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Abstract 

The development of automated driving systems is raising new challenges for passengers safety. One 

of the reasons is that the driver and the passengers can engage in a wider range of activities. Thus, their 

posture varies more from what is nowadays considered to be conventional. Being less expensive, finite 

element methods are used to investigate new crash scenarios, including those in which passengers are 

sitting in non-conventional positions. However, positioning a human body model in a non-conventional 

posture is a very demanding process. The combination of machine learning and artificial intelligence 

allows to reduce the order of a model, thus drastically lowering both time and computing effort. This 

paper aims at making a reduced-order model of the THUMS in order to reduce the time for positioning 

it. With the intention of doing so, four reduced-order sub-models are combined into one model. Each 

sub-model controls a limb and requires a specific database. Testing is required on the sub-models and 

the merged model. Both the database and the testing samples are computed using full finite element 

simulations. The reduced-order model should eventually allow human body model positioning in a few 

minutes, with a precision nearly as close as a full finite element simulation. 

Keywords: Human Body Model Positioning, Reduced Order Model, Machine Learning, Artificial Intelligence, 

Automated Driving Systems 
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Preface 

Vinayak V. Dixit et al. [1] described a challenging future for the automotive industry: “Autonomous 

vehicles are predicted to be transformative, with a potential to improve productivity, reduce congestion 

and improve safety. However, there are many safety and risk related unknowns associated with the 

autonomous vehicles, with regards to factors affecting disengagements and driver behaviour, at 

moments requiring manual resumption of vehicle control. The ultimate success of automated vehicles 

will depend on drivers’ trust in them and on how people choose to use and interact with them, and the 

ensuing safety risk”. 

Scenario 

The introduction of autonomous vehicles in the automotive panorama is raising new challenges. 

Given the fierce competition, manufacturers need to timely develop new products in order to answer 

these challenges. Therefore, whoever detains the faster procedure has a winning advantage over other 

companies. When it comes to vehicle safety, new challenges are arising from the widened range of 

activities the occupant can engage in. Extensive testing is then required. Nowadays Finite Element (FE) 

simulations are used to predict physical test results and reduce the number of physical mock-ups required 

to solve a problem. Among the many FE simulations used, full crash test simulations are very important, 

but also very demanding to perform. The process of setting up a crash simulation requires many steps. 

Positioning the Human Body Model (HBM) is one of the fundamental passages. Since it is 

conventionally performed by running a full FE simulation, it is a very demanding step. In this work, the 

Total Human Model for Safety version 4.1 (THUMS) [2] is used. Positioning this HBM with a full FE 

simulation requires on average 6 hours and a half, using 64 cores (Intel® Xeon Scalable Processors Gold 

6130 2.10GHz). 

Purpose 

This thesis work aims at searching for alternative ways to position the THUMS in order to reduce 

the requirements for both computing power and time. The solution proposed is to follow the steps of 

Noriyo Ichinose et al. [3] and attempt replicating the work presented at the Automotive CAE Grand 

Challenge 2020 Carhs conference. The procedure generates a Reduced Order Model (ROM) for 

predicting the results of a positioning simulation in under a minute on the user personal computer. This 

model is thought such to allow postures not commonly tested, such as those in which the occupant is 

using a phone. 

Roadmap 

In Figure 1 the main steps followed to develop the work are schematically represented. The first one 

is to familiarize with the tools already available, such as PIPER Tools [4]. This latter is then used in step 
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2 to set a target position used as a reference to better understand which Degrees of Freedom (DoFs) are 

required for moving the entire THUMS. The following steps, except the last one, are aimed at generating 

a ROM capable of positioning this HBM. Firstly, it is important to determine what is the range of motion 

of the DoFs free to move (step 3). Then comes designing and computing the database (step 4). Therefore, 

as suggested by Noriyo Ichinose [3], the THUMS is divided into 4 sub-models, each one describing a 

limb. This subdivision allows to reduce the database size and maintain the prediction quality. Each 

model has a unique database and each sample point in the database corresponds to a full FE positioning 

simulation. Once the database is computed, the machine is trained, meaning that, thanks to specific 

algorithms, relations between all samples are computed (step 5). These relations allow the machine to 

predict new poses. Testing is then performed in two stages: in the first one (step 6) each ROM is 

individually tested to evaluate the said predictions. After all models are merged (step 7), the second 

stage of testing is performed (step 8). This last is carried out to verify that no problems arise from the 

merging step. Once both verification stages are successful, in the last step, an attempt is made to obtain 

the target position to prove the effectiveness of this new methodology (step 9). However, it is important 

to notice that the boundaries of the ROM are much stricter than those of a full FE simulation. 

Consequently, the range of possible positions is narrower. 

For technical difficulties, it was not possible to complete the entire procedure: the last three steps are 

missing. 

 

Figure 1. Work roadmap 
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Chapter 1: Literature Review 

An extensive literature review was carried out before starting the thesis work to understand the 

current state of the art on vehicle safety. This review mainly focused on human body models, crash tests 

and simulations, autonomous vehicles and their implications on driver and passenger behaviour, and 

machine learning. The reason why only a few topics are presented in this chapter is that most of them 

are related to procedures learnt or tools used throughout the work. 

1.1 Nominal Posture 

In this work, the “nominal posture” is the dummy posture described by Euro NCAP in their MPDB 

Frontal Impact Testing Protocol [5]. For the purpose of this review, the reader is invited to focus on the 

following requirements (in brackets the paragraph number of the said protocol): 

• “The driver’s upper arms shall be adjacent to the torso as far as is possible” (§ 6.4.1); 

• “The driver’s back shall be in contact with the seat back and the centre line of the dummy 

shall be lined up with the centre line of the seats” (§ 6.4.2); 

• “The dummy’s H-point shall be within a square of ±13mm in Z and ±13mm in X of a point 

20mm upward and 20mm forwards of the H-point as determined in Section 6.1” (§ 6.4.3); 

• “The driver’s hands shall have their palms placed against the steering wheel at a position 

of a quarter to three” (§ 6.4.7); 

• “The upper legs shall be in contact with the seat cushion as far as possible” (§ 6.4.9); 

• “The driver dummy’s right foot shall rest on the undepressed accelerator pedal with the heel 

on the floor” (§ 6.4.10); 

• “If a dedicated foot-rest is present, place the left foot fully on this rest providing a normal 

seating position can still be achieved” (§ 6.4.10). 

Any position that does not comply with the EURO NCAP protocol is referred to as Out Of Position 

(OOP). 

1.2 Autonomous Vehicles 

In this work, “Autonomous Vehicles” (AVs) are any vehicle fitted with any Driving Automation 

Systems (DAS) or Technology, defined as “the hardware and software that are collectively capable of 

performing part or all of the dynamic driving tasks (DDT) on a sustained basis” [6]. Notice that not all 

AVs can perform the entire DDT, whereas, by the definition given, all vehicles capable of performing 

at least one DDT autonomously are AVs. As recommended by SAE International, vehicles that can 

perform the entire DDT on a sustained base are called Automated Driving Systems (ADS). When 

referring to an ADS it is important to define the DDT Fallback and the Operational Design Domain 

(ODD). The first is defined as the response of the user or the system in order to perform a DDT or 
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achieve a minimal risk condition after a failure or exiting ODD, whereas ODD indicates the conditions 

under which a DAS is specifically designed to function. 

1.2.1 Automation Levels 

Vehicles are classified depending on their ability to perform DDT without the intervention of a driver. 

SAE International, in [6], suggests the following six automation levels. 

Level 0 – No Driving Automation: the driver is required to perform all DDT, even if the vehicle is 

enhanced by active safety systems; 

Level 1 – Driver Assistance: either the lateral or longitudinal vehicle motion control task of the DDT 

can be performed by a DAS in a specific ODD; 

Level 2 – Partial Driving Automation: both the lateral and longitudinal vehicle motion control task 

of the DDT can be performed by a DAS in a specific ODD; the driver is expected to complete Object 

and Event Detection and Response (OEDR) subtasks; 

Level 3 – Conditional Driving Automation: an ADS is capable of performing the entire DDT, in a 

specific ODD; the driver is still expected to be ready to take control as the DDT fallback-ready user; 

Level 4 – High Driving Automation: an ADS can perform the entire DDT and DDT fallback, in a 

specific ODD, without any expectations from the user; 

Level 5 – Full Driving Automation: an ADS can perform the entire DDT and DDT fallback, no 

longer specifically to an ODD. 

In Table 1 the reader can find a schematic representation of the six levels proposed. Notice that all 

but level 0 are AVs, whereas only level 3, 4 and 5 are ADS. As previously stated, this work focuses on 

a level 3 vehicle, in which a dashboard as the one commonly fitted in cars today is still required. 
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Table 1. Automation Levels [6] 
L

ev
el

 
Name DDT DDT 

fallback 

ODD 

Sustained 

lateral and 

longitudinal 

vehicle 

motion 

OEDR 

Driver performs part of all the DDT 

0 No Driving Automation Driver Driver Driver n/a 

1 Driver Assistance 
Driver and 

System 
Driver Driver Limited 

2 Partial Driving Automation System Driver Driver Limited 

ADS performs the entire DDT (while engaged) 

3 Conditional Driving Automation System System 
Fallback-

ready user 
Limited 

4 High Driving Automation System System System Limited 

5 Full Driving Automation System System System Unlimited 

 

1.2.2 Non Driving Related Activities 

With the introduction of level 3 AVs, drivers can stop paying attention to traffic conditions and 

engage in other activities. In 2017 Sofia Jorlöv et al [7] carried out a survey to understand public 

perception of ADS. The paper suggests a link between trust in an ADS, journey length, activities and 

seats arrangement. This last one is not of interest, since a level 3 AVs is considered to be fitted with a 

conventional vehicle configuration to allow the driver to take control of the vehicle at all times. On the 

other hand, it was suggested that, only when the driver fully trusts the vehicle, they engage in other 

activities. 

