
Anno Accademico 2020/2021

POLITECNICO DI TORINO
Corso di Laurea Magistrale in Ingegneria

Gestionale e della Produzione

TESI DI LAUREA MAGISTRALE

ROBUST MIN-MAX REGRET APPROACH

FOR A SINGLE MACHINE SCHEDULING PROBLEM

WITH COMMON DUE-DATE

Relatore:

Prof. Fabio Salassa

Candidato:

Alessandro Guerrazzi

Mat. 268014

1

Summary

0. Introduction…………………………………………….…………….. 3

1. Combinatorial Optimization………………………………………… 5

1.1 What is Combinatorial Optimization……………………………………... 5

1.2 Exact Methods…………………………………………………………….. 8

 1.2.1 Branch & Bound Algorithm………………………………..…...… 9

1.3 Heuristic Methods………………………………………...…………...….. 11

 1.3.1 Constructive Heuristics………………………………………….... 13

 1.3.2 Local Search Methods…………………………………………...... 16

 1.3.3 Metaheuristics Methods…………………….…………………..… 17

2. Robust Optimization……………………………………………….…. 20

2.1 Concept of Robustness…………………………………………………..... 22

2.2 Types and Models of Robustness…………………………………............. 23

3. Overview on Scheduling Problems……………...…............................ 26

3.1 Preliminary Scheduling Concepts………………………………………… 26

3.2 Classification of Scheduling Problems…………………………………… 29

3.2.1 Single Machine………………………………………………….. 29

3.2.2 Parallelel Machines………………………………..…………..… 30

3.2.3 Flow Shop……………………………………………….………. 31

3.2.4 Job Shop…………………………………………………………. 32

3.3 Resolution Methods in Scheduling Problems……………………….……. 33

3.3.1 Exact Methods…………………………………………………… 33

3.3.2 Heuristic Methods………………………………………………. 34

3.4 Robustness in Scheduling Problems……………………………………… 35

4. Problem Description……...…………...…………………………..….. 37

4.1 Concept of Maximum Regret…………………………………………..… 38

4.2 Problem Formulation……..……………………………………..………... 40

2

5. Solution Approach…………...…………………………..………..….. 43

5.1 Maximum Regret Subproblem………………………………............…… 43

5.2 The Nominal Problem………………………………………………….… 47

6. Performance Tests……………………………………………………. 52

6.1 Test Structure………………………………...……………………....…… 52

6.2 Result Analysis………………………………...…………………..……... 57

7. Conclusions……………………………………………………..……... 61

Bibliography……………………………….………………….. 62

Appendix……………………………………………….…......... 63

3

Introduction

This thesis aims to give to firms a tool that supports short-term
decisions about the processing order of different jobs on a single
machine.
In particular, a lot of companies often face scheduling problems
where the goal is to minimize the number of overdue jobs or,
simply, delays. The importance to find a good solution has impact
not only for customer loyalty but, most of all, in terms of
production costs: usually delays, due to contractual constraints,
involve the payment of penalties related to the number of late jobs
or related to the overall amount of delay. In these situations, if the
order scheduling is not computed by a robust tool, decisions
follow, in most cases, the importance of jobs or the importance of
the customer without having an overall view of the different effects
that the entire schedule entails. Unfortunately, these soft resolution
methods don’t ensure an optimal solution but only a solution that
may or may not be considered good enough.
The idea behind this thesis is to present and to explain an algorithm
that, given a number n of jobs and parameters for each one, returns
a schedule order with the objective to minimize the weighted
number of jobs completed after a specific due-date. It’s very
important to understand that the presented algorithm doesn’t
ensure the calculation of the optimal solution but simply a solution
that we can consider sufficiently close to the optimal one: we might
be lucky and get the best schedule, but if that doesn’t happen we
are sure to obtain a sufficiently good solution. The difference
between the proposed solution method and a simply subjective
scheduling method, since both don’t ensure the optimal schedule,
is given by the reliability of the solution: behind the first one there
is a defined scientific criterion described by the concept of

4

maximum regret, while in the second one there may not be a
criterion that makes the scheduling completely reliable in terms of
achieving the objective function.
Finally, we have to emphasize a strong assumption: the jobs, which
will be processed in the same machine (single machine scheduling
problem), have uncertain processing times described by intervals.
However, there is also no information about the probability
distribution of processing times within the intervals. So, we have
to face a scheduling problem in which the timing scenario is not
deterministic for each job but completely random between a lower
and an upper bound.
In Chapter 1, we discuss the topic of Combinatorial Optimization
that is the basis of our solution algorithm; in Chapter 2, we analyze
the concept of robustness of an algorithm in Combinatorial
Optimization by distinguish the deterministic case and uncertain
variables case; Chapter 3 is dedicated to the concept of scheduling
which will lead us, subsequently, to a complete description and
formulation of the problem (Chapter 4); in Chapter 5, a solution
approach and its execution are described from a logical and
demonstrative point of view; in the Chapter 6, some tests are
performed and explained to verify the robustness of the solution.
Finally, in Chapter 7, the results obtained and the general
conclusions are discussed.

5

Chapter 1
Combinatorial Optimization

1.1 What is Combinatorial Optimization

In everyday life and in particular industries, there are frequently a
series of problems that require an effective solution methodology
in supporting decisions. The central argument of this thesis is the
theme of problems that can be solved through Combinatorial
Optimization (CO) and to understand their meaning we try to break
down the definition into its two terms: optimization means looking
for the optimal solution within a set of feasible solutions, for
example the shortest route from Rome to Florence or the reorder
quantities which minimize overall transport and warehouse costs
for a company; combinatorial, on the other hand, represent a subset
of optimization problems which by characteristic possess a finite
set of feasible solutions. To better understand the concepts, we
make some examples:

 A steel plant, every week, have to program the quantity of
steel (in kg) to be processed to minimize production costs in
face of a known demand and some internal constraints;

 A transport company, every day, have to establish the
shortest route to minimize delivery times.

Both problems, although coming from completely different
realities, have a common factor: the need to look for a solution that
better than any other satisfies the final objective of minimizing
costs (in the first case) or minimizing time (in the second case).
The substantial difference, however, is in the structure of the set of
admissible solutions: the quantity in kg to be produced for a steel

6

plant is a continuous variable and, as such, makes the range of
possible solutions infinite; on the other hand, the different routes
that a transport company can evaluate are limited and, even if they
were an exorbitant number, one of them is certainly cheaper than
the others. As we can see, for definition given above, the second
example is the one that falls within problems that can be solved
through combinatorial optimization, while the first example, in
which the solution is to be found within a continuous set, belongs
to the world of Linear Programming (LP) and has a completely
different solution approach.

In Operational Research, generic optimization problems are
formulated through a mathematical modeling of the type:

𝑚𝑖𝑛 𝑓(𝑥) (1)
 𝑔 ≤ 𝑘 (2)

The first row (1) represents the so-called objective function f (x),
that is the “entity” which is object of optimization of the type min
or max - for example you want to maximize the profit deriving
from an investment or create the secure portfolio with minimal
risk. The second line (2) instead represents a generic constraint, for
example the investment sum that must not be exceeded or the set
of admissibility for some variable values. Obviously, numerous
constraints can exist in more complex structures. In addition to the
objective function and constraints, there are other fundamental
logical constructs in the mathematical formulation of a problem
such as sets, decision variables and parameters. Sets are a
grouping of elements that share the same characteristic, for
example the set W of the investments to be evaluated or the set R
of the productive resources available in a company. The decision
variables are those not immediately defined but object of definition
in the search for an optimal solution, for example the number of

7

jobs to be processed daily in order to minimize production costs.
Finally, the parameters represent known values such as the
production capacity of a plant or the maximum number of daily
transactions to be respected.

One of the most famous optimization problems is the Knapsack
Problem, of which we provide a description and a mathematical
model. In particular, we have N items and a knapsack. Each object
i is represented by a volume wi and an importance value vi. The
purpose is to maximize the total importance of the objects that we
choose to place in the knapsack respecting a capacity constraint k.

𝑚𝑎𝑥 ∑ 𝑣 𝑥 (1)

𝑠. 𝑡.

∑ 𝑤 𝑥 ≤ 𝑘 ∀𝑖 ∈ 𝑁 (2)

𝑥 ∈ {0,1} ∀𝑖 ∈ 𝑁 (3)

Of course, the input data is such that it is impossible to select all
objects without exceeding the capacity limit k; therefore, it is
necessary to decide which ones to insert and which not. We define
individually all the elements and constructs present:

 N: set of available objects (each generic object is indicated
with the subscript i);

 xi: binary decision variables; they can only take the values xi
= 0 (object i is not inserted in the knapsack) and xi = 1 (object
i is inserted in the knapsack);

 wi: volume of the object i;

8

 vi: importance of the object i;
 k: knapsack capacity.

