
POLITECNICO DI TORINO
Master of Science in Automotive Engineering

Final Project

Bilby Rover autonomous mobile robot in the
context of Industry 4.0

Survey on sensor-enabled applications through Webots simulations and
implementation of Hector-SLAM algorithm for autonomous navigation

Supervisor: Candidate:
Prof. Giovanni Belingardi Alessia Valle
Co-Supervisor:
Prof. Maria Pia Cavatorta
McMaster University Supervisor:
Prof. Ishwar Singh

Academic Year 2020/2021

"O frati," dissi, "che per cento milia
perigli siete giunti a l’occidente,

a questa tanto picciola vigilia
d’i nostri sensi ch’è del rimanente

non vogliate negar l’esperïenza,
di retro al sol, del mondo sanza gente.

Considerate la vostra semenza:
fatti non foste a viver come bruti,

ma per seguir virtute e canoscenza".

D. Alighieri, Inferno, C. XXVI, vv.112-120

Abstract

In the light of Industry 4.0 revolution, the advances in information technology
like Internet of Things, Artificial Intelligence, Cloud Computing, Cyber-Physical
Systems and Big Data are changing the use and design of robots in the indus-
try. Robotics, which is a multidisciplinary field that builds on the intersection
of mechanical and electrical engineering, computer science, communication and
networking, and material technology, is undergoing dramatic developments in
recent years, as the landscape of Industry 4.0 is progressively unfolding.
This thesis stems from the collaboration with McMaster’s W Booth School of
Engineering Practice and Technology and aims at studying and simulating a model
of an autonomous mobile robot, called Bilby Rover.

The first section of the project provides a review of literature and research
related to Industry 4.0, outlining its enabling technologies, future opportunities
and implications in the field of robotics. The mobile autonomous robot Bilby
Rover is then presented in the second part, where the mechatronic description
and the kinematic model of the system are provided. Additionally, the concept
of Simultaneous Localization and Mapping (SLAM) is introduced, proposing
a summary of the state of the art of the most widely used technologies. The
third section is aimed at exploring through virtual simulations a set of potential
industrial applications of the Bilby Rover, enabled by the integrated deployment
of specific sensors: for this purpose, Webots robotic simulator is exploited. In the
view of transferring this technology into the physical robot, the last section of the
thesis is dedicated to a literature review concerning the Hector-SLAM algorithm
for Simultaneous Localization and Mapping. Thereafter, the algorithm is tested
using the Raspberry Pi single-board computer and the YDLIDAR X4 Lidar sensor,
which, for this purpose, are appropriately integrated into the open-source Robot
Operating System (ROS) framework.

iv

Contents

Introduction xii

1 Industry 4.0 1
1.1 Industrie 4.0: the fourth industrial revolution 1

1.1.1 Through the industrial revolutions 2
1.2 Building blocks of Industry 4.0 6

1.2.1 Big Data and Analytics 7
1.2.2 Autonomous Robots . 7
1.2.3 Simulation . 7
1.2.4 Horizontal and Vertical System Integration 7
1.2.5 The Industrial Internet of Things 8
1.2.6 Cybersecurity . 9
1.2.7 The Cloud . 9
1.2.8 Additive Manufacturing 9
1.2.9 Augmented Reality . 10

1.3 Industry 4.0 design principles . 10
1.3.1 Interoperability . 11
1.3.2 Virtualization . 12
1.3.3 Decentralization . 13
1.3.4 Real-time capability . 14
1.3.5 Service orientation . 14
1.3.6 Modularity . 15

1.4 Robotics: from the early stages to the IoT 16
1.4.1 The evolution of industrial robotics 17
1.4.2 Applications of Robotics in Industry 4.0 19

2 Introduction to Bilby Rover 22
2.1 Bilby Rover description . 23

2.1.1 Robotic body . 24

v

Contents Contents

2.1.2 Sensing unit . 31
2.1.3 Processing Unit . 34
2.1.4 Overall system architecture 36

2.2 SLAM . 37
2.2.1 Problem formulation . 38
2.2.2 Review of SLAM state of the art 42

3 Webots Simulations 46
3.1 Webots simulator . 48

3.1.1 Modelling . 50
3.1.2 Programming . 50
3.1.3 Simulation . 51
3.1.4 Transfer to real robots . 52

3.2 Bilby Rover modelling on Webots 53
3.3 Bilby Rover applications . 59

3.3.1 Keyboard Teleoperation 60
3.3.2 Line Following . 63
3.3.3 Lane Keeping and Object Recognition 67
3.3.4 Platooning control of a robot cluster 74
3.3.5 Obstacle avoidance control 81
3.3.6 Wall following . 86

4 Hector-SLAM implementation 92
4.1 Review of the Hector algorithm 93
4.2 SLAM implementation using ROS 96

4.2.1 Robot Operating System (ROS) 97
4.2.2 hector_slam package . 101

4.3 Hector-SLAM testing . 106
4.3.1 Hardware overview . 106
4.3.2 Software and network setup 108
4.3.3 Results and analysis . 112

Conclusions and Future Work 116

A Webots Simulations 118
A.1 Keyboard Teleoperation . 118
A.2 Line Following . 120
A.3 Lane Keeping and Object Recognition 122
A.4 Platooning control of a robot cluster 124

vi

Contents Contents

A.5 Obstacle avoidance control . 127
A.6 Wall following . 130

Acknowledgements 133

Bibliography 141

vii

List of Figures

1.1 The evolution from Industry 1.0 to Industry 4.0 (Source: Deloitte [2]) 3
1.2 The nine technological pillars of Industry 4.0 (Source: BCG [8]) . 6

2.1 Bilby Rover Autonomous Mobile Robot 22
2.2 Robot overall dimensions . 24
2.3 Exploded view of the Bilby Rover 25
2.4 Schematic of the reference frame 26
2.5 Omnidirectional wheels with peripheral rollers (Source:[30]) 26
2.6 Robot velocity diagram (Source:[30]) 28
2.7 Wheels velocity diagram (Source:[30]) 29
2.8 YDLIDAR X4 (Source: www.ydlidar.com) 31
2.9 LiDAR conceptual diagram (Source: adapted from [34]) 32
2.10 YDLIDAR X4 dimensions (Source: www.ydlidar.com) 34
2.11 Raspberry Pi Model B (Source: www.raspberrypi.org) 35
2.12 High-level system architecture . 36
2.13 Landmarks recognition . 39
2.14 Constraints generated through registration 39
2.15 SLAM uncertainty: drift in pose estimate 40
2.16 SLAM multiple loop closures . 41
2.17 SLAM architecture . 42
2.18 Overview of the 2D SLAM system 45

3.1 The four development steps in the Webots platform 49
3.2 3D view of a sample four-wheeled robot built with elementary solids 54
3.3 Webots Scene Tree and 3D Window showing a rectangular arena . 55
3.4 High-level representation of Bilby Rover nodes hierarchy 57
3.5 Low-level representation of Bilby Rover nodes hierarchy 57
3.6 Isolated components (body, LiDAR, wheels) imported into Webots 58
3.7 Bilby Rover in Webots simulator 59
3.8 General block diagram of a mobile robot teleoperation system . . 60

viii

List of Figures List of Figures

3.9 Teleoperated robot simulation on Webots 62
3.10 Webots scene for line-following simulation 64
3.11 Infrared sensors configuration (IR rays are the red lines) 65
3.12 Line-following behaviour with infrared sensors 66
3.13 Control loop for the lane-keeping task 68
3.14 Lane-keeping algorithm flowchart 68
3.15 Simplified functional diagram of smart camera (Source: [57]) . . . 70
3.16 Webots scene for lane-keeping and obstacle detection simulation . 71
3.17 Vision sensors configuration . 72
3.18 Flowchart of lane-keeping and obstacle detection algorithm 73
3.19 Webots scene with two Bilby Rover robots (leader and follower) . 75
3.20 Simplified functional diagram of a radar (Source: adapted from [64]) 76
3.21 Radar installation on the follower (frustum defined by blue lines) 77
3.22 Platooning formation . 78
3.23 Block diagram of the platooning control algorithm 80
3.24 Braitenberg Vehicles 2a, 2b, 3a, 3b (Source: [67]) 82
3.25 Webots scene for collision avoidance simulation 84
3.26 Environment scanning with Lidar sensor 85
3.27 Flowchart describing collision-avoidance algorithm 85
3.28 Ultrasonic sensor functional diagram (Source: adapted from [71]) 87
3.29 Webots scene for wall-following algorithm 88
3.30 Sensors configuration for wall-following and target identification . 89
3.31 Schematic summary of wall configurations and relative responses . 90
3.32 Flowchart describing the robot control loop 90

