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Introduction 

 
This thesis aims to give to firms a tool that supports short-term 
decisions about the processing order of different jobs on a single 
machine. 
In particular, a lot of companies often face scheduling problems 
where the goal is to minimize the number of overdue jobs or, 
simply, delays. The importance to find a good solution has impact 
not only for customer loyalty but, most of all, in terms of 
production costs: usually delays, due to contractual constraints, 
involve the payment of penalties related to the number of late jobs 
or related to the overall amount of delay. In these situations, if the 
order scheduling is not computed by a robust tool, decisions 
follow, in most cases, the importance of jobs or the importance of 
the customer without having an overall view of the different effects 
that the entire schedule entails. Unfortunately, these soft resolution 
methods don’t ensure an optimal solution but only a solution that 
may or may not be considered good enough. 
The idea behind this thesis is to present and to explain an algorithm 
that, given a number n of jobs and parameters for each one, returns 
a schedule order with the objective to minimize the weighted 
number of jobs completed after a specific due-date. It’s very 
important to understand that the presented algorithm doesn’t 
ensure the calculation of the optimal solution but simply a solution 
that we can consider sufficiently close to the optimal one: we might 
be lucky and get the best schedule, but if that doesn’t happen we 
are sure to obtain a sufficiently good solution. The difference 
between the proposed solution method and a simply subjective 
scheduling method, since both don’t ensure the optimal schedule, 
is given by the reliability of the solution: behind the first one there 
is a defined scientific criterion described by the concept of 
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maximum regret, while in the second one there may not be a 
criterion that makes the scheduling completely reliable in terms of 
achieving the objective function.  
Finally, we have to emphasize a strong assumption: the jobs, which 
will be processed in the same machine (single machine scheduling 
problem), have uncertain processing times described by intervals. 
However, there is also no information about the probability 
distribution of processing times within the intervals. So, we have 
to face a scheduling problem in which the timing scenario is not 
deterministic for each job but completely random between a lower 
and an upper bound.  
In Chapter 1, we discuss the topic of Combinatorial Optimization 
that is the basis of our solution algorithm; in Chapter 2, we analyze 
the concept of robustness of an algorithm in Combinatorial 
Optimization by distinguish the deterministic case and uncertain 
variables case; Chapter 3 is dedicated to the concept of scheduling 
which will lead us, subsequently, to a complete description and 
formulation of the problem (Chapter 4); in Chapter 5, a solution 
approach and its execution are described from a logical and 
demonstrative point of view; in the Chapter 6, some tests are 
performed and explained to verify the robustness of the solution. 
Finally, in Chapter 7, the results obtained and the general 
conclusions are discussed. 
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Chapter 1 
Combinatorial Optimization 
 
 
1.1 What is Combinatorial Optimization 

 
In everyday life and in particular industries, there are frequently a 
series of problems that require an effective solution methodology 
in supporting decisions. The central argument of this thesis is the 
theme of problems that can be solved through Combinatorial 
Optimization (CO) and to understand their meaning we try to break 
down the definition into its two terms: optimization means looking 
for the optimal solution within a set of feasible solutions, for 
example the shortest route from Rome to Florence or the reorder 
quantities which minimize overall transport and warehouse costs 
for a company; combinatorial, on the other hand, represent a subset 
of optimization problems which by characteristic possess a finite 
set of feasible solutions. To better understand the concepts, we 
make some examples: 
 

 A steel plant, every week, have to program the quantity of 
steel (in kg) to be processed to minimize production costs in 
face of a known demand and some internal constraints; 

 A transport company, every day, have to establish the 
shortest route to minimize delivery times. 

 
Both problems, although coming from completely different 
realities, have a common factor: the need to look for a solution that 
better than any other satisfies the final objective of minimizing 
costs (in the first case) or minimizing time (in the second case). 
The substantial difference, however, is in the structure of the set of 
admissible solutions: the quantity in kg to be produced for a steel 
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plant is a continuous variable and, as such, makes the range of 
possible solutions infinite; on the other hand, the different routes 
that a transport company can evaluate are limited and, even if they 
were an exorbitant number, one of them is certainly cheaper than 
the others. As we can see, for definition given above, the second 
example is the one that falls within problems that can be solved 
through combinatorial optimization, while the first example, in 
which the solution is to be found within a continuous set, belongs 
to the world of Linear Programming (LP) and has a completely 
different solution approach. 
 
In Operational Research, generic optimization problems are 
formulated through a mathematical modeling of the type: 
  

𝑚𝑖𝑛   𝑓(𝑥)  (1) 
     𝑔 ≤ 𝑘  (2) 

 
The first row (1) represents the so-called objective function f (x), 
that is the “entity” which is object of optimization of the type min 
or max - for example you want to maximize the profit deriving 
from an investment or create the secure portfolio with minimal 
risk. The second line (2) instead represents a generic constraint, for 
example the investment sum that must not be exceeded or the set 
of admissibility for some variable values. Obviously, numerous 
constraints can exist in more complex structures. In addition to the 
objective function and constraints, there are other fundamental 
logical constructs in the mathematical formulation of a problem 
such as sets, decision variables and parameters. Sets are a 
grouping of elements that share the same characteristic, for 
example the set W of the investments to be evaluated or the set R 
of the productive resources available in a company. The decision 
variables are those not immediately defined but object of definition 
in the search for an optimal solution, for example the number of 
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jobs to be processed daily in order to minimize production costs. 
Finally, the parameters represent known values such as the 
production capacity of a plant or the maximum number of daily 
transactions to be respected. 
 
One of the most famous optimization problems is the Knapsack 
Problem, of which we provide a description and a mathematical 
model. In particular, we have N items and a knapsack. Each object 
i is represented by a volume wi and an importance value vi. The 
purpose is to maximize the total importance of the objects that we 
choose to place in the knapsack respecting a capacity constraint k. 

 
 
𝑚𝑎𝑥         ∑ 𝑣 𝑥        (1) 

 
𝑠. 𝑡.    
 
∑ 𝑤 𝑥 ≤ 𝑘                                                       ∀𝑖 ∈ 𝑁  (2) 

  
𝑥 ∈ {0,1}                                                          ∀𝑖 ∈ 𝑁  (3) 

 
 
Of course, the input data is such that it is impossible to select all 
objects without exceeding the capacity limit k; therefore, it is 
necessary to decide which ones to insert and which not. We define 
individually all the elements and constructs present: 
 

 N: set of available objects (each generic object is indicated 
with the subscript i); 

 xi: binary decision variables; they can only take the values xi 
= 0 (object i is not inserted in the knapsack) and xi = 1 (object 
i is inserted in the knapsack); 

 wi: volume of the object i; 
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 vi: importance of the object i; 
 k: knapsack capacity. 

 
The objective function (1) is therefore a maximization of the total 
value of the objects that are inserted in the backpack, in which 
those with a term with xi = 0 do not contribute to the total sum; the 
constraint (2) imposes an upper bound on the insertion of objects, 
or the capacity of the knapsack; the constraint (3) indicates the 
admissibility set of the decision variables which, in this case, is of 
the binary type. 
 
As it is possible to notice, there is a finite set of solutions that 
coincides with all the possible combinations of objects that respect 
the capacity constraint; the aim is to select the grouping with the 
highest overall value. Therefore, given the discrete structure of the 
admissibility set of the solutions, the knapsack problem falls within 
the combinatorial optimization problems. Otherwise, if we had 
modeled the production problem of a steel plant, the constraint on 
the decision variable indicating the quantity to be produced would 
have been of the type Q ≥ 0, that is any non-negative value which 
therefore represents a continuous variable. In general, from a 
mathematical point of view, if decision variables are binary, the 
problem is a combinatorial optimization problem. 

 
The solution approaches of combinatorial optimization problems 
are divided into two categories: exact methods and heuristic 
methods. 
 
 
1.2 Exact Methods 
 
The exact methods are solution algorithms that investigate the 
entire set of solutions to ensure the search for an optimal solution 
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(or affirm its inadmissibility). The advantages of using an exact 
method are many, for example the possibility of having some 
indications on the lower bound and the upper bound of the optimal 
solution if the procedure stops prematurely. Among the 
disadvantages, the most significant is certainly the search time for 
a solution which in some problems may be acceptable while for 
others it is not reasonable. For this reason, over the years, more and 
more efficient exact methods have been developed to obtain the 
optimal solution, among which one of the most important is 
certainly the Branch & Bound. 
 