Assume now the driver trusts ADS: the length of the journey is the second most influencing 

parameter on activities. The results of the Sofia Jorlöv et al [7] survey are shown in Figure 2. Participants 

aged 18 or older are given two scenarios: short and long drive. Participants under 18 are given only the 

long scenario. The short drive is referred to as the interviewee last drive to work, whereas the long drive 

as the interviewee family trip to their summer house. As shown in Figure 2, longer activities (such as 

watching a movie or playing a game) are preferred on a longer journey. The population of this survey is 

small, thus limiting the possibility of generalizing the results.  
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Figure 2. Activities in a level 5 AVs [7] 

On the steps of the Swedish research, Matthew P. Reed et al. [8] [9] designed a wider survey to 

attempt a better estimation of activities in ADS. Both papers are focused on the behaviour of front-seat 

passengers in conventional vehicles, as it is considered to be the best predictor of AVs future activities. 

The methodology was the same for both surveys: cameras recording the front passenger of several 

vehicles for a prolonged period. Later, specific frames are analysed from each journey to quantify the 

front passenger posture and activity. 

In Table 2 the results of [8] are shown. The paper reports that passengers are mostly looking out the 

windshield or the passenger window. On the other hand, the most frequent interaction is talking to the 

driver. Other activities relevant to this review are: using the phone (9.9%), eating or drinking (4.8%) 

and resting (1.1%). 

Table 2. Interaction Frequencies [8] 

Percent [%] Behaviour 

56.9 Talking 

22.9 Nothing 

13.4 Other 

9.9 Phone 

3.1 Food 

1.7 Drink 

1.1 Resting 
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Results presented in [9], reported in Table 3, are taken from a video survey more recent that the one 

in [8]. The use of the phone has more than doubled: 26.4% against 9.9% of  Table 2. Nevertheless, the 

most common interaction is still talking to the driver (46.0%), whereas activities like eating, drinking or 

resting are much less common. Matthew P. Reed et al. also highlight a correlation between trip length 

and type of activity: the longer the trip, the more frequent using the phone or resting. However, longer 

trips are less frequent. However, when trying to adapt the results to an ADS scenario, the paper suggests: 

“In this scenario, the already common interaction with handheld devices might replace some or all of 

the conversation time” [9]. 

Table 3. Passenger interaction frequencies [9] 

Percent [%] Behaviour 

46.0 Talking to other occupants 

26.4 Phone 

25.9 Nothing 

5.7 Other 

3.2 Food 

2.2 Resting 

1.6 Drink 

 

1.2.3 Type of Crash 

In an ADS, if a passenger does not realize they are about to crash, at the time of the impact they are 

still engaged in their activity. Thus, a key factor is understanding what caused the accident and what 

happened inside the car just before the collision. 

In literature, multiple statistics report the type of crash ADS were involved in [1] [10] [11]. Most 

incidents are of a small entity and mainly consist of ADS being rear-ended by a conventional vehicle, 

as shown in Figure 3. The main cause is that ADS breaking manoeuvre is often too abrupt for a human 

driver. Therefore, the conventional vehicle driver fails to brake in time. Another risk, as pointed out by 

Vinayak V. Dixit et al. [1], is automatic disengagement of ADS, without enough time for the driver to 

properly take control of the vehicle. Both these types of problems have low frequency and are likely to 

be solved in the future. 

On the other hand, even if not frequent, accidents caused by faulty object detection or faulty vehicle 

state estimation are more likely to keep happening. To try predicting the passenger behaviour crashes 

involving level 2 AVs are taken into account because their use resembles the one of a level 3 AV. Some 

drivers, due to an excessive trust in the DAS fitted to their level 2 AVs, engage in other activities as if 

they were in an ADS. In these conditions, some accidents have occurred. Police reports state that in all 

cases the driver activated all DAS available and engaged in other activities [12] [13] [14] [15]. At the 
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time of the crash, all drivers were still engaged in their activities and did not realize the imminent threat. 

Police confirmed that the root cause is excessive trust in AVs and failure in object detection. The 

postures proposed in the following paragraph are based on the assumption that in a crash involving level 

3 AV the driver is still engaged in their activity. 

 

Figure 3. Comparison between crashes involving ADS and normal crashes [11] 

1.3 Target Posture 

Since in an ADS the driver becomes a passenger, as suggested by Matthew P. Reed et al. [9], the 

front-seat passenger behaviour is the best predictor for future activities in high automation level vehicle. 

To find front-passenger postures and activities, Lijiang (Lee) Zhang et al. [16] carried out an interview 

in 2004. However, the results are in contrast to what has been revealed by video surveys. Another 

approach is to use traffic cameras data [17]. However, only the upper body could be analysed, thus the 

results are limited and not relevant to this work.  

Matthew P. Reed et al. video surveys [8] [9] are the most detailed and comprehensive research work 

found. Considering all of the assumptions previously made and analysing the data of both research 

papers, two positions are analysed in detail: the first one (position 1) being one of the most frequent 

postures, the second one (position 2) being an interesting case that could increase in popularity. 

Both positions share some features. The first one is a slightly rotated pelvis, typical of a more relaxed 

position. Then, the lower limbs are spread apart: the femur-tibia plane is tilted outwards for the left leg 

and inwards for the right leg. Figure 4-a is used as a reference for the lower limbs. The driver’s feet are 

resting on the floor. The right upper limb is in contact with the door armrest. However, in position 1 

only the right elbow rests on the armrest, whereas in position 2 the entire forearm is resting on it. The 

left upper limb is interacting with the phone: in the first case the elbow is resting on the left armrest, the 
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phone is on the left-hand side of the passenger and the head is tilted downwards and to the left as if he 

or she were looking at the phone screen. As a reference consider the arms positions in Figure 4-a. 

Meanwhile, in the second case, the phone is near the ear as if the driver were on a call, similarly to 

Figure 4-b. The end results are shown in Figure 5: position 1 on the left and position 2 on the right. In 

Appendix A the reader can find the inputs given in PIPER Tools to position both cases. 

 

  
(a) (b) 

Figure 4. Reference positions: a) reference for a relaxed position, lower limbs position and position 1 phone 

use; b) reference for position 2 phone use [9] 

  
(a) (b) 

Figure 5. Target positions: a) position 1; b) position 2 
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1.4 Positioning Procedures 

The original position of the THUMS, shown in Figure 6, generally needs to be repositioned to comply 

with either crash test protocols (e.g.: nominal posture described on page 1) or to reach the desired OOP. 

To do so, the literature suggests three different methods: one based on FE simulation (hereinafter 

referred to as “Classical Procedure”), one based on interpolation and one based on machine learning 

(ML). 

  
(a) (b) 

Figure 6. THUMS original position: a) isometric view, b) top view 

 

1.4.1 Classical Procedure 

The classical procedure runs a full FE simulation to obtain the desired end position. Loads or 

displacements are applied to some HBM parts to move it [18]. For example, in Figure 7 it is shown how 

loads are applied to extend an arm or to lower one foot. This method is the most used one because it is 

easy to set up and it provides good results. The reason why is its ability to account for all contacts 

between internal organs without the need for user actions. On top of that, the final result is not affected 

by the presence of inverted elements. Nevertheless, this method can be time-consuming for large models 

(as THUMS) and it can lead to some artefacts. These last are because typical biomechanical initial 

strains and stresses in tissues are not accounted for. Consider Figure 8, the deformation one the HBM 

belly is an artefact due to the lack of information on how the belly soft tissues should deform. Moreover, 

defining the target position is a challenge without the correct programs. PIPER Software or OASYS 

Primer [19] have specific tools to easily position an HBM and visualize a preview without having to run 
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any simulation. These tools then automatically apply loads and prescribed motions needed in a 

positioning simulation to the HBM. Since PIPER Software is not a Pre-Processor, the files generated 

for the motion have to be edited to include the HBM itself. On the other hand, OASYS Primer is a Pre-

Processor, thus no additional passages are needed. More details on the positioning tool of PIPER 

Software in [20]. Instead, more details on OASYS Primer are available on their website [19]. 

  
(a) (b) 

Figure 7. Example of load for HBM repositioning sequence: a) force applied to extend arm; b) force applied 

to lower one foot 

 

Figure 8. Positioning simulation artefacts on HBM belly [18] 

1.4.2 PIPER Tools Smoothing 

The second method is based on interpolating algorithms to reconstruct the HBM mesh and counteract 

excessive deformations and artefacts of a positioning simulation [18]. The only tool found that allows 

such reconstruction is PIPER Software, thanks to its “Smoothing Module”. The interpolation performed 

is based on radial basis functions and Dual Kriging Formulation. An example of how powerful this tool 

can be is shown in Figure 9. More details are available in [21]. 

Smoothing does not account for contact interaction between internal organs [18]. It repositions only 

the nodes without considering their relations (i.e.: to which element they belong) because Kriging is a 
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meshless approach. The positioning process does not require a full FE simulation, but it does not 

simulate the sliding of internal tissues. On the contrary, it does account for biomechanical motion limits. 

On the positive side, the procedure does require less computational power, thus it can be performed 

on a personal computer. However, as suggested in [22], it still takes a lot of time. Smoothing cannot be 

done on a global scale, it needs to be broken down into small steps, each one smoothing one part of the 

HBM. For each step, PIPER Software asks to select the part to be smoothed and the area around it. The 

undeformed area is used as a reference to set up Kriging and radial basis functions. Consequently, a 

skilled user is required to select the right portion of the HBM and the right reference. 

