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Abstract

Facial gesture recognition has wide application in Human-Machine Interaction (HMI),
which, in the medical area, can be identified with behavioral and emotional analy-
ses, as well as rehabilitative procedures. Although historical approaches for facial
expression recognition rely on videos and images data, in recent years, with the
progress of the sensors technology and Machine Learning (ML) algorithms, recog-
nition is also being achieved using biological signals, as surface ElectroMyoGraphic
(sEMG) signal.

The thesis focuses on recognizing and classifying jaw movements and facial expres-
sions from sEMG signals recorded by face muscles during the execution of such
actions. The innovative event-driven technique, named Average Threshold Cross-
ing (ATC), is applied to the amplified and filtered sEMG signal to extract the
ATC feature. This feature is computed by averaging the events generated when
an sEMG signal exceeds a voltage threshold on a predefined time window. Past
works demonstrated the benefits of the ATC technique in terms of reduction of
data processing, transmission and related power consumption, allowing it to be an
optimal solution in the development of wearable, miniaturized and energy-efficient
data acquisition system. With the aim to develop an ATC-based facial network,
the thesis’ goal is to understand whether the ATC approach is suitable for the
recognition of facial gestures.

A first step towards this direction was to define which were the movements to be rec-
ognized, the corresponding musculature and, consequently, the electrodes position
for proper signals detection. A preliminary test, beside confirming the feasibility of
this idea, was needed to organized the sensors location of the facial network better.
At this point, with the goal to train facial expression classifiers, a data collection
was launched, involving 21 subjects. Each subject performed a list of eight gestures
for different session in order to obtain a robust dataset. The raw sEMG signals have
been recorded using the g.HIamp-Research amplifier; then, data were processed to
extract the ATC parameter, used as input of a classifier.

In fact, several Machine Learning algorithms have been implemented to recognize
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facial movements: Random Forest (RF), Support Vector Machine (SVM), k-Nearest
Neighbour (k-NN), and Artificial Neural Networks (ANN). All the four classifiers
perform the recognition obtaining similar accuracies. In particular, they reached an
overall percentage of success greater than 60% when recognizing eight expressions.
In comparison, they improve their average recognition rate up to 75% when two
not well-defined expressions are removed from the dataset. These percentages will
pave the way to the application of the ATC technique to facial gesture recognition.
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Chapter 1

Introduction

1.1 Muscular System
The muscular system allows the movement of the body. It ensures the proper
operation of the internal organs to perform some vital functions, such as eating
and swallowing food, breathing, grasping objects, etc. According to the different
functional and anatomical characteristics, muscle tissue can be of three types [1]:

• Skeletal muscle is the active component of the locomotor system. The skele-
tal musculature can wiggle the body by moving the bones and maintain posture
in various positions through its connection with the skeleton. Its contraction
is under the control of the Central Nervous System (CNS), it means depending
on the individual’s will. Muscle fibers are single, tubular, multinucleated, and
striated.

• Cardiac muscle is only in the heart. Its involuntary contraction allows the
blood to pump through the heart and into and through arteries and veins of the
circulatory system and also the maintenance of blood pressure. It is composed
of branched chains of uni- or binucleate cells with obvious striations.

• Smooth muscle is in the hollow organs (e.g., intestines, blood vessels, respi-
ratory tubes), except in the heart. It is innervated by the Autonomic Nervous
System (ANS), and it is responsible for the mobility of the organs that perform
vegetative functions that are not under voluntary control. Unlike the other
types of tissue, the fibers are nonstriated, grouped, and fusiform.

For completeness, it is useful to have a more in-depth view of the peculiar charac-
teristics of skeletal muscle, which are related to movement, and more importantly,
to know the sEMG signal associated with it.
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Introduction

Figure 1.1: Different types of muscular tissue [2].

1.1.1 The Skeletal Muscle

Skeletal muscles under the Nervous System’s direction generate the force, known
as muscular force, needed to stabilize the skeleton in a wide range of conditions.
This force’s intensity depends on the muscle’s architecture involved in a specific
movement, particularly on its cross-sectional area and its pennation angle [3].

Figure 1.2: Skeletal muscle overview. Adapted from [1].
.

2
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The skeletal muscle is externally surrounded by epimysium and consists of con-
nective tissue wrappings, blood vessels, and individual muscle fibers bundled into
fascicles. Each fiber group is encircled by a fibrous connective tissue layer, called
perimysium, which separates individual fascicles from one another. Each fiber is
protected by the endomysium, the innermost membrane of the muscle, and the ex-
tracellular fluid and the nutrients needed for the fibers’ survival within the fascicle.
All three sheaths may extend beyond the muscle fibers to form a tendon, which
attaches the muscle to bones (shown in Figure 1.2).
.

Figure 1.3: Inner view of a muscle fiber. Modified from [1].

In the inner part of the muscle, multinuclear cells are located just beneath the
sarcolemma, the cell membrane of muscle fiber. The sarcolemma propagates the
nerve impulse in the fiber and is connected to a system of transverse (T) tubules,
filled with extracellular fluid. The T-tubule system acts as a channel for ions flow
and, along with the sarcolemma, regulates muscle contraction, ensuring that action
potential reaches all muscle fiber parts simultaneously. Within the sarcolemma is
the sarcoplasm, the cytoplasm of a muscle fiber. Sarcoplasm contains a substantial
amount of glycogen, myoglobin, mitochondria, and a large number myofibrils.
A myofibril, surrounded by the sarcoplasmic reticulum, is the functional unit of a
muscle cell composed of repeating segments called sarcomeres. By observing the
longitudinal section of the muscle, as shown in Figure 1.4, a sarcomere is made up
of parallel overlapping matrices of myosin and actin, which are proteins shaped in
thick and thin filaments, respectively.

3



Introduction

Figure 1.4: Sarcomere [4].

It is separated from other contractile units by dense zig-zagging protein-based struc-
tures called Z discs.
Other components of the sarcomere, which can be identified observing it through
a microscope, are:

• A band: is the central darker part of the sarcomere consisting of thick fil-
aments and also includes regions where there is an overlapping of actin and
myosin filaments.

• I band: is the lighter area due to contains only thin filament. At the center
of each I band is a Z disc.

• H band: is the region in the center of A band and is composed of thick
filaments.

• M line: is a thickened area in the H zone with proteins that hold the filaments
together in place.

The striped appearance of the fiber results from the alternation of light and dark
bands. Besides, the overlap of the various thin and thick filaments derives from the
state of the muscle, whether it is contracted, relaxed, or stretched [4].
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1.1.2 Skeletal Muscle Contraction
The Central Nervous System (CNS) activates muscle fibers by sending signals to
the nerves of specific skeletal muscles. Muscle contraction begins when the nervous
system generates a signal, known as Action Potential, which spreads via a motor
neuron and through its axons reaches muscle fibers at the neuromuscular junction.
In the junction, a neurotransmitter called acetylcholine is released in response to
changes in the properties of the sarcolemma, which triggers the contraction of the
fibers following the interaction of calcium ions with the actin filaments.

Figure 1.5: Motor Unit anatomy. Adapted from [1].

The functional unit, composed of a single motor neuron and a group of fibers, is
called Motor Unit (MU). All the skeletal muscle fibers in the MU work together.
When the muscle fiber is activated, a small amount of force is generated since a
muscle contraction (also called twitch) has occurred. A more significant amount
of force is generated within the whole muscle if more motor neurons are recruited,
which activate more muscle fibers. Generally, the number of fibers in a MU may
vary from a few units up to several hundred fibers depending on the movement.
The control of muscle precision and strength depends on the number of fibers that
respond to the stimulus. Precise control is required by the muscles with small di-
mensions, such as extraocular muscles. As a result, fewer fibers are involved. The
opposite occurs in powerful movements (e.g., hip movement) performed by weight-
bearing and bulky muscles [1] [5].

1.1.3 Facial muscles
The purpose of this study is the analysis of sEMG signals acquired from the muscles
of the face and neck while performing certain movements. Good knowledge of
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these muscles allows to better examine the results obtained and to correctly place
the electrodes during the recording sessions. The focus is mainly on the muscles
involved in facial expressions, jaw movements and, chewing. In the following pages,
they are listed and briefly described.

Mimics muscles

The muscles responsible for espressing emotions have a thin and variable shape so
that the adjacent muscles often merge. They differ from other skeletal muscles due
to they are inserted on the skin and not on the skeleton.

Figure 1.6: Mimics muscles [1].

• Orbicularis oculi is a thin sphincter muscle that is arranged around the
eyelids and surrounds the orbit’s rim. Its main function is closing eyes such
as blinking and squinting.

• Orbicularis oris is a multilayered muscle which encircles the mouth and
is arranged in concentric fibers bands running in different directions, mostly
circularly. It allows closing and puckering lips in the act of whistling, sucking,
and kissing.

• Corrugator supercilii is a small, pyramidal-shaped facial muscle located at
the medial end of the eyebrow. It moves, together with the Orbicularis Oris,
the eyebrows medially and inferiorly, towards the nose and the inside of the
eye, creating wrinkles skin vertically on the forehead.
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• Zygomaticus is a muscle pair that stretches diagonally from the cheekbone
to the corner of the mouth. It raises the labial commissure superiorly and
laterally.

• Epicranius (Occipitofrontalis) is a bipartite muscle that includes frontal
and occipital bellies attached by the epicranial aponeurosis. The alternation
of their actions pulls the scalp anteriorly and posteriorly.

• Mentalis is a muscle located on the chin’s tip and represents the primary
muscle of the lower lip movement. It is activated when the lower lip is pushed
forward, causing some wrinkles on the chin.

• Platysma is an unpaired and superficial anterior neck muscle. It is involved
in the lowering of the jaw and the corner of the mouth, tightening the lower
face’s skin and the front of the neck.

• Risorius is located in the lower part of the face in a lateral position below
the Zygomaticus. Its action is to retract the corners of the mouth during a
smile, laughter, and grimace. Unlike the smile resulting from the action of
the Zygomaticus, it, not involving the Orbicularis oculi, does not produce the
wrinkles around the eyes, known as "crow’s feet".

• Levator labii superioris is a slender muscle between the orbicularis oris and
the inferior eye’s margin. It is responsible for opening the lips by elevating
and furrowing the upper lip.

• Depressor labii inferioris is a small muscle that runs from the jaw to the
lower lip. It is activated when the lower lip is lowered by pouting.
item textbf Depressor anguli oris is a muscle located lateral to the Depressor
Labii Inferioris. It is a zygomatic antagonist muscle that curves the corners of
the mouth when the forehead is raised and the eyebrows are wrinkled.

• Buccinator is a thin, horizontal cheek muscle that pushes the cheek towards
molars. It works with tongue to keep food between occlusal surfaces and out
of the oral cavity during the chewing (it is also included in the masticatory
muscles). By contracting bilaterally, it also allows blowing.

Muscles of jaw movements

The muscles involved in the jaw movements can be divided into two groups: one
related to the closing of the jaw and the mastication function, the other one to the
opening movements.

• Jaw-closing and masticatory muscles
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Figure 1.7: Jaw-closing and masticatory muscles [1].

– Temporal is is fan-shaped with horizontal, vertical, and oblique fibers.
it is involved in the retraction and elevation of the mandible, causing the
jaw-closing.

– Masseter is square in shape and placed laterally to the ramus of mandible.
It allows the elevation of the jaw and it is also responsible for the biting
force, involved in the gnashing of teeth both in the static form (clenching)
and in the dynamic one (bruxism).

– Lateral (or External) pterygoid consists of two bundles (upper and
lower), with two separate origins and a single insertion site. It aids to
chew and grind food with lower teeth, protracting mandible and moving
it side-to-side.

– Medial (or Internal) pterygoid is a thick two-headed muscle and a
quadrilateral in shape, which is widely concealed by the mandible since it
runs along the internal surface of that bone. It is involved with the lateral
pterygoid in the jaw’s elevation, and its action balances the action of the
masseter.

• Jaw-opening muscles

Figure 1.8: Jaw-opening muscles. Adopted from [1].
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– Digastric includes two bellies connected by a tendon that slides in a
fibrous ring attached to the bone hyoid. It is involved in the lowering and
the retrusion of the mandible, leading to the elevation of the hyoid bone
and its stabilization during phonation and swallowing.

– Stylohyoid is located above the posterior belly of the digastric muscle.It
retracts the hyoid bone posteriorly and superiorly during a swallowing
action.

– Mylohyoid is a triangular-shaped muscle between the mandible and the
hyoid bone which forms the floor of the mouth. It lowers the mouth floor
and, therefore, of the jaw during chewing, raises the hyoid bone when the
jaw is fixed (swallowing), and steady during phonation.

– Geniohyoid is a long, thin, cylindrical muscle that extends from the chin
to the hyoid bone.

1.2 ElectroMyoGraphic (EMG) Signal
The study of muscle electrical activity, caused in the MU by the CNS (discussed
in Sec.1.1.2), can be performed through the ElectroMyoGraphic (EMG) technique
which provides information about the control and execution of the movements.
The set of several MUs, activated simultaneously by a moderate force contraction,
create a Motor Unit Action Potential (MUAP). The waveform of a MUAP, which
is the space-time summation of the individual AP produced by the muscle fibers’
depolarization, provides information on how the MUs are organized within it. The
single AP is structured as shown in Fig. 1.9: the transmembrane differential voltage
is −70mV (resting state), without any conduction.

Figure 1.9: Skeletal muscle action potential [6].