4.1 Bilinear filtering for Pm in the occupancy grid map (Source: [72]) 95
4.2 Asynchronous communication via topics 100
4.3 Synchronous communication via services 101
4.4 Coordinate frames for mobile platforms 103
4.5 Diagram of implemented ROS nodes and topics 105
4.6 Hardware components of the LiDAR system 107
4.7 System setup for the implementation of the Hector-SLAM algorithm107
4.8 Master-Slave configuration of the network 110
4.9 High-level representation of the distributed network process . . . 111
4.10 Drawing of the room 1 (living room) 113
4.11 Drawing of the room 2 (conference room) 113
4.12 Comparison between reference design and constructed map (room 1)114
4.13 Comparison between reference design and constructed map (room 2)115

ix

List of Tables

2.1 YDLIDAR X4 Optical parameters 33

4.1 Distance measurements . 112
4.2 Comparison between nominal and measured values (room 1) . . . 114
4.3 Comparison between nominal and measured values (room 2) . . . 115

x

Introduction

The content of this paper is closely related to the Industry 4.0 paradigm, being
framed within the major technological advances and breakthrough improvements
that the manufacturing industry is currently undergoing across the entire value
chain processes. In this regard, in Chapter 1 a literature search will be devoted
to the exploration of the origins of Industry 4.0, thus focusing on its structural
and organisational characteristics and outlining the so-called nine technological
pillars, which can be considered as its main building blocks. Given this general
background, attention is then focused on autonomous robots, highlighting the im-
plications of Industry 4.0 on robotics, which can be defined as a multidisciplinary
field that builds on the intersection of mechanical and electrical engineering,
computer science, communication and networking, and materials technology.

In this context in which robotics is undergoing dramatic developments, as the
landscape of Industry 4.0 is progressively unfolding, the aim of this project is to
study and simulate a model of an autonomous mobile robot, called Bilby Rover,
which has been designed and 3D printed by a team of students at McMaster
University. A detailed kinematic and mechatronic description of the Bilby Rover
robot will be proposed in Chapter 2, highlighting its relevant features.

As far as the content of the project is concerned, this paper can be consid-
ered having a twofold purpose, which will be addressed in two different chapters.

The first part is aimed at exploring through virtual simulations a set of po-
tential applications, enabled by the integrated installation of specific sensors,
in order to assess the suitability of the Bilby Rover to be engaged in defined
tasks, typically in industrial scenarios. For this purpose, Webots will be employed,
being a robotic simulator that offers a rapid prototyping environment for the
creation of 3D virtual worlds. In this context, the work is divided into three
macro-phases, namely modelling of the robot, which is time to time integrated with

xii

Introduction

application-specific sensors, programming, which is aimed at controlling the robot
to obtain the desired behaviour through the deployment of dedicated algorithms,
and finally simulation, to analyse the obtained results. Chapter 3 will be dedicated
to the description of different scenarios that have been simulated on Webots, high-
lighting the steps to be followed and the technologies leveraged for the specific task.

The second part is aimed at implementing the Hector-SLAM algorithm for au-
tonomous navigation. SLAM, which stands for Simultaneous Localization and
Mapping, refers to the capability of autonomous mobile robots to solve the problem
of constructing a map of an unknown environment while simultaneously keeping
track of their position within the map. The problem is not trivial, actually it is
referred to as a chicken-and-egg problem, since the robot needs to keep track of
its position to build the map, but, at the same time, a detailed knowledge of the
map is required to locate itself in it. Although several approaches are available to
solve the problem, the purpose of this project is to test the compatibility and the
performance of the Hector-SLAM algorithm, which is a software module designed
by the Technical University of Darmstadt to process distance measurements and
consequently produce both the map of an unknown environment and the trajec-
tory followed by the robotic platform. To test this algorithm, a LiDAR sensor
is employed as an indoor scanner and connected to the Raspberry Pi 4 Model B
single board computer. Such architecture is thus able to extract range information
and then send it to a remote computer, which is responsible for running the
Hector-SLAM algorithm and eventually output the desired results. To provide
such functionalities, however, the whole system must be integrated over ROS, an
open-source middleware used by the community of developers and researchers to
create robotic software. Therefore, Chapter 4 will be dedicated to the discussion
of the mathematical foundations of Hector-SLAM algorithm and to the definition
of the methodology for the execution of experiments. In this context, ROS middle-
ware will be introduced, outlining its overall functionalities and highlighting how
it is leveraged in the implementation of the Hector algorithm for simultaneous
localization and mapping. Finally, the results of mapping experiments carried
out in different environments will be proposed to assess the accuracy and the
reliability of the constructed system, in view of its integration on the Bilby Rover
robotic platform.

xiii

Chapter 1

Industry 4.0

Industrial operations worldwide are driven nowadays by global competition and
the need for rapid adaptation of production to continuously changing market
trends. These needs can be met only with radical breakthrough improvements in
the current manufacturing technology. To address these challenges, over the last
decades, a digital revolution has started in the manufacturing industry, mainly
related to the adoption of new digital tools for the management of corporate and
business processes. This phenomenon is leading to the continuous convergence
between the real and virtual world, which can be considered the main driving force
for innovation and change in all sectors of the global industrial economy. In such
a framework, the progressive consolidation of Information and Communication
Technology (ICT) and the possibility of using cutting-edge technologies to collect
an ever-growing amount of data are dramatically reshaping the concept of the
company. Hence, the first major breakthrough in industrial scenarios corresponds
to a process of high-level digitization that, in combination with Internet-based
and future-oriented technologies, leads to a new paradigm of industrial production
called Industry 4.0 [1].
The aim of this chapter is to provide an overview of Industry 4.0, outlining the
origins of this strategic initiative and its structural and organisational aspects: a
description of the main pillars and characteristic aspects will be proposed. Finally,
a focus on the robotic implications of Industry 4.0 will be proposed.

1.1 Industrie 4.0: the fourth industrial revolu-
tion

Industry 4.0 is a term used to refer to a further developmental stage in the organi-
zation and management of the entire value chain processes that the manufacturing

1

1.1. Industrie 4.0: the fourth industrial revolution Chapter 1. Industry 4.0

industry is currently undergoing [2]. The birth of this term dates back to 2011,
when a working advisory group - under an initiative promoted by the German
federal government to enhance the competitiveness in the manufacturing industry
of the country - presented the results of their work across various domains, includ-
ing Industrie 4.0, which became broadly known, especially after the launching of
the Platform Industrie 4.0 in 2013 at Hannover Messe.
Taking the German Platform Industrie 4.0 as the official reference, Industry 4.0 is
defined as the intelligent networking of machines and processes for industry with
the help of information and communication technology [3]. It is the information-
intensive transformation of manufacturing and related industries in a connected
environment of big data, people, processes, services, systems and IoT-enabled
industrial assets with the generation and utilization of actionable data and infor-
mation as a key enablers to realize smart industry and ecosystems of industrial
innovation and collaboration. In a nutshell, Industry 4.0 is a broad vision with
clear frameworks and reference architectures, mainly characterized by the bridging
of physical industrial assets and digital technologies in so-called Cyber-Physical
Systems (CPS) [4]. CPS are embedded systems with decentralized control and
advanced connectivity that are collecting and exchanging real-time information
with the goal of identifying, locating, tracking, monitoring and optimizing the
production processes [5].
Industry 4.0 has the ambition to revolutionize industry management and business
processes, leveraging on CPS, IoT, Cloud Computing and other advanced tech-
nologies to enable autonomous decision-making processes, real-time networking
of products, processes and infrastructure, and enable connected values creation
networks through vertical and horizontal integration. What makes this possible is
the availability of all the relevant information in real time thanks to the networking
of all the entities involved in the value creation process, together with the ability
to use this data to determine the optimal value stream at any given point in time
[6].

