figure 2.7 shows an example of tf tree generated by the system when the T265
camera and D435 camera are running.

Figure 2.7: Example of tf tree: D435 camera and T265 camera system broad-
casts these coordinate frames, that are both linked through static and dynamic
transforms.

The tf package is responsible to keep track during time of all the involved frames
over time, both for dynamic and static frames. All the relationships among the
coordinate frames are then represented with a tree structure, commonly called tf
tree.
However, the tf package doesn’t work exclusively behind the scenes: the user can
interact with the package, and there are mainly two ways to do this: listening to
transforms and broadcasting transforms-

• tf listener: Receive and buffer all the coordinate frames in the system, and it
allows to access any specific existing transform between two frames.

• tf broadcaster: any part of the system can create a broadcaster, which is a
structure that provides information about a certain frame with respect to the
rest of the frames in the system.

Once the cameras have been installed, and the user gets a good comprehension of
the tf associated with images and odometry streams, it is possible to perform a
testing phase.
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2.1.3 Preliminary tests: Localization
Some tests have been carried on two sides: pure localization and SLAM.
The first test that has been carried on has the objective to understand the accuracy
of the localization performed by the T265 camera and the accuracy of the output
of the sensor fusion package robot localization.
In order to perform a comparison, some experiments have been carried on by
considering two different sources of odometry: the one produced by the T265
camera and the one produced by the ZED 2 camera. To use the ZED 2 camera,
the ZED Wrapper has been installed. The camera is turned on by a .launch file.
The idea is to understand if the combination of these two sources of information
with an EKF can generate a filtered output that is more accurate than the single
ones.
There’s no particular intention of using both these cameras in a real-time application:
the experiment aims to try to understand if it’s worth combining two or more pose
data.
Two possible outcomes might suggest adopting such a strategy: if the fused
odometry is more accurate than the input data, or if it is possible to fuse a principal
source of odometry with a secondary source that works as a backup localization
source.
The tests that will now be described are performed with a Jetson Nano, placed on
a wheeled cart. The ZED 2 camera and the T265 camera are placed on the cart,
on their respective tripod. The system is battery-powered.
The hardware set-up is shown in Figure 2.9 and Figure 2.8.

Figure 2.8: Test hardware set-up: the suite is placed on the moving cart and it
is battery powered
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Figure 2.9: Test hardware set-up: T265 camera and ZED 2 camera are connected
via USB to the Jeston Nano board

(a) Sector a-b-i (b) Sector b-c-d (c) Sector h

Figure 2.10: Test course: a scotch tape has been used on the floor for designing
the course
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The tests cover a course illustrated in Figure 2.11. In Table 2.2 are specified the
dimensions of the course.

Figure 2.11: Test course: the model has been measured and designed on Matlab,
that makes the data comparison easier

Section Name Measure Type value (m)
a straight 3.45
b radius 0.7
c straight 3.58
d radius 0.7
e straight 0.95
f radius 0.8
g straight 3.5
h radius 0.95
i straight 5.65

Table 2.2: Tests course: definition of the length of the course

Once the course has been established and measured, and the hardware has been
set-up, tests have been performed.
The evaluation criteria of these tests are especially related to the z-axis value: since
the platform is flat, as well as the floor, the expected outcome is that the value
should be approximately zero.
Any difference from zero can be considered a measurement error. Different tests have
been performed, since, among them, changes have been made to the configuration
parameters of the filter.
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• test 1: it consists of a single lap on the course. The filter parameters are left
as default. Results are shown in Figure 2.12

(a) X-Y plane (b) 3D representation

Figure 2.12: Test 1: single lap. The reference course is represented in black. The
T265 data is red. The ZED 2 data is blue. The EKF output is green.

The first test has shown that the EKF works well in giving a solution that is
halfway between the two odometry inputs.
The ZED 2 camera kept a very good behavior at the beginning, but it has
shown an unexpected discontinuity that caused a change in the position value
along the z-axis of about 15 cm.
The camera managed to adjust the issue, and the results can be seen after
some time, but the large instantaneous variation caused a considerable drift.
The T265 camera shows a more oscillatory behavior over time, but, after an
initial drift of about 10 cm, it tracked the position quite well.
No significant discontinuities appeared. The EKF output in this case appears
to give out better performances, but it has shown an oscillatory behavior.

• test 2: it is basically the same as the previous test, with the exception that
this time the cart has done two laps around the course.
This test helps to understand the effect of IMU measurements and VO data
on the overall localization value.
The motion module with whom these cameras are supported is thought to
compensate for the issues of the two above described measurements.
When the VO faces an environment that is poor of key-points, the IMU
helps not losing track. When a task requires a lot of time, the VO helps to
compensate for the long time drifts.
Then, if the camera goes through a place in which it has already been before,
it should be able to use re-localization tools to adjust its pose. The results of
this test are shown in Figure 2.13
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(a) X-Y plane (b) 3D representation

Figure 2.13: Test 2: two laps. The reference course is represented in black. The
T265 data is red. The ZED 2 data is blue. The EKF output is green.

This test has shown that cameras behave quite well even after a long time.
The track on the X-Y plane is very good, while the error on the z-axis is
bounded between -40 cm and 40 cm.
In this case, the EKF provided a good result in the first lap, but a bad one, if
compared with the cameras ones, in the second lap.
Moreover, it keeps showing a lot of oscillations.

• test 3: it consists of two laps, and this time two filters, both belonging to
robot localization, have been launched: the EKF and the UKF. The results of
this test are shown in Figure 3.2

(a) X-Y plane (b) 3D representation

Figure 2.14: Test 3: two laps and differential parameter true for both inputs.
The reference course is represented in black. The T265 data is red. The ZED 2
data is blue. The EKF output is green. The UKF output is purple.

Another detail differentiates this test from the previous ones: the usage of the
differential parameter. If this parameter is set to true in the .launch file, then
pose information are integrated differentially.
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Considering the acceleration measurement at time t, it is subtracted the mea-
surement at the time t-1, and then this quantity is converted to a velocity.
This parameter should be useful if the system can provide more than one
source of the absolute pose.
When more than one source is considered, the filter output may have oscilla-
tions due to sync problems among the inputs.
By integrating one, two, or more differentially, this scenario might be avoided.
However, this test has shown that setting to true the differential parameter of
both odometry inputs, both filters produce outputs that are way worse than
the input data.
Therefore, the option of using two differential sources of data has not been
successful. On the bright side, it has been verified that the differential config-
uration reduces to a minimum value the oscillation on both filter outputs.

• test 4: it consists of a single lap on the course, and the differential parameter
has been applied only to the odometry input produced by the T265 camera.The
results of this test are shown in Figure 2.15

(a) X-Y plane (b) 3D representation

Figure 2.15: Test 4: one lap and differential parameter true for T265. The
reference course is represented in black. The T265 data is red. The ZED 2 data is
blue. The EKF output is green. The UKF output is purple.

The results of this test are better than the previous ones.
The data in the X-Y plane are quite good, even if they’re not as good as test
2 data. The oscillation on the output of both filters has been reduced a lot, if
compared to the tests executed without the differential parameter.
The error along the z axis is restrained to a value smaller than 10 cm. Both
EKF and UKF outputs are good enough for the first part of the course: they
tend to follow the ZED 2 odometry more than the T265 one, but the global
result is really good. However, during the second part of the course the error
is higher than the cameras ones.
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• test 5-6: these two tests are wrapped together in order to help visualize the
differences between the case in which the differential is set to true on the T265
odometry input or on the ZED 2 odometry input.
There’s one more detail that is added with respect to the previous tests, i.e.
the choice of the parameters to fuse: by definition, the odometry message’s
structure is the one represented in Figure 2.16.

Figure 2.16: ROS documentation about odom message. It shows all the fields,
included each field data format.
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Robot localization doesn’t dictate a precise rule on what kind of data should
be fused. There are some rules of thumb described on the documentation, but
it must be kept in mind that those rules are thought in the case that odometry
is provided by wheels’ encoders. Anyway, robot localization fuses data as the
boolean table defined in the .launch file dictates: Table 2.3 is an example.

Variable type x-axis y-axis z-axis
linear position true true true
angular position true true true
linear velocity false false false
angular velocity false false false
linear acceleration false false false

Table 2.3: Odometry param setting : boolean table that specifies what is fused
with the filter

The two tests are illustrated in Figure 2.17. The boolean table has been set
in order to fuse exclusively position and orientation.

