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Abstract

The COVID-19 pandemic is having a large social and economic impact worldwide. At the present

stage, in this project, I will use publicly available data to assess strategies undertaken by gov-

ernments to mitigate impacts while preserving the health of the population. This paper consists

of two parts connected with a current state of data taken from open public sources. In the first

part, I implement D models to the real data to forecast a future state of death numbers in Spain.

In the second part, I use Oxford COVID-19 Government Response Tracker with the real data to

evaluate the effects of different policies on death numbers and daily new cases. I will show that

the most effective policies to mitigate the effects of COVID-19 will be restrictions on gathering

policy, facial mask protection policy and stay at home policy. Overall, this paper suggests that

the government anti-pandemic responses have substantial effects on preserving the health of the

population.
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Resumen

La pandemia de COVID-19 está teniendo un gran impacto social y económico en todo el mun-

do. En este proyecto, utilizaré los datos disponibles públicamente para evaluar las estrategias

emprendidas por gobiernos para mitigar los impactos y preservar la salud de la población. Es-

te documento consta de dos partes relacionadas con el estado actual de los datos tomados de

fuentes públicas abiertas. En la primera parte, implemento �D modelos� a los datos reales

para evaluar un estado futuro de numeros de muertes en España. En la segunda parte, uso

�Oxford COVID-19 Government Response Tracker� con los datos reales para evaluar los efec-

tos de diferentes políticas en las cifras de muertes y los nuevos casos diarios. Demostraré que

las políticas más efectivas para mitigar los efectos del COVID-19 serán las restricciones en la

política de recolección, la política de protección de mascarillas y la política de confinamiento en

casa. En general, este documento sugiere que las respuestas gubernamentales antipandémicas

tienen efectos sustanciales en la preservación de la salud de la población.
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Sommario

La pandemia COVID-19 sta avendo un grande impatto sociale ed economico in tutto il mondo.

Nella fase attuale, in questo progetto, utilizzero i dati disponibili al pubblico per valutare le

strategie intraprese da governi per mitigare gli impatti preservando la salute della popolazione.

Questo documento si compone di due parti connesse con lo stato attuale dei dati presi da fonti

pubbliche aperte. Nella prima parte, implemento�modelli D� ai dati reali per prevedere uno

stato futuro dei numeri di morte in Spagna. Nella seconda parte, utilizzo �Oxford COVID-19

Government Response Tracker� con i dati reali per valutare gli effetti delle diverse politiche sui

numeri di morte e sui nuovi casi quotidiani. Mostrero che le politiche più efficaci per mitigare gli

effetti di COVID-19 saranno la politica sulla restrizioni di riunioni, la politica di protezione con

la maschera facciale e la politica del confinamento a casa. In generale, questo documento sug-

gerisce che le risposte anti-pandemiche del governo hanno effetti sostanziali sulla conservazione

della salute della popolazione.
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CHAPTER1
Introduction. Objectives and scope of

thesis.

The year 2020 was full of historical events, but the name of main event goes to a rapid COVID-

19 pandemic outburst and spread. This pandemic has gotten a huge media attention not only

for its population health consequences, but also for its economic and social effects. In 2020, the

population of Earth learned what are "social distancing", "confinement", a remote work, "Zoom

calls".

At the same time, tremendous economic costs of pandemic are going to be much worse since

second World War, even not mentioning over 80 million infected patients and more than one

million people died because of this virus and/or its consequences worldwide.

As it is said that a history fluctuates over time, the population of Earth had a very similar ex-

perience almost 100 years ago - 1918-1920 "Spanish flu" (influenza) pandemic. That pandemic

allegedly infected around 500 million of population, almost one third of the population at that

time, leading to 20 to 50 million of deaths according to different estimations. As an additional

information, Spain involved in name of pandemic for its free media permission around 1918

year1, where the news about the disease appeared first.

This study [Hatchett et al., 2020] shows that public health interventions and government re-

strictions that were implemented properly and at the right moment reduced the death toll of

"Spanish flu" pandemic. The authors show in an example of Philadelphia and St. Louis that

the public health responses to the pandemic in Philadelphia and St. Louis differed very much -

St.Louis immediately implemented strong restrictions; in Philadelphia, in the other hand, it was
1[Barry, John M (20 January 2004). "The site of origin of the 1918 influenza pandemic and its public health

implications". Journal of Transnational Medicine. 2 (1): 3. doi:10.1186/1479-5876-2-3. ISSN 1479-5876.]
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CHAPTER 1. INTRODUCTION. OBJECTIVES AND SCOPE OF THESIS.

not even canceled a big parade. As a result, death rates differed in a consequential manner, with

Philadelphia having one of the highest rates in the U.S., and St. Louis one of the lowest rates of

death from pandemic.

Governments around the world have learned their "lessons", however, with different levels of an

enthusiasm. To lower all COVID-19 infections and deaths in the pandemic, they have responded

with a number of interventions. Among others, non-pharmaceutical interventions (including

border restrictions,a quarantine and an isolation, social distancing, and changes in population

behavior - less use of public transport, remote work and study, less public gatherings) were

associated with reduced transmission of COVID-19.

Another curious aspect of studies about ongoing pandemic can be the possibility of "predicting"

the evolution of pandemic, its consequences, future death numbers to prepare health care system

against sudden spikes or overcrowds. In the work of [Amaro et al., 2020], the authors simplified

classical SIR model up to D and D′ models to match one and half beginning months of COVID-

19 death numbers to their semi-empirical models. They have demonstrated that even small

amount of data can be used to model a simple epidemiological forecast.

Taking into account all previous considerations, in this thesis I am going to pursue two objectives

that are related to each other with a current state of data that was chosen as a frontier of this

studies - first 300 days of COVID-19 pandemic spread in Spain.

1. I am going to implement official death numbers from COVID-19 in Spain to extend D

models for 10 month time interval and forecast future death numbers for next two months

( until 31.12.2020) with simple semi-empirical methods;

2. Then, I study the relation between Spanish government anti-coronavirus responses in

terms of containment and closure, economic, health system measures with respect to daily

death cases and daily new cases numbers for ten months of time period of 2020.

All the official data is taken from official public sources and their respective repositories are

provided. Moreover, all the R statistic programming language codes necessary to create models

and analysis will be given in the GitHub repository form: https://github.com/RustamBozorov/

Master-thesis.git. The other chapters of this thesis work are developed as following:

in chapter 2, I will provide a literature review on early studies of COVID-19 pandemic, I

will list all possible non medical actions that a population can implement against the virus

spread;

in chapter 3, at first I will briefly cite the D models from the work [Amaro et al., 2020],

with more mathematical explanation in A.2, then I will examine the effects of all semi-

Rustam BOZOROV | 2
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CHAPTER 1. INTRODUCTION. OBJECTIVES AND SCOPE OF THESIS.

empirical coefficients that I am going to use in D models, with respective graphs provided

through the examination and explanation;

in chapter 4, I use previous chapter models to find coefficients for D models for Spain in

300 days period for death cases, and I will predict using these models next two months

death numbers with two different models separately. In the end of chapter, I try to compare

those predictions between themselves and against the real data obtained through official

sources to qualify the accuracy of predictions done by simple epidemiological models;

in chapter 5, I will introduce all types of government anti-pandemic responses in accor-

dance to the Universal Government Response Tracker, which is created and is being con-

tinued to develop by University of Oxford;

in chapter 6, I will provide data, its sources and methodology to achieve our second ob-

jective - the study of relation between death numbers and new cases numbers in Spain for

ten months of 2020 and Spanish anti-pandemic policies. I will implement a generalized

regression analysis using R program (source code will also be provided);

in chapter 7, I will provide with results of analysis for different models with discussions on

each of them in more detail;

in chapter 8, I will conclude the thesis.

Rustam BOZOROV | 3



CHAPTER2
Earlier studies of the COVID-19 effects on

an economy and social life

2.1. Social distancing

If there was a quiz asking about the most used words for 2020, "social distancing" would be in

one of the highest places for sure. Everywhere from media to public announcements we heard

this phrase when we were talking about COVID-19 pandemic.

Surprisingly, this term is not newly created. This term takes its roots from XIX centuries memoirs

about Napoleon and was defined as it is now as early as the beginning of the XX century in the

work of a sociologist Emory Bogardus, who studied this phenomenon in the University of South

Carolina.

However, it was used in a meaning of a social distancing between classes. Only after the AIDS

spread and especially after the first SARS epidemic in 2003-2004, the Center for Control Disease

(CDC of USA) started to use this term in the sense of counter action to an air-borne disease.

Only a very huge spread of pandemic and social network connections made the term "social

distancing" available for the entire world.

Social distancing was the most effective preventive action that people could take against the

spread of the disease and it will still be the most useful and easy action, taking into account

that the vaccination against COVID-19 is not widespread yet, the vaccination started only in

late December,2020 in UK, USA and European Union. Russian Federation and People’s Republic

of China are also have started vaccination a population with their own vaccines, which are not

officially confirmed by the World Health Organization yet.
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CHAPTER 2. EARLIER STUDIES OF THE COVID-19 EFFECTS ON AN ECONOMY AND SOCIAL LIFE

Social distancing slows down the spread - "Flattens the Curve" - and saves thousands of lives

(and of course, it has saved already), however it comes with a huge cost and pressure on an

economy.

From the early days of the pandemic spread, the governments all around the world imposed

differently scaled, yet however unseen actions to restrict the spread of the virus: from total

lockdowns to local movement restrictions depending on the severity of the spread. Schools,

universities, and daycare centers have temporarily ceased operations, playgrounds and other

public spaces have been sealed off, cultural events have been canceled, tourist attractions have

closed, and national sports leagues have suspended or canceled their seasons. Further, federal

governments have imposed travel restrictions to reduce external exposure to the virus.

In the work of [Thunström et al., 2020], the authors studied the effect of the social distancing

on economy, more specifically in the USA, by taking into account the difference of the numbers

of two scenarios: without and with social distancing rule implications. Their studies showed

the difference of total 100 million less infected individuals with the social distancing measures

which resulted in more than $ 5.16 trillion net savings just in the USA. At the same time, after

almost six months of time, we should be more critical to results, especially taking into account

the limitations of the previous study regarding distributional effects to the groups in the different

layers of the society. With saying net savings in the overall systems, authors acknowledged that

the most vulnerable classes would be impacted the most by this pandemic.

In the alternative approach of studying the effects of social distancing - [Greenstone and Nigam,

2020],the authors from the University of Chicago tried to examine monetary effects of a social

distancing. As authors indicated they examined two options:

A mitigation scenario - combining a home isolation of suspected cases,a home quarantine

of those living in the same household as suspect cases, and social distancing of the elderly

and others at most risk of severe diseases that lasts for 3-4 months;

No policy scenario.

They also implemented following assumptions:

USA cannot stop the spread of virus entirely in this year(2020) - it turned out to be true;

No reasonable vaccine will be developed - a vaccine is developed, but it is not widespread

in 2020;

"Overflow" deaths will appear (deaths occurring because of overcrowded hospitals, inten-

sive care units and lack of personal protection equipment etc.).

Rustam BOZOROV | 5
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They have concluded that more than 630,000 lives could be saved from "overflow" deaths and

so, $ 8 trillion annually can be saved as well. Even if a robustness check would lead a bit lower

amount of money, this study showed that how effective a social distancing could be in terms of

monetary savings.

2.2. Non-pharmaceutical interventions (NPI)

In broader terms, social distancing is only one of the most implemented NPIs - non-pharmaceutical

interventions - where individuals and society as a whole can slow down the spread of a disease

without any help of chemical medicine and/or vaccine.

In the report by [Ferguson et al., 2020], a large number of authors studied the effects of different

non-pharmaceutical interventions that governments around the world can implement against

the disease. They highlighted several types of NPIs:

1. CI - (Case isolation in the home)- Symptomatic cases stay at home for 7 days, reducing

non-household contacts by 75% for this period. Household contacts remain unchanged.