 
1.2.1 Branch & Bound Algorithm 
 
Branch & Bound is a solution technique for combinatorial 
optimization problems that uses an efficient exploration procedure 
of the solution tree. To understand how it works, let's imagine a 
scheduling problem where it is necessary to decide the processing 
sequence of n jobs in order to minimize delays. With n jobs, we 
have n! different sequences that form the set of solutions: 
obviously, one (or more) of them is the optimal solution and for 
this, as we will see later, scheduling problems can be categorized 
as combinatorial optimization problems. The solution tree is 
instead the logical composition structure of each feasible solution, 
and for n = 3 there is a representation in Fig. 1. 
As we can see, at the roots of the tree there are all the admissible 
schedules, while the so-called “branches” represent a partial 
composition (or a path) that can be followed to reach one solution 
rather than another. The Branch & Bound algorithm starting from 
an initial solution that it deems good enough and, in this example, 
explores the entire tree in search of a schedule that can return, in 
terms of objective function, a better result than the one currently 
stored. The exploratory procedure is not random but only those 
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paths in which it is reasonable to go deeply to look for a solution 
are investigated; in other paths, which in the best case would return 
a worse solution than the current one, no analysis is carried out and 
the branches are therefore “cut”. Whenever the algorithm identifies 
a better schedule, the optimal solution is updated and the 
exploration continues. The main advantage lies in computational 
savings, since not necessarily all possible solutions are questioned 
to establish which is the best one. Note that, although the algorithm 
seems to take shortcuts, no feasible solution is excluded ex-ante: 
once a parent-node does not possess the characteristics to generate 
a better solution, these characteristics are inherited by all the child-
nodes and so on. 
 

 
 
 
 
As mentioned above, one of the main criticalities of exact methods 
is the search time for a solution which, in some problems, is not 
sustainable. The advantage of obtaining an optimal solution is at 
the same time the disadvantage of patiently analyzing the entire 
solution tree: in scheduling problems, in particular, resorting to 
exact methods is almost impossible. To understand its complexity, 
let's imagine a likely situation with n = 30 jobs; in the worst case, 
if the algorithm took a second to analyze each of the n! schedules 
(2.65E+32 different permutations), we would get an optimal 

Fig. 1: Solution tree for a scheduling problem 
with n = 3 jobs 
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solution after 8.45E+24 years. The Branch & Bound method could 
reduce the search time which, in all probability, would remain 
equally unacceptable. To find a solution to this difficulty, let's 
analyze a second class of solving methods for combinatorial 
optimization problems, namely heuristic methods. 
 
 
1.3 Heuristic Methods 
 
The seen methodologies guarantee, at least in theory, to solve a 
combinatorial optimization problem in an exact way, that is, to find 
a feasible solution that corresponds to the optimum of the objective 
function among all admissible solutions. Heuristic methods (from 
the greek heuriskein, to discover), on the other hand, represent 
algorithms for obtaining a “good solution” in a reasonable time; in 
particular, the search for an optimal solution is given up in order to 
favor a sufficiently acceptable issue of resolving promptness. This 
approach can be corrected for several reasons: first of all, the 
search for an approximate solution is what is needed in reality 
when dealing with large problems where, moreover, the 
parameters involved represent estimates subject to error; 
moreover, the search for an optimal solution may have the simple 
purpose of evaluating, in general, which direction to converge in 
the decision-making field and, therefore, a sub-optimal solution is 
sufficient. In most combinatorial optimization problems it is 
possible to implement specific heuristics that exploit the 
characteristics of the considered problem and the experience 
deriving from the knowledge of the sector to obtain a high quality 
solution.  
 
Let's take an example of heuristics: 
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Suppose a group of 8 jobs that can be worked indifferently on two 
identical machines. Each job has its own processing time and the 
common due-date is 9 min. The goal is to create a job schedule that 
minimizes the maximum overall delay, regardless of the number 
of delayed jobs. 
 
Job-1(2 min); Job-2(3 min); Job-3(1 min); Job-4(3 min); Job-5(6 
min); Job-6(2 min); Job-7(5 min); Job-8(3 min) 
 
An heuristic method suggests that a quick, but still robust solution, 
is to sequence jobs in ascending order of processing time using 
both machines in parallel. Obviously, each job can be worked on 
only one machine and each machine must finish processing a job 
before starting a new one. In this way, the result is as shown in Fig. 
2. 
 

 
 

 

Without using an exact method and, therefore, without 
investigating all possible combinations, there is no absolute 
certainty that a gap of 4 minutes on this schedule is the optimal 
solution; we can only say that a 4-minute result, using this heuristic 
method, is an admissible solution to the problem. 

 
 

Fig. 2: Scheduling example resulting from using an heuristic method to 
solve the problem 
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A possible classification of heuristic methods is the following: 
 

 Constructive heuristics 
 Metaheuristic methods 
 Approximate algorithms 
 Hyper-heuristics 

 
In particular, we will analyze in more detail the constructive 
heuristics and the metauristic methods, while the approximate 
algorithms and the hyper-heuristics will not be mentioned. 
Moreover, before introducing metaheuristic methods, in sub-
chapter 1.3.2 a famous class of solving methods in the heuristic 
field is described, namely the local search methods. 
 
 
1.3.1 Constructive heuristics 
 
Constructive heuristics represent a class of algorithms where, 
starting from an empty set, a good feasible solution is iteratively 
“created” by adding one element at a time. In scheduling problems, 
for example, if we had n = 3 jobs, a constructive heuristic has the 
task of filling a vector of three elements, indicating step-by-step 
the job i that entry in the sequence. The peculiarity of these solution 
methods is that the elements that form the solution are never re-
called into question once inserted. Of course, the process ends 
when a complete solution is generated. 
 
Among constructive heuristics we distinguish: 
 

 Greedy algorithms; 
 Algorithms that simplify potentially exact procedures; 
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In addition to them, there are obviously other types of constructive 
heuristics such as, for example, algorithms based on exact 
optimization techniques. 
The idea behind the greedy algorithms is very simple: at each 
iteration, choices are made that seem optimal only at the moment 
of choice. Therefore, the correctness of the solution is not always 
guaranteed, but they are often very simple and efficient methods. 
In particular, at the generic iteration k, the algorithm is myopic with 
respect to the globality of the problem and has the task of obtaining 
an optimal local solution only for the subproblem k; after that, a 
local optimal solution will be found for the subproblem k + 1 and 
so on until the end of the procedure. To better understand how this 
algorithm works, let's take an example: 
 
We resume the scheduling problem with n = 3 jobs. Above all, 
remember that the aim is to minimize the number of delayed jobs 
by deciding the optimal processing sequence. In this regard, we 
add a fundamental parameter: the processing time pj for a generic 
job j. A step-by-step greedy algorithm could be the following: 
 
1. Generate an empty set S of n elements and initialize the counter 

variable k = 0; 
2. If k = 3, the algorithm ends (that is, the sequence is complete); 

Else Select the job with the shortest processing time and insert 
it in position k; after which set k = k +1; 

3. Go to step (2). 
 
The general idea of this algorithm is to process jobs in increasing 
order of processing time pj; in this way, the most quick jobs are 
promptly processed while the most durable jobs are queued. This 
solution approach is obviously subjective; as previously 
mentioned, an expert in this field could take advantage of his 
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experience and choose to implement a totally different algorithm 
to achieve the objective function more effectively. Let's make 
some observations: 
 

 This procedure does not investigate the totality of solution 
set (Fig. 1), but uses a totally subjective approach to reach a 
good feasible solution: therefore, it is a heuristic method; 
 

 The final sequence is built iteratively until k = 3 (complete 
sequence); therefore, it is a constructive heuristic method; 

 
 At each iteration k, an optimal local solution is extracted on 

the basis of the jobs still to be inserted in sequence and 
according to a subjective criterion for selecting the jobs with 
shorter processing time; this means that the jobs already 
processed are no longer re-called and, therefore, it is a greedy 
algorithm. 

 
Algorithms that simplify potentially exact procedures, instead, 
foresee the use of a solution algorithm that partially uses an exact 
method. The simplest variant is that obtained by terminating a 
Branch & Bound algorithm after a certain time-limit or after a 
predetermined number of nodes and exploiting the best feasible 
solution generated up to that moment. For example, in certain 
problems in which the search for an optimal solution is not 
essential, it is useful to obtain an indication of its lower or upper 
bound; hence, by executing an exact algorithm for a certain period 
of time, good quality solutions are certainly obtained. 
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1.3.2 Local Search Methods 
 
The basic idea of the Local Search Methods is to define an initial 
solution (current solution) and try to improve it by exploring an its 
appropriately neighborhood. If the optimization around the current 
solution produces an improvement, the procedure is repeated 
starting, as current solution, from the solution just determined. The 
algorithm can terminate for several reasons: 
 

 It is no longer possible to find better results around the 
current solution and this one represents an optimal solution; 

 The current solution coincides with a limit value (upper 
bound or lower bound of the objective function) and 
therefore we have reached the optimal solution; 

 The procedure provides for the insertion of a time-limit 
which returns the best solution obtained up to that moment. 