(a) Test 5 X-Y plane (b) Test 5 3D representation

(c) Test 6 X-Y plane (d) Test 6 3D representation

Figure 2.17: Test 5-6: two laps and differential parameter true for T265 (test
5) and ZED 2 camera (test 6). The reference course is represented in black. The
T265 data is red. The ZED 2 data is blue. The EKF output is green.
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The two tests have shown some already known problems: the EKF output,
after one lap, gets a lot less accurate.
Moreover, in test 5 the filter output does no improve the localization process.
The same thing can be said about test 6.
The differential set to true for ZED 2 odometry inputs makes the output of
the EKF follow almost exactly the T265 odometry input for almost the entire
time. Therefore, fusing position and orientation doesn’t improve the accuracy.

• test 7-8: these two tests are performed with the differential parameter set to
true only for the T265 odometry input. The only difference between the two
tests consists in the fact that test 7 fuses both positions and velocities, while
test 8 fuses both positions and only linear velocity.
The results are shown in Figure 2.18

(a) Test 7 X-Y plane (b) Test 7 3D representation

(c) Test 8 plane (d) Test 8 3D representation

Figure 2.18: Test 7-8: one lap and differential parameter true for T265. Two
boolean table configurations. The reference course is represented in black. The
T265 data is red. The ZED 2 data is blue. The EKF output is green.

These two tests have shown two undesired behaviors. Test 7 is good, the
average error on the z-axis is low, the X-Y plane shows a good track, but the
filter doesn’t improve the localization. Test 8 showed a significant error along
each axis. The filter output might be correct, but it is rotated with respect to
the real one, which means something occurred that messes up the EKF.
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These preliminary tests have shown that robot localization is not completely neces-
sary. It requires accurate calibration of all the parameters, and finding the right
combination of these parameters is really complex and even if found, nothing
assures that the results will be good enough.
In most tests, the filter output has shown a behavior that was even worse than
the inputs. Indeed, some tests have shown good results, but they all coincide with
oscillations on the output that does not help to improve the localization.
Another thing that emerges from the tests is that robot localization gives much
more importance to less noisy data. This means that if the process noise covariance
matrix of two inputs is different by two orders of magnitude, the filter will neglect
the worst one.
This behavior is theoretically correct, but the implication is that if the package
can’t combine two accurate data as the ones taken into account here, there is very
little chance that the fusion of a less precise sensor, like an IMU, could improve
the localization of a video tracking device.
For what concerns the risks of failure, it looks obvious that there are methods that
are less computational demanding to provide a safety device.

2.1.4 Preliminary tests: SLAM packages
This section will present some of the preliminary tests that have been carried on in
order to choose a SLAM package to be used for the single drone SLAM.
As addressed in Chapter 1, there are a lot of available packages online that could
be suited for the single-agent SLAM.
Anyway, some packages, like Cartographer, Hector, Gmapping, and MRPT have
been ruled out, for sensor incompatibility or software issues.
Based on the sensor suite, it is reasonable to choose a package that allows taking
the most possible advantage from it.
With these premises, it is obvious that the choice should have fallen on a V-SLAM
approach. Even the T265 tracking camera has been listed among the available
components, other strategies have been tested, in order to understand which is the
better solution.
The idea of this approach is to understand if better performances are achieved
when the SLAM problem is decoupled between the T265 camera, for the VO, and
a SLAM package, or when the SLAM problem is dealt with only the package.
In the second case, the usage of two cameras is redundant.
The selection has brought to consider three packages: ORB-SLAM2, Vins-Fusion
and RTAB-Map. ORB-SLAM3 has not been considered because it has been released
since not long ago, and therefore a stable release is not available yet.
The tests that will now be described have been carried on with monocular and
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stereo cameras. The D435 provided the stereo image, while the Raspberry Pi
Camera Module V2 has been used for the tests with monocular images.
This camera can be easily configured to be used in ROS applications, it’s cheap,
and its volume is really negligible in most drones.
The connection to the Jetson Nano is realized by means of a ribbon cable. The
sensor is showed in Figure 2.19.

Figure 2.19: Raspberry Pi Camera Module V2. Monocular camera compatible
with most of the onboard computers available on the market.

No IMU has been introduced; in the case of ORB-SLAM2 this happened because
it is not possible to subscribe to an IMU topic.
The first test concerned ORB-SLAM2. To use this package it is necessary to
install it correctly. This might imply more than a few issues, since ORB-SLAM2 is
strongly related on a lot of dependencies, that should be manually installed before
the package installation.

• Pangolin: it is a development library to manage display OpenGL display
and abstracting video input. It provides a series of visualization tools that are
needed to execute the package and visualize the video output of ORB-SLAM2.
It is used because it requires a minimum amount of computational effort
to be used, especially considering that it allows video interactions and 3D
representations.

• OpenCV: it is an open-source library which provides all sort of tools in the
fields of computer vision and machine learning.
OpenCV includes a large set, over 2500, algorithm, divided between classic
perception and computer vision algorithms and state-of-the-art computer
vision and machine learning algorithms.
The ductility of this library makes it one of the most used libraries among the
ones available online. As a matter of fact, OpenCV can be employed in tasks
like image recognition, object identification, features classification in videos,
tracking of moving objects, 3D models extrapolation, point cloud production,
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tracking of camera motion, etc. ORB-SLAM2 uses this library to manipulate
images and features.

• Eigen: it is a library that provides all sorts of functions for linear algebra,
matrix and vector operations, and geometrical transformations.

• DBoW2: it is an open-source library that is used to index and convert
images into a bag-of-word representation. It is the library responsible for
the creation of a visual vocabulary. It can work with any kind of feature
descriptor, included ORB, the ones used by ORB-SLAM2.

• g20: it is an open-source general graph optimization framework. It is used
to optimize graph-based nonlinear error functions. It has been specifically
created for SLAM and BA applications.

Two installations have been tried. The first one on a notebook, the second one
on the Jetson Nano. In the first case, there were few issues in the installation,
especially related to the OpenCV version, but it has been easy to overcome the
problem.
The package installation has been done by means of the official repository; the
standalone version of ORB-SLAM2 works perfectly, while the ROS version causes
many problems.
Anyway, it is possible to overcome these problems and to start the node without
any issue.
For the sake of simplicity, instead of using the monocular camera, to test ORB-
SLAM2 on the notebook, it has been used the color camera of the D435 Depth
camera.
This choice is convenient for two reasons: the USB cable of RealSense cameras
simplifies the connection, and the camera intrinsic and extrinsic parameters are
not only already provided, but also included in a ROS topic.
When the ORB-SLAM2 node starts, it loads a configuration file inside which there
should be inserted the camera parameter.
Cameras usually introduce distortion to images. Usually, these are taken care of
inside more advanced cameras, therefore, among the data streamed, there are the
distortion parameters and information about camera geometry.
The two most important kinds of distortions are :

• radial distortion: it causes straight lines to appear curved. It causes small
distortions at the center of the image, and larger ones far from the center.

• tangential distortion: it appears when the image plane is not perfectly aligned
to the lens.
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Five parameters are used to take into account distortions. In addition to these five,
it is necessary to find the camera matrix, which includes information about focal
length and optical centers. OpenCV provides a code to calibrate the camera.
Once the parameters are found, they can be added to a .yaml file that ORB-SLAM2
loads at the start.
Figure 2.20 shows an example of calibration pattern on a chessboard.
The process has been done identically with the Raspberry Pi Camera Module V2
and the D435 color camera: a series of images of a chessboard held in different
position have been acquired and then the calibration tool showed the pattern and
printed the calibration parametes.

Figure 2.20: Raspberry Pi Camera Module V2 calibration pattern. The method
consists in taking snapshots of a chessboard printed on a sheet. The tool provide
the pattern shown in figure.

This will allow obtaining a calibrated image. For what concerns the installation on
Jetson Nano, the procedure is more complicated. By flashing Jetson Nano, a series
of libraries are automatically added to the system, included a version of OpenCV.
The installed version causes compatibility problems with ORB-SLAM2, therefore
it is needed to substitute it with another version.
Once this is done, and all the other dependencies of the package are installed,
ORB-SLAM2 can be installed too.
Anyway, the official repository causes a lot of problems with Jetson Nano and it
ended up not working, a lot of times.
Finally, the installation has been successful, but the package is very resource-
demanding, so the board cannot guarantee data consistency and real-time SLAM.

46



Package Development

A possible solution is found by installing a version of the package that takes
advantage of the GPU enhancement available on Nvidia boards.
The version is called ORB-SLAM2-CUDA, and it causes less problem with the
installation, but the results are not as powerful as the ones obtained with the
original version.
Some tests were performed on the same course shown in Figure 2.11. Two types
of tests were attempted. The first one is done with the hardware positioned on a
wheeled cart, while the second one is done with the platform held by hand.
The tests have shown some common behaviors. The first thing to notice is that
the package requires some time to be initialized.
Until the package doesn’t find enough features in the image, it is not able to start.
Therefore, an environment with a reduced number of features could imply that the
SLAM algorithm doesn’t start at all.
The same thing happened if the initial movement of the device is too fast: since there
is no stereo camera that can provide depth information, ORB-SLAM2 performs a
triangulation among the features detected in two consecutive frames and, once it
founds a bigger enough number of key-frames, it can initialize.
As a consequence, by keeping the camera perfectly still, there’s no variation in the
frames and it is not possible to initialize.
Figure 2.21 shows the initialization phase of the package.

