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Abstract

Prostate cancer is the most common cancer in the world for what concerns the male

population. Among the different tests to diagnose it, MRI proves to have the greatest

accuracy in recognizing the prostate and tissue irregularities within it.

The diagnosis of a pathology affecting this organ is carried out using CAD systems that

use automatic segmentation algorithms as a support to recognize at first the organ in its

entirety or a region in which it is most likely to be found within the image.

The use of automatic algorithms for prostate segmentation allows to bypass the huge

workload on technicians as the data available for processing is enormous and it needs

rapid and less operator-dependent techniques. The latest approaches proposed use deep

neural networks that rely on the large acquired capacity of computers in terms of GPU

and CPU to automatically extract deep features from large datasets and to easily classify

the input images on the basis of the repetition of recurring patterns. The anatomy of

the prostate will be outlined focalizing on its characteristics in MRI images to better

understand the major difficulties in its segmentation, such as the less defined edges at the

base and the apex, the small effective area in the whole MRI volume, the appearance of

the organ similar to the one of all the tissues surrounding it, the large variability in shape

among different patients and other variable characteristics that depend on the scanning

protocols and noise corrupting the acquired images.

We propose a fully automatic hybrid approach which involves an initial segmentation of

the prostate volumes using a custom made deep 3D network, followed by a refining using

an Active Shape Model.

The 3D convolutional neural network is used as it allows for greater spatial coherence, as

opposed to 2D networks which are trained on single slices, losing the information deriving

from the slices’ connections within the volume.

The CNN alone, however, has some limitations, such as the low precision of the segmen-

tation at the edges of the prostate and the possibility that the resulting shapes are not

realistic due to the characteristics of the MRI images.

The active shape model is used as it is based on image characteristics different from those

used by the neural network and by its nature, it should guarantee a more accurate seg-

mentation even in correspondence with the organ contours.

In addition to these two models, a comparison with a 2D CNN model is proposed to
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evaluate the differences and strengths of a model rather than the other.

Out proposed method has been tested on a set of 15 prostatic volumes in T2 MRI using

DSC and 95% HD as performance metrics. We achieve a DSC of 84.5%±4.8% and a 95%

HD of 9.55±3. Compared to the 3D CNN alone, the numerical results are improved and if

a visual inspection is performed, it can be noted that the resulting shapes are closer to the

real one. The use of a hybrid model allows to improve the performance of the CNN-based

segmentation method by adding knowledge about the shape of the organ, even in those

cases in which sufficient discriminative features for precise segmentation are not present.

The proposed 2D network yields better results both for DSC and 95% HD, but this is

only due to the fact that we have used a previously trained network and for this reason,

more parameters are available for training. However, the 3D model demonstrates higher

spatial coherence between neighboring slices, generating a three-dimensional output with-

out holes and inconsistencies.

The performance of our method can be improved by optimizing the network parameters,

the algorithm that allows to transform the output of the CNN into the points of the

statistical model and the parameters of this latter.
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Chapter 1

Introduction

1.1 Medical imaging

The term medical imaging refers to all the non-invasive techniques and processes involved

in the creation of images and representations of the internal and external structure of the

human body [19].

The final scope of these methodologies is to provide instruments to help specialists in

diagnostic tasks and treatment of patients.

The inside of the body can be studied and classified into different organs, eliciting the

anatomy of a healthy subject that can be useful in creating a database for detecting ab-

normalities.

It also offers the possibility to observe the physiology of a specific organ or tissue, that is

the behaviour in time.

By observing the signals that can be obtained with specific methodologies, different prop-

erties of living tissues can be deduced with a specificity that depends on the instruments

used in the acquisition phase, on the specialist experience and on the techniques available

for post-processing.

From the traditional scans, 2-D static output are obtained on film. By combining succes-

sive scans a 3-D model can be produced and volume rendering techniques can be used to

create 3-D images that the physician can use for later processing.

1.2 Quantitative imaging

The information generated by various medical imaging techniques can be utilized and

explored in different ways.

The traditional clinical practice is known as qualitative imaging and it expects the radi-

5



ologists or other physicians with adequate training to visually inspect and interpret the

images produced with the acquisition techniques.

Human eye recognizes patterns, but it is not optimized for complex quantitative mea-

surements. For this reason many parameters contained in medical images are ignored in

radiological reports, thus worsening clinical research.

Modern imaging techniques allow to obtain more objective results, which do not depend

on visual inspection alone and therefore are more accurate in monitoring the progress of

a disease and its response to certain treatments.

These techniques are called quantitative imaging and are useful in providing functional

information.

The name ’quantitative’ derives from the fact that they offer the possibility to extract

quantifiable features from medical images, that can be used to assess the degree of change

in the health status relative to a normal condition [26] [21].

Quantitative imaging includes different steps:

• Development of acquisition protocols.

• Standardization and optimization of protocols.

• Data analysis.

• Display methods.

The features obtained from imaging datasets using these methodologies should be more

accurate than the traditional subjective methods that suffer from inter- and intra- observer

variability.

The features that render the quantitative imaging a useful tool in modern radiology are:

• Accuracy: quantifies how close the measurement is to a correct answer.

• Precision: allows discriminating an error caused by the measurement from a biolog-

ical change.

Two important characteristics of the measurements must be the repeatability and

the reproducibility, the measure must give the same value under the same conditions.

• Clinical validity: the results must have an impact, improving the outcomes.

In order to perform QI, the following tools should be taken into account.

Image Acquisition

Different acquisition modalities can be used to exploit quantitative imaging.
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An important aspect to be considered is the possibility to obtain volumetric datasets

that are easier to interpret in the real-world space and permit to obtain more accurate

morphologies and quantitative characteristics of tissues.

We give a brief description of the main acquisition modalities used in this field.

1. Ultrasound Imaging

Ultrasonography is a diagnostic imaging technique, also used for therapy. The

purpose of this technique is to create an image of the internal structures of the

human body, specifically of the soft tissues, to determine the presence or absence of

irregularities or dysfunctions.

It consists in sending pulses through the tissues at high frequencies using a probe

and recording the echo that generates from them in the form of an image, whose

values depend on the reflection properties of the different tissues, which affect the

return time of the wave and the strength of the received signal.

2. Computed Tomography

CT is a medical imaging technique that allows visualizing the internal structure of

the human body without the necessity of using invasive technique such as cutting.

It uses an X-ray generator that moves around the object that has to be scanned and

detectors that collect the X-rays coming out of it.

The data obtained with a scan are processed to obtain cross-sectional images that

can be stacked together volume rendering algorithms to have a clearer view of the

three-dimensional structures.

3. Magnetic Resonance Imaging

MRI is a technique used to represent the anatomy of the human body and the phys-

iological processes that take place within it.

The MRI scanner creates a strong magnetic field around the patient’s body at a res-

onance frequency that excites atoms which emit a radio frequency signal, measured

by a receiving coil.

The different tissues are discriminated according to the time it takes for the atoms

to return to the equilibrium state. These times are determined by the relaxation

processes that occur by setting specific parameters for the pulses and gradients that

are applied.

4. Nuclear Medicine

Nuclear medicine imaging is a technique used to record a radiation that is emitted

from inside the human body.

The process by which this occurs begins with the administration of radiopharma-

ceuticals to the patient. Detectors placed outside the human body, called gamma
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cameras, capture the emitted radiation and create an image that allows recognizing

the processes that take place inside the human body.

Quality Assurance

In order to respect the QI metrics of reproducibility and repeatability, it is important to

have standardized protocols [26] for the acquisition techniques, in terms of both hardware

and software components.

The instruments with which the acquisition is performed have an impact on the quantita-

tive metrics that are further calculated; for this reason, calibration is an important step

that has to be performed at the beginning of the procedure.

For what concerns MRI, for example, a crucial step is the coil selection, its positioning

and the choice of the sequence parameters that has to be used in the different modalities.

Structure size definition

Evaluation tasks in quantitative imaging require the comparison of the results obtained

with a specific algorithm with the real dimensions of the structures in exam.

The measure mostly used in these types of tasks is the volume, that can be estimated in

different ways, more or less accurate, depending on the approximations used when assess-

ing the shape.

A list of different software can be used to estimate the volume starting from the edges of

structures in the image. Many of these algorithms have been automated during the last

years,bringing the image segmentation to a new level of precision.

The volume of a structure can discriminate between normal and pathological conditions,

but it is not the only measure used for this scope.

The distribution of voxel values within the volume can determine a huge number of fea-

tures that reflect particular behaviors of the tissue, thus the texture of an image and the

grey levels that can be obtained using simply algorithms could be beneficial in diagnosis

purposes.

Quantitative imaging is beneficial for patient care as it extrapolates information that

goes beyond visual aspects [21].

This interpretation, however, requires additional processing and an adequate education

of the clinicians which can be lacking in case of insufficient experience with the specific

tool.

1.3 Automatic Algorithms

As previously discussed, the volume estimation of structures in medical images is an im-

portant step in diagnosis. Many image segmentation algorithms have been proposed,
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starting from manual segmentation methods, passing through semi-automatic and reach-

ing the techniques mainly used these days, based on a fully automatic approach.

The main reason that has made this automation necessary is that across the years a lot

of medical data have been produced, with huge dimensions compared to data available in

the past.

To manage this problem and get useful information for the intended purposes, computers

have been largely used to facilitate processing analysis. Anatomical regions of interest

can be delineated in an automated way, facilitating the workload of the physician, thus

leading to a faster diagnosis, a more precise localization of a pathology or lesion as in the

case of computer-integrated surgery and a possible more accurate treatment planning.

Methods for image segmentation

The term segmentation refers to the recognition in an image of specific regions consisting

of pixels with similar characteristics, representing a homogeneous area in terms of inten-

sity, texture or other correlated image features.

The segmentation can be performed both on 2D or 3D images, the latter incorporating

more spatial information, and for this reason being more computationally complex and

heavier.

We present a list of the main techniques used for this scope, many of which can be

used in conjunction for solving different problems.

A first coarse distinction separates the segmentation methods into 8 categories [3], some

of which are not completely automated but can be used inside automatic algorithms to

obtain a starting point for other techniques or to refine the segmentation in the middle

or at the final step.

1. Thresholding

It is based on a binary partitioning of the image intensities.

The threshold is defined as the value corresponding to valleys in the intensities

histogram. All pixels with intensity above the threshold are grouped together into

one class, and all the other pixels into another class.

It works well and it is simple when the intensities or other features used to make the

distinction have separable values. It can not be applied to multi-channel images and

it does not provide spatial characteristics; it is sensitive to noise and inhomogeneities

in the pixel intensities that corrupt the histogram.

2. Region Growing

It consists in manually placing a seed point on the object which has to be seg-

mented, from which all connected pixels are extracted, on the basis of a predefined

criterium (such as intensity information). It is sensitive to noise that can mislead
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the connectivity between adjacent pixels.

3. Classifiers

This category gathers methods based on pattern recognition for which the segmen-

tation is derived from data used for training having known labels.

Classifiers are non-iterative methods, efficient and not time consuming; they can be

applied to multi-channel images. They do not provide spatial modelling. Training

sets are manually obtained (time consuming).

4. Clustering

It permits to segment the image without the need for training labelled data. The

pixels in an image are partitioned based on particular properties learned from the

image itself.

Each class is defined as a set of pixels having similar properties. It is a fast algorithm,

but initial segmentation and parameters are required (operator-based). It does not

provide spatial modelling, it is sensitive to noise and intensity inhomogeneities.

5. Artificial Neural Networks

ANNs are networks made of connected processing units that singularly perform

simple computations.

The features of the input image are learnt passing through the network and adapting

the weights assigned to the connection between the units (or nodes). Unlike the

other techniques, it provides spatial information.

6. Deformable models

These models are based on closed parametric curves or surfaces used to define the

boundaries of a structure inside the image. These curves deform under internal and

external forces that are respectively based on the characteristics of the curve itself

and on features computed on the image such as the intensity gradients.

The adaption of these curves to reach the object is called relaxation and it is an

iterative process. The technique is robust to noise and not well defined edges. It

requires manual interaction for the initial model and parameters.

7. Atlas-Guided Approaches

They provide an atlas with information on the anatomy of the region which requires

segmenting. The atlas is used as a reference frame for segmenting new images.

8. Markov Random Field Models

They are statistical models to represent interaction between neighboring pixels.

The scope of these models is not exactly the segmentation of objects in an image,

but they can be used within segmentation algorithms to cope with the problem of

separated regions belonging to the same object. They are robust to noise and can
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be used to model both segmentation classes and intensity inhomogeneities. They re-

quire the selection of the spatial interactions parameters and can be computationally

heavy.

Many of the algorithms presented above are not used alone because they require manual

interaction, which slows down the process.

For this reason, machine learning has been introduced in the medical field, to fully auto-

mate the procedure and to ensure high precision and repeatability.

The first operation that a machine learning algorithm performs is the recognition of image

features that are thought to be important for the specific purpose [18].

The best combination of these features is chosen and from these, a new image can be

classified or segmented.

Ordinarily, an ML classifier in the computer vision field follows these steps:

1. Structures of interest in an image are segmented with a traditional segmentation

technique such as thresholding, active contour etc.

2. The segmentation obtained in the previous step is processed in order to extract

particular features (e.g. contrast, shape etc.) with a feature extractor.

3. Sets of features are input to an ML classifier together with known class labels for

training.

4. The trained model determines the belonging class for examples that have not yet

been seen from the algorithm.

The idea behind this revolutionary technique, is that computers are taught to solve prob-

lems by learning from experience in the form of training data, and are optimized using

specific algorithms, to output accurate predictions also on unseen elements.

The ability to use their experience on new data is called generalization and it is first tested

in the training phase on an set made of examples not used for training called validation

set. The results of the predictions obtained from the validation set, are used to further

tune the model, in order to finally evaluate it in the final phase, on a test set made of

completely new data.

The model can use the input data in different ways during training.

The three main types of ML algorithms are presented below [18], each representing a

specific type of approach regarding the use of input data.

• Reinforcement learning

The first ’stage’ of this classifier is built using labelled data. In a second phase,

unlabelled data is given to the classifier, which tries to better characterize it in
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order to improve the classification.

The model learns from error while optimizing the objective function.

• Unsupervised learning

The algorithm is trained with unlabelled data, from which it has to recognize specific

patterns that repeat into the image, defining the characteristics of different classes.

Examples of this type of algorithms are K-means, mean shift, hierarchical clustering,

MRF, ISODATA, fuzzy c-means.

• Supervised learning

The algorithm is fed with annotated data and tries to define some characteristics of

the pixels belonging to the labelled region, in order to create accurate predictions

on new, previously unseen datasets.

Example of this type of algorithms are SVM, decision trees, linear regression, logistic

regression, naive Bayes, k-Nearest Neighbor, Random Forest, Neural Networks.

Some of the techniques cited above, have already been discussed when introducing the

main types of segmentation methods.

In the following we focus on the latest solutions and deepen the neural networks, which

at the moment are the state of the art in medical image segmentation.

1. Support Vector Machine (SVM)

It transforms input data to produce a plane or support vector that separates the

two classes.

This wide plane can separate the points of observation at different degrees, by

setting specific parameters the plane can be optimized for the best classification.

This algorithm provides basis functions to map a certain distribution of points to

other dimensions with nonlinear relationships, in order to render the classification

among not linearly separable possible (figure 1.1).

Figure 1.1: Example of mapping from the original space in which data are not linearly
separable to a new dimension where classification can be performed using a hyperplane.
[18]
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2. K-NN

Objects are represented as position vectors in a multi-dimensional space.

An input vector made of the chosen features for a single example, is classified into

the most common class among the k-nearest neighbors (figure 1.2).

In order to determine how close an example is to another a similarity measure is

used, typically the Euclidean Distance.

Figure 1.2: The unlabelled example in the image can be classified into two different classes
depending on the choice for k. [18]

3. Decision Trees

Among all the machine learning methods, they are the only one that guarantee a

human-readable result on how to classify a given example. The algorithm is based

on the search for the best number of decision points that produce a relatively simple

decision tree, ensuring the most accurate result possible.

4. Naive Bayes algorithm

It states that the probability of an event is a function of related events.

In machine learning-related classification problems, the final probability that an

element belongs to a given class is given by the probability chain of all the input

features together. All the features are independent of each other, which does not

allow this algorithm to faithfully model reality, but it guarantees good acquiring of

estimates of performance.

5. Neural Networks

As previously described, neural networks are a connected set of logical units that

process information in order to output a prediction. The output of the network is

compared with the given label and an error function (loss function) is computed.

This error can be reduced changing the weights of the network, based on the compu-

tation of a search function, which defines the direction and magnitude of the change

required to reduce the error (iterative process).
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Chapter 2

Background and related works

2.1 Introduction to deep neural networks

2.1.1 Deep learning overview

In computer vision, an important aspect to be taken into account is the automation of

the algorithm, that permits to obtain results that do not rely on expert crafted features.

Traditional machine learning algorithms, as previously discussed, make use of features

that sometimes are manually selected by the operator, that render the procedure less

reliable, due to the high variation of data among different subjects [10].

Deep learning has been introduced in computer vision field to cope with this problem.

Features computed from objects segmented with traditional methods are no more used as

input information to discriminate structures in the image. They are substituted by pixel

values, providing a technique that does not depend on the operator.

Deep learning avoids possible errors that depend on the feature calculation and selection,

offering more accurate results relative to common classifiers. It is also called end-to-end

machine learning, because the process on which it is based maps from raw images directly

to the final classification.

Why deep learning has advanced so far these last years?

As we can observe in figure 2.1 , during the last decades computational power has grown

and continues to grow both in terms of CPU and GPU following a certain distribution.