 
A generic Local Search algorithm can be described as follows: 
 
 
1. Determine an initial solution k; 
2. If there exists a solution k’ in the neighborhood of k for which 

f(k’) < f(k), then k = k’; 
If f(k) = LB, k is an optimal solution and the algorithm 
ends; 
Else Go to Step (2); 

3. Else k is an optimal local point. 
 
 
Note that in this case the aim is to minimize the objective function; 
a dual algorithm can be implemented for the maximization of f (k). 
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We reiterate that, in general, local search methods guarantees to 
find only optimal local points, that is, solutions in which there are 
no better solutions around. The previously described algorithm can 
be used in a large variety of problems; however, it remains to be 
defined how to extrapolate an initial solution, how to define and 
explore a neighborhood and how to evaluate obtained solutions. 
Answers to these questions are not univocal but depend on the type 
of problem, the industry and, sometimes, experience: it is possible 
that a procedure for generating an initial solution is effective in 
certain problems but completely ineffective in others. 
 
Local search methods are useful for better understanding the next 
class of approximate solution methods, namely metaheuristics. 
 
 
1.3.3 Metaheuristics Methods 
 
In recent years, the study of a new type of algorithms has been 
introduced which, by combining heuristic methods, are able to 
explore the solution space more efficiently. These algorithms are 
called metaheuristics.  
“A metaheuristics is formally defined as an iterative generation 
process which guides a subordinate heuristic by combining 
intelligently different concepts for exploring and exploiting the 
search space, learning strategies are used to structure information 
in order to find efficiently near-optimal solutions” [Osman and 
Laporte, 1996]. 
 
In other words, metaheuristics are high-level solution strategies 
that, using different methods, guide the search process within the 
solution space so that a rational exploration is made in certain 
areas in which it is reasonable to perform a search; the goal is to 
reach sufficiently good solutions in a very short computing time. 
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Fig. 3: Structure of Optimization Algorithms 

They can be considered as a third category of solution approach, 
beyond exact methods and heuristics, to solve optimization 
problems. The exact methods, which explore the entire solution 
space through an exhaustive research, guarantee the achievement 
of a global optimal solution; the disadvantage, as already 
mentioned, is the great sensitivity to the extent of the problem 
which, in many cases, could lead to giving up the search for an 
optimal solution. Heuristics ad-hoc, instead, are approximate 
methods of searching for a sub-optimal solution in a reasonable 
time. Metaheuristics aim to have an intermediate resolution 
efficiency and, in particular, they are not exhaustive like the exact 
methods but use combinations of heuristics in a more intelligent 
way (Fig. 3). For example, in relation to the problem, I could 
exploit the effectiveness of a heuristic to find a good initial solution 
and the effectiveness of a second heuristic to explore its 
surroundings. 
 

 
 
 
There are different ways to classifying metaheuristics. The most 
important division is that between Trajectory Methods vs. 
Population-based algorithms. 
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Fig. 4: Example of Trajectory concept 

Trajectory Methods 
 
The great merit of local research lies in representing an excellent 
compromise between simplicity of implementation and results 
obtained. However, the stopping criterion used trapped the method 
within local minimum points. In some exceptional cases, the 
characteristics of the neighborhoods guarantee that a local 
minimum point is also a global minimum point, but this remains 
an exceptional circumstance.  
In recent years, a number of evasion methods from local minimum 
points have been developed. Some of these, the trajectory methods, 
build a real trajectory in the search space by memorizing the best 
solution that is encountered along the “way” (Fig. 4). The basic 
mechanism is that seen for local search methods with the only big 
difference that, in this case, other possible places are explored in 
solution space where it is possible to study a neighborhood that 
could potentially yield a better solution than the current one. The 
main features of these methods are the randomization of the 
exploration and the memorization of the solutions already 
explored: this avoids possible cycles in the event that, in the 
exploration of a further neighborhood, worse solutions are 
accepted.  
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One of the most famous trajectory method is the Tabu Search 
algorithm, which is an excellent compromise between quality of 
performance and computational effort. 
The Tabu Search algorithm is a local search method capable of 
evading from local minima exploiting memory mechanisms 
(mentioned above). In fact, the search without keeping track of the 
exploration history of the solution space only remembers the best 
solution explored up to that moment (which coincides with the 
current solution in the local search) and the corresponding value of 
the solution. In this way, if worsening moves are accepted to revisit 
a certain solution, there are no structural elements to avoid 
returning to solutions already visited and, therefore, the only way 
to avoid cycling is by chance. In the Tabu Search, we try to exploit 
the structure of the search space, memorizing some information on 
the solutions already visited in order to orient the search and escape 
from local minima avoiding cycling. Basically, this is achieved by 
changing the neighborhood of the solutions according to the 
history of the exploration, making some neighbors "taboo", that is, 
not explorable at that moment. 
 
 
Population-based algorithms 
 
The methods described in the previous section have the 
characteristic of constructing a punctual trajectory in the solution 
space, considering, at each iteration, only one solution. On the 
other hand, there are metaheuristics which maintain a population 
of solutions, i.e. a set of several solutions, and, at each iteration, 
combine these solutions together to obtain a new population. The 
idea is that, through appropriate recombination operators, better 
solutions can be obtained than the current ones.  
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A class of population-based algorithms is that of Genetic 
Algorithms, which are distinguished mainly by their simplicity of 
implementation and their adaptability to multiple types of 
problems. 
The basic principle of genetic algorithms follows the evolutionary 
theory of individuals and their adaptation to the environment in 
which they live. In particular, an analogy is recreated between 
groups of admissible solutions and individuals in society, who 
share, in some way, the same characteristics: individuals combine 
with each other to generate new and different individuals who will 
be part of the “populations” following; those who participate in 
reproductive processes are the individuals most adapted to the 
environment in which they live. 
Genetic Algorithms try to simulate the evolutionary process by 
creating a logical matching between individuals and solutions, 
each in its own environment; therefore, a fitness measure that 
describes the adaptation quality is established for each solution. 
Very generally, genetic algorithms start from an initial population 
of solutions and generate iterative evolution. At each iteration, the 
solutions are evaluated according to their level of adaptation and, 
on the basis of this evaluation, some of them are selected, favoring 
the parent-solutions with greater fitness. The selected solutions are 
recombined together (as a real reproduction) to generate new 
solutions which tend to transmit the good characteristics of the 
parent-solutions to subsequent generations (child-solutions). 
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Chapter 2 

Robust Optimization 
 
In the previous chapter we have introduced the topic of 
Combinatorial Optimization, its limits and some hints on solution 
approaches. In particular, we have mentioned the existence of 
some resolution methods that unlike the so-called exact methods, 
i.e. algorithms that analyze the entire solution tree to find the 
optimal one, investigate only a subset of the solution set. The goal 
is to bypass some limits of Combinatorial Optimization, especially 
the search for a solution in an unreasonable time.  

 
 
2.1 Concept of Robustness 
 
In many cases, however, in the attempt to find an optimal result, 
solution algorithms are implemented in which parameters are 
considered deterministic, therefore not subject to any uncertainty. 
This is a very strong hypothesis since a wrong approach to the 
problem or an inability to predict the behaviour of some factors can 
lead to serious errors in solution evaluation and, in particular, in its 
quality, reliability and feasibility.  
Problems already discussed or heuristic methods mentioned in the 
previous chapter, assume, for example, parameters without 
uncertainty (e.g. knapsack capacity, due-date, job processing time, 
etc.) even if, in reality, we don’t have any conviction about the 
manifestation of those values. Obviously, there are factors whose 
variability has a low impact on solution performance while, on the 
other hand, there are factors that require an accurate forecasting of 
possible scenarios.  
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As result of this, in recent years, a new branch in optimization 
methods has emerged, called Robust Optimization. 
The robustness of an algorithm defines its ability to respond 
promptly and effectively to the possible variations to which the 
system is subject. Therefore, in the deterministic case, the solution 
approach returns a solution that can be considered the optimal one 
only in the event that there is no variability of the parameters with 
respect to those provided in the model. 
In the Knapsack Problem, for example, we have defined the weight 
of each items wj as if they were known upstream. Under this 
assumption, however, the solver generates a solution that can be 
sensitive to any variation: if real weights are completely different 
from the hypothesized one, we would obtain a completely wrong 
and, probably, highly dangerous solution. Similarly, the knapsack 
capacity k may not be known upstream but, for example, is defined 
within a range of values. The damage resulting from an incorrect 
decision can be immediately visible if the problem is an 
operational problem that requires a solution for short-term 
decisions; on the other hand, if it’s necessary to solve a strategic 
problem, the effects could only be visible in the long-term. The 
substantial difference is in the correction costs which, in the 
second case, risk being highly significant.  
 