The objective function (1) is therefore a maximization of the total
value of the objects that are inserted in the backpack, in which
those with a term with xi = 0 do not contribute to the total sum; the
constraint (2) imposes an upper bound on the insertion of objects,
or the capacity of the knapsack; the constraint (3) indicates the
admissibility set of the decision variables which, in this case, is of
the binary type.

As it is possible to notice, there is a finite set of solutions that
coincides with all the possible combinations of objects that respect
the capacity constraint; the aim is to select the grouping with the
highest overall value. Therefore, given the discrete structure of the
admissibility set of the solutions, the knapsack problem falls within
the combinatorial optimization problems. Otherwise, if we had
modeled the production problem of a steel plant, the constraint on
the decision variable indicating the quantity to be produced would
have been of the type Q ≥ 0, that is any non-negative value which
therefore represents a continuous variable. In general, from a
mathematical point of view, if decision variables are binary, the
problem is a combinatorial optimization problem.

The solution approaches of combinatorial optimization problems
are divided into two categories: exact methods and heuristic
methods.

1.2 Exact Methods

The exact methods are solution algorithms that investigate the
entire set of solutions to ensure the search for an optimal solution

9

(or affirm its inadmissibility). The advantages of using an exact
method are many, for example the possibility of having some
indications on the lower bound and the upper bound of the optimal
solution if the procedure stops prematurely. Among the
disadvantages, the most significant is certainly the search time for
a solution which in some problems may be acceptable while for
others it is not reasonable. For this reason, over the years, more and
more efficient exact methods have been developed to obtain the
optimal solution, among which one of the most important is
certainly the Branch & Bound.

1.2.1 Branch & Bound Algorithm

Branch & Bound is a solution technique for combinatorial
optimization problems that uses an efficient exploration procedure
of the solution tree. To understand how it works, let's imagine a
scheduling problem where it is necessary to decide the processing
sequence of n jobs in order to minimize delays. With n jobs, we
have n! different sequences that form the set of solutions:
obviously, one (or more) of them is the optimal solution and for
this, as we will see later, scheduling problems can be categorized
as combinatorial optimization problems. The solution tree is
instead the logical composition structure of each feasible solution,
and for n = 3 there is a representation in Fig. 1.
As we can see, at the roots of the tree there are all the admissible
schedules, while the so-called “branches” represent a partial
composition (or a path) that can be followed to reach one solution
rather than another. The Branch & Bound algorithm starting from
an initial solution that it deems good enough and, in this example,
explores the entire tree in search of a schedule that can return, in
terms of objective function, a better result than the one currently
stored. The exploratory procedure is not random but only those

10

paths in which it is reasonable to go deeply to look for a solution
are investigated; in other paths, which in the best case would return
a worse solution than the current one, no analysis is carried out and
the branches are therefore “cut”. Whenever the algorithm identifies
a better schedule, the optimal solution is updated and the
exploration continues. The main advantage lies in computational
savings, since not necessarily all possible solutions are questioned
to establish which is the best one. Note that, although the algorithm
seems to take shortcuts, no feasible solution is excluded ex-ante:
once a parent-node does not possess the characteristics to generate
a better solution, these characteristics are inherited by all the child-
nodes and so on.

As mentioned above, one of the main criticalities of exact methods
is the search time for a solution which, in some problems, is not
sustainable. The advantage of obtaining an optimal solution is at
the same time the disadvantage of patiently analyzing the entire
solution tree: in scheduling problems, in particular, resorting to
exact methods is almost impossible. To understand its complexity,
let's imagine a likely situation with n = 30 jobs; in the worst case,
if the algorithm took a second to analyze each of the n! schedules
(2.65E+32 different permutations), we would get an optimal

Fig. 1: Solution tree for a scheduling problem
with n = 3 jobs

11

solution after 8.45E+24 years. The Branch & Bound method could
reduce the search time which, in all probability, would remain
equally unacceptable. To find a solution to this difficulty, let's
analyze a second class of solving methods for combinatorial
optimization problems, namely heuristic methods.

1.3 Heuristic Methods

The seen methodologies guarantee, at least in theory, to solve a
combinatorial optimization problem in an exact way, that is, to find
a feasible solution that corresponds to the optimum of the objective
function among all admissible solutions. Heuristic methods (from
the greek heuriskein, to discover), on the other hand, represent
algorithms for obtaining a “good solution” in a reasonable time; in
particular, the search for an optimal solution is given up in order to
favor a sufficiently acceptable issue of resolving promptness. This
approach can be corrected for several reasons: first of all, the
search for an approximate solution is what is needed in reality
when dealing with large problems where, moreover, the
parameters involved represent estimates subject to error;
moreover, the search for an optimal solution may have the simple
purpose of evaluating, in general, which direction to converge in
the decision-making field and, therefore, a sub-optimal solution is
sufficient. In most combinatorial optimization problems it is
possible to implement specific heuristics that exploit the
characteristics of the considered problem and the experience
deriving from the knowledge of the sector to obtain a high quality
solution.

Let's take an example of heuristics:

12

Suppose a group of 8 jobs that can be worked indifferently on two
identical machines. Each job has its own processing time and the
common due-date is 9 min. The goal is to create a job schedule that
minimizes the maximum overall delay, regardless of the number
of delayed jobs.

Job-1(2 min); Job-2(3 min); Job-3(1 min); Job-4(3 min); Job-5(6
min); Job-6(2 min); Job-7(5 min); Job-8(3 min)

An heuristic method suggests that a quick, but still robust solution,
is to sequence jobs in ascending order of processing time using
both machines in parallel. Obviously, each job can be worked on
only one machine and each machine must finish processing a job
before starting a new one. In this way, the result is as shown in Fig.
2.

Without using an exact method and, therefore, without
investigating all possible combinations, there is no absolute
certainty that a gap of 4 minutes on this schedule is the optimal
solution; we can only say that a 4-minute result, using this heuristic
method, is an admissible solution to the problem.

Fig. 2: Scheduling example resulting from using an heuristic method to
solve the problem

13

A possible classification of heuristic methods is the following:

 Constructive heuristics
 Metaheuristic methods
 Approximate algorithms
 Hyper-heuristics

In particular, we will analyze in more detail the constructive
heuristics and the metauristic methods, while the approximate
algorithms and the hyper-heuristics will not be mentioned.
Moreover, before introducing metaheuristic methods, in sub-
chapter 1.3.2 a famous class of solving methods in the heuristic
field is described, namely the local search methods.

1.3.1 Constructive heuristics

Constructive heuristics represent a class of algorithms where,
starting from an empty set, a good feasible solution is iteratively
“created” by adding one element at a time. In scheduling problems,
for example, if we had n = 3 jobs, a constructive heuristic has the
task of filling a vector of three elements, indicating step-by-step
the job i that entry in the sequence. The peculiarity of these solution
methods is that the elements that form the solution are never re-
called into question once inserted. Of course, the process ends
when a complete solution is generated.

Among constructive heuristics we distinguish:

 Greedy algorithms;
 Algorithms that simplify potentially exact procedures;

14

In addition to them, there are obviously other types of constructive
heuristics such as, for example, algorithms based on exact
optimization techniques.
The idea behind the greedy algorithms is very simple: at each
iteration, choices are made that seem optimal only at the moment
of choice. Therefore, the correctness of the solution is not always
guaranteed, but they are often very simple and efficient methods.
In particular, at the generic iteration k, the algorithm is myopic with
respect to the globality of the problem and has the task of obtaining
an optimal local solution only for the subproblem k; after that, a
local optimal solution will be found for the subproblem k + 1 and
so on until the end of the procedure. To better understand how this
algorithm works, let's take an example:

We resume the scheduling problem with n = 3 jobs. Above all,
remember that the aim is to minimize the number of delayed jobs
by deciding the optimal processing sequence. In this regard, we
add a fundamental parameter: the processing time pj for a generic
job j. A step-by-step greedy algorithm could be the following:

1. Generate an empty set S of n elements and initialize the counter

variable k = 0;
2. If k = 3, the algorithm ends (that is, the sequence is complete);

Else Select the job with the shortest processing time and insert
it in position k; after which set k = k +1;

3. Go to step (2).

The general idea of this algorithm is to process jobs in increasing
order of processing time pj; in this way, the most quick jobs are
promptly processed while the most durable jobs are queued. This
solution approach is obviously subjective; as previously
mentioned, an expert in this field could take advantage of his

15

experience and choose to implement a totally different algorithm
to achieve the objective function more effectively. Let's make
some observations:

 This procedure does not investigate the totality of solution
set (Fig. 1), but uses a totally subjective approach to reach a
good feasible solution: therefore, it is a heuristic method;

 The final sequence is built iteratively until k = 3 (complete
sequence); therefore, it is a constructive heuristic method;

 At each iteration k, an optimal local solution is extracted on

the basis of the jobs still to be inserted in sequence and
according to a subjective criterion for selecting the jobs with
shorter processing time; this means that the jobs already
processed are no longer re-called and, therefore, it is a greedy
algorithm.