The general distribution of both CPU and GPU power can theoretically be described by

the Moore’s law, which states that the number of transistors in a dense integrated circuit

doubles about every two years.

A more recent law, proposed by J. Huang, questions Moore’s law, arguing that it is valid

only for the CPU, while improvements in the GPU occur at a much higher rate.
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This theory has been scientifically proved. A synergy between hardware, software and

artificial intelligence has made it possible, giving rise to new technologies and components

capable of processing large amounts of data in reasonable time [17].

Figure 2.1: Comparison between Moore’s law and Huang’s law predictions on CPU and
GPU growth. According to the Huang’s law, silicon chips will double their performance
every two year, at a rate much higher respect to CPU growth. [17]

The idea at the base of deep learning is to enlarge the basic architecture of neural net-

works, adding a variable number of hidden neurons and layers that further process the

raw information extracting high-level features and semantic interpretation from the input

data.

These architectures rely on the possibility to transfer algebraic computations and convo-

lutions to the GPU [24][20], obtaining fast results even with large datasets, compared to

the native architectures of ANNs.

Artificial Neural Networks’ main components

A generic artificial neural network [10] is an ensemble of interconnected nodes called

artificial neurons, that process the information that is input at the first layer by means

of non-linear functions of the sum of the inputs at each node. These connections have

weights that are adjusted while the learning proceeds and that determine the strength of

the specific connection. Neurons are organized in layers, each of which performs a specific

transformation.

Training of the network is performed by passing labelled examples through the network

and computing the difference between the processed output and the desired output (la-

bel). This difference corresponds to the error that is used to correct the weights of the

connections in order to make the predicted value more similar to the desired one.
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The first and simplest feedforward neural network is based on perceptron [10], an al-

gorithm for supervised learning of a binary classifier called a threshold function that

maps an input to an output value.

A single-layer perceptron (figure 2.2) can be seen as an artificial neuron that uses a linear

activation function to transform an input vector (or multiple input vectors) into an output

prevision.

Figure 2.2: Single-layer perceptron architecture: inputs are weighted and passed into a
node that performs a summation and adds a bias term. The output from this node is
then passed through an activation function to obtain the final output.

The function (f(x)) that transforms the linear combination of input values into the output

value for the single-layer case is called ’Heaviside Step Function’ and has the following

form:

f(x) =

{
1 if w · x+ b > 0

0 otherwise

where:

• w is a vector representing real-valued weights.

• w · x is the dot product
∑m

i=1wixi calculated over m inputs.

• b is the bias term, used to shift the decision boundary from the origin.

As we can observe, this value can be 0 or 1 whether x represents a positive or a negative

instance (if the classification is between two classes).

The algorithm on which the single-layer perceptron is based, converges only if the two

classes are linearly separable.
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Modern Neural Networks

The multilayer perceptron (figure 2.3) is a class of feedforward ANNs of at least three

layers of nodes (input, hidden and output layer), introduced to deal with data that can

not be handled with the previous model.

The multilayer perceptron can also be referred as a ’neural network’ and it represents the

basic model from which many architectures have been developed to handle different types

of problems.

Figure 2.3: Multilayer perceptron architecture: despite the single-layer perceptron, inputs
are passed into a variable number of hidden units in the hidden layer that process non-
linear activation functions to compute the final output.

From the hidden layer on, some neurons in this architecture can process a non-linear

activation function, which allows dealing also with non-linear data distributions.

These non-linear activation functions are represented in figure 2.4 with the corresponding

formulas.

1. Logistic activation function (sigmoid)

It exists in the range [0 1] and it describes the probability of an output value given

an input. Values out of the range are saturated to 0 and 1 respectively.

2. Hyperbolic tangent activation function

Similar to the sigmoid, but zero-centered (range [-1 1]).
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Figure 2.4: Comparison between sigmoid and hyperbolic tangent activation functions

Network training

The supervised learning technique used by the multilayer perceptron for training is called

backpropagation and consists in adjusting the weights of the network based on corrections

that minimize the error in the entire output using a technique called gradient descent.

In order to evaluate how well the algorithm learns to model the training data, it is

necessary to define an objective function that has to be optimized.

In these applications, this function must be minimized, so it is called loss function and it

computes the magnitude of the difference between the output predicted by the network

and the input data.

The loss error refers to a single training example; when computing the error for the entire

training set, we must define a cost function, which corresponds to the average of the loss

function over the whole input data.

Many types of loss functions exist and can be used to train a neural network. A first

rough classification allows to divide these functions into two main categories, namely the

classification loss functions, which refer to discrete outputs, and regression loss functions,

dealing instead with continuous value outputs.

Each time a different set of weights is tested during the training process, the value of the

cost function is calculated and minimized using gradient descent.

To understand the behavior of this algorithm, suppose we define a cost function with a

quadratic behavior [12], known as mean squared error (MSE) and expressed as follows:

C(w, b) ≡ 1

2n

∑
x

||y(x)− a||2
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where:

• w: corresponds to the set of weights in the network.

• b: all the bias terms used in the network.

• n: the total training inputs.

• a: the outputs of the network given x as input.

More generally, we can define any C(v) function that depends on an arbitrary number of

variables, for example v1 and v2.

The derivative of this function with respect to these two variables is then:

∆C ≈ ∂C

∂v1
∆v1 +

∂C

∂v1
∆v2

where the vector of partial derivatives is called the gradient of C and relates changes in v

to changes in c, and can be expressed as:

∇C ≡
(
∂C

∂v1
,
∂C

∂v2

)T
We can express the derivative of C as a function of the gradient:

∆C ≈ ∇C ·∆v

We can choose:

∆v = −η∇C

with small and positive η, in such a way as to have ∆C ≤ 0, or rather the derivative of

the cost function always decreasing.

The value of v will be iteratively updated until the global minimum point is reached. In

essence, the gradient descent algorithm repeatedly calculates the gradient of the function

C and then shifts the values in the opposite direction.

This rule can also be applied if there are many more variables on which the function to

be minimized depends.

If we substitute the values of v with the weights and biases terms, we have to do the

following updates at each step:

wk → w′k = wk − η
∂C

∂wk

bl → b′l = bl − η
∂C

∂bl
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Backpropagation is the algorithm used to compute the gradient of the loss function with

respect to the weights and bias terms in the network. Is is called this way because the

error vectors are calculated starting from the final layer.

The complete algorithm involves the following steps:

1. Input

Set the activation a1 corresponding to the input layer.

2. Feedforward

For each layer, starting from the second to the last one, compute

zl = wlal−1 + bl

al = σ(zl)

3. Output error

It is the error corresponding to the last layer, obtained as:

δL = ∇aC � σ′(zL)

where

• ∇aC represents a vector whose components are the partial derivatives of C

with respect to the activation of neurons in the different layers.

• � is the elementwise product of the two vectors (Hadamard product).

• σ′(zL) represents the rate at which the activation function changes at zL with

zL being the weighted input to the neurons in layer L.

4. Backpropagate the error

Starting from l = L− 1 compute the error related to each layer, until l = 2.

δl = ((wl+1)T δl+1)� σ′(zl)

where

• (wl+1)T represents the transpose of the weight matrix in the (l + 1)th layer.

• δl+1 is the error previously computed, relative to a layer subsequent to the one

under consideration.

5. Output

Obtain the gradient of the cost function with respect to the weights and the biases

as
∂C

∂wljk
= al−1k δlj
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∂C

∂blj
= δlj

Problem of overfitting

When the number of weights and biases of the network is too high, it can happen that

the network learns patterns in the data that do not refer to real values, but to noise and

random fluctuations.

This phenomenon is known as overfitting and it leads the network to model train data

almost perfectly, but to fail when new data is presented to it, even if belonging to the

same domain as the training data.

The performance of the network during the validation and inference phases deteriorates

because random noise is different in each example presented to the network and the true

function describing the data distribution can not be recognized during learning.

Two simple ways of reducing the effect of overfitting can be increasing the amount of

training data or reducing the complexity of the network.

These two possibilities, however, are sometimes impractical, because obtaining new data

can be difficult and decreasing the size of the network can lead to lower performance.

There are methods, called regularization techniques, whose purpose is to reduce over-

fitting, keeping constant the size of the network and the number of examples presented

during training.

A regularization technique [14] foresees that terms are added to the loss function in order

to obtain an effect on the overall training trend.

There are several types of regularization, they differ according to the target to which

they are applied, to which function is used, to the hyperparameters introduced to scale

the degree of regularization on the basis of the problem being faced.

We present below three of the main techniques, with a brief explanation of how they work.

1. L2 Regularization - Weight Decay

It consists in adding a regularization term to the cost function, which corresponds

to the sum of the squares of the weights of the whole network.

For clarity, the regularized version of the cost function mentioned above becomes:

C =
1

2n

∑
x

||y − aL||2 +
λ

2n

∑
w

w2

where the regularization parameter λ is scaled by the size of the training set.

With adding this term the network is more pushed to learn small weights (if high

lambda) or simply to minimize the original cost function (if low λ).
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2. L1 Regularization

The term added to the cost function is the sum of the absolute values of the network

weights, again scaled by λ.

C =
1

2n

∑
x

||y − aL||2 +
λ

n

∑
w

‖w|

This technique allows shrinking the weights much more, keeping only the most

important connections in the network and deleting all the others.

3. Dropout

It is different from the two previous techniques, as it does not act on the loss function,

but directly modifies the network, randomly and temporarily choosing neurons that

will not be taken into account during training, being restored only at the end of the

process with their original weights.

The procedure is repeated, deleting a different subset of neurons each time.

The overall effect that this technique has on overfitting is to mediate the effect of

different networks, trying to eliminate the effects deriving from noise.

Deep architectures

Deep Neural Networks, as anticipated in the introduction to the chapter, are an ex-

tension of basic Artificial Neural Networks.

Figure 2.5 shows the architecture of a typical Deep Neural Network. As we can observe,

it is made of the same components of a shallow NN, but it has multiple hidden layers

between the input and the output.

Figure 2.5: Generic Deep Neural Network architecture made of many hidden layers that
process the input information to obtain the final prediction. [20]
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To cope with the high computational effort that training these deeper networks requires,

two additional activation functions have gained popularity:

• Rectified Linear Unit (ReLU)

This function performs the ’max’ operator between 0 and the input. If the output

of the transformation is less than zero, the neuron will be deactivated. This allows

to activate neurons in different instants of time, rendering the process of learning

faster respect to the one using the sigmoid or the tanh function.

• Leaky ReLU

It is an improved version of the ReLU function which solves the problem of the null

gradient for x < 0 (that would deactivate all neurons in that region) by making the

negative component of x a small linear function of the positive one.

Figure 2.6: Difference between the ReLU (left) and Leaky ReLU (right) activation func-
tions.

Many types of Deep Neural Networks exist, depending on the task they have to achieve

[20]. Deep Autoencoders, for example, do not deal with the classification of the input ex-

amples, but simply with their recreation in the output. Other networks model sequence

data (RNNs) or probabilistic relationships between the variables involved (RBMs).

In this study we will deal with image data and for this reason we will use a particular

type of networks called Convolutional Neural Networks, specific for this type of problem.

Instead of using predefined kernels, a CNN employs convolution filters to perform the

convolution operation multiple times on the input image to learn locally connected neu-

rons as they were hypothetical kernels created on the data.

The architecture of a basic CNN is shown in figure 2.7; the network details, along with an

in-depth description of all the parts constituting the model are presented in the following

paragraph.
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Figure 2.7: Convolutional Neural Network architecture: hidden filters are used to trans-
form input data into 3D output probability maps that represent neurons’ activations.
[20]

2.1.2 Convolutional Neural Networks

Introduction

The idea behind convolutional networks is to revisit the architecture of a standard net-

work (such as the multilayer perceptron) by removing the fully connected layers, in order

to mitigate the high computation and the overfitting effect that derives from them [20].

The resulting effect can be considered a sort of regularization, by means of which com-

plex data patterns are mixed together and resized, guaranteeing a hierarchical view of the

different patterns present in the image.

The spatial structure of the data is important in those tasks specialized in image recog-

nition.

Traditional artificial neural networks are not optimized to handle image recognition tasks

as they do not take into account the spatial structure of the data.

A CNN network is inspired by the biological visual process [28], in the sense that neurons

are organized within the network in such a way that each of them responds to a stimulus

coming from a restricted region, called the receptive field, just like in the visual cortex.

The entire visual field is given by the partial overlap of the receptive fields of different

neurons.

The spatial hierarchies of the features are learned from the network in an adaptive way,

starting from low resolutions, up to high level patterns.

Initially the network creates a representation of small parts of the input image and sub-

sequently, starting from these, it recreates a representation or larger areas.
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In the following, the functioning of each different block within a CNN will be explained

in detail, making the potential of this method clearer.

Architecture and main features

The network architecture is based on a stacking of consecutive layers of different types

which process the input image, extract particular features and based on these, create an

output image [10][28][22][15][9].

The first two types of layers described below, together constitute the part of the network

that deals with the feature extraction process, while the third type deals with the final

classification [9].

• Convolutional Layer

This layer allows to extract a map of features from the input image.

The process through which this transformation takes place, makes use of particular

learnable filters called kernels which are convolved with the image (tensor of values).

The convolution operation is a type of linear operation in which a filter (matrix

of numbers) is multiplied by means of a dot product (element wise multiplication)

by a region of the input image, the receptive field, and is run along the entire height

and width of the image, and extended across the entire depth.

The filter is composed of a vector of weights and bias terms which are shared by all

neurons within the receptive field.

For clarity, an example of convolution is presented in figure 2.8.

Figure 2.8: Example of convolution operation of a 4 x 4 pixel image with a 2 x 2 filter.
The first element in the resulting matrix is obtained convolving the first submatrix of
dimensions equal to the ones of the filter by the filter itself. [9]

As can be observed, the kernel output in a given position of the image corresponds

to the sum of the tensor values convolved with the filter inside the receptive field.

By applying the convolution to different regions of the image, it is possible to obtain

the value of a pixel and of those surrounding it.

Different filters can be applied to the image to extract different features, whereby a
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particular kernel can be said to correspond to a particular feature extractor.

The size of the output is determined by three hyperparameters:

1. Depth: number of neurons in a layer that connect to the same region in the

input volume.

2. Stride: number of units of which the filter is moved along the image (example

in figure 2.9 with stride = 1)

3. Zero padding: performed along the edges of the image (example shown in figure

2.10).

Neurons belonging to the same slice use the same weights and bias, decreasing the

number of parameters the network has to learn.

During the training process, the network learns filters that are activated when they

detect specific characteristics of the image at specific points.

The activation maps that are output from all filters are stored together after being

stacked along the depth dimension to create the output volume from the convolution

layer.

Figure 2.9: Example of the influence of the stride hyperparameter during the convolution
operation. In this case the stride has been set to 1, meaning that after each convolution,
the filter is moved along the image of 1 pixel at a time. [15]

Figure 2.10: Zero padding operation performed on the image by adding zeros on the edges
[15].)

• Pooling Layer

The purpose of this layer is to reduce the size of the volume by combining together

the outputs of a specific region of the image into a single neuron in the following

layer.
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A set of non-overlapping windows is passed over the image and a value is calculated

for each of them. The size of the output volume depends on the size of the patch

chosen to select the neighboring pixels.

The pooling operation can be assimilated to a non-linear downsampling and can

be of various types. The main types used in these applications are shown in figure

2.11.

Figure 2.11: Example of pooling operation with resulting matrices for mean and max
cases.

1. Max-pooling: outputs the maximum value within the window.

2. Average-pooling (Mean pooling): outputs the average value within the window.

By resizing the volume, the number of parameters decreases and consequently also

the memory and computation required to train the network.

Having few parameters also contribute to mitigate the problem of overfitting.

• Fully Connected Layer

This layer represents the part of the network that deals with the classification.

The feature maps extracted using the other two types of layers are transformed into

a one-dimensional array and connected to one or more fully connected layers that

produce the final output, which generally represents the probability for an input to

belong to a given class.

The nodes that make up the final fully connected layer are as many as the classes

to which the volume in question can belong.

The classification is carried out passing the output of the final fully connected layer

into a non-linear activation function (such as the ReLU function).

The training process for a CNN consists in identifying kernels and weights, respectively

in the convolution and in the fully connected layers, which allow to minimize the error
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between the final output of the network and the ground truth relative to the training set

data.

Kernels are learned automatically during the training process, while other parameters,

such as the hyperparameters, must be set before starting the training. Those hyperpa-

rameters can be for example:

• Number of filters.

• Shape and size of filters.

• Padding.

• Stride.

• Shape of max-pooling.

• Learning rate for back-propagation.

The performance using particular kernels and weights is evaluated using a specific loss

function and implementing forward propagation.

Subsequently the learnable parameters are updated through backpropagation and gradi-

ent descent.

We have introduced in the previous section the problem of overfitting, which occurs when

the network memorizes and learns to recognize noise in the image, becoming less accurate

when evaluating data not belonging to the training set.

One way to recognize the overfitting is to monitor the trend of the loss function and of

the accuracy both on the training set and on a validation set, which is therefore necessary

to fine-tune the hyperparameters.

The methods used by CNNs to reduce the effects of overfitting are:

• Obtain more data available for training.

• Regularization techniques such as dropout or weight decay.

• Batch normalization that consists in adding a layer that normalizes the input of the

subsequent layer in order to improve the gradient flow through the network.

• Data augmentation with random transformations (rotation, flipping, translation) to

make the network recognize objects that could potentially be in different positions

or angles in different images.

• Early stopping: stop training before overfitting.