  
(a) (b) 

Figure 9. PIPER Software Smooth Module results: a) before smoothing, b) after smoothing [18] 

1.4.3 Reduced Order Model 

To reduce the time needed for positioning, this method uses the advantages of ML and Artificial 

Intelligence (AI) to quickly predict the result of a full positioning simulation. To generate a Reduced 

Order Model (ROM) there are different ways. Goustan Bacquaert et al. [23] describes model reduction 

as a process “based on the observation that the solution of many physical problems can be approximated 

on a low-dimensional manifold which is embedded in the high dimensional space spanned by the 

model’s degrees of freedom”. Therefore, a ROM predicts the results of a problem by combining data 

from a database with a partial solution to the problem. Working with ROM involves two steps [24]: 1) 

training; 2) testing. Training involves decomposing and compressing (reducing) a database and 

computing convergence indicators. In this phase, information is analysed and relations are generated to 

create data patterns. Testing, on the other hand, requires reconstructing the model (predict a solution), 

comparing the prediction with a reference and checking the database for redundancies and correlations. 

Testing allows evaluating the quality of the patterns found. At last, some quality indicators are defined 

to quantify how accurate the prediction is with respect to a full FE simulation. 

This positioning method needs a database and a ROM. Generally, to create a database the Classical 

Procedure is used. As previously stated, there are different ways to generate a ROM. In this review, only 
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two are considered. The first is Goustan Bacquaert et al. [23] methodology. They worked on the 

THUMS, creating a subspace from a pool of 21 training positioning simulations (2121 snapshots 

collected). Despite a rather small pool, they obtained good predictions, thanks to techniques such as 

gappy data completion and neighbourhood regularization. They claim that the ROM has information on 

limbs, head and torso motions. 

The second methodology is the one developed by Noriyo Ichinose et al. [3]. They used CADLM 

Lunar software to handle the database and generate a ROM. Their model has already gone through more 

than one iteration. The first one has a database of 158 simulations. A single ROM is used to predict the 

entire THUMS. However, despite a high accuracy, in the predicted model there are some penetrations 

between different parts. This deeply affected the performance in a crash simulation. To solve this 

problem, in the second iteration, for each limb one ROM was developed. The prediction from each ROM 

is then merged with the others. Results are more accurate and no penetrations are found. On the 

downside, the database was resampled and it is now composed of only 40 simulations. 

The merged prediction presents a maximum displacement error of 1.5% and a maximum nodal 

coordinate error around 3 mm. In the testing position, the maximum displacement error is in the right 

shoulder region and only 1% of the nodes are 3 mm or more away from their reference position. The 

project managed to allow only limbs movements. Noriyo Ichinose et al. claim that for each position to 

17 seconds are needed for a prediction. The research group said that development is still going on and 

that soon also spine and head movements will be available.  
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Chapter 2: Generating a ROM 

This chapter focuses on the steps needed to train the machine, thus generating a ROM. As Noriyo 

Ichinose et al. [3] did, four different ROMs are generated, one per limb. Thus, four different databases 

are computed and four models are created. Consequently, four different testing procedures are needed 

as well as one for checking the merged solution. The testing phase methodology is described more in 

depth in Chapter 3. 

2.1 Roadmap 

In reference to Figure 1 steps from 3 to 9 are broken down into more details in Figure 10, to allow a 

better understanding of the procedure. Since one ROM is generated per limb, steps from 3 to 7 are 

repeated four times. The very first action is finding to which DoFs allow freedom and to what extension 

(step 3). This is done by trial and error, using PIPER Software. Since the dynamics in PIPER Software 

can diverge from those in a positioning simulation, all limits are verified with a full FE simulation. 

Based on the limits found, Design of Experiment (DOE) methodologies are used to generate specific 

sample points (step 4). As a result of doing this, the subspace of each limb is properly described. A full 

positioning simulation corresponds to each sample point. To prepare each simulation, PIPER Software 

and a Pre-Processor are used. The procedure is described in more details on page 8. The results of each 

simulation are then checked for compliance with the input given in PIPER Software (step 5). 

The database is then imported into the CADLM Lunar environment as the training set. For each limb, 

a ROM is computed (step 6) and tested (step 7). The Classical Procedure is again used to generate the 

testing sample. If the prediction is not accurate enough, first other interpolation methods are tested and 

then, if the new results are still not acceptable, the database is enlarged. Once the results are acceptable, 

the model is merged with the other models (step 8). To do so, the nodal displacements of each prediction 

are superimposed. The total displacement is then applied to each node in order to compute the new 

coordinates. The results of this process are tested to verify if problems occurred in the merging step (step 

9). This double verification allows to clearly identify whether there is a problem with the merging 

process or with the error tolerances accepted per limb. If all tests are successful, the prediction is 

considered to be accurate enough to be used instead of a positioning simulation. 
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Figure 10. Detailed roadmap to generate the THUMS ROM 

2.2 Tools 

The following computer programs are used: 

• PIPER Software v1.1.0 to position the THUMS and generate the positioning script files; 

• HyperMesh 2019 to prepare the THUMS; 

• LS PrePost v4.7.20 to prepare the positioning simulation using PIPER Software positioning 

script files; 

• Lunar v4.1.0.0 to design the experiments and elaborate the positioning simulation output for 

generating a ROM; 

• MATLAB 2020b to combine all ROM predictions; 

• HyperView 2019 to test each ROM and the final prediction. 

The tools used and procedure followed in PIPER Software and LS PrePost are the very same as those 

used in the Classical Procedure. More details can therefore be found on page 8. HyperMesh on the other 

hand is used to remove all parts from the THUMS that are not of interest. For example, consider the left 

upper limb database: all parts not belonging to the left arm are removed, as shown below in Figure 11 – 

a. The FE model obtained is then used in the positioning simulation instead of the full THUMS. This 
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substitution allows reducing computational requirements and improving the ROM prediction. Lunar is 

used both for designing the database sub-space and for reducing the model itself, as explained later on. 

More information on Lunar can be found in [25]. A MATLAB script is used to combine the predicted 

displacement and apply it to the nodal coordinates. Lastly, in HyperView bones volume, nodal 

displacements and nodes coordinates are compared, to evaluate the prediction accuracy in relation to the 

simulation results. 

  
(a) (b) 

  

(c) (d) 
Figure 11. THUMS used for: a) left upper limb database; b) right upper limb database; c) left lower limb 

database; d) right lower limb database 
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2.3 Database 

As previously stated, four different databases were generated. However, the same procedure was 

used for all of them. 

The first step is to decide which DoFs to allow. The best compromise between computational effort 

and motion freedom is 4 DoFs per limb: each subspace is then 4-dimensional. As shown in Figure 12, 

both upper limbs have 3 rotational DoFs on the shoulder and 1 rotational DoF on the elbow, whereas 

the lower limbs have 3 rotational DoFs on the hip and 1 rotational DoF on the knee. 

The next step is identifying the motion limits. Table 4 reports the values of these limits. Where 

possible, the right and the left side have symmetrical joint angles. Since in a joint there is generally one 

of the 3 DoFs more important than the others, this joint is allowed a wider motion range. The other limits 

are then computed according to the elliptical subspace described by the 3 DoFs. For example, consider 

the left shoulder subspace: the most important motion is the rotation around y-axis; x-axis and z-axis 

maximum rotations are then set in order to not alter the maximum y rotation. Due to the fact that PIPER 

Software positioning dynamics may differ from the dynamics in a full FE simulation, all limits are also 

tested by running simulations: 16 simulations in total are run for this verification. All limits resulted as 

feasible. 

 

Figure 12. DoFs used for the database: 3 on each shoulder, 1 on each elbow, 3 on each hip, 1 on each knee 
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Table 4. Lunar parameters with corresponding PIPER joints and limits 

Lunar Parameter Corresponding PIPER Joint 
Limits 

Minimum Maximum 

L_shoulder_x left_glenohumeral (rx) -20° +15° 

L_shoulder_y left_glenohumeral (ry) -30° +30° 

L_shoulder_z left_glenohumeral (rz) -25° +25° 

L_elbow_y left_humeroradial (ry) -30° +30° 

L_hip_x left_hip (rx) -30° -10° 

L_hip_y left_hip (ry) -30° +30° 

L_hip_z left_hip (rz) -5° +15° 

L_knee_y left_knee (ry) -30° +30° 

R_shoulder_x right_glenohumeral (rx) -15° +20° 

R_shoulder_y right_glenohumeral (ry) -30° +30° 

R_shoulder_z right_glenohumeral (rz) -25° +25° 

R_elbow_y right_humeroradial (ry) -30° +30° 

R_hip_x right_hip (rx) +11° +30° 

R_hip_y right_hip (ry) -30° +30° 

R_hip_z right_hip (rz) -14° +5° 

R_knee_y right_knee (ry) -30° +30° 

 

To describe each limb subspace, DoE methodologies are used to describe the sample space. In this 

phase, CADML Lunar DoE tool is used. Each subspace is described by 8 samples, thus a total of 32 

samples. The number of samples is set by balancing computational effort and expected prediction 

accuracy.  

According to the most recent DoE theory [26], there are just a few options available to describe a 4-

dimensional space with such a low number of points. Latin HyperCube method is considered to be the 

best fit. For the purpose of understanding this methodology, consider a 2 DoFs experiment with 4 

samples. The subspace is divided into 16 squares. The 4 samples are then placed so that for each column 

and row there is only one sample. A possible solution is shown in Figure 13. More details on Latin 

HyperCube sampling methodology are available at [26]. Since this methodology does not consider 

possible correlations between samples, Lunar offers a modified Latin HyperCube algorithm to reduce 

the said correlations, called “Improved Latin HyperCube”. This algorithm also positions the samples to 

describe all DoFs limits [27]. The reason for this is that Lunar uses interpolating ML techniques, thus it 

requires all limits of the subspace to be fully described. 
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Figure 13. 2 DoFs, 4 points Latin Hypercube sampling distribution 

To compute the database, for each sample a full FE simulation is run. The Classical Procedure 

described on page 8 is used. However, removing all limbs except one reduces the number of constraints 

on the body, thus the torso nodes move more than what they are supposed to. To counteract this 

excessive motion, SPC boundary constraints are applied on both shoulders and hips, as shown in Figure 

14.  