Then, it increases until a threshold of −55mV is achieved which triggers the AP to
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reach a maximum of 30 mV. At this point, there is a depolarization phase, followed
by a repolarization phase until the original potential is restored.
A single UM contraction undergoes a spatial-temporal dispersion since it is not
transmitted simultaneously to all the fibers present within it. It can also involve
the fibres belonging to neighbouring UMs. The shape, phase, and duration of
MUAPs can be influenced by some aspects such a the distance of the electrodes
from the motor unit, the type of electrodes, the equipment used [7].
There are two different types of EMG signal:

• Intramuscular ElectroMyoGraphy (iEMG): is an invasive technique since
the electrodes used to record the signal are small and inserted directly into the
muscle. The adoption of needle electrodes allows detecting the single MUAP
obtaining a good muscle selectivity and a high signal-to-noise ratio. iEMG
is used for clinical diagnosis, recording signals from deep or slender muscle
(e.g., diagnosis of myopathies, diseases of the neuromuscular junction). This
technique’s disadvantages are related to the too-small size of the registration
region, making it more difficult to reposition the needle to detect the same
motor units. Furthermore, the extraction of parameters representative of the
fiber membrane properties is made difficult [8].

Figure 1.10: Intramuscular ElectroMyoGraphy (iEMG) [8].

• Surface ElectroMyoGraphy (sEMG): is the non-invasive study of muscle
functioning through electrodes placed on the skin overlying the muscle. It is
used to evaluate the duration of muscle contraction, the action of different
muscles during body movements, and the process of muscle fatigue. Signal
detection is performed on a relatively large area of the muscle. The bio-signal,
therefore, can contain the crosstalk originating from the surrounding muscles
since the recorded signal is the sum of all the MUs (as shown in Fig. 1.11),
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below the electrode recruited in the movement. In contrast to iEMG, sEMG
is safer and easier to use but less accurate.

Figure 1.11: Surface ElectroMyoGraphy (sEMG) [9].

1.2.1 The surface EMG signal
The surface ElectroMyoGraphic (sEMG) signal has an amplitude that can vary
between 0 mV and 10 mV and a frequency spectrum ranges between a few Hz to
500 Hz, with a significant contribution in the 20Hz - 150Hz range. Unfortunately,
this signal can be easily subject to different noises:

• motion artifact derives from a relative motion in the skin-electrode interface,
caused by muscle contraction, which changes the electrode charge layer, and
by the deformation of skin below the electrode. It is a low-frequency noise
(< 20Hz) and can be damped by using a separating conductive gel and easy
filtering in the pre-processing, being out of the sEMG spectrum;

• cross-talking is due to the electrical activity of the muscles close to the one
being evaluated. It cannot be filtered, but the likelihood of detecting it can
be reduced by carefully placing the electrode, usually in the midline of the
abdominal muscle;

• external interferance occurs due to the setup of the laboratory environment
and electronics equipment used to detect, amplify, and record the signals. In
particular, it mainly derives from the irradiation of the power line (50Hz) and
is often maintained in the circuit because it is in the frequency spectrum;

• muscular fatigue occurs when muscle activity decreases and causes the signal
to have a lower frequency and amplitude.

Currently, wet gel electrodes and dry metal electrodes are used to record the sEMG
signal, depending on the type of exam which needs to be performed.
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Wet electrodes use an electrolytic gel as an interface between the skin and the
electrode’s metal part. Particular chemical redox reactions occurs in metal-gel in-
terface. For electrode metal part, the most used materials are silver/silver chloride
(Ag/AgCl), silver chloride (AgCl) but also silver (Ag) or gold (Au). They can be
disposable or reusable. The disposable ones are the most common as they are very
light and in a wide range of shapes and sizes. Also, those with a built-in gel layer
(Fig.1.12) are available to reduce application times.

Figure 1.12: Example of pre-gelled electrode [10].

The dry electrodes (Fig.1.13) are in direct contact with the skin without gel, pro-
viding an ideal condition for long-lasting recordings. They are heavy, inflexible,
and suffer from high movement artifacts because they do not have a good adaption
to the skin’s contours. The absence of the gel prevents the subject from discomfort
due to skin irritation but causes an increase in skin-electrode impedance. A signal
conditioning circuit is needed to keep the impedance under control.

Figure 1.13: Example of dry electrode [11].

1.2.2 sEMG Feature Extraction
Feature extraction is a method for extracting relevant and useful information from
sEMG signal. Three categories of features can be distinguished: time domain,
frequency domain, and time-frequency domain. The mixed time-frequency domain
(such as the wavelet transform) require a long computation time, making their use
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difficult in real-time applications, for therapeutic devices, and classifier training.
And as a result, the latter are not described in this introduction [12].

Time domain features

The temporal features have as main characteristics, the straightforward implemen-
tation and the processing speed, the need for any transformation. The main disad-
vantages are the non-stationary characteristics of the signal and muscle crosstalk’s
influence due to their calculation essentially based on signal amplitude values.

• Integrated EMG (IEMG): is the integral of the full-wave rectified sEMG
signal, representing the area under the curve of the rectified signal. It is
employed for muscle activity as a pre-activation index.

IEG =
NØ

i=1
|xi|

Where N indicates the length of a signal segment, i is the segment increment
and xi denotes the value of the signal amplitude in that segment.

• Mean Absolute Value (MAV): is defined as the moving average of the
absolute values of the sEMG signal. It is used to detect and gauge different
levels of muscle contraction.

MAV = 1
N

NØ
i=1
|xi|

Where the terms have the same meaning as above.

• Mean Absolute Value Slope(MAVS): estimates the difference between
the MAVs of the neighboring segments of the sEMG signal.

MAV Si = MAVi+1 −MAVi

Where i is the index of MAV taken into account.

• Simple Square Integral (SSI): is the sum of the square values of the sEMG
signal amplitude and correlated to the energy of the signal itself.

SSI =
NØ

i=1
|xi|2

• Variance of EMG (MAVS): is useful for measuring signal power. It can be
mathematically represents as:

MAV = 1
N − 1

NØ
i=1

xi
2
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• Root Mean Square (RMS): is the square root of the average power of the
EMG signal for a fixed time window.

RMS =

öõõô 1
N

NØ
i=1
|xi|2

• Waveform Length (WL): is the measure of EMG signal complexity in terms
of waveform amplitude, frequency, and duration. It is defined as the cumula-
tive length of the signal waveform.

WL =
N−1Ø
i=1
|xi+1 − xi|

Frequency domain features

Features in the spectral or frequency domain are mainly used for muscle fatigue
studies and motor unit recruitment analysis [13]. Compared to the features of the
time domain, they require higher computation time and resources, considering that
they are based on the estimate of the power spectral density (PSD).

• Frequency Median (MDF): is a frequency value at which the EMG power
spectrum is divided into two equal parts.

F MDØ
i=1

Pj =
MØ

i=F MD

Pj = 1
2

MØ
i=1

Pj

Where Pj is the signal power spectrum value at the frequency j and M is the
maximal spectrum frequency.

• Frequency Mean (MNF): is the sum of the product of the EMG power
spectrum and the frequency divided by the total sum of the power spectrum.

MNF =
MØ

i=F MD

Pjfj/
MØ

i=1
Pj

Where the terms have the same meaning as above.

1.2.3 Facial sEMG
Facial EMG is an electromyographic technique that measures muscle activity to
reveal the very small electrical impulses generated by the facial muscles when they
contract. It can be considered a valid method to evaluate masticatory function
which depends on the facial muscles and to diagnose the oral system’s disorder.
It is also a tool to study human speech production and to help in speech recog-
nition. Considering that facial expressions act as a non-verbal language through
which it is possible to communicate the mood, feelings, and physical states, facial
sEMG is further used because it allows the revelation of some facial expressions
and sensations difficult visibly. [14].
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1.3 The Average Threshold Crossing Technique
(ATC)

The Average Threshold Crossing (ATC) is an event-driven technique in which the
number of events increases whenever a myoelectric signal exceeds a fixed thresh-
old, producing the quasi-digital Threshold Crossing (TC) signal. The figure 1.14
highlights the difference between the classic approach of transmitting data and the
just mentioned technique.

Figure 1.14: Classic sEMG sampling vs Average Threshold Crossing (ATC) sam-
pling technique [15].

The ATC parameter is then the number of times the sEMG signal passes the thresh-
old, in a defined time, divided by the period’s duration. This innovative method
allows reducing the amount of data to be digitized, saved, and transmitted, which
also results in lower power consumption [16]. Moreover, unlike the classic trans-
mission of the sEMG signal, which requires the use of an analog-digital converter
(ADC), the TC signal can be sent directly as input to a microcontroller or a wireless
transmission module. This implies that fewer electronic components are required,
resulting in a decrease in the silicon circuit area’s size and complexity [17].

In summary, the advantages of the event-driven technique are:

• low power consumption;

• reduced informations transmitted or stored;

• simpler acquisition hardware;
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The disadvantages are related to the difficulty in choosing the correct threshold but
above all to the loss of the signals’ morphological properties and the impossibility of
their possible reconstruction. Consequently, the ATC technique can not be used for
diagnostic purposes but only for applications that do not require complete signal
analysis. For the threshold problem, instead, in a previous study [18] the use of a
dynamic threshold is proposed, involving an increase in the robustness of the ATC
technique compared to the application of a fixed threshold. However, regarding to
the correlation between the ATC parameter and the relative strength of a movement
performed, as demonstrated by an early study [17], this technique can get ahead in
that research field.

1.4 Classification Algorithms
In this chapter several supervised Machine Learning (ML) algorithms, used for the
system validation, are presented and briefly described.

1.4.1 Artificial Neural Networks (ANN)
Artificial Neural Networks (ANN) have wide applications in many fields such as
pattern recognition, prediction, optimization, associative memory, and control [19].
Just like the brain is made up of billions of neurons highly linked through con-
nections, called synapses, an elementary operating unit in a neural network is a
neuron-like node. Each neuron is a perceptron and receives a series of inputs, ap-
propriately weighted, from the other neurons. The unit calculates the weighted sum
of these inputs, followed by the application of a non-linear function. Therefore, the
output of the neuron is obtained as:

yj = f(
Ø

i

wixi + b)

where xi, wi, b, and f are referred to input, weights, bias, and activation function,
respectively. The changes in weights associated with synapses lead to learning by
the brain, so the set of weights and biases is the neuron’s information in the training
phase. The value associated with the bias is variable, as it is for weights, and is
corrected in this phase. Bias, put merely, determines whether and to what extent
the neuron should fire up. During the training phase, the weights are repeatedly
adjusted until the system output becomes consistent with the training data outputs
or with the expected results. We thus speak of the learning rate. The activation
function causes generating output and propagating the information from a neuron
to another only if the inputs exceed a certain threshold. This is usually a non-linear
function, such as a step function, a sigmoid, or a logistic function [20].
Many times a single neuron model is not enough. Thus, we speak of Multilayer
Artificial Neural Network. The ANN architectures are organized into levels :
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• Input layer: contains the input features vector;

• Hidden layer: represents the internal variables that encode the correlations
between both the input and output to be generated. Sometimes it may not be
present, but there may also be multiple hidden layers.

• Outup layer: are the output values, that is the response of the neural net-
work;

Figure 1.15: Example of artificial neural network architecture [21].

There are two types of multilayer ANN: feedforward (see Figure 1.15), where each
node in a layer is connected only to the nodes of the next layer, and recurrent,
where each node of a layer can be connected to nodes of its own layer or even
to nodes of the previous layers, as well as the subsequent layers. ANN learning
algorithm aims to determine the values of the weight connections to minimize the
error. The gradient descent method can help solve this optimization problem. For
intermediate nodes, understanding the error rate is problematic since a middle
layer’s output does not coincide with the desired outcome. The backpropagation
technique is applied and consists of comparing the system output value with the
desired one. Based on the calculated difference (i.e., error), the algorithm modifies
the network weights, trying to converge the output results with the desired ones.
The implementation of neural networks is suitable if there is a lot of data for use
in the training phase. It is impossible to identify a model a priori, and a robust
method is required despite the noisy data. The main disadvantage of artificial
neural networks is the high computing cost. The choice of the hidden layers’ size
is also an issue: an underestimation of the number of neurons can result in poor
generalization skills, but an overestimation can lead to overfitting [22] [23].

1.4.2 Support Vector Machine (SVM)
Support Vector Machine (SVM) is widely applied in computational biology [24], in
face recognition [25], and text categorization [26]. It can solve linear and non-linear
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problems. The SVM model’s idea is to create a line or hyperplane that separates
the data into two classes in the simplest case. This boundary is called the decision
boundary. Points closest to the line, support vectors, are more prone to adding new
data. A small variation of the hyperplane can change their classification. Farther
points, on the other hand, are more likely to be correctly classified by the algorithm.
The distance between the support vectors and the decision boundary is defined the
margin (see Figure 1.16). Narrow margin models are more flexible and can adapt to
many training sets. A large margin ensures a good generalization of the algorithm
in classifying new data.

Figure 1.16: Optimal hyperplane using the SVM algorithm in a linear problem [23].

An SVM is also capable of handling non-linear problems, that is, when one line is
not enough, as in the previous case, to be able to divide the two sets with precision.
This is done by using a non-linear transformation function, feature function, that
maps a non-linear model into a new space, defined feature space. It is, therefore,
a question of raising a given model to a higher dimension to make it linearly sep-
arable [27]. The use of the kernel functions (see Figure 1.17) in the input space
allows determining the optimal separation hyperplane without any calculation in
the space of the higher dimensional characteristics. [28].

Figure 1.17: Representation of a non-linear model and its equivalent linear [29].

18



Introduction

There are many kernels, the most popular ones are: linear, polynomial, radial basis
function (RBF) and sigmoid.

Figure 1.18: Different types of Kernel [29].

This algorithm in its basic form can be used for binary problem while in multiclass
classification the optimization approach or the decomposing into a series of binary
class models can be exploited. In the former case kernel function is used and in the
latter One-Versus-One (OVO), One-Versus-All (OVA), or Directed Acyclic Graphs
(DAGs) techniques are adopted [30].