1.1.1 Through the industrial revolutions

The term Industry 4.0 is interchangeably used with the Fourth Industrial Revolu-
tion (4IR), to highlight the technological disruptive changes that affect the way
people live, work and relate to one another. Building on foundations laid by the
first three industrial revolutions, a look at the predecessors provides a perspective
to understand how manufacturing has evolved since the 1800s and the innovation
scale of Industry 4.0.

2

1.1. Industrie 4.0: the fourth industrial revolution Chapter 1. Industry 4.0

Figure 1.1: The evolution from Industry 1.0 to Industry 4.0 (Source: Deloitte [2])

The first industrial revolution spread in Britain as a result of a series of techno-
logical innovations: starting from 1760, a stream of macro-inventions, such as the
steam engine and the mechanical spinning machine, spread throughout the country,
allowing a shift from manual labour to mechanized production through the use of
steam-powered engines and water as a source of power. The steam engine, invented
by Watt in 1775, was initially used for water extraction in coalmines, thereafter
its use was extended to other sectors, especially in textiles, and eventually the
first steam locomotive was built in 1796. This also led to the extension and
improvement of the transportation network, which resulted in the reduction of
time and costs associated to the circulation of goods. The industrial revolution
marked the radical transformation of the working system, with the transition to
the modern factory system, which, by concentrating production in a dedicated
environment, allowed the control of production processes as well as the quantity
and quality of the finished product. Industrialization also entailed a massive
social change through a phenomenon of urbanization whereby the population was
concentrated in urban areas surrounding the factories.

3

1.1. Industrie 4.0: the fourth industrial revolution Chapter 1. Industry 4.0

The second industrial revolution arose in the second half of the 1800s, particularly
after 1870, in the more advanced European countries and in the United States.
It was characterized by a set of technical innovations revolving around electric-
ity, chemistry and steel, by the spread of large-scale business and standardized
production, and by the presence of large working classes. The main innovations
in technology were driven by a closer relationship between science and industry.
Among the sources of energy, the use of electricity in the industrial and civil
fields gained a major role, with the introduction of electrical networks to deliver
it. The diffusion of the American system of manufacturing also contributed to
boost the rapid development: it was an approach to work management in the
factory characterized by the sequential assembly of interchangeable pieces for the
realization of complex products, which allowed a continuous cycle processing of
single identical high quality parts. Such system is indeed the precursor of mass
production and rational work organization, which emerged at the beginning of
the 1900s and envisaged a standardization and fragmentation of the production
process through the use of electricity-powered assembly lines, paving the way for
mechanization.

The phase that began between 1950 and 1970 and that was marked by the
rise of disruptive innovations in electronics, information and communications
technology is called the third industrial evolution, or the Digital Revolution. As
with the first and second industrial revolutions, the third one was triggered by
a major technological breakthrough and by its implementation in various fields,
from industry to everyday life. A series of investments were undertaken in new
technological systems for defense after the Second World War, leading to the
invention of the transistor and the integrated circuit, up to the digital computer,
thereby contributing to the development of the third industrial revolution. A
real turnaround was achieved in the 1970s with the invention of the Intel micro-
processor, which allowed the application of automated systems in factories and
telecommunications, generating a shift from analog and mechanical systems to
digital ones. For the manufacturing industry it was an authentic qualitative leap
in production and organizational standards. Actually, continuous cycle machines,
specialized in the realization of a single product (used in the "Fordist Factory"),
were replaced by more flexible and programmable ones, able to control volumes
and characteristics of products and to elaborate, collect and transmit data. The
third industrial revolution is tightly related to the birth of computers, the spread
of robotics in production processes, connectivity and, obviously, the rise of the
Internet, which has revolutionized the way information is handled and shared.

4

1.1. Industrie 4.0: the fourth industrial revolution Chapter 1. Industry 4.0

In the past few decades, a fourth industrial revolution has emerged on the way
paved by the digital revolution. Industry 4.0 shifts the digital technology focus
of the last century to a totally new stage aided by interconnectivity through
the Internet of Things (IoT), access to real-time data, and the introduction of
Cyber-Physical Systems. Industry 4.0 offers a more encompassing, interconnected
and holistic approach to manufacturing, blurring the boundaries between physical
and digital spheres. The fourth industrial revolution brings a shift from the Inter-
net and the client-server model to a new paradigm characterized by ubiquitous
mobility, bridging of digital and physical domains, convergence of IT and OT,
and key-enabling technologies including IoT, Big Data, Cloud computing, with
additional accelerators such as advanced robotics and AI. Connecting physical
with digital, Industry 4.0 empowers business owners to better control and un-
derstand every aspect of their operation, and allows them to leverage instant
data to boost productivity, improve processes, and drive growth [4]. Although
many view Industry 4.0 as a continuation of the third industrial revolution, where
automation was already intensive on many levels, there are three main reasons
why today’s transformations constitute not a straight extension of previous inno-
vations, but rather the arrival of a distinct one: speed, scope, and system impact
[7]. The pace of IT-driven change reflects the Moore’s law, according to which
the speed and capability of computers is expected to double every two years, as
a result of the increase in the number of transistors that can be embedded on
a microchip. These trends cannot be compared simply to the increased level of
manufacturing automation that has been driven by digital developments since
1970: the progressive adoption of information and communication technologies by
manufacturing companies is laying the foundations to revolutionize development,
production, and the entire supply chain. Exponentially growing technologies
will be the drivers for the transformation to Industry 4.0: 3D printing, sensors,
artificial intelligence, robotics, nanotechnology are few examples of exponentially
growing technologies that follow Moore’s law, radically changing industrial pro-
cesses, accelerating them and making them more flexible. In this transformation,
sensors, machines, products, and IT systems will be connected along the value
chain beyond a single enterprise. These connected systems can interact with
each other using standard Internet-based protocols and analyze data to predict
failures, configure themselves and adapt to changes. This, in turn, will increase
manufacturing productivity, change the economy, drive industrial growth, and
reshape the profile of the workforce, radically changing the competitiveness of
companies and regions [8].

5

1.2. Building blocks of Industry 4.0 Chapter 1. Industry 4.0

1.2 Building blocks of Industry 4.0

The new industrial paradigm of Industry 4.0 has the ambition to digitize the
manufacturing sector, with sensors embedded in almost every product component
and production equipment, ubiquitous cyber-physical systems, and analysis of all
significant data. In the view of Boston Consulting Group [8], this transition is
enabled by the convergence and application of nine industrial technologies, called
pillars, which can be deemed as the main building blocks of Industry 4.0.

Figure 1.2: The nine technological pillars of Industry 4.0 (Source: BCG [8])

The integrated application of such technological advances - which will be
outlined in the following sections - will enable the transformation of isolated
cell manufacturing into a thoroughly optimized and automated production flow,
leading to increased efficiency and changing the traditional relationships between
suppliers, manufacturers and customers.

6

1.2. Building blocks of Industry 4.0 Chapter 1. Industry 4.0

1.2.1 Big Data and Analytics

Big data refers to broad and diverse series of increasingly growing information,
usually retrieved through data mining techniques. It encompasses the volume
and value of information, the velocity at which it is created, and the variety or
scale of data points that are covered (4 Vs of Big Data [10]). Analytics based
on big data sets results in optimized production quality, energy savings, and
improved equipment service. In an Industry 4.0 framework, the comprehensive
collection and assessment of data from many distinct sources - from manufacturing
equipment systems to customer management platforms - will become standard to
aid real-time decision making.