Algorithms that simplify potentially exact procedures, instead,
foresee the use of a solution algorithm that partially uses an exact
method. The simplest variant is that obtained by terminating a
Branch & Bound algorithm after a certain time-limit or after a
predetermined number of nodes and exploiting the best feasible
solution generated up to that moment. For example, in certain
problems in which the search for an optimal solution is not
essential, it is useful to obtain an indication of its lower or upper
bound; hence, by executing an exact algorithm for a certain period
of time, good quality solutions are certainly obtained.

16

1.3.2 Local Search Methods

The basic idea of the Local Search Methods is to define an initial
solution (current solution) and try to improve it by exploring an its
appropriately neighborhood. If the optimization around the current
solution produces an improvement, the procedure is repeated
starting, as current solution, from the solution just determined. The
algorithm can terminate for several reasons:

 It is no longer possible to find better results around the
current solution and this one represents an optimal solution;

 The current solution coincides with a limit value (upper
bound or lower bound of the objective function) and
therefore we have reached the optimal solution;

 The procedure provides for the insertion of a time-limit
which returns the best solution obtained up to that moment.

A generic Local Search algorithm can be described as follows:

1. Determine an initial solution k;
2. If there exists a solution k’ in the neighborhood of k for which

f(k’) < f(k), then k = k’;
If f(k) = LB, k is an optimal solution and the algorithm
ends;
Else Go to Step (2);

3. Else k is an optimal local point.

Note that in this case the aim is to minimize the objective function;
a dual algorithm can be implemented for the maximization of f (k).

17

We reiterate that, in general, local search methods guarantees to
find only optimal local points, that is, solutions in which there are
no better solutions around. The previously described algorithm can
be used in a large variety of problems; however, it remains to be
defined how to extrapolate an initial solution, how to define and
explore a neighborhood and how to evaluate obtained solutions.
Answers to these questions are not univocal but depend on the type
of problem, the industry and, sometimes, experience: it is possible
that a procedure for generating an initial solution is effective in
certain problems but completely ineffective in others.

Local search methods are useful for better understanding the next
class of approximate solution methods, namely metaheuristics.

1.3.3 Metaheuristics Methods

In recent years, the study of a new type of algorithms has been
introduced which, by combining heuristic methods, are able to
explore the solution space more efficiently. These algorithms are
called metaheuristics.
“A metaheuristics is formally defined as an iterative generation
process which guides a subordinate heuristic by combining
intelligently different concepts for exploring and exploiting the
search space, learning strategies are used to structure information
in order to find efficiently near-optimal solutions” [Osman and
Laporte, 1996].

In other words, metaheuristics are high-level solution strategies
that, using different methods, guide the search process within the
solution space so that a rational exploration is made in certain
areas in which it is reasonable to perform a search; the goal is to
reach sufficiently good solutions in a very short computing time.

18

Fig. 3: Structure of Optimization Algorithms

They can be considered as a third category of solution approach,
beyond exact methods and heuristics, to solve optimization
problems. The exact methods, which explore the entire solution
space through an exhaustive research, guarantee the achievement
of a global optimal solution; the disadvantage, as already
mentioned, is the great sensitivity to the extent of the problem
which, in many cases, could lead to giving up the search for an
optimal solution. Heuristics ad-hoc, instead, are approximate
methods of searching for a sub-optimal solution in a reasonable
time. Metaheuristics aim to have an intermediate resolution
efficiency and, in particular, they are not exhaustive like the exact
methods but use combinations of heuristics in a more intelligent
way (Fig. 3). For example, in relation to the problem, I could
exploit the effectiveness of a heuristic to find a good initial solution
and the effectiveness of a second heuristic to explore its
surroundings.

There are different ways to classifying metaheuristics. The most
important division is that between Trajectory Methods vs.
Population-based algorithms.

19

Fig. 4: Example of Trajectory concept

Trajectory Methods

The great merit of local research lies in representing an excellent
compromise between simplicity of implementation and results
obtained. However, the stopping criterion used trapped the method
within local minimum points. In some exceptional cases, the
characteristics of the neighborhoods guarantee that a local
minimum point is also a global minimum point, but this remains
an exceptional circumstance.
In recent years, a number of evasion methods from local minimum
points have been developed. Some of these, the trajectory methods,
build a real trajectory in the search space by memorizing the best
solution that is encountered along the “way” (Fig. 4). The basic
mechanism is that seen for local search methods with the only big
difference that, in this case, other possible places are explored in
solution space where it is possible to study a neighborhood that
could potentially yield a better solution than the current one. The
main features of these methods are the randomization of the
exploration and the memorization of the solutions already
explored: this avoids possible cycles in the event that, in the
exploration of a further neighborhood, worse solutions are
accepted.

20

One of the most famous trajectory method is the Tabu Search
algorithm, which is an excellent compromise between quality of
performance and computational effort.
The Tabu Search algorithm is a local search method capable of
evading from local minima exploiting memory mechanisms
(mentioned above). In fact, the search without keeping track of the
exploration history of the solution space only remembers the best
solution explored up to that moment (which coincides with the
current solution in the local search) and the corresponding value of
the solution. In this way, if worsening moves are accepted to revisit
a certain solution, there are no structural elements to avoid
returning to solutions already visited and, therefore, the only way
to avoid cycling is by chance. In the Tabu Search, we try to exploit
the structure of the search space, memorizing some information on
the solutions already visited in order to orient the search and escape
from local minima avoiding cycling. Basically, this is achieved by
changing the neighborhood of the solutions according to the
history of the exploration, making some neighbors "taboo", that is,
not explorable at that moment.

Population-based algorithms

The methods described in the previous section have the
characteristic of constructing a punctual trajectory in the solution
space, considering, at each iteration, only one solution. On the
other hand, there are metaheuristics which maintain a population
of solutions, i.e. a set of several solutions, and, at each iteration,
combine these solutions together to obtain a new population. The
idea is that, through appropriate recombination operators, better
solutions can be obtained than the current ones.

21

A class of population-based algorithms is that of Genetic
Algorithms, which are distinguished mainly by their simplicity of
implementation and their adaptability to multiple types of
problems.
The basic principle of genetic algorithms follows the evolutionary
theory of individuals and their adaptation to the environment in
which they live. In particular, an analogy is recreated between
groups of admissible solutions and individuals in society, who
share, in some way, the same characteristics: individuals combine
with each other to generate new and different individuals who will
be part of the “populations” following; those who participate in
reproductive processes are the individuals most adapted to the
environment in which they live.
Genetic Algorithms try to simulate the evolutionary process by
creating a logical matching between individuals and solutions,
each in its own environment; therefore, a fitness measure that
describes the adaptation quality is established for each solution.
Very generally, genetic algorithms start from an initial population
of solutions and generate iterative evolution. At each iteration, the
solutions are evaluated according to their level of adaptation and,
on the basis of this evaluation, some of them are selected, favoring
the parent-solutions with greater fitness. The selected solutions are
recombined together (as a real reproduction) to generate new
solutions which tend to transmit the good characteristics of the
parent-solutions to subsequent generations (child-solutions).

22

Chapter 2

Robust Optimization

In the previous chapter we have introduced the topic of
Combinatorial Optimization, its limits and some hints on solution
approaches. In particular, we have mentioned the existence of
some resolution methods that unlike the so-called exact methods,
i.e. algorithms that analyze the entire solution tree to find the
optimal one, investigate only a subset of the solution set. The goal
is to bypass some limits of Combinatorial Optimization, especially
the search for a solution in an unreasonable time.