1.4.3 k-Nearest Neighbour (k-NN)
The k-Nearest Neighbour classifier is successful in pattern recognition, in-text cat-
egorization, ranking models, object recognition, and event recognition applica-
tions [31]. k-NN is a supervised learning and lazy algorithm in which learning
consists of storing the characteristics and classes of the learning set data and then
classifying the new samples based on their similarity to the examples of the training
set, without learning model creation. The k-NN is also a non-parametric method
since it does not make assumptions about the distribution of the analyzed data [32].

Figure 1.19: Example of a k-NN classification. A new data point could be classified
in class 1 (green circles) or in class 2 (blue circles), according to the neighborhood
selected. If k = 3 it would be assigned to class 1 while if k = 5 to class 2.

19



Introduction

The idea behind the method is straightforward: data are classified according to
the class of their neighbors. Given an unlabeled sample, the algorithm searches
for the k examples of the training data set that are most similar to this point. It
assigns the label that occurs most frequently among the k closest labels, as shown
in Figure 1.19. The k-NN algorithm uses a similarity measure of the distances
between the new and identified neighborhoods. Typically, the most used distance is
the Euclidean distance but other distance functions, such as Minkowski correlation,
and Chi-square, are available [33]. The parameter k is a positive integer and depends
on the characteristics and type of data. High values of k reduce the effect of noise
in the classification, but the boundaries between them are less defined. The main
advantage of this memory-based approach is that the classifier adapts immediately
as new data is added. On the other hand, a problem is a computational complexity
that grows almost linearly with the number of learning vectors. Therefore, storage
space and the number of distances to be calculated can become a nodal issue when
working with large data sets [31].

1.4.4 Decision Tree (DT)
Decison Tree (DT) is a non-parametric supervised machine learning algorithm.
The principle on which the method is based in the construction of a tree. From the
formal point of view, a tree is a finite set of elements called nodes (see Fig.1.20):

• Root node: represents a decision that will bring about the subdivision of
dataset into two or more totally unrelated subsets.

• Internal node: is one of the potential decisions accessible at any point of the
tree structure. This node is associated with its parent nodes on the upper end,
on the lower one with its child nodes (or leaf node).

• Leaf nodes: is the results of decisions.

Figure 1.20: Example of a Decision Tree [34].
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The set of nodes, except the root node, can be divided into n distinct sets, called
sub-trees.
The method labels the nodes with the attributes’ names while the arcs (the branches
of the tree) with the possible values that the feature can assume. Each leaf repre-
sents a class label, while the other nodes are the conditions under which attributes
are compared and separated. Classifying an instance is therefore reduced to apply-
ing, starting from the root node, the test conditions of each node to the example
itself and following the branch composed of the comparisons’ results. The leaf node
will determine the class of the starting instance. So, the algorithm learns from the
data through a decision pathway based on "if-then" rules [35].
The tree is built with a top-down approach using a strategy known as "divide et
conquer"" [36]. The most important phases of DT learning are:

• Selecting a split rule for each node determining the variables and the corre-
sponding threshold value, which will be used to partition the dataset in each
node;

• Determining which nodes are intended as terminals since it is necessary to
decide when to stop splits for each node. Without an adequate rule, there is
a risk of building trees that are too large with little generalization ability or
are small in size and approximate the data incorrectly;

• Assigning the class to each terminal node.

Control criteria are used to limit the growth of trees. This area includes the pruning
phase, which consists of obtaining the smallest subtree from a tree that does not
compromise the classification accuracy.. A branch or subtree that are irrelevant
because represent noises in the data or outliers, can be removed [35] [37].

One of the advantages of decision trees is the production of clear classification
rules and their ease of interpretation. However, they often have poor predictive
performance. To overcome this possible issue, model ensemble technologies have
been developed. One of the techniques used is the one called Random Forest (RF).

1.4.5 Random Forest (RF)
The Random Forest algorithm consists of using, for a given classification problem,
several decision trees. This technique offers different points of view of the same
problem managing to guarantee better accuracy results. It is a type of ensemble
method that combines predictions from different decision trees, each of which is
made from training set data taken randomly according to a specific probability dis-
tribution. The final result derives from the aggregation of the single tree’s outputs
(see Fig:1.21): the most voted class if it is a label problem or the average if the
trees produce a numerical value.
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Figure 1.21: Example of Random Forest algorithm which gives the most voted class
as output [38].

The random forest algorithm does not require scaling features or handling outliers
because the data’s variance does not affect how the underlying decision trees find
the optimal split point. This makes it fast enough to implement. Additionally,
random forests are far less likely to have overfitting problems than decision trees
as they are trained on a more diverse dataset than individual trees. One major
drawback of the Random forest algorithm is that it is more difficult to interpret.
In a DT, predictions are derived from various combinations of features. In a RF,
however, the inferences span numerous trees. It will also take longer to train than
simple decision trees and can run slowly with large data sets. [39].

1.5 Machine Learning Metrics
To evaluate a given classification model’s performance, there are several and various
metrics to analyze the results. Functions require real ground truth labels and those
deriving from model inference as input. They return a numeric value indicating
the quality of the results. On the next few pages, we will look at some of the most
popular classification metrics: accuracy, precision, recall, and F1- Score. Before
seeing them in detail, it may be useful to define the following concepts:

• Positive (TP): consists of the samples labelled and classified in the same
way;

• True Negative (TN): number of true negatives (classified as false are false).

• False Positive (FP): is a set consisting of the samples classified by the system
as belonging to one class but really belonging to another;

• False Negative (FN): consists of the samples classified by the system as not
belonging to a specific class which, in reality, are part of it.
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The Confusion Matrix is a useful and effective evaluation tool. For a classifica-
tion problem with N classes, the confusion matrix M is an NxN matrix where
the element Mij corresponds to the number of samples belonging to the class as
i but classified by the network as j. The elements of the diagonal correspond to
the correctly classified samples. Therefore, the confusion matrix allows us to un-
derstand the model’s performance in case the classes involved are not excessive.
In classification cases in which the number of classes is high, it becomes challeng-
ing to extrapolate useful information for a first evaluation. For this reason, other
summary metrics are used, such as those explained below.

• Accuracy: is the proportion of samples that are correctly classified to the
total number of samples.

accuracy = TP + TN

TP + TN + FP + FN

• Precision: is the ratio of the number of correct predictions of class to the
total number of times the model predicts it.

precision = TP

TP + FP

• Recall: measures the sensitivity of the model. It is the ratio of the correct
predictions for a class to the total number of cases in which it actually occurs.

recall = TP

TP + FN

• F1 score: is a weighted harmonic average of the Precision and Recall metrics.

F1− score = 2× precision× recall

precision + recall

All parameters range from 0% (worst) to 100% (best).
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Chapter 2

State of art

2.1 ATC technique applied to sEMG
In recent years, the ATC technique has been combined with electromyographic sig-
nals with the possibility of obtaining the basic requirements for the realization of a
wearable, portable, low energy consumption, wireless and multichannel acquisition
system.

In [16], ATC approach has been merged with IR-UWB wireless technology in the
biomedical applications field for the development of a low-complexity radio system.
The use of IR-UWB technology allows the system to communicate muscle strength
information with a receiver in two-way communication, without needing to digitize
the data with an ADC. The work aimed was to demonstrate the correlation of
performance system in terms of TC events (digital pulses) and evaluate the ARV
values calculated on the raw sEMG signal. Furthermore, this information was com-
bined with a force signal acquired by a dynamometer during the execution of the
Maximum Voluntary Contraction (MVC) up to 70%. It has been possible to find a
broad correlation between the above-mentioned signals (see Fig.2.1), obtaining an
ATC-force correlation of 0.95 ± 0.02 and ARV-force one of 0.97 ± 0.02, and show
the effectiveness of the wireless-ATC based system for an estimate muscle force.

Figure 2.1: ATC, Force, ARV signals in time domain [16].
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Another study [40] has proposed a more complex multi-channel acquisition system
that relied on the previous ATC-based wireless version. The pattern of this sys-
tem is based on the previous one: from the acquired raw signal the quasi-digital
signal (TC signal)is extracted, serialized and sent to an encoder which, with an
AER (Address-Event Representation) approach, forms a data packet detecting the
input channel and triggering the IR-UVB transmitter for data transmission. This
work allowed on one side to demonstrate the possibility of reducing the size and
complexity of the circuit by removing ADC and on the other to evaluate the ro-
bustness of the ATC approach by varying SNR, amplifier distortion, saturation,
and the number of lost events. Regarding this latter point, 5 - 6dB of SNR and
70% of lost events can be tolerated.

In [41], the system described above was tested with in-vivo experiments. The depen-
dence of ATC impulses increase on the variation of force applied both in isometric
and isotonic contractions was demonstrated. During the experimental protocol, a
set of different weights (i.e., 2 kg, 4 kg, 6 kg, 8 kg and 10 kg) was used to prove this
aspect. By adopting the ATC technique, the discrimination of the resting condi-
tion and contractions, performed using weights of at least 6 kg of difference, were
possible without errors.

In [42], an sEMG wearable acquisition board was developed and validated with
experimentale tests. In particular, the muscle force correlation with the ATC was
evaluated through isometric contractions adopting different weights. In this work,
the ATC events were computed and compared with sEMG standard parameters
(i.e. MNF, MDF, RMS, peak to peak amplitude (Vpp), and total power (Ptot)).
The comparison showed ATC approach presents the highest median values of the
correlation coefficients, resulting in a good parameter to measure muscle force.

ATC is also considered a valid technique for machine learning applications, such as
hand gesture recognition, as shown in [43] and [44].

In [43], ATC data from four wrist movements, acquired with three input channels,
was used to train an SVM classifier. An average accuracy of 92.87 % was achieved
with this model, resulting in only 5.34% lower than that obtained with the train-
ing based on features extracted by raw sEMG signal. In addition, by using the
ATC approach, a significant reduction of data rate was achieved from 6.14 kB/s,
resulting from the sEMG signal-based model, to 30 B/s. It has also been demon-
strated an energy consumption decrease of about 14% with the transmission of the
ATC data acquired from 4 channels compared to that measured using one sampled
sEMG signal.

In [44], a low-power embedded system including three acquisition channels and the
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Apollo2 microcontroller from Ambiq Micro was presented in order to recognize six
hand gestures. The Neural Network (NN) method was used to perform the move-
ments classification, reaching an accuracy of 96.34%, with a latency of 268.5 ms
and a power consumption of 2.9 mW.

In [15], ATC was also used in another application to control Functional Electrical
Stimulation (FES), a rehabilitation treatment that has the function of strength-
ening or loosening a muscle applying low energy electrical pulses to increase its
strength. The acquisition board used is described in [42] and mentioned above
with the exception that the IR-UWB was replaced with Bluetooth Low Energy
(BLE). A time window of 130 ms was chosen to compute ATC values from 4 ac-
quisition channels, managing to get a data throughput of about 30.7 B/s. For the
power consumption aspect, 5.126 mW was measured for the ATC acquisition phase
alone, and 20.23 mW was reached also including the BLE transmission.

This system was tested in [45] by evaluating the correlation between the voluntary
movements from which the ATC is acquired and the motions induced by the FES
protocol. The cross-correlation value obtained was overall above 0.9.

2.2 Facial sEMG Applications
Facial sEMG is a topic widely treated in the researches’s works. Several examples
are presented below.

Jun-Wen Tanhave et al. [46] have done a study on analysis intending to discriminate
three different emotional states, negative, neutral and positive by monitoring two
facial muscles activity (Zygomaticus major and Corrugator Supercilii) in response
to a visual stimuli. The two muscles can be used as indicators to test negative and
positive sensations. This can represent a starting point for the future development
of automated methods for emotional states identification such as Human-computer
interaction in situations such as monitoring of elderly people.

In [47], facial sEMG is also used as an index of palatability by exploring muscles like
the levator labii superioris/alaeque nasi region. The present study aims to find the
correlation among the sensory hedonic muscular responses elicited from different
tastes in the region of levator labii muscle.
G. S. Meltzner et al. [48] have presented a speech recognition system using 11
recording channels placed on the face and the neck to classify three different modes
of speaking conditions (i.e., voiced, mouthed, and mentally rehearsed).A standard
Hidden Markov Models (HMMs) was implemented for the recognition phase, reach-
ing in vocalized and mouthed speech modes mean rates of 92.1% and 86.7%, re-
spectively. Good recognition is not possible for mentally rehearsed mode, due to
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poor muscle activity. This system is useful for the speaker-dependent case since a
small amount of data (65 words) is used to train the classifier.

C. Huang et al. [49] have designed a speech recognition system to help speechless
people. Variance (VAR), IEMG and WL were extracted from sEMG signal and
were used as inputs to a ANN algorithm. ANN was a binary classifier and was
trained to recognize two words, "yes" or "no". Several conditions concerning vector
input, training data, and size of hidden layers were tested. The overall accuracy ob-
tained for each condition is not been optimal. Despite this, the prototype system
could be used for speech pattern recognition by introducing some improvements
such as database and extracted features expansion.

E. Lopez-Larraz et al. [50] have proposed a prototype silent-speech recognition sys-
tem to overcome limitations dued to ambient noise and to be useful for people with
disorders as laryngectomy. Different syllabes, which are organized in five group in
line with involved articulation (i.e. labials, dentals, palatals, velars, and alveolars),
have to be recognized. The classifier adopted was based on boosting and has ob-
tained a global mean accuracy of 69%.

In [51], facial sEMG signals were used to assess the response in masticatory muscles
between healthy people and patients with Cerebral Pulsy (CP) at different degree
of oral motor function impairment. It was demonstrated that the two groups’ mus-
cular activity differs statistically in each simulated situations (at rest, opening and
closing the mouth).