Assume 70% of household comply with the policy;

2. HQ - (Voluntary home quarantine) - Following identification of a symptomatic case in the

household, all household members remain at home for 14 days. Household contact rates

double during this quarantine period, contacts in the community reduce by 75%. Assume

50% of household comply with the policy;

3. SDO - (Social distancing of those over 70 years of age) - Reduce contacts by 50% in work-

places, increase household contacts by 25% and reduce other contacts by 75%. Assume

75% compliance with policy;

4. SD - (Social distancing of entire population) - All households reduce contacts outside house-

hold, school or workplace by 75%. School contact rates unchanged, workplace contact

rates reduced by 25%. Household contact rates assumed to increase by 25%;

5. PC - (Closure of schools and universities) - A closure of all schools, 25% of universities

remain open. Household contact rates for student families increase by 50% during closure.

Contacts in the community increase by 25% during closure.

From the today’s perspective, we can understand that different countries implemented different

types of NPIs. If we take Spain as an example, in the nine months of time line, the government

implemented a mix of interventions depending on the severity of a situation.

Also, the authors listed two types of responses to the pandemic:
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Suppression - reducing new case numbers, eventually eliminating human-to-human trans-

mission;

Mitigation - focusing on slowing down but not necessarily stopping epidemic spread – re-

ducing peak health care demand while protecting those who most at risk of severe disease

from an infection. In this type of response, population(namely, herd) immunity builds up

through the epidemic, leading to an eventual rapid decline in case numbers and transmis-

sion dropping to low levels. (example: Swedish experiment)

The authors pointed out risks for both responses, stating that a suppression brings with itself

enormous social and economic costs which may themselves have a significant impact on health

and well-being of the population in the short and longer term. Mitigation will never be able to

completely protect those at risk from severe disease or death and the resulting mortality may

therefore still be high (which was exactly the case with Sweden).

Their result showed that only implementing population-wide measures would help to achieve

the largest impact, any half-implementing will not provide any substantial change. As they

quote:

Once interventions are relaxed from September on-wards(which occurred more

or less even before - July-August), infections begin to rise, resulting in a predicted

peak epidemic later in the year. The more successful a strategy is at temporary

suppression, the larger the later epidemic is predicted to be in the absence of vacci-

nation, due to lesser build-up of herd immunity.

Now, at the end of year 2020, their predictions mostly realized with a little exceptions in the ac-

tual numbers, but behavioral changes and governmental implementations, as well as, predicted

"the second wave" of pandemic is happening as predicted.

2.3. Partial lockdown and other governmental responses

In the report by [di Porto et al., 2020], authors investigated the effects of partial lockdown in

a social and economical life of Italy for the period beginning from 22nd March. They tried

to estimate the cost of allowing a partial continuation of the economic activity on health care

system and overall mortality. Their work included the suggestions from the article [Goodman-

Bacon and Marcus, 2020], which shows the methodology of using difference-in-differences to

clearly identify causal effects of coronavirus pandemic.

They have used, as a main measure of the presence of essential workers in the provinces of Italy,

the density of essential workers, measured as the number of workers in essential sectors per

Rustam BOZOROV | 7



CHAPTER 2. EARLIER STUDIES OF THE COVID-19 EFFECTS ON AN ECONOMY AND SOCIAL LIFE

built square kilometers, which accounts for both the local numbers of these workers and their

concentration. The authors have concluded that a stronger presence of essential activities led to

a higher number of new contagions: an additional 100 workers per square kilometer in essential

sectors( essential jobs that were allowed to continue functioning also in lockdown times) lead

to an about 0.27 additional daily cases.

In the article by [Dergiades et al., 2020], the authors introduced the notion of "’earlier’ gov-

ernment response" along with strength of the that particular policy. They have shown that the

greater a strength of government interventions at an early stage, the more effective they are in

slowing down or reversing the growth rate of deaths. They have concluded that government

decisiveness in taking early action is very crucial to control the virus spread.

2.4. Twelve lessons learned from novel coronavirus pandemic

In the article by authors [Forman et al., 2020], the authors tried to look into after life of coro-

navirus pandemic in terms of future pandemic responses. They have looked into data from

different countries in the world, comparing them with government and societal actions and

came up with twelve aspects of actions, which should be implemented more in the future to

reduce the tremendous economic and social costs of pandemic. Namely, they are:

1. Transparency;

2. Decisive leadership;

3. Unified responses to pandemics rather than diverse disconnected strategies;

4. Effective communication at the highest political levels;

5. Regional blocs should assume a greater health care role;

6. Global solidarity;

7. The World Health Organization should focus on its activities, expand its remit and enhance

its operational capacity;

8. Existing global insurance institutions and policies require significant changes and improve-

ments;

9. Develop vaccines and treatments together;

10. Responsiveness and resilience of health systems should be tested and make changes and

improvements based on the results;

11. Accountability is critical for building trust and for sound, inclusive decision making;

12. Opportunities to introduce newest technologies to fight against the pandemics.

And now it has become clear that this pandemic will contribute a lot in future changes of all

health care system of countries around the world.
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CHAPTER3
SIR and D models

3.1. Basic SIR and D models

Every easily spreading, a contagious epidemic can be quite challenging to model due to the lack

of the information, a huge number of unknowns that can affect the dynamics of epidemic and

the errors of estimations of data. As a good way to base the modeling will be so-called "mass-

action" principle. Mass - action principle by its own is used in a wide range of sciences and

studies, however, in the epidemiological (disease) models, assuming the "law of mass action"

means assuming that individuals are homogeneously mixed and every individual is about as

likely to interact with every other individual. This is the most basic assumption that leads to SIR

model.

SIR model, or [Susceptible, Infectious, or Recovered] model - mathematical modeling that was

introduced in the famous work of [Kermack and McKendrick., 1927], based on the assumption of

mass-action and dividing the entire population(which could potentially get infected by disease)

into three categories:

Susceptible - at time 0, all the population is in that category;

Infectious - at any given time, it represents the number of population who get the disease;

Recovered(Death) - shows the number of the recovered patients(or the worst case, the

number of death).

As described in [Amaro et al., 2020], the authors based their assumptions on the classic work of

[Kermack and McKendrick., 1927], they got following equations as beginning conditions:

dS

dt
= −λSI (3.1)
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dI

dt
= λSI − βI (3.2)

dR

dt
= βI (3.3)

where

λ > 0 - transmission or spreading rate. The higher the λ, the faster the increase of I(t)

and faster the decrease of susceptible individuals (minus sign in the equation A.3). λ also

called "Flattening The Curve" coefficient - because the smaller it is, the smaller the overall

number of infectious individuals;

β > 0 - removal rate. The rate in which infectious individuals are recovering.

For the D model(D stands here for death), the main assumption will be

R(t) = 0

and system of equations became as

dI

dt
= λ(N − I)I (3.4)

This is the first degree ordinary differential equation, which as shown in the Appendix (A.1),

can be solved in he time interval [0; t] and putting I(0) = I0. Solving this equation gives

I(t) =
I0 · eNλ(t−t0)

1− I0
N

+
I0
N
eNλ(t−t0)

(3.5)

Then, authors used time lag notion to get D(t) function out of equation 3.5 (all the meanings

of the coefficients and authors other contributions are given in a simplified and shorter form in

Appendix A.2):

D(t) = µI(t− τ)

Final simplifications gave the basic D model formula:

D(t) =
ae(t−t0)/b

1 + ce(t−t0)/b
(3.6)

The most useful aspect of the equation (3.6) is the possibility of choosing empirically the co-

efficients a, b, c to replicate the actual data. Other coefficients that were introduced until the

reaching equation (3.6) are embedded in the defining formulas of a, b, c, so we do not really

need to know beforehand all the conditions of pandemic initiation and development in depth.

If we want to define meanings of the latest coefficients, we can show that

a - theoretical value of death at time(day) t = 0; can be also interpreted as expected value

of deaths that day;
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b -characteristic evolution time, number of days to the number of deaths increase expo-

nentially;

c - inverse death factor. The lesser it is, the more death numbers asymptotically the func-

tion will reach eventually.

a, b and c correspond to the an average values over time, they are quite sensitive to external

effects of pandemic evolution. The stochastic processes will easily change their values over

time.

My analysis of D models will start from an equation 3.6. First, I will examine the coefficients

effect on D function and later on elaborate a similar analysis for D′ and Dn models.

3.2. Dependence of D model from its coefficients

The actual effects of all coefficients in the equation

D(t) =
ae(t−t0)/b

1 + ce(t−t0)/b

can be examined by changing one coefficient at a time and comparing to default values, assum-

ing default values are a = 1, b = 1, c = 1, t0 = 0

In figure 3.1 we can see that D(t) increases very rapidly, then goes almost horizontally, reaching

asymptotically the value a/c. If the value of a is increaed 10 times, the graph will look like in

the figure 3.2. a will increase the value of a function, as it could be interpreted expected value

of death.

If we compare default value graph with the value b = 5 line, we can notice that a growth of the

line slowed down as in the figure 3.3. The reason behind shifting can be explained by the fact

that the coefficient b represents the number of days to increase exponentially. The higher the

value of b, the more days are needed to grow rapidly to reach maximum amounts.

If the value c = 0.1 is set (ten times lesser), the change resembles the change of a = 10, as it

is shown in the figure 3.4. However, the effect in the beginning is different: the grow of the

function not as rapid as in the first case. Eventually, the function goes to the same limits as in

the previous case.

Setting t0 6= 0 shifts the graph to the right,as in the figure 3.5, meaning that start of the spread

has some time lag as compared to a default case.
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0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40
t

D
(t)

'Default' D function with a=1, b=1, c=1 at time zero

Figure 3.1: D(t) graph with default values
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Figure 3.2: D(t) graph with a value a = 10 as compared to default graph
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Figure 3.3: D(t) graph with b = 5
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Figure 3.4: D(t) graph with the change of value c = 0.1
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Figure 3.5: D(t) graph with different start time

3.3. D′ model

After obtaining D model formulation, our model can be expanded further. For this reason, as it

was suggested in [Amaro et al., 2020], I can introduce D′ model by taking the first derivative of

the D model:

D′(t) =

(
ae(t−t0)/b

1 + ce(t−t0)/b

)′
= a ·

(
1
be

(t−t0)/b(1 + ce(t−t0)/b)− e(t−t0)/b( cbe
(t−t0)/b)(

1 + ce(t−t0)/b
)2

)
=

=
a
b ·
(
e(t−t0)/b + c · e2(t−t0)/b − c · e2(t−t0)/b

)(
1 + ce(t−t0)/b

)2 =
a
b · e

(t−t0)/b(
1 + ce(t−t0)/b

)2 =

=
a · e(t−t0)/b

b ·
(
1 + ce(t−t0)/b

)2 (3.7)

D′(t) =
a · e(t−t0)/b

b ·
(
1 + c · e(t−t0)/b

)2 (3.8)

As it was said earlier, D model allows a semi-empirical study of phenomenon and by choosing a, b

and c the actual data can be replicated. However, these coefficients depend on many unknown

stochastic variables at the same time, so, for D′ model its coefficients are NOT necessarily the

same as the D model.

The meaning of D′ model can be obtained by the first degree approximation:
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'Default' D'(t) function with a=1, b=1, c=0.01 at time zero

Figure 3.6: D′(t) graph with default values

D(t)−D(t− 1) ≈ D′(t) ·∆t (3.9)

If it is considered as ∆t ≈ 1 day, then, D′ model shows the DAILY NEW NUMBER OF DEATHS.

However, we should have been aware that D′ has large fluctuations - both statistically and

systematically with respect to the real collected data.

3.4. Dependence of D′ model from its coefficients

The dependence of all coefficients in the equation

D′(t) =
a · e(t−t0)/b

b ·
(
1 + c · e(t−t0)/b

)2
can be examined by changing one coefficient at a time and comparing to default values, assum-

ing default values are a = 1, b = 1, c = 0.01, t0 = 0. This time it is iven a value c = 0.01 to be

able to notice more clearly the behavior of a graph.

In the figure 3.6 we can see that D′(t) increases very rapidly until some time, then goes down

almost in a similar manner, reaching asymptotically the value zero. If the value of a is increased

10 times, the graph will look like in the figure 3.7. a will increase the value of a function, as it

could be interpreted as an expected value of death numbers per day.