 
2.2 Types and Models of Robustness 
 
In many cases, a solution can be defined robust if, under certain 
conditions, it behaves reasonably with respect to characteristics of 
quality, optimality and feasibility; in other cases, a solution is 
robust if, given the nature of the problem, it’s the best choice even 
in a worst-case scenario. So, it’s possibile to distinguish several 
types of uncertainty within an optimization problem: 
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Uncertainty in the feasibility of the solution 
In this case, it’s necessary to understand if the solution obtained 
can exist for each combination of the parameters considered (or for 
each possible scenario). Therefore, there is a trade-off between the 
search for a solution with respect to the established parameters and 
the quality of the solution obtained; 
 
Uncertainty in the optimality of the solution 
In relation to the set of uncertainty chosen, the optimality of the 
solution found can be altered. In this case, a robust optimization 
algorithm is the one that performs correctly in all different 
scenarios; 
 
Uncertainty in the optimization problem 
Uncertainty is mainly generated by errors in the evaluation of some 
parameters or by changes caused by external environment. 

 

Depending on the problem nature, there are different models to 
approach a robust solution. A brief classification was made below: 
 

 Strict Robustness 
Optimization problems with a Strict Robustness approach 
are those in which every possible scenario is of critical 
importance. Therefore, it’s fundamental to consider all 
possible manifestation of uncertain parameters before 
extracting a robust solution. For example, in aerospace 
industry, it’s not possible to ignore critical scenario which, 
although unlikely, could impact the aircraft stability; in 
scheduling problems, on the other hand, an unfavorable 
event has a lesser impact than the previous case. 
This is the strictest and most stringent robust optimization 
approach. 
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 Cardinality Constrained Robustness 
This approach is less stringent than the previous one. This is 
because it’s considered only a subset of critical parameters 
from the entire set of uncertainty: this subset is able to 
autonomously create an unfavorable scenario regardless of 
the value assumed by the other parameters not considered. 
The latter can be modeled with their most frequent value. 
 

 Adjustable Robustness 
In this case, the space of uncertainty is divided into two 
groups: in the first one, there are variables that can be 
evaluated before the occurrence of the generic scenario k; in 
the second group, instead, there are variables that can be 
determined after observing the scenario k. The purpose of 
this subdivision is to further relax the space of uncertainty. 
 

 Light Robustness 
Another way to relax a strict robustness is to ease some 
problem constraints to accommodate a higher quality 
solution. The basic concept is that a good solution that 
respects the restrictions can be found close to a good solution 
calculated in the most likely scenario (the average case). For 
this reason, there is a trade-off between robustness and 
quality of the solution. 
 

 Regret Robustness 
This relaxation method, as we will see later, calculates the 
difference in terms of objective function, in a generic 
scenario k, between a possible solution and the one with the 
best target value for that scenario.  
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Chapter 3 
Overview on Scheduling Problems 
 
3.1 Preliminary Scheduling Concepts 
 
Scheduling is a decision-making process that concerns the 
allocation of limited resources over time. In general, the associated 
decision process requires determining the order in which the set of 
activities is performed, the time in which each activity is performed 
with the aim of pursuing a certain goal. 
Resources, activities and objectives, depending on the context, can 
have different aspects. In particular: 

 
 The resources can be the machines that make up the 

production plant of a company or the branches that a bank 
owns; 

 The activities correspond to the elementary processes 
carried out on the resources, for example the processing of a 
material or a home delivery; 

 The goal, on the other hand, may be the minimization of 
delivery delays or the average time to complete a given 
process. 
 

The term “scheduling” refers to a vast class of problems, very 
different from each other in complexity and structure. However, 
unlike what happens for other areas of combinatorial optimization, 
for more complex scheduling problems it is not possible to indicate 
a single solution approach but it is more appropriate to use heuristic 
or approximate methods (as mentioned in Chapter 1). In most 
cases, the limited (and sometimes scarce) resource to be optimally 
allocated to certain activities is the time factor. 
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Let's take an example: 
 
Suppose we have two perfectly identical production departments 
for the manufacturing (activities) of footwear and a list of orders 
to be fulfilled. Contracts stipulated with customers provide for the 
payment of a penalty for each day of delay with respect to that 
agreed for delivery. When problems of this type are faced, 
especially in cases where resources are so limited that they cannot 
be allocated to all activities, it is essential to establish a solution 
method that returns the optimal processing sequence in order to 
best meet the objective, which in this case is the minimization of 
the penalty costs. In other words, if the resources available (the two 
departments and the time) are not sufficient to fulfill all the orders 
before their due-date, then it is necessary to decide which jobs to 
process first and which jobs to queue even if paying a penalty. 
 
Scheduling problems usually satisfy operational and consequently 
short-term decision-making processes. On the other hand, when 
decisions need to be made at a strategic or tactical level (eg. 
opening a warehouse or not or choosing the production capacity 
for a company) completely different solution approaches are used. 
In general, scheduling activities is a process that can be repeated 
periodically and that has an impact only within a limited time 
interval. For example, every day a workshop can decide the order 
of processing of some repairs or a student can organize the order 
of study of their subjects in order to have an optimal preparation 
for the exams. 
 
The parameters associated with the job j to be processed can be of 
various kinds: 
 

 Processing time pj, which corresponds to the time that job j 
can request on machine i; 
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 Delivery time dj, or the instant of time beyond which the job 
is considered late; 

 Weight wj, which represents the relative importance of job j; 
 Release time rj, which indicates the instant of time in which 

job j enters the scheduling process. 
 

As regards the scheduling objectives, it is useful to introduce some 
variables that are important in the definition of an objective 
function: 
 

 Completion time Cj, represents the instant of time in which 
job j ends its processing; 

 Lateness Lj, indicates the difference between the completion 
time of a job and its delivery date, therefore Lj = Cj – dj. We 
can note that if Lj > 0 then job j is late, while if Lj < 0 then 
job j is early; 

 Tardiness Tj, coincides with lateness Lj when it is positive 
and assumes value 0 otherwise, that is Tj = max {0, Cj – dj}. 
 

Starting from these elementary performance measures, it is 
possible to construct more complex and articulated variables that 
better represent the elements to be optimized in the scheduling 
problem. 
 
In scheduling problems, a synthetic three-field notation a|b|c is 
usually used to describe a specific scenario and the objective to be 
achieved: 

 
 a: identifies the machine system (1 for single machine, P for 

identical parallel machines, F for Flow Shop and J for Jop 
Shop); 

 b: represents particular characteristics of the jobs (eg. 
priority constraints); 
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Fig. 5: Structure of a Single Machine case 

 c: indicates the measure of performance that requires 
optimization. 

 
 

3.2 Classification of Scheduling Problems 
 
One of the most common methods of classifying scheduling 
problems is that relating to the characteristics of the system under 
consideration. The possible architectures of a production (or 
service) system are many, and in this chapter the most frequent 
cases will be analyzed. 
 
 
3.2.1 Single Machine 
 
Single machine problems are the simplest ones, as all jobs must be 
processed on the same resource. 
 
 
 
 
 
 
 
 
 
 
 
Suppose a production process in which at time t = 0 there are n = 
5 jobs to be processed, each with its own processing time pj. The 
goal is to minimize the overall waiting times of the jobs, that is min 
∑ 𝐶 . In particular, the problem notation is the following: 
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1 // ∑ C  

 
In this case, the solution algorithm SPT (Shortest Processing Time) 
suggests sequencing the jobs in ascending order of processing time 
pj in order to promptly fulfill the most quickly jobs and queue those 
that require more lasting processing. Although the overall 
processing time (∑ 𝑝 ) is the same regardless of the sequence 
chosen, the order established according to SPT allows for faster 
disposal of orders and therefore, overall, a more efficient and 
optimal fulfillment process. 
So if the vector p of the job processing times is composed of the 
elements {8,16,10,7,2}, the optimal processing sequence would 
become {2,7,8,10,16} where each element of the vector 
corresponds to a job j. 
A second variant of this problem is the presence of a relative 
weight wj for each job j. With the same objective function, min 
∑ 𝐶 , the WSPT (Weighted Shortest Processing Time) algorithm 
suggests ordering the jobs in ascending order of the ratio pj / wj to 
obtain the optimal sequence. 
In addition to these examples, there are numerous types of single 
machine problems where each one has its own characteristics and 
performance measures to be optimized. 
 