In [52], the impact of head positions on muscular activity among adult people with
brainstem stroke and control group was evaluated. Head position does not influ-
ence masticatory muscles’ performance but the activity is widely different during
Maximal Voluntary Contraction (MVC) in the two groups. The sEMG could be
used as a tool to analyze impairments in stroke patients.

2.3 Facial gesture recognition
Humans express their emotions not only verbally but also through their actions.
It has been shown that 93% of communication is non-verbal and facial expressions
and body gestures play a fundamental role [53].
That is exactly why gesture recognition is recently a popular topic in researchers’
work, with applications in various fields.
The capture of images or videos of body movements and the recording of the sEMG
signal has allowed the implementation of gesture recognition systems by using dif-
ferent approaches.

27



State of art

However, they share several steps before the gesture recognition phase: data pre-
processing and features extraction.
The architecture for these typical systems consist of four main building blocks, as
shown in Figure 2.2:

• Input: handles directly the system input which can be a raw image, a video
or a sEMG signal;

• Pre-processing data: includes noise reduction, face detection, alignment,
normalization, augmentation, and enhancement phases for images and a fil-
tering step for the sEMG signal;

• Features extraction: extracts useful data in the form of appearance and
geometric aspects, temporal and spatio-temporal information from the im-
age/video and in time or frequency indices (described in Sec.1.2.2) or ATC
parameter (discussed in Sec.1.3) from sEMG signal;

• Classification: related to classification algorithm, some of which are de-
scribed in Sec.1.4.

Image/video
or

signal acquisition
Pre-processing

data
Feature

extraction Classification

Figure 2.2: Architecture of a gesture recognition system.

2.3.1 Video and images Applications
The technology that uses mathematical algorithms to analyze facial muscles ac-
tivation in images and videos goes by the name of Facial Expression Recognition
(FER). Since the emotional state is involved in activating the muscles, facial ex-
pressions can be detected and distinguished via FER systems [54] [55]. It has a
wide application in Human-Computer Interaction (HCI) (g.e. interactive gaming
and virtual reality), in the medical field for behavioral and emotional analysis, such
as Autism, and in the field of surveillance [56]. However, not only the face image
but also physiological signals (i.e.EMG or EEG signal) can be used as input data
in FER applications [57]. But despite this, the camera for its easy availability and
simple usage is the most widely used sensor.
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Camera-based FER systems can rely on the analyzing of a face static and sin-
gle image or focusing on videos in dynamic scenarios. In addition, a video-based
system can be of two types: frame-based and sequence-based. The former refers
to a system that considers a single frame to distinguish different facial emotions.
The latter, instead, extracts temporal information in the frames needed to detect
expressions [58].
The most relevant problems affecting the performance of these FER systems are:

• The variation in the background illumination of the image or video can worsen
the accuracy of the features extracted from the face. This issue can make
images appear differently due to shadows appearing or part of the face image
being darkened.

• The difficulty in recognizing generic facial expressions but only those of pre-
trained human faces (subject-dependence), since human faces differ according
to their nationalities, skin texture, people’s age, and even modes of expression.

• The changing of the head pose makes challenging to detect expressions since,
in most existing approaches, the face is in the frontal position. For example,
head rotations can result in the loss of some portions of the face and compli-
cate image processing techniques and consequently make inaccurate expression
classification algorithms.

Due to these challenges, it is difficult to analyse facial deep information with 2-
D static images and video sequences. To improve FER system camera data can
be merged with information from other sensors, obtaining a multimodal sensors.
In [58] three categories of sensors were identified:

• Detailed-Face: focuses on other parts of the face such as the eyes directly
related to mental states’ expression such as attention or sleepiness. I. Hupont
et al. [59] have proposed the combination of an eye tracking sensor, which
analyzes where a person is looking, and FER technology (see Fig.2.3).

Figure 2.3: Emotracker system: a 17-inch TFT monitor with integrated IR diodes
to track user’s gaze and a webcam to detect facial expressions [59].
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This system monitors not only gaze but also has several intuitive visualization
options for human emotions. It could have a good following in the field of
psychological research.

• Non-Visual: includes audio, biosignals sensors and depth camera.

• Target-Focused: acquires infrared thermal images, which calculate the tem-
peratures distributed in different parts of the image. It can solve lighting
variation in the image.

3D facial imaging can provide the possibility to tackle the issues mentioned earlier
by including geometric, time series data and depth information. For example, it
manages to bypass head pose problem by extracting geometrically invariant features
and having a more extensive consideration of rigid head motions [60]. Although the
3D approach also allows for superficial face and ear-to-ear measurements, it requires
higher storage and computation costs and a large time consumption, proving to be
not always suitable for real-time applications [54]. Deep learning technique can
also be used to overcome conventional approaches, since it reduces the image pre-
processing phase, ensure a certain reliance on physics-based models, and are more
robust for uncontrolled environments with various types of elements and different
lighting. In addition, it provides also improvements in terms of efficiency i.e. time,
computational and space complexity.

2.3.2 sEMG Applications
The sEMG technique, particularly, has wide application in kinesiology and in the
identification of neuromuscular disease and myoelectric control systems. Similarly,
gesture and facial expressions via the sEMG approach are focused on the study of
emotions, nursing, HCI, affective computation [61] and also in design and control of
a virtual crane training system [62] or in rehabilitation devices like wheelchair [63].
Compared to the system based on image or video, the sEMG-based one has a high
temporal resolution, can detect some facial muscle movements invisible to the naked
eye, is efficient in data processing, not influenced by head pose and measurement
enviroment and suitable to be embedded in wearable devices [61].
In the following pages the literature works related to facial gesture recognition are
listed, with particular emphasis on accuracy score.

G. Gibert et al. [64] have implemented a classifier, the Gaussian model, which able
to discriminate six facial expressions using eight electrodes placed on the specific
muscles. To obtain a result, they have used, as sEMG feature, the envelope of ab-
solute values. During the testing phase, they have demonstrated that the classifier
worked fine with a final average accuracy of 92.19 % on all facial expressions, while
making some mistakes in the beginning and the end of each movement performance.

30



State of art

L. Ang et al. [65] have focused only on three muscles, which have a pretty blatant re-
sponse in terms of contraction for emotions that need to be recognized. The Mean,
the Standard Deviation, the Root Mean Square (RMS), and the Power density
spectrum (PDS) of the sEMG signal were computed for each muscle. In addition,
they have reduced the collected data dimensions with the Feature Differentiation
technique to implement the Minimum-distance classifier and have reached an over-
all performance of 92.78%.

UM. Hamedi et al. [66] group have presented a method for recognizing eight facial
gestures through three recording channels in a bipolar configuration. The feature
vector’s size was reduced, using only RMS, directly related to the contraction force
of a muscle. Unlike the other works, not only facial expressions related above all
to emotions have taken into consideration but also gesturing as opening the mouth
as if to say "a". Two classification techniques were applied, Support Vector Ma-
chine (SVM) and Fuzzy C-means clustering (FCM), succeeding to obtain 91.8%
and 80.4% recognition ratio, respectively.

Y.Chenhey et al. [67] have focused on motor expressions related to the movement
of the eyebrows and designed a headband (shown in Figure 2.4) to allow easy
placement of electrodes and also to obtain a standardized signal recording. Three-
time domain indices of the sEMG signals were extracted for each muscle, RMSmax,
RMSmean, RMSvar, and then used as inputs for the classification algorithms. Two
types of neural networks were proposed (Ensemble Neural Networks (ENN) and
Back Propagation Neural Networks (BPNN)) and their results have been com-
pared. The average accuracy achieved in both cases was nearly perfect. The
ENN(Training: 97.12% Test: 96.12%) had slightly better performance than the
BPNN(Training: 95.24% and Test: 95.56%), by evaluating all two models with the
training and the test set.

Figure 2.4: Headband [67].
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Y. Cai et al. [68] have studied the recognition of eight facial gestures, distinguish-
ing them into transient expressions (i.e., sadness, happiness, pout, angry and sur-
prise) and periodic expressions (i.e., chewing, speaking, gargling) via sEMG sig-
nals recording with six channels. Many features were extracted from each signal,
both in frequency and time domain to then develop three different classifiers, cubic
SVM, Gaussian SVM, and cubic K-Nearest Neighbors (KNN). All algorithms have
achieved good results, but the Cubic SVM classifier had the best performance with
an accuracy of up to 99.52

In particular, the work of S. Orguc et al. [69] is interesting because, in contrast
to the above works, jaw movements are investigated . The group has used the
Discrete Wavelet Transform (DWT) as a unique feature, more suitable for non-
stationary signals such as sEMG but computationally expensive for the feature’s
high dimensionality. An SVM algorithm was implemented to distinguish in real-
time three jaw movements (i.e. clenching, chewing, and jaw opening), obtaining an
accuracy greater than 85%.
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Chapter 3

Preliminary studies

The aim of the thesis work concerns facial movement recognition, and in this direc-
tion, a preliminary analysis of facial expression and jaw movements has been carried
out. All the studies reported in this chapter have been conducted to understand
which muscles could be properly monitored in order to recognize related gestures.
This analysis has been performed firstly, recording sEMG signals with g.HIamp-
Research multi-channel amplifier [70], during the execution of test movements, and
then post-processing them in order to figure out muscle-actions associations. The
ATC technique is applied to post-processed sEMG signal in order to assess if an
event-driven processing is suitable for recognizing the facial gestures.

3.1 Equipment specifications
Through the sEMG technique, insights have been gained into understanding certain
facial muscle behavior when performing particular movements. The recording of
the sEMG signals, acquired in the bipolar configuration with pre-gelled sensors,
has been made possible using a multichannel biomedical amplifier, produced by
g.tec, integrated with user-friendly support software. The signals have been then
post-processed in order to extract the ATC feature via software and understand if
the event-driven approach could be valid in identifying face gestures.

3.1.1 gHIamp-Research
g.HIamp-Research is a multi-channel biosignal amplifier. It is used to measure
brain functions in an invasive or non - invasive way, and it is intended for research
purposes and not for medical applications. The amplifier consists of 80, 144, or
256 channels per unit, and each block of 64 channels is connected with a multi-
pole connector to the electrode headbox, which can be active or passive. It is
connected via USB to PC, and each channel has 24-bit ADC with an internal
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sampling frequency until 38.4 kHz. It allows to make also the measurement, without
any saturation, of:

• Electrocortioculogram (ECoG);

• Electrooculogram (EOG);

• Electrocardiogram (ECG);

• Electromyogram (EMG).

(a) (b)

Figure 3.1: g.HIamp-Research multi-channel system: (a) g.HIamp amplifier; (b)
64-channel passive electrode connector box [70].

g.HIamp includes the following components:

• g.HIamp USB biosignal amplifier;

• 64 channel electrode connector box;

• connection cable from 64 channel electrode connector box to g.HIamp;

• GlobTek GTM21097-3005 – medical power supply unit;

• power line cord;

• USB cable;

• instruction for use;

In this thesis, the 144-channel g.HIamp model was used for the recording of sEMG
signals collected from the subject’s face. The amplifier’s technical specifications are
described below.
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Table 3.1: g.HIamp-Research amplifier techical specification.

Model g.HIamp-Research
Type 144 - Channel Research Amplifier
Rated power consumption 20 VA
Rated DC voltage 5 V
Rated current of fuse 4 A
Rated voltage of fuse 250 V
Sensitivity ± 250mV
Highpass 0 Hz
Lowpass 19.2 kHz
Input Impedance >100 MΩ
ADC resolution 24 bit
Sampling frequency 38.4 kHz per channel
Number of ADCs 144

3.1.2 g.Recorder Software

The g.tec support program in Windows is g.Recorder, a novel, user-friendly soft-
ware package for recording, displaying, and storing biosignals. It is also possible
to capture trigger information, video sequences and inspect data after recording
through an easy-to-use Replay mode. Some extensions of software allow a few sig-
nal parameters, useful for clinical research, to be extracted and visualized online:
Compressed Spectral Array (CSA), Heart Rate (HR), and Heart Rate Variability
(HRV). The data is stored in hdf5 format. In order to perform these preliminary
tests, g.Recorder software has been used to provide a direct control on acquisi-
tion hardware (i.e., g.HIamp-Research). It is possible to configure the amplifier
by setting the sampling frequency, the common reference, the active channels by
defining the type of configuration (bipolar or unipolar), and the filters to be ap-
plied. Furthermore, the acquisition unit also provides configurable filter setups in
order to design low-, high- or bandpass- filer: for the high-pass filter 0.1 Hz, 1 Hz,
2 Hz, 5 Hz, and for the low-pass one 30 Hz, 60 Hz, 100Hz, 200 Hz, 250 Hz, 500
Hz are the selectable frequencies, respectively. The g.Recorder also offers the user
the possibility to define and identify markers (see Fig. 3.2) indicating a particular
time point and area markers specifying a time window to highlight specific events
during measurement. These markers are useful for the labeling of the signals being
classified. Once the channels have been configured and the tags defined, the setup
can be saved and used when needed.
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Figure 3.2: Markers definition.

3.1.3 sEMG Quality Improvement

The quality of the sEMG signal can be improved with good skin preparation and a
proper electrode application. Skin cleaning with alcool and drying before electrode
placements can improve their adhesion. The epidermis is a poor conductor of elec-
tricity and may create an artefact that can distort the signal. The electrodes used
for sEMG acquisition are the Kendall™ H124SG model produced by Covidien [71].
The sensor is pre-gelled, disposable, and with circular surface Ag/AgCl coated and
a 24 mm diameter.

Figure 3.3: Electrodes used for sEMG acquisition.