• Decrease the complexity of the network by limiting its depth or number of hidden

units to limit the number of learnable parameters.
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2.2 Active shape models

Active shape and appearance models have been developed to face the need to model

structures within the human body that have a great variability in terms of size, shape

and appearance.

In order to automatize the segmenting task and obtain acceptable results, the model must

predict these variations and modify its characteristics on the basis of statistical estimates

made on a set of images called a train set.

The models in question are made up of flexible sets of labelled points representing an

object, from which the statistics of neighboring points on a certain number of training

shapes are analyzed using the Point Distribution Model (PDM) [23][2].

The PDM represents the modes of variation of the shape of a structure,having the average

shape calculated on the training set as initial model.

From this average shape, the position, orientation, scale and shape parameters are ad-

justed to obtain a better fit of the image. Limits are placed on the movements that every

point can make, to maintain the shape that can be obtained plausible (Global Shape

Constraints).

2.2.1 Traditional approach

Point Distribution Model

PDM is used to represent a class of shapes, modeling it with a parametrization, starting

from a set of points that are usually placed on the edges of the structure under analysis

or on significant internal points of it [23].

The steps required to develop a model and use it to predict new instances are as fol-

lows:

1. Obtaining the training data

As previously said, the shape of an object is described by a series of points, each of

which has a label that represents a specific part of the object or its boundary, so it

must be placed in the same way on each example belonging to the training set.

If the point are not placed accurately on each individual example, the different

shapes cannot be aligned and the model will not be able to correctly represent the

position of each point. As a result, there will be noise terms that will corrupt the

resulting shape.

2. Aligning the set of training shapes

In order to compare equivalent points belonging to different objects, these must be

aligned in the same way with respect to a set of axes that can be defined on the
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basis of an object (belonging to the training set) taken as reference. The alignment

is performed through scaling, rotations and translations of the original shape.

3. Capturing the statistics of a set of aligned shapes

Once the shapes have been aligned, the mean shape and how much each individual

example differs from it can be computed as follows.

The n points of the ith shape of the set are represented with a vector xi:

xi = (xi0, yi0, xi1, yi1, ..., xik, yik, ..., xin−1, yin−1)
T

where (xij, yij) is the jth point of the ith shape.

The mean shape can be obtained as:

x̄ =
1

N

N∑
i=1

xi

The deviation from the mean is calculated for each example as:

dxi = xi − x̄

PCA (principal component analysis) is applied to each deviation to obtain the modes

of variation.

First, the covariance matrix S of dimensions 2n x 2n is calculated:

S =
1

N

N∑
i=1

dxidx
T
j

The unit eigenvectors pk (k = 1...2n) of S describe the modes of variation of the

points, respecting:

Spk = λkpk

where λk is the kth eigenvalue of S

and

pTk pk = 1

A large part of the variation can be explained by a small number of modes, t(< 2n);

usually the eigenvectors corresponding to the largest eigenvalues describe the most

significant modes of variation. The value t can be found choosing the smallest

number of modes for which the sum of their variances explain a sufficient large
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proportion of λT , which is the total variance of all the variables, and

λT =
2n∑
k=1

λk

Each point l moves along a vector parallel to (dxkl, dykl), influenced by the kth eigen-

vector.

It is possible to approximate any shape in the training set using the following for-

mula:

x = x̄+ Pb

where

• P = (p1 p2 ... pt) is the matrix of the first t eigenvectors.

• b = (b1 b2 ... bt)
T is a vector of weights corresponding to each eigenvector.

• b = P T (x− x̄) because the eigenvectors are orthogonal, thus P TP = I.

By varying the parameters b within certain limits, it is possible to obtain new

examples similar to those in the training set. The limits reflect the distributions

of parameters present in the training set and can be chosen to comply with some

chosen mathematical laws, for example the Mahalanobis distance from the mean

can be set to be less than a predefined value, as follows:

D2
m =

t∑
k=1

(
b2k
λk

) ≤ D2
max

In order to better locate an object in a new unseen image, the grey-level appearance of

the training set images can be processed [2].

The regions that lay around the landmarks in each image, due to the automatic labelling

of corresponding points performed at the beginning, should have similar values of grey-

level patterns. For this reason, by examining the statistics of the gray levels in those

regions, it is possible to reach a more accurate positioning of the final model.

The simplest way of choosing a region surrounding the landmark is to focus on one-

dimensional profiles normal to curves passing through the landmarks.

If the points are defined over the object boundaries, from each of them a profile is ex-

tracted, of length np pixels, centered at that point.

Bailes and Taylor proposed to sample the derivative of the gray levels on the profile in

the image and then normalise it to obtain invariance to uniform scaling of the gray levels.

As for the shape model, also in this case the mean profile is calculated together with

a covariance matrix of dimensions (np x np) that describes the statistics of the profiles
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corresponding to that point.

Again PCA is applied to obtain a model of the modes of variation in the grey-level profiles.

We can then obtain the new grey-level profile, as previously computed for the shape, as:

gnew = ḡ + Pgbg(new)

where

• Pg = (pg1 pg2 ... pgt) is the matrix of the first t eigenvectors of Sg.

• bg(new) is a set of tg parameters describing the profile model.

The parameters that best fit the model to g are:

bg = P T
g (g − ḡ)

and the best fit of the model to g , represented in figure 2.12, is then:

gbestfit = ḡ + Pgbg

Figure 2.12: Simple model made of a single mode of variation pg1 and of the mean profile
ḡ. gbestfit can be obtained projecting the point g on the line described by pg1 through the
mean. The residual R can be calculated as the difference between the current point g and
the point of best fit gbestfit. [2]

Since only (tg < np) eigenvectors are used in the model, there is a difference between the

best fit obtained from the one that can be achieved if all the eigenvectors would have been

used. This difference can be expressed as a sum of squares of differences and it is given

by:

R2 = (g − gbestfit)T (g − gbestfit)
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We can explicit ḡ and bg and rewrite the sum of squared error as:

R2 = (g − ḡ)T (g − ḡ)− bTg bg

If the eigenvectors are not truncated and tg = np eigenvectors are used, e measure of

performance of the model in fitting the profile can be expressed with the Mahalanobis

distance:

M =

np∑
j=1

b2gj
λj

where λj is the eigenvalue of the ith eigenvector.

The following equivalence can be used to express the performance measure as a function

of R2:
np∑

j=tg+1

b2gj = R2

If less than np eigenvector are used, to calculate bgj for j > tg, we approximate λj = 0.5λtg

and we can use F as a measure of how well the model performs.

F =

tg∑
j=1

b2gj
λj

+
2R2

λtg

F decreases approaching zero as the fit improves.

In order to recognize the modelled structures in new images an iterative procedure is

necessary, made of the following steps:

1. Estimate a plausible initial position, orientation and scale for the model in the new

image (figure 2.13).

Figure 2.13: Example of initial position of the points of the model respect to the borders
of the object to be detected. [2]
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2. Choose a set of parameters b for a PDM and define the shape of a model instance

x in a model centred co-ordinate frame.

3. Create an instance X of the model in the image frame as:

X = M(s, θ)[x] +Xc

where

• Xc = (Xc, Yc, Xc, Yc, ..., Xc, Yc)
T .

• M(s, θ)[] is a matrix used to scale x of a rotation by θ and a scaling by s.

• (Xc, Yc) is the position of the centre of the model in the image frame.

4. Examine the neighbor pixels to each landmark to search for a better location.

5. Calculate the needed displacements.

6. From the displacements obtained in the previous point, obtain the adjustments to

pose, scale and parameters of the PDM.

7. Update the model parameters.

This method is iterative and stops only when an accurate shape and pose that matches

the structures in an image is obtained (based on the error calculation) or until no signifi-

cant changes occur.

Movement estimation

For each landmark point of the model placed on a new image, a derivative profile is

extracted with a certain length l > np centred at that point and normal to the boundary

of the model.

The profile model searches for the best point along that line in which the best match is

found.

The performance measure F is then calculated along the sampled derivative profile for

each point belonging to it and when a minimum is found, the value of distance from the

center of the profile (landmark) is chosen (dbest is the point of best fit).

The displacement for the point belonging to the model (shown in figure 2.14) is calculated

within a range chosen a priori [δ]dmax and corresponds to:

• |dX| = 0 if |dbest| ≤ δ.

• |dX| = 0.5dbest if δ < |dbest| < dmax.

• |dX| = 0.5dmax if dmax ≤ |dbest|.
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Figure 2.14: A point moves along the normal to the edges of the object in a direction
defined by the point of best fit between the profile model and the profile sampled from
the image. [2]

Adjustment to the pose and shape parameters

In order to move points from their current locations in the image frame to new loca-

tions that better match the image, it is necessary to find the translation, rotation and

scaling factors and it can be done using a weighted least squares fit.

The latter adjustments correspond to deformations of the shape of the model in order to

refine the final shape to better match the contours of the structures in the image.

The position of the points in the image frame is:

X = M(s, θ)[x] +Xc

After the translation, rotation and scaling we have that:

M(s(1 + ds), θ + dθ)[x+ dx] + (Xc + dXc) = (X + dX)

Remembering that:

M−1(s, θ)[] = M(s−1,−θ)[]

we obtain the adjustments in the local co-ordinate frame

dx = M((s(1 + ds))−1,−(θ + dθ))[M(s, θ)[x] + dX − dXc]− x

We have to transform dx into model parameter space, so that db can be used to adjust

the model points as is allowed by the model.

The global shape constraints are respected by truncating the modes of variation (only

t(< 2n) are used).
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With simply calculations, we finally obtain:

db = P Tdx

With all the adjustments obtained in these steps, we can update the pose and shape

parameters with the following:

Xc → Xc + wtdXc

Yc → Yc + wtdYc

θ → wθdθ

s→ s(1 + wsds)

b→ b+Wbdb

To avoid unplausible shapes from occurring, the b-parameters should be limited as before

discussed. If the constraint are violated during updating, the shape can be rescaled to lie

within acceptable limits using

bi → bi
Dmax

Dm

where

• Dmax is an arbitrary constraint.

• Dm is the Mahalanobis distance calculated over i = 1...t modes of variation.

The model presented above uses fixed descriptors to deform the set of points on the bases

of image properties (such as the normalized first derivative profile).

Other features and descriptors can be used to deform the model [5]. An example of differ-

ent implementation could be the use of gray levels of the image instead of the derivatives,

a topic that will be explored in section 3.5.3 as part of the proposed method.

The Point Distribution Model can be extended to volumetric data. Apart for the space

dimensioning, all the steps involved in the algorithm are unchanged respect to the tradi-

tional 2D ASM, providing a simply approach to extend the benefits of a simple, dynamic

and fast algorithm to medical data.
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2.3 Prostate Segmentation

2.3.1 Introduction

Prostate cancer is the most frequent cancer in the male population worldwide.

There are many techniques that allow to carry out the diagnosis, such as screening using

the serum prostate specific antigen (PSA) or urological approaches, such as biopsies guided

by transrectal ultrasound, however the method that demonstrates higher accuracy is MRI.

The use of MRI in prostate cancer diagnosis has the primary purpose of determining

the stage of the disease, and possibly planning the necessary radiation therapy, both in

form of external beam radiation, and in the form of a guide for the seed implant for

brachytherapy.

In recent years, many studies have been carried our in this regard which have led to the

conclusion that MRI is a technique that can accurately characterize the presence of focal

lesions in the whole gland, a feature that is very useful for carrying out a possible biopsy

[16].

Prostate cancer diagnosis systems make use of automatic segmentation of the prostate

and of specific areas of it to determine a region of interest (ROI) in which the tumor is

most likely to be found. In order to perform a segmentation, be it manual or automatic,

it is important to know the anatomy of this organ.

The prostate can be mainly divided into three parts (shown in figure 2.15).

Figure 2.15: Sections of the prostate in axial plane: A) base, B) mid gland, C) apex.

• Base: contains parts of the Central Zone, Peripheral Zone and Transition zone in

equal measure.

• Mid gland: contains mostly Peripheral Zone and Transition Zone.
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• Apex: contains mostly Peripheral Zone and some Transition Zone.

The histologic zones included in the three anatomical levels in which the gland is divided

from superior to inferior (PZ, TZ and CZ) are better detailed in figure 2.16, together with

the AS (Anterior fibromuscolar Stroma).

Figure 2.16: Prostate anatomy with division in peripheral zone, central zone, transition
zone and anterior fibromuscular stroma. In the upper part of the organ we can observe
the seminal vescicles, while in the center we have the urethra. [27]
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Challenges of MRI prostate segmentation

MRI is considered the best acquisition technique for what concerns the studies of the

prostate and diseases connected with this organ, especially of cancer which can be rec-

ognized in MR scans because of huge differences in tissue texture. MR provides better

image quality respect to other techniques, it has superior tissue contrast that allows for

more accurate tissue discrimination.

The spatial resolution of this type of scanning is higher as well and it has multiplanar

capability, that allows for direct coronal or sagittal imaging, thus representing structures

in a way closer to the real anatomic.

It has also no radiation risk, thus avoiding harm to human body.

Although this technique guarantees so many advantages, the segmentation of prostate

MRI images/volumes presents some difficulties as well, summarized below.

• Indistinct prostate boundaries → the appearance of the prostate is similar to the

one of surrounding tissues (blood vessels, bladder, rectum and seminal vessels)

• Small effective area of the prostate in the image/volume → less information avail-

able.

• Large variability in prostate shape among patients.

• Heterogeneity in signal intensity around the endorectal coil.

• Bias field.

• Anisotropic spatial resolution.

• Global inter-scan variability due to different MR scanning protocols.

• Intra-scan intensity variation.

Prostate cancer can be diagnosed with accurate systems (such as CAD systems) that make

use of automatic image segmentation to gain anatomical information about the prostate

structure and the tissues surrounding it and to restrict the ROI on which to train to a

region comprising mostly the object, solving the problem of the small effective area.

As mentioned in the first chapter, clinical manual segmentation suffers from three main

problems. It is time consuming, poorly reproducible and error prone, because it depends

on the clinician experience and on intra- and inter- operator bias. Automatic algorithms

for image segmentation proved to be more efficient and they provide more repeatable and

less erroneous results.

39



2.3.2 State of the art in prostate MRI segmentation

Traditional segmentation algorithms make use of anatomical atlas registration, deformable

models, region growing, machine learning, but all these techniques suffer from the prob-

lems discussed in section 1.3.

Modern approaches employ deep learning procedures that guarantee better performances,

preceded by a little pre-processing, employed for algorithm stability (better contrast, finer

details).

We present a list of modern proposals, along with the motivations that led to the devel-

opment of the specific architecture and a brief explanation of the method.

Holistically Nested Networks with Short Connections

Problem

Lower z axis resolution can produce large segmentation errors; many approaches focus only

on the 2D axial slices, ignoring information coming from the coronal and the sagittal view.

Method proposed [19]

2-D HNNsc (figure 2.17) applied to an orthogonal context followed by 3-D surface recon-

struction and 3-D mesh optimization to eliminate noise caused by the deep learning model.

Figure 2.17: HNNsc architecture: outputs from the convolutional layers at each stage are
transformed into probability maps to form the final probability map for both MRI and
CED images. Short connections are added connecting the deeper side outputs to the ones
at a more superficial layer. [19]
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The training set is composed by pairs of MRI and CED images which are introduced

into the network that holistically learns their deep representations and produces internal

convolution neural networks between these and the corresponding ground truth binary

mask (that acts as deep supervision).

The reason for the implementation of short connections is to make deeper side output

guide the superficial layers to predict in a more accurate way the ROI. At the same time,

the shallower layers refine the predicted values of the deep side outputs.

A Surface Reconstruction algorithm is finally applied to obtain a 3D surface from the

combined axial, sagittal and coronal views.

Encoder-Decoder with Dense Dilated Spatial Pyramid Pooling

Problem

Large variability of prostate boundaries and artifacts in the images due to surrounding

tissues.

Method proposed [4]

A deep neural network based on an encoder-decoder structure with dense dilated spatial

pyramid pooling (DDSPP) employed in the encoder module to generate a higher range of

features, widening the receptive field of the convolution kernel.

Figure 2.18: Encoder-Decoder architecture: the first encoder module extracts information
at multiple scales and subsequently a decoder module is applied to refine the segmentation
especially around prostate borders.[4]
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3D Adversarial Pyramid Anisotropic Convolutional Network

Problem

Anisotropic spatial resolution of prostate MR images, due to high intra-slice and low

inter-slice resolution.

Method proposed [7]

3D APA-Net made of two modules (figure 2.19), the first (PA-Net with an encoder-decoder

structure) segmenting the prostates and the second, a 3D adversarial DCNN called ’dis-

criminator’, checking whether the image is multiplied by the segmentation result or the

ground truth, in order to refine the final result.

Figure 2.19: 3D APA Net pipeline: A pre-processed image is fed into the network that
has an encoder-decoder structure. The dotted box represents the segmentation process,
while out of the box we can observe a discriminator based on a 3D adversarial DCNN,
which takes the ground truth and the inference output multiplied by the pre-processed
image as input for discrimination.[7]

Volumetric ConvNets with Mixed Residual Connections

Problem

Improve training efficiency and capability of the network to discriminate examples under

limited training data.

Method proposed [29]

Volumetric ConvNet (figure 2.20) made of two paths, the first one down-sampling the

image features and the second one up-sampling to generate the final prediction.
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Figure 2.20: Architecture of the volumetric ConvNet. The first path downsamples the
image and the second path upsamples it to restore the original dimensions and create the
output segmentation. Between the two paths residual connections are inserted to preserve
spatial information. [29]

A deep supervision mechanism is added to the basic structure and residual connections

are included to preserve spatial context information.