1.2.2 Autonomous Robots

Since the spread of the Digital Revolution, robots have been largely employed to
tackle complex tasks: at the beginning, relatively simple robots were employed to
replace humans in the heaviest and most hazardous operations, and then fully
automated workshop departments were set up. Nowadays, robots are evolving for
even greater utility, becoming more autonomous, flexible, and cooperative. With
high-end sensors and control units, autonomous robots allow for close cooperation
with humans and improved interconnection with other robots in the surrounding
environment, offering enhanced capability, versatility and safety.

1.2.3 Simulation

Simulations will be used more extensively in plant operations, leveraging large
amounts of available real-time data to mirror the physical model in a real-time
digital twin of industrial scenarios, including machines, products and people.
Simulations, which can be aimed at assessing cycle times, energy consumption or
even ergonomic aspects, not only lead to reduced downtime and changeovers, but
also to decreased production failures during start-up. Through virtual simulation,
operators can test and optimize machine settings in the virtual world before the
change is actually applied to the physical industrial scenario, thereby achieving a
boost in quality.

1.2.4 Horizontal and Vertical System Integration

Industry 4.0 is intended to tackle the problem of a poor connection between
companies, suppliers and customers. Most of today’s IT systems are not fully

7

1.2. Building blocks of Industry 4.0 Chapter 1. Industry 4.0

integrated. Through integration, the new industrial paradigm aims to achieve an
ecosystem-wide flow of information between systems and across all processes, using
data transfer standards and creating the baseline for an automated supply and
value chain [4]. Industry 4.0 is underpinned by three dimensions of integration:

• Horizontal integration, which refers to the integration of IT systems and
information flows across manufacturing and business planning processes,
involving both internal and external stakeholders and processes inside and
outside the value and supply chain - from suppliers of materials and utilities
to internal processes, distributors, and customers. Simply put, horizontal
integration is about the digitization of the entire value and supply chain,
made possible by data sharing and connected information system, enabling
horizontal coordination, cooperation, cost savings, value generation and
speed.

• Vertical integration, which addresses the integration of IT systems at various
manufacturing and production hierarchical levels. The ultimate goal is to
achieve a unique global solution that includes the field level (interfacing
manufacturing processes via sensors and actuators), the control level (tuning
of machines and systems), the production level (monitoring, controlling and
supervising production lines), the operations level (concerning production
planning and quality management), and the business planning level (dealing
with order management and processing, enterprise production planning and
business process management) [4].

• Through-engineering across the entire value chain and lifecycle of both
products and customers. Engineering occurs seamlessly throughout the
design, development and production of new products and services, enabling
new synergies between product development and production systems. The
hallmark of end-to-end engineering is that data and information is also
available at all stages of a product’s lifecycle, allowing new, more flexible
processes [2].

1.2.5 The Industrial Internet of Things

Today, just a fraction of a manufacturer’s sensors and machines are networked
and employ embedded computing. With the Industrial Internet of Things (IIoT),
a greater number of devices will be equipped with embedded computing and con-
nected with standard technologies. The Internet of Things denotes the worldwide
network of interconnected objects that communicate through standard protocols

8

1.2. Building blocks of Industry 4.0 Chapter 1. Industry 4.0

[9]. IIoT is characterized by three main attributes: context - which refers to the
ability for advanced object interaction within an established environment and
immediate feedback if something changes - ubiquity, which stands for the ability
to provide information about an object’s location and physical condition, and
optimization [10]. This allows field devices to both communicate and interact
with each other and with more centralized controllers.

1.2.6 Cybersecurity

Industry 4.0 brings a sharp focus on security. Given that many enterprises still
rely on unconnected or closed management and production systems, as industrial
assets and critical infrastructure become increasingly connected, and as attacks
are growing in typically rather isolated industrial environments, the stakes and
threats of violations are enormous in Industry 4.0. The need to protect industrial
systems and production lines from cybersecurity threats increases dramatically,
requiring an end-to-end security design approach [4]. As a result, secure and
reliable communications as well as sophisticated identity and access management
of machines and users are paramount [8].

1.2.7 The Cloud

The straightforward networking of cloud-based platforms opens up outstanding
opportunities to store and efficiently leverage the big data generated by Industry
4.0. Cloud-based IT platforms will become increasingly crucial as they serve
as the technical backbone for connecting and communicating across sites and
company boundaries. There are particular benefits for smart manufacturing
systems operating in a decentralized network, where massive computing power
will enable cloud-based applications to provide universal, anytime access to all
key data. This makes it easier to collect, monitor, distribute and analyze data
not only among factories, but also across the entire global value chain network,
allowing for more data-driven services. This will form the foundation for providing
global market solutions that smoothly integrate all steps from the value chain and
suppliers to end customers and enable innovation beyond products [2].

1.2.8 Additive Manufacturing

As customer needs are constantly evolving, companies are facing the challenge of
increasing product individualization on the one hand and reducing time-to-market
on the other. These challenges are becoming even more demanding due to growing

9

1.3. Industry 4.0 design principles Chapter 1. Industry 4.0

levels of digitization, IT penetration and networking of products and manufacturing
resources. Shrinking product life cycles in combination with the rising demand
for customized products require further transformation towards organizational
structures that lead to a higher degree of complexity [11]. With Industry 4.0,
additive manufacturing, such as 3-D printing, will be widely exploited to produce
small batches of customized products, thus offering constructive advantages, such
as complex and lightweight designs [8].

1.2.9 Augmented Reality

One of the great promises and areas of interest of Industry 4.0 is the bridging of the
virtual and physical worlds, where augmented reality-based systems are playing
an important role. Despite being at an early stage, Virtual Reality (VR) and
Augmented Reality (AR) are already being used in different fields and contexts,
from consumer applications to manufacturing processes, and companies will make
much wider use of augmented reality to provide workers with real-time information
to improve decision making and work procedures [8]. The use of VR and AR in the
manufacturing industry is accelerating as its benefits are becoming increasingly
visible in various application areas. Use cases include virtual design, machining
and production, training and collaboration, factory planning, assembly, safety,
testing, and maintenance [4].

1.3 Industry 4.0 design principles

Industry 4.0 creates new design principles along which industry can organize itself,
serving as part of the Industry 4.0 vision, and as a reference to make clearer
guidelines for companies aiming to understand, identify and implement Industry
4.0 projects. These include: (a) increased interoperability between manufacturing
networks through increased connectivity, (b) virtualization of manufacturing
process by linking sensor data with virtual plant and simulation models, (c)
decentralized decisions making, (d) real-time capability to collect and analyse data
and provide insights, (e) flexible adaptation to changes by reconfiguring virtual
modules, and (f) increased service orientation. Such principles allow shaping a
vision of an industrial paradigm able to deliver opportunities for new business
models, solution offerings, and new products [12]. As it will be explained below,
each design principle delivers its own value, which is amplified when multiple design
principles work together in synergy to support new and more efficient processes.
Intelligence must be decentralized across various machines and devices, and all

10

1.3. Industry 4.0 design principles Chapter 1. Industry 4.0

process components must be monitored through virtualization and interoperability,
allowing to respond in real-time to changes and requests. Moreover, processes and
infrastructure must be modular to support customization and centered on service
orientation to make services easily accessible inside and outside the factory.