If we compare graph with default values with the value b = 5 line, we can notice that the growth
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Figure 3.7: D′(t) graph with a value a = 10 as compared to default graph

of a line slowed down as in the figure 3.8. This graph is the most "famous" of all graphs: it is

so-called "Flattening the COVID curve". The graph will reach the maximum five times less in

the value in a long period of time. The reason behind shifting can be explained as before by the

fact that the coefficient b represents the number of days necessary to increase exponentially. The

higher the value of b, the more days are needed to grow rapidly to reach maximum amounts.

If the value c = 0.001 is set (ten times less), the change resembles the change of a = 10, as it is

shown in the figure 3.9.

However, the effect in the beginning is different: the grow of the function not as rapid as in the

first case, it needs more time to reach a limit. Eventually, the function is going to show the same

behavior as in the previous case.

Setting t0 6= 0 shifts the graph to the right,as in the figure 3.10, meaning that start of the spread

and the growth of the function has some time lag as compared to a default case.

3.5. Dn model

D model was obtained with the assumption that we do not have recovered individuals (for

example, at the beginning of the pandemic). That is the reason why at the beginning the actual

data resembles the model. However, after some amount time actual data will deviate more and

more from model values - due to stochastic processes, unknown factors and real time changes.
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Figure 3.8: D′(t) graph with b = 5; Flattening the curve
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Figure 3.9: D′(t) graph with the change of value c = 0.001
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Figure 3.10: D′(t) graph with different start time

To reflect the reality with the help of D models, an epidemic evolution can be viewed as a sum of

independent (local) events that each of those events have their properties and features. So, each

part of the modeling will have different (independent) coefficients. This modeling in general

can be called as Dn model, as authors suggested:

Dn = D(a1, b1, c1) +D(a2, b2, c2) + · · ·+D(an, bn, cn) (3.10)

or

D′n = D′(a1, b1, c1) +D′(a2, b2, c2) + · · ·+D′(an, bn, cn) (3.11)

The easiest form of Dn model will be D2 model:

D2 = D(a1, b1, c1) +D(a2, b2, c2) (3.12)

or

D′2 = D′(a1, b1, c1) +D′(a2, b2, c2) (3.13)

Examples of the graphs for the equations 3.12 and 3.13 are given in the figures 3.11 and 3.12

respectively. In both cases, graphs are shown for t0 = 0 condition.

3.6. Comments on using D model

In [Amaro et al., 2020], the authors introduce so-called "Extended SIR model", which is es-

sentially extended D model, where primary assumption about zero Recovered individuals was
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Figure 3.11: Example of D2(t) function
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Figure 3.12: Example of D′
2(t) function
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released. After solving the system of differential equations it was shown that the most reliable

solution has the form of D model - coefficients a, b, c that permit to solve an equation semi-

empirically.

For this reason, I can use simpler D and D′ models for a convenient modeling of pandemic

spreading. They are SIR inspired - works well not only at the beginning, but also at advanced

stages of the pandemics. To replicate the reality more correctly, I may use Dn models - a sum

of independent D models with different widths and heights and centered at the different time

intervals.

A healthy skepticism should be focused on the facts that no model is REALLY able to predict

changes over time for that kind of complex evolution correctly, especially when properties of the

physical causes of spreading are not included directly in the equations of a model. There will

be always some uncertainty presented in the assumptions and calculations. The values of the

model parameters are only well defined when the disease spread is coming to the end and time

changes in the parameters have little impact. Observing the spread of COVID-19, now it has

become obvious that the pandemic is not going to end soon, even the vaccination has already

started.

Another point is that although different countries around the world may show similar trends of

disease spread, statistical fluctuations in the daily data do not result in a nice universal behavior

- for every country as a whole we will have to use different D models with different coefficients.

The last but not the least part of discussion should be the ability of models in terms of prediction

of models from partial data. Can models truly predict from empirical findings and assumptions?

Even if this question seems impossible to answer, in case of faster and comparably reliable

numbers, the D model (especially Dn model) works pretty satisfactory.
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CHAPTER4
Implementation of D models with a real

data in Spain

4.1. Overall cases in Spain

COVID-19 started spreading in the late December 2019, first cases in Europe were registered

in January-February 2020, rising a concern only in the late February. One of the first and most

affected countries was Italy, which had to implement total lockdown in 22nd February. Experts

in Spain were urging the government of Spain to implement similar measures also in Spain,

but lack of data, lack of compromise, the heavy relation of economy of Spain to tourism and

international trade halted this decision for additional three weeks.

Only from 14th of March 2020, the government of Spain issued the regulation about the lock-

down. It could be done earlier, however, it was better than implementing nothing. At that time,

the spread and so-called the first wave of disease was already happening (as we will show later)

lockdown effects could be observed from the second half of April.

As an official source of data about Covid-19 cases, I will use European Center for Disease Preven-

tion and Control(An agency of the European Union) datasets1. All those data is open-source;

data wrangling and analysis codes in R language will be presented in a GitHub repository in

https://github.com/RustamBozorov/Master-thesis.git.

Let’s take a look at the first 300 days of 2020 data for Spain in the figure 4.1.

Two aspects of situation will appear when the data is examined:
1(https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-

cases-worldwide)
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Figure 4.1: Daily cases from 31.12.2019 to 26.10.2020 in Spain according to ECDC

There are some corrections along dateline in the cases, more specifically in the 19th April

and 25th of May the numbers are negative. These should be taken into consideration;

Starting from July, Spanish authorities published the official data only for five days in the

week, weekend data was published together in Monday. That’s why graph in the figure

4.1 represents those spikes. I will correct also those number by regularizing the numbers

according to increase rate of that particular week data.

If all data is corrected from irregularities and regularized,I will obtain the following graph in the

figure 4.2.

Even if the regression line in the figure 4.2 doesn’t exactly represents the numbers, it is showing

main highlights of the data - in April there was a pick of daily cases in Spain for the first wave,

until August there was a decrease in daily cases, however, starting from August and especially,

from the autumn the cases rose again very rapidly. The increase in the October was named

as the beginning of the second wave, which in one form or another, returned the government

restrictions in the Spanish autonomies.

To understand an increase of speed, I can sum up the daily cases and draw total cases in Spain

according to each day of data, which is shown in figure 4.3. This graph clearly shows the

exponential increase of cases in Autumn, which returned worries about implementing the second
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Figure 4.2: Daily regularized cases from 31.12.2019 to 26.10.2020 in Spain

total lockdown.

In the late October,2020, Spain has become the fifth country that surpass more than a million

total Covid-19 cases worldwide, after USA, India, Brazil and Russian Federation.

4.2. D’ model implementation

In this section I will look into other data that is provided in the data set - daily number of deaths.

If a raw data is examined, the numbers look like in the figure 4.4 given.

Initial observation of data tells that there were several corrections of data in both upward and

downward directions in May and June. Also, similar reporting pattern for weekend information

from July that was implemented for daily cases, can be observed here too.

If I get rid of irregularities and apply the same regularization technique for the part of the data

after July, 2020, the next graph can be observed in the figure 4.5.

The smoothing line here represents the main idea of the data: there was a pick of increase in

April, followed by relatively small numbers in the summer, which afterwards in Autumn started

to rose steadily again.

Now, the equation 3.9 in the chapter 3 can be implemented, as the regularized data is given
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Figure 4.4: Daily cases of death from COVID-19 in Spain
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Figure 4.5: Regularized daily cases of death in Spain in the first 300 days of 2020

- D′21 D′22

a 1950 950

b 8.85 42

c 0.0645 0.0065

t0 75 215

Date for t0 14-03-2020 01-08-2020

Table 4.1: The coefficients for D′
2 model for Spain case

for ∆t = 1 day, we would have D′ model. However, taking into consideration the evolution of

pandemic, I should use D′2 model as it was shown in the equation 3.13:

D′2 = D′(a1, b1, c1, t1) +D′(a2, b2, c2, t2) = D′21 +D′22

After semi-empirical method of finding of coefficients of equation 3.13 and plotting the resulting

model graph, the following graph is obtained as it is shown in the figure 4.6. The corresponding

coefficients are given in the table 4.1

4.2.1. Additional comments on the coefficients and plausibility check

The coefficients obtained in a table 4.1 demonstrate following properties:

First of all, they are semi-empirical values, they could not be exact numbers, for example,
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Figure 4.6: D’2 model for regularized daily cases of death in Spain

in the case of a coefficients in a table. However, they give a very easy possibility to check

and quite exact description of the pandemic evolution;

Coefficient a in the second part of D′ model almost twice lesser than the first part of

the model. This indicates that expected value of death decreased more than 50 %. This

phenomenon can be explained by preparedness of the health-care system, better training

of health-care workers and obligatory face mask regime in the whole country;

Coefficient b in the second part of the equation as almost five times bigger than that of the

first part of an equation. This represents the flattening the curve effect - lockdown, face

mask regime, social distancing contributed to this change;

Coefficient c in the second part as almost ten times smaller - which by the end of the

year contributes to an increase of death numbers very significantly, as c was inverse death

factor;

t0 time line represents the beginning point of increase in death numbers - not essentially

the same dates as a beginning of "waves":

• First increase started at 14th March - it coincides with the implementing strong re-

strictions in Spain;
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• Second increase started roughly at the beginning of August, month later than a ter-

mination of first strong restrictions. Also numbers of deaths were increasing slowly,

but very steadily from then on.

One more remark: the coefficients in D′ model are not essentially the same as in D model, so

when referring to the D model, it can be obtained (semi empirically) another values for all those

coefficients.

Now, I can evaluate the accuracy of the results obtained by D′ model and actual data. To

accomplish this task I use simple integration of model over time. Before performing calculations,

there are some simplifications:

1. D′ model was obtained by differentiating D model - so, integrating D′ model goes back to

its initial function - D model itself;

2. Two parts of formula can be integrated apart, then added up;

3. Time limits for integrating intervals and coefficients used for calculating will be different,

depending on the part of equation respectively. For the first part time line is for t ∈ [75; 301]

and for the second part of equation it will be t ∈ [215; 301].

A calculation of area under a figure 4.6 (integrating over time line) follows like this:

Area =

∫ 301

0
D′(t)dt =

∫ 301

75

(
a1e

(t−t10)/b1

1 + c1e(t−t10)/b1

)′
dt+

∫ 301

215

(
a2e

(t−t20)/b2

1 + c2e(t−t20)/b2

)′
dt =

=
a1e

(t−75)/b1

1 + c1e(t−75)/b1

∣∣∣∣∣
301

75

+
a2e

(t−215)/b2

1 + c2e(t−215)/b2

∣∣∣∣∣
301

215

=
1950 · e(301−75)/8.85

1 + 0.0645 · e(301−75)/8.85
− 1950

1 + 0.0645
+

+
950 · e(301−215)/42

1 + 0.0065 · e(301−215)/42
− 950

1 + 0.0065
= [30232.558− 1831.845] + [7008.909− 943.865] =

≈ 28400 + 6065 = 34465 (4.1)

As it is demonstrated in the next section, total number of an official COVID-19 deaths until 26th

October(300 days of data) in Spain is 35031. This model’s error is less than 2 %:

ε =
|34465− 35031|

35031
= 0.01616 = 1.616% (4.2)

Even if we have used empirical numbers, overall result from model was pretty close to an actual

data.

Having all coefficients can become handy when we want to "predict" possible numbers for the

future days. The D′ model coefficients will allow to forecast a near future numbers. If we want
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to predict what will happen by the end of this year in terms of total death numbers, we can use

t = 366 as an upper limit for integrating (as 2020 has 366 days, 29th February included). The

predicted number will be∫ 366

0
D′(t)dt =

∫ 366

75

(
a1e

(t−t10)/b1

1 + c1e(t−t10)/b1

)′
dt+

∫ 366

215

(
a2e

(t−t20)/b2

1 + c2e(t−t20)/b2

)′
dt =

=
a1e

(t−75)/b1

1 + c1e(t−75)/b1

∣∣∣∣∣
366

75

+
a2e

(t−215)/b2

1 + c2e(t−215)/b2

∣∣∣∣∣
366

215

=
1950 · e(366−75)/8.85

1 + 0.0645 · e(366−75)/8.85
− 1950

1 + 0.0645
+

+
950 · e(366−215)/42

1 + 0.0065 · e(366−215)/42
− 950

1 + 0.0065
= [30232.558− 1831.845] + [27978.910− 943.865] =

≈ 28400 + 27035 = 55435 (4.3)

This number - 55435 - is quite high and bothering; that’s why Spanish government is imposing

new restrictions from November, 20202.