U-Net

Figure 2.21: Pipeline of the method: After a first preprocessing step, two UNets are used
to segment the WG and the CG separately. The outputs of these networks are postpro-
cessed and the CG is subtracted from the WG to obtain the TZ. A 3D reconstruction
algorithm is then applied to reobtain the volumetric output. [30]
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Problem

Automatic segmentation of prostate whole gland and transitional zone on T2W images

and corresponding ADC maps.

Method proposed [30]

Two separate U-Nets for segmenting the whole gland and the CG and subsequent sub-

traction to obtain the TZ (figure 2.21). The UNets present a CNN-based architecture,

made of a first shrinking path followed by an expanding path.

Cascaded Fully Convolution Network

Problem

Segment the whole gland of the prostate and in sequence, the peripheral zone on T2WI.

Method proposed [31]

Cascade of U-Nets (figure 2.22), one to segment the WG and another identical in cascade

to segment the PZ.

Figure 2.22: Method pipeline: images enter the first UNet that segments the WG. The
results of the first network are input into the second network to segment the PZ. [31]

Boundary-Weighted Domain Adaptive Neural Network

Problem

Provide a method capable of adapting to different training sets acquired with different

modalities and make the segmentation of the prostate boundaries more accurate, even

with weak contours.
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Method proposed [32]

3D network inspired by U-Net and Dense Net, designed for domain image segmentation

network (SNet). Two SNets segment the source and target domain images separately. A

discriminator differentiates the feature representations coming from the first or the second

working in ad adversarial fashion.

Both SNet-s and SNet-t follow the classic U-Net configuration, with a first down-sampling

path (convolutional blocks, average pooling layers and densely-connected residual blocks)

and a second up-sampling path (deconvolutional layers and densely-connected residual

blocks).

Figure 2.23: Method pipeline: two SNets are built and trained on images belonging to
different domains. The outputs from these networks are sent to a discriminator that tries
to differentiate features coming from a network from features coming from the other in
an adversarial fashion. The total label is obtained as the sum of the label coming from
the segmentation of the two networks and of the label obtained from the discriminator.
[32]

Hybrid approaches

Some approaches are based on the complementary used of deep learning techniques and

statistical models to try to derive from each of these the specific advantages and mix them

together to obtain higher performances.
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Traditional statistical models alone have problems segmenting the prostate in MRI images

because of the great variability of contours among different patients. They are rarely used

alone because they require handcrafted features to model the profile on the edges.

Furthermore, the segmentation in correspondence with the contours is complicated by the

fact that the initialization of the shape is often erroneous or not precise enough. ASM is

sensitive to this shape initialization due to the constraints on the shape imposed by the

model parameters and the variable appearance of the prostate among different subjects

makes the segmentation task even more complicated.

On the other hand, segmentation models based solely on CNN frameworks take inspiration

from methods that were initially developed to segment natural images. These networks

are not specific for the medical domain and consequently they do not take into account

two important factors:

• Less amount of data available for training.

• The volume to be segmented in medical images has less variability in shape and

appearance than in natural images.

If the images do not have a high number of discriminative features, it is possible that

different classes are not well discriminated because positive and negative samples

can have similar appearance.

For these reasons, it can be useful to know a priori the shape of the object to be seg-

mented; the segmentation can be improved by integrating knowledge on the variability in

the prostate shape within a CNN-based framework.

The latest algorithms proposed use for example deep learning techniques to generate

an initial probability map of the voxels belonging to the prostate, which is then modified

using deformable models to better adapt to the contours.

The two approaches can be integrated in different ways. The statistical model can be

either a shape model or a more complex model that takes into account the characteristics

relative to the image texture (appearance models).

Three methods that incorporate in different ways the use of deep features and statis-

tical parameters for prostate segmentation are briefly presented below.

Adaptive Feature Learning Probability Boosting Tree Initialization and CNN-

ASM Refinement

This hybrid approach combines an adaptive feature learning probability boosting tree

(AFL-PBT) with a deep model, specifically a CNN network and an active shape model

(figure 2.24) [6].
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Figure 2.24: Method pipeline: the first training phase starts with a 3D ROI detection fol-
lowed by the AFL-PBT and CNN models. The test phase consists in computing the PBT
voxel classifier result, computation of boundary searching band and CNN classification
with final ASM refining. [6]

The AFL-PBT is based on both handcrafted features and features obtained through deep

methods for the pre-segmentation of the prostate and for the creation of a boundary

searching band used for the initialization of the statistical model.

The training phase includes an initial 3D ROI detector training to find the prostate inside

the volumes, followed by the AFL-PBT which takes the form of a hierarchical classifier

that clusters samples belonging to the prostate or not, applying the CNN model to find

informative features also for those samples similar to each other in correspondence with

the edges.

In the test phase 3D ROI detection is performed again and a probability map is obtained

by applying the AFL-PBT followed by the CNN model to train a boarder classifier to

find internal, external or prostate contour points. The ASM is initialized in the searching

band output from the the AFL-PBT and in this region points of the prostate surface are

moved according to the probability map of the edges of the prostate.

Active Appearance Model followed by CNN refinement

This method [8] uses an active appearance model (AAM) as initialization to obtain an

estimate of the prostate edges with the MRI volumes.

The AAM alone produces borders that are not always accurate; the shapes obtained are
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often irregular and the segmentation results unstable in the search range of the model.

For this reason, a CNN is applied to obtain a refining of segmentation at the prostate

edges (figure 2.25).

Figure 2.25: The training phase consists in the application of both Atlas based AAM and
Deep CNN models. In the test phase the AAM model is applied to the test images, fol-
lowed by the CNN model which refines the classification on the prostate borders obtaining
the final segmentation.[8]

The network training phase takes as input patches around the contour of the prostate

obtained with the AAM and the CNN outputs the probability for the voxels to belong or

not to the contour.

CNN architecture with training strategy based on an Active Shape Model

This third approach uses a CNN-based architecture and a training strategy based on an

active shape model to solve the problem of variability in shape and the limited number

of training data (figure 2.26) [1]. This strategy foresees to limit the output of the CNN

only to shapes allowed from the statistical model.

The ASM is incorporated into the network as a set of fully connected layers which output

the coefficient vector representing the shape of the prostate in the learned shape model.

The network is initially trained to find the center of the prostate and subsequently re-
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Figure 2.26: Method pipeline: CNN-based framework with ASM parameters included
into the final network layers.[1]

trained by introducing the layers related to the shape model adding a regularization term

to the cost function relative to the shape model coefficients that allow to deform the

model.

The shape model incorporates the information on the expected shape and the variations

that this shape can have and the CNN estimates the parameters of the shape model that

best describe the organ and outputs points that represent the surface of the prostate.

Table 2.3.2 shows a comparison between the above-mentioned methods, highlighting the

most significant characteristics, i.e. the problems that each method tries to solve, the

proposed solutions, the dataset used for this purpose, the pre-processing carried out on

it, the network architecture and the results obtained.

Method proposed: CNN segmentation followed by an ASM refining

Our proposal presents an approach that starts from a first rough segmentation of the

prostate using a CNN model, specifically the UNet, to obtain a first three-dimensional

segmentation of the organ within the MRI prostatic volume.

The proposed network model is three-dimensional, so it gives more importance to the

spatial coherence that allows to obtain the organ in its entirety, if compared to a two-

dimensional network that instead works on the single slices. The three-dimensional seg-

mentation, while having this spatial advantage, focuses less on the precision on the single

slice, especially in correspondence with the prostate edges. For this reason, a statistical

model is proposed to carry out a refining of the prostate contours on the CNN outputs

to obtain a more precise segmentation and to adjust possible unplausible shapes output

from the network as they are corrected according to the shape constraints defined by the

ASM parameters.

In the next chapter our method will be described in detail and in section 4.1 our results

will be examined to better understand the strengths and limitations of using a hybrid

model.
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Chapter 3

Materials and Method

The proposed method involves the creation of a custom made 3D CNN for the segmenta-

tion of prostate volumes, followed by a refining of the edges of the output segmentation

carried out using a 3D Active Shape Model.

The reason behind the use of a 3D network is the fact that it allows to exploit the spatial

information that derives from the use of the entire volume instead of the single 2D slices,

and of the connections created between the voxels of a slice and those belonging to the

following slice.

To demonstrate the superiority of the 3D method over the 2D approach as regards spatial

coherence, a comparison is proposed with a 2D network trained on a lower number of

slices respect to the ones of all volumes used in the 3D network.

As previously anticipated, the hybrid approach is proposed in order to exploit the ad-

vantages of both deep networks and statistical models. The deep 3D network allows to

obtain a complete segmentation of the prostate volume without spatial inconsistencies,

however it has problems of precision in the segmentation of the edges of the organ.

The active shape model mitigates this problem by bringing the contours of the segmen-

tation output from the CNN closer to the real ones and guaranteeing the plausibility of

the shapes obtained as they are limited by the model parameters.

In the following sections the dataset available for this study will be initially presented,

with the work done to obtain the manual annotations.

Subsequently, the pipeline of the method will be presented with a brief description of each

individual block which will be then analyzed in detail in separate specific sections.

The two networks and the ASM model will be tested on both the training and the test sets

to make comparisons between the three models proposed and the results will be properly

explained with pros and cons in the final section.
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3.1 Database and Manual annotations

The study has been performed using a dataset composed of T2W MRI prostatic volumes.

These images have been obtained using the T2 weighted pulse sequence in MRI, which

relies upon the transverse relaxation of the net magnetization vector. T2 relaxation con-

sists in the decay of the spins from their aligned precession in the transverse plane, after

the RF excitation pulse has been applied and the spins have relaxed from the transverse

plane toward the main longitudinal magnetic vector, which corresponds to T1 weighting.

Among the available patients, a number equal to 60 prostatic volumes has been selected,

sufficiently different (as shown in figure 3.1) to ensure that the proposed algorithm could

have a wide range of image features to better generalize on new unseen data.

Figure 3.1: Example of the variability in shape among some prostates belonging to both
the training and the test set in the axial plane. A) patient 2002 slice 11, B) patient 3030
slice 13, C) patient 3160 slice 13, D) patient 13 slice 12, E) patient 31 slice 13, F) patient
3211 slice 11.

These volumes have been initially divided into two data sets, one containing the patients

relative to the training set and validation set and a separate one with volumes used for

the test.

The subdivision between training and validation set will be carried out in correspondence

with the definition of the 3D CNN input.

53



The original resolution of most of the volumes on the three planes and their dimen-

sion are respectively 0.3125 x 0.3125 x 3 mm and 512 x 512 x 24.

As regards images with a dimension different from the most represented one within the

dataset, they have been mapped to have consistent dimensions as required by the net-

work parameters, by performing a ’zero padding’ operation adding slices at the end of the

volumes to obtain volumes of 512 x 512 x 24 as network input.

Each volume together with the corresponding label is resampled using an isotropic up-

sampling in order to apply the Active Shape Model.

Each three-dimensional volume is obtained by stacking together a series of images in

DICOM format that represent the individual slices, using a function that allows to trans-

form the resulting 3D array into a nrrd file, a format used in the field of medical images

that allows to save together with the data representing the value of each voxel, the meta-

data regarding other image characteristics, which are contained in the file header.

The space in which the DICOM images are sampled is called anatomical space or patient

coordinate system and it consists of three planes that describe the standard anatomical

positions of a human:

• Axial plane parallel to the ground

It defines the subdivision between the Superior and the Inferior parts.

• Coronal plane perpendicular to the ground

It defines the subdivision between Anterior and Posterior parts.

• Sagittal plane

It separates the Left from the Right.

Different medical applications use different definitions of the 3D basis on which the

anatomical coordinate system is defined.

DICOM images use the LPS basis (Left-Posterior-Superior) defined as:

LPS =


from right towards left

from anterior towards posterior

from inferior towards superior

 (3.1)

Manual annotations have been obtained using the 3D Slicer software.

The images are loaded from the directory containing the individual slices into the working

page, which allows to display them sequentially as if they represented a volume.
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The labels have been obtained manually by looking for the prostate within the volumes

on the axial, coronal and sagittal planes.

The convention that this software uses to define the 3D basis of the anatomical coor-

dinate system is the RSA (Right-Superior-Anterior) defined as:

LPS =


from left towards right

from posterior towards anterior

from inferior towards superior

 (3.2)

which is similar to the LPS, with the first two axes flipped.

For this reason, once the volumetric labels in .nrrd format have been saved, they are

flipped to match with the convention used for the volumetric images.

An example of manual annotation is shown in figure 3.2 in green, superimposed on the

original image in axial, sagittal and coronal views for a patient belonging to the training

set.

Figure 3.2: Manual label superimposed on MRI image in A) axial, B) sagittal and C)
coronal views for patient 55.

3.2 Pipeline

The general pipeline of the method is shown in figure 3.3. The green blocks represent

the steps related to the 3D CNN and to the active shape model. The algorithms for the

research of coherent vertices and for the 3D reconstruction applied in the 3D case are also

fully automatic.
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Figure 3.3: General pipeline of the method: the entire dataset is first preprocessed, then
subdivided into training and test set. Training images and labels are used for the training
of the 3D and 2D CNNs. Manual 3D annotations are also used to train the ASM model,
tested on the output of the 3D CNN. After applying the ASM, 3D labels are restored.
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The first step performed on the volumes is the pre-processing, illustrated in detail in figure

3.4.

Figure 3.4: Preprocessing steps: first N4ITK bias field correction, followed by intensity
normalization.

Using the pre-processed volume, two tests are carried out in parallel, the first using a 3D

CNN model and the second using a 2D model, which will serve as a comparison with the

performance of our proposed method.

The input of the 3D model is the set of volumes, rearranged in order to match the dimen-

sions required as the network input.

A format conversion has been performed on Python and it is necessary to be able to make

use of a function, that will be later explained, to create the Image Data Generator.

For what concerns the 2D network, inputs are two-dimensional slices extracted from each

volume and the 2D slices that are output in the test phase, are then stacked together to

reobtain the 3D volume.

In order to apply the Active Shape Model, it is necessary to define a set of coincident

vertices in all volumes used both for training and for testing the model.

The ASM training is carried out on the volumetric labels obtained manually and consists

in the creation of a Mean Shape Model and in the definition of the gray profiles and their

derivatives along normals exiting points on the prostate surface.

The model is applied on the volumes obtained as output from the predict phase of the

CNN 3D, therefore volumes used as training set and test set.

After applying the model, the volumetric labels are restored from the updated vertices

cloud using an algorithm for 3D surface reconstruction to reobtain the volumetric binary

masks.
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In the results section a comparison is made by evaluating the Dice similarity coefficient

and the 95% Hausdorff distance for the train and test volumes in the following cases:

• 3D CNN

• 3D CNN + ASM

• 2D CNN

Pre-processing

Pre-processing is applied in order to improve the quality of the magnetic resonance im-

ages by enhancing contrast and making the process of feature recognition easier for the

algorithm.

Figure 3.4 shows our pre-processing steps.

• The first operation is called N4 Bias field Correction and it consists in removing the

bias field signal that corrupts the MRI image.

This signal, as mentioned in section 2.3.1, can lead to incorrect results if algorithms

based on image gray levels are used.

• The second operation consists in normalizing the image intensities according to a

technique proposed by Nyùl and Udupa, which works on the intensities histogram.

Further details on these two processes will be presented in separate sections in the follow-

ing, together with a demonstration of their working on the dataset.

Images are finally saved in .mat format to be used by the network.

CNN 3D

A custom made network is used which works with three-dimensional volumes, based on

the basic architecture of a UNet and trained from scratch.

The procedure that will be explained in detail in the chapter relative to the CNN 3D

will follow these steps:

• Description of the network architecture and blocks used.

• Construction of the Image Data Generator with preparation of the images output

from the pre-processing step in order to match the dimensions that the network

requires in input.

• Explanation of callback functions and parameters used in the training process.

• Network training and testing.
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Active Shape Model

The Active Shape Model is applied to the 3D network output to improve the segmentation

along the prostate boundaries.

The proposed method consists of four steps:

• Compute a set of coherent vertices for:

– Manual volumetric labels of the training set

– 3D CNN output volumetric labels of the training set

– 3D CNN output volumetric labels of the test set

• Model Training

– Computation of the Shape Model to find the mean shape within the training

set and the parameters of the transformation object.

– Computation of the Appearance Data, or rather the gray levels and their

derivatives along profiles normal to the prostate surface.

• Model Application, carried out on training and test images.

• Volumetric labels reconstruction

Transform the vertices obtained after applying the model into two-dimensional bi-

nary masks that will be stacked together to create the volumetric label.

CNN 2D

To make a comparison with the performances of the 3D network, a basic 2D UNet

model has been used, initializing the weights derived from a pre-training on the Ima-

geNet dataset.

In the in-depth chapter on CNN 2D the following steps will be further explained:

• Data preparation and construction of the Image Data Generator with data augmen-

tation.

• Network architecture with modification to adapt the network dimensions to our

study.

• Description of callbacks and parameters used during training.

• Network training and testing.
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3.3 Pre-Processing

3.3.1 N4 Bias Field Correction

Method explanation

As previously mentioned, the use of MRI as an acquisition technique presents among the

various disadvantages the possibility of having a low frequency intensity non-uniformity

which corrupts the images that are produced.

This inhomogeneity in the illumination is called bias field and it must be removed to avoid

segmentation errors due to the impossibility of working with the real intensity values of

the tissues.

The standard algorithm used in the medical field to remove bias field effects is called

Nonparametric Nonuniform Intensity Normalization (N3) and it is the de facto algorithm

because it is simple to use, totally automated, it does not require prior knowledge and it

can be used with any image obtained with MR techniques.