1.3.1 Interoperability

One of the goals of Industry 4.0 is to integrate data science and analytical mod-
els to interpret real-time data provided by multiple sources - such as machines,
processes and production systems - and combine this information together in an
automated manufacturing system. To successfully implement this vision, a core
requisite is to achieve interconnectivity across a diverse set of devices, integrating
the massive amount of data that comes from them to support decision-making
processes [13].
In the realm of manufacturing, interoperability between multiple systems, within
or across industries, has been gradually accepted as a critical feature throughout
a product’s lifecycle [14]. The Institute of Electrical and Electronic Engineers
(IEEE) defines interoperability as the ability of two or more systems or components
to exchange information and to use the information that has been exchanged [15]:
in other words, in the manufacturing industry, interoperability is defined as the
electronic communication and management of data through the Internet of Things
(IoT). Interoperability implies real-time access to data, paving the way for a new
approach towards enhanced manufacturing operations for companies. It enables
manufacturing partners (including customers, suppliers and other departments)
and their machines to share information accurately and quickly, resulting in more
effective and reliable operations [16]. The Industry 4.0 idea of interaction between
physical and digital systems is pursued at the cyber level and at the physical ma-
chine level. The means of interaction and the mechanisms for providing functional
compatibility of CPS at the physical machine level and at the cyber level are
significantly different. CPS interaction at the physical machine level is provided
through kinematics, sensors, and software to support the Ethernet communication
environment. CPS interaction at the virtual environment level is established by
an artificial intelligence embedded in the enterprise cloud storage that guides the
technological processes of self-organization of cyber and physical systems [17].
The implementation of interoperability presents a challenge in establishing an effi-
cient and reliable information management infrastructure with standard protocols
of information exchange, physical machine interaction interfaces, event processing,
production data representation formats, cloud operations, data management ana-

11

1.3. Industry 4.0 design principles Chapter 1. Industry 4.0

lytics, which support CPS. Although the challenge of establishing interoperability
is still underway, despite the obstacles, interoperability between devices and assets
is being implemented by a growing number of factories. Because of its intrinsic
potential, many companies are upgrading their plants and facilities to have stan-
dardized methods of communication, data analysis, and security. Leveraging this
technology as a management tool can extend beyond just operational efficiency
on the shop floor to other areas such as inventory management and supply chain
optimization. Manufacturing companies that have created the infrastructure to
enable data interoperability are better able to serve their customers and streamline
their operations [16].

1.3.2 Virtualization

As industrial automation systems and integration has become more complicated
and information management systems have expanded dramatically, offering a
reliable, scalable, and flexible dynamic computing environment is a key-challenge
for companies operating in the present industrial scenario. With the development
of virtualization technology, virtual instruments and machines are more and
more widely used in the industrial area, appearing a promising path forward.
In a nutshell, virtualization refers to the capability of information systems and
cyber-physical systems to simulate and create virtual copies of physical world
elements through the creation of digital models that are fed by merging sensor
data acquired from monitoring physical processes and equipment [4]. In such a
framework, the concept of digital twin gains particular relevance: it consists of a
near real-time digital replica of a physical object or process that helps optimize
business performance [18]. The introduction of digital twins has been possible
due to significantly lower costs and improved power and capabilities, which are
leading to exponential changes, enabling companies to integrate information
technology and operational technology. Digital twin provides companies with
a comprehensive digital footprint of their products from design to the end of
the product lifecycle. A digital twin is built on a large set of cumulative, real-
time measurements across multiple dimensions. They, in turn, produce an ever-
changing map of the object or process in the digital world that can provide
important insights into system performance, suggesting possible adjustments to
be introduced in the physical world. This model, therefore, allows companies
not only to understand the performance of the finished product, but also the
capabilities of the entire system dedicated to the manufacturing of the product
itself. The digital twin can enable companies to solve physical problems faster by

12

1.3. Industry 4.0 design principles Chapter 1. Industry 4.0

detecting them earlier, predict outcomes with a much higher level of confidence,
design and build improved products, and finally serve their customers better.
Thanks to the close interaction between physical and digital domains, digital twins
represent significant key enablers of efficient models that provide more accurate
and holistic measurements of unpredictability [18], opening new perspectives in
easy reconfiguration of production lines, effective detection of failures, autonomous
maintenance triggering and prompt reaction to unexpected changes in production
[19].

1.3.3 Decentralization

One of the main goals of Industry 4.0 is to bring autonomy and autonomous
decision-making to machines and cyber-physical systems [4]. In the new industrial
paradigm, everything is connected: machines, humans, products, and IT tools
communicate with each other and are arranged with the aim of improving overall
production performance, inside and outside the factory. One of Industry 4.0
key features is the ability to decentralize control and decision-making as it aids
changes in the manufacturing process helping to meet the growing demand for
mass customization [19]. Industry 4.0 is inherently a decentralized system, with
intelligence in independent entities. Actually, Cyber-Physical Systems (CPS)
and Cyber-Physical Production Systems (CPPS) have their own intelligence: a
smart product or CPS knows its state, location, target, and flow alternatives.
Similarly, an intelligent resource or CPPS knows its state, history, maintenance
plan, capacity, and its range of possible configurations. Such systems together
with IoT enable the creation of an intelligent network of machines, ICT systems,
products and people across the entire value chain and product lifecycle [20]. In a
centralized system, a single decision center is provided with all the information
of the system and is responsible for planning the entire network, thus managing
the operations performed by all the nodes in the network. The central node
makes decisions in terms of optimizing the goals of the entire network [19].
However, centralized system architectures, where the business logic is contained
in a central information system that supports or controls the operation of various
subsystems, have limitations in areas critical to Industry 4.0, in particular offering
limited scalability [21]. In decentralized decision-making models, each independent
network entity makes its own decisions, seeking to optimize its goals. More than
one decision maker is identified and, depending on the degree of collaboration,
nodes take into account the decisions of other nodes [19]. In a fully decentralized
architecture, all business logic is embedded in the subsystem or component so

13

1.3. Industry 4.0 design principles Chapter 1. Industry 4.0

that it has all the intelligence it needs to perform its function, coordinating its
activities with other subsystems to handle complex tasks. These decentralized
systems also offer the ability to evolve over time and adapt to change, creating a
more flexible environment for manufacturing [21].

1.3.4 Real-time capability

According to Industry 4.0 guidelines, a factory must be able to collect, store,
and analyse real-time data, and consequently make decisions according to the
new findings. For a factory to be considered smart, machines, devices and the
entire system overall must be aware of what is currently happening, within and
beyond plant boundaries [4]. Real-time capabilities – enabled by Interoperability
and visualized through Virtualization - ensure that the industry has the best
possible response time to internal and external stimuli by sharing, receiving, and
analyzing data and information in real time [22]. This technology is supported
by the extensive advancement of sensors and other devices that, embedded in
all machines, material handling equipment, robots and forklifts, are capable of
providing continuous streams of data and accurate algorithms [21]. By leveraging
IoT and advanced analytics in the manufacturing process, smart machines em-
bedded with specific software will automatically adapt to production needs by
making independent decisions. Some companies are already using this technology
to provide comprehensive financial market information, such as stock quotes,
indices, and economic indicators. Real-time capabilities are not only restricted to
market research, but also to internal processes, such as for detection of a machine
failure in the production line: smart objects must be able to identify the defect
and distribute tasks to other operating machines. This also contributes greatly to
flexibility and production optimization. Constant monitoring of product quality,
and of the system in general, will allow taking decisions at any time by exchanging
data in real time. This interconnection will minimize resource misuse, waste, ma-
terial scrap and increase energy efficiency by providing immediate results to react
faster to problems or even prevent them, as in the case of proactive maintenance
[22].