(a) Pre-initialization (b) Initialized

Figure 2.21: ORB-SLAM2:initialization phase. In the beginning, the software
looks for features in the environment, once the number is high enough the algorithm
starts,

Anyway, this is not the only problem. The algorithm suffers a lot of fast turns: it
works better with slow rotations or with a rotation of a small angle.
This might be a problem in the drone context. Moreover, the main issue is the
absence of a supplementary localization device.
If the camera ends up in a place with a low number of features, or if for any
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reason, the key-frame matching doesn’t work, the package displays a "Tracking
Lost" message. Even if it is usually able to recover, the global localization and
mapping lose data, accuracy and in some cases, no more points are added and the
plotted trajectory stops at the moment in which the track is lost.
Moreover, by comparing the position values with the T265 tracking camera ones, it
is clear even with just a qualitative analysis that the T265 camera provides better
performances.
For what concerns the mapping side of the algorithm, it appears that the number
of points inserted in the map are really low and if a scene is filmed from a different
point of view, the re-localization process doesn’t work well enough.
Figure 2.22 shows the visualization tool of ORB-SLAM 2 during a test.

Figure 2.22: ORB-SLAM2:running phase. The tools allow to visualize the motion
module and the map update.

For these reasons, and for the fact that the compatibility on Jetson Nano may
cause problems, this package has not been considered anymore.
Another package has been taken into account as potential candidate to be chosen
as the one for single-agent SLAM: Vins-Fusion.
This package has been only briefly tested on a laptop. It has shown great perfor-
mance in terms of accuracy and robustness, and the localization data are very close
to the T265 camera ones.
The mapping procedure is very similar to the ORB-SLAM2 one.
Unfortunately, the package require a discrete computational effort to be executed
in real-time, and the Jetson Nano couldn’t provide the required power. Therefore,
it has not been further considered.
The third and last package that has been considered is RTAB-Map. There are a
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lot of reasons to choose this package. The first important reason is that is the only
package, among the tested ones, that is able to take the T265 odometry data as an
input, by relieving this task from the SLAM package.
Anyway, if the T265 is not available, it is possible to use a lot of VO packages to
extract localization data.
The second important reason is that it has been tested on Jetson Nano and it runs
smoothly, guaranteeing real-time SLAM.
To be sure of this choice, some tests have been made. The set-up consists of a
Jetson Nano with T265 and D435 cameras connected via USB ports.
The system is battery-powered and it has been held by hand in a mission which
consisted in mapping an office environment, with some problematic details, such as
shadowed zones and tight corners with low features.
RTAB-Map installation is very simple, since it belongs to the libraries that can be
installed from the ROS library list.
To run the package it is sufficient to insert a node, with the appropriate syntax,
inside of the .launch file.
Before explaining and illustrating the results of the tests, it should be clear how
the output data of the algorithm are displayed and therefore analyzed.
The visualization will be performed by means of the ROS tool Rviz. The SLAM
outputs are the odometry output and the produced map.
The first one is displayed by means of the tf representation. It is possible to see
the movement of the tf associated to the moving camera with respect to the tf
associated to the global map, which usually coincide with the tf generated by the
camera at its starting point. In the following analysis of data, these frames will be
called respectively map frame and odom frame. The mobile frame attached to
the camera will be called pose fame.
For what concerns the map, as for most of the analyzed SLAM packages, the
output is represented as a point cloud. Theoretically, the map can also be seen as
a two-dimensional occupancy grid, but this isn’t a useful solution if the objective is
to visualize a 3D map, as the one needed in the case of the drone.
Obviously, both localization and mapping data are accessible since published as
ROS topics.
However, in order to allow an easier visualization and a to get a data format that
is at the same time accurate, but not too heavy from the memory point of view,
RTAB-Map includes, for 3D maps, the octomap.
Octomap is a 3D mapping framework based on octrees [18].
Octrees are data structures that are used for spatial subdivision in 3D.
When visualized, every point of the map is represented as a cube, that is usually
called a voxel.
An example of the map is illustrated in Figure 2.23.
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Figure 2.23: Example of 3D occupancy grid realized with Octomap, in this case
the color represents the height of the map, from purple (lowest) to green (medium)
to red(highest).

The Octomap are 3D occupancy grid and they are very helpful in the data analysis
and saving.
Moreover, it is possible to use different kinds of color legends, based on the
information about data.
For example, cube colors can be sorted by altitude, with respect to the map frame,
or by occupancy probability.
Another useful feature of octomaps makes it possible to visualize the points of the
map only in a specified range of height: if the user wants to create a map of a
building on multiple floors, or the map of a single floor but covering both floors
and ceilings, the resulting map could become very hard to read.
Cutting the map to a certain height is useful exactly for this reason.
Anyway, if all the system in which RTAB-Map is used needs only the map in
real-time, the successive steps, e.g. path planning, will need to just subscribe the
map topics.
Indeed, if there is interest in saving the map of an environment, in order to use it
later or re-use it for a multi-session mapping, it is possible to save the map in a
database file (.db).
RTAB-Map can load this map as soon as it is launched.
To launch a RTAB-Map node, it is necessary to know the desired configuration,
among the available ones, and tune the parameters in the .launch file accordingly.
Figure 2.24 illustrates a possible configuration.
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Figure 2.24: RTAB-Map possible working configuration: camera, lidar, external
source of odometry [19]

There are many possible configurations, which depend on the selected hardware
and the choices of the user.
The idea is that the package should be able to receive or compute odometry
information and receive information about the environment.

• Odometry: by default, the parameter visual_odometry is set to true, which
means that the package will launch a VO node, i.e. it will subscribe to a depth
image, a color image, and a camera info topic, and it will extract localization
data.
However, if an odometry topic has been subscribed, i.e. the parameter
odom_topic has been filled independently from its origin, it is used instead of
the VO node.
There is a third parameter that supersedes the other two.
If odom_frame_id is filled with the name of the frame associated with the
movement of the robot, the odometry data will be extrapolated from the
dynamic transformations between the reference frame and the moving frame.
If this happens, neither VO nor input odometry methods are used. Basically,
the package has been developed in such a way that only one option at the
time can be used, therefore it is always possible to tell the package which
mode the user wants to use.
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• Images: the default configuration dictates that the package uses a RGB-D
image, which is a combination of a color and a depth image, such that each
pixel is represented both as a depth information and a color information.
In the default configuration, the parameter depth is set to true.
This is done by subscribing to the depth image, the color image, and the
camera info topics.
These are the topics that are also needed for the VO node.
If the depth parameter is set to false, the package can be switched to stereo
configuration, by setting to true the parameter stereo.
In this case, it will need to subscribe to a left image, a right image, and camera
info topics.
If both depth and stereo parameters are set to false, the package can use scans.

• Scans: the other method used by RTAB-Map to extract environment infor-
mation is the laser scan.
This information can be subscribed both if it is encapsulated in a laser scan
message or a point cloud message.
In the default configuration, the parameter subscribe_scan and the parameter
subscribe_scan_cloud are set to false.
If one of the two parameters is set to true, the package will use that informa-
tion for the mapping, instead of the depth image one.
Anyway, there are two possible configurations: if the depth parameters are set
to true, RTAB-Map will use the scan for mapping purposes and the images to
perform other SLAM tasks such as loop closures and some optimizations.
On the contrary, if the depth parameters are set to false, there will be no
additional tasks other than the mapping.
In any case, it is needed to specify the scan cloud topic.