2.1 Concept of Robustness

In many cases, however, in the attempt to find an optimal result,
solution algorithms are implemented in which parameters are
considered deterministic, therefore not subject to any uncertainty.
This is a very strong hypothesis since a wrong approach to the
problem or an inability to predict the behaviour of some factors can
lead to serious errors in solution evaluation and, in particular, in its
quality, reliability and feasibility.
Problems already discussed or heuristic methods mentioned in the
previous chapter, assume, for example, parameters without
uncertainty (e.g. knapsack capacity, due-date, job processing time,
etc.) even if, in reality, we don’t have any conviction about the
manifestation of those values. Obviously, there are factors whose
variability has a low impact on solution performance while, on the
other hand, there are factors that require an accurate forecasting of
possible scenarios.

23

As result of this, in recent years, a new branch in optimization
methods has emerged, called Robust Optimization.
The robustness of an algorithm defines its ability to respond
promptly and effectively to the possible variations to which the
system is subject. Therefore, in the deterministic case, the solution
approach returns a solution that can be considered the optimal one
only in the event that there is no variability of the parameters with
respect to those provided in the model.
In the Knapsack Problem, for example, we have defined the weight
of each items wj as if they were known upstream. Under this
assumption, however, the solver generates a solution that can be
sensitive to any variation: if real weights are completely different
from the hypothesized one, we would obtain a completely wrong
and, probably, highly dangerous solution. Similarly, the knapsack
capacity k may not be known upstream but, for example, is defined
within a range of values. The damage resulting from an incorrect
decision can be immediately visible if the problem is an
operational problem that requires a solution for short-term
decisions; on the other hand, if it’s necessary to solve a strategic
problem, the effects could only be visible in the long-term. The
substantial difference is in the correction costs which, in the
second case, risk being highly significant.

2.2 Types and Models of Robustness

In many cases, a solution can be defined robust if, under certain
conditions, it behaves reasonably with respect to characteristics of
quality, optimality and feasibility; in other cases, a solution is
robust if, given the nature of the problem, it’s the best choice even
in a worst-case scenario. So, it’s possibile to distinguish several
types of uncertainty within an optimization problem:

24

Uncertainty in the feasibility of the solution
In this case, it’s necessary to understand if the solution obtained
can exist for each combination of the parameters considered (or for
each possible scenario). Therefore, there is a trade-off between the
search for a solution with respect to the established parameters and
the quality of the solution obtained;

Uncertainty in the optimality of the solution
In relation to the set of uncertainty chosen, the optimality of the
solution found can be altered. In this case, a robust optimization
algorithm is the one that performs correctly in all different
scenarios;

Uncertainty in the optimization problem
Uncertainty is mainly generated by errors in the evaluation of some
parameters or by changes caused by external environment.

Depending on the problem nature, there are different models to
approach a robust solution. A brief classification was made below:

 Strict Robustness
Optimization problems with a Strict Robustness approach
are those in which every possible scenario is of critical
importance. Therefore, it’s fundamental to consider all
possible manifestation of uncertain parameters before
extracting a robust solution. For example, in aerospace
industry, it’s not possible to ignore critical scenario which,
although unlikely, could impact the aircraft stability; in
scheduling problems, on the other hand, an unfavorable
event has a lesser impact than the previous case.
This is the strictest and most stringent robust optimization
approach.

25

 Cardinality Constrained Robustness
This approach is less stringent than the previous one. This is
because it’s considered only a subset of critical parameters
from the entire set of uncertainty: this subset is able to
autonomously create an unfavorable scenario regardless of
the value assumed by the other parameters not considered.
The latter can be modeled with their most frequent value.

 Adjustable Robustness
In this case, the space of uncertainty is divided into two
groups: in the first one, there are variables that can be
evaluated before the occurrence of the generic scenario k; in
the second group, instead, there are variables that can be
determined after observing the scenario k. The purpose of
this subdivision is to further relax the space of uncertainty.

 Light Robustness
Another way to relax a strict robustness is to ease some
problem constraints to accommodate a higher quality
solution. The basic concept is that a good solution that
respects the restrictions can be found close to a good solution
calculated in the most likely scenario (the average case). For
this reason, there is a trade-off between robustness and
quality of the solution.

 Regret Robustness
This relaxation method, as we will see later, calculates the
difference in terms of objective function, in a generic
scenario k, between a possible solution and the one with the
best target value for that scenario.

26

Chapter 3
Overview on Scheduling Problems

3.1 Preliminary Scheduling Concepts

Scheduling is a decision-making process that concerns the
allocation of limited resources over time. In general, the associated
decision process requires determining the order in which the set of
activities is performed, the time in which each activity is performed
with the aim of pursuing a certain goal.
Resources, activities and objectives, depending on the context, can
have different aspects. In particular:

 The resources can be the machines that make up the

production plant of a company or the branches that a bank
owns;

 The activities correspond to the elementary processes
carried out on the resources, for example the processing of a
material or a home delivery;

 The goal, on the other hand, may be the minimization of
delivery delays or the average time to complete a given
process.

The term “scheduling” refers to a vast class of problems, very
different from each other in complexity and structure. However,
unlike what happens for other areas of combinatorial optimization,
for more complex scheduling problems it is not possible to indicate
a single solution approach but it is more appropriate to use heuristic
or approximate methods (as mentioned in Chapter 1). In most
cases, the limited (and sometimes scarce) resource to be optimally
allocated to certain activities is the time factor.

27

Let's take an example:

Suppose we have two perfectly identical production departments
for the manufacturing (activities) of footwear and a list of orders
to be fulfilled. Contracts stipulated with customers provide for the
payment of a penalty for each day of delay with respect to that
agreed for delivery. When problems of this type are faced,
especially in cases where resources are so limited that they cannot
be allocated to all activities, it is essential to establish a solution
method that returns the optimal processing sequence in order to
best meet the objective, which in this case is the minimization of
the penalty costs. In other words, if the resources available (the two
departments and the time) are not sufficient to fulfill all the orders
before their due-date, then it is necessary to decide which jobs to
process first and which jobs to queue even if paying a penalty.

Scheduling problems usually satisfy operational and consequently
short-term decision-making processes. On the other hand, when
decisions need to be made at a strategic or tactical level (eg.
opening a warehouse or not or choosing the production capacity
for a company) completely different solution approaches are used.
In general, scheduling activities is a process that can be repeated
periodically and that has an impact only within a limited time
interval. For example, every day a workshop can decide the order
of processing of some repairs or a student can organize the order
of study of their subjects in order to have an optimal preparation
for the exams.

The parameters associated with the job j to be processed can be of
various kinds:

 Processing time pj, which corresponds to the time that job j
can request on machine i;

28

 Delivery time dj, or the instant of time beyond which the job
is considered late;

 Weight wj, which represents the relative importance of job j;
 Release time rj, which indicates the instant of time in which

job j enters the scheduling process.

As regards the scheduling objectives, it is useful to introduce some
variables that are important in the definition of an objective
function:

 Completion time Cj, represents the instant of time in which
job j ends its processing;

 Lateness Lj, indicates the difference between the completion
time of a job and its delivery date, therefore Lj = Cj – dj. We
can note that if Lj > 0 then job j is late, while if Lj < 0 then
job j is early;

 Tardiness Tj, coincides with lateness Lj when it is positive
and assumes value 0 otherwise, that is Tj = max {0, Cj – dj}.

Starting from these elementary performance measures, it is
possible to construct more complex and articulated variables that
better represent the elements to be optimized in the scheduling
problem.

In scheduling problems, a synthetic three-field notation a|b|c is
usually used to describe a specific scenario and the objective to be
achieved:

 a: identifies the machine system (1 for single machine, P for

identical parallel machines, F for Flow Shop and J for Jop
Shop);

 b: represents particular characteristics of the jobs (eg.
priority constraints);

29

Fig. 5: Structure of a Single Machine case

 c: indicates the measure of performance that requires
optimization.

3.2 Classification of Scheduling Problems

One of the most common methods of classifying scheduling
problems is that relating to the characteristics of the system under
consideration. The possible architectures of a production (or
service) system are many, and in this chapter the most frequent
cases will be analyzed.

3.2.1 Single Machine

Single machine problems are the simplest ones, as all jobs must be
processed on the same resource.

Suppose a production process in which at time t = 0 there are n =
5 jobs to be processed, each with its own processing time pj. The
goal is to minimize the overall waiting times of the jobs, that is min
∑ 𝐶 . In particular, the problem notation is the following:

30

1 // ∑ C

In this case, the solution algorithm SPT (Shortest Processing Time)
suggests sequencing the jobs in ascending order of processing time
pj in order to promptly fulfill the most quickly jobs and queue those
that require more lasting processing. Although the overall
processing time (∑ 𝑝) is the same regardless of the sequence
chosen, the order established according to SPT allows for faster
disposal of orders and therefore, overall, a more efficient and
optimal fulfillment process.
So if the vector p of the job processing times is composed of the
elements {8,16,10,7,2}, the optimal processing sequence would
become {2,7,8,10,16} where each element of the vector
corresponds to a job j.
A second variant of this problem is the presence of a relative
weight wj for each job j. With the same objective function, min
∑ 𝐶 , the WSPT (Weighted Shortest Processing Time) algorithm
suggests ordering the jobs in ascending order of the ratio pj / wj to
obtain the optimal sequence.
In addition to these examples, there are numerous types of single
machine problems where each one has its own characteristics and
performance measures to be optimized.