This algorithm looks for the smooth multiplicative field that maximizes the high fre-

quency content of the tissue intensity distribution.

A new algorithm, known as N4ITK [25], has been recently proposed as an alternative

to N3, to improve the correction of the bias field.

The changes introduced by this algorithm concern the strategy to obtain the B-spline

smoothing and the iterative optimization scheme, bringing improvements as regards the

quality of the images obtained and the speed of convergence.

Approximation using B-spline is a parametric reconstruction technique used to fit B-

spline objects to scattered data.

A B-spline object is defined by a set of B-splines and a grid of control points.

The traditional method for fitting involves the use of least squares fitting to approximate

scattered data with B-splines, making use of a weighted regularization term to mitigate

the problems of convergence instability.

The N4ITK algorithm does not use the least square fitting, and for this reason, it does not

need any regularization parameter to be tuned, so it is more robust towards noise because

the approximation is done locally and then all the local solutions are merged together to

find the global approximation.

The B-spline approximator introduced by the N4ITK algorithm allows for better control

spacing between points, guaranteeing less probability of failure even with magnetic fields
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of greater intensity.

Both techniques start from the definition of the image obtained as

v(x) = u(x)f(x) + n(x)

where v is the image, u is the uncorrupted image, f is the bias field and n is the Gaussian

noise.

If noise is not present, transforming the formula into logaritmic notation, we obtain

v̂(x) = û(x) + f̂(x)

The iterative scheme used by the N3MNI algorithm allows to obtain the correct image at

the nth iteration as

ûn = v̂ − Sv̂ − E[û|ûn−1]

while for the N4ITK:

ûn = ûn−1 − S ∗ ûn−1 − E[û|ûn−1]

that is equivalent to

ûn = v̂ −
n∑
i=1

f ir

N3MNI at each iteration uses the corrected image value to re-estimate the real field value.

In the N4ITK algorithm, the image corrected at the current run becomes the input of the

following run.

The optimization is applied to the residual bias field and the estimate of the total field is

obtained as the sum of the residual ones.

Hierarchical fitting is used to better approximate the data starting from a low-resolution

B-spline and then increasing the resolution of the subsequent meshes to obtain the best-fit.

Implementation

For this study, the N4ITK algorithm has been applied using the N4BiasFieldCorrectionImageFilter

class in the SimpleITK package on Python.

The algorithm usually takes an image as input and evaluates its bias field using a mask

automatically defined by applying the Otsu thresholding algorithm.

To improve the performance, a binary mask (figure 3.5) has been defined with the region

of interest in the input image on which to evaluate the bias field.
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Figure 3.5: Binary mask definition for evaluating the bias field on the original image. A)
original image, B) mask obtained with the proposed method, C) mask superimposed on
the original image.

This mask has been obtained on Matlab with the following steps:

• Creation of a Gaussian lowpass filter of the same size of the volume and with stan-

dard deviation equal to 0.1 * volume size.

• Rescaling of the filter in the range [0 1].

• Volume filtering with the Gaussian filter.

• Binarization of the filtered volume.

• Dilation and erosion of the resulting binary mask using a morphological structuring

element; in this case a sphere of radius 5.

• Keep the largest object in the volumetric label

The bias field correction has been performed inputing the volume to be corrected, loaded

in float32 format, and the mask in uint8 format.

The corrected volume is then cast to int16 format and saved.

3.3.2 Intensity Normalization

Method explanation

The lack of standard image intensity scale in MRI makes it difficult to display images

obtained with this modality and the subsequent image analysis.

MRI intensities have no fixed meaning because of different protocols, patients, scanners,

and this can cause various problems in the segmentation phase and quantification of cer-

tain parameters.
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The proposed standardization method [13] involves two stages:

• Training

It is performed only once at the beginning; standardizing transformation parameters

are learnt from a set of training images.

• Transformation

Executed for each volume that has to be standardized; the parameters obtained in

the training phase are used to map the intensity histogram of a new image into the

standardized histogram.

Training

It is performed on a set of volumetric images representing the same object inside the

body and obtained using the same protocol.

A volume can be identified as V = (V, g). This volume depends on a parameter V which

represents the voxels belonging to the volume and on a parameter g which represents the

intensity function for which a certain intensity value corresponds to each voxel.

The histogram of a volume is defined as H = (G, h), where G is a set composed of all

possible gray values that a voxel belonging to V can take, and h is a function that counts

all the voxels for which the intensity value of the voxels in V is equal to x ∈ G.

If we look at the intensity histogram of an image, the high intensity tail represents arti-

facts and is responsible for the high variability in intensity values of the MRI image.

Before running the algorithm, three parameters which refer to the intensity histogram,

have to be selected:

• p1: minimum percentile value

• p2: maximum percentile value

• µ: mode

In the case of the prostate, the histogram has a bimodal behavior, thus the third parameter

corresponds to the second mode of the histogram, as shown in figure 3.6.

In this first training phase, these three landmarks obtained from the histogram of each

image are mapped to a standard scale, transposing intensities in the range [p1 p2] to [s1

s2] linearly with the following:

x′ = s1 +
x− p1j
p2j − p1j

(s2 − s1)
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Figure 3.6: Bimodal behavior of the intensity histogram for prostate images. The second
mode of the histogram µ is usually used as a histogram landmark to compute the value
of µs, that is the mode in the standardized range. [13]

This mapping is used to determine µs, which is the average of all new µj’s just found.

Transformation

In this phase for each image, the second mode of the histogram is matched with µs

through two separate linear mappings:

• first mapping from [p1 µ] to [s1 µs]

• second mapping from [µ p2] to [µ s2]

Subsequently, a further mapping is carried out by transposing [m1 p1] to [s1 s
′
1] and [m2

p2] to [s2 s
′
2], where m1 and m2 are the tails of the histogram of each image. The image

mapping process is shown in figure 3.7.

The transformation that allows to obtain s′1 and s′2 is called standardizer of V and is

defined as

τVi(x) =


⌈
µs + (x− µi) s1−µsp1i−µi

⌉
if m1i ≤ x ≤ µi⌈

µs + (x− µi) s2−µsp2i−µi

⌉
if m1i ≤ x ≤ µi

The range [s′1 s
′
2] can vary from image to image because it depends on the character-

istics of the single image, however [s1 s2] is independent from V and in this range the

uniformity of intensities can be evaluated.

In order to carry out these steps it is necessary to identify the second mode of the his-

togram; it is usually done with a thresholding operation using the average intensity of the

image as the threshold.

The values for s1 and s2 must be chosen in such a way as to ensure that there is no
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Figure 3.7: Image mapping from the original histogram space to the standardized one
through linear transformations. [13]

intensity loss.

After standardization, voxels with the same intensity value are more likely to contain the

same type of tissue.

Implementation

For this study, the minimum percentile value p1 has been set to 2 and the maximum

percentile value to 99.5.

The minimum and maximum intensity values on the standard scale (s1 and s2) are set to

0 and 255 respectively.

The first step of the training phase consists in computing the histogram for all the images

in the dataset. It has been after smoothened using a Savitzky-Golay FIR filter of order 5

and frame length 19.

Figure 3.8 shows a zoom on the rough histogram and on the filtered one, to better observe

the smoothing effect of the filter.

A median filter of order n = p2−p1
40

has been then applied to the matrix containing the dif-

ferences of adjacent elements within the histogram and the resulting vector is multiplied

by its translated version by one unit along the main dimension.

Elements whose value was less than or equal to -0.005 have been kept.
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Figure 3.8: Comparison between the original histogram of an image and the filtered
histogram with a Savitzky Golay FIR in a range that allows to observe the smoothing
effect of the filter.

The histogram landmark chosen for all the volumes in the set instead of the second mode

of the histogram is the ’valley’ point between the two modes of the histogram, shown in

figure 3.9.

In order to find the value for µ, a search within the result of the previous computa-

tion has to be performed, looking for the value for which all of the following conditions

hold:

1. The values of the differences between successive elements of the histogram in the

range [µ - 2 ∗ n : µ - 1] are ≤ 0.

2. The values of the differences between successive elements of the histogram in the

range [µ + 1 : µ + 2 ∗ n] are ≥ 0.

3. µ grater than the 30th percentile with respect to the entire volume.

4. µ lower than the 70th percentile with respect to the entire volume.

Since for some prostate volumes the algorithm returned incorrect values, it has been de-

cided to set µ equal to 150 in all cases in which this value was inconsistent with the most

represented values within the dataset.

The µ′ values for all prostates in the dataset have been obtained using the formula to

obtain x′ defined in the training phase; it is possible to obtain µs by finding the median

of all these values.
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Figure 3.9: Filtered histogram of an image with the value of the computed valley high-
lighted.

The steps related to the transformation phase are the same. The value for m1 and m2

correspond respectively to the minimum and maximum values within the volume.

Depending on the position in the volume respect to m1 and m2, each point it is translated

into the new mapping creating the new image using the standardizer formula.

The results for the whole pre-processing chain are shown in figure 3.10 in axial view.

We can observe the original image ( figure 3.10A) with the bias field corrupting the lower

part of the organ near the coil, the image after the N4 Bias Field Correction (figure 3.10B)

and the final image used for the network and model training with intensities normalized

(figure 3.10C).

Figure 3.10: Pre-processing results. A) Original image, B) Image after N4 Bias Field
Correction, C) Image after Intensity Normalization.
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3.4 3D CNN

The basic idea is to create a network inspired by the UNet architecture that, taking a

prostatic volume as input, learns from it to discriminate between voxels belonging to the

prostate and to the background, and outputs a volumetric label of the same size as the

input.

The network discussed in this section is trained from scratch as the weights obtained

for similar problems needed different input dimensions and due to the complexity and

high computational burden of the volumetric problem, it has been decided to avoid re-

sampling to make the dimensions compatible.

The network architecture, based on 3D UNet keras model,is shown in figure 3.11.

Figure 3.11: 3D UNet architecture: alternation of conv, max pooling, deconv and con-
catenate blocks.

We can observe that it is composed of a first shrinking path consisting of convolution and

max pooling blocks to extract image features at deeper levels.

The spatial information is reconstructed in the subsequent upsampling path consisting of

alternating blocks of convolution transpose and convolution in order to restore the original

dimensions.

Table 3.1 lists the different layers in detail with the relative tensor output dimensions

and learnable parameters at various stages. The blocks composing the architecture will

be better detailed in the next section (3.4.1).
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Layer Type Output Shape Parameters
Input Layer (None, 1, 24, 512, 512) 0

Conv3D (None, 8, 24, 512, 512) 224
Activation (None, 8, 24, 512, 512) 0
Conv3D (None, 16, 24, 512, 512) 3472

Activation (None, 16, 24, 512, 512) 0
MaxPooling3D (None, 16, 12, 256, 256) 0

Conv3D (None, 16, 12, 256, 256) 6928
Activation (None, 16, 12, 256, 256) 0
Conv3D (None, 32, 12, 256, 256) 13856

Activation (None, 32, 12, 256, 256) 0
MaxPooling3D (None, 32, 6, 128, 128) 0

Conv3D (None, 32, 6, 128, 128) 27680
Activation (None, 32, 6, 128, 128) 0
Conv3D (None, 64, 6, 128, 128) 55360

Activation (None, 64, 6, 128, 128) 0
MaxPooling3D (None 64, 3, 64, 64) 0

Conv3D (None, 64, 3, 64, 64) 110656
Activation (None, 64, 3, 64, 64) 0
Conv3D (None, 128, 3, 64, 64) 221312

Activation (None, 128, 3, 64, 64) 0
Conv3DTranspose (None, 128, 6, 128, 128) 131200

Concatenate (None, 192, 6, 128, 128) 0
Conv3D (None, 64, 6, 128, 128) 331840

Activation (None, 64, 6, 128, 128) 0
Conv3D (None, 64, 6, 128, 128) 110656

Activation (None, 64, 6, 128, 128) 0
Conv3DTranspose (None, 64, 12, 256, 256) 32832

Concatenate (None, 96, 12, 256, 256) 0
Conv3D (None, 32, 12, 256, 256) 82976

Activation (None, 32, 12, 256, 256) 0
Conv3D (None, 32, 12, 256, 256) 27680

Activation (None, 32, 12, 256, 256) 0
Conv3DTranspose (None, 32, 12, 256, 256) 8224

Concatenate (None, 48, 24, 512, 512) 0
Conv3D (None, 16, 24, 512, 512) 20752

Activation (None, 16, 24, 512, 512) 0
Conv3D (None, 16, 24, 512, 512) 6928

Activation (None, 16, 24, 512, 512) 0
Conv3D (None, 1, 24, 512, 512) 17

Activation (None, 1, 24, 512, 512) 0

Table 3.1: Network layers with layer type, output shape and learnable parameters.
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3.4.1 Network Architecture

One of the first parameters that have to be defined when building the neural network, is

its depth, which defines the number of max pooling layers that the network will have.

Several tests have been carried out by changing this parameter and a depth of 4 has been

chosen, since using a higher depth would have brought to higher memory amount required

for training.

The network presents an alternation of blocks of 3D convolution, 3D max-pooling, ac-

tivation and 3D deconvolution, which will be briefly discussed below.

• 3D Convolution

It can be defined as a spatial convolution over volumes.

This layer creates a convolution kernel which is convolved with the input layer to

produce an outputs tensor.

The kernel size, a list representing the depth, height and width of the 3D convolution

window, is set before training to (3,3,3).

The stride is another parameter that must be set before the training phase, and

manages how much the convolution window moves along each spatial dimension

(set to (1,1,1)).

The padding for convolution has been set to ’same’, i.e. it pads all sides of the

volume equally, so that the output has the same size as the input.

The number of filters used by the first layer has been set to 8; the additional layers

will contain a number of filters that is a multiple of this number.

• 3D Deconvolution

It can be applied in two different ways:

– 3D up-sampling: only resizes the image by copying the pixels as many times

as necessary; the only parameter that has to be specified in the size.

– Transpose Convolution (Deconvolution)

It is the opposite of the convolution block, it needs filters, kernels, strides and

all the parameters that the convolution blocks needs. For this reason, it is

more complicated, it increases the memory required for training a little.

For this specific study, the Transpose Convolution has been used with kernel size

set to (2,2,2) and stride set to (2,2,2).

• Activation

This block applies an activation function to an output. The activation function

must be chosen based on the task to be faced.

70



In our study binary classification is the final task, for this reason the last output

layer consists in a sigmoid activation block.

• Max-pooling 3D

The max pooling operation reduces the size of the input tensor by taking the max-

imum value for each pooling window applied to the image.

The pool size determines the factor by which the input is down-scaled; in this case

it is equal to (2,2,2), which means that the 3D input is halved in each of the three

dimensions.

• Final Convolution

It is a 3D convolution that depends on number of labels in which the elements

belonging to the volume are classified.

The kernel size has been set to (1,1,1).

The final phase of creating a model is called model compilation and it is necessary for the

training to begin.

Compilation is performed using a method provided by Keras. This method requires the

definition of three parameters:

• Loss function

It is a function defined to find the error during the learning process.

• Optimizer

It is used to optimize the input weights by comparing the predicted output with the

loss function.

The optimizer used in this study is known as ’Adam optimizer’ and it consists in

using estimations of first and second moments of gradient to adapt the learning rate

for each weight in the network.

• Metrics

A metric is a function used to evaluate the performance of the model. At the end

of each epoch during the training process, the metric values are recorded for both

the training set and the validation set.

Different tests have been carried out changing the loss function and the metrics. More

details on the implementation and results will be given in the section relative to the

procedure (subsection 3.4.4).
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3.4.2 Custom Image Generator

The input of the network, as seen in section 3.4.1, is a tensor of dimensions (None, 1, 24, 512, 512).

The volumes in .mat format coming out of the preprocessing step, have been resized

using various models of Image Generators to obtain the correct dimensions for the input.

However, all these tests resulted in an out-of-memory state as the memory required to

load all volumes and train a sufficient number of parameters during the training process

was too high.

This problem has been solved by loading the dataset using a function that allows to

bypass the computational load due to the size of the input volumes, loading the directory

into memory instead of the volumes.

If 2D networks developed with the basic Tensorflow packages are used, this function is

present in the Keras package and allows to iterate within the directory where data is

present to obtain the image generator to train the network.

Since this is a custom made 3D network, in order to use the directory iterator, some

changes must be made to both the format of the volumes in the directories and the iter-

ative functions.

The basic iterator needs as a parameter the directory from which to read the images.

Each subdirectory in this directory must contain images belonging to a class.

In this study, since the purpose is binary classification, the part related to classes has been

ignored, collecting all the images in a subdirectory and creating two separate generators,

one for the volumes and one for the corresponding volumetric labels.

Images to be uploaded in this way must have a specific extension.

For this reason, it has been decided to convert the preprocessing output volumes into one

of the permitted formats, specifically the .tiff extension has been chosen since it allows to

work with three-dimensional data.

Within the function that manages the conversion, volumes are subdivided in two sets:

• Training set: used to train the network.

• Validation set: used to validate the network performances during training.

It has been decided to use training set = 0.8 ∗ validation set as the proportion, therefore

36 volumes are used for training and 9 for validation.
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In order to have images consistent with the chosen format, the volumes in .mat for-

mat have been transposed, so as to finally have a dimension of 24 x 512 x 512.

Initially all images in the directory are listed and the ones with the correct extension,

in our case the tiff files, are iterated and their relative paths are saved.

Starting from these filenames, the transformed samples batches are built. We have chosen

to use batch size equal to 1 for memory requirements, that is one image processed at a

time.