Other details about the parameter set-up will be discussed later.
Some tests were performed by using the default configuration of the package, with
the exception that the odometry topic of the T265 tracking camera has been used
instead of VO.
The hardware suite consists of a battery-powered Jetson Nano and the set of T265
and D435 cameras, held by hand and carried around an office environment.
This represents a valid indoor test, as demonstrates the fact that a lot of data sets
available on line for package performances benchmarking are related to offices or
industrial environments. Figure 2.25 shows the final map.
It is possible to see the accuracy of the map even in identifying tight corners and
the definition of the entire map shows that, even if a loss of tracking happened,
the package managed to solve the problem without any issue.
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Figure 2.25: Octomap produced by a real-time test with RTAB-Map. The map
is color coded by height. Rviz has been used for visualization

At [20] it is possible to see the video of the real-time test. The video has been
accelerated at ten times the real velocity.
All the perks described in these last paragraphs make clear that RTAB-Map has
been chosen as the reference package for this project.
Anyway, as said before, this does not mean that the strategy that will be developed
for multi-agent SLAM is suited only for RTAB-Map.
For the sake of simplicity, in the following sections it will be described the RTAB-
Map case, but the package can be easily edited to be adapted to any SLAM package.
Obviously, in the simplest case it’s only a matter of ROS topics remap, in the
hardest the codes should be modified, but the

53



Package Development

2.2 Package creation
This section addresses the creation of the package pcl_handler, that has the
purpose of creating a set of utilities that can be used to perform multi-agent SLAM.
Before entering in the details, it is important to describe the general idea behind
this package.
The idea is to create a system that is able to share and combine data coming from
the agents, using the powerful resources of the server.
The choice to create multiple nodes derives from the fact that this allows a
decoupling of the entire logic, making easier the installation and usage on the
agents. Moreover, the nodes architecture helps the development phase, since it is
possible to localize eventual issues to a certain node.
In order to be able to exchange information along a standard wireless connection, it
is required that data dimension is small enough to guarantee data consistency and
real-time sharing. Therefore a method has been developed to share information
with ROS interface.
The method consists in taking advantage of the fact that RealSense camera provide,
through the ROS wrapper, compressed images, that can be then de-compressed
and used without any problem.
On the server side, it is possible to run more computational demanding tasks, like
the one related to the creation of a map, starting from the map provided by each
agent.
Moreover, the way to compute the map is related to the usage, the combination and
the filtering of point clouds. This kind of architecture brings a lot of advantages,
like the possibility to extend this logic to an indefinite number of agents.
Indeed, these agent shouldn’t necessarily be identical: it is possible to combine
systems made of ground robots and aerial robots, or systems in which the agents
have different sensor suites, or both.
In order to start with this, the first thing to do is to understand how to create a ROS
package from scratch. Then, it will be analyzed the first steps on image computation.
Finally, it will be discussed the data combination and the re-integration in the
SLAM system.

2.2.1 Create a ROS package
The first step in the development of the package is its creation. catkin tools provide
all the necessary commands to create a basic version of a package.
It is possible to create a standalone catkin package as well as creating a package
inside a catkin_workspace. In this case, it will be used the latter one.

54



Package Development

The catkin command create_catkin_pkg enables the user to create a package
folder, with all the needed sub-folders and two important files that are absolutely
necessary to build the package:

• CMakeLists.txt

• package.xml

Once the package has been created, it is needed to specify in the package.xml file
all the dependencies. Fortunately, when the user builds the catkin workspace, all
the libraries are imported and loaded. Indeed, it will automatically load all the
nested dependencies, therefore there is no need to do it manually.
Then, it is needed to edit the CMakeLists.txt file. Some fields should be compiled.

• Required CMake version: the required version of CMake needed. Catkin
requires version 2.8.3 or higher.

• Package Name: name of the package which is specified by the CMake project
function.

• Find Package: which other CMake packages need to be found to build the
project.

• Catkin Package: it is the required macro to specify catkin-specific information
to the build system. This function is called before declaring any target. Here
should be included all the catkin and non-catkin projects that this project
depends on.

• Specify build targets: here should be included all the executable targets and
the library targets

Each time a new library is required for the project, it will be specified in both
these files. Each time a new executable will be created, it will be specified in the
CMakeLists.txt. If this doesn’t happen the catkin make command will not, in
the first case, recognize dependencies or it will not, in the second case, build the
executable.
The libraries used in this project belong in part to ROS libraries, which help to
manage messages and data input/output.
The other libraries will be described in detail when used in the executable files.
Anyway, some common libraries are added, such as Eigen, OpenCV, PCL. The firsts
two are already been described in Section 2.1.4, in conjunction with the installation
of ORB-SLAM2, while the third one is used in many SLAM packages and it is the
Point Cloud Library. It contains a set of functions that enable computing, convert,
rotate, merge, and other operations on point clouds.
In the following sections, the created nodes will be explained.
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2.2.2 Image compression and decompression
The first issue that will be faced in this development is data sharing through a
wireless connection. To keep consistency, it should be assured that, if the connection
is stable, the data can travel from an agent to the server and vice-versa.
This means that whatever is shared with the connection should be small enough to
travel without any issue.
As it will be shown, a lot of the data that the camera can provide are really big,
and not suited for real-time implementation.
The proposed solution to this problem is based on [21]. It consists of the development
of two nodes that can decompress a compressed depth image and reconstruct it
with low losses in the compression phase.
The idea is to enable each agent to send a compressed image with the wireless
network and, once it gets to the server, it is decompressed, reconstructed and then
it can be used in a lot of possible ways. Figure 2.26 shows the data flow.

Figure 2.26: Image processing. Depth images are generated from the camera and
compressed. They are shared via wireless network and then reconstructed.

The study presented in the white-paper concerns the development of such a solution
employing a C++ script, which, even if it is available as a standalone script, still
belongs to the librealsense SDK. In this case, the code has been edited and adapted
to be applied directly to ROS messages.
The D435 depth camera, once launched with ROS, produces a series of topics that
are related to color images, depth images, extrinsic and intrinsic parameters. The
topic list includes also compressed images. For reasons that will be explained in a
bit, it is not possible to directly use these images without some post-processing on
images.
In order to understand how these images are processed, it is needed to start from
the side where images are generated, i.e. the camera side.
The camera always performs depth image compression, but for this compression to
make sense, it is needed a process called colorization.
Depth images are represented as a gray-scale image: it is a 16-bit resolution image.
Instead of using compression techniques directly applied to depth images, it is
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possible to colorize the image. This implies that the image can be then treated
as a 24-bit resolution RGB image. As a consequence, many different compression
methods available in the literature can be used.
Before exploiting the size reduction accomplished with this process, it is necessary
to dig a little further into the colorization. This process can be automatically done
by the camera just by using a filter called colorizer. It is enough to specify the
name of the filter in the corresponding field in the .launch file and it is done.
Indeed, RealSense provides nine different color representations for depth images.
Figure 2.27 illustrates the options.

(a) Jet (b) Classic (c) White to black

(d) Black to white (e) Bio (f) Cold

(g) Warm (h) Pattern (i) Hue

Figure 2.27: RealSense D435 depth image colorization options. Jet is default.
With no colorization active, the default is black to white.

If no colorization filter is active, the depth image can be seen with the black to
white representation. (darkest pixels represent closer objects, white pixels represent
farthest ones). However, if the colorization filter is active, Jet is the default color
space. Anyway, the white-paper suggests using the Hue color space, which is shown
in Figure 2.28.

57



Package Development

Figure 2.28: Hue color space. It has six gradations for R, G, and B, and one of
them is almost always 255, so the image is never too dark

This suggestion is due to the fact that, if the color space is analyzed, it is possible
to see that, in the conversion process from gray-scale to hue, the image doesn’t
become too dark, by guaranteeing a high level of details.
Once all the details about image compression are defined, it is time to discuss the
image reconstruction.
Other than the colorizer filter, other filters can be applied in the post-processing
phase. realsense-ros makes different filters available, and it is sufficient to specify
them in the .launch file, in the filter field to be used. Moreover, it is possible to
use the dynamic reconfigure package to change the settings of these filters from
the default parameters.

• Decimation: filter used to reduce the complexity of the depth scene. It can
be tuned to change the decimation factor. In this case, since the aim is to get
a compressed, high-resolution image, this filter is ignored.

• Spatial: filter used to perform high-quality edge-preserving [22]. Here it is
used with the default settings.

• Temporal: filter used to improve the depth data persistency. If used, when
pixel information is missing, the filter decides if the value should be rectified
with stored data. Not used, since it is may introduce blurring if the scenes
are not static.

• Holes Filling: this filter uses the nearest neighbor to a pixel that is missing
data and rectifies it. Used, with default settings.

Filters parameter are defined as dynamic: ROS discerns nodes parameters between
static and dynamic. Once edited a static parameter, it is necessary to restart the
node to see the changes. Dynamic parameters can be edited at runtime, without
having to restart the node. To do this, the package dynamic_reconfigure is used.
This package contains a set of utilities, like the possibility to list the reconfigurable
nodes, and, for such nodes, the list of the reconfigurable parameters. Indeed, it
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includes the possibility to set a parameter value.
In this case, the important reconfiguration is related to the colorizer filter: as
mentioned before, the default color code is the Jet, therefore it is needed to be
modified. Instead of opening the rtq tool to reconfigure the filter, a .launch file
has been used. This starts a dynamic_reconfigure node.
Another important parameter to take care of is the histogram equalization. If this
parameter is set to true, the colorization is not performed as it is needed, therefore
the image reconstruction will fail. Finally, in Table 2.4 it is shown the size of ROS
.bag files for different image formats.