  

  
(a) (b) (c) (d) 

Figure 14. Boundary constraints to prevent unwanted motions: a) right upper limb database SPC 

configuration; b) left upper limb database SPC configuration; c) right lower limb database SPC configuration; d) 

left lower limb database SPC configuration 

The joints controlled in PIPER Software are listed in Table 4. A CADLM Lunar DoF corresponds to 

each joint. The DoFs in Lunar follow a naming convention in which the first letter corresponds to the 

side of the body (R for right and L for left), between underscores the body part is named and the last 

two letters indicate the rotational axis. For example, “L_shoulder_x” controls the x rotation of the PIPER 

joint “left_glenohumeral”. The complete list of sample points and inputs used in PIPER Software are 

available in Appendix B. The reader is invited to notice that to avoid any uncontrolled motion all of the 

joints in a limb are controlled even if not listed in Table 4. All joints not listed in the said table are set 

0 x1 1 
0 

x2 

1 
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to 0 so that no motion occurs where none is wanted. For example, in the left lower limb 4 parameters 

are set as DoFs (i.e.: L_hip_x, L_hip_y, L_hip_z, L_knee_y) whereas, in PIPER Software a total of 9 

joints is controlled: left_hip_rx, left_hip_ry, left_hip_rz, left_knee_ry, left_knee_rx, left_knee_rz, 

left_ankle_joint_rx, left_ankle_joint_ry, left_ankle_joint_rz. Only the first four are varied, whereas all 

of the others are set to zero.  

2.4 Interpolation 

Once the database is computed, since results were not accurate enough, three different interpolation 

methods are used to predict a new posture: 

1) Clustering, with d3plots as inputs; 

2) Clustering, with only nodal displacements as inputs; 

3) InvD, with d3plots as inputs. 

The first method is the only one to reduce the model order. This methodology classifies into clusters 

all information from the database and then evaluates a function to express the relations between clusters 

[27], [28]. The prediction is then a product of the said functions, therefore all clusters are influencing 

the interpolated point. In CADLM Lunar, clustering is used in the following formulation: 

• Solver: clustering; 

• Number of cluster: 0 (default value, corresponds to 2 clusters); 

• Interpolation method: RBF (radial basic function). 

This method allows to directly generate d3plots, which can then be used to export the new geometry 

in any post-processor. In this work, LS-PrePost is used. 

The second approach attempts to reduce the size of data that need to be processed, thus removing all 

mesh information and interpolate only nodal displacements. Also in this second method clustering is 

used. However, using kriging to express the relations between clusters improves the prediction accuracy. 

In CADLM Lunar, the formulation used is: 

• Solver: clustering; 

• Number of Clusters: 0 (default value, corresponds to 2); 

• Interpolation method: kriging; 

• Basis function: constant; 

• Stationary: h2. 

Each limb requires three separate interpolations, one for the displacement on x-axis, one for the 

displacement on y-axis and one for the displacement on z-axis. The predictions are then composed to 

obtain the total displacement. Finally, since no d3plot is generated, an extra step is required to compute 

new nodal coordinates and import them into the original geometry. MATLAB scripts are used for these 

steps. 
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The last interpolation method does not reduce the model order. It is based on inverse distance 

weighting, a multivariate interpolation method with a set of known points [27], [29]. To evaluate an 

unknown point, a weighted average is computed considering the number of clusters (also known as 

neighbours). There is more than one way to compute the weighted average, the most common is 

Shepard’s method. In CADLM Lunar, the formulation used is: 

• Solver: InvD; 

• Neighbours: 3. 

This approach also directly generates d3plots. Therefore, any post-processor is then needed to export 

the new geometry. LS-PrePost is again used for this purpose. 
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Chapter 3: Results 

Testing not only evaluates the accuracy of the prediction but also defines model usability. As 

suggested by Noriyo Ichinose et al. [3] work, nodal displacements, nodal coordinates, bones volumes 

and penetration between parts are the main parameter considered for the evaluation of the prediction. 

However, the testing phase is not complete, therefore penetrations between parts have not been 

thoroughly checked. Since the predictions have not been merged, the second stage of testing has not 

been performed at all. Consequently, the positioned THUMS is not usable yet. 

A key feature to understand if the machine is not overtrained on a set is to use a testing set with more 

than one posture and to guarantee that none of these lasts coincides with a training sample. 

Consequently, each model is tested with 2 different positions, of which none is part of the training 

database and at least one per limb has not been used in the training phase to reduce the prediction error. 

In Table 5 the parameters used for testing each model are listed. Notice, that similarly to the procedure 

described for the database on page 16, in PIPER all DoFs of each limb are controlled to avoid any 

uncontrolled motion and reduce variability. 

Table 5. Testing set parameters 

Test ROM Parameter Position 1 Position 2 

Right Upper Limb 

R_Shoulder_x 12° 20° 

R_Shoulder_y -25° -9° 

R_Shoulder_z -6° 25° 

R_Elbow_y 30° 30° 

Left Upper Limb 

L_Shoulder_x -20° 15° 

L_Shoulder_y 19° 30° 

L_Shoulder_z -25° 25° 

L_Elbow_y 17° 30° 

Right Lower Limb 

R_Hip_x 11° 30° 

R_Hip_y -30° 19° 

R_Hip_z -11° -14° 

R_Knee_y -30° 27° 

Left Lower Limb 

L_Hip_x -30° -13° 

L_Hip_y -11° -18° 

L_Hip_z -5° 12° 

L_Knee_y 30° -26° 
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3.1 Comparison Methodology 

As said before, three parameters are used to evaluate the accuracy of each prediction: nodal 

displacements, nodal coordinates and bones volume. For each parameter, an error is defined as described 

below.  

3.1.1 Nodal Displacement 

For each node, a vector describing the total displacement is defined. To compare the accuracy of the 

prediction, the reference nodal displacement (the one computed with full FE simulation) is subtracted 

from the predicted nodal displacement. To compute a relative error, the magnitude of the said difference 

is divided by the maximum magnitude of the reference nodal displacement, as shown in equation (1), 

where 𝑑𝑝𝑟𝑑 is the predicted nodal displacement and 𝑑𝑟𝑒𝑓 is the reference nodal displacement. The results 

are then plotted on the predicted mesh and statistically analysed to understand the overall performance. 

 𝐸𝑅𝑅𝑑𝑖𝑠𝑝 =
|𝑑𝑝𝑟𝑑 − 𝑑𝑟𝑒𝑓|

max|𝑑𝑟𝑒𝑓|
 (1) 

Notice that some nodes have null displacement, thus dividing by |𝑑𝑟𝑒𝑓| instead of max|𝑑𝑟𝑒𝑓| would 

yield to either an undetermined or impossible expression. 

3.1.2 Nodal Coordinates 

Nodal coordinates are also treated as vectors. The error is computed as the difference between the 

predicted coordinate, �⃗⃗�𝑝𝑟𝑑, and the reference one, �⃗⃗�𝑟𝑒𝑓, as shown in equation (2). The error magnitude 

is then plotted on the predicted model and statistically analysed to understand the overall performance.  

 𝐸𝑅𝑅𝑐𝑜𝑟𝑑 = |�⃗⃗�𝑝𝑟𝑑 − �⃗⃗�𝑟𝑒𝑓| (2) 

Notice that the error is not expressed in relative quantities. However, when reading these results is 

important to remember that a THUMS element length is between 3 to 5mm. Moreover, the nodal 

coordinates error must always be considered with the nodal displacement relative error, to understand if 

the error is biased by a positioning error or if the mesh has lost too much quality. 

3.1.3 Bones Volume 

Theoretically, bones volume should not change because of their material properties. However, in the 

full FE simulations, small variations do occur. These can become bigger in the prediction. Moreover, 

bones volume also highlights is there are unrealistic deformations in the model. The relative error is 

computed as shown in equation (3) 
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 𝐸𝑅𝑅𝑣𝑜𝑙 =
|𝑉𝑝𝑟𝑑 − 𝑉𝑟𝑒𝑓|

𝑉𝑟𝑒𝑓
 (3) 

where 𝑉𝑝𝑟𝑑  is the bone predicted volume and 𝑉𝑟𝑒𝑓 is the bone original volume. 

3.2 Comparison with Reference 

Before looking into the results, it is interesting to notice the time required by each model to learn the 

database and then compute a prediction. The first model, since it has to decompose the model, has the 

longest training time and consequently the longest time to a prediction, called positioning time in Table 

6. On the other hand, the second method, since it just interpolates, it does not require preliminary 

training. However, due to technical difficulties, precise time measurements are not available. Each 

positioning required around 2 minutes each. Lastly, the third method is faster than the first, as shown in 

Table 7. On average the third method has faster training times: on average 6 minutes and 35 seconds 

against 8 minutes and 10 seconds for a ROM. Positioning times are closer: 1 minute 35 seconds for a 

ROM meanwhile an InvD interpolation takes 1 minute and 20 seconds. 

 

Table 6. Reduced Order Model training and positioning times 

Model Training time Positioning time 

Left Upper Limb 8 min 10.665 s 1 min 38 s 

Right Upper Limb 7 min 31.499 s 1 min 30 s 

Left Lower Limb 8 min 18.285 s 1 min 40 s 

Right Lower Limb 8 min 32.219 s 1 min 42 s 

 

 

Table 7. InvD interpolation training and positioning times 

Model Training time Positioning time 

Left Upper Limb 6 min 32.679 s 1 min 27 s 

Right Upper Limb 6 min 31.124 s 1 min 29 s 

Left Lower Limb 6 min 45.891 s 47 s 

Right Lower Limb 6 min 26.966 s 1 min 25 s 
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3.2.1 ROM 

The overall performance of this methodology is poor. As can be seen in Table 8, the predicted nodal 

displacement has generally a large relative error. The maximum error is 53.87 %, whereas the mean 

relative error is 18.83%. 