Images are loaded in the form of PIL instances, from which the 3D Numpy array is

extracted.

Tiff files contain the number of frames in the header; the 3D array is constructed by load-

ing the individual slices of the tiff file and stacking the frames together in float32 format.

The array is arranged in such a way as to respect the chosen settings for what concerns the

channel ordering. For this study ’channel first’ has been selected, so the number of im-

age channels is the first value in the array and is equal to 1 since gray scale images are used.

The standard Image Data Generator has not been used because data augmentation has

not been performed, as 3D volumes generally have sufficient spatial information.

Four directory iterators have been built, two for training and validation images and two

for the respective volumetric labels.

Class mode has been set to ’None’ because, as mentioned before, binary classification is

among the voxels of the image, each of which can be classified as backgroud (class 0) or

prostate (class 1).

The iterators corresponding to training and validation are zipped separately in order to

have two single generators with image and corresponding mask.

For the training phase of the model, the number of steps that the algorithm performs

per iteration is set as:

number of training steps =
samples in training generator

training batch size

number of validation steps =
samples in validation generator

validation batch size

with training batch size = validation batch size = 1.
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3.4.3 Callbacks and network training

A callback is an object used to perform actions in different stages of the training process.

Two types of callbacks have been used for this study:

• Model Checkpoint

It is a type of function used to save the model or model weights at certain points,

so that training can be restarted from the saved state at a later time by loading the

model or the weights at that point.

The variable to be monitored is the loss defined during the compilation of the model.

• Early Stopping

It is a callback function that allows to stop training based on a variable being mon-

itored.

The variable is a metric defined in the compilation; when it stops improving, the

training is stopped.

Parameters for the early stopping criterion must be set, depending on the training

goal. If the accuracy of the network has to be monitored, the ’mode’ parameter has

to be set equal to ’max’, so that the training will be interrupted when the monitored

quantity stops improving.

On the contrary, if the quantity to be monitored is the loss, the mode has to be set

equal to ’min’ and the training is stopped when the quantity stops decreasing.

The change of the variable is evaluated on the basis of a parameter called ’min

delta’, which corresponds to the minimum change in the monitored quantity that

corresponds to an improvement.

Training is interrupted if the improvement stays under this value for a number of

epochs equal to the ’patience’ parameter.

In our case ’min delta’ has been set to 0.01 and ’patience’ to 25 epochs.

This list of callbacks is passed to a function known as ’fit generator’ which allows to train

the model on data that is generated using the iterator previously introduced.

This function has been used instead of the ’fit’ method because we are dealing with

datasets huge in size and harder to fit into the computer memory.

What this function does is take one batch at a time from the dataset and perform back-

propagation on it and then update the model weights.

The process is repeated for the predefined number of epochs, which is also passed as a

parameter and corresponds to 50 in our case.

74



3.4.4 Parameters Optimization

The first tests have been carried out on Python using a virtual environment and the

packages necessary to start the training on GPU.

The chosen settings for the network parameters are:

• Network depth: 4

• Number of base filters: 8

• Total number of trainable parameters: 1.192.593

• Loss: Dice similarity coefficient loss

• Metric: Dice similarity coefficient

These parameters have been chosen after carrying out various tests.

Initially the number of base filters was set to 32, obtaining a total number of trainable

parameters equal to 19.068.993.

In order to limit the amount of memory required for the training, the number of trainable

parameters has been limited to the last layers of the network, thus freezing a large part

of the first ones.

Performing the tests using the GPU/CPU of a standard computer, however powerful it

may be, brought the maximum number of trainable parameters, given this initial setting,

to a very low number in our case equal to 65.

It has been therefore decided to train the network using Kaggle, a subsidiary of Google

LLC which provides free access to NVidia K80 GPUs in kernels and 13 GB of RAM.

Tests have been carried out initially maintaining the previous setting of parameters, and

subsequently making small changes.

The online cloud computing provided by Kaggle let us train the network up to 442.561

parameters in a reasonable time.

To take advantage of the possibility of training a network in it entirety, therefore without

freezing any layer, the number of base filters has been changed to 8.

In this way the total number of parameters of the network is equal to 1.192.593 and it is

possible to train them all without incurring the out-of-memory condition.

The first test have been performed using binary crossentropy and binary accuracy re-

spectively as loss and metric. The model has been compiled in two different ways to test

the influence of the initial learning rate on the Adam optimizer.

We have test the following two cases:

• No learning rate specified → use the default 0.001
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• Specify learning rate equal to 0.0001

The learning curves obtained for the two cases are shown in figure 3.12, with the valida-

tion loss shown in blue and the binary accuracy in orange.

In correspondence with the red cross marker, we have the binary accuracy value for the

best model saved.

(a) Binary accuracy with default learning rate,
equal to 0.001.

(b) Binary accuracy with learning rate equal to
0.0001.

Figure 3.12: Comparison between the learning curves obtained by training the network
with binary cross-entropy as loss and binary accuracy as metric with initial learning rates
equal to 0.001 and 0.0001.

We can observe that the early stopping criterion led the network to interrupt the training

by convergence at the 48th epoch in the first case and at the 36th in the second case.

A problem that occurs when dealing with volumes in which the object to be identified

occupies a small part with respect to the background, is the fact that very high levels of

accuracy can be achieved since the number of correctly classified pixels takes into account

the large number of pixels belonging to the background. Two ways have been tried to

solve this problem:

• Use the class weights parameter to be passed during the model fit phase to assign

a greater weight to the pixels corresponding to the object to solve class imbalance.

• Use a loss and a metric that take into account the pixels of the object and not those

of the background.

In order to use the class weighting in a voxel classification problem on three dimensional

data, it is necessary to create a volume of the same size of the volumetric label during
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the Image Generator definition phase.

This volume must contain a weight value to be assigned to each single voxel.

This value can be obtained by counting the number of voxels representing background

and the object within the entire dataset and then evaluating

background =
background

background + object
∗ 100

object =
object

background + object
∗ 100

class weight =
background

object

and assigning 1 as weight to the voxels belonging to the background class and the class

weight just calculated as weight to the voxels belonging to the object class.

A test has been carried out using this method, which however led to a problem of high

computation and memory required, as to perform the voxel-wise multiplication in the

weighting phase during training, the volume is rendered 1D obtaining a huge number of

values to be computed for each image, equivalent to 24 x 512 x 512.

The second possible way has been therefore tried, looking for a loss function and a metric

that is more suitable for our situation.

The dice coefficient and the corresponding dice loss have therefore been implemented as:

DSC =
2|X ∩ Y |
|X|+ |Y |

DL = 1−DSC

with X and Y being the flattened versions of the true volumetric label and of the predicted

volumetric label respectively, and are passed as loss and metric when compiling the model.

Two tests have been carried out using two different learning rates, equal to 0.0001 and

0.00001.

The resulting learning curves are shown in figure 3.13. We can observe how the curve

relative to the dice coefficient reaches higher values using a learning rate of 0.0001.
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Figure 3.13: Comparison between learning curves obtained for a training using dice sim-
ilarity coefficient loss as loss and dice similarity coefficient as metric with initial learning
rates equal to 0.0001 and 0.00001.

To evaluate if the performances could improve over a higher number of epochs, this

parameter has been set equal to 100.

Figure 3.14: Comparison between learning curves obtained training the network with dice
similarity coefficient as metric and dice similarity coefficient loss as loss for 50 epochs on
the left and 100 epochs on the right.

We can see in figure 3.14 that the resulting curve is very similar to the previous one, so

50 epochs have been considered enough for training.
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3.5 Active Shape Model

3.5.1 Coherent vertices computation

The first step necessary for the creation of a mean shape model is the determination of a

set of coherent vertices for all the prostates belonging to the training set (manual labels

and 3D CNN output) and to the test set (3D CNN output).

The selected landmarks must match in each volume so that they can be aligned in the

next step to determine the average model and to further apply it on the outputs of the

3D CNN.

All the following operations and the evaluation of the model are performed on the volumes

after applying an isotropic upsampling operation to have the same resolution, set to 0.5 x

0.5 x 0.5 mm on the three axes. The three-dimensional contours of each volumetric label

are obtained by eroding the volume with a matrix of dimensions 3x3 made of logical ones

that allows to obtain the outer edges.

3D-surface fit

The external surface of each prostate is fitted with a three-dimensional standard sur-

face in order to determine the key points to be taken as a reference in the following steps

for each prostate volume. These key points can be for example the origin of a spherical

surface used to approximate the volume, or in the case of an ellipsoidal fit, points obtained

from the foci on different axes.

Two tests have been carried out for this study, the first of which involves the approxi-

mation using a spherical surface, while the second an ellipsoidal surface. The results are

shown in figure 3.15.

Figure 3.15: Comparison between surface approximation using a sphere (a) and an ellip-
soid (b). The ellipsoidal surface better approximates the prostate shape.
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As can be seen, the shape of the prostate is best approximated by using the ellipsoidal

surface, so four key points have been selected starting from this fit in the x-y plane,

following two modalities.

Figure 3.16: Prostate surface and ellipsoidal approximation in the x-y plane with the
chosen four points on the major (a) and minor (b) axes.

• For what concerns the major axis in the x-y plane ( figure 3.16a), a parameter c has

been calculated as:

c =
√
radius2max − radius2min

and the following two points have been chosen, starting from the center of the

ellipsoid:

F1 = [xcenter, ycenter −
c

2
, zcenter]

F2 = [xcenter, ycenter +
c

2
, zcenter]

The half of c has been used instead of c because the latter, in some cases, exits the

prostate boundaries, thus causing erroneous results.

• For the minor axis, the parameter c assumes the value:

c =
√
radius2min
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and the chosen points (figure 3.16b) are:

F1 = [xcenter −
c

2
, ycenter, zcenter]

F2 = [xcenter +
c

2
, ycenter, zcenter]

Triangulation

Starting from the 3D vertices obtained in the first step, a triangulation algorithm, known

as Alpha Shape Triangulation has been used to divide the 3D surface into a variable

number of triangles, that are necessary to compute the triangle-ray intersection in the

following section.

An Alpha Shape is a family of linear curves defined in the Euclidean plane, whose purpose

is to approximate the shape of a finite set of points.

The Alpha Shape [14] derives from the boundary of an Alpha-complex, a derivative of the

Delaunay triangulation.

The shape obtained for a specific set of points depends on a parameter called α that

defines the level of refinement of the structure, which ranges from a very coarse shape

approximating a convex hull to a shape that closely approximates the points of the set.

The level of refining that determines the number of points used to approximate this sur-

face inversely depends on the α parameter, therefore, the smaller it is, the finer the fit.

In our study, an α parameter equal to 50 has been chosen to suit all shapes belong-

ing to the training set (manual annotations and 3D CNN output) and to the test set (3D

CNN output) in order to obtain closed surfaces for all the shape cases.

Figure 3.17 shows an examples of the final triangulation (patient 101).

Figure 3.17: Alpha Shape for patient 101 in the x-y, x-z and y-z planes.
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The boundary facets of the shape have been computed together with the vertex coordi-

nates that make up the boundaries.

The triangles that make up the alpha shape have been extrapolated by connecting the

vertices belonging to a single face of the triangulation and saved in a 3x3 matrix, con-

taining the x, y and z coordinates for each of the three points that determine the single

triangle.

Ray-Triangle intersection

In order to obtain corresponding points in each prostate, we have used the Moller-

Trumbdore [11] algorithm to compute the intersection between a set of rays originating

in each of the key points found in the previous step and each of the triangles that make

up the triangulation.

The elements involved in the algorithm are:

• A ray defined as

R(t) = O + tD

where O is the origin of the ray and D is a normalized direction.

• A triangle defined by the three vertices V0, V1 and V2.

A point within this triangle is defined by:

T (u, v) = (1− u− v)V0 + uV1 + vV2

where (u, v) are the barycentric coordinates.

Finding the intersection is equivalent to finding the values of t, u and v for which R(t) =

T (u, v).

Rearranging the equivalence gives the linear system of equations:

[−D, V1 − V0, V2 − V0]

 t

u

v

 = O − V0

The solution is obtained using the Cramer’s rule: t

u

v

 =
1

| −D,E1, E2|

 |T,E1, E2|
| −D,T,E2|
| −D,E1, T |


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which can be rewritten, keeping in mind that |A,B,C| = (A x B) · C = −(A x C) ·B =

−(C x B) · A, as: t

u

v

 =
1

(D x E2) · E1

 (T x E2) · E2)

(D x E2) · T
(T x E1) ·D

 =
1

P · E1

 Q · E2

P · T
Q ·D


where P = (D x E2) and Q = (T x E1). For this study, the number of rays chosen to

have a sufficient amount of points in the final shape has been obtained by using the main

normalized directions

• x → [1 0 0]

• y → [0 1 0]

• z → [0 0 1]

• xy → [1 1 0], [1 -1 0]

• xz → [1 0 1], [1 0 -1]

• yz → [0 1 1], [0 -1 1]

• xyz → [1 1 1], [-1 1 -1], [-1 -1 1], [-1 1 1]

and in addition the same directions scaled by 2, 4 and 8 and the corresponding products.

The final number of rays is represented in figure 3.18, superimposed on the Alpha Shapes.

Figure 3.18: Rays intersecting the Alpha Shape surface for patient 101 in x-y, x-z and y-z
planes.

The intersections are found assigning the four key points as the origin of the rays one at a

time, scrolling through the matrix of directions and looking for the intersection between
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each ray and each triangle making up the triangulation.

Directions in which no intersections are found are eliminated from the total matrix to

ensure that the points remain corresponding in each prostate.

Check Mismatch

The triangulation used to define the three-dimensional surface can introduce errors in

finding intersection points, depending on how many triangles are used to define the sur-

face and where they are positioned in space.

To ensure consistency between the points found for each prostate in each direction, the

space around each key point is initially divided into eight quadrants.

Normally, if the triangulation allows to obtain a closed volume, for each ray an intersec-

tion should be found for each of the two directions (positive and negative respect to the

origin).

If the prostate is not closed, as can be observed in figure 3.19, it is possible that the points

of intersection are found in only one direction, and therefore, in only one of the quadrants

previously discussed.

Figure 3.19: Example of an open surface. In the upper part of the prostate rays exit the
surface without intersecting, while in the lower part intersections are found.

If this happens, a flag is set to one, which allows to consider for the specific direction only

points belonging to that quadrant, for all the prostates in the training set.

If this situation arises for more than one prostate, it is necessary to check the quadrant

where points are found; in the case for a specific direction a point is find in a prostate

in quadrant 1 and in another prostate the point is found in the opposite quadrant, the
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direction in which this occurs is removed.

Find Vertices

After having removed the directions in which no consistent quadrants are found within

the different prostates, for each direction the intersection points are calculated as:

intersection = origin + t ∗ direction

For all these points the quadrant to which they belong is determined and in each of these

quadrants, the Euclidean norm of the points with respect to the origin of the rays is

determined. The norms are sorted and for each quadrant the points with the highest

distance are selected.

Figure 3.20 shows an example of vertices computation for a specific direction. The red

cross represents the origin of the ray connecting the scattered points in the image.

The selected points placed on the outer surface of the prostate volume have been filled in

order to demonstrate the algorithm behavior.

If the flag defined in the previous step is equal to 1, only points belonging to the corre-

sponding quadrant are taken into consideration.

Figure 3.20: Vertices found in one direction with the proposed algorithm.

Figures 3.21 and 3.22 show two examples of vertices matrices found with this methodology

in the xyz plane and zooming in x-y, x-z and y-z plane respectively.

The two prostates are different from each other, both in terms of shape, alignment and

rotation, but the points found are quite corresponding in both examples.

85



Figure 3.21: Vertices comparison in xyz plane for patients 101 and 102.

Figure 3.22: Vertices comparison in x-y, x-z and y-z planes for patients 101 and 102.
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3.5.2 Shape Model

The vertices obtained in the previous step for the manual labels must be aligned to create

the shape model.

The model input is a cell array containing the matrices representing the vertices for all

manual annotations in the training set.

The mean vertices matrix is initialized with the value of the vertices of the first pro-

static volume.

The contour positions of the other volumes are aligned, centered and any rotation is

removed with the following operations.

1. Remove Translation

Data are centered by removing the offset value for each prostate.

offset = −mean(vertices)

vertices = vertices + offset

2. Correct Rotation

The correction is performed using the Four-Quadrant Inverse Tangent in two steps,

firstly removing the angle in the x-y plane and after removing the angle in the y-z

plane.

Figure 3.23 shows the range of values returned by the Four-Quadrant Inverse Tan-

gent, depending on the values of x and y [-π π].

Figure 3.23: Four quadrant inverse tangent range [-π +π].
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In the x-y plane, the angle for the current volume points and for the mean ver-

tices corresponding to the first volume, are obtained as:

rot = atan2(y, x)

rot = atan2(ȳ, x̄)

The mean angle in the x-y plane is obtained as follows.

First the offset angle in the x-y plane is computed as:

offsetxy = (rot− rot)

and subtracted from the current angle

rot = rot + offsetxy

The new point all with same rotation are obtained with:

dist =
√
x2 + y2

x = dist ∗ cos rot

y = dist ∗ sin rot

The same calculations have been performed to obtain the new vertices after removing

the rotation in the y-z plane. Thus, the new values for the y and z coordinates are:

y = dist ∗ cos rot

z = dist ∗ sin rot

where:

dist =
√
y2 + z2

and the value for rot is obtained evaluating the Four-Quadrant Inverse Tangent

between the z and y coordinates and adding the offset term in the y-z plane.

The prostate volume corresponding to patient 18 is presented in figure 3.24 as an example

of alignment, showing for each view the aligned volume on the left and the volume in the

original space on the right.