Bag name Resolution FPS Info
Size

per sec.
(MB)

bag1 640x480 30 default 14.1
bag2 640x480 90 max. fps 43.0
bag3 1280x720 30 max resolution 40.6

bag4 848x480 60 medium res. and fps
Hue colorization 41.5

bag5 848x100 100 flat image and max. fps
Hue colorization 19.9

bag6 640x480 30 compressed Jet 1.3
bag7 640x480 30 compressed Hue 0.92

bag8 640x480 90 compressed and max. fps
Hue colorization 1.83

bag9 1280x720 30 compressed and max. resolution
Hue colorization 0.93

bag10 848x100 100
compressed and max. fps

flat image
Hue colorization

0.797

bag11 848x480 60
compressed

medium res. and fps
Hue colorization

0.866

Table 2.4: ROS bag tests on depth images: the difference of size between regular
and compressed images is substantial

The bag size makes clear that sharing standard images is possible, but it might
not guarantee real-time. Anyway, this solution will need a powerful connection.
On the contrary, the compressed image is from 10 to 40 times smaller than the
uncompressed one.
This implies that real-time Wi-Fi sharing is possible, even with a normal connection.
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Once it is assured that the image transmission is possible and it works, it is time
to discuss the image reception.
To recover the 16-bit resolution depth image from the colorized one, it is necessary
to know some information about the camera and the filter settings.
First of all, the color space number of discrete levels should be known, as well
as the equations that are used to convert the depth values into R, G, and B
values. Moreover, there is another important couple of data that is crucial in both
compression and decompression: the minimum and maximum depth parameters.
When colorization is performed, other than the color code, it is possible to specify
the minimum and maximum distance parameters: the camera adjusts the coloriza-
tion based on these values.
Therefore, it is necessary to know their value and, of course, to use the same ones
in the decompression.
Now that the theoretical principle behind the image transmission has been de-
scribed, it is time to discuss the code.
As said before, the compression side is managed by the camera, so the code will
deal only with the decompression.
To perform this kind of process, it is necessary to know what is the system input
and what is the expected output of the node.
The node based on the white-paper methodology requires the colorized depth image
as input and it outputs a gray-scale image.
To perform this operation with ROS, it is necessary to subscribe to the image topic
(sensor_msgs/CompressedImage) and publish another one.
After the subscription is done, the image must be converted to an OpenCV image,
i.e. to a camera matrix.
The conversion is handled by the library cv_bridge, which is an OpenCV library
for ROS that provides all the functions that allow to convert ROS topics into
OpenCV images, or vice-versa.
This library API has been released both in Python and in C++.
Unfortunately, the functions that can convert compressed images into OpenCV
images have been defined only in Python. This is not good, since a large part of
the already existing code that will be used is written in C++.
For a first solution, two nodes have been developed: the first one for conversion, the
second one for depth map recovery. The idea is to export the part of the code that
exists from C++ to Python, so it is possible, in the final release of the package, to
use only one node. Thus, the first node has been written in Python.
The details are described in the Pseudo-code 1. Before digging into the code
explanation, it is important to remember what a callback function is: a callback is
a function that is passed as an argument to another function, which is expected to
execute the argument at a given time.
This comes in handy both with synchronous and asynchronous cases.
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Thus, it is an excellent way to perform a certain set of instructions each time a
ROS topic is subscribed by the node.

Algorithm 1 Compressed Depth converter node. It subscribes to a Compressed-
Image topic and it publishes a Image topic.
1: procedure Class Definition
2: procedure __init__(self)
3: ó ROS subscriber initialization: CompressedImage
4: ó ROS publisher initialization: Image
5: end procedure
6: procedure callback(self,data)
7: encoding = bgr8
8: cv_image = cv_bridge.compressed_imgmsg_to_cv2(data,"encoding")
9: ó cv_bridge function for conversion. It needs to know the encoding
10: output_image = cv_bridge.cv2_to_imgmsg(cv_image,"rgb8")
11: ó cv_bridge function for conversion to ROS message
12: ó ROS publisher
13: end procedure
14: end procedure
15: procedure main(args)
16: ó Node initialization and cleanup
17: ó Call to class
18: ó Node run (ROS spin)
19: end procedure

Once this script has been completed, it has been possible to start working on the
second script. It consists of a ROS subscriber to the image published by the Python
node, a function that converts RGB images back to depth gray-scale images and
a portion of code that takes the image information and produces a PointCloud2
message. Moreover, there is a subscriber to the CameraInfo topic, which is needed
to get camera intrinsic and extrinsic parameters.
This node’s details are specified in Pseudo-Code 2. This nodes includes the OpenCV,
the PCL_ROS and the Eigen libraries, other than ROS standard libraries and
sensor_msgs libraries.
This second node is not only responsible for the image recovery, but it starts to
implement the data manipulation, which will be the focus of the next section.
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Algorithm 2 Color to Depth converter node. It subscribes to a CompressedImage
topic and it publishes a Image topic.
1: procedure Class Definition(ImageConverter)
2: ó ROS subscriber initialization: CameraInfo
3: ó ROS subscriber initialization: Image
4: ó ROS publisher initialization: PointCloud2
5: width, height
6: min_depth← 0.29
7: ó minimum distance. To avoid depth inversion, it’s offset from 0.3 to 0.29
8: max_depth← 6.0
9: depth_units← 0.0010 ó depth value scale factor, from RealSense viewer
10: hue_value← 0 ó used later in the conversion
11: K, invK
12: ó K is the intrinsic parameter camera matrix, but invK is used
13: procedure info_callback(*CameraInfo msg)
14: ó Intrinsic matrix, height and width are copied in the respective variables
15: end procedure
16: procedure RGBtoD(r,g,b)
17: ó it takes R, G, B inputs and returns the depth value
18: end procedure
19: procedure ColorizedDepthToDepth(color_mat, depth_mat)
20: ó It takes the color image matrix and returns the depth image matrix
21: end procedure
22: procedure Image_callback(*Image msg)
23: cv_ptr ó Subscribed Image declaration
24: cv_ptr = toCvCopy(msg, encoding : rgb8)
25: depth_mat ó depth image matrix initialization
26: ColorizedDepthToDepth(cv_ptr, depth_mat)
27: ó Here it is performed the conversion from color image to depth image
28: ó PointCloud2 message initialization
29: ó PointCloud2 fields filling
30: ó PointCloud2 message header fields filling
31: ó ROS publisher
32: end procedure
33: end procedure
34: procedure main(args)
35: ó Node initialization and cleanup
36: ó Call to class
37: ó Node run (ROS spin)
38: end procedure
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2.2.3 Point cloud manipulation

This section addresses the generation and manipulation of Point Clouds.
Being able to manage these data is important since it allows to perform operations
on both the input and output data of SLAM packages.
Usually, the packages produce two fundamental topics: the localization topic and
the map topic. The first information can be encapsulated in a odom topic, or in
the tf. The second one depends on the mapping sensor and the package structure.
For UAVs, it is recommended to use a 3D map, therefore the possibility to use
occupancy grids is ruled out.
Therefore, it will be possible to use point clouds or Octomaps.
For what concerns the input data, it is possible to take into account point clouds
or laser scans.
Theoretically, RTAB-Map, as well as many packages that can take a point cloud as
input, allows the subscription to these inputs because it is the most appropriate
way to take into account Lidars. Therefore, the point cloud input is originally
thought to be the data acquired from a 3D Lidar.
Anyway, independently of the motivations, it is clear that it is possible to provide
point clouds as inputs, so handling them is important.
The nodes that will have as a common factor the usage of functions that belong to
the libraries Eigen and PCL.
The first thing to do in this analysis is to explain why a point cloud manipulation
is necessary.
One possible reason concerns the size of the clouds. The data transfer, along
with the usage of these data as input for SLAM nodes, are difficult tasks if the
point cloud size is too big: even by providing the system with a large bandwidth
connection and/or with a high-budget onboard computer, there’s no guarantee
that the transfer is feasible and the real-time SLAM can run.
On top of that, there’s one more problem: even on a powerful laptop, it is not
possible to save ROS bags that last more than a few seconds.
The process of saving data in bags is managed by means of a buffer.
If the buffer is full, which happens after a certain amount of time, some data
received from the sensor will be lost.
Depth cameras like the D435 can output a point cloud. To do that, it is sufficient
to set to true the corresponding parameter in the camera .launch file.
Anyway, this cloud is very dense and it contains information about the color too.
If compared with a point cloud without color information, it looks clear that there
is a substantial difference in size. It is enough to imagine that the color information
occupies 24 bits for each point in the cloud.
Indeed, as it will be shown in a bit, removing the color information couldn’t be
enough. The high density is still a substantial problem that should be solved before
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thinking of combining data. Of course, going in the opposite direction, i.e. getting
a much less dense cloud, could be a problem.
If the density is too low, there’s a high risk to lose important environmental infor-
mation, causing a substantial loss of accuracy in the map building.
Moreover, if the density is low, problems related to cloud matching may occur.
As it will be shown later, when the matching of two clouds is attempted, it is
enough that one of them has low-density to cause the impossibility to find a match.
Some tests have been performed in order to quantify the size of the clouds in
different situations. Table 2.5 illustrates the results.