 
3.2.2 Parallel Machines 
 
Parallel machine scheduling problems are usually presented as 
situations where a group of n jobs can be processed on m machines 
in parallel. Therefore, unlike the previous case, there are m 
resources that can carry out the same activity at the same time. 
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Fig. 6: Structure of a Parallel Machines case  
 
 
Suppose a production process in which at time t = 0 there are n = 
5 jobs to be processed, each with its own processing time pj. The 
goal is to minimize the maximum Completion Time, that is min Cmax 
having m = 2 identical machines available in parallel. The problem 
notation is as follows: 
 

P // Cmax, or better 2 // Cmax 

 
The Longest Processing Time (LPT) rule assigns the longest m jobs 
to the m machines. Later, when a machine is free, the unscheduled 
job with the largest processing time is assigned to it, and so on. 
This solution methodology tries to assign the shortest jobs at the 
end of the scheduling process where they can be used to balance 
loads between machines. 
 
 
3.2.3 Flow Shop 
 
The main feature of scheduling problems of the Flow Shop type 
lies in the production process of the jobs: in particular, in absence 
of priority constraints, jobs follow the same processing cycle 
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consisting of a certain number of phases according to a predefined 
sequence. Therefore, all jobs share production steps that can 
represent, for example, the departments of a company. If we think 
of a footwear company, each product goes through production 
phases with a rigid sequence, such as the cutting of raw materials, 
hemming and final assembly. Of course, there may be numerous 
variants of Flow Shop problems: in the simplest case each task can 
be carried out only on a single resource (only one cutting machine 
available), while in more complex cases there may be more 
resources for a single task. The goal is to generate the work order 
so that a certain objective is optimized. In problems of this type, 
the objectives can be multiple, for example the minimization of the 
overall completion time of all the processes or the minimization of 
the overall delay time. As in the previous cases, there may be 
different solution methodologies that return sufficiently good 
solutions, among the most important we find the Johnson’s 
algorithm. 
 
 
3.2.4 Job Shop 
 
Finally, the Job Shop scheduling problems are the most complex 
to manage as numerous assumptions of the previous cases are 
relaxed. In fact, in the standard version there are n jobs and m 
operations O1, O2, …, Om to be carried out on certain resources. 
Each job can have a different production process that follows a 
rigid and well-defined work order: therefore, for example, Job 1 
needs to perform operations O1 and O2, while Job 2 follows the 
process O3, O2, O3. In addition, there may be priority constraints 
between the n jobs and in the most common cases it is important 
to respect the order of arrival and consequently the processing 
order. 
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3.3 Resolution Methods in Scheduling Problems 
 
The search for optimal solutions in scheduling problems is often 
the subject of reflection. As can be seen, the optimal sequence 
certainly belongs to a finite set of solutions of amplitude n! (with 
n number of jobs considered), i.e. all possible extractable 
permutations. Therefore, trivially, it would be enough to 
enumerate the entire set of solutions and select the sequence that 
best satisfies the objective function. However, this resolutive 
procedure has operational limits: in fact, with a sufficiently small 
number of jobs it is possible to obtain a solution in a reasonable 
time while with a modest number of jobs, however, the waiting 
times could be long or even unacceptable. To get an idea, with n = 
10 jobs we have 10! = 3,628,800 different permutations, while with 
n = 30 jobs there are instead 30! = 2.65E + 32 candidate solutions: 
in the first case, assuming a processing time equal to 0.5 seconds 
per permutation, the optimal solution will be returned after about 
40 days; in the second case after 1.33E + 32 years. As in Chapter 
1, we can distinguish the solution methods in two different 
categories: the exact methods and the heuristic methods. 
 
 
3.3.1 Exact Methods 
 
The exact methods are distinguished by their completeness and 
effectiveness in the search for the optimal solution. In particular, 
they are solution methods that undoubtedly return the best solution 
(unlike heuristic methods that return an approximate solution 
instead). When the number n of jobs is quite small, the exact 
methods represent an ideal class of algorithms in solving 
scheduling problems. Among them, we can further distinguish the 
construction methods and the enumerative methods: 
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Constructive methods are able to generate an optimal solution by 
simply using strict priority rules in the sequencing of jobs based on 
the nature and structure of the problem. Among these we can find 
the SPT and WSPT algorithms seen above. 
 
Enumerative methods, on the other hand, are algorithms that 
analyze the set of solutions and that can be made more efficient to 
obtain a lower computational complexity. For example, algorithms 
such as Branch and Bound, albeit analyzing the entire solution tree, 
are able to exclude families of solutions that would not guarantee 
higher performance than those found up to that moment: in this 
way, no analysis is carried out on the child-nodes. and the search 
time is reduced. 
 
 
3.3.2 Heuristic Methods 
 
Where the exact methods have computational limits and the 
waiting times for the search for a solution become unacceptable, a 
second macro-class of solution algorithms intervenes: heuristic 
methods. As explained in Chapter 1, heuristic methods do not 
guarantee the search for an optimal solution but a reasonably good 
solution with the sole purpose of reducing search times. The 
resolution strategies based on heuristic methods are manifold: for 
example, some of them favor speed of execution but produce low 
quality solutions; others, on the other hand, require longer times 
but generate sufficiently reliable solutions. Often we can recognize 
in a complex problem some substructures that allow the problem 
to be decomposed into simpler subproblems, which can be solved 
in optimality. It is then a question of aggregating the partial 
solutions in order to obtain the global solution. Often, in this 
operation sufficient information is obtained to review the partial 
solutions to improve the overall solution. This process ends when 
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it is believed that an acceptable solution has been obtained or when 
the solution cannot be further improved. Another widely used 
strategy, as it is virtually applicable to any problem, is to 
recursively generate a series of solutions obtained from each other 
through small improvements. The type of improvement that can be 
achieved obviously depends on the structure of the problem under 
consideration. The procedure ends when no further improvements 
are possible. This kind of strategy, in its simplest form, is called 
local search. More elaborate forms have also been proposed, two 
of which seem to give good results, one of the deterministic type, 
called tabu-search, and which could also be called search with 
memory, and the other of the stochastic type, called simulated 
annealing, which is based on an interesting physical analogy. 
 
 
3.4 Robustness in Scheduling Problems 
 
Generally, scheduling problems are studied and solved in a totally 
deterministic environment. This means that the parameters and 
variables involved are not subject to uncertainty but assume certain 
values for the entire duration of the scheduling process. This is a 
very strong assumption since the optimality of the solution found 
strongly depends on what happens in the real world and on the 
noise related to the unpredictability of the external environment. In 
most cases, the input data in scheduling problems are the structural 
ones (number of jobs, number of resources, number of tasks, etc.) 
and those related to the jobs to be processed (processing time, 
importance, etc.). While structural parameters are hardly subject to 
uncertainty, those relating to jobs are more sensitive to variability. 
The processing time, for example, is an unpredictable value: in 
many problems that assume deterministic data, the input data 
coincides with the most frequent occurrence values. For this 
reason, in contexts that require it, it is essential to implement a 
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solution strategy that addresses a probable scheduling problem and 
that consciously returns the best solution to the variability of 
certain parameters. A first observation is that the solution of a 
deterministic problem does not necessarily coincide with the 
robust solution, as both have different objectives: for example, the 
first aims to find a global optimal solution while the second can 
search for the best solution in the face of all unfavorable scenarios 
(therefore the best in the worst cases). 
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Chapter 4 
Problem Description 
 
Once the concept of Combinatorial Optimization and robustness of 
a solution algorithm is understood, a detailed description of the 
scheduling problem, object of this work, is presented below; 
subsequently, a solution approach is proposed and discussed.  