4.3. D model implementation

In the previous section, I have worked with an official data that was provided in the format

that I could apply exactly to one of our models. For implementing D model - which represents

the cumulative number of death until that particular time period, I should add up regularized

data numbers to obtain new usable data (I will use regularized data to avoid sudden spikes and

downfalls of original data set). As a result, the following graph in the figure 4.7 can be obtained.

This figure shows very clearly that after first quarantine measures, in the beginning of summer,

death numbers almost didn’t increase as compared to April numbers. However, from Septem-

ber, total number of deaths started to increase in slower rate than in spring, but very steadily,

reaching the value of 35031 on 300th finished day of 2020 (26/10/2020).

Now, I can semi-empirically apply equation 3.12 for modeling the total death cases. For cumu-

lative cases and randomness of disease spread, as it was also discussed in a chapter 3, the D

model coefficients will differ from D′ model coefficients which were shown in the table 4.1.

The D model in the manner of equation 3.12 will look like this(for these coefficients I will use

different subscripts to distinguish them from D′ model coefficients):

D2 = D(a3, b3, c3, t3) +D(a4, b4, c4, t4) = D21 +D22

The corresponding values are given in the table 4.2.If I draw the D model, the following in the

figure 4.8 can be obtained.
2Those restrictions have given a positive result - according to official numbers, the number of death cases for

Spain on 31st December,2020 was 50387 (5000+ less numbers than that of predicted by the model)
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35,031 total deaths on 26/10/2020
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Figure 4.7: Total death numbers in Spain until 26.10.2020
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Figure 4.8: Total death numbers in Spain according to D model.
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- D21 D22

a 2650 200

b 11 21.5

c 0.093 0.0111

t0 75 215

Date for t0 14-03-2020 01-08-2020

Table 4.2: The coefficients for D2 model for Spain total death cases

4.3.1. Additional comments on the coefficients of D model

The coefficients obtained in the table 4.2 demonstrate properties that resembles the previous

model properties, in particular:

They are also all semi-empirical values, they are not exact numbers. However, they give a

very easy possibility to check and a quite exact description of the pandemic evolution;

Coefficient a in the second part of D model less than the first part of the model. This

phenomenon can be explained by preparedness of the health-care system, better training

of health-care workers and obligatory face mask regime in the whole country;

Coefficient b in the second part of the equation is twice bigger than that of the first part of

an equation. This represents the flattening the curve effect - lockdown, face mask regime,

social distancing contributed to this change. However, this is increase is not the same as it

was in the previous model;

Coefficient c in the second part as almost nine times smaller - which by the end of the

year contributes to an increase of death numbers very significantly, as c was inverse death

factor. This property is very similar to the first case;

t0 time line represents the beginning point of increase in death numbers - and they are the

same dates as in D′ model:

• First increase started at 14th March - coincides with the implementing strong restric-

tions in Spain;

• Second increase started roughly at the beginning of August, month later than a ter-

mination of first strong restrictions. And numbers of death were increasing slowly,

but very steadily from then on.

Now, I can evaluate an accuracy of the results obtained by D model and actual data. Now, rather
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than integrating, I will simply put corresponding t values in the model equation A.18):

D2(t = 301) =

(
a3e

(t−t30)/b3

1 + c3e(t−t30)/b3
+

a4e
(t−t40)/b4

1 + c4e(t−t40)/b4

)
≈ [28494] + [6799] = 35293 (4.4)

The model’s error is less than 1 % in this case:

ε2 =
|35293− 35031|

35293
= 0.00748 = 0.748% (4.5)

Even if I have used empirical numbers, an overall result from model was pretty close to an actual

data. However, we should be aware that our coefficients in this case very data related and they

can predict future cases different than D′ model forecast. If I want to predict what will happen

by the end of this year in terms of total death numbers, I can use t = 366 as a time limit. The

predicted number with the D model will be

D2(t = 366) =

(
a3e

(t−t30)/b3

1 + c3e(t−t30)/b3
+

a4e
(t−t40)/b4

1 + c4e(t−t40)/b4

)
≈ [28494] + [16679] = 45173 (4.6)

45173 is ten thousand less previous model forecast - 55435; this means D model coefficients

will predict more optimistic outcome than D′ model ones3. It should be taken a great care with

taking that numbers as granted, because coefficients were chosen by "past" outcome and they

will constantly change their behavior depending on the amount of data that we will introduce,

as days go by.

3And it was optimistic - actual number turned out to be 50387
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Government anti-pandemic policy

responses

As COVID-19 outbreak happened, the governments around the world started to implement dif-

ferent anti-pandemic policies to slow down the spread, save the health of population and at the

same time, to keep going an economy in a working condition. However, the situation in the

different countries in the different continents were totally different at the first time of pandemic

spread. Also, the government responses differed in the sense of their stringency, duration, type

of actions taken. If we consider that Sweden’s response was out of common actions, all other

countries implemented one or other type of restrictions (Side note: even Sweden admitted that

their first reaction to pandemic spread did not covered all possible scenarios, and they also

started to implement some restrictions and strong recommendations).

To study the response of countries (and Spain also) I will use the Universal Government Re-

sponse Tracker, which is created and is being continued to develop by University of Oxford1.

The Oxford COVID-19 Government Response Tracker (OxCGRT shortly),as shown by authors

[Thomas et al., 2020], gathers information on several different common policy responses that

governments have taken to respond to the pandemic. They are in an open public source 2 with

everyday update of information and explanation.

Here, I will provide shortly all the common policies and their meanings. Whole explanation of

policies with their value explanations can be found in a respective codebook for OxCGRT3.

The main types of implemented government policies can be grouped into three categories:
1https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker
2https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker#

data
3https://github.com/OxCGRT/covid-policy-tracker/blob/master/documentation/codebook.md
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Containment and Closure policies;

Economic policies;

Health system policies.

Each category, at the same time, can be subdivided more into specific subcategories:

1. Containment and Closure policies:

School closings - closure of schools, high schools, universities (private and/or public)

and other educative centers. Closure can be total or partly;

Workplace closing - can vary from recommendations, suggestions to change to remote

work; partly remote work; total remote work; partly closure or even, total closure of

workplaces that cannot comply with health and safety regulations, imposed by the

government;

Cancellation of public events - can vary between recommendations, suggestions to

cancel and total cancellations. For example, the cancellations of cultural events, sport

activities, expositions etc;

Restrictions on gatherings - The restriction number ranged very largely, at the be-

ginning being up 10-15 people, changing to 2-6 people at the public place. Also,

some countries restricted gatherings only for family members and only living at the

same house. In Autumn, 2020, in most part of Spain public gatherings were allowed

maximum 6 people;

Restrictions of public transport - these restrictions have different level of stringency: a

mild version of it can be the recommendation of using less public transport, changing

working times, cancel some routes. As higher level of restrictions, it can be restricted

most of the routes, it can be applied specific permissions to move around in public

transport up to total restriction of it;

Stay-at-home requirements - range from recommendations not to leave a house; a

possibility of leaving houses in certain hours; leaving a house only for doing sport

and buying necessities; only going to supermarkets and pharmacies are allowed; only

extreme cases can be a reason to leave house; total lockdown(previously gathering

all necessary products for specific time period) - an example can be the first month of

China regularities in Wuhan, China;

Restrictions on an internal movement - range from recommendations not to leave
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living region, city to prohibitions to leave living district in town, cities;

International travel restrictions/controls - at the beginning of pandemic, there were

hardly ever any restrictions to an international travel except for China and other first

disease spread countries. With the evolution of COVID-19, countries had imposed

different type of restrictions depending on situation with spread, part of tourism in

the overall economy and incoming country citizens. Those restriction/controls can

be screening of entrance, asking for negative test for disease, compulsory 10-14 days

of self-isolation, cancellation of some arrivals, ban to any entrance, total closure of

country borders(except for the citizens of that particular country).

2. Economic policies:

Income support - Some governments have payed for the most vulnerable layer of

workers monthly allowances; other countries payed some part of salaries (60-80%)

so that businesses and factories kept the personnel in the pandemic times. Also,

economic help differed from discounts to direct cash payments;

Debt/contract relief (for households) - as well as economic help, governments im-

plemented tax relaxation in the period of pandemic spread and total lockdown of

non-essential small and middle size businesses.

3. Health system policies:

Public information campaigns - from the beginning of restrictions, there were dif-

ferent approaches for informing public about new disease and the means to prevent

from getting one - mostly on the television, Internet and public gathering places,

tourist information centers, educational centers etc;

Testing policy - when testing equipment was scarce, testing was done only for people

with symptoms and met specific requirements to be tested with a priority. With a

large access to new tests in a quantitative way, testing was broadened for more layers

of society from being compulsory for some workers to almost unlimited number of

retaking the test for asymptomatic cases;

Contact tracing - when a discovery about the way of spread of disease was announced,

more precisely, from person to person, most governments invested in the contact trac-

ing systems. After a user of such system tests positive, system warns all the contacts

of that patient for last 14 days. Most systems work as an application for a cellphone

based on GPS, Bluetooth or QR code technologies. Also, unified databases of all cases

were created to study the effect of person to person transition rates;
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Facial coverings - probably the most implemented, advertised and still up to now,

the most useful actions. Different countries took different actions in that matter.

However, we can identify main five variations of this policy:

a) No such policy, even in public gatherings or closed spaces;

b) Recommended to wear facial coverings, however no sanctions applied for not

wearing;

c) Required in some specified shared/public spaces outside the home with other

people present, or some situations when social distancing not possible. Non

compliance could infer penalties/fines;

d) Required in all shared/public spaces outside the home with other people present

or all situations when social distancing not possible. For more strict quarantining

periods;

e) Required outside the home at all times regardless of location or presence of other

people. Most strict one, also with the highest possible fines for not complying this

policy.

The Oxford COVID-19 Government Response Tracker provides some insight into an implemen-

tation and severity of each subcategory provided. In the next chapter, those data with relation

to death and cases numbers in the Spain will be examined, that I developed in the chapter 4.
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Data and methodology

6.1. Data

The data consists of database of 18 overall indexes, of which 5 of them or about extreme finan-

cial interventions or miscellaneous indexes that in reality does not represent day by day change

of policies. For this reason I fully use other indexes with their values. Those used variables are:

1. Containment and Closure policies:

a) C1_ School closings;

b) C2_ Workplace closing;

c) C3_ Cancel public events;

d) C4_ Restrictions on gatherings;

e) C5_ Close public transport;

f) C6_ Stay at home requirements;

g) C7_ Restrictions on internal movement;

h) C8_ International travel controls.

2. Economic policies:

a) E1_ Income support (for households);

b) E2_ Debt/contract relief.
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# of j Indicators Maximum value(Nj) ( all values) Flag? (Fj)

1 C1 3 (0, 1, 2, 3) yes=1

2 C2 3 (0, 1, 2, 3) yes=1

3 C3 2 (0, 1, 2) yes=1

4 C4 4 (0, 1, 2, 3, 4) yes=1

5 C5 2 (0, 1, 2) yes=1

6 C6 3 (0, 1, 2, 3) yes=1

7 C7 2 (0, 1, 2) yes=1

8 C8 4 (0, 1, 2, 3, 4) no=0

9 E1 2 (0, 1, 2) yes=1

10 E2 2 (0, 1, 2) no=0

11 H1 2 (0, 1, 2) yes=1

12 H2 3 (0, 1, 2, 3) no=0

13 H3 2 (0, 1, 2) no=0

14 H6 4 (0, 1, 2, 3, 4) yes=1

Table 6.1: Indexes with their flag and maximum values

3. Health system policies:

a) H1_ Public information campaigns;

b) H2_ Testing policy;

c) H3_ Contact tracing;

d) H6_ Facial Coverings.

These variables can take values from 0 up to 4 depending on the level of strictness of policy.