3.2.2 Parallel Machines

Parallel machine scheduling problems are usually presented as
situations where a group of n jobs can be processed on m machines
in parallel. Therefore, unlike the previous case, there are m
resources that can carry out the same activity at the same time.

31

Fig. 6: Structure of a Parallel Machines case

Suppose a production process in which at time t = 0 there are n =
5 jobs to be processed, each with its own processing time pj. The
goal is to minimize the maximum Completion Time, that is min Cmax
having m = 2 identical machines available in parallel. The problem
notation is as follows:

P // Cmax, or better 2 // Cmax

The Longest Processing Time (LPT) rule assigns the longest m jobs
to the m machines. Later, when a machine is free, the unscheduled
job with the largest processing time is assigned to it, and so on.
This solution methodology tries to assign the shortest jobs at the
end of the scheduling process where they can be used to balance
loads between machines.

3.2.3 Flow Shop

The main feature of scheduling problems of the Flow Shop type
lies in the production process of the jobs: in particular, in absence
of priority constraints, jobs follow the same processing cycle

32

consisting of a certain number of phases according to a predefined
sequence. Therefore, all jobs share production steps that can
represent, for example, the departments of a company. If we think
of a footwear company, each product goes through production
phases with a rigid sequence, such as the cutting of raw materials,
hemming and final assembly. Of course, there may be numerous
variants of Flow Shop problems: in the simplest case each task can
be carried out only on a single resource (only one cutting machine
available), while in more complex cases there may be more
resources for a single task. The goal is to generate the work order
so that a certain objective is optimized. In problems of this type,
the objectives can be multiple, for example the minimization of the
overall completion time of all the processes or the minimization of
the overall delay time. As in the previous cases, there may be
different solution methodologies that return sufficiently good
solutions, among the most important we find the Johnson’s
algorithm.

3.2.4 Job Shop

Finally, the Job Shop scheduling problems are the most complex
to manage as numerous assumptions of the previous cases are
relaxed. In fact, in the standard version there are n jobs and m
operations O1, O2, …, Om to be carried out on certain resources.
Each job can have a different production process that follows a
rigid and well-defined work order: therefore, for example, Job 1
needs to perform operations O1 and O2, while Job 2 follows the
process O3, O2, O3. In addition, there may be priority constraints
between the n jobs and in the most common cases it is important
to respect the order of arrival and consequently the processing
order.

33

3.3 Resolution Methods in Scheduling Problems

The search for optimal solutions in scheduling problems is often
the subject of reflection. As can be seen, the optimal sequence
certainly belongs to a finite set of solutions of amplitude n! (with
n number of jobs considered), i.e. all possible extractable
permutations. Therefore, trivially, it would be enough to
enumerate the entire set of solutions and select the sequence that
best satisfies the objective function. However, this resolutive
procedure has operational limits: in fact, with a sufficiently small
number of jobs it is possible to obtain a solution in a reasonable
time while with a modest number of jobs, however, the waiting
times could be long or even unacceptable. To get an idea, with n =
10 jobs we have 10! = 3,628,800 different permutations, while with
n = 30 jobs there are instead 30! = 2.65E + 32 candidate solutions:
in the first case, assuming a processing time equal to 0.5 seconds
per permutation, the optimal solution will be returned after about
40 days; in the second case after 1.33E + 32 years. As in Chapter
1, we can distinguish the solution methods in two different
categories: the exact methods and the heuristic methods.

3.3.1 Exact Methods

The exact methods are distinguished by their completeness and
effectiveness in the search for the optimal solution. In particular,
they are solution methods that undoubtedly return the best solution
(unlike heuristic methods that return an approximate solution
instead). When the number n of jobs is quite small, the exact
methods represent an ideal class of algorithms in solving
scheduling problems. Among them, we can further distinguish the
construction methods and the enumerative methods:

34

Constructive methods are able to generate an optimal solution by
simply using strict priority rules in the sequencing of jobs based on
the nature and structure of the problem. Among these we can find
the SPT and WSPT algorithms seen above.

Enumerative methods, on the other hand, are algorithms that
analyze the set of solutions and that can be made more efficient to
obtain a lower computational complexity. For example, algorithms
such as Branch and Bound, albeit analyzing the entire solution tree,
are able to exclude families of solutions that would not guarantee
higher performance than those found up to that moment: in this
way, no analysis is carried out on the child-nodes. and the search
time is reduced.

3.3.2 Heuristic Methods

Where the exact methods have computational limits and the
waiting times for the search for a solution become unacceptable, a
second macro-class of solution algorithms intervenes: heuristic
methods. As explained in Chapter 1, heuristic methods do not
guarantee the search for an optimal solution but a reasonably good
solution with the sole purpose of reducing search times. The
resolution strategies based on heuristic methods are manifold: for
example, some of them favor speed of execution but produce low
quality solutions; others, on the other hand, require longer times
but generate sufficiently reliable solutions. Often we can recognize
in a complex problem some substructures that allow the problem
to be decomposed into simpler subproblems, which can be solved
in optimality. It is then a question of aggregating the partial
solutions in order to obtain the global solution. Often, in this
operation sufficient information is obtained to review the partial
solutions to improve the overall solution. This process ends when

35

it is believed that an acceptable solution has been obtained or when
the solution cannot be further improved. Another widely used
strategy, as it is virtually applicable to any problem, is to
recursively generate a series of solutions obtained from each other
through small improvements. The type of improvement that can be
achieved obviously depends on the structure of the problem under
consideration. The procedure ends when no further improvements
are possible. This kind of strategy, in its simplest form, is called
local search. More elaborate forms have also been proposed, two
of which seem to give good results, one of the deterministic type,
called tabu-search, and which could also be called search with
memory, and the other of the stochastic type, called simulated
annealing, which is based on an interesting physical analogy.

3.4 Robustness in Scheduling Problems

Generally, scheduling problems are studied and solved in a totally
deterministic environment. This means that the parameters and
variables involved are not subject to uncertainty but assume certain
values for the entire duration of the scheduling process. This is a
very strong assumption since the optimality of the solution found
strongly depends on what happens in the real world and on the
noise related to the unpredictability of the external environment. In
most cases, the input data in scheduling problems are the structural
ones (number of jobs, number of resources, number of tasks, etc.)
and those related to the jobs to be processed (processing time,
importance, etc.). While structural parameters are hardly subject to
uncertainty, those relating to jobs are more sensitive to variability.
The processing time, for example, is an unpredictable value: in
many problems that assume deterministic data, the input data
coincides with the most frequent occurrence values. For this
reason, in contexts that require it, it is essential to implement a

36

solution strategy that addresses a probable scheduling problem and
that consciously returns the best solution to the variability of
certain parameters. A first observation is that the solution of a
deterministic problem does not necessarily coincide with the
robust solution, as both have different objectives: for example, the
first aims to find a global optimal solution while the second can
search for the best solution in the face of all unfavorable scenarios
(therefore the best in the worst cases).

37

Chapter 4
Problem Description

Once the concept of Combinatorial Optimization and robustness of
a solution algorithm is understood, a detailed description of the
scheduling problem, object of this work, is presented below;
subsequently, a solution approach is proposed and discussed.

We study a scheduling problem in which n jobs must be processed
in sequence on the same machine. All jobs don’t have an order of
arrival, so it’s not possible to define any priority constraints.
Furthermore, once the job is in progress, it’s forced to finish its
working process before leaving the machine and therefore it’s not
possible to fragment the working time. Each job has an uncertain
processing time defined only within an interval and there is no
indication of its probability distribution: the real value can assume
any value between a lower bound and an upper bound. Finally, all
jobs can have different weights and share a common due-date,
beyond which a job, still in progress, is considered late.
The objective is to find the schedule that minimizes the weighted
number of delayed jobs (or, otherwise, that maximizes the
weighted number of jobs on time).