1.3.5 Service orientation

One of the goals of Industry 4.0 is also to transform production systems according
to a customer-centric perspective, in order to meet constantly changing customer
demands. Moreover, factories must not only consider external customers, but

14

1.3. Industry 4.0 design principles Chapter 1. Industry 4.0

support services that must be offered both inside and outside the organisation.
In such a framework, the Internet of Services (IoS), and the service orientation
that it enables, gain important relevance. The Internet of Services operates in
a way that is comparable to the Internet of Things, but it creates a network of
services - provided by humans and intelligent systems both inside and outside
an organisation - allowing them to be delivered more efficiently and combined to
increase their value. Here, the term ’services’ has a broader meaning, to include all
operations, from the movement of goods from one place to another to data analysis
services designed to solve a particular business challenge [21]. In other words,
people and smart objects need to be able to connect efficiently through the Internet
of Services to create products based on customer specifications, leveraging internal
and external services across the value chain to enable a seamless adaptation to
change as it occurs. Service orientation enables the services of companies, cyber-
physical systems and humans to be made available so that other cyber-physical
systems, humans or companies can use them [21]. Everyone can have access to
useful services, products, and information about the industry using virtual and
digital platforms available at all times [22]. This not only increases the accessibility
of these services, but also enables the creation of new types of services. The
implementation of the service-oriented approach also brings several advantages for
companies. In contrast to the use of traditional large applications, which cannot
easily exchange information with each other, service orientation allows a more
unrestricted flow of information within and among companies. This makes it
easier to expose its functionality to the outside world, increasing its value and
offering greater flexibility for abrupt changes [21].

1.3.6 Modularity

Another core design principle adopted by the Industry 4.0 paradigm is that
of modularity, namely the ability to flexibly adapt to changing requirements by
replacing or expanding individual modules [23]. In a dynamic market, the ability to
respond to ever-changing trends and demands is essential for companies. To remain
competitive, companies must embrace the latest technologies that prove to be
beneficial in terms of efficiency and productivity. However, most companies may be
facing the problem of reorganising a pre-existing rigid structure, finding themselves
locked into an inflexible technology that cannot match the disruptive changes
occurring in the industries [21]. Therefore, many organisations are revising their
structure from a rigid and inflexible system to innovative modular platforms. Then,
these modular systems can simply be readjusted in case of seasonal fluctuations

15

1.4. Robotics: from the early stages to the IoT Chapter 1. Industry 4.0

or changes in production requirements, such as the inclusion of new technologies.
Thus, through software and mechatronic modularity, production can always be
tailored to the environmental, systemic and changing demands of customers
without errors, loss of productivity or customer dissatisfaction [22]. Modular
systems are inherently scalable, making it possible, for example, to react to rapid
changes while retaining the flexibility to add modules in the future. Robots,
for instance, can thus evolve in a constantly changing environment, dynamically
adapting to various tasks and modifying their operations as needed, without
further programming or integration, to comply with new conditions [21]. In
summary, modular platforms are essential as, in combination with the previous
design principles, they allow to put into practice and exploit the benefits coming
from the new paradigm of Industry 4.0: their synergistic integration will empower
companies to leverage these cutting-edge technologies and exploit their intrinsic
potential to the fullest.

1.4 Robotics: from the early stages to the IoT

In the light of Industry 4.0 revolution, the advances in information technology
like Internet of Things, Artificial Intelligence, Cloud Computing, Cyber-Physical
Systems and Big Data are changing the use and design of robots in the industry.
Robotics, which is a multidisciplinary field that builds on the intersection of
mechanical and electrical engineering, computer science, communication and net-
working, and material technology, is undergoing dramatic developments in recent
years, as the landscape of Industry 4.0 is progressively unfolding. The sector has
grown relatively steadily since the 1960s. After the first industrial robots appeared
in the 1960s, a real surge of growth occurred when automotive OEMs started
automating their welding departments. A new wave began to spread during the
1990s through the integration of innovative technologies borrowed from the disrup-
tive digital revolution. Steep advances then occurred from the first decade of the
2000s, spurred on by a series of fundamental changes in the industry and economic
environment: dramatic developments in technology and new applications, as well
as trends of rising labour costs in conjunction with labour shortages, increased
turnover, and falling equipment costs [24]. Nowadays, robotics technology is
making an irreplaceable contribution to modern industry, being recognised as one
of the main pillars on which Smart Factories are built. Advanced robotics systems
are a key component of the highly automated, self-controlled factory of the future.
New disruptive technologies and anticipated cost reductions will enable advanced

16

1.4. Robotics: from the early stages to the IoT Chapter 1. Industry 4.0

robots to perform tasks that conventional robots cannot automate economically,
becoming very important productivity drivers [25] and promising to meet the
dynamic demands of collaborative and smart manufacturing in the context of
Industry 4.0.

The aim of this section is to shortly outline the evolution of robotics, with
a brief excursus on the different technologies that have been integrated over the
years, up to the present state of the art and challenges. Attention will be devoted
to modern robotics as such, focusing on the key enabling technologies that are
exploited in the context of Industry 4.0. Finally, a brief description of the possible
applications of robotics in the industrial scenario will be provided.

1.4.1 The evolution of industrial robotics

Robotics and its applications have transformed the industrial world in different
phases: indeed, it is possible to identify three main macro-phases in the timeline
of the robotics evolution.
The first wave, known as Robotics 1.0, dates back to the 1960s, when the first
robots were introduced, such as Unimate, an industrial robot that was installed
by Unimation in 1961 on the production line at GM’s Ternstedt plant in Trenton,
NJ [26]. At this infant stage, robots had a bare perception of their surroundings,
thus they were placed in a designated space and relied on to perform the same
sequence of repetitive and labour-intensive tasks. Robots were similar to numeri-
cally controlled machines, programmed with a language similar to G-Code. The
inventions of servo-motors, controllers and motor drivers were the central subjects
in R&D operations [27]. However, such robots had several limitations, related to
costs and, in particular, reconfigurability: being designed, built, and equipped to
perform a specific sequence of operations, robots made it difficult to adapt them
for a new production line.
A significant step forward was made in the era of robotics 2.0, between the 1990s
and 2000s, as a result of the massive adoption of information acquisition and
computing technology. At this stage, the use of automatic feedback systems gave
an impulse to the development of industrial robots for increasingly diverse applica-
tions in manufacturing processes. During this period, research intensified in several
fields, leading to the testing of different sensors, including torque/force sensors,
tactile sensors, proximity sensors, acceleration sensors, angular sensors, thermal
sensors and also 2D and 3D cameras. Other enabling technologies were Ethernet,
embedded systems, real-time data acquisition and processing, and teleoperation

17

1.4. Robotics: from the early stages to the IoT Chapter 1. Industry 4.0

developments. The combined leveraging of sensors and these new technologies
made it possible to extend the robots’ ability to perceive their surroundings and
be more aware of their state and position. Nevertheless, in many scenarios robotic
systems were still lacking the capacity to interact and collaborate with other
robots, objects, and workers in the factory, working mostly as isolated robotic
systems [27].
Since the first decade of the 2000s, the introduction of advanced technologies
has given a significant boost to robotics, especially after the spread of the Indus-
try 4.0 paradigm, paving the way for the so-called Robotics 3.0. With further
explorations and integration of cutting-edge technologies, the main goal was to
address the pending needs left unsolved from the previous era, namely the need
to improve connectivity, perception and data flow [27]. By integrating disruptive
innovations, including IoT, real-time image recognition, deep learning, innova-
tive machine-human-robot interfaces, system interoperability, natural language
processing, digital twinning for CPS, to name a few, the purpose is to enhance
the awareness and interaction capabilities of robots. Through the combination of
machine-to-machine communication, secure networking and big data analytics,
robotic systems are upgraded with increased efficiency, productivity and optimised
performance. Robot autonomy is attained by using the new information tech-
nologies, as these enable robots to detect and monitor production processes, the
work environment, human workers, and share through the network the industrial
Big Data collected from sensors [28]. Therefore, advances in sensor technology
and networking have been crucial to provide this capability. Increasing robot
autonomy also revolves around decentralization: in this framework, a cloud-based
controller serves as a computing centre, called Brain-on-Cloud, then each robot
has an independent control system that allows it to make independent decisions,
depending on its current state, to respond to the surrounding environment.
In simple terms, innovative technologies and solutions are being harnessed to build
smarter industrial robots, enabling higher degrees of flexibility, the ability to learn
tasks without redundant programming, and to collaborate independently with
other autonomous devices and human operators, via the increased functionalities
offered by evolving communication networks [26]. The technical features of Indus-
try 4.0, in a synergistic combination with these equipment-specific innovations,
will aid in unlocking the potential of advanced robotic systems. Hence, advanced
robots will offer significant improvements, outperforming conventional robotic
systems in perception, integration, adaptability and mobility [25]:

• Perception: considerable refinements in natural language processing, com-

18

1.4. Robotics: from the early stages to the IoT Chapter 1. Industry 4.0

puter vision and sensors are expected to offer greater autonomy and accuracy.
Such increased functionality, in turn, will allow robots to perform more
sophisticated tasks.