The face electrode placement has been carried out based on the literature that
focuses on the facial muscles activity [51, 52, 72] and according to the guidelines
for sEMG recording [73]. In the following pages, the movements that have been
analyzed and the muscles involved will be introduced and explained in detail the
electrodes’ positioning. Some actions will be discarded and some muscles until the
electrodes’ final configuration and the movements to be carried out are defined. As
the gestures involve muscles located in different facial areas, more than one pair of
electrodes will be used.
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3.1.4 Post-processing for ATC Extraction
The recorded sEMG signals have been saved in order to be processed in the Matlab
environment to improve signal quality (whenever necessary) and extract the ATC
feature. The steps taken are briefly reported below:

• Signal filtering: pass-band filter between 30-400 Hz.

• Setting of parameters useful for calculating the ATC feature extraction:

– Definition of a threshold value for each channel considered. The threshold
is computed as:

Vth = baseline + mean_noise + 3 ∗ std

baseline represents the noise baseline evaluated considering the first six
seconds of the recording; mean_noise and std are respectively the mean
and the standard deviation of the noise calculated after rectifying the part
of the signal considered.

– An hysteresis of 15 mV has been considered around the computed thresh-
old value in order to take into account spurious muscle signal activations.

– A time window of 130 ms for the ATC feature computation.

• Processing of the ATC characteristic by evaluating how many times the sEMG
signal exceeds the voltage value set at Vth ± 15 mV.

• The ATC parameter is defined by summing all TC events in the chosen obser-
vation window.

• Plotting the ATC envelope superimposed on the sEMG signal, both signals
are normalized concerning their maximum value.

3.2 Movements Invenstingations
3.2.1 Jaw movements
A first analysis is based on investigation of jaw movements: opening, closing, bite,
and clenching. As described in Section 1.1.3, different muscles are involved in jaw
actions; therefore, just the most superficial and palpable ones have been selected. In
particular, to examine jaw opening, the mylohoyd and digastric muscular activities
have been recorded. Instead, to analyze jaw closing, clenching, or biting, temporal
anterior and masseter gave been investigated.
In Figure 3.4 it is possible to observe a preliminary positioning of the electrodes on
selected muscles according to easily palpable and specific anatomical landmarks.
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(a) (b)

Figure 3.4: Preliminary electrodes placement. Muscles considered are: (a)digastric
and mylohyoid; (b) masseter and anterior temporal.

• By clenching the teeth, it is possible to palpate the anterior temporal and mas-
seter to place the electrodes on the first muscle, vertically along the anterior
margin and on the second, on the lower third of the line between the lateral
corner of the eye and the gonial angle, the more lateral and palpable point of
jaw angle.

• Lifting the head allowed electrodes to be placed in the medial submental region
at the base of the mandible to record the activity of the digastric muscle and
on the mylohyoid by palpating the edge of the hyoid bone on which this latter
muscle is located.

Signals were recorded in the following test conditions:

• Jaw elevation: mouth opening at maximum;

• Rest or Closing: subject kept lips relaxed;

• Dental clenching: subject was asked to clench their teeth with maximum
force, named Maximum Voluntary Isometric Contraction (MVIC).

Each movement lasts 20 s without any rest between one and the other, and the
series of three gestures was repeated twice with a pause of 30 s.
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Figure 3.5: sEMG signals during jaw movements. Muscles activation investigated
by each channel: Ch1 - Anterior Temporal, Ch2 - Masseter, Ch3 - Digastric, Ch4
- Mylohyoid.

Figure 3.6: ATC envelope during jaw movements. Muscles activation investigated
by each channel: Ch1 - Anterior Temporal, Ch2 - Masseter, Ch3 - Digastric, Ch4
- Mylohyoid.

The muscles involved in the opening movement (see Figure 3.5) still have a very
similar muscle response. Consequently, in order to prevent misleading values from
being acquired due to the electrodes’ problematic positioning and minimize the
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number of recording channels, it has been decided to discard the mylohyoid mus-
cle. Furthermore, the masseter muscle response has been greater than one the
temporal muscle as it is more affected by tooth clenching.

At this point, a comparison evaluation between the sEMG signal and its related
ATC enveloped has been carried out. The Figure 3.6 shows that the single move-
ments are well delineated by the ATC signal when there is muscle activity. The ATC
envelope has null values during the closing since the sEMG signal does not exceed
the set threshold, also proving the noise-robustness feature of the technique. At
the end of the recording and the end of the first clenching movement, there should
have been no TC events being a resting phase, but involuntary movements could
appear due to muscle fatigue. On channel one, the baseline noise is more signifi-
cant, probably because of unstable electrodes position over the muscle of interest.
For these reasons, a different threshold has been set for each channel.

3.2.2 Singing and talking

Another action to be studied has been singing. In order to analyze it, electrodes
were placed on the superior orbicularis oris, close to the angle of the mouth. With
respect to the the previous acquisition protocol, described above, singing was intro-
duced after clenching the teeth. The series of actions is repeated twice, separated
by 20 s as resting phase. Furthermore, singing action can also be observed on the
other muscles as Digastric.

Figure 3.7: Electrodes palcement on superior orbicularis oris.

Since singing may not make the performance of the subjects comfortable, it has
been decided to analyze the act of talking at a later time, maintaining the same
protocol used for singing. In the Figure 3.9 the muscle activity of the superior
orbicularis oris during talking appears to be slightly more intense than the one
previously observed with singing.

40



Preliminary studies

Figure 3.8: The performing of singing movement - sEMG signals. sEMG signals
recordered by each channel: Ch1 - Anterior Temporal, Ch2 - Masseter, Ch3 -
Digastric, Ch4 - Superior Orbicularis Oris.

Figure 3.9: The performing of talking act - sEMG signals. Ch1 - Anterior Temporal,
Ch2 - Masseter, Ch3 - Digastric, Ch4 - Superior Orbicularis Oris.

Talking seems to be a more continuous movement over time, while when singing,
it is necessary to take breaks to breathe according to the type of intensity tone
used (e.g., low, high, acute, or severe). On the digastric muscle, there can also be
a muscular response.
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Figure 3.10: The performing of talking act - ATC signals envelope. Ch1 - Anterior
Temporal, Ch2 - Masseter, Ch3 - Digastric, Ch4 - Superior Orbicularis Oris.

The ATC signals envelope shows how in the case of static movements such as open-
ing and clenching, the TC values in the various time windows are primarily stable.
During speaking, instead in moments of pause between one word and another, there
is less muscle activation and therefore fewer events.
The action of talking is not necessarily observable on the orbicularis oris, but a
muscular response is also visible on the digastric. Consequently, in order to reduce
the active channel number and eliminate the problem that the electrodes above the
orbicularis oris could be detached during other facial movements (e.g., bite action),
this muscle was put aside.

3.2.3 Bite Analysis

Subsequently, a second analysis has been performed acquiring sEM signals during
bite and chewing executions. The masticatory muscles’ typical signals during an
apple bite are shown in Figure 3.11 in which the main features are indicated. The
first bite and subsequent chews are spaced relatively evenly so that the whole signal
appears periodic. The initial bite is quite broad and distinguishable from the next
one that makes up the chewing. The end of chewing corresponds to swallowing,
which, however, is not always visible. Looking at the figure shows that the moment
of swallowing is barely visible on channel 1. It can also be seen that there is
a correspondence in the activity of the two muscles and a similar involvement,
different only in terms of signal amplitude.
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Figure 3.11: Main features of the masticatory muscles. Ch1 - Anterior Temporal,
Ch2 - Masseter.

Food texture can modulate several aspects of these actions: bite force, masticatory
force, jaw movements, length of chewing cycles, and the cycle number before the
swallowing [74]. When eating food, the individual has her chewing way, which
depends on the behavioral and anatomical aspects. In particular, chewing differs
from one person to another for the breakdown of the food bolus, influenced by the
salivary flow, the ability to reform and move food in the mouth, and different muscle
activation in terms of muscle recruitment [75]. The force of the bite (in the first
chewing cycle) can vary due to subjects’ experience of food texture. Therefore, it
have been decided to test different types of food to distinguish the different types of
bite and evaluate their different intensity. The foodstuff chosen were the following:

• cracker: soft and friable aliment;

• chewing gum: relatively consistent texture, soft and unbreakable, despite re-
peated chewing cycles;

• nougat: crunchy and hard food;

• apple: floury texture.

A chewing gum has not been considered in food tested since chewing force and
duration do not change during the movement. Unlike other foods, chewing gum
did not disintegrate during the masticatory cycles. For this reason, chewing gum
has not been tested while apple, cracker, and nougat have been chosen for their
assorted characteristics. The sEMG signals reported in the Figure 3.13 highlight
the difference among the food types:
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Figure 3.12: sEMG masticatory signals testing different foods. Ch2 -Masseter.

• The bite of the apple has longer duration since depending on the quantity of
injested food. The chewing phase does not begin immediately after the bite
but is preceded by a further bite much less intense than the first and one,
which is necessary to make food consumption easier.

• The bite of the cracker, due to its friability, is not very intense, unlike the
chewing cycles that reach higher intensity peaks in amplitude, even compared
to those of other foods.

• Last, regarding the nougat bite, it lasts less than the one of the apple. Fur-
thermore, the first chewing cycles are very similar to the first bite, given the
nougat’s rubbery consistency and the difficulty of disintegrating it immedi-
ately. They become much more distant from each other because there is prob-
ably little food left in the mouth.
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Figure 3.13: ATC masticatory envelopes testing different foods. Ch2 -Masseter.

The ATC signals follows well the chewing cicles. The bites of the apple and the
nougat are represented by a higher number of TC events being more consistent,
unlike the cracker one which is less intense.

3.2.4 Facial expressions

Facial expressions are known for for their role in emotions communications, and
they often tell us how people feel. It is essential to correctly identify and recog-
nize human emotional reactions in order to improve the interactions among digital
devices and their users. Some of them express basic emotions such as happiness
or anger. In order to investigate them, two mimics muscles (discussed in 1.1.3)
have been introduced in the electrodes placement setup: zygomaticus major and
corrugator supercilii. Zygomaticus major pulls mouth corners upward and laterally
for smiling while corrugator supercilii lowers eyebrows for angering [76]. Electrodes
have been placed on muscle regions (see Fig. 3.14), according to the guidelines
for fEMG positioning [73]. In order to investigate and increase other movements
to be recognized, eye gestures have been considered like winking. Winking can be
an extra control element in systems like the video games sector and in situations
where the users have busy hands [77, 78]. The muscles involved in winking can be
zygomaticus major, corrugator supercilii, and anterior temporal.
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Figure 3.14: Electrodes placement on the mimics muscles.

An acquisition protocol (shown in Figure 3.15) has been defined to observe emo-
tional and winking expressions. The gestures to be performed have been in the
following order: wink, smile, and scowl. The three movements have been repeated
twice within the first session with 5 sof rest between expressions. Then, after a 20
spause, a second session has been performed.

Figure 3.15: sEMG signals during facial espressions protocol. sEMG signals
recordered by each channel: Ch1 - Anterior Temporal, Ch2 - Masseter, Ch3 -
Digastric, Ch4 - Zygomaticus Major, Ch5 - Corrugator Supercilii.

In the Figure 3.16, it is possible to observe how there is muscle activation on all
channels except the last one during the wink. As expected, a more intense muscular
response is on the zygomatic and moderate on the digastric and masseter. On the
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other hand, the smile has a wide activity on the zygomatic, but evident effects are
also visible on the masseter and digastric. Finally, as regards the scowl, it activates
a muscular reaction only on the corrugator.

Figure 3.16: ATC envelopes during facial espressions protocol. Channel: Ch1 -
Anterior Temporal, Ch2 - Masseter, Ch3 - Digastric, Ch4 - Zygomaticus Major,
Ch5 - Corrugator Supercilii.

Regarding the above, it is possible to be successful with the event-driven approach
by analyzing the ATC signal’s envelope to monitor facial expressions.

3.2.5 Cought gesture
Finally, cough has been also analyzed as a gesture to be recognized for a potential
future application to the detection and diagnosis of voice dysfunctions [79]. The
muscular response could be observed on the digastric muscle but also the zygo-
maticus. Muscle activity during cough varies greatly from person to person since
it is not a standard movement but also due to the difficulty of simulating it. It has
been decided to acquire the muscles already tested with the other gestures during
the cough simulation. Registration has been made under these conditions:

• simulation of cough for 5 times with 10sof pause between one repetition and
another;

• resting of 20 s;

• cough for 5 times with 10-seconds rest-time between the different repetitions.
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Figure 3.17: sEMG signal during cough. Channel used for recording: Ch1 - Ante-
rior Temporal, Ch2 - Masseter, Ch3 - Digastric, Ch4 - Zygomaticus Major, Ch5 -
Corrugator Supercilii.

The cough, as shown in the Figure 3.17, is a movement that is neither static like a
smile nor periodic like a bite. It varies depending on how it is simulated. An evident
muscular activity is on the digastric and the zygomatic, but also the masseter
appears to be involved during the cough.

Figure 3.18: ATC signals envelope during cough. Channel: Ch1 - Anterior Tempo-
ral, Ch2 - Masseter, Ch3 - Digastric, Ch4 - Zygomaticus Major, Ch5 - Corrugator
Supercilii.
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Furthermore, it can also be noted that after the first session during the resting
phase, the affected muscles are not immediately inactive, probably due to the effort
involved in the execution of the movement.
Finally, observing the ATC envelope (Figure 3.18), it can be concluded that the
activation is not present on the temporal and corrugator since these muscles are
far from the area of the face most involved in carrying out the movement.

After the muscles to be investigated and the facial gestures to be recognized have
been decided, it has been necessary to establish an experimental protocol to be
performed by a group of volunteers in order to train machine learning algorithms
to recognize facial gestures.
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Data Acquisition

In the first preliminary phase, the movements to be performed and the facial muscles
involved have been studied. A Data collection of the sEMG signal from different
people, during the execution of the movements listed in Chapter 3, is fundamental
to cover a proper sample of the population. The movements chosen for the definition
of an experimental protocol can be divided into:

• static gestures: opening, closing, wink, and smile;

• transient gestures: bite, cough, and talking.