A similar problem, with deterministic processing times and
common due-date, could be solved by using heuristic methods
capable of returning an optimal schedule. For example, the SPT
(Shortest Processing Time) algorithm provides an optimal
solution, in the unweighted case, by sorting jobs in ascending order
of processing time. Therefore, the fastest jobs are processed
immediately while the longer ones are processed last; intuitively,
it’s difficult to find a more effective algorithm to minimize the
number of late jobs (Fig. 7).

38

However, the decision-maker may not know exactly some starting
data and an algorithm such as SPT, which by hypothesis uses
known values, risk being practically inefficient (or even
dangerous).

When some input data are uncertain, the solution approach to the
problem and the objective function change completely, and the
algorithm to be implemented must be able to work optimally
despite the possible external turbulence that can create unexpected
situations: an algorithm that performs in this way, as already
mentioned, is defined robust. Therefore, the robust approach will
allow a safe scheduling even in the event of an unfavorable time
scenario or, specifically, it will be the one that returns the solution
that performs best despite the worst case scenario occurring.

4.1 Concept of Maximum Regret

When dealing with problems of this type, the concept of maximum
regret is used in the search for a solution strategy in the presence
of uncertain variables. Briefly, it represents the greatest distance,
in terms of objective function, between one solution and one
another that is defined as its adversarial solution.

To understand better, let’s suppose we have to work n=4 jobs with
common due-date on single machine and we consider the schedule

Fig. 7: In the first case, there are 3 delayed jobs after six minutes; in the
second case, with SPT method, there is only one job delayed

39

(1,2,3,4). All four jobs do not have deterministic processing times
but will assume a completely random value between two definite
extremes.
At this point, we can ask what will be considered as the worst-time-
scenario that could happen. A first possibility is to imagine a
situation in which each processing time for each job reaches its
upper bound (an extreme scenario); in this way, apparently, the
whole process will be performed with the greatest possible
completion-time and this would mean maximizing the number of
delayed jobs. In reality, the concept of worst-time-scenario,
according to this point of view, assumes an absolute value: if the
due-date is not too far away, then it’s possible to notice that an
extreme scenario may not guarantee a good solution regardless of
the chosen scheduling, and therefore there is a good chance that
our sequence (1,2,3,4) is no worse than the others; in other words,
there would be no regret if all sequences (including ours), with an
extreme scenario, would return all jobs late. A second possibility
is to consider the worst case scenario as the one that creates the
greatest gap between the number of jobs on-time using the current
schedule and the number of jobs on-time using another schedule
defined the adversarial solution which maximizes, precisely, this
difference. If so, in the event that the worst case scenario occurs,
the time-vector will be such that used by the adversarial schedule,
it will create the greatest difference (compared to our schedule) in
terms of jobs on-time: in this way, we will have regret to not have
chosen the adversarial solution to the current one. It’s important to
note that every possible sequencing has its worst time scenario and
its own adversarial solution. Therefore, is “someone” told us that
the maximum regret choosing the sequence (1,2,3,4) is 12, it means
that 12 is the maximum number (possibly weighted) of jobs that I
could not have sent late by choosing the opponent scheduling; on
the other hand, if sequencing (1,2,3,4) had 0 as maximum regret, it

40

means that (1,2,3,4) is an optimal solution even if its worst-time-
scenario occurs.

Once the maximum regret for each schedule has been defined, the
best schedule will be the one with the smallest maximum regret;
this is because a low regret value indicates a low error that is
committed in the event that an unfavorable scenario occurs. In
other words, it would be the best solution being the most rational
solution to choose.

4.2 Problem Formulation

At this point, it’s possible to give a mathematical formulation of
the problem.

Let J = {1,2,3,…,n} the set of n jobs to be processed. Each job j is
described by a weight wj and a processing time pj included within
a range of real values where 𝑝 and 𝑝 are respectively the

lower bound and the upper bound of the interval; the common due-
date is d; Moreover, let C(π, j) the completion-time of job j in the
generic scheduling π, defined as the sum of the processing times of
the jobs preceding j in the sequence π and the processing time of j.

Subsequently, we define the boolean variable Uj(π) which assume
value = 1 if job j in schedule π is late and value = 0 otherwise, i.e.:

𝑈 (𝜋) =
0 𝐶(𝜋, 𝑗) ≤ 𝑑
1 otherwise

Remember that a job is defined as late when its completion-time
exceeds the value of due-date, even if its work process has started
before d.

41

Now, we can model the objective function by incorporating the
concept of maximum regret previously explained.
Using a generic sequence π, the weighted number of delayed jobs
is the following:

𝐹(𝜋) = 𝑤 𝑈 (𝜋)

Let define the generic time-scenario p as a vector of n elements
that contains the processing times of all the jobs; obviously, since
pj is defined on a set of real numbers, there will be infinite p
vectors:

p = (p1, p2,…, pn) : 𝑝 ≤ pj ≤ 𝑝 ∀ j

At this point, we need to find that scheduling which, using the p
scenario, returns the greatest difference - in terms of weighted
delayed jobs - compared to our schedule π, i.e. the adversarial
schedule σ defined as:

min 𝐹(𝜎, 𝒑)

Therefore, using the p scenario and the π schedule, the regret is
formulated as follows:

𝑅(𝜋, 𝒑) = 𝐹(𝜋, 𝒑) − min 𝐹(𝜎, 𝒑)

The worst time-scenario for schedule π is obtained by finding the
time vector p which, among the infinite ones, maximizes the regret
value R(π,p): in this way, we found the maximum regret for the
generic schedule π that we can call Z(π):

42

𝑍(𝜋) = 𝑚𝑎𝑥𝒑 𝑅(𝜋, 𝒑)

As mentioned above, once we get the maximum regret for each
possible n! schedule, we choose the one with the lowest maximum
regret value:

𝑍(𝜋∗) = 𝑚𝑖𝑛 𝑍(𝜋)

This formulation of the problem, if solved, allows to find an
optimal schedule without giving, however, any indication on the
computational complexity that derives from it. A sensible
observation could be that if with a modest number of jobs, for
example n = 30 jobs, it was necessary to search for the maximum
regret on about 2,65E+32 possible schedules, it would take light-
years to obtain an optimal solution even if a hypothetical calculator
should spend one second for each schedule π.
Therefore, it’s important to underline that, although there is an
exact formulation of the problem, nothing can be said about its
resolutive complexity. Often, to obtain a solution within an
acceptable time, a compromise must be created between the search
time for a solution and the sub-optimality of the solution found.
About that, a solution approach of the problem will be illustrated
in Chapter 5.

To conclude the discussion, we observe that this is a dual problem,
so it’s possible to obtain the same result by coming from two
different paths: either by trying to minimize the number of late jobs
or by trying to maximize the number of jobs on-time. Obviously,
each of these paths must be followed by a strict consistency in the
modelling of the problem.

43

Chapter 5
Solution Approach

In Chapter 4, a mathematical approach and a logical structure of
the starting problem have been provided. In this chapter, instead,
we will introduce a solution approach by describing the theoretical
and practical tools used.

5.1 Maximum Regret Subproblem

Summarizing the structure of the starting problem, we said that (in
order to find an exact solution) it’s necessary to identify the
maximum regret for each of the possible schedules π and finally
choose the sequence with the lowest maximum regret.
In this way, we can ideally divide our problem into two problems
nested one inside the other: the first, given a schedule π, deals with
finding its maximum regret value; the second (the nominal
problem - because it doesn’t present uncertain data) will have to
return, in some way, the sequence with the smallest maximum
regret value.

As mentioned in Chapter 1, there are particular problems in which
the space of solutions is composed of infinite elements and,
therefore, it’s not possible to solve them through Combinatorial
Optimization; in fact, in Maximum Regret Subproblem, the time-
vector p which maximizes the distance between the weighted
number of jobs on-time of a generic schedule π and the weighted
number of jobs on-time in its adversarial solution contains real
values and thus generates an infinite set of solutions; in other
words, it’s impossible to investigate all time-vectors, each of
which identifies a possible scenario.

44

To solve this subproblem, we will use a solution approach capable
of returning optimal solutions even in case of continuous decision
variables: the Mixed-Integer Programming (MIP).
In this way, we will formulate a mixed-integer programming
model that outputs the maximum regret value (with relative time-
scenario) for a generic schedule π given in input the number n of
jobs to be processed, their weights wj, their ranges of values for
processing times [𝑝 ; 𝑝] and, above all, the π schedule

considered. This is a model that, in theory, must be solved for each
of the possible schedules:

𝑚𝑎𝑥 ∑ 𝑤 (𝑧 − 𝑦) (1)

𝑠. 𝑡.