• Integration: new service-oriented architectures, superior connectivity, access
to comprehensive data models, and progressive optimization in interface
and programming will speed up the configuration process and minimize the
effort required to instruct robots on tasks.

• Adaptability: advances in data processing technologies and access to cloud
services will allow robots to learn and adapt autonomously to complex and
changing environments.

• Mobility: through machine learning and computer vision, advanced robots
will be able to autonomously drive themselves and navigate in complex
environments.

1.4.2 Applications of Robotics in Industry 4.0

The intelligent capabilities derived from advanced robotics are driving new ap-
plications in factory operations. In Industry 4.0 factories, robots, equipped with
superior functionalities, owing to information, sensor and networking technologies,
can work hand-in-hand with human operators (collaborative robots) as well as
with other robots in the surrounding environment (cooperative robots) in inter-
connected tasks [28]. Robotics is widely deployed in different factory departments
nowadays, as it is expected to become a key productivity driver in manufacturing,
logistics, quality and maintenance by 2025, shaping the factory of the future [25].
In the following, an overview of the main applications of robotics is proposed.

Manufacturing

Conventional manufacturing processes have been transformed by the adoption of
intelligent robots at the shop floor level. Machines such as stand-alone robots
were already in place a few decades ago to relieve human workers in demanding
tasks and to achieve faster and more accurate production. However, stand-alone
industrial robots were usually fixed stations, programmed for a specific application
and, in addition, required the presence of safety equipment to operate without
direct contact with human workers [24]. The intense surge in information and
sensory technology has recently made it possible to build more efficient types of
collaborative and cooperative robots. The main difference between collaborative

19

1.4. Robotics: from the early stages to the IoT Chapter 1. Industry 4.0

and autonomous robots revolves around safety: as a matter of fact, the former are
embedded with an on-board safety mechanism that allows these robots to operate
safely and directly alongside human workers, without the need for additional
safety equipment. Sensors are therefore selected and tuned according to safety
concepts, monitoring force, speed and distance to ensure collision avoidance.
In a nutshell, these improvements will allow some types of advanced robots to
autonomously perform processes at the same high speed as conventional industrial
robots. Furthermore, the safety features of advanced robots - including the ability
to work at lower speeds than conventional robots, when requested in case of danger
- mean that they can share workspace with humans and assist them without the
need for protective guards [25]. In addition to working cooperatively with humans,
advanced robots also need to be able to work cooperatively with other robots on
the shop floor, connecting together and sharing information over a network. This
capability is made available by rapid advances in wireless technology: the software
provides for cloud computing and big data analysis, and virtualizes the network
of servers, where robots are the clients. In such an infrastructure, robots can
communicate with each other, transferring streams of big data collected from their
tasks to the cloud, and, eventually, to other devices. This improves the robots’
learning, prediction, flexibility and decision-making over the entire production
process [28].

Assembly

In the Industry 4.0 paradigm, manufacturers also use advanced robots to perform
assembly tasks autonomously, in particular in the automotive industry. As
robots are able to adapt their duties based on the perception of the surrounding
environment, they are well suited to perform complex assembly operations, for
example those involving flexible and ductile parts. In such a framework, assembly
operations are aided by connectivity and intensive communication between robots
and workpieces, allowing machines to understand the sequence of processes to
be followed without prior specific instructions or programming. This is also
made possible by simplified robot-object interfaces and the availability of existing
information from which to deduce process parameters [25].

Logistics

Autonomous mobile robots can be used in a wide range of applications, including
warehouses and distribution centres, manufacturing intralogistics, and in other
fields such as agriculture and logistics in hospitals and retail [24]. In the indus-

20

1.4. Robotics: from the early stages to the IoT Chapter 1. Industry 4.0

trial sector, autonomous mobile robots are becoming increasingly important in
warehouses and in-plant logistics for moving parts of all types and will eventu-
ally replace both stationary conveyors belts and conventional AGVs that rely on
magnetic bands for guidance. Different types of autonomous mobile robots can
perform both material handling and loading tasks. Computer vision, laser sensors
and machine learning allow robots to self-navigate in the environment and reach
the targeted destination. In addition, advanced robots are suitable for picking,
packing and pelletizing operations, supported by intelligent sensors that allow
them to identify, pick and handle parts, making them a useful lever to increase
productivity in large-scale distribution [25].

Maintenance

Advanced robots will also have a broad application in the field of maintenance.
Mobile robots can facilitate maintenance activities by transferring spare parts to
their intended location and even performing mobile inspections in places where
access is difficult or dangerous [25]. For example, mobile robots can support
manufacturers in the visual assessment and maintenance of tanks, vessels and
pipes. Another key benefit offered by intelligent robots is their self-maintenance
capability. Prognostics and Health Management (PHM) have been introduced to
allow robots to monitor the status of a system, detect possible errors and even
predict the occurrence of machine failures. By processing information streams from
Big Data, industrial robots are able to monitor their health, and by leveraging IoT,
they can efficiently use PHM, providing rapid decision making and consequently
ensuring greater reliability of the entire system [28].

Quality

Advanced intelligent robots are also employed in quality control operations. Indus-
trial robots, thus endowed with technical innovations, can monitor and control all
physical processes in real time, and automatically adjust equipment parameters -
to which they are digitally interconnected - in response to perceived quality. In
addition, vision systems enable the detection of defects and recognition of damages
on various parts, thus ensuring optimised quality of final products [29].

21

Chapter 2

Introduction to Bilby Rover

The present work is framed within the context of Industry 4.0, with a major
focus on the applications in the field of Robotics. The project stems from the
collaboration with McMaster’s W Booth School of Engineering Practice and
Technology and aims at studying and simulating a model of an autonomous
mobile robot, called Bilby Rover, which has been designed and 3D-printed by a
team of students at the McMaster University.

Figure 2.1: Bilby Rover Autonomous Mobile Robot

The proposed robot, equipped with a LiDAR, is expected to be able to move
autonomously in an unknown environment through the implementation of the

22

2.1. Bilby Rover description Chapter 2. Introduction to Bilby Rover

Simultaneous Localization and Mapping (SLAM) technology. It will also be able
to identify obstacles in its path, and modify its behaviour to respond to the sur-
rounding areas. This result, as will be explained in detail below, will be enabled
by the integration of different technologies, in full compliance with the previously
introduced Industry 4.0 guidelines. Moreover, although the implementation of
SLAM represents a central topic of this project, other applications may be pro-
posed, owing to the versatile structure of the robot, which makes it suitable to be
equipped with different types of sensors, thus serving multiple purposes, as it will
be seen in Chapter 3.

The chapter is structured as follows. A general mechatronic description is outlined
in the first section, presenting the mechanical, electronic and sensor systems. In
this regard, an overview of the Bilby Rover chassis is provided and the kinematic
model of the system is briefly presented. In the second part, the aim is to explore
the concept of Simultaneous Localization and Mapping (SLAM), proposing a
summary of the state of the art of the most widely used technologies. In particular,
the focus will be placed on the two major applications, namely Visual SLAM and
LiDAR SLAM, briefly describing the main deployments and sensors used.