Meanwhile, most of values have additional "FLAG" binary indicator, which can take values 0 or

1, showing the application of policies only to some part of society, geographical region, day time

or full application of it. Flag values with value equal to one is stricter than no flag policy. All

indexes (j) with their maximum values (Nj) and flag existence (Fj) are shown in the table 6.1.

If I have null values for any policy value for some days, I will consider them 0 for consistency.

This proposition is also true for flag values.
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6.2. Methodology

For normalizing the values of indexes for country in the given time period, I will use the equation

6.1:

Ij,t = 100 · vj,t − 0.5(Fj − fj,t)
Nj

(6.1)

The meaning of coefficients:

Ij,t - normalized value of any index j at any given date t;

vj,t - value of index j in the given day t;

Fj - flag value of overall index j;

fj,t - flag value at the given day t for the index j;

Nj - maximum value of index j.

As it was emphasized before, for values vj,t = 0 I will consider also fj,t = 0; in which case I will

consider normalized index value Ij,t = 0, even if by equation 6.1 theoretically it could happen

that the result will be in the range of negative values.

Moreover, to give an overall effect of some types of policies all together, as containment, eco-

nomic, health policies all united, simple averages of different indexes are also calculated by

equation 6.2:

index =
1

k
·
k∑
j=1

Ij (6.2)

It is calculated 4 types of summarizing indexes by this formula:

1. Government response index;

2. Containment and health index;

3. Stringency index;

4. Economic support index.

The number k and types of indexes chosen (Ij) are given in this table 6.2

6.2.1. Assumptions for regression analysis

By computing all equations for all indexes I will get additional independent variables for regres-

sion analysis. For performing regression analysis, I will use some assumptions:
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Index

name

Government re-

sponse index

Containment

and health index

Stringency in-

dex

Economic sup-

port index

k 14 12 9 2

C1
√ √ √

C2
√ √ √

C3
√ √ √

C4
√ √ √

C5
√ √ √

C6
√ √ √

C7
√ √ √

C8
√ √ √

E1
√ √

E2
√ √

H1
√ √ √

H2
√ √

H3
√ √

H6
√ √

Table 6.2: Number k and respective chosen indexes

For estimating relationship between independent variables and daily death numbers, I will

use regularized death numbers, as was shown in the chapter 4. The reason behind this to

smooth out the sudden fluctuations of data caused by artificial corrections of numbers;

The same assumption is also applicable for daily new cases values;

I will use death numbers from 08-03-2020, one week before implementing total lockdown

in Spain, when numbers were high enough, but there were no conversation about lock-

down because of COVID yet;

But policy indexes values for analysis I will use will be even one week before the starting

day of consideration of death numbers: 01-03-2020 - I assume that policies will start to

give a result after a week of implementation. In this setting, 01-03-2020 policy indexes

are linked to 08-03-2020 data for death numbers(regularized) and so on. Our time lag is

7 days;

In this manner, I will have 233 days of studies until 300th day of 2020, which was the

frontier day of this study;

Dependent variables in both cases will be count variables, as they are non negative, and
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also whole numbers throughout the analysis. That’s why I will use generalized linear

modeling with Poisson distribution generalization - negative binomial model. Because

negative binomial distribution converges to the Poisson distribution and with its coefficient

controlling the deviation from the Poisson distribution;

Using generalized linear model can be achieved by "Mass" package of R program language,

[R Core Team, 2020];

All necessary codes and data files will be presented as a GitHub repository in https:

//github.com/RustamBozorov/Master-thesis.git
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CHAPTER7
Results and discussion

7.1. The results of linear regression analysis for death numbers

After I have listed the data, indexes and methodology and assumptions, I will begin to present

the results of applied statistical models. But before going into details of each model, I should

present two further simplifications.

First,our indexes should be checked for zero variability case - in which variables have no vari-

ance, and I cannot make any hypothesis between possible correlation between dependent and

independent variables. The check shows that two variables, H1_ Public information campaign

and H3_ Contact tracing do not have variance, they are unchanged over whole period of study. It

means that public information campaign and contact tracing policies were at the same level over

last 8 months, and they cannot be taken into account, when modeling our linear regressions.

Secondly, there is no direct correlation between economic policies and death numbers. This

assumption will be also true for new daily cases and economic policies alone. To prove our

assumption, I can model a simple generalized linear model with only E1_ economic support and

E2_ Debt release as a variable, as Economic Policy Index is a simple average of two variables(I

do not have to use it in a modeling). This simple model can be written as in equation 7.1:

log(death233) ≈ β0 + βE1E1 + βE2E2 (7.1)

Results are shown in the table 7.1.

In this model, null hypothesis was the possibility of being equal to zero of all coefficients. Even

is significance level, p values and z values suggest that there is a correlation between variables,

the real connection between them can be explained in a reverse way. To put it in another way, it

is false to say that economic support (E1) contributed in an increase of the number of death and
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Coefficients: Estimate Std. Error (SE) z value p value 95 % CI

β0 5.0131 0.02017 248.6 <2e-16 *** ( 4.9733, 5.0524)

βE1 0.0449 0.000389 115.4 <2e-16 *** (0.0441, 0.0456)

βE2 -0.0361 0.000242 -149.3 <2e-16 *** ( -0.0366, -0.0356)

Table 7.1: Results for model in the equation 7.1. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

Coefficients: exp(Estimate) exp(Lower limit) exp(Upper limit)

β0 150.3696867 144.5044632 156.3920531 ***

βE1 1.0458746 1.0450791 1.0466725 ***

βE2 0.9645398 0.9640834 0.9649979 ***

Table 7.2: Incident rate for model in the equation 7.1. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

debt release (E2) contributed in a decrease of the number of death; it is another way round:

the government implemented income support (E1) policy when the numbers were very high

and stopped doing that when numbers decreased and changed to the debt release policy and

continued doing this, even if death numbers very low.

To understand better the meaning of log counts, incident rate ratios of the coefficients and 95 %

confidence interval values can be demonstrated . To do this, I will use exponential function for

the respective values.

As shown in table 7.2, for one unit increase of policy E2_ debt relief, the number of death

incidence rate is approximately 3.5% decrease. And model suggests that one unit increase

of E1_ Income support policy increased incident rate of death numbers for 4.5%, which have

already been mentioned, should be viewed in a reverse direction.

The same type of explanations can be given for the non existence of direct correlation between

economic values only and new daily cases (cases233), therefore, I will not consider that in

future. Also, an explanation of reverse link between death numbers first and then policy imple-

mentation gives an insight and fair amount of skepticism for next models that are going to be

developed.

7.1.1. Death numbers in relation to containment and closure policies

The analysis of death numbers and possible correlations with government policies will start with

containment and closure policies. I use all 8 possible containment and closure policies in the
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Coefficients: Estimate Std. Error (SE) z value p value 95 % CI

β0 2.514 0.3097 8.117 4.76e-16 *** (2.009 , 3.091)

βC1 0.0091 0.0061 1.614 0.10645 (-0.0004, 0.0213)

βC2 0.0736 0.0053 13.858 < 2e-16 *** (0.064, 0.0834)

βC3 0.0549 0.0094 5.813 6.15e-09 *** (0.0343, 0.0752)

βC4 -0.034 0.0037 -9.113 < 2e-16 *** (-0.0406,-0.0278)

βC5 -0.0108 0.0081 -1.337 0.18117 (-0.0287, 0.0073)

βC6 -0.0150 0.0053 -2.830 0.00465 ** (-0.0280, -0.0014)

βC7 -0.0048 0.0052 -0.920 0.35783 (-0.0154, 0.0055)

βC8 -0.0537 0.0101 -5.295 1.19e-07 *** (-0.0740, -0.0333)

Table 7.3: Results for model in the equation 7.2. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

model as in equation 7.2:

log(death233) ≈ β0 + βC1C1 + βC2C2 + βC3C3+

βC4C4 + βC5C5 + +βC6C6 + βC7C7 + βC8C8 (7.2)

Results are shown in the table 7.3. Discussion of results:

Not all the variables here have high significance levels of importance, some policies have

better correlations with log number of death cases;

The coefficients cannot give exact number of saved people due to themselves, but they can

insight about effectiveness of policies compared among themselves;

This model shows that policies C4_ Restrictions on gatherings and C8_ International travel

restrictions have the most negative correlations and high significance levels;

Then, it is followed by the policy C6_ Stay at home, which also has quite high significance

level. An increase of one unit for Stay at home policy has reduced -0.0150 of log value for

count variable - death numbers daily;

Even if the policies C5_ Closure of public transport and C7_ Restrictions on internal move-

ment have negative coefficients, their significance level in this model setting is quite low;

The policy C2_ Workplace closing has a high significance and positive coefficient. It can be

explained by the fact that in the spike of death numbers not all the works were shut down,

numerous workplaces were labeled as an essential workplaces with essential workers.

To understand better the effects of coefficients, we will look at the incident rate ratios of the

coefficients and 95 % confidence interval values. To do this, exponential function for the re-
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Coefficients: exp(Estimate) exp(Lower limit) exp(Upper limit)

β0 12.34907 7.45489 21.99496 ***

βC1 1.00997 0.99955 1.02155

βC2 1.07635 1.06613 1.08703 ***

βC3 1.05639 1.03486 1.07807 ***

βC4 0.96652 0.96017 0.97258 ***

βC5 0.98925 0.971643 1.00729

βC6 0.98511 0.97237 0.99851 **

βC7 0.99522 0.984703 1.00556

βC8 0.94774 0.92866 0.96721 ***

Table 7.4: Incident rate for model in the equation 7.2. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

spective values will be used, which are shown in the table 7.4. As it shown in the table 7.4, one

unit increase of C8_ International travel restrictions reduced more than 5.2% the daily death

numbers. C4_ Restrictions on gathering has reduced more than 3.3% of death numbers.

At the same time, workplace closing did not increase the death numbers - one unit increase of

C2_ Workplace closing policy was implemented in the average 7.63% daily increase of death

numbers. And C1_ School closure did not led to very significant changes in death numbers,

however its incident rate is slightly bigger than one by this model.

This table shows that first model can give some insight into the efficiency if some policies in

comparison with other containment policies. However, the model can be filled with more vari-

ables for the next sections. I should also have to look at containment policies with health system

policies together to get more variables and data involved, which I will proceed doing it in the

next model.

7.1.2. Death numbers in relation to containment and closure policies with health

system policies together

In this model, I take a look into two types of policies and the model for containment and health

policies can be written as in equation 7.3:

log(death233) ≈ β0 + βC1C1 + βC2C2 + βC3C3 + βC4C4+

+ βC5C5 + βC6C6 + βC7C7 + βC8C8 + βH2H2 + βH6H6 (7.3)

Results are shown in the table 7.5. Discussion of results of this model:

This time we get more clear and explanatory model;

Only two policies are not significant enough to able to discussed in more detail: they are
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Coefficients: Estimate Std. Error (SE) z value p value 95 % CI

β0 2.7573 0.4269 6.458 1.06e-10 *** (2.035, 3.519)

βC1 0.0138 0.0059 2.314 0.0206 * (0.0031, 0.0254)

βC2 0.0679 0.0051 13.162 < 2e-16 *** (0.0585, 0.0774)

βC3 0.0378 0.0099 3.802 0.0001 *** ( 0.0171, 0.0583)

βC4 -0.0284 0.0037 -7.570 3.74e-14 *** (-0.0353, -0.0216)

βC5 -0.0225 0.0079 -2.847 0.0044 ** (-0.0395, -0.0052)

βC6 -0.0261 0.0054 -4.840 1.30e-06 *** ( -0.0386, -0.0131)

βC7 0.0042 0.0054 0.783 0.4333 ( -0.0062, 0.0145)

βC8 -0.0291 0.0109 -2.647 0.0081 ** (-0.0506, -0.0079)

βH2 -0.0050 0.0083 -0.602 0.5474 (-0.0189, 0.0093)

βH6 -0.0173 0.0043 -3.967 7.29e-05 *** (-0.0251, -0.0095)

Table 7.5: Results for model in the equation 7.3. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

C7_ Restrictions on internal movement of containment policies and H2_ Testing policy of

health system. They have very least correlation significance with daily death numbers;

The policies that have the most negative numbers are those which already discussed in

the previous model, like C4_ Restrictions on gatherings, C5_ Public transport closure, C8_

International travel restrictions and C6_ Stay at home policies. One unit increase of them

decreased log value of death numbers by around 0.02;

H6_ Facial coverings of health system policy has also negative value and high significance

in the model. Each unit increase of facial covering strictness has decreased the log value

of death numbers by 0.0173;

First three policies have positive coefficients which only can be explained by reverse causal

relationship: they were strictest in the peak of numbers, but by the time, they have been

relaxed more than other policies, so that schools, workplaces and public events could be

reopen, holding social distancing and facial mask rulings in place.