∑ 𝑣 ≤ 𝑑 ∀𝑗 (2)

𝑝 + 𝑝 𝑧 − 𝑣 ≤ 𝑝 ∀𝑗 (3)

𝑝 ≤ 𝑝 ≤ 𝑝 ∀𝑗 (4)

𝑧 , 𝑦 ∈ {0,1} ∀𝑗 (5)

∑ 𝑝𝜋(𝑖) ≥ 𝑑 1 − 𝑦𝜋(𝑘) + 𝜀 ∀𝑘 = 1, … , 𝑛 (6)

The objective function, as already mentioned, is to maximize the
maximum regret value for a schedule π (1). In this model, two
binary variables are provided: zj assumes value 1 if job j is on-time
in the adversarial schedule and value 0 otherwise, while yj assumes
value 1 if job j is on-time in schedule π and value 0 otherwise.
The constraints (2) and (3) are a linearization of a fundamental
constraint that explain the “rules of the game” to the adversarial

45

schedule: in particular, a consecutive sequence of jobs is
considered on-time when its completion-time is lower or equal to
due-date; subsequent jobs, in any order, are defined late. The
constraints (4) and (5) explain the admissibility set of values for
each decisional variable – pj, zj, yj for each job j. Finally, the
constraint (6) allows to establish if the job j at the position k in the
schedule π, given a certain time scenario, is late; it’s important to
note that the value of the objective function increases whenever it’s
possible to send a job k late in the schedule π, and this happens
whether the sum of the processing times of the first k jobs exceeds
the due-date d.

For solution development, this mathematical model has been
translated into Python programming language and subsequently
solved by using a commercial solver for MILP (mixed-integer
linear programming) called The Gurobi Optimizer, while the user
interface that manages the code in Python is that of JupyterLab
produced by Project Jupyter.

The complete code for this subproblem is available in Appendix at
the end of this document (Exhibit 1), where n = 30 jobs with unit
weights wj = 1 were used for simplicity; the values of 𝑝 and

𝑝 for each job and the sequence π (vector x1) have been

inserted randomly; the due-date is equal to 500.
The results of this model, with exemplary input data, are visible in
Fig. 8: the first column represents the time-scenario calculated by
the solver with processing times for each job; the second column
indicates which jobs, with that time-scenario, can be completed
before d and which ones are delayed; the third column, similarly,
indicates which jobs, the adversarial schedule, is able to complete
on-time and which ones are late.

46

Fig. 8: Results from the Maximum Regret Subproblem

Therefore, we can say that, with the worst-time-scenario (first
column), there is a difference of 14, in terms of job on-time,
between the schedule π and its adversarial schedule, and this
represents the greatest regret for π. Sure, you have to be unlucky
for those processing times to occur, but as we can see the maximum
regret value is an indicator of the sensitivity of the schedule π to
the variability of the time-scenario: if with another sequence the

47

maximum regret had been 5, obviously we would have concluded
that, between the two schedules, the second is more reliable since
a smaller error is made even if its worst-time-scenario occurs.
For this reason, and as previously mentioned, it would be
interesting to calculate the maximum regret for each possible
schedule π and select the one (π*) with the minimum maximum
regret value: it would represent the solution to our problem, the
most robust sequence and the “less scared” schedule (than the
others) by a possible worst-time-scenario.

5.2 The Nominal Problem

After providing a precise solution for the maximum regret
subproblem, let’s face the nominal problem of finding the optimal
schedule among the n! available.

As we can see, it’s possible to adopt a solution strategy through
Combinatorial Optimization since the set of solutions is composed
of a discrete number of elements. This resolutive approach allows
to investigate the whole set of feasible solutions to find the optimal
sequence that solves our problem, but it’s necessary to understand
how long this research would take. To get an idea of the
computational complexity of this problem let’s look at the
following table:

Jobs Feasible Solutions
Time-to-search for an exact
solution (0.5 sec/sol.)

5 120 60 seconds
10 3,628,800 21 days
20 2,43E+18 45,805,922,353 years
30 2.65E+32 …
50 3.04E+64 …

48

The magnitude of the solution set is very sensitive to the growth of
the number n of jobs, so the exact search for a solution makes sense
for a limited number of jobs. For this reason, it’s necessary to find
an alternative method to solve the problem.

In order to not abandon the idea of analyzing the entire set of
solutions, it’s right to think of an efficient algorithm like Branch
and Bound which, in a smart way, investigates only the branches
of the solution tree that could contain the optimal schedule.
Unfortunately, on a higher number of jobs, even the B&B may not
guarantee a solution within a reasonable time but only allows to
save a not significant time.
As mentioned in Chapter 1, there are solution methods in
Combinatorial Optimization which return sub-optimal solutions in
sufficiently good times. The idea is to find the right criterion to
investigate only on a finite subset of elements to obtain a result
which, without scientific evidence being the optimal solution, can
still be considered an excellent compromise between
computational complexity and time search for a solution.

In our problem, since each schedule is totally independent and
there is no reason to privilege some sequences rather than others,
we could think of considering a random sample of k schedules and
applying the maximum regret subproblem on each of them; finally,
the schedule π* with the min-max regret is extracted.
In order to test the goodness of this solution strategy, some tests on
the algorithm’s performance are carried out in Chapter 6.

In the Appendix (Exhibit 2), the Python code for the
implementation of the Nominal Problem is available. The input
data are identical to that in Exhibit 1 while a variable iterations,
which counts the number of random schedules to extract, has been
added; note that, for simplicity, iterations is equal to 5.

49

Fig. 9: Results from the Nominal Problem (# of iterations)

The results, instead, are visible in Fig. 9. As we can see, 5 random
schedules have been generated by the solver in which each of them
presents its maximum regret value; in this case, sequence 3 is the
one with the lowest maximum regret value and, therefore, is
identified as the most robust schedule among those considered.
The reliability of this solution, of course, is directly proportional
to the size of the sample chosen: the greater the number of
schedules extracted, the greater the probability of approaching the
optimal solution; at the same time, as the computational
complexity increases, the search time for a solution increases.

50

A second variant of the solution of the nominal problem is that
which provides for the insertion of an execution time-limit: in
particular, if we cannot get an indication of how many extractions
are needed to reach a reliable solution, it’s possible to indicate how
long the solver will generate random schedules. On the latter, the
program will update each time the min-max regret value found
among the sequences analyzed up to that moment.
In Exhibit 3, the Python code for this second variant is available
and, for simplicity, a time-limit equal to 0.2 seconds has been
inserted. Similarly to the previous case, from a logical point of
view, the greater the time for extracting the schedules, the greater
the probability that the returned solution approaches the optimal
one.

The relative results are present in Fig. 10, and they can be read as
the results in Exhibit 3, since only the solution approach has
changed but not the final goal. In this case, in 0.2 seconds, the
solver was able to extrapolate 8 different schedules with the
respective maximum regret value; the “best schedule” is the last
iteration that present a min-max regret equal to 12.

In order to test the goodness of this solution strategy, some tests on
the algorithm’s performance are carried out in Chapter 6.

51

Fig. 10: Results from the Nominal Problem (Time-limit)

52

Chapter 6
Performance Tests

Once the algorithm that aims to solve the initial problem has been
implemented, it’s necessary to carry out a testing phase to
understand if this solution approach can be considered sufficiently
robust. In fact, until now, a smart method to quickly reach a sub-
optimal solution has been hypothesized, but only theoretically:
there is still no tool that indicates or does not indicate the reliability
of this solution strategy. A testing phase is essential to provide a
yardstick on the algorithm performance and, in particular, it will
indicate how much the program is able to return a sufficiently
robust solution despite the variables that represent the jobs
processing time pj are uncertain.

6.1 Test Structure and Results

The structure envisaged for testing phase must be able to measure
the algorithm robustness by changing the value of some
fundamental variables. In particular, it’s important to observe how
the solution approach, within a generic instance, responds when
the number n of jobs increases but, above all, to observe its
behavior as iterations increase, that is the number of random
schedules extracted from the entire set of solutions. Performance
results deriving from time-limit executions have also been included
in the test structure.