 
We study a scheduling problem in which n jobs must be processed 
in sequence on the same machine. All jobs don’t have an order of 
arrival, so it’s not possible to define any priority constraints. 
Furthermore, once the job is in progress, it’s forced to finish its 
working process before leaving the machine and therefore it’s not 
possible to fragment the working time. Each job has an uncertain 
processing time defined only within an interval and there is no 
indication of its probability distribution: the real value can assume 
any value between a lower bound and an upper bound. Finally, all 
jobs can have different weights and share a common due-date, 
beyond which a job, still in progress, is considered late. 
The objective is to find the schedule that minimizes the weighted 
number of delayed jobs (or, otherwise, that maximizes the 
weighted number of jobs on time). 
 
A similar problem, with deterministic processing times and 
common due-date, could be solved by using heuristic methods 
capable of returning an optimal schedule. For example, the SPT 
(Shortest Processing Time) algorithm provides an optimal 
solution, in the unweighted case, by sorting jobs in ascending order 
of processing time. Therefore, the fastest jobs are processed 
immediately while the longer ones are processed last; intuitively, 
it’s difficult to find a more effective algorithm to minimize the 
number of late jobs (Fig. 7). 
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However, the decision-maker may not know exactly some starting 
data and an algorithm such as SPT, which by hypothesis uses 
known values, risk being practically inefficient (or even 
dangerous). 
 
When some input data are uncertain, the solution approach to the 
problem and the objective function change completely, and the 
algorithm to be implemented must be able to work optimally 
despite the possible external turbulence that can create unexpected 
situations: an algorithm that performs in this way, as already 
mentioned, is defined robust. Therefore, the robust approach will 
allow a safe scheduling even in the event of an unfavorable time 
scenario or, specifically, it will be the one that returns the solution 
that performs best despite the worst case scenario occurring. 
 
 
4.1 Concept of Maximum Regret 
 
When dealing with problems of this type, the concept of maximum 
regret is used in the search for a solution strategy in the presence 
of uncertain variables. Briefly, it represents the greatest distance, 
in terms of objective function, between one solution and one 
another that is defined as its adversarial solution. 
 
To understand better, let’s suppose we have to work n=4 jobs with 
common due-date on single machine and we consider the schedule 

Fig. 7: In the first case, there are 3 delayed jobs after six minutes; in the 
second case, with SPT method, there is only one job delayed 
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(1,2,3,4). All four jobs do not have deterministic processing times 
but will assume a completely random value between two definite 
extremes.  
At this point, we can ask what will be considered as the worst-time-
scenario that could happen. A first possibility is to imagine a 
situation in which each processing time for each job reaches its 
upper bound (an extreme scenario); in this way, apparently, the 
whole process will be performed with the greatest possible 
completion-time and this would mean maximizing the number of 
delayed jobs. In reality, the concept of worst-time-scenario, 
according to this point of view, assumes an absolute value: if the 
due-date is not too far away, then it’s possible to notice that an 
extreme scenario may not guarantee a good solution regardless of 
the chosen scheduling, and therefore there is a good chance that 
our sequence (1,2,3,4) is no worse than the others; in other words, 
there would be no regret if all sequences (including ours), with an 
extreme scenario, would return all jobs late. A second possibility 
is to consider the worst case scenario as the one that creates the 
greatest gap between the number of jobs on-time using the current 
schedule and the number of jobs on-time using another schedule 
defined the adversarial solution which maximizes, precisely, this 
difference. If so, in the event that the worst case scenario occurs, 
the time-vector will be such that used by the adversarial schedule, 
it will create the greatest difference (compared to our schedule) in 
terms of jobs on-time: in this way, we will have regret to not have 
chosen the adversarial solution to the current one. It’s important to 
note that every possible sequencing has its worst time scenario and 
its own adversarial solution. Therefore, is “someone” told us that 
the maximum regret choosing the sequence (1,2,3,4) is 12, it means 
that 12 is the maximum number (possibly weighted) of jobs that I 
could not have sent late by choosing the opponent scheduling; on 
the other hand, if sequencing (1,2,3,4) had 0 as maximum regret, it 
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means that (1,2,3,4) is an optimal solution even if its worst-time-
scenario occurs. 
 
Once the maximum regret for each schedule has been defined, the 
best schedule will be the one with the smallest maximum regret; 
this is because a low regret value indicates a low error that is 
committed in the event that an unfavorable scenario occurs. In 
other words, it would be the best solution being the most rational 
solution to choose. 
 
 
4.2 Problem Formulation 
  
At this point, it’s possible to give a mathematical formulation of 
the problem. 
 
Let J = {1,2,3,…,n} the set of n jobs to be processed. Each job j is 
described by a weight wj and a processing time pj included within 
a range of real values where 𝑝  and 𝑝  are respectively the 

lower bound and the upper bound of the interval; the common due-
date is d; Moreover, let C(π, j) the completion-time of job j in the 
generic scheduling π, defined as the sum of the processing times of 
the jobs preceding j in the sequence π and the processing time of j. 
 
Subsequently, we define the boolean variable Uj(π) which assume 
value = 1 if job j in schedule π is late and value = 0 otherwise, i.e.: 
 

𝑈 (𝜋) =
0              𝐶(𝜋, 𝑗) ≤ 𝑑
1                otherwise

  

 
Remember that a job is defined as late when its completion-time 
exceeds the value of due-date, even if its work process has started 
before d. 
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Now, we can model the objective function by incorporating the 
concept of maximum regret previously explained. 
Using a generic sequence π, the weighted number of delayed jobs 
is the following: 
 

𝐹(𝜋) = 𝑤 𝑈 (𝜋) 

 
Let define the generic time-scenario p as a vector of n elements 
that contains the processing times of all the jobs; obviously, since 
pj is defined on a set of real numbers, there will be infinite p 
vectors: 
 

p = (p1, p2,…, pn) :  𝑝   ≤  pj  ≤  𝑝  ∀ j 

 
At this point, we need to find that scheduling which, using the p 
scenario, returns the greatest difference - in terms of weighted 
delayed jobs - compared to our schedule π, i.e. the adversarial 
schedule σ defined as: 
 

min 𝐹( 𝜎, 𝒑) 
 
Therefore, using the p scenario and the π schedule, the regret is 
formulated as follows: 
 

𝑅(𝜋, 𝒑) = 𝐹(𝜋, 𝒑) − min 𝐹( 𝜎, 𝒑) 
 
The worst time-scenario for schedule π is obtained by finding the 
time vector p which, among the infinite ones, maximizes the regret 
value R(π,p): in this way, we found the maximum regret for the 
generic schedule π that we can call Z(π): 
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𝑍(𝜋) = 𝑚𝑎𝑥𝒑 𝑅(𝜋, 𝒑) 
 
As mentioned above, once we get the maximum regret for each 
possible n! schedule, we choose the one with the lowest maximum 
regret value: 
 

𝑍(𝜋∗) = 𝑚𝑖𝑛  𝑍(𝜋) 
 
This formulation of the problem, if solved, allows to find an 
optimal schedule without giving, however, any indication on the 
computational complexity that derives from it. A sensible 
observation could be that if with a modest number of jobs, for 
example n = 30 jobs, it was necessary to search for the maximum 
regret on about 2,65E+32 possible schedules, it would take light-
years to obtain an optimal solution even if a hypothetical calculator 
should spend one second for each schedule π.  
Therefore, it’s important to underline that, although there is an 
exact formulation of the problem, nothing can be said about its 
resolutive complexity. Often, to obtain a solution within an 
acceptable time, a compromise must be created between the search 
time for a solution and the sub-optimality of the solution found. 
About that, a solution approach of the problem will be illustrated 
in Chapter 5. 
 
To conclude the discussion, we observe that this is a dual problem, 
so it’s possible to obtain the same result by coming from two 
different paths: either by trying to minimize the number of late jobs 
or by trying to maximize the number of jobs on-time. Obviously, 
each of these paths must be followed by a strict consistency in the 
modelling of the problem. 
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Chapter 5 
Solution Approach  
 
In Chapter 4, a mathematical approach and a logical structure of 
the starting problem have been provided. In this chapter, instead, 
we will introduce a solution approach by describing the theoretical 
and practical tools used. 
 
 
5.1 Maximum Regret Subproblem 
 
Summarizing the structure of the starting problem, we said that (in 
order to find an exact solution) it’s necessary to identify the 
maximum regret for each of the possible schedules π and finally 
choose the sequence with the lowest maximum regret. 
In this way, we can ideally divide our problem into two problems 
nested one inside the other: the first, given a schedule π, deals with 
finding its maximum regret value; the second (the nominal 
problem - because it doesn’t present uncertain data) will have to 
return, in some way, the sequence with the smallest maximum 
regret value. 
 