In most cases, also parts that are supposed to be constrained seem to have some displacement. This 

is highlighted by the contour and the bar graphs in Appendix C. The reason for the said displacements 

is a scaling effect that resizes the model, or parts of it, as shown in Figure 15. The bones volume gives 

an idea of how much a model is scaled: most bones have a smaller volume than their reference. Using 

the relations between predicted and reference bones volume one could be tempted to rescale the entire 

model. However, this solution has two major flaws: the first is that, as shown in Figure 15 – a, if only 

part of the model is scaled, it is difficult to describe the smooth transition between scaled and not-scaled 

parts. The second flaw is the need for a reference for each positioning since the scaling factor is not 

constant. 

CADLM has declared that the scaling effect is as of now a problem of the Lunar commercial 

software, linked to the failure definition of some materials. They also declared that this issue is being 

fixed, thus, in a future release, the scaling factor should no longer be present. 

Table 8. Relative Error statistical analysis 

Limb 

Po
sit

io
n 

# Minimum 

Relative Error 

[%] 

Maximum 

Relative Error 

[%] 

Average 

Relative Error 

[%] 

Standard Deviation 

Relative Error 

[%] 

Right Upper Limb 1 0.05 76.00 19.88 11.42 

Right Upper Limb 2 0.09 74.95 39.16 21.18 

Left Upper Limb 1 0 7.27 0.30 0.95 

Left Upper Limb 2 0 52.51 0.94 4.73 

Right Lower Limb 1 0.07 57.80 20.01 11.33 

Right Lower Limb 2 0.05 59.04 27.59 13.99 

Left Lower Limb 1 0.05 66.95 27.13 14.18 

Left Lower Limb 2 0.05 36.40 15.62 8.27 

Average 0.05 53.87 18.83 10.76 
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(a) (b) 

Figure 15. Comparison between reference model (blue) and predicted model (red): a) only the left arm is 

upscaled; b) the entire model is downscaled 

 

 

 

3.2.2 Nodal Displacements Interpolation 

In the second methodology, the displacement prediction has greatly improved as shown by the values 

in Table 9. Although the maximum relative error has increased on average, both the standard deviation 

and the mean value have decreased respectively to 9.05 % and 3.29 %. This, along with the contour 

plots and bar graphs in Appendix D, proves that most nodes are much closer to their reference. 

Nevertheless, all predictions present unrealistic deformations in the limbs, like the example shown 

in Figure 16. Moreover, as shown in Figure 17, also well-predicted parts, such as the torso, have very 

low quality because of penetrations between parts. The root cause of these penetrations is that this 

interpolation model does not have any information on the existing relations between all nodes: there are 

no rules for reconstructing the mesh. Consequently, even a small error deeply alters the mesh quality 

because it can result in penetration between two parts. This methodology, however, helps to prove that 

without decomposing the model, there is no scaling factor affecting the prediction. 
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Table 9. Relative Error statistical analysis 

Limb 

Po
sit

io
n 

# Minimum 

Relative Error 

[%] 

Maximum 

Relative Error 

[%] 

Average 

Relative Error 

[%] 

Standard Deviation 

Relative Error 

[%] 

Right Upper Limb 1 0 83.91 2.60 7.03 

Right Upper Limb 2 0 95.11 2.18 8.40 

Left Upper Limb 1 0 28.32 1.05 3.05 

Left Upper Limb 2 0 111.90 2.69 10.90 

Right Lower Limb 1 0 76.16 5.76 13.28 

Right Lower Limb 2 0 89.49 5.52 14.12 

Left Lower Limb 1 0 68.96 3.98 9.39 

Left Lower Limb 2 0 35.13 2.53 6.26 

Average 0 73.62 3.29 9.05 

 

 

 
Figure 16. Example of excessive bad prediction: in red unrealistic deformations; in green visible penetrating 

part 
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(a) (b) 

 
Figure 17. Example of penetration: a) right muscle penetrating the torso skin; b) reference 

3.2.3 InvD Interpolation 

The last methodology has the best performance, despite still presenting values for the maximum error 

on average higher than the first methodology, as can be seen in Table 10. However, the average error 

decreases furthermore to 2.62% as well as the standard deviation (8.31 %). This accuracy increase is the 

result of having apparently solved not only the scaling problem but also both the unnatural deformations 

and the penetration. Contour plots and bar graphs in Appendix E confirm the previous statement.  

On the downside, as highlighted by the contour plots in Appendix E, the accuracy lowers in the limbs. 

As shown in Figure 18, the cause for this is the difficulty for the prediction to match the position given 

as input. Consider wanting an angle of 20° on the elbow, the prediction is not capable of matching the 

request, thus the smaller angle at the elbow would be smaller. The effect of this angular mistake 

accentuates at the tips of the limbs.  

Since InvD only interpolates, without any order reduction, the model generated extrapolates less 

information from a single sample. The database used is therefore too little to provide an accurate 

prediction.  
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Table 10. Relative Error statistical analysis 

Limb 

Po
sit

io
n 

# Minimum 

Relative Error 

[%] 

Maximum 

Relative Error 

[%] 

Average 

Relative Error 

[%] 

Standard Deviation 

Relative Error 

[%] 

Right Upper Limb 1 0 69.06 1.74 7.37 

Right Upper Limb 2 0 60.28 1.55 6.72 

Left Upper Limb 1 0 48.57 1.10 5.14 

Left Upper Limb 2 0 76.25 1.36 7.13 

Right Lower Limb 1 0 72.68 4.24 11.87 

Right Lower Limb 2 0 74.11 4.35 11.40 

Left Lower Limb 1 0 32.10 2.59 5.99 

Left Lower Limb 2 0 64.47 4.05 10.84 

Average 0 62.19 2.62 8.31 

 

 

 

 

Figure 18. Angle difference on the right arm: predicted model in red; reference model in blue 
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Conclusion 

Positioning an HBM is a demanding process in terms of both time and computing power. Considering 

the corresponding costs, it is understandable that developing new safety features in cars can be limited 

also by the number of occupant positions manufacturers test. Therefore, reducing the costs of positioning 

an HBM can enlarge the possibilities for developers in the vehicle safety field. 

As discussed previously, there is more than one approach to position an HBM, however, the ML-

based one has proven to be the quickest. This work tries to replicate one of the ML-based methodologies. 

Despite not being finished for technical difficulties, it is already possible to analyse some benefits and 

drawbacks of developing such a methodology. 

On the bright side, the improvements that each iteration have brought to the work are a sign that a 

good result can be achieved. If this should actually be the case, the entire positioning sequence would 

take less than 15 minutes in total on the user’s personal computer. The trade-off is reducing the fidelity 

with the human body. Depending on the application this loss can be acceptable or not. In any case, 

having set the target maximum relative error to 3 %, most applications can use the predicted model, as 

long as there are no penetrations between parts. With future improvements of the interpolating 

algorithms, the prediction usability will become bigger and bigger. 

On the less bright side, the creation of this model requires a lot of resources. Up to this stage of the 

development, to create the database and test the predictions a total of 56 simulations were run: 16 to test 

the limbs limits, 32 to compute the database sample and 8 to compute the testing set. However, since 

the database is not big enough, the total number of simulations must be increased. Moreover, the testing 

set is very limited and it does not manage to characterize the entire prediction subspace, increasing 

furthermore the number of simulations required. Ultimately, considering the resources required until 

now, creating such a model could result in a financial loss if a company does not need to position the 

HBM often. A way of making this ML-approach more affordable and increase its usage is by sharing 

the database and the interpolating algorithms. One way to do so is by integrating this methodology in a 

computer program already widely spread among users, like PIPER Software. This not only makes the 

model available to a wider range of users, but it can also yield to develop a model reduction specific to 

the HBM, thus further improving the machine performance. 

Another point of weakness of this work is the testing set used. It is not big enough to characterize the 

machine performance over the entire subspace. Therefore, the performance is evaluated only where the 

worst conditions are thought to be. However, it is not verified if in better conditions the machine 

effectively performs better. To properly validate the model, testing must be performed more extensively. 

A good practice would be subdividing the subspace and characterize with at least one test each region 

and map the subspace with the results obtained. 
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To sum up, ML is a tool that in the right hands has great potential. Like all tools, it requires dedication 

and time to develop the right experience to obtain good results. On top of that, ML must be used 

carefully. With the loss of accuracy, a ROM could end up not satisfying the quality requirements of a 

job, yielding inaccurate results. A lot of resources have to be spent not only in creating the model but 

also in training developers on ML. A small company can lack the resources to invest in the development 

of this model. Sharing not only the HBM but also its ROM could benefit a lot of users, allowing quicker 

development in a field as important as vehicle safety. 
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Appendix A Positioning input for target positions 

 Position 1 

 Pelvis Rotation 

Reference Frame rx [°] ry [°] rz [°] k 

W_Origin_to_B_pelvic_Skeleton 0.0 10.0 0.0 5e+9 

 Lower Limbs 

Joints rx [°] ry [°] rz [°] k 

Left_hip -15.0 5.0 13.0 1e+9 

Left_knee 0.0 15.0 0.0 1e+9 

Right_hip 10.0 9.0 -20.0 1e+9 

Right_knee 0.0 -10.0 0.0 1e+9 

 Right Upper Limb 

Joints rx [°] ry [°] rz [°] k 

Right_glenohumeral -29.0 25.0 -1.0 1e+9 

Right_humeroradial 10.0 0.0 10.0 1e+9 

Right_radiocarpal_joint 58.0 -1.0 0.0 1e+8 

Landmarks x [mm] y [mm] z [mm] k 

shoulderlr * 203.8 * 1e+8 

 Left Upper Limb 

Joints rx [°] ry [°] rz [°] k 

Left_ humeroradial 0.0 20.0 0.0 1e+8 

Left_radiocarpal_joint 15.0 -23.0 5.0 1e+8 

Landmarks x [mm] y [mm] z [mm] k 

Lateral_epicondyle_of_left_humerus * -302.9 81.1 1e+8 

wrist_circuml * -270.1 72.3 1e+8 

 Head 

Reference Frame rx [°] ry [°] rz [°] k 

Pelvic_frame_to_B_Skull -10.0 -20.0 -10.0 1e+8 

* parameter not controlled. 
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 Position 2 