Bag name Cloud type FPS Info
Size

per sec.
(MB)

bag1 RGB 30 camera default 42.4

bag2 reconstructed
no color 30 axis limit 5.5 m 17.8

bag3 reconstructed
no color 30

axis limit 5.5 m
voxel filter

box side 0.1 m
0.135

bag4 reconstructed
no color 30

axis limit 5.5 m
voxel filter

box side 0.05 m
0.45

bag5 reconstructed
no color 30

axis limit 5.5 m
voxel filter

box side 0.03 m
0.975

bag6 reconstructed
no color 30

axis limit 5.5 m
voxel filter

box side 0.01 m
4.0

Table 2.5: ROS bag tests on point clouds: the difference in size between different
configurations is clear.

As highlighted by the collected data, the filtering process is an important part of
the point cloud post-processing.
Indeed, it is needed to enter into details about the filtering.
This analysis will not consider the noise removal filters, but it will be based on the
noiseless assumption.
This category allows to remove the so-called shadow points, i.e. points that belong
to the cloud, but don’t actually exist.
The two types of filtering strategies that will be here considered are the axis-limit

64



Package Development

and the down-sampling.
The first one is a simple filter that just removes from the point cloud all the points
such that the value along one of the axis is higher than a selected threshold.
The D435 is capable of acquiring depth information at a range up to ten meters,
but it is practically very unlikely that objects are detected that far.
However, assuming that objects are detected, there is little information about them
and the depth points that are found in this way have small precision.
Therefore, it is reasonable to set a limit condition to the depth data. There are
different ways to do this. PCL provides both C++ functions and ROS nodelets
that implement this kind of filtering. In the second case the nodelet, that belongs
to the package pcl_ros is called passthrough.
It is enough to edit the launch file, by remapping the input topic to use it. It is
always necessary to remember that, in order to a nodelet work, the published topic
should be subscribed by another node, otherwise it is impossible to visualize it
with any of the tools that ROS provides.
Anyway, this tool has been used and it is helpful in the package design process,
but in this case, it will not be applied in the final release. The reason behind that
can be found in the image recovery node, especially in Pseudo-Code 2.
As specified before, the depth parameters should be the same both on the com-
pression and decompression side. Among these parameters, the maximum and
minimum depth distance is specified.
During the process of image recovery, the points of an image that have a depth
value larger than the maximum distance are discarded.
The consequence is that, if a point cloud is produced starting from the reconstructed
image, it will be automatically limited to this value.
Finally, it is important to discuss the practical meaning of using this filtering
technique: first of all, it reduces the point cloud size and it globally increases its
accuracy; second of all, it avoids taking into account nonexistent points in certain
situations.
The latter can be experienced, for example, in indoor environments: a reflecting
surface, such as a mirror, a television screen, or a window may cause the laser
installed inside the D435 camera to not work properly.
As a consequence, the point cloud will contain points that are very far and in the
real world don’t even exist.
By applying an axis-limit filter it is possible to avoid this kind of problems. The
implications lie on the fact that a certain quantity of data could be lost in this way.
Therefore, it is recommended to perform experiments to find a suitable trade-off
between depth capabilities and unwanted point removal.
Figure 2.29 illustrates the comparison between two point clouds of the same scene.

65



Package Development

(a) No filter Point Cloud

(b) Axis-limit filter Point Cloud

Figure 2.29: Effect of the axis-limit filter on a scene that includes a reflecting
surface. The axis limit is set to 5.5 m

As it is clear, the camera is pointing at a window, that messes up the laser
and introduces a lot of non-existent points. The filter doesn’t solve the problem
completely, but it helps reducing it.
A possible solution consists in the development of a Computer Vision algorithm
that automatically recognizes troublesome surfaces and discards the associated
pixels.
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The second category of filtering that it will be analyzed is the voxel. There are
two ways to reduce the complexity of a depth scene: the first one might be the
decimation process, i.e. applying to an high-resolution image a post-processing
filter that reduce the image resolution. An example of the effect of decimation is
shown in Figure 2.30.

(a) Standard Image (b) Decimation Filter

Figure 2.30: Effect of the decimation filter on a depth colorized image. The
decimation factor is equal to 3.

Even if it’s subtle, it is possible to notice that the decimated image is blurry, and
the detail level of the image gets way worse, implying a loss in the depth scene
information.
Since the data flow that are used for this package requires that the compressed image
and the reconstructed image have the same characteristics, it is not recommended
to use a decimation filter.
It might be possible to use it, but then the reconstruction algorithm should be
modified as well, and it doesn’t seem the best solution or, at least, the most simple
and immediate one.
Therefore, the down-sampling strategy has been chosen. It looks like a valid
choice also because the main drawback of a filtering strategy like this one is not
too relevant: to down-sample an image requires a certain amount of time, that
inevitably slows down the frequency of publication of point cloud topics.
Anyway, since the operations on point clouds are performed entirely on the server,
and they don’t necessarily have to satisfy real-time requirements, the time delay
does not represent an important issue.
Indeed, there’s a reason why the voxel filter introduces this delay: a standard
down-sapling of a point cloud consists is dividing the entire environment in little
boxes of specified dimension and then replacing all the points inside one box with
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its center. The voxel does a slightly different procedure, since it approximates the
points contained in a box with the centroid, which belongs to the original point
cloud.
This procedure avoids to introduce "fake" points and it guarantees to keep an high
level of accuracy.
There’s another concern that regards the usage of the voxel filter, i.e. on which
point cloud to use it.
If it is assumed to face a situation in which two or more point clouds should be
merged, it is possible to apply a filter on both the input point clouds, or it is
possible to filter the resulting merged cloud.
The importance of understanding this concept lies in the goal of the point clouds
managing nodes: the idea is to find a way to combine the depth information coming
from different agents, therefore one reasonable approach might be to combine
together multiple point clouds.
If applied before the merging, the advantage in terms of computational cost that
is obtained is substantial, since the points’ manipulation regards a much smaller
amount of data. The drawback of this solution is related to the number of clouds.
If more clouds are fused, it might happen that in certain situations, when more
cameras are pointed towards the same direction, the merged cloud is very dense
and too detailed.
In this way the advantage of an accurate but at the same time less complex scene
is lost.
A possible solution can be found in the application of the voxel grid filter to the
merged point cloud too. It causes an additional delay to the system, but the map
density will be uniform.
The other way, i.e. to apply only the filter to the merged cloud, is without any
doubt the worst one: until the number of clouds is low the velocity of the merging
and filtering combined might be still acceptable, even if not optimal. If the number
of clouds increases, the computation becomes too heavy and unfeasible.
The size issue is relevant even in the hypothesis of data sharing through a wireless
connection. As already stated before, it is not possible to share a raw point cloud
via Wi-Fi, therefore some kind of computation is necessary.
On top of that, this solutions can introduce some problems in the testing phase,
since it makes hard any data visualization method and it is impossible to save ROS
bags, for the same reasons described before.
Finally, the best solution is to apply a voxel filter for each cloud, and determine the
number of clouds beyond which the merged map needs filtering too. This solution
is acceptable also because the process is decoupled between agent and server: for
size reasons, the single cloud down-sampling must occur on the agent side, while
the merged cloud down-sampling is done on the server side.
Figure 2.31 shows the aspect of the point cloud in different voxel-filter sizes.
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(a) Default camera cloud (b) Reconstructed cloud

(c) Voxel-grid size 0.01 (d) Voxel-grid size 0.03

(e) Voxel-grid size 0.05 (f) Voxel-grid size 0.1

Figure 2.31: Effect of the axis-limit filter on a scene that includes a reflecting
surface. The axis limit is set to 5.5 m
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2.2.4 Point cloud Merging
After all the necessary computations on a single point cloud have been described in
details, it is necessary to address the problem of merging two or more point clouds.
The data flow, shown in Figure 2.32, is thought to allow the server to receive
multiple point clouds and fuse them in a unique map.