To understand better the effects of coefficients, I will look at the incident rate ratios of the

coefficients and 95 % confidence interval values. To do this, I can use exponential function for

the respective values, which are shown in the table 7.6.

Table 7.6 shows that two containment policies - C4_ Restrictions on gatherings and C8_ Inter-

national travel restrictions have the most downward impact on daily death numbers: each unit

increase of them decreases approximately 2.8% of daily death numbers. Health system policy

- H6_ Facial mask requirement also has high significance - each unit increase of it decreased
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Coefficients: exp(Estimate) exp(Lower limit) exp(Upper limit)

β0 15.75855 7.65020 33.78188 ***

βC1 1.01393 1.00318 1.02577 *

βC2 1.07027 1.06028 1.08054 ***

βC3 1.03853 1.01729 1.06007 ***

βC4 0.97199 0.96524 0.97858 ***

βC5 0.97773 0.961200 0.994806 **

βC6 0.97418 0.96205 0.98699 ***

βC7 1.00428 0.99376 1.01468

βC8 0.97131 0.95057 0.99210 **

βH2 0.99498 0.98122 1.00934

βH6 0.98277 0.97519 0.99051 ***

Table 7.6: Incident rates for model in the equation 7.3. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

1.72% of daily death numbers. First three policies were the strictest in the increase of death

numbers and they were relaxed before other containment policies - to continue to work, study

in times of pandemics. Their unit increase has correlations with "increase" of death numbers -

1.3% , 7%, 3.85% respectively. Therefore, these effects of increase should be interpreted with

care.

7.1.3. Death numbers in relation with all coefficients - final model

In a final model, I take a look into all types of policies - containment and closure, economic and

health system policies. Even if I do not use explicitly H1_ Public In formation policy and H3_

Contact tracing policies in the model, because of their zero variance, - other policies of health

system policies will be included in the final model.

The final model for can be written as in equation 7.4.

log(death233) ≈ β0 + βC1C1 + βC2C2 + βC3C3 + βC4C4 + βC5C5 + βC6C6 + βC7C7+

+ βC8C8 + βE1E1 + βE2E2 + βH2H2 + βH6H6 (7.4)

Results are shown in the table 7.7.

Discussion of results of final model:

This final model gathers all singular policies together to get even more clear and explana-

tory model;

However, not all of them are significant in 1% or 5% error intervals;
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Coefficients: Estimate Std. Error (SE) z value p value 95 % CI

β0 2.8468 0.4310 6.605 3.98e-11 *** (2.1148, 3.6123)

βC1 0.0136 0.0059 2.299 0.021496 * (0.0031, 0.0251)

βC2 0.0669 0.0052 12.739 < 2e-16 *** (0.0575, 0.0764)

βC3 0.0384 0.0103 3.712 0.000206 *** (0.0182, 0.0584)

βC4 -0.0307 0.0064 -4.728 2.27e-06 *** (-0.0418, -0.0188)

βC5 -0.0190 0.0084 -2.261 0.023776 * (-0.0366, -0.0013)

βC6 -0.0256 0.0054 -4.724 2.31e-06 *** ( -0.0381, -0.0127)

βC7 0.0050 0.0065 0.772 0.440168 (-0.0071, 0.0171)

βC8 -0.0371 0.0126 -2.928 0.003413 ** (-0.0606, -0.0136)

βE1 0.0066 0.0080 0.830 0.406308 (-0.0077, 0.0199)

βE2 0.0041 0.0101 0.412 0.680573 (-0.0144, 0.0208)

βH2 -0.0082 0.0085 -0.963 0.335311 (-0.0226, 0.0067)

βH6 -0.0177 0.0053 -3.334 0.000856 *** (-0.0269, -0.0085)

Table 7.7: Results for model in the equation 7.4. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

The unit increase of policy C1_ School closure has a correlation of 0.0136 unit log "in-

crease" of daily death numbers. This positive correlation can be explained by the fact that

schools were not closed completely, especially beginning and mid schools. Higher schools

and universities were transferred to remote studies. As death numbers dropped, schools

were also open to face to face lessons;

The policy C2_ Workplace closing has the most positive correlation with log death number.

It is related with the fact that essential jobs were not closed at all even in the peak times,

not all jobs could be transferred to remote regime. And also, we can use reverse correlation

- every decrease of 0.0669 log unit of death numbers led to one unit decrease of strictness

of workplace closures - more jobs and businesses were let to be opened;

The policy C3_ Canceling public events has also positive correlation with log count number

of daily deaths. It also can be explained by reverse correlation - every 0.0384 unit of log

decrease of death number is related to one unit decrease of strictness of public event

cancellation policy;

C4_ Restrictions on gathering and C8_ International travel restrictions have the most neg-

ative correlation with log count of daily death numbers. These policies have been imple-

mented for a long time and one or another way are kept implementing unchanged, with

no relation to actual peak changes of death numbers;

The policy C6_ Stay at home has also great significance and every unit increase of this
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Coefficients: exp(Estimate) exp(Lower limit) exp(Upper limit)

β0 17.23330 8.28810 37.05463 ***

βC1 1.01377 1.00316 1.02546 *

βC2 1.06920 1.05919 1.07947 ***

βC3 1.03916 1.01837 1.06022 ***

βC4 0.96975 0.95898 0.98137 ***

βC5 0.98117 0.96410 0.99866 *

βC6 0.97468 0.96261 0.98741 ***

βC7 1.00510 0.99288 1.01723

βC8 0.96355 0.94115 0.98644 **

βE1 1.00672 0.99231 1.02015

βE2 1.00417 0.98566 1.02106

βH2 0.99176 0.97758 1.00676

βH6 0.98240 0.97342 0.99144 ***

Table 7.8: Incident rates for model in the equation 7.4. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

policy has a correlation with 0.0256 decrease of log unit of death numbers;

C5_ Public transport closure has also negative correlation with log count even if public

transport was never closed down completely because of not closing essential jobs and mid

school levels;

The policy C7_ Restrictions on internal movement has a very little significance in terms of

decrease of log count of death numbers;

The same insignificance levels have both economic policies. They show positive correla-

tion, because these policies were implemented during the peak numbers of death toll and

were less used later on;

H2_ Testing policy of health system policies has a negative correlation, but very low sig-

nificance level;

H6_ Facial coverings of health system policy is also one of the most significant policies to

reduce death numbers. Each unit increase of facial coverings decrease for 0.0177 log unit

of daily death numbers.

To understand better the effects of coefficients, I will look at the incident rate ratios of the

coefficients and 95 % confidence interval values. To do this, I can use exponential function for

the respective values, which are shown in the table 7.8.

Rustam BOZOROV | 48



CHAPTER 7. RESULTS AND DISCUSSION

Coefficients: Estimate Std. Error (SE) z value p value 95 % CI

β0 3.2776 0.5796 5.655 1.56e-08 *** (2.1905, 4.5819)

βGRI 0.0263 0.0088 2.980 0.00288 ** (0.0067, 0.0432)

Table 7.9: Results for model in the equation 7.5. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

As it can be seen from table 7.8, C4_ Restrictions on gathering one unit increase has a correlation

with more than 3% decrease of daily death numbers. C6_ Stay at home and C8_ International

travel restrictions has more than 2% decrease effect, economic policies have very little effect

and significance level to the change of daily death numbers.

7.1.4. Death numbers and average indexes relationship

Before going into results for daily new cases numbers and policies, we can try to answer the

question - how fast the government response was against the spread of pandemic? And can we

find a correlation between single index and daily death numbers? To answer this, I will build

one more model, where death233 variable will be dependent to only average of all indexes -

Government response index, as it was shown in the table 6.2.

This model will look like this equation 7.5:

log(death233) ≈ β0 + βGRIGovernmentResponseIndex (7.5)

Results are given in the table 7.9.

The significance level of government response index is quite high, so there can be relationship

between him and daily death numbers. This correlation can be explained as reverse way - on

average, 0.0263 log unit increase of death numbers triggered the government to increase one

unit of its anti-coronavirus response. To better understanding, I will also find exponential of

these coefficients and get 1.026718, or the speed of one unit increase of government response

is corresponds to on average 2.67% increase of daily death numbers.

The same modeling and reasoning can be also done for other average indexes in the table 6.2.

If I proceed until finding exponential values of those corresponding coefficient values, I get for

stringency index - 1.050176, or 5.01% increase of death numbers; for containment and health

index 1.044744, or 4.47% increase of death numbers for each unit increase of coefficient. From

this I can conclude that government response was faster in all system policies all together rather

than only containment or health system policies implementation.
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Coefficients: Estimate Std. Error (SE) z value p value 95 % CI

β0 6.9475 0.1540 45.093 < 2e-16 *** (6.6622, 7.2607)

βC1 0.0084 0.0031 2.719 0.00655 ** (0.0019, 0.0152)

βC2 0.0372 0.0020 18.336 < 2e-16 *** (0.0334, 0.0409)

βC3 0.0192 0.0043 4.425 9.64e-06 *** (0.0098, 0.0285)

βC4 -0.0258 0.0017 -14.678 < 2e-16 *** (-0.0291, -0.0227)

βC5 -0.0220 0.0032 -6.688 2.26e-11 *** (-0.0287, -0.0153)

βC6 -0.0145 0.0025 -5.724 1.04e-08 *** (-0.0197, -0.0094)

βC7 0.0322 0.0022 14.033 < 2e-16 *** (0.0279, 0.0366)

βC8 -0.0273 0.0041 -6.621 3.58e-11 *** (-0.0359, -0.0187)

Table 7.10: Results for model in the equation 7.6. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

7.2. The results of linear regression analysis for daily new case

numbers

To study a possible correlation between daily new cases and indexes in data, I will use the same

models for cases (cases233). For reasons explained before, I will not consider the model that

depends on just economic indexes. Other models will be listed in following sections.

7.2.1. New cases numbers in relation to containment and closure policies

The analysis of new cases numbers and possible correlations with government policies will start

with containment and closure policies.

The model for containment and closure can be written as in equation 7.6:

log(cases233) ≈ β0 + βC1C1 + βC2C2 + βC3C3+

+ βC4C4 + βC5C5 + βC6C6 + βC7C7 + βC8C8 (7.6)

Results are shown in the table 7.10.

Discussion of results:

All the variables here have high significance levels of importance, some policies have better

correlation with log number of new cases;

The coefficients cannot give exact number of saved people due to themselves, but they can

insight about effectiveness of policies compared among themselves;

This model shows that policies C4_ Restrictions on gatherings and C8_ International travel

restrictions have the most negative correlations and high significance levels. This is very
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Coefficients: exp(Estimate) exp(Lower limit) exp(Upper limit)

β0 1040.5613 782.2412 1423.2728 ***

βC1 1.0085 1.0019 1.0153 **

βC2 1.0379 1.0339 1.0418 ***

βC3 1.0194 1.0098 1.0289 ***

βC4 0.9745 0.9713 0.9776 ***

βC5 0.9782 0.9717 0.9848 ***

βC6 0.9855 0.9805 0.9907 ***

βC7 1.0328 1.0283 1.0373 ***

βC8 0.9730 0.9647 0.9814 ***

Table 7.11: Incident rate for model in the equation 7.6. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

similar to the death and containment indexes model case;

Then, it is followed by the policy C6_ Stay at home, which also has quite high significance

level. An increase of one unit for Stay at home policy has reduced -0.0145 of log value for

dependent variable - daily new cases numbers;

The policy C5_ Closure of public transport has negative value and high significance level,

which is different from the death model case. In death model, public transport closure was

not significant enough. It could be suggested that closure of public transport correlated

with reduction of cases directly;

And C7_ Restrictions on internal movement has a positive coefficient, that can be explained

by the fact that when cases numbers reduced, government opened internal borders and

model also represents reverse link between reduction of numbers and reduction of strict-

ness of C7_ Restrictions on internal movement policy;

The policy C2_ Workplace closing has a high significance and positive coefficient. It can be

explained by the fact that in the spike of death numbers not all the works were shut down,

numerous workplaces were labeled as an essential workplaces with essential workers;

C1_ School closure has a less effect on cases numbers increase than other policies.