The electrode positioning setup has been defined to begin the data acquisition phase
in order to standardize signal acquisition during the data collection.

4.1 Performed Movements
The list of gestures to be performed by the volunteers whas been selected on the
basis of some literature, presented in the Section 2.2 and the analysis carried out
in Chapter 3. The definitive list of movements is reported in the following:

• Mouth opening: it consists in the lowering of the mandible (Figure 4.2a).
The mainly used muscle is digastric.

• Mouth closing: it is the elevation of the jaw without the clenching of the
teeth (Figure 4.2b). The involved muscles are anterior temporal and masseter.

• Bite: it consists in the sinking of the teeth in a food, to detach a piece and
then to chew it (Figure 4.2c). Anterior temporal and masseter are the most
used.

• Cough: it is a modified breath, consisting of a short inhalation phase followed
by a sudden and violent exhalation (Figure 4.1d). The mainly used muscles is
digastric and zygomaticus major.
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• Wink: it is an act of closing one eye quickly (Figure 4.1e). The useful muscles
are zygomaticus major, anterior temporale and corrugator supercilii.

• Smile: it consists in the pulling the mouth corners upward and laterally (Fig-
ure 4.1f). The muscle involved is zygomaticus major.

• Scowl: it is the act of frowning. The most used muscle is corrugator supercilii.

• Talking: it entails lip movement while reading a text (Figure 4.1h). Involved
muscle is digastric.

The mouth closing and the resting position are considered a single class.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.1: Examples of all performed movements: (a) mouth opening, (b) mouth
closing, (c) bite, (d) cough, (e) wink, (f) smile, (g) scowl, (h) talking.

4.2 Electrodes Placement
The electrodes’ placement is undoubtedly a critical aspect since the facial muscles
are tiny and close to each other. Consequently, considering the problemtic of muscu-
lar cross-talk, a carefull application is needed. Other problems may be encountered
due to the shape of the face, the possible presence of a beard or double chin, which
can make it challenging to identify the muscle and place the electrodes. Moreover,
depending by skin condition or length of beard, eletrodes attachment could vary
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during the entire protocol, affecting the quality of acquired signals. sEMG elec-
trodes are the same used in the preliminary analysis (i.e., H124SG [71]). The final
electrodes placement on right face side is the following (see Figure 4.2):

• First couple of electrodes is placed on the anterior temporal. The main contri-
bution is to the bite and wink, but some useful value are recorded also during
smile.

• Second pair is placed on the masseter. These electrodes are mainly used in
bite.

• Third couple is placed on the digastric. Main effects are obviously on the
mouth opening, but they are also necessary for talking and cough.

• Fourth pair is placed on the zygomaticus major. These electrodes are mainly
used in smile, but could have also a relevant effect on wink and cough (de-
pending by how the subject perform such expression).

• Fifth couple is on the corrugator supercilii and it has evident effects on scowl
but also on wink.

• Last, the reference electrode has been placed on the forehead in an electrical
neutral area.

(a) (b) (c)

Figure 4.2: Electrode positioning setup on the right hemiface: (a)Anterior temporal
and masseter, (b)digastric, (c) zygomaticus major and corrugator supercilii.

4.3 Acquisition Protocol
Following the preliminary analysis, an in vivo experimentation has been launched
in order to obtain enough data from various individuals to train and test the classi-
fiers. The experimental protocol, abiding with the current regulations for scientific
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research in healthy human volunteers sperimentation promoted by University of
Study of Torino, has received approval from the corresponding bioethics commit-
tee [80]. Twenty-one healthy subjects, 16 males and 5 females (with age between 24
and 39 years old), have been recruited from Polytechnic of Turin’s Department of
Electronics and Telecommunications (DET). They have all been thoroughly briefed
on the experiment and its potential risks. They have been received informed con-
sent for the study and agreed to participate in the signing of the form, drafted
according to the local bio-ethical committee’s guidelines. The subjects’ privacy
rights have been observed since they have been assigned a progressive code, and
the latter has been the only identifier used within the study.
During the experiment, each subject seated comfortably, straight on a chair with
their hands put on the knees, kept at 90°. After explaining the study, the facial skin
has been cleaned with 70% alcohol and cotton to reduce skin-electrode impedance
before electrodes have been placed on the right side of the subject’s face. This
placement is critical due to the presence of a double chin or beard in males. The
electrodes have been positioned as described above. In particular, for the electrodes’
locations on the anterior temporal muscle and the masseter muscle, subjects were
requested to clench their teeth. Regarding the digastric and zygomaticus major
muscles, on the other hand, they have been asked to raise their head and smile to
adjust the electrode’s position on the skin overlying the submental region and close
as possible to the mouth corner, respectively.
In order to be compliant with the COVID-19 regulations, each subject has been
wearing the protective mask until the electrodes have been placed on the face.
Therefore, during the texts’ execution, the supervisor used a face shield as addi-
tional protection and a protective mask.
A short calibration phase, in which the subject has been asked to quickly perform
all the gestures, has been conducted before the experiment execution in order to
verify muscle activations on all the channels with prepared electrode configuration.

4.3.1 Experimental Protocol: Graphical User Interface (GUI)

The subjects during the protocol have been supported by a Graphical User Interface
(GUI) developed in the Matlab® environment through the Toolbox App Designer.
Below, the features of the application are briefly explained.

• Once the application is launched, the start screen represented in Fig.4.3 shows
up.
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Figure 4.3: Start screen: Start and Exit are button objects.

• When the user presses the Start button at the beginning of the session, two
new buttons, Italian and English, appear on the interface (see Figure 4.4) for
choosing the language to be used to give indications regarding the movements
to be performed.

Figure 4.4: Language choice: English and Italian are button objects enable.

• Then, the session starts and the supervisor simultaneously launches the acqui-
sition on the g.Recorder program (described in Sec. 3.1.2).

• In the view of the experimental protocol screen, the movement to be per-
formed is shown with a cartoon image, and a down counter is inserted to
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mark a rhythm. Furthermore, during the resting phase, a preview of the next
movement appears on the screen to facilitate the subject in its execution.

(a)

(b)

Figure 4.5: Experimental protocol view screen. (a) Movement to be performed.
(b) Preview of the movement to be executed.

• After the end of the first recording, a pop-up requesting to continue appears
(shown in Figure 4.6a). If the continue button is pressed, the pause time in
min is asked for before the start of the new recording (see Figure 4.6b).

• The exit button is always enabled to be able to exit the application at any
time after responding to a confirmation pop-up (see Fig. 4.7).
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(a) (b)

Figure 4.6: Pop-up request for protocol continuation: (a) request to continue with
the sEMG acquisition; (b) dialogue box to insert pause time before the next record-
ing.

Figure 4.7: Exit pop-up.

4.3.2 Experimental Protocol: Phases
During the protocol, the subjects have to perform each gesture sequentially for 20 s,
with 5 s of rest between them. The sequence of movements within the same session
was performed three times, with 20 s of rest between each repetition. The protocol
is repeated three times with a 2 min pause between the sessions, and in each session,
different foods have been tested. The order of the foods to be examined during the
experiment was entirely up to each subject in order to increase the variability of
data collection. The subjects have been guided in the execution of the gestures by
a GUI, which help them in performing the required action with the proper timing.
The protocol can be summarized in the following steps:

1. The GUI is launched to mark a rhythm (see Figure 4.3) by the subject and
the acquisition of the signal is started.

2. The GUI shows the preview of the movement to be performed (Figure 4.5b),
according to the list of movements detailed in Sec. 4.1;

3. The gesture is maintained for 20 s.

4. The rest of 5 s is observed. If there are any remaining movements for the
actual repetition, the flow returns to point 2.
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5. After completing all series of the movements, a 20-seconds rest time is followed.

6. New repetition restarts from 2 unless three repetitions have already been done.

7. Data is stored on the computer. At the end of the session, a pop-up request
(shown in Figure 4.6a) allows the supervisors/user to decide if go through
another session. If a further session is needed, a dialogue box (Figure 4.6b) is
displayed to insert the pause minutes before it begins. Flow restarts from 2.

During the acquisition, it has been possible to observe the signal collected on the
g.Recorder software in real-time (see Figure 4.8). Accordingly, if there have been
problems with the electrode’s displacement, the electrodes have been repositioned
in the best possible way at the end of the session.

Figure 4.8: Recording of the sEMG signal seen in real-time on g.Recording.
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Processing Data

The data acquired during the acquisition phase have been processed in order to
extract the useful feature (i.e., ATC parameter) for the classification process. Once
the multi-channel sEMG data have been saved on the computer, they have been
uploaded to Matlab® to be elaborated. A Matlab script has been implemented to
process sEMG signal and extract the ATC feature, which will corresponds to the
classifier inputs. The code flow is the following:

• All the muscular sEMG signals of each subject, corresponding to the move-
ment execution of the acquisition protocol described in 4.3, have been loaded
separately.

• The first 4 seconds of the recording have been removed for the presence of a
spike due to the settling of the g.tec system.

Figure 5.1: Settling time g.tec system. Ch2: Masseter.
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In these instants of time (shown in Figure 5.1) the system stabilizes so that the
acquired signal can reach a certain precision and remain within the specified
accuracy range.

• The signals have been pre-filtered hardware by g.HIamp with a high pass filter
with a cutoff frequency of 5 Hz and a stopband filter (i.e., Notch filter) at
48-52 Hz. As a result, in order to eliminate low fluctuations signal caused
by movement artefacts, and considering a typical sEMG frequency spectrum,
the sEMG signals have been further filtered in post-processing using a 10th
order Butterworth bandpass filter with a passband between 30-400 Hz. In the
Figure 5.2 the module of the frequency response of the implemented filter can
be observed.

Figure 5.2: Frequency response Butterworth filter.

Figure 5.3: sEMG signals pre- and post- digital filtering. Muscles activation inves-
tigated by each channel: Ch1 - Anterior Temporal, Ch2 - Masseter, Ch3 - Digastric,
Ch4 - Zygomaticus major, Ch5 - Corrugator supercilii.
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In Figure 5.3 are shown the sEMG signals, acquired during an experimental
protocol session from a male subject, before and after software filtering.

• Depending on the movement performed, a labelling procedure has been com-
pleted. Thanks to the previous insertion of g.Recorder software markers
(shown in Figure 5.4), describing the beginning and the end of a gesture,
this often tedious step has been resolved easily. Anyway, sometime the mark-
ers have been not inserted with the perferct timing. Therefore, after careful
analysis of the signal, they have been appropriately readjusted.

Figure 5.4: g.Recorder screen in Replay mode. On the right are listed the markers’
names and the instants of the start and end of each movement performed.

• In order to extract the ATC feature, a threshold value has been computed for
each channel. First of all, the environmental noise characterizing the signal
baseline has been evaluated by analyzing 6 s of idle state at the beginning of
the recording and, differently to what has been done in Sec. 3.1.4, considering
also 10 s in the middle and towards the end of the recording during the closing
movements. By monitoring baseline conditions at the beginning and during
protocol execution, the possible electrode detachment has been taken into
account. During this evaluation, the signal has been also rectified, and the
mean and standard deviation of the noise have been computed in order to
define the threshold as:

Vth = baseline + mean_noise + 3 ∗ std

60



Processing Data

Figure 5.5: sEMG signal characterized by a high environmental noise due to a
possible displacement electrode. Muscle activation investigated by Ch2 -Masseter.

The threshold value changes according to the channel electrical features and
varies among subject because of different skins and bodies conditions. In
particular, the baseline noise can be influenced by: electrode placement and
state; involuntary facial movements or saliva swallowing; skin condition such
as possible beard presence. Figure 5.5 shows masseter muscular activity and
highlights some of the problems mentioned above. It can be observed that the
signal baseline after first bite movement probably suffered a slight electrode
detachment on the masseter, caused by effort caused by biting the nougat.
On the other hand, during the acquisition, the background noise gradually
increased because the subject had a beard which reduced the electrode-skin
contact.

For these typical issues, the threshold has been evaluated, taking into account
the baseline noise for the entire duration of the recording.

In particular, in the case examined, not doing this type of threshold assessment
would have led to an inadequate evaluation of the ATC activation related to
each movement performed in terms of events.

• An hysteresis of 15 mV has been considered around the computed threshold
value in order to take into account spurious muscle signal activation ATC. The
algorithm evaluates how many times the sEMG signal has gone above the Vth
± 15 mV threshold. The ATC feature has got by summing up all TC events
in a time window of 130 ms.
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Figure 5.6: TC events superimposed on the sEMG signal. Channel: Ch1 - Ante-
rior Temporal, Ch2 - Masseter, Ch3 - Digastric, Ch4 - Zygomaticus major, Ch5 -
Corrugator supercilii.

• The relative ATC envelopes have been superimposed on the sEMG signals (see
Figure 5.7) in order to observe whether the threshold imposed was correct in
assessing the muscle activation of each gesture performed.

Figure 5.7: ATC signals envelope of facial protocol. Muscles activation investigated
by each channel: Ch1 - Anterior Temporal, Ch2 - Masseter, Ch3 - Digastric, Ch4
- Zygomaticus major, Ch5 - Corrugator supercilii.
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• The ATC signal is saved in .csv format, useful for the classification phase.