Figure 2.32: Data flow for the drone fleet: the server manages the point cloud
computation and cloud merging

There are different ways that are worth exploring for what concerns point clouds
merging and integration in SLAM algorithms.
For sake of simplicity, the following paragraphs will refer to a two clouds case.
Indeed, it is also important to specify that an important assumption has been
made: to know exactly the starting point of each agent.
This origin is helpful because, by knowing the reference frame with respect to which
the odometry of each agent is defined, it is possible to know the agents’ position in
a global reference frame.
As a consequence, the points belonging to the clouds, that are defined in the agent
reference frame, have known coordinates in the global reference frame.
Now, if the initial position is unknown, each agent performs SLAM on its own,
until at least two of them are located in the same area.
To being able to determine the absolute coordinates of the points in the unknown
position case, it is needed to perform a real-time matching check: if two points
extracted from two different agents are a match, the system can apply a multi-agent
SLAM strategy.
Anyway, this solution has its drawbacks: there’s a possibility, depending on the
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fleet’s mission, that the agents don’t get in touch at all.
This is, for example, the case of exploring missions, in which it is necessary to cover
the largest possible area as fast as possible.
Moreover, there’s the issue that a point matching algorithms is indeed time de-
manding and it could corrupt the real-time requirement. Also, it increases a lot
the complexity of the algorithm.
By knowing the coordinates of the origin in the global frame as an a priori infor-
mation, it is possible to perform SLAM without any constraint.
Once the preliminary assumptions are explained, the first way, that has been
analyzed and tested, can be described: it is the one that could guarantee the fastest
system.
It consists of combining each sample of point cloud received from the agents in a
merged cloud, then this cloud is filtered and it is sent to each agent to work as an
input of the SLAM system.
As it has already been told, the RTAB-Map node can subscribe to a PointCloud2
topic, so technically it is possible.
This approach wants to use the multi-agent logic to create an input for the system
that is, basically, a substitute for the lidar input.
Anyway, there are several reasons why this solution doesn’t always work.
The first one lies in the data consistency: it is important that each cloud, once
processed on the server, has the same publication rate and the same clock timer.
Unfortunately, this is not always possible, mainly because the rate depends on the
size of the cloud and the wireless communication time.
Luckily, there’s a simple solution, i.e. using a time synchronizer node.
The package message_filters includes a node that can subscribe to a number of
topics that goes from 2 to 10 and it synchronizes them.
Therefore, it is just a matter of writing a node that subscribes to the received
clouds and re-publish them.
This solution makes the information consistent, but it implies issues if the connec-
tion between an agent and the server is too slow.
Moreover, it implies inevitable data loss and the merged cloud might have a low
publication frequency.
The tests performed with two clouds have shown that all the computation can
bring the merged cloud to a publishing frequency of about 3 Hz.
The second reason why this solution is troublesome lies in the RTAB-Map node:
this algorithm has been written in a way that from, the point cloud input, it expects
a lidar-kind stream, that moves with the odometry data.
The merged cloud is subject to rotations and translations, therefore, in most cases,
no cloud or just a portion of the cloud are processed by the SLAM package.
This happens because RTAB-Map isn’t able to detect this situation and it is
designed to think that the environment is moving, not the robot, therefore the
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moving points won’t be added to the global map.
The last reason that will be presented here is related to the localization data.
In order to bring the points of the cloud in the global reference frame, it is necessary
to apply a homogeneous transformation, for which angles and distances of each
axis are needed.
The only available information is the odometry of the T265 camera.
However, these data represent the position of the robot with respect to the starting
point of the agent, which can be stored in a transformation matrix.
Anyway, the needed transformation is not this one, but its inverse.
The inverse of a matrix, especially one that includes nonlinear functions as the sine
and cosine ones, can lead to a discontinuity that might corrupt the data.
All these reasons make clear that this has not been the chosen path for the final
release of the package.
It is now possible to describe the proposed solution.
A further assumption is made for this solution to make sense: the multi-agent
SLAM logic is though for a multi-session SLAM: the fleet works in two phases: in
the first one all the computational effort is focused on the mapping, while in the
second one is focused on the localization and the map update.
Each agent will send images in real-time to the server, that will produce an "up-
datable" cloud: each time the point cloud of an agent is published, it does not only
contain the actual cloud but the pasted ones too. It is basically a local map related
to a single agent.
Then the algorithm fuses all the local maps together.
Once this is done, it is sufficient to have just a few seconds between the first and the
second SLAM phase in order to load the complete map as an RTAB-Map database
file in each agent SLAM node. When the second phase starts, the first thing that
RTAB-Map does is load the map.
Therefore, the agent will see not only its map but the other agents’ ones too.
The main drawback of this solution is that it is not possible to enforce the SLAM
logic for a single-phase mission.
Now the details on how this procedure works will be described in detail.
Figure 2.33 shows the entire data flow. It is possible to notice the presence of a
package called octomap_server.
This is a package that works on the octomap principle, but it can build incremental
point clouds.
The advantage of using this package, instead of writing a brand-new node lies in
its simplicity: it just need to know the odometry reference frame and the point
cloud topic name and it can produce a map.
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Figure 2.33: Data flow for a two agents system. There is a new block, oc-
tomap_server. It acts on the cloud right before the merging.

In order to use the octomap_server package, it is enough to set-up a .launch file.
Among the possible outputs, there is the possibility to choose an occupancy grid,
an octomap or a point cloud.
The latter has been the choice for this project. Once an incremental cloud is built
for each agent, it is possible to merge the clouds.
The Pseudo Code 3 shows how this is done. The libraries pcl and Eigen have been
used in this code.

Algorithm 3 Point cloud merging code. It subscribes to two point clouds, it
applies transformations and it concatenates them.
1: procedure Class Definition(PointCloudMerge)
2: ó ROS subscriber initialization: PointCloud2 n.1
3: ó ROS subscriber initialization: PointCloud2 n.2
4: ó ROS publisher initialization: PointCloud2
5: cloud1, cloud2, cloud_final ó PointXYZ data structure
6: m1 ó Eigen, Matrix4f data structure
7: ó The following variables are the position and orientation of the second

agent starting point wrt the global frame. The global frame coincides with the
first agent starting point

8: x_static← 0
9: y_static← −0.5 ó (meters)
10: z_static← 0
11: roll_static← 0
12: pitch_static← 0
13: yaw_static← 0
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14: procedure cloud1_callback(*PointCloud2 msg)
15: procedure fromROSmsg(*msg, cloud1)
16: end procedure
17: ó pcl library function: converts PointCloud2 message in pclXYZ format
18: cloud_final.header.frame_id← msg− > header.frame_id
19: cloud_final.header.seq ← msg− > header.seq
20: cloud_final.header.stamp← msg− > header.stamp
21: end procedure
22: procedure cloud2_callback(*PointCloud2 msg)
23: procedure fromROSmsg(*msg, cloud2)
24: end procedure
25: end procedure
26: end procedure
27: procedure main(args)
28: ó Node initialization and cleanup
29: ó Call to class
30: ó Node run (ROS spin) ó cloud1 and cloud2 subscriber ó cloud_final

publisher
31: transformed_cloud
32: concatenated_cloud
33: ms← Identitymatrix
34: ó Eigen, Matrix4f structure ó Static transform from reference frame n.2 to

reference frame n.1
35: procedure transformPointCloud(cloud2,transformed_cloud,ms)
36: end procedure
37: concatenated_cloud = cloud1
38: concatenated_cloud += transformed_cloud
39: ó cloud_final publish
40: end procedure

The obtained solution starts from the images and it produces the fused point cloud.
This is the final obtained map. The inclusion on the SLAM package RTAB-Map, as
discussed before, happens between two phases. Once the map has built and stored
in a PointCloud2 message, it is enough to run instantaneously a RTAB-Map node to
convert it in a database file. From that moment, it is possible to use the produced
map. Anyway, as it will be clarified in the next chapter, the user must take care of
the fact that a minimum density is required for the point cloud, otherwise during
the two phases, it might happen that the package can’t find matches between the
database map and the new data.
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Data analysis and
Simulation results

In this chapter, the results of the package implementation will be analyzed and
discussed, by highlighting the perks and the drawbacks of the implemented solution.
Finally, a series of possible future developments will be presented.

3.1 The localization problem

3.1.1 Results

As shown in 2.1.3, it is possible to insert in the SLAM for each drone a sensor
fusion strategy, which can fuse odometry and inertial data.
The mathematical relevance of the Kalman Filter is helpful in the operation and,
among the open-source solutions, it still looks like the best possible option, since it
provides an excellent balance between set-up and usage complexity and efficiency.
Some tests have shown that the possibility of enhancing the VIO performances is,
actually, possible. Figure 3.1 shows an example in which an EKF improves the
localization process.
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(a) X-Y plane (b) 3D representation

Figure 3.1: Example of situation in which the sensor fusion is effective in improving
the localization process.

Anyway, the tests have only shown the effects of the fusion on two sources of
localization data that are, by themselves, already reliable.
Even in this case, it is not always guaranteed that the sensor fusion package is
worth using. It requires the presence of other sensors, which in the drone situation
means increased weight and volume.
On top of this, there’s the computational effort issue: even if sensor fusion packages
are not too demanding, the onboard computer must guarantee the necessary power
to run independent SLAM running along with all the features needed to use the
sensor suite and allowing the drone to fly.
Finally, there’s the issue that the employed package needs a lot of tuning and it
doesn’t always guarantee good performances.