To understand better the effects of coefficients, I will look at the incident rate ratios of the

coefficients and 95 % confidence interval values. To do this, I can use exponential function for

the respective values, which are shown in the table 7.11.

As it shown in the table 7.11, one unit increase of C8_ International travel restrictions reduced

more than 2.7% the daily death numbers. C4_ Restrictions on gathering has reduced more than
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Coefficients: Estimate Std. Error (SE) t value p value 95 % CI

β0 6.5048 0.2178 29.856 < 2e-16 *** (6.0603, 6.9580)

βC1 0.0112 0.0030 3.716 0.000203 *** (0.0047, 0.0179)

βC2 0.0366 0.0020 18.009 < 2e-16 *** (0.0327, 0.0404)

βC3 0.0131 0.0046 2.820 0.004798 ** (0.0023, 0.0240)

βC4 -0.0262 0.0017 -14.578 < 2e-16 *** (-0.0295, -0.0229)

βC5 -0.0245 0.0033 -7.323 2.43e-13 *** (-0.0317, -0.0174)

βC6 -0.0173 0.0026 -6.591 4.38e-11 *** (-0.0227, -0.0118)

βC7 0.0349 0.0024 14.507 < 2e-16 *** (0.0303, 0.0395)

βC8 -0.0220 0.0047 -4.610 4.03e-06 *** (-0.0327, -0.0112)

βH2 0.0144 0.0043 3.344 0.000827 *** (0.0053, 0.0240)

βH6 -0.0093 0.0021 -4.259 2.06e-05 *** (-0.0141, -0.0046)

Table 7.12: Results for model in the equation 7.7. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

2.55% of death numbers.

At the same time, workplace closing did not increase the death numbers - one unit increase of

C2_ Workplace closing policy was implemented in the average 3.79% daily increase of death

numbers. And C1_ School closure did not led to very significant changes in death numbers,

however its incident rate is slightly bigger than one by this model.

This table shows that first model can give us some insight into the efficiency if some policies

in comparison with other containment policies. However, the model can be filled with more

variables for the next sections. I should also have to look at containment policies with health

system policies together to get more variables and data involved, which I will proceed doing it

in the next model.

7.2.2. New cases numbers in relation to containment and closure policies with

health system policies together

In this model, I take a look into two types of policies and the model for containment and health

policies can be written as in equation 7.7:

log(cases233) ≈ β0 + βC1C1 + βC2C2 + βC3C3 + βC4C4 + βC5C5+

+ βC6C6 + βC7C7 + βC8C8 + βH2H2 + βH6H6 (7.7)

Results are shown in the table 7.12.

Discussion of results of this model:

In this section we get more clear and explanatory model;
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Coefficients: exp(Estimate) exp(Lower limit) exp(Upper limit)

β0 668.3647 428.5229 1051.5303 ***

βC1 1.0113 1.0047 1.0181 ***

βC2 1.0373 1.0333 1.0412 ***

βC3 1.0133 1.0023 1.0243 **

βC4 0.9741 0.9709 0.9773 ***

βC5 0.9757 0.9688 0.9827 ***

βC6 0.9828 0.9776 0.9882 ***

βC7 1.0355 1.0308 1.0403 ***

βC8 0.9782 0.9678 0.9888 ***

βH2 1.0146 1.0053 1.0243 ***

βH6 0.9907 0.9860 0.9954 ***

Table 7.13: Incident rates for model in the equation 7.7. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

Almost all policies have very high significance levels, which is different from the model of

death numbers;

The policies that have the most negative numbers are those which already discussed in

the previous model, like C4_ Restrictions on gatherings, C5_ Public transport closure, C8_

International travel restrictions and C6_ Stay at home policies. One unit increase of them

decreased log value of new cases numbers by around 0.02-0.262;

H6_ Facial coverings of health system policy has also negative value and high significance

in our model. But it does not have as much value as it was in death model case. Each

unit increase of facial covering strictness has decreased the log value of death numbers by

0.0093;

First three policies have positive coefficients which only can be explained by reverse causal

relationship: they were strictest in the peak of numbers, but by the time, they have been

relaxed more than other policies, so that schools, workplaces and public events could be

reopen, holding social distancing and facial mask rulings in place.

To understand better the effects of coefficients, I will look at the incident rate ratios of the

coefficients and 95 % confidence interval values. To do this, I can use exponential function for

the respective values, which are shown in the table 7.13.

Table 7.13 shows that three containment policies - C4_ Restrictions on gatherings, C5_ Public

transport closure and C8_ International travel restrictions have the most downward impacts on

daily death numbers: each unit increase of them decreases approximately 2.2-2.6 % of daily new
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cases numbers. Health system policy - H6_ Facial mask requirement also has slightly downward

- each unit increase of it decreased 1% of daily new cases numbers. First three policies were

the strictest in the increase of pandemic spread and they were relaxed before other containment

policies - to continue to work, study in times of pandemics. Their unit increase has correlations

with "increase" of new cases numbers - 1.13% , 3.73%, 1.33 % respectively.

Also, H2_ Testing policy shows interesting values: more tests - more daily new cases. Each

unit increase of testing capacity policy has a correlation of 1.46 % increase of daily new cases,

which is drastically new and different result compared to previous death model. Therefore,

these effects of increase should be interpreted with care.

7.2.3. New cases numbers in relation with all coefficients

In the final model, I take a look into all types of policies - containment and closure, economic

and health system policies. Even if I do not use explicitly H1_ Public In formation policy and

H3_ Contact tracing policies in the model, because of their zero variance, - other policies of

health system policies will be included in the final model.

The final model for can be written as in equation 7.8.

log(cases233) ≈ β0 + βC1C1 + βC2C2 + βC3C3 + βC4C4 + βC5C5 + βC6C6 + βC7C7+

+ βC8C8 + βE1E1 + βE2E2 + βH2H2 + βH6H6 (7.8)

Results are shown in the table 7.14.

Discussion of results of the final model:

Almost all singular policies have significance levels, except for E2_ Income support policy;

The unit increase of policy C1_ School closure has a correlation of 0.0107 unit log "in-

crease" of daily new cases numbers. This positive correlation can be explained by the fact

that schools were not closed completely, especially beginning and mid schools. Higher

schools and universities were transferred to remote studies. As new cases dropped in

August, schools were also open to face to face lessons;

The policy C2_ Workplace closing has the most positive correlation with log cases number.

It is related with the fact that essential jobs were not closed at all even in the peak times,

not all jobs could be transferred to remote regime. And also, we can use reverse correlation

- every decrease of 0.0354 log unit of cases numbers led to one unit decrease of strictness

of workplace closures - more jobs and businesses were let to be opened;

The policy C3_ Canceling public events has also positive correlation with log count number
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Coefficients: Estimate Std. Error (SE) z value p value 95 % CI

β0 6.6232 0.2130 31.092 < 2e-16 *** (6.2044, 7.0503)

βC1 0.0107 0.0029 3.684 0.000230 *** (0.0045, 0.0171)

βC2 0.0354 0.0019 17.809 < 2e-16 *** (0.0315, 0.0391)

βC3 0.0149 0.0045 3.256 0.001131 ** (0.0048, 0.0249)

βC4 -0.0270 0.0032 -8.408 < 2e-16 *** (-0.0324, -0.0217)

βC5 -0.0216 0.0033 -6.485 8.86e-11 *** (-0.0284, -0.0148)

βC6 -0.0174 0.0025 -6.865 6.67e-12 *** (-0.0225, -0.0122)

βC7 0.0350 0.0029 11.938 < 2e-16 *** (0.0297, 0.0404)

βC8 -0.0298 0.0050 -5.964 2.46e-09 *** (-0.0400, -0.0194)

βE1 0.0125 0.0040 3.089 0.002006 ** (0.0060, 0.0187)

βE2 -0.0015 0.0050 -0.307 0.758862 (-0.0097, 0.0064)

βH2 0.0103 0.0043 2.394 0.016648 * (0.0017, 0.0192)

βH6 -0.0091 0.0025 -3.559 0.000373 *** (-0.0141, -0.0043)

Table 7.14: Results for model in the equation 7.8. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

of daily new cases. It also can be explained by reverse correlation - every 0.0149 unit of

log decrease of cases number is related to one unit decrease of strictness of public event

cancellation policy;

C4_ Restrictions on gathering and C8_ International travel restrictions have the most neg-

ative correlation with log count of daily cases numbers. These policies have been imple-

mented for a long time and one or another way are kept implementing unchanged, with

no relation to actual peak changes of death numbers;

The policy C6_ Stay at home has also great significance and every unit increase of this

policy has a correlation with 0.0174 decrease of log unit of death numbers;

C5_ Public transport closure has also negative correlation with log count even if public

transport was never closed down completely because of not closing essential jobs and mid

school levels;

The policy C7_ Restrictions on internal movement has controversially high positive coeffi-

cients. From the modeling point of view, the efficiency of this policy should be carefully

studied in broader sense. Because restrictions for short period of time had opposite effect

on both cases and death numbers;

The lowest significance levels have both economic policies. Their first policy shows positive

correlation, because these policies were implemented during the peak numbers of death
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Coefficients: exp(Estimate) exp(Lower limit) exp(Upper limit)

β0 752.3561 494.9194 1153.1814 ***

βC1 1.0108 1.0045 1.0172 ***

βC2 1.0361 1.0320 1.0399 ***

βC3 1.0150 1.0048 1.0252 **

βC4 0.9733 0.9681 0.9785 ***

βC5 0.9786 0.9720 0.9853 ***

βC6 0.9827 0.9777 0.9879 ***

βC7 1.0356 1.0301 1.0412 ***

βC8 0.9706 0.9608 0.9808 ***

βE1 1.0126 1.0060 1.0189 **

βE2 0.9985 0.9903 1.0065

βH2 1.0104 1.0017 1.0194 *

βH6 0.9909 0.9860 0.9957 ***

Table 7.15: Incident rates for model in the equation 7.8. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

toll and were less used later on;

H2_ Testing policy of health system policies has a positive correlation, that was explained

in the previous model;

H6_ Facial coverings of health system policy was also one of the most significant policies

to reduce death numbers. But in the cases model, it has very little downward effect. Each

unit increase of facial coverings decrease for just 0.0091 log unit of daily death numbers.

To understand better the effects of coefficients, I will look at the incident rate ratios of the

coefficients and 95 % confidence interval values. To do this, I can use exponential function for

the respective values, which are shown in the table 7.15.

As we can see from table 7.15, C8_ International travel restrictions one unit increase has a

correlation with almost 3% decrease of daily new cases. C5_ Public transport closure C6_ Stay

at home and C4_ Restrictions on gathering has around 2% decrease effect, economic policies

have very little effect and significance level to the change of daily new cases numbers.

7.2.4. New case numbers and average indexes relationship

And now I can try to answer the question - how fast the government response was against

the spread of pandemic? And can we find a correlation between single index and daily new

case numbers? To answer this, I will build one more model, where cases233 variable will be

dependent to only average of all indexes - Government response index, as it was shown in the
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Coefficients: Estimate Std. Error (SE) z value p value 95 % CI

β0 7.2201 0.3700 19.514 < 2e-16 *** (6.4241, 8.1625)

βGRI 0.01900 0.00565 3.363 0.000771 *** (0.0046, 0.0313)

Table 7.16: Results for model in the equation 7.9. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

table 6.2.

This model will look like this equation 7.9:

log(cases233) ≈ β0 + βGRIGovernmentResponseIndex (7.9)

Results are given in the table 7.16.