 Pelvis Rotation 

Reference Frame rx [°] ry [°] rz [°] k 

W_Origin_to_B_pelvic_Skeleton 0.0 10.0 0.0 5e+9 

 Lower Limbs 

Joints rx [°] ry [°] rz [°] k 

Left_hip -15.0 5.0 13.0 1e+9 

Left_knee 0.0 15.0 0.0 1e+9 

Right_hip 10.0 9.0 -20.0 1e+9 

Right_knee 0.0 -10.0 0.0 1e+9 

 Right Upper Limb 

Joints rx [°] ry [°] rz [°] k 

Right_glenohumeral -9.0 -29.0 15.0 1e+8 

Right_humeroradial 0.0 -55.0 0.0 1e+9 

Right_radiocarpal_joint 6.0 18.0 -26.0 1e+8 

Landmarks x [mm] y [mm] z [mm] k 

upperarmr_proximal * * 262.5 1e+8 

Lateral_epicondyle_of_right_humerus * 267.2 289.3 1e+8 

 Left Upper Limb 

Joints rx [°] ry [°] rz [°] k 

Left_ humeroradial 0.0 42.0 -15.0 1e+9 

Left_radiocarpal_joint -18.0 -22.0 -1.0 1e+8 

Left_glenohumeral 24.0 3.0 7.0 1e+9 

Landmarks x [mm] y [mm] z [mm] k 

wrist_circuml * -347.4 126.0 1e+8 

* parameter not controlled. 
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Appendix B Database Positions 

Right Upper Limb 

Table 11. Right Upper Limb Database: PIPER Software inputs 

 Shoulder Elbow Wrist 
Joint Righ_glenohumeral Right_humeroradial Right_radiocarpal_joint 
DoF rx ry rz rx ry rz rx ry rz 

Position 1 10 13 4 0 -30 0 0 0 0 
Position 2 20 -13 -11 0 4 0 0 0 0 
Position 3 -5 -30 11 0 -13 0 0 0 0 
Position 4 0 30 -25 0 -21 0 0 0 0 
Position 5 15 21 -4 0 -4 0 0 0 0 
Position 6 -10 -4 -11 0 30 0 0 0 0 
Position 7 5 4 25 0 13 0 0 0 0 
Position 8 -15 -21 18 0 21 0 0 0 0 

 

 

Figure 19. Right Upper Limb Database: Principal Component Analysis Plot 

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  



Appendix B: PIPER Software Input Targets for Database Generation 
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Position 1 Position 2 Position 3 

   

Position 4 Position 5 Position 6 

  
Position 7 Position 8 

Figure 20. Right Upper Limb Database: Positioning Simulation Results 



Appendix B: PIPER Software Input Targets for Database Generation 
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Left Upper Limb 

Table 12. Left Upper Limb Database: PIPER Software inputs 

 Shoulder Elbow Wrist 
Joint Left_glenohumeral Left_humeroradial Left_radiocarpal_joint 
DoF rx ry rz rx ry rz rx ry rz 

Position 1 5 13 4 0 -30 0 0 0 0 
Position 2 15 -13 -18 0 4 0 0 0 0 
Position 3 -10 -30 11 0 -13 0 0 0 0 
Position 4 -5 30 -25 0 -21 0 0 0 0 
Position 5 10 21 -4 0 -4 0 0 0 0 
Position 6 -15 -4 -11 0 30 0 0 0 0 
Position 7 0 4 25 0 13 0 0 0 0 
Position 8 -20 -21 18 0 21 0 0 0 0 

 

 

Figure 21. Left Upper Limb Database: Principal Component Analysis Plot 

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  



Appendix B: PIPER Software Input Targets for Database Generation 
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Position 4 Position 5 Position 6 

  
Position 7 Position 8 

Figure 22. Left Upper Limb Database: Positioning Simulation Results 



Appendix B: PIPER Software Input Targets for Database Generation 
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Right Lower Limb 

Table 13. Right Lower Limb Database: PIPER Software inputs 

 Hip Knee Ankle 
Joint Righ_hip Right_knee Right_ankle_joint 
DoF rx ry rz rx ry rz rx ry rz 

Position 1 25 13 -3 0 -30 0 0 0 0 
Position 2 30 -13 -11 0 4 0 0 0 0 
Position 3 16 -30 0 0 -13 0 0 0 0 
Position 4 19 30 -14 0 -21 0 0 0 0 
Position 5 27 21 -6 0 -4 0 0 0 0 
Position 6 14 -4 -9 0 30 0 0 0 0 
Position 7 22 4 5 0 13 0 0 0 0 
Position 8 11 -21 2 0 21 0 0 0 0 

 

 

Figure 23. Right Lower Limb Database: Principal Component Analysis Plot 

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  

    

    

    

    

    

 
 

  



Appendix B: PIPER Software Input Targets for Database Generation 
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Position 4 Position 5 Position 6 
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Figure 24. Right Lower Limb Database: Positioning Simulation Results 
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Left Lower Limb 

Table 14. Left Lower Limb Database: PIPER Software inputs 

 Hip Knee Ankle 
Joint Left_hip Left_knee Left_ankle_joint 
DoF rx ry rz rx ry rz rx ry rz 

Position 1 -16 13 6 0 -30 0 0 0 0 
Position 2 -10 -13 -2 0 4 0 0 0 0 
Position 3 -24 -30 9 0 -13 0 0 0 0 
Position 4 -21 30 -5 0 -21 0 0 0 0 
Position 5 -13 21 4 0 -4 0 0 0 0 
Position 6 -27 -4 1 0 30 0 0 0 0 
Position 7 -29 4 15 0 13 0 0 0 0 
Position 8 -30 -21 12 0 21 0 0 0 0 

 

 

Figure 25. Left Lower Limb Database: Principal Component Analysis Plot 
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Figure 26. Left Lower Limb Database: Positioning Simulation Results 
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Appendix C ROM Test Results 

Right Upper Limb Position 1 

 

 
  

 (a) (b) (c) 
Figure 27. Right Upper Limb Position 1, nodal displacement relative error plots: a) front view; b) iso view; c) 

top view 

 

Figure 28. Right Upper Limb Position 1, nodal displacement relative error bar graph 

Table 15. Right Upper Limb Position 1, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.045 % 

Maximum 75.999 % 

Average 19.8836 % 

Standard Deviation 11.4171 % 
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Figure 29. Right Upper Limb Position 1, nodal coordinates error bar graph 

Table 16. Right Upper Limb Position 1, nodal coordinates error statistical analysis 

 Value 

Minimum 0.0731 mm 

Maximum 122.6990 mm 

Average 32.1066 mm 

Standard Deviation 18.4345 mm 

 

Table 17. Right Upper Limb Position 1, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Humerus 8.48 e+04 5.58 e+04 34.19 

Radius 1.93 e+04 1.08 e+04 44.15 
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Right Upper Limb Position 2 

 

  
 

 (a) (b) (c) 
Figure 30. Right Upper Limb Position 2, nodal displacement relative error plots: a) front view; b) iso view; c) 

top view 

 

Figure 31. Right Upper Limb Position 2, nodal displacement relative error bar graph 

Table 18. Right Upper Limb Position 2, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.088 % 

Maximum 74.951 % 

Average 39.1575 % 

Standard Deviation 21.1823 % 
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Figure 32. Right Upper Limb Position 2, nodal coordinates error bar graph 

Table 19. Right Upper Limb Position 2, nodal coordinates error statistical analysis 

 Value 

Minimum 0.2893 mm 

Maximum 339.3010 mm 

Average 128.1903 mm 

Standard Deviation 69.3443 mm 

 

Table 20. Right Upper Limb Position 2, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Humerus 8.48 e+04 2.21 e+04 73.93 

Radius 1.93 e+04 5.51 e+03 71.44 
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Left Upper Limb Position 1 

 

   
 (a) (b) (c) 

Figure 33. Left Upper Limb Position 1, nodal displacement relative error plots: a) front view; b) iso view; c) 

top view 

Figure 34. Left Upper Limb Position 1, nodal displacement relative error bar graph 

Table 21. Left Upper Limb Position 1, nodal displacement relative error statistical analysis 

 Value 

Minimum 0 

Maximum 7.271 % 

Average 0.3033 % 

Standard Deviation 0.9525 % 
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Figure 35. Left Upper Limb Position 1, nodal coordinates error bar graph 

Table 22. Left Upper Limb Position 1, nodal coordinates error statistical analysis 

 Value 

Minimum 0 

Maximum 19.2249 mm 

Average 0.8086 mm 

Standard Deviation 2.5152 mm 

 

Table 23. Left Upper Limb Position 1, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Humerus 8.48 e+04 9.26 e+04 9.23 

Radius 1.93 e+04 2.20 e+04 14.17 
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Left Upper Limb Position 2 

 

   
 (a) (b) (c) 

Figure 36. Left Upper Limb Position 2, nodal displacement relative error plots: a) front view; b) iso view; c) 

top view 

 

Figure 37. Left Upper Limb Position 2, nodal displacement relative error bar graph 

Table 24. Left Upper Limb Position 2, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.0 

Maximum 52.506 % 

Average 0.9395 % 

Standard Deviation 4.7309 % 
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Figure 38. Left Upper Limb Position 2, nodal coordinates error bar graph 

Table 25. Left Upper Limb Position 2, nodal coordinates error statistical analysis 

 Value 

Minimum 0 

Maximum 222.5605 mm 

Average 3.9924 mm 

Standard Deviation 20.0481 mm 

 

Table 26. Left Upper Limb Position 2, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Humerus 8.48 e+04 1.11 e+05 31.28 

Radius 1.93 e+04 4.32 e+04 124.16 

 