As mentioned in Chapter 1, there are particular problems in which 
the space of solutions is composed of infinite elements and, 
therefore, it’s not possible to solve them through Combinatorial 
Optimization; in fact, in Maximum Regret Subproblem, the time-
vector p which maximizes the distance between the weighted 
number of jobs on-time of a generic schedule π and the weighted 
number of jobs on-time in its adversarial solution contains real 
values and thus generates an infinite set of solutions; in other 
words, it’s impossible to investigate all time-vectors, each of 
which identifies a possible scenario. 
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To solve this subproblem, we will use a solution approach capable 
of returning optimal solutions even in case of continuous decision 
variables: the Mixed-Integer Programming (MIP). 
In this way, we will formulate a mixed-integer programming 
model that outputs the maximum regret value (with relative time-
scenario) for a generic schedule π given in input the number n of 
jobs to be processed, their weights wj, their ranges of values for 
processing times [𝑝 ; 𝑝 ] and, above all, the π schedule 

considered. This is a model that, in theory, must be solved for each 
of the possible schedules: 
 
  

𝑚𝑎𝑥       ∑ 𝑤 (𝑧 − 𝑦 )      (1) 
 
𝑠. 𝑡. 
 
∑ 𝑣 ≤ 𝑑      ∀𝑗  (2) 

𝑝 + 𝑝 𝑧 − 𝑣 ≤ 𝑝    ∀𝑗  (3) 

 
𝑝 ≤ 𝑝 ≤ 𝑝     ∀𝑗  (4) 

𝑧 , 𝑦 ∈ {0,1}     ∀𝑗  (5) 
 
∑ 𝑝𝜋(𝑖) ≥ 𝑑 1 − 𝑦𝜋(𝑘) + 𝜀  ∀𝑘 = 1, … , 𝑛 (6) 

 
 
The objective function, as already mentioned, is to maximize the 
maximum regret value for a schedule π (1). In this model, two 
binary variables are provided: zj assumes value 1 if job j is on-time 
in the adversarial schedule and value 0 otherwise, while yj assumes 
value 1 if job j is on-time in schedule π and value 0 otherwise. 
The constraints (2) and (3) are a linearization of a fundamental 
constraint that explain the “rules of the game” to the adversarial 



 

45 
 

schedule: in particular, a consecutive sequence of jobs is 
considered on-time when its completion-time is lower or equal to 
due-date; subsequent jobs, in any order, are defined late. The 
constraints (4) and (5) explain the admissibility set of values for 
each decisional variable – pj, zj, yj for each job j. Finally, the 
constraint (6) allows to establish if the job j at the position k in the 
schedule π, given a certain time scenario, is late; it’s important to 
note that the value of the objective function increases whenever it’s 
possible to send a job k late in the schedule π, and this happens 
whether the sum of the processing times of the first k jobs exceeds 
the due-date d.  
 
For solution development, this mathematical model has been 
translated into Python programming language and subsequently 
solved by using a commercial solver for MILP (mixed-integer 
linear programming) called The Gurobi Optimizer, while the user 
interface that manages the code in Python is that of JupyterLab 
produced by Project Jupyter. 
 
The complete code for this subproblem is available in Appendix at 
the end of this document (Exhibit 1), where n = 30 jobs with unit 
weights wj = 1 were used for simplicity; the values of 𝑝  and  

𝑝  for each job and the sequence π (vector x1) have been 

inserted randomly; the due-date is equal to 500. 
The results of this model, with exemplary input data, are visible in 
Fig. 8: the first column represents the time-scenario calculated by 
the solver with processing times for each job; the second column 
indicates which jobs, with that time-scenario, can be completed 
before d and which ones are delayed; the third column, similarly, 
indicates which jobs, the adversarial schedule, is able to complete 
on-time and which ones are late. 
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Fig. 8: Results from the Maximum Regret Subproblem

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore, we can say that, with the worst-time-scenario (first 
column), there is a difference of 14, in terms of job on-time, 
between the schedule π and its adversarial schedule, and this 
represents the greatest regret for π. Sure, you have to be unlucky 
for those processing times to occur, but as we can see the maximum 
regret value is an indicator of the sensitivity of the schedule π to 
the variability of the time-scenario: if with another sequence the 
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maximum regret had been 5, obviously we would have concluded 
that, between the two schedules, the second is more reliable since 
a smaller error is made even if its worst-time-scenario occurs. 
For this reason, and as previously mentioned, it would be 
interesting to calculate the maximum regret for each possible 
schedule π and select the one (π*) with the minimum maximum 
regret value: it would represent the solution to our problem, the 
most robust sequence and the “less scared” schedule (than the 
others) by a possible worst-time-scenario. 
 
 
5.2 The Nominal Problem 
 
After providing a precise solution for the maximum regret 
subproblem, let’s face the nominal problem of finding the optimal 
schedule among the n! available. 
 
As we can see, it’s possible to adopt a solution strategy through 
Combinatorial Optimization since the set of solutions is composed 
of a discrete number of elements. This resolutive approach allows 
to investigate the whole set of feasible solutions to find the optimal 
sequence that solves our problem, but it’s necessary to understand 
how long this research would take. To get an idea of the 
computational complexity of this problem let’s look at the 
following table: 
 

Jobs Feasible Solutions 
Time-to-search for an exact 
solution (0.5 sec/sol.) 

5 120 60 seconds 
10 3,628,800 21 days 
20 2,43E+18 45,805,922,353 years 
30 2.65E+32 … 
50 3.04E+64 … 
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The magnitude of the solution set is very sensitive to the growth of 
the number n of jobs, so the exact search for a solution makes sense 
for a limited number of jobs. For this reason, it’s necessary to find 
an alternative method to solve the problem. 
 
In order to not abandon the idea of analyzing the entire set of 
solutions, it’s right to think of an efficient algorithm like Branch 
and Bound which, in a smart way, investigates only the branches 
of the solution tree that could contain the optimal schedule. 
Unfortunately, on a higher number of jobs, even the B&B may not 
guarantee a solution within a reasonable time but only allows to 
save a not significant time. 
As mentioned in Chapter 1, there are solution methods in 
Combinatorial Optimization which return sub-optimal solutions in 
sufficiently good times. The idea is to find the right criterion to 
investigate only on a finite subset of elements to obtain a result 
which, without scientific evidence being the optimal solution, can 
still be considered an excellent compromise between 
computational complexity and time search for a solution. 
 
In our problem, since each schedule is totally independent and 
there is no reason to privilege some sequences rather than others, 
we could think of considering a random sample of k schedules and 
applying the maximum regret subproblem on each of them; finally, 
the schedule π* with the min-max regret is extracted. 
In order to test the goodness of this solution strategy, some tests on 
the algorithm’s performance are carried out in Chapter 6. 
 
In the Appendix (Exhibit 2), the Python code for the 
implementation of the Nominal Problem is available. The input 
data are identical to that in Exhibit 1 while a variable iterations, 
which counts the number of random schedules to extract, has been 
added; note that, for simplicity, iterations is equal to 5. 
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Fig. 9: Results from the Nominal Problem (# of iterations) 

The results, instead, are visible in Fig. 9. As we can see, 5 random 
schedules have been generated by the solver in which each of them 
presents its maximum regret value; in this case, sequence 3 is the 
one with the lowest maximum regret value and, therefore, is 
identified as the most robust schedule among those considered. 
The reliability of this solution, of course, is directly proportional 
to the size of the sample chosen: the greater the number of 
schedules extracted, the greater the probability of approaching the 
optimal solution; at the same time, as the computational 
complexity increases, the search time for a solution increases. 
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A second variant of the solution of the nominal problem is that 
which provides for the insertion of an execution time-limit: in 
particular, if we cannot get an indication of how many extractions 
are needed to reach a reliable solution, it’s possible to indicate how 
long the solver will generate random schedules. On the latter, the 
program will update each time the min-max regret value found 
among the sequences analyzed up to that moment. 
In Exhibit 3, the Python code for this second variant is available 
and, for simplicity, a time-limit equal to 0.2 seconds has been 
inserted. Similarly to the previous case, from a logical point of 
view, the greater the time for extracting the schedules, the greater 
the probability that the returned solution approaches the optimal 
one. 

 
The relative results are present in Fig. 10, and they can be read as 
the results in Exhibit 3, since only the solution approach has 
changed but not the final goal. In this case, in 0.2 seconds, the 
solver was able to extrapolate 8 different schedules with the 
respective maximum regret value; the “best schedule” is the last 
iteration that present a min-max regret equal to 12. 
 