After analyzing all of the signals, a structure has been created for each subject’s data
relating to the three protocol repetitions in order to make them easily accessible
for future analysis.
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Chapter 6

Machine Learning
Implementation

Considering the number of performed gestures, and their nested information re-
lated to the acquisition channels, the use of Artificial Intelligence (AI) algorithm
has been identified has the proper way to achieved facial recognition reaching suit-
able performance. In particular, the aim has been to understand whether it was
possible to recognize gestures not only by observing muscle activation alone but
by implementing ML models. This chapter presents the results regarding the ac-
curacy of the classifiers’ performance in gesture recognition. All models have been
developed using ML libraries developed for the Python® environment. For all ML
algorithms implemented, the following steps were applied:

• The available data set has been divided into the training set and test set with
the Stratified k-fold algorithm, choosing k = 5. This algorithm splits the data
set on k fold so that distributes approximately in each fold the same percent-
age of samples for each class of the available dataset. Moreover, before the
splitting, data are also shuffled to enhance the performance of the classifiers.

• A hyperparameter optimization has been implemented with GridSearchCV, a
library function included in sklearn’s model selection package [81]. It is used to
train a machine learning model with multiple combinations of hyperparameter
training and find the best variety of parameters that optimize the evaluation
metric. It creates an exhaustive set of hyperparameter and training models
for each combination.

• For each ML algorithm, a statistical evaluation has been carried out in terms
of accuracy, recall, precision, and F1-score to evaluate the goodness of the
classification model found.
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6.1 Parameters Algorithms
This section describes the parameters considered for each ML algorithm and the
ones used during the optimization phase before the final choice of the most accurate
model.

6.1.1 Random Forest (RF)

Random Forest has been implemented using scikit-learn library [81]. The following
parameters have been varied [81]:

• n_estimators: is the number of trees in the forest. On but one hand, many
trees allow obtaining a better performance of the model, but on other hand,
it could slow down its training by increasing the computational costs.

• max_features: is the maximum number of features to be considered while
seeking out the satisfactory split in trees. The higher this number, the better
the algorithm’s behavior in terms of recognition accuracy, but at the same
time, the less fast the model processing time will be. There are several ways
to search for them:

– Auto: it consists of taking all the characteristics that make sense for a
given tree. No restrictions are placed on the individual decision tree.

– Sqrt: for each run, the square root of the available variables are taken as
a max features number.

– Log2 : the log2 of the features is taken into account.

• min_samples_leaf : is the sample number required to be at a leaf node.
It is a useful parameter for the overfitting problem: it ensures that the tree
cannot overfit the training data set by creating branches with a number of
samples smaller than the one chosen at the leaf node.

• min_samples_split: is the minimum number of samples required to split
the node. High values can lead the model to be too generalized with the risk
of losing some specific learning relationships for the sample selected for a tree.

• max_depth: is the maximum depth of a single tree. The deeper the tree
grows, the greater the model’s complexity will be because it acquires more
information on the data by adapting too much on the latter, losing the ability
to generalize on the data set.
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6.1.2 k-Nearest Neighbour (k-NN)
scikit-learn library [81] is used to develop k-NN model. The following parameters
have been taken into account [81]:

• n_neighbors: is the number of nearest neighbors. If it is high, the field cost
increases, while if it is reduced, the final prediction of the results will be more
influenced by noise. The choice of k depends on the available data set. It
is recommended to perform preliminary tests to highlight the best number.
Consequently, for each collection of data taken into consideration, the graph
of k value and the dataset’s corresponding error rate have been plotted. Then,
it possible to choose a range of k values to be tested during the tuning phase
with a low error rate.

• weights: is the weight function that defines each point’s weight within the
model. There are two types of weighted functions:

– Auto: in each neighbourhood, all samples are weighted similarly;
– Distance: the points are weighted based on the inverse of their distance:
closer elements will be more relevant.

• algorithm: indicates the type of algorithm used to determine the neighbor-
hood. There are several metrics:

– brute: it is the simplest and most intuitive as it provides for calculating
the distances among all the pairs of points in the data set. It is the least
performing approach that can only be used with datasets that are not too
large; otherwise, the calculation times increase exponentially.

– kd_tree: it is a methodology based on the use of data structures to make
the algorithm more efficient. By making aggregate considerations, it aims
to decrease the number of necessary calculations: a an example could be
that of having a generic point A far from a point B, which however, is
close to a third point C, then A is also far from C.

– ball_tree: it was introduced to improve the previous algorithm for large
data sets; differs from the kd_tree in data aggregation methodologies.
This method attempts to reduce the required number of distance calcula-
tions by efficiently encoding the sample’s aggregated distance information.

– auto: adapts the algorithm based on the dataset to be managed.

• p: is an integer that identifies the type of formula for calculating distances.

– p = 1 is equivalent to using the Manhattan distance.
– p = 2 Euclidean distance is used.
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6.1.3 Support Vector Machine (SVM)
SVM have been implemented using scikit-learn library [81]. The following param-
eters have been utilized [81] :

• C: is a regularization parameter. When C is a low value, a more significant
number of misclassifications occurs due to the choice of a decision boundary
with a large margin. SVM with a large C tries to reduce erroneous predictions
adopting a decision boundary with a lower margin, resulting in a model to
more generalized.

• kernel: indicates the type of kernel used by the model. It can be poly, rbf or
sigmoid among those available.

• gamma: is used with non-linear problems. It is a parameter that considers the
influence of the distance of a training set sample. Low gamma values result in
multiple points clustered together, outlining a wide-ranging similarity among
points themselves. For high gamma values, the samples must be very close
together to be considered in the same group (or class). Therefore, models with
enormous gamma values tend to be poorly generalized. There are two types
of settings for this parameter:

– scale:is equal to 1 / (n_features * variance);
– auto: uses 1/n_features as gamma value.

6.1.4 Artificial Neural Networks (ANN)
The neural network model was created using a combination of keras [82] and ten-
sorflow [83] libraries. In order to find the right model, many different combinations
have been tried by varying these parameters:

• architecture: is the structure of the neural network, which is composed as
follows:

– input layer: k neurons as the number of channels;
– hidden layer: dense layer with n neurons and Rectified Linear Unit (ReLU)
as the activation function, which sends the result to the output if positive;
otherwise, it will output zero;

– output layer: m neurons as the number of gestures. Softmax is the ac-
tivation function and creates a vector of probabilities that sum to one,
representing the potential results’ probability distributions.

• learning rate (LR): controls the learning speed. Adam optimizer have been
used during the training phase with a learning rate that have been varied. It is
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a stochastic gradient-based optimizer that relied on the adaptive estimation of
the mean (first moment) and the uncentered variance (second-order moments).
The aim is to update the net weights during the epochs of the training phase.

• epochs: indicates how many times each data point will be used.

6.2 Total Gestures Recognition

All gestures performed during the acquisition protocol has been classified. Both
biting and chewing have been included in one class, named bite, no distinction
having been made based on the type of food tested. Below, the results reached
with to be considered ML algorithms.

6.2.1 Random Forest (RF)

After the optimization, the chosen hyperparameters were shown in Table 6.1:

Table 6.1: RF hyperparameters setting.

Hyperparameter Value
n_estimators 900
max_features ’log2’

min_samples_leaf 2
min_samples_split 8

max_depth 10

The model has a low ability to predict gestures such as cough and talking, as shown
in Table 6.2, since the poor repeatability of these actions over time and in different
situations, even by the same subject. In fact, the average accuracy achieved is
61.23%.
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Table 6.2: RF results.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
Opening 59.26 49.13 47.44 48.27
Closing 80.32 67.85 80.30 73.55
Bite 62.36 54.12 62.38 57.96
Cought 23.13 37.96 6.18 10.63
Wink 67.27 76.91 56.87 65.39
Smile 78.63 59.24 78.66 67.58
Scowl 85.19 78.37 85.21 81.64
Talking 33.66 34.30 32.42 33.33
Avg 61.23 57.23 56.18 54.79

6.2.2 k-Nearest Neighbour (k-NN)

Table 6.3 report the algorithm model obtained after optimization.

Table 6.3: k-NN hyperparameters setting.

Hyperparameter Value
n_neighbors 100

weights ’uniform’
p 2

algorithm ’brute’

With this model, a very low average accuracy (60.66%) has been obtained, even
moderately lower than the RF one. It can be observed in Table 6.4 that the opening
movement accuracy slightly exceeds 50%, probably due to the displacement of the
electrodes over the digastric muscle in some bearded male subjects, resulting in the
acquisition of noised signals. On the other hand, TC events are distributed during
the opening in a fragmented way comparable to ones obtained during talking or
coughing. Therefore, the three movements turn out to be incorrectly classified.
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Table 6.4: k-NN results.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
Opening 50.73 50.82 42.28 46.16
Closing 80.30 67.59 80.30 73.40
Bite 62.83 54.68 60.11 57.27
Cought 19.94 26.56 8.41 12.77
Wink 75.40 77.15 56.28 65.08
Smile 78.23 58.84 78.23 67.16
Scowl 85.38 77.81 85.38 81.42
Talking 32.46 33.76 32.46 33.10
Avg 60.66 55.90 55.43 54.55

6.2.3 Artificial Neural Networks (ANN)

After the optimization, the best hyperparameters are presented in Table 6.5:

Table 6.5: ANN hyperparameters setting.

Hyperparameter Value
architecture 5-32-16-8

LR 0.001
epochs 50

The recognition ratio obtained is 61.05%, with a performance very similar to the
RF model and slightly higher than the k-NN one. The Table 6.6 shows that the
closing movement achieves a higher accuracy than the other classes. The same
thing can be observed in the previous models. The availability of more data and
the similarity of the closing sEMG signal among the different subjects allows this
outcome to be achieved. Furthermore, during the wink, the accuracy of the model’s
performance is over 60% since muscle recruitment is not the same for all subjects.
Muscular activation varies according to how the movement is performed.
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Table 6.6: ANN results.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
Opening 57.85 47.40 48.83 48.10
Closing 81.92 65.92 81.92 73.05
Bite 64.14 52.39 64.14 57.67
Cought 24.92 33.16 7.24 11.89
Wink 63.67 76.91 56.77 65.32
Smile 75.30 61.47 78.66 67.58
Scowl 84.86 77.01 84.86 80.74
Talking 35.72 37.48 25.68 30.48
Avg 61.05 56.47 55.59 54.37

6.2.4 Support Vector Machine (SVM)

The best prediction SVM model is characterized by parameters described in Table
6.7.

Table 6.7: SVM hyperparameters setting.

Hyperparameter Value
C 1

kernel ’rbf’
gamma auto

A correct prediction is obtained with gestures like smile and scowl, as can be seen
in Table 6.8, because they activate highly the zygomatic and corrugator supercilii.
They are, therefore, more defined movements, and their execution appears to be
performed similarly by all the subjects.
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Table 6.8: SVM results.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
Opening 55.70 43.02 45.84
Closing 81.79 65.75 81.67 72.85
Bite 67.67 55.31 61.90 58.42
Cought 21.85 44.76 3.19 5.96
Wink 60.32 79.23 52.87 63.42
Smile 78.61 58.50 78.61 67.08
Scowl 86.62 75.79 86.30 80.70
Talking 32.15 33.13 31.93 32.52
Avg 60.59 57.69 54.94 53.35

The algorithms’ accuracy has been not good since movements, like cough and talk-
ing, have not been well performed or appeared less defined. This last aspect had a
significant impact on recognition performance.

6.3 Reduced Gestures Recognition
The success rate achieved by recognizing all eight gestures has not been optimal.
As a result, gestures that have been negatively impacted the models’ predictive
ability and exhibited very low accuracy have been removed from the target. Also
in this analysis, no distinction has been made on the bite based on the food tested.
The setting of the best parameters has been sought for each model, and it has been
possible to achieve better performance in recognition.

6.3.1 Random Forest (RF)
The best setting for a RF model obtained was shown in Table 6.9:

Table 6.9: Better compromise of parameters for Random Forest.

Hyperparameter Value
n_estimators 100
max_features ’auto’

min_samples_leaf 1
min_samples_split 5

max_depth 10
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Compared to the previous case with eight classes, it manages to achieve an average
accuracy greater than 10%. It can be noted that the least performing gestures are
opening and biting since no discrimination has been made on the different food bite
and in some bearded subjects, the opening was not well defined.

Table 6.10: Statistical results Random Forest.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
Opening 59.50 63.97 53.88 58.50
Closing 84.43 79.60 84.61 82.03
Bite 67.55 62.55 65.91 64.19
Wink 73.71 78.99 56.83 66.10
Smile 77.92 68.41 78.58 73.14
Scowl 84.64 83.03 84.64 83.83
Avg 74.63 72.76 70.74 71.30

6.3.2 k-Nearest Neighbour (k-NN)
The parameters that guarantee the better performance of the k-NN model are listed
in Table 6.11:

Table 6.11: Better compromise of parameters for k-NN.

Hyperparameter Value
n_neighbors 100

weights ’uniform’
p 2

algorithm ’brute’

Table 6.12: Statistical results k-NN.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
Opening 58.68 65.95 55.47 58.27
Closing 84.46 79.50 84.46 81.90
Bite 62.83 63.93 62.66 63.29
Wink 75.39 80.37 55.62 65.74
Smile 79.40 67.13 78.89 72.53
Scowl 85.24 82.34 85.24 83.77
Avg 74.33 72.44 70.39 70.92
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The Table 6.12 shows the statistical results obtained with this newest k-NN ver-
sion, which results in an improved statistical outcomes with respect to previous
architecture. In particular, the low bite accuracy may be due to its almost periodic
nature. Moreover, the chewing cycles can have different durations depending on
the subjects and the food eaten. As a result, they have a strong impact on the
model’s prediction performance.

6.3.3 Artificial Neural Networks (ANN)

The results for the ANN algorithm are presented in Table 6.14 and they have been
obtained with the setting, described in Table 6.13.

Table 6.13: Better compromise of parameters for ANN.