 

 

 

 

 

 

                             

 

  

  

  

  

   

 
  

  
  

  
  

  
  

  
  

   
 



Appendix C: ROM Test Results 
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Right Lower Limb Position 1 

 

 
  

 (a) (b) (c) 
Figure 39. Right Lower Limb Position 1, nodal displacement relative error plots: a) front view; b) iso view; 

c) top view 

 

Figure 40. Right Lower Limb Position 1, nodal displacement relative error bar graph 

Table 27. Right Lower Limb Position 1, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.073 % 

Maximum 57.803 % 

Average 20.0093 % 

Standard Deviation 11.3278 % 
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Figure 41. Right Lower Limb Position 1, nodal coordinates error bar graph 

Table 28. Right Lower Limb Position 1, nodal coordinates error statistical analysis 

 Value 

Minimum 0.5361 mm 

Maximum 426.0171 mm 

Average 147.4807 mm 

Standard Deviation 83.4851 mm 

 

Table 29. Right Lower Limb Position 1, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Femur 4.04 e+05 8.78 e+04 78.24 

Tibia 2.36 e+05 6.05 e+04 74.32 

 

 

 

 

 

                             

 

 

  

  

  

  

 
  

  
  

  
  

  
  

  
  

   
 



Appendix C: ROM Test Results 
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Right Lower Limb Position 2 

 

   
 (a) (b) (c) 

Figure 42. Right Lower Limb Position 2, nodal displacement relative error plots: a) front view; b) iso view; 

c) top view 

 

Figure 43. Right Lower Limb Position 2, nodal displacement relative error bar graph 

Table 30. Right Lower Limb Position 2, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.052 % 

Maximum 59.044 % 

Average 27.5857 % 

Standard Deviation 13.9872 % 
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Figure 44. Right Lower Limb Position 2, nodal coordinates error bar graph 

Table 31. Right Lower Limb Position 2, nodal coordinates error statistical analysis 

 Value 

Minimum 0.2868 mm 

Maximum 355.9212 mm 

Average 151.1325 mm 

Standard Deviation 76.6262 mm 

 

Table 32. Right Lower Limb Position 2, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Femur 4.04 e+05 8.43 e+04 79.10 

Tibia 2.36 e+05 6.62 e+04 71.89 

 

 

 

 

 

                             

 

 

  

  

  

  

  

 
  

  
  

  
  

  
  

  
  

   
 



Appendix C: ROM Test Results 
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Left Lower Limb Position 1 

 

 
 

 

 (a) (b) (c) 
Figure 45. Left Lower Limb Position 1, nodal displacement relative error plots: a) front view; b) iso view; c) 

top view 

 

Figure 46. Left Lower Limb Position 1, nodal displacement relative error bar graph 

Table 33. Left Lower Limb Position 1, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.053 % 

Maximum 66.949 % 

Average 27.1337 % 

Standard Deviation 14.1752 % 

 

                  

 

 

  

  

  

  

  

 
  

  
  

  
  

  
  

  
  

   
 



Appendix C: ROM Test Results 
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Figure 47. Left Lower Limb Position 1, nodal coordinates error bar graph 

Table 34. Left Lower Limb Position 1, nodal coordinates error statistical analysis 

 Value 

Minimum 0.1983 mm 

Maximum 258.5615 mm 

Average 101.6327 mm 

Standard Deviation 53.0915 mm 

 

Table 35. Left Lower Limb Position 1, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Femur 4.04 e+05 1.68 e+05 58.49 

Tibia 2.36 e+05 9.03 e+04 61.69 
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Left Lower Limb Position 2 

 

 
 

 

 (a) (b) (c) 
Figure 48. Left Lower Limb Position 2, nodal displacement relative error plots: a) front view; b) iso view; c) 

top view 

 

Figure 49. Left Lower Limb Position 2, nodal displacement relative error bar graph 

Table 36. Left Lower Limb Position 2, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.050 % 

Maximum 36.398 % 

Average 15.6222 % 

Standard Deviation 8.2745 % 
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Figure 50. Left Lower Limb Position 2, nodal coordinates error bar graph 

Table 37. Left Lower Limb Position 2, nodal coordinates error statistical analysis 

 Value 

Minimum 0.2594 mm 

Maximum 203.9590 mm 

Average 81.8356 mm 

Standard Deviation 43.3417 mm 

 

Table 38. Left Lower Limb Position 2, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Femur 4.04 e+05 2.02 e+05 50.04 

Tibia 2.36 e+05 1.36 e+05 42.15 
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Appendix D Displacements Interpolation Test Results 

Right Upper Limb Position 1 

 

 
  

 (a) (b) (c) 
Figure 51. Right Upper Limb Position 1, nodal displacement relative error plots: a) front view; b) iso view; c) 

top view 

 

Figure 52. Right Upper Limb Position 1, nodal displacement relative error bar graph 

Table 39. Right Upper Limb Position 1, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.0 

Maximum 83.9052 % 

Average 2.5963 % 

Standard Deviation 7.0321 % 
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Figure 53. Right Upper Limb Position 1, nodal coordinates error bar graph 

Table 40. Right Upper Limb Position 1, nodal coordinates error statistical analysis 

 Value 

Minimum 0.0 

Maximum 135.4421 mm 

Average 4.1910 mm 

Standard Deviation 11.3514 mm 

 

Table 41. Right Upper Limb Position 1, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Humerus 8.48 e+04 6.02 e+04 29.03 

Radius 1.93 e+04 6.95 e+04 260.07 
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Right Upper Limb Position 2 

 

 
  

 (a) (b) (c) 
Figure 54. Right Upper Limb Position 2, nodal displacement relative error plots: a) front view; b) iso view; c) 

top view 

 

Figure 55. Right Upper Limb Position 2, nodal displacement relative error bar graph 

Table 42. Right Upper Limb Position 2, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.0 

Maximum 95.1086 % 

Average 2.1821 % 

Standard Deviation 8.3988 % 
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Figure 56. Right Upper Limb Position 2, nodal coordinates error bar graph 

Table 43. Right Upper Limb Position 2, nodal coordinates error statistical analysis 

 Value 

Minimum 0.0 mm 

Maximum 311.2051 mm 

Average 7.1400 mm 

Standard Deviation 27.4816 mm 

 

Table 44. Right Upper Limb Position 2, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Humerus 8.48 e+04 5.36 e+04 36.75 

Radius 1.93 e+04 6.19 e+04 220.62 
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Left Upper Limb Position 1 

 

 

 
 

 (a) (b) (c) 
Figure 57. Left Upper Limb Position 1, nodal displacement relative error plots: a) front view; b) iso view; c) 

top view 

Figure 58. Left Upper Limb Position 1, nodal displacement relative error bar graph 

Table 45. Left Upper Limb Position 1, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.0 

Maximum 28.3197 % 

Average 1.0491 % 

Standard Deviation 3.0472 % 
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Figure 59. Left Upper Limb Position 1, nodal coordinates error bar graph 

Table 46. Left Upper Limb Position 1, nodal coordinates error statistical analysis 

 Value 

Minimum 0.0 

Maximum 75.8402 mm 

Average 2.7723 mm 

Standard Deviation 8.0528 mm 

 

Table 47. Left Upper Limb Position 1, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Humerus 8.48 e+04 5.91 e+04 30.32 

Radius 1.93 e+04 7.33 e+04 279.78 
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Left Upper Limb Position 2 

 

 
  

 (a) (b) (c) 
Figure 60. Left Upper Limb Position 2, nodal displacement relative error plots: a) front view; b) iso view; c) 

top view 

 

Figure 61. Left Upper Limb Position 2, nodal displacement relative error bar graph 

Table 48. Left Upper Limb Position 2, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.0 

Maximum 111.8986 % 

Average 2.6927 % 

Standard Deviation 10.8984 % 
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Figure 62. Left Upper Limb Position 2, nodal coordinates error bar graph 

Table 49. Left Upper Limb Position 2, nodal coordinates error statistical analysis 

 Value 

Minimum 0.0 

Maximum 472.0048 mm 

Average 11.3583 mm 

Standard Deviation 45.9712 mm 

 

Table 50. Left Upper Limb Position 2, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Humerus 8.48 e+04 7.94 e+03 90.64 

Radius 1.93 e+04 8.99 e+04 365.93 
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Right Lower Limb Position 1 

 

 
 

 

 (a) (b) (c) 
Figure 63. Right Lower Limb Position 1, nodal displacement relative error plots: a) front view; b) iso view; 

c) top view 

 

Figure 64. Right Lower Limb Position 1, nodal displacement relative error bar graph 

Table 51. Right Lower Limb Position 1, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.0 

Maximum 76.1586 % 

Average 5.7635 % 

Standard Deviation 13.2814 % 
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Figure 65. Right Lower Limb Position 1, nodal coordinates error bar graph 

Table 52. Right Lower Limb Position 1, nodal coordinates error statistical analysis 

 Value 

Minimum 0.0 mm 

Maximum 560.7662 mm 

Average 42.4373 mm 

Standard Deviation 97.7930 mm 

 

Table 53. Right Lower Limb Position 1, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Femur 4.04 e+05 4.60 e+04 88.59 

Tibia 2.36 e+05 8.44 e+05 257.97 
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Right Lower Limb Position 2 

 

   
 (a) (b) (c) 

Figure 66. Right Lower Limb Position 2, nodal displacement relative error plots: a) front view; b) iso view; 

c) top view 

 

Figure 67. Right Lower Limb Position 2, nodal displacement relative error bar graph 

Table 54. Right Lower Limb Position 2, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.0 

Maximum 89.4935 % 

Average 5.5214 % 

Standard Deviation 14.1171 % 
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Figure 68. Right Lower Limb Position 2, nodal coordinates error bar graph 

Table 55. Right Lower Limb Position 2, nodal coordinates error statistical analysis 