The significance level of government response index is quite high, so there can be relationship

between him and daily new cases numbers. This correlation can be explained as reverse way -

on average, 0.019 log unit increase of new cases numbers triggered the government to increase

one unit of its anti-coronavirus response. To better understanding, I can also find exponential of

these coefficients and I get 1.0191, or the speed of one unit increase of government response is

corresponds to on average 1.91% increase of daily new cases numbers. To compare, for death

model it was 2.67% increase of daily death numbers. The difference can be explained by two

components: a) new cases increased faster than death numbers, b) the government based on its

decisions about containment and health system policies mostly on cases numbers’ evolution.

The same modeling and reasoning can be also done for other average indexes in the table 6.2.

If I proceed until finding exponential values of those corresponding coefficient values, I get

For stringency index = 1.000952, or 0.095% increase of new cases, but very low p value -

new cases numbers do not have a direct correlation with stringency index;

For containment and health index = 1.0231 , or 2.31% increase of new cases numbers for

each unit increase of this coefficient.

From this I can conclude that government response was faster in all system policies all together

rather than only containment or health system policies implementation also for new cases num-

bers as it was for daily death numbers.
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Conclusions

In this work, I tried to pursue following tasks:

Taking the current state of numbers of COVID-19 and evolution of pandemic, and using D

models and D′ models, try to forecast the number of deaths from COVID-19 in Spain for

recent future time (30-45 days);

Secondly, taking the current numbers for deaths and daily new cases of COVID-19, elab-

orate on the effect of government responses through containment and closure policies,

economic policies and health system policies on the evolution of pandemic in Spain;

Try to give numeric quantity for government anti-pandemic response implementation

speed.

As it was shown in Chapter 4, obtaining real data from official sources and elaborating on D and

D′ models, permit to semi-empirically choose the coefficients to formulate simple epidemiologi-

cal models. Those models not only reflect the real situation with the daily and cumulative death

numbers, but also let us to predict the near future numbers. As two models have different coef-

ficients, the predicted numbers for the end of 2020 for Spain also differ and they have different

efficiency compared to real official numbers, which were obtained later.

In both models, I have used only available data to choose coefficients, and more data I had,

the more accurate would be the predictions. In any case, those predicted numbers can give us

two extreme scenarios of a possible evolution of numbers in near future, and can be used for

robust forecast future conditions - number of fatal cases, possible resources needed, guidance

to implement stricter government anti-pandemic responses or release some restrictions to boost

the economic activities in a society.
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In chapter 7, I have shown many models of analysis for government response efficiency. More

inclusive models were the ones with more policies’ variables included for both daily death and

daily new cases numbers.

The most efficient policy for reducing the numbers of deaths and new cases was C8_ Interna-

tional travel restrictions of containment and closure policies. Each unit increase of this policy

decreased death and new cases daily numbers for 3.6 and 3 % respectively.

Other useful policies were C4_ Restrictions on gathering, C6_ Stay at home, C5_ Public transport

closure policies for death number reducing. Their unit increases in strictness was correlated with

2-3% reduction of daily death numbers. For the model of daily new case numbers, first four most

useful policies are the same, only the policy C5_ Public transport closure showed more efficiency

in reducing cases numbers rather than death numbers.

Other containment policies were implemented in the time interval of rise of COVID-19 numbers

and as soon as numbers were down, they were released in strictness. Or some other restrictions

never were implemented in full strictness. Because of these aspects, some containment policies

have shown positive correlation with daily death and new cases numbers; in order of increase

they are C1_ School closure, C3_ Canceling public events and C7_ Restrictions on internal move-

ment. It is worth to mention that the policy C7_ Restrictions on internal movement has a very

low significance in relation with death numbers directly, whereas it has a higher significance

level for new cases numbers.

The least strictly implemented policy from containment and closure policies was C2_ Workplace

closing - in which case, essential job places were never closed, not all workplaces could be

transferred to remote regime and hospitals themselves as workplaces with very importance were

never affected by this policy. Results can be interpreted in a reverse way: workplaces were

closed(or advised to restrict the number of stuff, remote work options if possible) only when the

numbers were very high. As numbers were down, more and more workplaces were permitted

to reopen.

Two of economic policies did not have any direct impact to daily death numbers. For the model

of daily new cases, only E1_ Income support policy has shown enough significance level to

be considered. However, the correlation can be explained in a reverse way: only when daily

numbers for new cases were high, this policy was implemented and this resulted in a positive

correlation number in incidence of new cases.

The H2_ Testing policy of health system response did not show any direct correlation for death

numbers, at the same time it showed very logical and consequential correlation for daily new

cases numbers: each unit increase of strictness of testing policy has resulted in +1.26% increase
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of daily new cases.

H6_ Facial coverings of health system policy was one of most important policies that government

could implement. This policy had a high significance level for both death and daily new cases

numbers and in both cases, it has negative correlation number: each unit increase in strictness

of facial mask requirement policy decreased 1.8% of death numbers and approximately 1% of

daily new case numbers.

Use of overall government response index versus dependent variables has shown that each unit

increase of government response index had a correlation with +2.67% increase of death num-

bers and +1.91% increase of daily new cases numbers.

The results of models represent the relationship between each type policies and consequences

of pandemic spread, and can give justifications and further improvements on government anti-

pandemic responses. Some suggestions are:

International travel restrictions play huge role in decreasing numbers, even if tourism will

be affected the most. That’s why inner tourism should be promoted with all precautions;

Restrictions on gathering is the one of the most useful anti pandemic responses that can

reduce both death and new case numbers as well as stay at home policies;

Public transport should be carefully restricted as not all schools and workplaces are closed;

Public events can be held only if previous policy rules can be implemented; however there

should be strong incentive not to held large public gatherings;

Workplaces should be correctly given an incentive to reduce physical interactions as much

as possible;

Economic policies do not have direct correlations with dependent variable, however, they

are crucial in enhancing the population and businesses for the pandemic crisis times;

Even if a strong testing policy increases the daily new number cases (if it works as intended

- to find new cases), this health system policy is very crucial to find patients (especially

with no symptoms) earlier so that they can be isolated as fast as possible;

And finally, facial mask requirement is necessary to fight against spread of pandemic, and

especially, is useful to reduce the number of deaths.
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APPENDIXA
Extended calculations and proofs

A.1. D models formulas

I will start from equation (A.9):
dI

dt
= λ(N − I)I

dI

(N − I)I
= λdt (A.1)

For the simplification of a fraction in the left part of the equation I will use the method of

unknown coefficients, with the help of which we can break down the expression into simpler

ratios:
1

(N − I)I
=

α

N − I
+
β

I

From which we get:

αI + βN − βI = 1 α− β = 0

βN = 1
α =

1

N

β =
1

N

Putting these coefficients back to a equation (A.1), we get 1

N
N − I

+

1

N
I

 dI = λdt

(
1

N − I
+

1

I

)
dI = Nλdt
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By integrating previous equation in the time interval t ∈ [0; t] and taking into account I(0) = I0,

we get ∫ t

0

(
1

N − I
+

1

I

)
dI =

∫ t

0
Nλdt

(− ln(N − I) + ln I)
∣∣∣t
0

= ln
I

N − I

∣∣∣t
0

= Nλt
∣∣∣t
0

ln
I(t)

N − I(t)
− ln

I0
N − I0

= Nλ(t− t0)

ln
I(t)

N − I(t)
= ln

I0
N − I0

+Nλ(t− t0)

exp

(
ln

I(t)

N − I(t)

)
= exp

(
ln

I0
N − I0

+Nλ(t− t0)
)

I(t)

N − I(t)
=

I0
N − I0

eNλ(t−t0)

I(t) = [N − I(t)] ·
(

I0
N − I0

eNλ(t−t0)
)

I(t)

(
1 +

I0
N − I0

eNλ(t−t0)
)

= N ·
(

I0
N − I0

eNλ(t−t0)
)

I(t) =
NI0e

Nλ(t−t0)

N − I0 + I0eNλ(t−t0)

I(t) =
I0 · eNλ(t−t0)

1− I0
N

+
I0
N
eNλ(t−t0)

A.2. Mathematical formulation of SIR and D models

Here is given short explanations with formulations and calculations from the work of [Amaro

et al., 2020] concerning D models.

It is consider only three states of population, with the total number of N and

S(t) - Susceptible individuals at any given time t;

I(t) - Infectious individuals at any given time t;

R(t) - Recovered individuals at any given time t

With this setting, the first equation can be obtained:

S(t) + I(t) +R(t) = N (A.2)

Notice that N - number of population doesn’t depend on the time, we accept the constant

number for a time interval given.
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Based on assumptions in [Kermack and McKendrick., 1927], which were about constant rate

of spreading disease(at least in the beginning of the pandemics), I have another three set of

ordinary differential equations that describes the SIR model:

dS

dt
= −λSI (A.3)

dI

dt
= λSI − βI (A.4)

dR

dt
= βI (A.5)

where

λ > 0 - transmission or spreading rate. The higher the λ, the faster the increase of I(t)

and faster the decrease of susceptible individuals (minus sign in the equation A.3). λ also

called "flattening the curve" coefficient - because the smaller it is, the smaller the overall

number of infectious individuals;

β > 0 - removal rate. The rate in which infectious individuals are recovering.

This system of differential can be solved, if only I am given initial boundary conditions and

known coefficients of α, β. However, that is not the case for ongoing pandemics, where stochas-

tic processes are occurring and those coefficients may change at any time. Nevertheless, these

equations can be reduced, so that easier analysis can be performed. More advanced theories

and calculations on exponential growth of infectious diseases can be found in the article by

[Ma, 2020].

For the D model(D stands here for death), the main assumption will be

R(t) = 0

At the time being, this assumption can be considered at least for the beginning of the pandemic.

As of now, we still do not have clear information about the antibodies durability and we had the

second time infected patients, for the purpose of this study, I can assume that recovered patients

will not have infinite defense from virus, and they will become again as a part o susceptible

patients, making R(t) ≈ 0.

If we put our assumption back to the equations (A.2),(A.4), (A.5), a simpler system of equations

is obtained:

S(t) + I(t) = N (A.6)

dS

dt
= −λSI (A.7)
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dI

dt
= λSI (A.8)

From equations (A.6),(A.8), it is obtained:

dI

dt
= λ(N − I)I (A.9)

This is the first degree ordinary differential equation, which as shown in the Appendix (A.1),

can be solved in he time interval [0; t] and putting I(0) = I0. Solving this equation gives

I(t) =
I0 · eNλ(t−t0)

1− I0
N

+
I0
N
eNλ(t−t0)

(A.10)

Then, it is introduced the notions

C =
I0
N

where C � 1 (A.11)

and

b =
1

Nλ
(A.12)

By inserting equations (A.11, A.12) into equation (A.10), we get simplified version of infectious

individuals in some given time t:

I(t) =
I0 · e

t−t0
b

1 + C · e
t−t0

b

(A.13)

In order to predict the number of death D out of the infectious individuals, it is introduced the

idea of death rate - 0 < µ < 1 and proportionality of the death numbers to the I(t) but with

some time lag τ . Because the death occurs after some τ time individual gets infected:

D(t) = µI(t− τ)

Using equation (A.13), we obtain:

D(t) = µ · I0 · e(t−τ−t0)/b

1 + C · e(t−τ−t0)/b
(A.14)

D(t) =
µI0e

(−τ)/b · e(t−t0)/b

1 + Ce(−τ)/b · e(t−t0)/b
(A.15)

For further simplification, all coefficients that do not depend on the time t, is simplified by

introducing

a = µI0e
(−τ)/b (A.16)

and

c = Ce(−τ)/b =
I0
N
· e(−τ)/b (A.17)
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Putting a and c into equation(A.15) results in the basic D model formula:

D(t) =
ae(t−t0)/b

1 + ce(t−t0)/b
(A.18)

The most useful side of the equation (A.18) is the possibility of choosing empirically the co-

efficients a, b, c to replicate the actual data. Other coefficients that were introduced until the

reaching equation (A.18) are embedded in the defining formulas of a, b, c, so we do not really

need to know beforehand all the conditions of pandemic initiation and development.
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