Hyperparameter Value
Architecture 5-32-16-8-8

LR 0.001
epoch 70

Table 6.14: Statistical results ANN.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
Opening 62.81 66.48 45.04 53.70
Closing 87.91 76.54 87.91 81.83
Bite 62.57 64.97 62.57 63.75
Wink 69.11 80.51 54.82 65.22
Smile 76.41 68.81 76.41 72.41
Scowl 86.28 80.85 86.28 83.48
Avg 74.18 73.03 68.84 70.07

This model has a predictive capacity very similar to that of the previous ones,
slightly moderately lower.

6.3.4 Support Vector Machine (SVM)

The better parameters setup for SVM model is shown in Table 6.15.
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Table 6.15: Better compromise of parameters for SVM.

Hyperparameter Value
C 1

kernel ’rbf’
gamma ’auto’

This algorithm among the one tested allows obtaining the highest overall accuracy.
The worst results shown in the Table 6.16 in terms of class accuracy are related
to the opening, bite, and wink movements for the reasons already described above.
In particular, for the wink gesture, this outcome is due to the variability among
subjects in recruiting the muscles examined during its execution.

Table 6.16: Statistical results SVM.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
Opening 62.83 62.73 55.06 58.64
Closing 84.99 70.36 84.97 82.07
Bite 67.70 62.63 65.64 63.93
Wink 70.36 79.63 56.71 66.24
Smile 77.59 70.12 77.15 73.47
Scowl 84.42 83.13 84.28 83.70
Avg 74.65 72.88 70.63 71.34

6.4 Jaw Movements Recognition

In order to move towards a future clinical application, it has been decided to focus
only on the jaw movements, removing three acquisition channels. The channels
placed on the corrugator supercilii and on the zygomaticus major have not been
considered since they have been introduced for facial expressions. Within the mus-
cles involved in chewing and biting, only the masseter has been chosen for its most
evident response regarding the sEMG signal’s amplitude.

6.4.1 Random Forest (RF)

After the optimization, the best RF performances have been achieved with the
parameters shown in Table 6.17.
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Table 6.17: Random Forest best parameters setup.

Hyperparameter Value
n_estimators 100
max_features ’log2’

min_samples_leaf 2
min_samples_split 5

max_depth 10

Observing the statistical results (Table 6.20), the opening movement remains below
70% in terms of accuracy, probably always due to possible problems due to the
electrode positioning with some subjects. It is also possible to analyze that the bite
performance precision improves because only one of the masticatory muscles has
been considered. On the other hand, considering only the mandibular movements’
muscles, the risk of having unusual muscular activity on other muscles (i.e., chewing
on the corrugator supercilii) has been reduced. However, it is possible to obtain an
overall accuracy of close to 80%.

Table 6.18: Performances obtained with Random Forest.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
Opening 67.60 61.56 52.05 56.41
Closing 87.17 85.97 87.26 86.61
Bite 80.55 68.42 75.38 71.73
Avg 78.44 72.76 70.74 71.30

6.4.2 k-Nearest Neighbour (k-NN)

The selected k-NN model has been characterized by the parameters listed in Table
6.19.

Table 6.19: k-NN best parameters setup.

Hyperparameter Value
n_neighbors 20

weights ’uniform’
p 1

algorithm ’ball_tree’
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The performances obtained with this model have been the lowest compared to the
other algorithms ones.

Table 6.20: Performances obtained with K-NN.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
Opening 66.12 62.60 37.70 47.06
Closing 89.63 82.59 89.63 85.96
Bite 75.40 66.98 74.29 70.45
Avg 77.05 70.72 67.21 67.82

6.4.3 Artificial Neural Networks (ANN)
The results of Table 6.22 have been obtained with hyperparameters shown in Table
6.21.

Table 6.21: ANN best parameters setup.

Hyperparameter Value
architecture 2-9-9-3

LR 0.001
epoch 70

Table 6.22: Performances obtained with ANN.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
Opening 66.13 58.11 58.17 58.64
Closing 88.77 87.67 85.09 86.36
Bite 80.05 68.21 75.85 71.83
Avg 78.32 71.63 73.03 72.27

The best results are obtained with the closing and biting movements, unlike the
opening, which always suffers from challenges caused by the skin condition (beard)
and double chin.

6.4.4 Support Vector Machine (SVM)
The SVM model that allows achieving more satisfactory results is characterized by
the parameters listed in the Table 6.23.
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Table 6.23: SVM best parameters setup.

Hyperparameter Value
C 10

kernel ’rbf’
gamma ’scale’

Also, in this case, the best results are obtained with the svm algorithm; in the case
of opening, it is possible to have a success rate that is close to 70% (see Table 6.24).

Table 6.24: Performances obtained with SVM.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
Opening 69.02 61.72 51.82 56.34
Closing 87.25 86.01 87.21 86.61
Bite 79.19 68.28 75.85 71.87
Avg 78.46 71.63 71.60 71.60

6.5 Recognition Reinforcement Model

In all previous models, the bite and chewing cycles have been classified as a single
class. The bite lasts a few seconds and it has been challenging to classify with little
data available. Consequently, an attempt has been made to classify the three types
of bite (apple, cracker and nougat), training the classifiers on a single subject, which
has been asked to undergo a further acquisition phase. The subject has repeated
the experimental protocol by performing only the bite movement, without the other
gestures. From the acquired signals, only the part relating to the bite has been
extracted without considering chewing. The data set has been strengthened by
adding more bite information and classifying the set of reduced gestures (discussed
in Section 6.3), including bite classes and chewing movement.

6.5.1 Random Forest (RF)

The results for the RF algorithm are presented in Table 6.26 and they have been
obtained with the setting, described in Table 6.25.
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Table 6.25: RF hyperparameters.

Hyperparameter Value
n_estimators 200
max_features ’log2’

min_samples_leaf 2
min_samples_split 8

max_depth 10

Table 6.26: RF prediction results.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
Opening 86.06 72.14 85.71 78.34
Closing 89.04 86.09 88.67 87.36
Chewing 85.83 64.63 62.85 63.73
Wink 83.39 84.64 87.32 85.96
Smile 90.14 87.41 88.34 87.87
Scowl 87.03 94.10 87.03 90.43
Apple 70.64 74.67 53.33 62.22
Cracker 70.77 71.83 71.83 71.83
Nougat 70.59 73.53 46.73 57.14
Avg 81.50 78.78 74.65 76.10

The bite is the part of the signal that differed significantly according to the food
eaten. Compared to the other classes, those relating to different bites have lower
accuracy. This aspect depends on the different durations and intensities of the
bites. The recognition of chewing alone (85.83 %) is instead increased in terms of
accuracy.

6.5.2 k-Nearest Neighbour (k-NN)

The results of Table 6.28 have been obtained with hyperparameters shown in Table
6.27.
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Table 6.27: k-NN hyperparameters.

Hyperprameter Value
n_neighbors 18

weights ’uniform’
p 2

algorithm ’brute’

Table 6.28: k-NN prediction results.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
Opening 91.99 65.56 91.99 74.47
Closing 86.70 86.49 86.33 86.41
Chewing 77.56 64.26 62.99 63.62
Wink 84.81 85.02 80.21 82.55
Smile 90.14 81.67 89.44 85.38
Scowl 88.05 90.32 86.01 88.11
Apple 65.14 89.36 38.53 53.85
Cracker 69.23 63.16 55.38 59.02
Nougat 65.55 78.13 42.02 54.64
Avg 79.91 77.89 70.32 72

The results are very similar to ones of the previous model except for the opening
movement, which achieves a success rate greater than 90%. This improvement
comes from having trained and randomly tested the model on a single person.
Furthermore, being a woman, there were no problems with electrodes placement,
obtaining a good signal recording.

6.5.3 Artificial Neural Networks (ANN)
The best ANN model, whose performance can be analyzed in the Table 6.30 is
obtained with the setup of parameters listed below (Table 6.29).

Table 6.29: ANN hyperparameters.

Hyperparameter Value
Architecture 5-9-9-9

LR 0.01
epoch 70
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Table 6.30: ANN prediction results.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
Opening 87.46 69.34 87.46 77.35
Closing 89.98 85.93 89.79 87.82
Chewing 79.13 62.84 53.94 58.05
Wink 83.75 88.28 74.56 80.84
Smile 91.55 80.50 91.55 85.67
Scowl 86.69 91.37 86.69 88.97
Apple 64.22 56.14 58.72 57.40
Cracker 69.23 70.91 60.00 65.00
Nougat 71.43 78.95 37.82 51.14
Avg 80.38 73.03 71.17 72.47

It can be observed that among the three bites, the apple has the lowest accuracy,
probably due to a similarity to the other two based on how the bite is performed
by the subject. During the further submission to the experimental protocol, the
subject had to perform several bites. After a series of trials, fatigue and disgust
have arisen, the individual worsened her movement performance.

6.5.4 Support Vector Machine (SVM)

A correct prediction of SVM model is obtained with the hyperparameters described
in Table 6.31.

Table 6.31: SVM hyperparameters.

Hyperparameter Value
C 1

kernel ’rbf’
gamma ’scale’

The results achieved (shown in Table 6.32) are very similar to the ones of the RF
model both in the recognition of bites and in other gestures. These two models
present the highest accuracy score.

81



Machine Learning Implementation

Table 6.32: SVM prediction results.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
Opening 87.46 69.53 87.46 77.47
Closing 89.79 85.18 89.89 87.47
Chewing 83.46 63.36 65.35 64.34
Wink 83.04 84.21 79.15 81.60
Smile 88.38 83.11 88.38 85.67
Scowl 86.69 92.36 86.69 89.44
Apple 69.72 83.61 46.79 60.00
Cracker 69.23 67.24 60.00 63.41
Nougat 71.43 84.00 35.29 49.70
Avg 81.02 79.18 71.00 73.23

This analysis suggests the possibility of distinguishing the type of bite based on the
kind of food tested. As expected, by training and testing data acquired by a single
subject (albeit randomly) the different algorithms developed, encouraging results
are achieved both in the analysis of jaw movements and facial expressions. Discrete
outcomes, due to the lack of a more significant number of available data, also come
out in the bite classification.
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Chapter 7

Conclusion and Future
Perspective

In this thesis work, a feasibility study on the combination of facial sEMG recording
and ATC approach was proposed to recognize facial gestures.

The first part of the analysis focused on the movements to be performed, the cor-
responding musculature involved, and the sensors’ correct arrangement to detect
the facial sEMG signals.
As first step, jaw movements have been studied for clinical and rehabilitative in-
terest, including coughing and the action of talking up to the inclusion of facial
expressions. The ATC technique has been applied to post-processed sEMG signals
in order to assess if an event-driven processing is suitable for identifying facial ges-
tures.

Once the feasibility of an ATC-based facial network has been confirmed, it has
been necessary to establish an experimental protocol in order to collect data from
different individuals, thus obtaining a sufficiently large dataset useful to properly
describe a sample of population. Therefore, after the approval of the experimental
procedure by University of Study of Torino’s bioethics committee, the acquisition
campaing has been launched.

The test involved 21 subjects, 16 males and 5 females (with ages between 24 and 39
years old), which had to repeat a sequence of 8 gestures. In particular, movements
to be performed by each subject were the following: mouth opening, mouth closing,
bite, cough, wink, smile, scowl, and talking. sEMG signals were collected from the
right emiface investigating some masticatory muscles and mimics ones: anterior
temporal, masseter, digastric, zygomaticus major, and corrugator supercilii. After
correctly preparing the skin, taking into account its condition or length of beard in
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male subjects, sensors were positioned on the face of interest areas for the sEMG
acquition.

Considering the number of performed gestures, and their nested information re-
lated to the acquisition channels, the use of Artificial Intelligence (AI) algorithm
has been identified has the proper way to achieved facial recognition reaching suit-
able performance. Offline ML analysis has been performed by implementing four
algorithms: Random Forest, k-NN, Artificial Neural Networks, and Support Vector
Machine.

In the first phase, all gestures performed during the acquisition protocol have been
classified. Both biting and chewing have been included in one class, and no bite
diversification was made based on the food tested. All algorithms have reached
a similar success rate greater than 60%. Therefore, in order to improve average
recognition accuracy by up to 75%, the not well recognized movements, like cough
and talking, movements that had a strong influence on models predictive ability,
have been eliminated from the available dataset.

With the aim of moving towards a future clinical application, only the jaw move-
ments have been classified, eliminating the recording channels not interested in
these gestures. As a result, an overall accuracy of close to 80 % has been achieved.

A further step regarded the possibility to distinguish the type of bite and the re-
duced gestures. It was impossible to classify the different bites using the entire
dataset because the amount of data associated to this movement is quite limited
(not being one of the main task during acquisition protocol). However, a pre-
liminary version based and strengthened on a single subject has been proposed,
achieving encouraging results with an accuracy score greater than 80%.

Through the experience gained with this thesis, and having examined the current
challenges, the future developments are now introduced.

A first step will be to efficiently improve the ML algorithms predictive capacity
through a new data acquisition campaign in order to obtain a more robust dataset
and to achieved a more balanced data collection (in terms of individuals and ges-
tures). As for the desire to distinguish bites based on their different intensity and
characteristics, a proper guideline for next tests will be to record this movement as
standalone.

Indeed, changes will be made to the defined experimental protocol, trying to op-
timize the acquisition features for the most critical recognized gestures, and in-
creasing the resting time from one movement to another to avoid muscle fatigue
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and make movements repetition more comfortable. Another important point, in
order to ensure the acquisition of good quality signals, is to establish more specific
criteria for inclusion in the experiment, such as requiring male subjects to shave
their faces if necessary.

Finally, after optimizing the ML algorithms, an embedded implementation can be
realized to design a wearable system capable of acquiring the sEMG signals from
face muscles and classifying related gestures in real-time application.

In conclusion, advancing towards speech recognition by identifying keywords and
establishing new muscles could open the door to new applications.
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