(a) X-Y plane (b) 3D representation

Figure 3.2: Example of a situation in which the sensor fusion is not effective, and
it makes things worse.
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3.1.2 Future Developments

The presence of a sensor fusion package can improve both the accuracy and the
reliability of the localization system.
The investigation of this kind of solution is indeed important, and it should be
done starting from the package robot_localization and the sensor suite.
The latter opens to a lot of possibilities, like usage of multiple IMUs systems, or
usage of supplementary localization devices.
Another possibility might be fusing the localization output of a SLAM or VIO
package with another localization source, to improve the information as much as
possible.
The package exploration, however, might be as helpful, since a good tuning might
guarantee a certain consistency among the results and make the filter work properly.
All these developments could be summarized in the search of a trade-off between
performances, computational effort, weight and volume, cost.

3.2 The Single-agent SLAM problem

3.2.1 Results

The proposed solution shows that, at the state-of-the-art, RTAB-Map is still one of
the most reliable systems for mobile robot solutions that don’t depend on ground
stations for heavy operations.
Indeed, the localization part is accurate enough to use the data for navigation
purposes.
Finally, there’s the important feature of the map building: if compared with many
SLAM packages, the map produced by RTAB-Map is not only easier to read and
analyze thanks to the octomap tools, but also very detailed. Figure 3.3 shows an
example of exploration of an office environment made of three rooms. It is easy to
see how well-detailed is the environment and the objects that are part of it.
The map has been represented in rviz with an height limitation, since the presence
of the ceilings prevents from a clear view.
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(a) Room n.1 (b) Room n.1

(c) Room n.2 (d) Room n.2

(e) Room n.3 (f) Room n.3

Figure 3.3: Example of exploration of an office environment with RTAB-Map.
The octomap is represented with the axis-color code.
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3.2.2 Future development

The system uses RTAB-Map in a configuration in which it is used the tracking
information of the T265 as an odometry topic and the depth and color image of
the D435 camera.
For starters, there’s the possibility to consider a system that still employs RTAB-
Map, but it uses a VIO algorithm instead of the T265 camera.
This kind of solution is not too hard in the implementation, since RTAB-Map is
easily configurable with many famous VIO packages, and once installed, a single
.launch file is enough to run the entire SLAM system.
Other than RTAB-Map, there’s the possibility to use different SLAM and VIO
packages: as mentioned in Section 1.2.2, there are some packages that can run on
onboard computers without the usage of a ground station.
Therefore, it is possible to test the SLAM performances on a single agent with a
different SLAM approach.

3.3 The Mutli-agent problem

3.3.1 Results

The proposed solution enforces the capability of the system to map an environment
with a fleet of drones. The system guarantees the independence of each agent
SLAM process, but at the same time, it guarantees the possibility to fuse data
coming from different drones.
The great advantage of this solution consists in its portability, i.e. the possibility
to use a multi-agent logic even on low-budget embedded computers.
Moreover, it is important to remember that this solution does not depend on
RTAB-Map, but it is easily editable in order to adapt to another package.
The following paragraphs will show the capability of the system of point cloud
merging.
The tests illustrated in Figures 3.5,3.6, and 3.7 show the evolution of the output of
a single point cloud, as the output of the octomap_server package.
They are performed in an office environment, where there are some desks and
some pieces of furniture. Figure 3.4 represents a sketch map of the environment,
other than the starting point of two agents, represented by a blue and red dot,
accordingly to the color of the respective clouds.
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Figure 3.4: Sketch diagram of the office environment. Blue and red dots represent
the starting point of the two involved agents.
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(a) Stage 1

(b) Stage 2

(c) Stage 3

(d) Stage 4

Figure 3.5: Example of environment exploration for a multi-agent system: the
red cloud is the first agent map
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(a) Stage 1

(b) Stage 2

Figure 3.6: Example of environment exploration for a multi-agent system: the
blue cloud is the second agent map.

82



Data analysis and Simulation results

(a) Stage 1

(b) Stage 2

(c) Stage 3

(d) Stage 4

Figure 3.7: Example of environment exploration for a multi-agent system: the
green cloud is the server cloud.
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The results show that the map merging is effective and the global map is accurate.
As it will be shown soon, RTAB-Map can use this map as a database file and it
can use it properly.
Figure 3.8 illustrates the "wake-up" phase of RTAB-Map, by showing that the load
is possible and it works.

(a) Starting ROS bag

(b) Starting ROS bag

Figure 3.8: RTAB-Map "wake-up" phase: the packages takes less than three
seconds to pre-load the map
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Of course, it is important to specify that the package displays an error if the cloud
is not dense enough: a matching between the real-time data and the pre-loaded
ones is possible only if the density is sufficiently high, otherwise, the loaded map
will be discarded because it is not consistent with the actual data.
Finally, Figure 3.9 illustrates the octomap version of the pre-loaded map.

Figure 3.9: RTAB-Map loads the octomap version of the merged map stored in
the database file. This is the loaded map.
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3.3.2 Future Developments
The advantage of this system consists in its simplicity and in the fact that it does
not require particularly expensive hardware components, which means that the
computational effort is quite limited.
Anyway, this happens because the described approach does not include a lot of the
features typical of SLAM systems.
First of all, there is the real-time problem: the described system works well in a
two-phase mission, but it cannot be properly applied in a single-phase one.
One of the possible developments should be the definition of a solution that guar-
antees real-time usage: the ideal multi-agent SLAM package should be able to take
advantage of the presence of many agents to enhance the performances of each
single one of them.
Realizing a system like this means that the single-agent package should be properly
modified to combine local and global information.
As explained before, many SLAM packages present a series of executables and
libraries in a very nested structure, therefore it is no easy task to apply changes.
The easiest way might be to start from an existing visual odometry approach and
then proceed by developing most of the package features.
Anyway, this possibility opens up to many other features typical of SLAM packages:
to improve both phases it is important to apply loop closure, bundle adjustments,
map correction, and other tools appropriately.
The presented system can fuse two or more maps, but it still lacks a correction
phase, which could improve the performances.
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Conclusions

The Multi-agent SLAM problem is becoming more and more actual, especially due
to the progress on autonomous vehicles, ground robots, and drones.
Some fields in which groups of robots are employed already exist, and new ones
are emerging: many systems are based on the idea of a swarm that can interact
and shares information without any human interaction. Localization and mapping
data are perfect examples of shareable information.
Even if solutions to SLAM for a single-vehicle exist, the research is keeping going
further, by trying to improve the capabilities of already existent approaches or
trying new ones. It appears that the common factor in all the state-of-the-art
models is the vision approach: the usage of advanced cameras allows to get small,
but performing systems.
Thus, the aim of this kind of research is, basically, to use the sensor suite at
its fullest in order to allow a robot to navigate by itself, even in an unknown
environment.
The multi-agent problem is different both in the research and in the aim for many
reasons: for starters, there’s the fact that the higher is the number of robots that
the user wants to include in a mission, the higher is the overall price, since, other
than the cost of the single agent, it must include a strong ground control station
and a powerful communication interface.
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Conclusions

The objective of this thesis is to explore the available solutions for the SLAM
problem on a single agent, to pick the best one in terms of a trade-off between
performances and computational effort, and to use it as a starting point for a
multi-agent system that can enhance the classic SLAM performances, by keeping
the overall system simple and cheap.
The tests have shown that a low-budget embedded computer, alongside a state-of-
the-art visual and inertial sensor suite, can provide satisfying results.
The presented solution has great possibilities to be adapted to any kind of fleet,
even one that combines ground robots and aerial robots.
Moreover, it can be used for systems in which not all the agents have the same
hardware structure.
Another perk lies in the fact that there’s no permanent link to a certain SLAM
package, but there’s the possibility to adapt the package to many different solutions.
Anyway, it is important to specify that each agent is fully capable of operating by
itself: this means that if the connection with the control ground station is lost, the
agent can face the SLAM problem by itself.
The tests have shown that data sharing is possible even with tight-bandwidth
connection if data are manipulated properly: image compression and reconstruction
is an important feature in this context, and it has shown great results.
Anyway, there still are a lot of issues to solve, especially related to the fact that
the package developed in this project cannot guarantee multi-agent SLAM perfor-
mances in a single-phase mission.
Indeed, the map merging has proven to work properly, but some advanced map
updates should be evaluated, along with the fact that the package can work only if
the initial position of each agent is known with respect to a global reference frame.
Finally, it can be observed that the possibility of creating a multi-agent SLAM
system with this logic is a concrete possibility and it could open up to a reliable
system for many kinds of missions, from indoor tasks as in logistics to outdoor
missions, related both to exploration and security.
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