The transformation object with the three offsets is saved for each prostate volume to

obtain the mean transformation object by averaging over the entire training set.
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Figure 3.24: Example of alignment: Prostate shapes in xyz (a), x-y (b), x-z (c) and y-z
(d) planes after (left) and before (right) alignment.

Subsequently a matrix is constructed containing all the contour point data of the training

set and PCA is applied to this to obtain the eigen values, eigen vectors and the mean

shape.

The contour noise is removed by keeping only the 98% of the Eigen vectors, i.e. the first

for which the cumulative sum is grater than their sum multiplied by 0.98.

The mean shape is shown in figure 3.25.

It is possible to observe how the axes of the mean prostate shape are not perfectly aligned.

This fact is due to the presence of incorrectly aligned prostates within the dataset (an

example is presented in figure 3.26).

One of the possible reasons for this misalignment could be the fact that the points taken

and a reference to identify the ray-triangle intersections change slightly from prostate to

prostate, causing a variability which reflects on the difficulty of the algorithm in finding

perfectly matching points.
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Figure 3.25: Mean Shape in xyz (a), x-y (b), x-z (c) and y-z (d) planes.

Figure 3.26: Example of non-alignment: Prostate shapes in xyz (a), x-y (b), x-z (c) and
y-z (d) planes after (left) and before (right) alignment.
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3.5.3 Appearance Data

The appearance of gray levels of the original images is used to optimize the search for the

perfect outline.

Two types of models will be proposed, the first of which is based on the gray profiles

computed along a normal to all points of the surface, while the second takes into account

the derivative of these gray levels.

Both methods can make use of a multi-scale approach, which allows to obtain the param-

eters of interest using profiles calculated on different image scales.

Our approach employs three levels of resolution, from which it is possible to obtain the

scale to which resize the image as:
1

2res−1

In order to obtain the normals to a surface, the faces that constitute the different triangles

of a triangulation are usually used.

The problem with this method is that the number of faces for each prostate volume

changes depending on the triangulation algorithm.

To solve this issue the strategy we used was to create a point cloud starting from the

vertices of the volume and from this construct the normals, considering for each point a

neighborhood to approximate a surface to which the normal can refer.

As can be seen in figure 3.27, the normals have been oriented outwards with respect to

the central point of the prostate volume.

Figure 3.27: Point cloud of prostate vertices with normals oriented outwards with respect
to the central point of the volume.
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Gray Profiles

The algorithm for the computation of the gray profiles starts with the resolution cor-

responding to the original size of the volume (scale = 1) and then repeats the calculations

for two other resolutions, respectively scale = 0.5 and scale = 0.25.

In the latter two cases, the volume is resized using linear interpolation.

Since the scale is smaller respect to the original one, an anti-aliasing filter is used during

the resizing procedure to avoid image distorsions.

To calculate the profiles along the normals found in the previous point, a value k must be

initially chosen, which represents the length of landmark intensity profile in one normal

direction.

For each point belonging to the cloud of vertices, a profile is created whose length is

(k ∗ 2) + 1, centered at one point and with directions both entering and exiting the cloud

(figure 3.28).

A cubic interpolation is then implemented to sample on the normal lines and to obtain

the gray profiles corresponding to the points selected along the profile.

Figure 3.28: Normals (blue arrows) exiting the prostate surface in the axial, coronal and
sagittal planes.

Since the prostate has a great variability along the contours, a clustering algorithm has

been used to select only the most similar profiles for each point.

This algorithm is called Density-Based Spatial Clustering of Applications with Noise (DB-

SCAN) and consists in finding clusters of arbitrary shape, taking into account the noise

that may exist in the data distribution.

Before starting the search for the different clusters, it it necessary to declare two param-

eters:
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• minPoints: a minimum number of points to be considered in order to define a set a

cluster.

• ε: a parameter that will be used to determine the similarity between the different

profiles.

As previously said, for each point of the vertices cloud, a normal profile is created. The

first step of the algorithm consists in the random selection of a profile among all the

profiles for that point within the training set and the subsequent determination of the

neighborhood area of radius ε. Within this neighborhood similar profiles are chosen. If

at least MinPoints are found, a cluster is created and enlarged according to the similar-

ity of the neighborhood of all points belonging to the cluster, otherwise, if the value of

MinPoints is not reached, the point is considered as an outlier, thus not reachable from

any points belonging to a cluster (noise). Iteratively all the profiles and the space around

them are inspected, trying to find regions with high density and to separate them from

those with low density.

In our case the value 1 has been chosen as MinPoints, thus meaning that only one point

is sufficient to define a cluster.

An optimization procedure has been carried out for the ε parameter in order to obtain

a cluster with a number of profile between 5 and 20, which has been considered a good

compromise to obtain sufficiently similar profiles. This procedure is repeated for each

point belonging to the cloud of vertices. Principal component analysis is then applied to

the profiles belonging to the cluster with more elements to find the eigen values, eigen

vectors and the mean profile.

The comparison between the gray profiles obtained along the normal to a surface point for

all 36 prostates of the training set and those obtained after applying clustering is shown

in figure 3.29.

Figure 3.29: Gray-level profiles (a) for all 36 prostates belonging to the training set (36
curves). Selected profiles after DBSCAN (b).
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Different lines represent different prostates into the dataset, on the x-axis we have the

sample points on the normal profile while the y-axis represents the gray levels on the

image.

Derivative of gray profiles

The second method involves the use of the derivative of the gray levels along the profiles

normal to the surface. This latter is calculated starting from the grey-levels found in the

previous case and subsequently normalized. The precedent clustering method is used to

find the closest derivatives along normal profiles.

Also in this case an optimization for the ε parameter has been carried out to obtain a

final cluster with a number of elements within the range [5− 20]. The mean value of the

derivatives inside the chosen cluster is computed and saved for each point of the prostate

surface. The covariance matrix of the derivatives and the inverse of it are then computed

and stored.

Figure 3.30a shows the derivative of the gray profiles for all 36 prostates, while in figure

3.30b we can observe the chosen profile after DBSCAN.

Figure 3.30: Derivatives of gray-level profiles (a) for all 36 prostates belonging to the
training set (36 curves). Selected profiles after DBSCAN (b).

3.5.4 Apply Model

The model is applied on the vertices out from the 3D CNN after performing isotropic

upsampling.

As previously mentioned, this method usually involves a multi-scale approach, thus with

all the operations iteratively carried out on three levels.

With this method, the model is applied starting from a scale equal to 0.25 times the

original size and optimized up to the original size.
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The input of the algorithm is the matrix of vertices corresponding to a single volume.

Initially the point cloud of the volume points is computed in order to obtain the normals

to the surface, then oriented towards the outside, as in the training phase.

Along each normal a profile is placed with length n = k + ns, with k being the length of

the profile defined in the training phase and ns being a parameter corresponding to the

search length in both directions (entering and exiting the cloud).

The gray profiles and the respective derivatives are computed for each landmark and

an objective function is defined to calculate the energy that has to be minimized in order

to move points in space to obtain the best fit.

The method dealing with the derivative of the gray levels requires the calculation of the

Mahalanobis distance between the current values in the profile and values of the training

data set profiles using the inverse correlation matrix.

For each point of the Vertices cloud the distance is evaluated as:

v = dgactual − dgmean

The objective function is then obtained as:

f = v′ ∗ Sinv ∗ v

The second method involves calculating the PCA parameters and subsequently normal-

izing them with the variances.

The PCA parameters are obtained and normalized with the following formulas:

bc = eigen vectors′ ∗ (g − ḡ)

bc =
bc√

eigen values

The objective function is therefore:

f =
∑

bc2

The regularization error is calculated as the sum of the objective function values for all

the points corresponding to the search length into the profile length.

The minimum value of f is selected at each iteration to calculate the movement of each

point as:

movement = (ind− 1)− ns
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where

• ns: length of search profile in both directions.

• ind: position in the profile at which the f reaches the minimum value.

Once the points have been moved to positions that are closer to the optimal ones, it is

necessary to correct the set of points by removing possible outliers.

An outlier is defined as an anomalous value with respect to a given set of points, thus a

data point that differs significantly from other observations.

In this specific case, a metric is used to define the degree of proximity for each point with

respect to the ones surrounding it.

The correction of the outliers consists in the following steps:

• Alignment of the points according to the mean values of the Shape Model.

• Computing of the difference between the actual positions and mean positions ob-

tained from the training set, scaled by the eigen vectors.

V = eigen vectors ∗ (xsearch − xmean)

• Outlier selection

A point is defined an outlier if his value in V is > 2.5V̄ .

• Outlier removal

For each outlier point define a k-Nearest-Neighbor space (K = 50 has been chosen

for our specific case).

The value on the contour corresponding to the outlier is then set to the mean value

of his neighborhood defined by parameter k.

After having corrected the outliers, the model is realigned, removing translation and

rotation, exactly as done in the training phase.

The b parameters are then obtained as:

b = eigen vectors′ ∗ (xsearch − xmean)

and then limited to respect the constraints of the model using the eigen values of the

PCA model obtained in the training phase.

Each point belonging to the final shape should lie within a bounding box whose limits

are given by a parameter m(= 3):

bmax = ±m ∗
√

eigen values
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The b parameters of the model are finally reset to the positions of the boundary in the

original space with:

xsearch = xmean + eigen vectors ∗ b

and the translation and rotation are restored with an inverse aligning procedure (that is

the inverse of the procedure performed before to align points).

Several tests have been performed using both proposed methods.

A model has been chosen on the basis of a visual and subsequent numerical inspection

and corresponds to the one that uses the derivatives of the gray levels to evaluate the

Appearance Data along profiles normal to the surface. It has been applied to a single

resolution (equal to 1) for 30 iterations.

The comparison between the various methods will be presented at the end, in the section

relative to the intermediate results.

Figure 3.31 shows the ASM output superimposed on the 3D CNN output for a patient

belonging to the training set.

Figure 3.31: Comparison between ASM output (orange) and 3D CNN rough output
(blue) in A) axial, B) sagittal, C) coronal planes. The model corrects the borders making
them approach the real edges of the prostate by means of forces based on the grey-level
derivatives.

3.5.5 Post-processing

The final vertices output from the Active Shape model must be post-processed in order to

make a comparison with the ground truth volumes and extrapolate quantitative metrics

to evaluate performance.
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The clouds of vertices obtained with the model should in theory be very close to the

real shape of the prostate, being limited by the bounding box defined by the model con-

straints.

A 3D reconstruction algorithm is applied to the vertices clouds, consisting of the following

steps:

• Triangulation.

• Definition of the prostate range within the different volumes output from the model.

• Intersection between the volumes and perpendicular planes corresponding to the

slices positioning in the original volumes.

• 3D reconstruction from 2D slices.

• Volume sub-sampling.

• Morphological operators.

Triangulation

The volume is reconstructed starting from the points of the surface using again the Al-

pha Shape method derived from the Delaunay triangulation. To obtain a closed surface

without holes, the alpha radius has been set to 30.

After having obtained the Alpha shape, the vertices of the triangles that make up the

triangulation are extrapolated in order to evaluate in the next point the intersections of

these triangles with a set of rays defined in such a way to approximate the planes corre-

sponding to the different slices.

As can be seen in figure 3.32 , the prostate surface after applying the model has a higher

shape coherence respect to the one output from the 3D network as it is defined on the ba-

sis of a statistical model which takes into account the mean shape over the whole training

set.

Slices interpolation and 3D reconstruction

The points corresponding to the contours of the prostate for the individual slices can

be obtained by intersecting the volume obtained with the triangulation, with a series

of planes whose z-coordinate corresponds to the number of slices in which the prostate

appears.
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Figure 3.32: Comparison between the Alpha Shape obtained after 3D CNN alone and
after applying the ASM for a prostate belonging to the test set.

The simplest way to obtain these intersections is to create a set of rays whose origin

corresponds to the midpoint of the prostatic volume and which develop in the x-y plane.

This set of rays is iteratively translated along the z coordinate to obtain the whole volume

along the height dimension (figure 3.33).

To ensure an accurate approximation of each plane, 256 directions have been used for each

slice, which correspond to 512 points found if the triangulation ensures a closed volume

for all prostates in the set.
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Figure 3.33: Prostate surface intersection with a plane obtained with rays that develop
in the x-y plane.

The new vertices have been found using the same procedure described in section 3.5.1,

thus computing the intersection between each ray and each triangle and taking the fur-

thest points from the center of gravity, which correspond to a first approximation to the

points on the outermost surface of the triangulation.

The 2D slices are obtained by creating a binary mask of the vertices corresponding to

the edges of the prostate and adding empty slices where the prostate is not present.

Stacking together the 2D slices, the final 3D volume can be obtained, on which a little

post-processing is subsequently carried out by filling holes and using a 3D morphological

closing with a spherical structuring element of radius 4 to have smoother contours.

In order to make a quantitative comparison with the volumes corresponding to the ground

truth, the volumes obtained are down-sampled to the original resolution.
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3.6 2D CNN

The 2D Network has been proposed to make a comparison with the 3D Network.

Theoretically, the three-dimensional architecture should have grater spatial coherence,

as the voxels are connected throughout the entire volume and processed during training

using blocks that exploit the connection along the entire depth of the volume.

Little tuning has been performed for what concerns the parameters as the aim is a com-

parison with out proposed method and obtaining good results from the two-dimensional

architecture was not out main scope.

3.6.1 Data preparation and Image Generator

Data to be passed as input to the network has been obtained by selecting a number of

representative slices from the 3D volume as follows.

The idea is to ideally divide the total 24 slices into 3 slots, corresponding to the base of

the prostate, the mid-gland and the apex.

The central part of the volume is the one that generally contains the gland with higher

probability and it is therefore more defined, while in the other two slots, the slices con-

taining the prostate are fewer and have less resolution.

A number of slices equal to 2 for the training set and 1 for the validation set have been

randomly selected for each slot.

The same division as for the 3D network has been employed for the training-validation

selection.

Two examples of slices used to train the network are presented in figures 3.34 (patient 3)

and 3.35 (patient 20).

Figure 3.34: Prostate slices representing in order apex, mid gland and base for patient 3.
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Figure 3.35: Prostate slices representing in order apex, mid gland and base for patient
20.

For the predict phase, in order to make a comparison between the performances of this

network and those of the 3D network, two sets of data have been built without making

any selection as regards the number of slices, testing the network on all the slices in the

training set and subsequently on those of the test set.

The slices representing the images and the relative labels are saved in PNG format and

subsequently loaded to create the network input, respectively in uint8 and float32 format.

An Image Data Generator is built to generate batches of tensor image data with real-

time data augmentation.

The operations applied to the images are:

• Rotation: image randomly rotated within a degree range (20 degrees).

• Width Shift: shift along the width dimension in the range [- width shift range +

width shift range]. Set to 0.2 (fraction of total width).

• Height Shift: shift along the height dimension in the range [- height shift range +

height shift range]. Set to 0.2 (fraction of total height).

• Horizontal Flip: randomly flips input horizontally.

• Fill mode: fills the points outside the boundaries using the image values. Set to

’reflect’ (image values are reflected along the width and height dimension).

The generator is created using the ’flow’ method, which takes data arrays and labels and

generates batches of augmented data.

This method returns an Iterator yielding tuples of (x, y), where x and y are lists of Numpy

arrays representing the images and the corresponding labels.
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3.6.2 Network Architecture and parameters optimization

The 2D network is built using a basic UNet model present in the ’segmentation models’

package, shown in figure 3.36.

The chosen backbone, the part of the network that deals with feature extraction, is the

resnet34.

Figure 3.36: Basic UNet architecture: first downsampling path followed by an upsampling
path which restores the initial dimensions.

The network is not trained from scratch since using the resnet34 network as the backbone

structure allows to use the weights trained on 2012 ILSVRC ImageNet dataset.

In order to use these weights, it is necessary to have consistency between the size of the

input data and the size of the input on which the network has been trained.

For this reason, a 2D convolution block has been added to map the current number of

channels, in our case equal to 1 since gray-level images are used, to 3 channels.

The model is compiled with the following settings:

• Optimizer: Adam.

• Loss function: Binary cross-entropy.

• Metric: Binary accuracy.
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For what concerns the callbacks, the same functions have been used as in the 3D network,

i.e. Model Checkpoint and Early Stopping with the same parameters.

Network training is performed using the ’fit generator’ method.

Unlike before, within this function data augmentation is carried out in parallel by calling

the generator function which is passed to the ’flow’ method.

The generator function yields a batch, of size set to 4 in this case, to the ’fit generator’

function. This latter accepts the batch of data, performs backpropagation and updates

the weights of the model.

The process is repeated until the preset number of epochs is reached or ends earlier if the

requirements for the Early Stopping criterion are reached.

The values for the training and validation steps are set to:

training steps =
samples in the training set

training batch size

validation steps =
samples in the validation set

validation batch size

The learning curve is shown in figure 3.37. The accuracy value reached is very high, as

the loss value is very close to zero.

Figure 3.37: Learning curve for 2D CNN trained using binary crossentropy as loss and
binary accuracy as metric.

The segmentations obtained from the 2D network are stacked together to obtain the

volumetric label, which is subsequently binarized.
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3.7 Performance metrics

Two metrics have been used to evaluate the final performance of the segmentation using

the three models:

• Dice Similarity Coefficient

It determines the similarity between two volumetric labels in terms of intersection

over union.

Given two labels, X and Y, defined as sets of voxels, the DSC is given by:

DSC =
2|X ∩ Y |
|X|+ |Y |

where |X| and |Y | represent the two cardinalities of the two volumetric labels, thus

the number of elements in each set.