 Value 

Minimum 0.0 mm 

Maximum 471.3772 mm 

Average 29.0820 mm 

Standard Deviation 74.3570 mm 

 

Table 56. Right Lower Limb Position 2, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Femur 4.04 e+05 3.78 e+05 6.26 

Tibia 2.36 e+05 7.72 e+05 227.83 
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Left Lower Limb Position 1 

 

 
 

 

 (a) (b) (c) 
Figure 69. Left Lower Limb Position 1, nodal displacement relative error plots: a) front view; b) iso view; c) 

top view 

 

Figure 70. Left Lower Limb Position 1, nodal displacement relative error bar graph 

Table 57. Left Lower Limb Position 1, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.0 

Maximum 68.9551 % 

Average 3.9786 % 

Standard Deviation 9.3942 % 
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Figure 71. Left Lower Limb Position 1, nodal coordinates error bar graph 

Table 58. Left Lower Limb Position 1, nodal coordinates error statistical analysis 

 Value 

Minimum 0.0 

Maximum 251.5472 mm 

Average 14.5138 mm 

Standard Deviation 34.2699 mm 

 

Table 59. Left Lower Limb Position 1, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Femur 4.04 e+05 3.20 e+05 20.65 

Tibia 2.36 e+05 4.95 e+05 109.90 
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Left Lower Limb Position 2 

 

  
 

 (a) (b) (c) 
Figure 72. Left Lower Limb Position 2, nodal displacement relative error plots: a) front view; b) iso view; c) 

top view 

 

Figure 73. Left Lower Limb Position 2, nodal displacement relative error bar graph 

Table 60. Left Lower Limb Position 2, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.0 

Maximum 35.1239 % 

Average 2.5302 % 

Standard Deviation 6.2588 % 
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Figure 74. Left Lower Limb Position 2, nodal coordinates error bar graph 

Table 61. Left Lower Limb Position 2, nodal coordinates error statistical analysis 

 Value 

Minimum 0.0 

Maximum 183.2019 mm 

Average 13.1974 mm 

Standard Deviation 32.6450 mm 

 

Table 62. Left Lower Limb Position 2, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Femur 4.04 e+05 4.43 e+05 9.84 

Tibia 2.36 e+05 7.71 e+05 227.26 
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Appendix E InvD Interpolation Results 

Right Upper Limb Position 1 

 

 
  

 (a) (b) (c) 
Figure 75. Right Upper Limb Position 1, nodal displacement relative error plots: a) front view; b) iso view; c) 

top view 

 

Figure 76. Right Upper Limb Position 1, nodal displacement relative error bar graph 

Table 63. Right Upper Limb Position 1, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.0 

Maximum 69.056 % 

Average 1.7389 % 

Standard Deviation 7.3693 % 
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Figure 77. Right Upper Limb Position 1, nodal coordinates error bar graph 

Table 64. Right Upper Limb Position 1, nodal coordinates error statistical analysis 

 Value 

Minimum 0.0 

Maximum 111.4902 mm 

Average 2.8071 mm 

Standard Deviation 11.8957 mm 

 

Table 65. Right Upper Limb Position 1, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Humerus 8.48 e+04 7.41 e+04 12.60 

Radius 1.93 e+04 1.48 e+04 23.38 
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Right Upper Limb Position 2 

 

   

 (a) (b) (c) 
Figure 78. Right Upper Limb Position 2, nodal displacement relative error plots: a) front view; b) iso view; c) 

top view 

 

Figure 79. Right Upper Limb Position 2, nodal displacement relative error bar graph 

Table 66. Right Upper Limb Position 2, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.0 

Maximum 60.276 % 

Average 1.5503 % 

Standard Deviation 6.7174 % 
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Figure 80. Right Upper Limb Position 2, nodal coordinates error bar graph 

Table 67. Right Upper Limb Position 2, nodal coordinates error statistical analysis 

 Value 

Minimum 0.0 mm 

Maximum 197.2918 mm 

Average 5.0727 mm 

Standard Deviation 21.9802 mm 

 

Table 68. Right Upper Limb Position 2, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Humerus 8.48 e+04 7.65 e+04 9.76 

Radius 1.93 e+04 1.68 e+04 13.14 
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Left Upper Limb Position 1 

 

   

 (a) (b) (c) 
Figure 81. Left Upper Limb Position 1, nodal displacement relative error plots: a) front view; b) iso view; c) 

top view 

Figure 82. Left Upper Limb Position 1, nodal displacement relative error bar graph 

Table 69. Left Upper Limb Position 1, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.0 

Maximum 48.5692 % 

Average 1.0958 % 

Standard Deviation 5.1390 % 
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Figure 83. Left Upper Limb Position 1, nodal coordinates error bar graph 

Table 70. Left Upper Limb Position 1, nodal coordinates error statistical analysis 

 Value 

Minimum 0.0 

Maximum 128.3531 mm 

Average 2.8959 mm 

Standard Deviation 13.5807 mm 

 

Table 71. Left Upper Limb Position 1, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Humerus 8.48 e+04 8.12 e+04 4.16 

Radius 1.93 e+04 1.81 e+04 6.32 
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Left Upper Limb Position 2 

 

   

 (a) (b) (c) 
Figure 84. Left Upper Limb Position 2, nodal displacement relative error plots: a) front view; b) iso view; c) 

top view 

 

Figure 85. Left Upper Limb Position 2, nodal displacement relative error bar graph 

Table 72. Left Upper Limb Position 2, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.0 

Maximum 76.2527 % 

Average 1.3563 % 

Standard Deviation 7.1298 % 
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Figure 86. Left Upper Limb Position 2, nodal coordinates error bar graph 

Table 73. Left Upper Limb Position 2, nodal coordinates error statistical analysis 

 Value 

Minimum 0.0 

Maximum 321.6450 mm 

Average 5.7212 mm 

Standard Deviation 30.0745 mm 

 

Table 74. Left Upper Limb Position 2, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Humerus 8.48 e+04 8.28 e+04 2.34 

Radius 1.93 e+04 1.76 e+04 8.57 
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Right Lower Limb Position 1 

 

   

 (a) (b) (c) 
Figure 87. Right Lower Limb Position 1, nodal displacement relative error plots: a) front view; b) iso view; 

c) top view 

 

Figure 88. Right Lower Limb Position 1, nodal displacement relative error bar graph 

Table 75. Right Lower Limb Position 1, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.0 

Maximum 72.6848 % 

Average 4.2403 % 

Standard Deviation 11.8698 % 
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Figure 89. Right Lower Limb Position 1, nodal coordinates error bar graph 

Table 76. Right Lower Limb Position 1, nodal coordinates error statistical analysis 

 Value 

Minimum 0.0 mm 

Maximum 535.1878 mm 

Average 31.2223 mm 

Standard Deviation 87.3990 mm 

 

Table 77. Right Lower Limb Position 1, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Femur 4.04 e+05 3.34 e+05 17.38 

Tibia 2.36 e+05 1.74 e+05 26.11 
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Right Lower Limb Position 2 

 

  
 

 (a) (b) (c) 
Figure 90. Right Lower Limb Position 2, nodal displacement relative error plots: a) front view; b) iso view; 

c) top view 

 

Figure 91. Right Lower Limb Position 2, nodal displacement relative error bar graph 

Table 78. Right Lower Limb Position 2, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.0 

Maximum 74.1069 % 

Average 4.3497 % 

Standard Deviation 11.3953 % 
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Figure 92. Right Lower Limb Position 2, nodal coordinates error bar graph 

Table 79. Right Lower Limb Position 2, nodal coordinates error statistical analysis 

 Value 

Minimum 0.0 mm 

Maximum 390.3330 mm 

Average 22.9053 mm 

Standard Deviation 60.0207 mm 

 

Table 80. Right Lower Limb Position 2, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Femur 4.04 e+05 3.72 e+05 7.86 

Tibia 2.36 e+05 2.19 e+05 6.93 
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Left Lower Limb Position 1 

 

 

 
 

 (a) (b) (c) 
Figure 93. Left Lower Limb Position 1, nodal displacement relative error plots: a) front view; b) iso view; c) 

top view 

 

Figure 94. Left Lower Limb Position 1, nodal displacement relative error bar graph 

Table 81. Left Lower Limb Position 1, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.0 

Maximum 32.0964 % 

Average 2.5905 % 

Standard Deviation 5.9857 % 
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Figure 95. Left Lower Limb Position 1, nodal coordinates error bar graph 

Table 82. Left Lower Limb Position 1, nodal coordinates error statistical analysis 

 Value 

Minimum 0.0 

Maximum 117.0874 mm 

Average 9.4503 mm 

Standard Deviation 21.8357 mm 

 

Table 83. Left Lower Limb Position 1, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Femur 4.04 e+05 3.93 e+05 2.67 

Tibia 2.36 e+05 2.09 e+05 11.48 
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Left Lower Limb Position 2 

 

  
 

 (a) (b) (c) 
Figure 96. Left Lower Limb Position 2, nodal displacement relative error plots: a) front view; b) iso view; c) 

top view 

 

Figure 97. Left Lower Limb Position 2, nodal displacement relative error bar graph 

Table 84. Left Lower Limb Position 2, nodal displacement relative error statistical analysis 

 Value 

Minimum 0.0 

Maximum 64.4700 % 

Average 4.0509 % 

Standard Deviation 10.8357 % 
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Figure 98. Left Lower Limb Position 2, nodal coordinates error bar graph 

Table 85. Left Lower Limb Position 2, nodal coordinates error statistical analysis 

 Value 

Minimum 0.0 

Maximum 336.2679 mm 

Average 21.1291 mm 

Standard Deviation 56.5176 mm 

 

Table 86. Left Lower Limb Position 2, bones volume relative error 

Bone Reference Volume 

[mm3] 

Predicted Volume 

[mm3] 

Relative Error 

[%] 

Femur 4.04 e+05 3.57 e+05 11.47 

Tibia 2.36 e+05 2.01 e+05 14.73 
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