Before explaining the testing phase model and its basic logic,
tables with the results obtained are shown below (Fig. 11, 12, 13) :

53

Fig. 11: Test structure with n = 50 jobs and n = 100 jobs

54

Fig. 12 : Test structure with n = 150 jobs and n = 200 jobs

55

Fig. 13: Test structure with n = 300 jobs and n = 500 jobs

56

In particular, a test was performed on six different values of the
number of jobs : n = 50, n = 100, n = 150, n = 200, n = 300 and
n = 500. For each of them, the unweighted case and the weighted
case are considered : in the first one, w = 1, all jobs have unit
weight and, therefore, have the same level of importance ; in the
second one, instead, w != 1, all jobs can assume different weights
and priorities. For both the unweighted case and the weighted case,
five different instances have been generated, which individually
include four different tests : extraction of 10, 100, 1,000 random
schedules and a time-limit execution (T.L.). Within the single
instance (e.g. n = 50, w = 1, Inst. 1), all four tests are performed on
the same input data ; therefore, it’s possible to have an evidence of
performance results based on the number of iterations and on the
extraction method used. Input data (i.e. values of 𝑝 , 𝑝 and

wj of each job), for each of the 60 instances, were generated
randomly respecting only some generic compliance constraints;
for this reason, the input structure represents a database that
contains starting data to perform each type of test. As we can see,
there is a different time-limit for each value of the number of jobs:
this is because as n increases, the computional complexity of the
problem increases and the solver requires more time to generate an
acceptable solution. The due-date, for semplicity, is always equal
to 80 and the results, in terms of min-max regret returned, are
shown in red.
The single instances, while sharing some structural characteristics,
are considered indipedent of each other; so, it’s possible to test the
algorithm performance based on a comparison between the results
of the four tests within the same instance (10, 100, 1,000 iterations
and the time-limit execution T.L.) and between instances with
same n and same case (w = 1 or w != 1).

57

6.1 Result Analysis

As regards the unweighted case, results are summarized in three
graphs in Fig. 14. For semplicity, only cases with n = 50, n = 200
and n = 500 were considered.

11,5

12
12,5

13

13,5
14

14,5

Inst. 1 Inst. 2 Inst. 3 Inst. 4 Inst. 5M
in

-M
ax

 R
eg

re
t

n = 50; w = 1

10 1000 T.L.

15,5

16

16,5

17

17,5

Inst. 1 Inst. 2 Inst. 3 Inst. 4 Inst. 5M
in

-M
ax

 R
eg

re
t

n = 200; w = 1

10 1000 T.L.

16,8

17,3

17,8

18,3

Inst. 1 Inst. 2 Inst. 3 Inst. 4 Inst. 5M
in

-M
ax

 R
eg

re
t

n = 500; w = 1

10 1000 T.L.

Fig. 14: Results from the Unweighted Case

58

In order to have a better view of differences in performance, the
intermediate case with 100 extractions was excluded from the
graphs: therefore, three broken lines represent the point values of
min-max regret respectively with 10 iterations (blue), 1,000
iterations (orange) and with a time-limit based on the number of
jobs (grey). As previously mentioned, for each category of n,
performances can be compared within a single instance (vertical
difference in terms of min-max regret) and between the five
instances of the same “group” (comparison of the height of the
lines). Naturally, given the problem nature, the best line is the one
that is lower than the others; then, in general, the one that returns
best solutions. In fact, increasing the number of extractions
improves, on average, the solution quality (comparison between
blue lines and orange lines). In all cases, however, time-limit
extractions return solutions that sometimes coincide with those
deriving from an extraction of 1,000 schedules (i.e. third graph).
Therefore, in the unweighted case, no excessive large differences
are obtained in terms of objective function by incresing the number
of iterations or even by increasing the number of jobs n; so, it’s
likely that a solution obtained with 50 extractions is very close to
a solution obtained with 2,000 extractions and much more time is
saved. In this way, it’s possible (on average) to obtain a good
solution without investigating an excessive number of schedules.
It’s important to underline that by increasing the number of
iterations, a higher quality solution is still more likely to be
obtained and that using fewer extractions doesn’t ensure the same
results; only a sub-optimal solution that is very close to the best
one is guaranteed in less time. As regarding the distance between
the best solution obtained and the real optimal solution, it’s
possible to see that within the single instance all values seem to
approach a lower bound which however is unkown. Since the
variability in min-max regret values remains very low increasing
the number of iterations, it’s probably that the optimal solution has

59

been reached or that it’s very close. Obviously, there can always
be a single and isolate optimality case that is distant from the other
sub-optimal values.

Even in the weighted case, results are summarized in three graphs
(Fig. 15).

30

35

40

45

50

Inst. 1 Inst. 2 Inst. 3 Inst. 4 Inst. 5M
in

-M
ax

 R
eg

re
t

n = 50; w != 1

10 1000 T.L.

55

60

65

70

75

80

Inst. 1 Inst. 2 Inst. 3 Inst. 4 Inst. 5M
in

-M
ax

 R
eg

re
t

n = 500; w != 1

10 1000 T.L.

Fig. 15: Results from the Weighted Case

47

52

57

62

67

Inst. 1 Inst. 2 Inst. 3 Inst. 4 Inst. 5M
in

-M
ax

 R
eg

re
t

n = 200; w != 1

10 1000 T.L.

60

As in the previous case, best solutions seem to be those extracted
with a number of iterations equal to 1,000 (orange line). The time-
limit approach (grey line) returns excellent results comparable to
the best ones and, for this reason, it’s established as a very reliable
solution method.
In the weighted case, jobs have a value of importance wj which can
also assume decimal numbers (e.g. 2.15). In this way, the
difference in terms of min-max regret is more sensitive and more
visible graphically within the single instance and between
instances of the same type. Again, by increasing the number of jobs
n or the number of iterations, there isn’t a significant difference in
results between extractions with 10 random schedules and
extractions with 1,000 random schedules; even time-limit solutions
do not seem to differ excessively from those obtained with the
other methods. Obviously, as in the unweighted case, as the
number of iterations increases, on average, the solution quality
increases and moreover, by inserting decimal weights into the
objective function, it’s possible to see how a solution methodology
is significantly better (or less) than the others.
In conclusion, the solution proposal shows good robustness. In
fact, by extracting a defined number of iterations (in the specific
cases) or an indefinite number of iterations (extractions with time-
limit), results are very close to each other and, in the unweighted
case, sometimes they coincide between different solution methods.
Naturally, not knowing the real optimal solution, there is no
measure of the quality of the solution obtained but, as previously
mentioned, the different approaches in testing phase seem to
converge towards a lower bound that we can hypothesize as a
“minimum point”. In all instances, a min-max regret value
extracted from 10 schedules generally has a performance similar
to that obtained with 1,000 schedules, and for this reason it’s not
necessary to carry out an exorbitant number of iterations to achieve

61

a sufficiently acceptable result; therefore, the trade-off between
search time for a solution and solution quality is very limited.

Chapter 7
Conclusions

Combinatorial optimization problems, in general, are often treated
superficially and, in some cases, even incorrectly. The issue of
uncertainty plays a fundamental role in the modeling of some
structural elements, such as parameters, objective functions and
decision-making variables. The idea behind this thesis was to
provide a slightly different treatment of a problem that, in general,
is defined and solved assuming that all factors involved are
deterministic. Forcing uncertain processing times for each job is a
strong assumption, which, as seen in the previous paragraphs, leads
to a completely different solution approach, but at the same time
describes a situation that, in everyday life, is almost likely.
Obviously, uncertainty is an omnipresent factor and it is essential
to understand where it is possible to live with it and where, instead,
it is not possible to ignore: in this case, the experience of someone
that lives every day with certain types of problems is fundamental.
The robustness issue is introduced in those problems where, in fact,
relevant uncertain factors are present. The proposed solution
approach do not represent an exact solution method but an
approximate method which, in some way, are able to return a
solution that is sufficiently good in a reasonable time. In this way,
we were able to create a robust and useful tool to support certain
decisions, demonstrating at the same time its effectiveness, its
timeliness and, above all, its robustness.

62

Bibliography

Drwal e Józefczyk (2019). Robust min–max regret scheduling to
minimize the weighted number of late jobs with interval
processing times - Faculty of Computer Science and Management,
Wroclaw University of Science and Technology

C. Blum, A. Roli (2003). Metaheuristics in Combinatorial
Optimization: Overview and Conceptual Comparison – Université
Libre de Bruxelles, Università degli studi di Bologna

J. García, A. Peña (2018) - Robust Optimization Concepts and
Applications

Paolo Serafini (2009). Algoritmi euristici – Springer, Milano

L. De Giovanni. Metodi e Modelli per l’Ottimizzazione
Combinatoria – Università degli Studi di Padova

E. Aarts and J.K. Lenstra (1997). Local Search in Combinatorial
Optimization - J. Wiley & Sons

63

Appendix

Exhibit 1 – Python Code for Maximum Regret Subproblem

Exhibit 2 – Python Code for The Nominal Problem (# of iterations)

Exhibit 3 – Python Code for The Nominal Problem (Time-limit)