In order to test the goodness of this solution strategy, some tests on 
the algorithm’s performance are carried out in Chapter 6. 
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Fig. 10: Results from the Nominal Problem (Time-limit)
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Chapter 6 
Performance Tests 
 
Once the algorithm that aims to solve the initial problem has been 
implemented, it’s necessary to carry out a testing phase to 
understand if this solution approach can be considered sufficiently 
robust. In fact, until now, a smart method to quickly reach a sub-
optimal solution has been hypothesized, but only theoretically: 
there is still no tool that indicates or does not indicate the reliability 
of this solution strategy. A testing phase is essential to provide a 
yardstick on the algorithm performance and, in particular, it will 
indicate how much the program is able to return a sufficiently 
robust solution despite the variables that represent the jobs 
processing time pj are uncertain. 
 
 
6.1  Test Structure and Results 
 
The structure envisaged for testing phase must be able to measure 
the algorithm robustness by changing the value of some 
fundamental variables. In particular, it’s important to observe how 
the solution approach, within a generic instance, responds when 
the number n of jobs increases but, above all, to observe its 
behavior as iterations increase, that is the number of random 
schedules extracted from the entire set of solutions. Performance 
results deriving from time-limit executions have also been included 
in the test structure.  
 
Before explaining the testing phase model and its basic logic, 
tables with the results obtained are shown below (Fig. 11, 12, 13) : 
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Fig. 11: Test structure with n = 50 jobs and n = 100 jobs
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Fig. 12 : Test structure with n = 150 jobs and n = 200 jobs



 

55 
 

 
 

  

Fig. 13: Test structure with n = 300 jobs and n = 500 jobs
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In particular, a test was performed on six different values of the 
number of jobs :  n = 50, n = 100, n = 150, n = 200, n = 300 and 
n = 500. For each of them, the unweighted case and the weighted 
case are considered : in the first one, w = 1, all jobs have unit 
weight and, therefore, have the same level of importance ; in the 
second one, instead, w != 1, all jobs can assume different weights 
and priorities. For both the unweighted case and the weighted case, 
five different instances have been generated, which individually 
include four different tests : extraction of 10, 100, 1,000 random 
schedules and a time-limit execution (T.L.). Within the single 
instance (e.g. n = 50, w = 1, Inst. 1), all four tests are performed on 
the same input data ; therefore, it’s possible to have an evidence of 
performance results based on the number of iterations and on the 
extraction method used. Input data (i.e. values of 𝑝 , 𝑝  and 

wj of each job), for each of the 60 instances, were generated 
randomly respecting only some generic compliance constraints; 
for this reason, the input structure represents a database that 
contains starting data to perform each type of test. As we can see, 
there is a different time-limit for each value of the number of jobs: 
this is because as n increases, the computional complexity of the 
problem increases and the solver requires more time to generate an 
acceptable solution. The due-date, for semplicity, is always equal 
to 80 and the results, in terms of min-max regret returned, are 
shown in red. 
The single instances, while sharing some structural characteristics, 
are considered indipedent of each other; so, it’s possible to test the 
algorithm performance based on a comparison between the results 
of the four tests within the same instance (10, 100, 1,000 iterations 
and the time-limit execution T.L.) and between instances with 
same n and same case (w = 1 or w != 1).  
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6.1  Result Analysis 
 
As regards the unweighted case, results are summarized in three 
graphs in Fig. 14. For semplicity, only cases with n = 50, n = 200 
and n = 500 were considered. 
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Fig. 14: Results from the Unweighted Case
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In order to have a better view of differences in performance, the 
intermediate case with 100 extractions was excluded from the 
graphs: therefore, three broken lines represent the point values of 
min-max regret respectively with 10 iterations (blue), 1,000 
iterations (orange) and with a time-limit based on the number of 
jobs (grey). As previously mentioned, for each category of n, 
performances can be compared within a single instance (vertical 
difference in terms of min-max regret) and between the five 
instances of the same “group” (comparison of the height of the 
lines). Naturally, given the problem nature, the best line is the one 
that is lower than the others; then, in general, the one that returns 
best solutions. In fact, increasing the number of extractions 
improves, on average, the solution quality (comparison between 
blue lines and orange lines). In all cases, however, time-limit 
extractions return solutions that sometimes coincide with those 
deriving from an extraction of 1,000 schedules (i.e. third graph). 
Therefore, in the unweighted case, no excessive large differences 
are obtained in terms of objective function by incresing the number 
of iterations or even by increasing the number of jobs n; so, it’s 
likely that a solution obtained with 50 extractions is very close to 
a solution obtained with 2,000 extractions and much more time is 
saved. In this way, it’s possible (on average) to obtain a good 
solution without investigating an excessive number of schedules. 
It’s important to underline that by increasing the number of 
iterations, a higher quality solution is still more likely to be 
obtained and that using fewer extractions doesn’t ensure the same 
results; only a sub-optimal solution that is very close to the best 
one is guaranteed in less time. As regarding the distance between 
the best solution obtained and the real optimal solution, it’s 
possible to see that within the single instance all values seem to 
approach a lower bound which however is unkown. Since the 
variability in min-max regret values remains very low increasing 
the number of iterations, it’s probably that the optimal solution has 
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been reached or that it’s very close. Obviously, there can always 
be a single and isolate optimality case that is distant from the other 
sub-optimal values. 
 
Even in the weighted case, results are summarized in three graphs 
(Fig. 15). 
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Fig. 15: Results from the Weighted Case
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As in the previous case, best solutions seem to be those extracted 
with a number of iterations equal to 1,000 (orange line). The time-
limit approach (grey line) returns excellent results comparable to 
the best ones and, for this reason, it’s established as a very reliable 
solution method. 
In the weighted case, jobs have a value of importance wj which can 
also assume decimal numbers (e.g. 2.15). In this way, the 
difference in terms of min-max regret is more sensitive and more 
visible graphically within the single instance and between 
instances of the same type. Again, by increasing the number of jobs 
n or the number of iterations, there isn’t a significant difference in 
results between extractions with 10 random schedules and 
extractions with 1,000 random schedules; even time-limit solutions 
do not seem to differ excessively from those obtained with the 
other methods. Obviously, as in the unweighted case, as the 
number of iterations increases, on average, the solution quality 
increases and moreover, by inserting decimal weights into the 
objective function, it’s possible to see how a solution methodology 
is significantly better (or less) than the others. 
In conclusion, the solution proposal shows good robustness. In 
fact, by extracting a defined number of iterations (in the specific 
cases) or an indefinite number of iterations (extractions with time-
limit), results are very close to each other and, in the unweighted 
case, sometimes they coincide between different solution methods. 
Naturally, not knowing the real optimal solution, there is no 
measure of the quality of the solution obtained but, as previously 
mentioned, the different approaches in testing phase seem to 
converge towards a lower bound that we can hypothesize as a 
“minimum point”. In all instances, a min-max regret value 
extracted from 10 schedules generally has a performance similar 
to that obtained with 1,000 schedules, and for this reason it’s not 
necessary to carry out an exorbitant number of iterations to achieve 
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a sufficiently acceptable result; therefore, the trade-off between 
search time for a solution and solution quality is very limited. 
 
 

Chapter 7 
Conclusions 
 
Combinatorial optimization problems, in general, are often treated 
superficially and, in some cases, even incorrectly. The issue of 
uncertainty plays a fundamental role in the modeling of some 
structural elements, such as parameters, objective functions and 
decision-making variables. The idea behind this thesis was to 
provide a slightly different treatment of a problem that, in general, 
is defined and solved assuming that all factors involved are 
deterministic. Forcing uncertain processing times for each job is a 
strong assumption, which, as seen in the previous paragraphs, leads 
to a completely different solution approach, but at the same time 
describes a situation that, in everyday life, is almost likely. 
Obviously, uncertainty is an omnipresent factor and it is essential 
to understand where it is possible to live with it and where, instead, 
it is not possible to ignore: in this case, the experience of someone 
that lives every day with certain types of problems is fundamental. 
The robustness issue is introduced in those problems where, in fact, 
relevant uncertain factors are present. The proposed solution 
approach do not represent an exact solution method but an 
approximate method which, in some way, are able to return a 
solution that is sufficiently good in a reasonable time. In this way, 
we were able to create a robust and useful tool to support certain 
decisions, demonstrating at the same time its effectiveness, its 
timeliness and, above all, its robustness. 
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Appendix 



Exhibit 1 – Python Code for Maximum Regret Subproblem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Exhibit 2 – Python Code for The Nominal Problem (# of iterations) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Exhibit 3 – Python Code for The Nominal Problem (Time-limit) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