Mathematically, this index counts twice the number of voxels common to the two

labels and divides it by the sum of the number of elements of each label. It ranges

from 0 (no overlap) to 1 (total overlap).

• 95% Hausdorff Distance

The maximum Hausdorff distance determines the resemblance between two labels

in space as the greatest of all the distances from a point belonging to a label to the

closest point belonging to the other label.

Given two sets of points X and Y, the maximum HD is given by:

dH(X, Y ) = max(dXY , dY X) = max(max
x∈X

min
y∈Y

d(x, y),max
y∈Y

min
x∈X

d(x, y))

In our specific application the HD between the two volumetric labels has been

calculated evaluating the maximum value of the Euclidean distance transform of

the surface points of a binary label in correspondence with the surface points of the

other label.

The HD between two volumetric labels, if both of them are bounded, is a finite

number and it is lower if the points of one set are very close to the points of the

other set.

The 95% HD calculates the 95th percentile of the distances between boundary points

in X and Y. It is used as it eliminates the impact of possible outliers.

For what concerns the intermediate results, the considerations that led to the choice of a

set of parameters or a model over another have been based simply on the Dice Similarity

coefficient (mean value and standard deviation).
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Chapter 4

Results and discussion

4.1 Final results

The numeric values for the two performance metrics described in section 3.7 obtained for

the train and test sets using the three different models are shown in tables 4.1 and 4.2,

while figures 4.1 and 4.2 show two examples of final segmentation for training and test

set respectively.

Training set
Model Mean DSC Devst Mean HD Devst

3D CNN 0.893 0.0205 7.941 3.2115
3D CNN + ASM 0.881 0.0399 8.618 2.1658

2D CNN 0.886 0.0308 6.287 2.7191

Table 4.1: DSC and HD values with standard deviations obtained with the three models
tested on the training set.

Test set
Model Mean DSC Devst Mean HD Devst

3D CNN 0.840 0.0387 10.747 5.3995
3D CNN + ASM 0.845 0.0479 9.545 3.0378

2D CNN 0.878 0.0275 6.403 2.1045

Table 4.2: DSC and HD values with standard deviations obtained with the three models
tested on the test set.

Concerning the results obtained on the training set, we can observe that the 3D network

demonstrates better performances in terms of DSC with relative standard deviation com-

pared to the 2D network, but a little worse if we observe the HD value.

Applying the Active Shape Model worsens the performances of the 3D CNN alone a little

in terms of DSC and HD, but it guarantees the lowest mean standard deviation for what
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concerns the HD value, as it deforms all the shapes to try to approach the real shape,

based on the image characteristics.

Figure 4.1: Comparison between manual and final segmentation on an image belonging
to the training set obtained for A) 3D CNN, B) 3D CNN + ASM, C) 2D CNN. The
blue curve represents the manual segmentation, while the orange one is the segmentation
obtained with our algorithms.

Figure 4.2: Comparison between manual and final segmentation on an image belonging to
the test set obtained for A) 3D CNN, B) 3D CNN + ASM, C) 2D CNN. The blue curve
represents the manual segmentation, while the orange one is the segmentation obtained
with our algorithms.

The results obtained for the test set, on the other hand, show another trend. The best

performance has been obtained using the 2D network both in terms of DSC and mean

HD.

The Active Shape Model improves the performance of the 3D CNN alone both in terms

of DSC and HD, probably because the contours coming out of the network on the test

set differed much from the real ones and the model, being trained on manual labels and

on derivatives of the gray levels of the images, allows the edges of the segmentation to

approach those of the ground truth with higher precision.
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For the test case, the mean HDs and their relative deviations are higher respect to the

ones obtained for the training set as within the test set there are few single elements with

a much higher HD than the mean one.

Performance explanation

Possible explanations of the difference in performance between the 3D implementations

compared to the 2D model can be:

• The 2D CNN model used for the comparison is deeper and pre-trained on the

ImageNet dataset, which guarantees better results because more parameters are

used for training.

• Approximation errors when computing the coherent vertices for the ASM

The triangulation algorithm used to determine the prostate surface from the points

of the labels output from the CNN, as discussed in section 3.5.1, needed a parameter

alpha to compute the triangle to approximate the surface at a specific resolution.

The algorithm proposed for the determination of coherent vertices requires closed

surfaces in order to accurately approximate the shape of the prostate.

The manual labels are open surfaces because they have been obtained by focusing

mainly on the central part of the prostate, avoiding segmenting extreme slices as

the base and the apex part in some cases were not well defined.

To close these surfaces an α parameter equal to 50 has been used, which worsened

the refinement as can be seen in figure 4.3.

In order to obtain better results for the final segmentation using this triangula-

tion algorithm two possible solutions can be applied to solve the problem of bad

refinement:

1. Close the surface of the manual labels by adding points to interpolate the upper

and lower slices after computing the outer vertices (explained in section 3.5.1).

In this way the following interpolation creates triangles also on the upper and

lower parts of the surface.

2. Obtain a smoother surface to approximate the data

Keep a high α parameter to close the volume and relax the Alpha Shape to fit

the surface using a penalty when the triangles obtained with the triangulation

are far from the original outer points of the label and another parameter to

control the curvature between adjacent triangles from being too high.

The numerical results obtained are in line with those of other approaches cited in the

literature.
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Figure 4.3: Different surface approximations obtained by changing the α parameter of
the Alpha Shape triangulation. The ideal case would be setting no parameter, so that an
optimal alpha is automatically set to obtain the best approximation for the blue points,
representing the real contour of the label.

The performances are a bit lower due to the above-mentioned problems, specifically a

simple 3D network model has been used because of memory/computational power issues,

which does not allow to reach sufficiently high depth and number of parameters to achieve

better results.

The hybrid approach we have used proved useful as is allows to improve the DSC and HD

values of the 3D network alone in the test phase, making unplausible shapes closer to the

real ones and bringing the edges closer to the desired ones.

The limitations concerning the active shape model have been discussed in terms of ap-

proximations introduced by the triangulation used to find the points that determine the

Point Distribution Model.

This statistical model is sensitive to the initialization of the points, so if the contours ob-

tained with the CNN are located in regions of the image where it is difficult to distinguish

discriminating features, the model may struggle to move towards the real contours.

These limitations can be overcome by firstly optimizing the correspondence between the

points found on the label output from the CNN and the points obtained with the trian-

gulation, and secondly by optimizing the terms that govern the movement of the points

when the model is applied (function to be minimized).
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4.2 Intermediate results

Output 3D CNN

In the part of the method relating to the 3D network, two test have been carried out

using two metrics and loss functions and setting different initial learning rates passed as

a parameter to the optimizer when compiling the model before starting the training.

Table 4.3 presents the four cases dealt with, while in table 4.4 we can observe the results

of the DSC on the test with relative mean and standard deviation.

The network trained with DSC as metric and DSC loss as loss visually presents the best

performance among the four (figure 4.4), confirmed by the fact that is has the highest

mean DSC (table 4.4).

Case Loss Metric Learning rate (Adam)
1st Binary crossentropy Binary accuracy None (Default 0.01)
2nd Binary crossentropy Binary accuracy 0.0001
3rd Dice Similarity Coefficient loss Dice Similarity Coefficient 0.00001
4th Dice Similarity Coefficient loss Dice Similarity Coefficient 0.0001

Table 4.3: DSC and HD values with standard deviations obtained with the three models
tested on the test set.

PatID 1st 2nd 3rd 4th

110 0.783 0.811 0.79 0.827
13 0.867 0.872 0.833 0.873
19 0.738 0.801 0.759 0.796
2 0.786 0.767 0.809 0.787

2004 0.891 0.87 0.839 0.909
28 0.818 0.823 0.722 0.844

3013 0.871 0.876 0.803 0.877
3033 0.84 0.86 0.72 0.802
3059 0.773 0.767 0.754 0.81
31 0.824 0.834 0.855 0.857

3120 0.671 0.85 0.685 0.87
3211 0.727 0.778 0.722 0.816
41 0.816 0.834 0.832 0.887
53 0.775 0.783 0.785 0.783
58 0.869 0.844 0.816 0.872

Mean DSC 0.803 0.825 0.782 0.84
DevSt 0.0527 0.0209 0.0379 0.0224

Table 4.4: DSC and relative standard deviations obtained for the four cases in table 4.3

As can be observed, most of the highest values have been obtained using the 4th method,

namely DSC as metric and DSC loss as the loss function.
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Figure 4.4: Comparison between manual annotation and 3D CNN outputs for the four
cases: 1) Binary crossentropy - Binary accuracy lr=0.01, 2) Binary crossentropy - Binary
accuracy lr=0.0001, 3) DSC - DSC loss lr=0.00001, 4) DSC - DSC loss lr=0.0001. On
the left rough CNN output, on the right after post-processing.

Furthermore, for our specific problem, it can be observed that even in the 1st case (binary

crossentropy and binary accuracy with learning rate equal to 0.0001) the results obtained

are higher than the other two since the learning rate seems to be the most suitable.

As regards the optimization of the parameters, a test has been carried out keeping the

depth of the network fixed and increasing the number of convolution filters to 12.

The performance with this model has been evaluated calculating the DSC with relative

standard deviation, obtaining an average DSC value similar to that obtained with 8 filters

as regards the evaluation on the training set, but a lower value on the test set.
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The network in this case undergoes overfitting and for this reason it has been decided

to carry out a batch normalization operation that can allow to mitigate this effect by

reducing the internal covariate shift.

Training set
Number of conv filters Mean DSC Devst

8 0.893 0.0205
12 0.896 0.0285

12 with batch norm 0.939 0.0288

Table 4.5: DSC values with standard deviations obtained for the three cases tested on
the training set.

Test set
Number of conv filters Mean DSC Devst

8 0.840 0.0387
12 0.831 0.047

12 with batch norm 0.848 0.0424

Table 4.6: DSC values with standard deviations obtained for the three cases tested on
the training set.

The numerical results for training and test sets are shown in tables 4.5 and 4.6 respec-

tively, together with those obtained for the case of 8 filters, while in figure 4.5 it is possible

to observe the corresponding learning curves setting the max number of epochs to 150.

Figure 4.5: Learning curves obtained by training the network with 12 initial conv filters
without (left) and with (right) batch normalization. Both training processes stop before
reaching the maximum number of epochs because the early stopping criterion is satisfied.
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The problem of overfitting continues to arise even after performing batch normalization,

reaching higher values for both training and test set, but with a greater gap. For this

reason, this network configuration has not been chosen as the best one for our study.

3D-2D Model comparison

The 2D network we have used to make a comparison with our proposed model, for the

above-mentioned reasons, is advantageous as it allows to exploit the weights pre-obtained

on a different dataset and for this reason, the low level features must not be recalculated

once the training has started.

An advantage that the 3D network presents compared to the 2D model, which led us

to propose the three-dimensional approach, is the spatial coherence that creates between

successive slices.

Figure 4.6 shows an example of four slices extracted from the rough output of both

the 3D and 2D models (patient 3042).

Figure 4.6: Comparison between rough 3D and 2D CNN outputs (slices 16-19, patient
3042). We can observe that the 3D CNN classifies voxels taking into account their relative
position in space, while for the 2D CNN the classification is performed on the single slice,
thus results can be erroneous when observed in 3D space.

As we can observe, since the slices are classified individually by the 2D network, the

values obtained do not take into account the position of the slice within the volume and

therefore, the connection that is established between successive voxels.

Active Shape Model

As described in section 3.5.4, after carrying out different tests using both approaches
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(gray profiles or their derivatives to calculate the statistics along the profiles normal to

the prostate surface), the one using the derivatives has been selected as the best model.

The chosen method foresees an approach that uses only one scale (res = 1) instead of

the multiresolution approach and the calculation of the best profile is performed over 30

iterations.

Tables 4.7 and 4.8 show the numerical results in terms of DSC with relative standard

deviation obtained for the test and the training set respectively in the following three

cases:

• DGL-1: Derivatives of gray levels with multiscale approach, 1 iteration per scale.

• DGL-30: Derivatives of gray levels with single scale approach, 30 iterations.

• GL-3: Gray profiles with single scale approach, 3 iterations.

We can see that, apart from the method that has been selected, the second best result

both for the tests on the training set and those on the test set, has been achieved using

a single scale approach.

Test set
PatID DGL-1 DGL-30 GL-3

110 0.815 0.813 0.838
13 0.853 0.873 0.859
19 0.824 0.815 0.8252
2 0.759 0.811 0.76

2004 0.903 0.9 0.921
28 0.878 0.874 0.877

3013 0.867 0.893 0.888
3033 0.86 0.886 0.864
3059 0.737 0.742 0.728
31 0.87 0.861 0.871

3120 0.89 0.89 0.892
3211 0.815 0.803 0.806
41 0.871 0.887 0.876
53 0.769 0.766 0.777
58 0.858 0.86 0.882

Mean DSC 0.838 0.845 0.844
DevSt 0.0527 0.0209 0.053

Table 4.7: DSC and relative standard deviations for the three methods on test set: DGL-1
(Derivatives of gray levels, 1 iteration - multiscale approach), DGL-30 (Derivatives of gray
levels, 30 iterations - single scale approach), GL-3 (Gray levels, 3 iterations, single scale
approach).
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Training set
PatID DGL-1 DGL-30 GL-3

101 0.841 0.848 0.861
102 0.890 0.897 0.904
16 0.849 0.857 0.852
18 0.844 0.841 0.85
20 0.883 0.898 0.887

2001 0.822 0.825 0.841
2002 0.797 0.826 0.787
2013 0.863 0.869 0.848
2022 0.893 0.895 0.893
22 0.889 0.899 0.889
23 0.886 0.88 0.875
24 0.862 0.872 0.853
26 0.878 0.9 0.875
3 0.907 0.917 0.899

3005 0.884 0.916 0.882
3007 0.876 0.875 0.864
3009 0.905 0.906 0.888
3030 0.882 0.87 0.889
3032 0.913 0.94 0.901
3036 0.861 0.869 0.878
3042 0.854 0.847 0.866
3154 0.935 0.934 0.933
3160 0.921 0.917 0.921
32 0.857 0.854 0.846
33 0.829 0.813 0.837
37 0.889 0.9 0.889
40 0.816 0.813 0.839
44 0.902 0.893 0.905
47 0.904 0.871 0.904
49 0.87 0.884 0.893
50 0.868 0.879 0.883
54 0.908 0.924 0.902
55 0.896 0.903 0.897
59 0.871 0.908 0.872
68 0.914 0.927 0.923
8 0.841 0.849 0.85

Mean DSC 0.875 0.881 0.877
DevSt 0.0315 0.0209 0.0295

Table 4.8: DSC and relative standard deviations for the three methods on training set:
DGL-1 (Derivatives of gray levels, 1 iteration - multiscale approach), DGL-30 (Derivatives
of gray levels, 30 iterations - single scale approach), GL-3 (Gray levels, 3 iterations, single
scale approach).
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Chapter 5

Conclusion and future remarks

In this study we propose a fully automatic hybrid approach for the 3D MRI prostate

segmentation using CNN and ASM models.

The 3D CNN is employed to obtain a first segmentation to be used as initialization for

the statistical model, avoiding the computation of manual features for the positioning of

the model in the initial phase. The ASM is subsequently used to obtain a refining in

correspondence with the contours of the prostate as this statistical model is trained on

the labels manually obtained to have a statistical estimate of the image characteristics

near the contours of the organ.

Another reason that led us to propose this model in addition to the segmentation with

the deep neural network is the fact that the 3D UNet model does not guarantee that the

predicted point cloud is noise free, which leads some boundaries to move away from the

actual ones.

During the application of the ASM, the shape that the segmentation can have is limited

on the basis of the mean one within the dataset, which guarantees the plausibility of the

shapes obtained as final output, mitigating the problem of noise.

The results obtained demonstrate how the application of the statistical model in cas-

cade to the CNN improves the performance of the segmentation, increasing the values of

DSC and HD and decreasing the relative standard deviations, indicating that examples

that after the segmentation with the CNN demonstrate a value that deviates from the

correct one are adjusted, bringing the segmentation closer to the real one especially in

correspondence with the contours.

However, our method has some limitations. The CNN model used presents a simple

architecture and to obtain better results it is necessary to increase the depth of the net-

work and the number of filters used for the convolution operations, in order to have more

parameters available for the learning process.

The neural network model can be improved by optimizing the architecture and the training
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parameters in order to create a more complex network without running into the problem

of overfitting.

As far the statistical model is concerned, the limitations regard the approximation of the

shape obtained as output from the CNN.

The triangulation algorithm that allows to obtain the corresponding points in each prostate

approximates the shape of the segmentation in a non-optimal way. Since this algorithm is

applied on the volumetric labels following an isotropic upsampling, the interpolated slices

are approximated obtaining an overestimated shape, not perfectly corresponding to the

real one of the CNN output.

For this reason, the values of the performance metrics only slightly improve the perfor-

mance of the CNN alone.

As explained in section 4.1, the starting point for the model can be improved by adding

terms that better approximate the shape of the CNN output by penalizing the curvature

within the triangulation algorithm or by using different triangulation algorithms for this

purpose, observing how these affect the final performance.

Another limitation of our work is the rather limited number of volumes used for training.

A wider dataset could allow the network to learn more cases, limiting possible overfitting

problems once the depth of the network and the number of trainable parameters are in-

creased.

A possible future work can be applying this method to other acquisition modalities,

for example DWI volumes, using a higher number of subjects if possible to observe the

behaviour of the network in a first moment and subsequently of the network with the

statistical model applied, facing a wider dataset and different image characteristics due

to different acquisition modalities.
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