2.1 Bilby Rover description

This section outlines the hardware components and the design considerations
to develop the proposed robot, covering the systems that are actually present
on the Bilby Rover, according to its original design presented in the drawing by
McMaster University. A 3D-printed four-wheel drive (4WD) chassis is used as the
base on which the following hardware components are fit:

• Raspberry Pi 4 Model B 4 GB for CPU and GPU computations

• YDLIDAR X4 laser rangefinder

• 2 DC motors

• Motor drivers

• Powerbank to supply power to Raspberry Pi and sensors

• Batteries to supply power to motors

• Jumper wires to connect individual components

23

2.1. Bilby Rover description Chapter 2. Introduction to Bilby Rover

2.1.1 Robotic body

Body frame

The body of the Bilby Rover robot has been purposely designed and 3D printed
in the laboratory of W Booth School of Engineering Practice and Technology.
CAD/CAE tools have been employed to design the prototype, taking into account
several requirements, such as the environment conditions, the appropriate position
of sensors on the platform, and the allocation of the control system. The overall
dimensions of the robot body are reported in the figure below.

Figure 2.2: Robot overall dimensions

Wheels configuration and robot kinematics

As it can be observed in the Figure 2.2, the Bilby Rover robot is designed having
four conventional fixed wheels, with both centre and axis fixed to the frame.

24

2.1. Bilby Rover description Chapter 2. Introduction to Bilby Rover

Figure 2.3: Exploded view of the Bilby Rover

All four wheels of the robot are active: this is made possible by a system of
belts and pulleys. Actually, in the exploded view of the robot depicted in Figure
2.3, it is possible to observe two rotational motors, one per side, connected to
pulleys. These, in turn, drive a system of belts, which allow the rotary motion
to be transmitted from the motor to the wheels on the same side of the robot.
Consequently, the wheels located on the same side of the robot will run at the
same speed as they are driven by the same motor.

Before discussing the wheels configuration in further detail, it is worth intro-
ducing the concept of holonomy. In robotics, holonomy refers to the relationship
between controllable and total degrees of freedom of the specified robot. A system
is said to be holonomic if the number of controllable degrees of freedom equals
the total number of degrees of freedom [30]. A robot moving in a plane (i.e. on
smooth ground) has 3 degrees of freedom: given a global reference system, the
x and y coordinates define the robot’s position, while the θ coordinate sets its
orientation with respect to the aforementioned reference frame.

25

2.1. Bilby Rover description Chapter 2. Introduction to Bilby Rover

Figure 2.4: Schematic of the reference frame

In this framework, a robot is referred to as holonomic if it is able to change its
position or orientation independently, as in the case of mobile platforms equipped
with omnidirectional wheels (see Figure 2.5). Actually, omnidirectional wheels
contain rollers along their circumference that are rotated with respect to both the
plane of the wheel and the axis of rotation. The combined action of these wheels
allows the platform to move in any direction.

Figure 2.5: Omnidirectional wheels with peripheral rollers (Source:[30])

In analytical terms, a system is said holonomic if all the constraints it is
subjected to are expressible as a function of the form:

f(x1, x2, ..., fN , t) = 0 (2.1)

where xi are the system coordinates. Thus, the constraints depend only on
time and coordinates xi [31]. A system having constraints that cannot be ex-

26

2.1. Bilby Rover description Chapter 2. Introduction to Bilby Rover

pressed in the previous form is said to be non-holonomic. For instance, a car is a
non-holonomic system, as it can go straight and steer, showing two controllable
degrees of freedom: direct sideways movement is not allowed, on the contrary
such motion can be performed through a combination of different manoeuvres,
as it happens for parallel parking. In robotics, non-holonomic robots represent a
very common solution owing to their simple design and ease of control. Indeed,
the Bilby Rover is an example of a non-holonomic robot. Relying on a chassis
with four conventional, non-steering wheels, the robot has only one controllable
degree of freedom (position along the x-axis), since the fixed wheels do not allow
independent steering manoeuvres, as with vehicles. Accordingly, the robot will not
be restricted in moving forwards and backwards, while sideways and rotational
movement will be executed as results of combined and more complex manoeuvres.

For this purpose, the Bilby Rover can be considered as a Skid-Steering Mo-
bile Robot (SSMR), namely a category of mobile platforms for which the slippage
mechanism is fundamental because of the drive mechanism. The steering of
an SSMR is achieved by differentially driving wheel pairs on each side of the
robot. Although the steering scheme yields some mechanical benefits, such as
the robustness of the mechanical structure, controlling an SSMR is a challenging
task because the wheels have to slip sideways to follow a curved trajectory [32],
making path planning particularly difficult especially in narrow environments.
To enable a better understanding of the robot, it is suitable to formulate the
kinematic model of the Bilby Rover. In this regard, the formulation of the model
is carried out by making reference to [32]. For the sake of simplicity, the robot is
assumed to be placed on plane surface, where a global reference frame (Xg, Yg,
Zg) is fixed. A local reference frame denoted by (xl, yl, zl) is set jointly to the
robot center of mass (COM). On the base of this arrangement, the COM can be
expressed with respect to the inertial frame as (X, Y, Z); however, assuming that
the robot is engaged in a planar motion, the Z-coordinate of the center of mass is
considered constant. In such configuration, the linear velocity expressed in the
local frame is defined by the vector v=[vx vy 0]T , while the angular velocity is
defined by ω=[0 0 ω]T . Instead, the state vectors q=[X Y Θ]T and q̇=[Ẋ Ẏ Θ̇]T

describe respectively the generalized coordinates and velocities of the robot with
respect to the global reference frame.

27

2.1. Bilby Rover description Chapter 2. Introduction to Bilby Rover

Figure 2.6: Robot velocity diagram (Source:[30])

Then, is possible to prove that the local velocities are related to the global
ones according to Equation (2.2):

Ẋ
Ẏ

 =
cosθ −sinθ
sinθ cosθ

vx
vy



θ̇ = ω

(2.2)

At this point, it is necessary to define the relationships between the wheels
velocities and the local velocities. In this regard, it is assumed that each i-th
wheel moves at a rotational speed ωi and, for simplicity, the thickness of the wheel
is considered negligible to ensure a point contact with the plane. As a simplifying
hypothesis, the grip between the wheels and the ground is enough to ensure the
absence of slipping in the longitudinal direction (pure rolling). According to these
assumptions, the longitudinal component of the velocity vector vi of the i-th wheel
in the local frame results from the formula in Equation (2.3):

vix = riωi (2.3)

where ri is the effective rolling radius of the wheel.
As it is possible to see from the velocity diagram reported in Figure 2.7, the lateral
component of the velocity viy is usually nonzero. This is due to the mechanical
configuration typical of Skid-Steering Mobile Robots, for which lateral skidding

28

2.1. Bilby Rover description Chapter 2. Introduction to Bilby Rover

is a necessary condition to change the orientation of the robot. Therefore, the
lateral component of the i-th wheel velocity is null only if ω referred to the COM
is zero, namely when the robot moves along a straight line [32].

Figure 2.7: Wheels velocity diagram (Source:[30])

Considering a situation in which the robot is turning, it is possible to identify
an Instantaneous Center of Rotation (ICR) that can be shortly defined as the
virtual point on the plane around which the rigid body is rotating in a specific
moment. In such a configuration, the radius di=[dix diy]T and dC=[dCx dCy]T can
be defined with respect to the local reference frame, running respectively from the
i-th wheel and the COM to the ICR. On the base of these, the following relations
can be deduced:

vix
−diy

= vx
−dCy

= viy
dix

= vy
dCx

= ω (2.4)

From the definition of ICR coordinates (xICR,yICR) = (−dxC ,−dyC) in the local
frame, Equation (2.4) can be rewritten as:

vx
yICR

= − vy
xICR

= ω (2.5)

29

2.1. Bilby Rover description Chapter 2. Introduction to Bilby Rover

Considering the geometric configuration and the following relations:

d1y = d2y = dCy + c

d3y = d4y = dCy − c

d1x = d4x = dCx − a

d2y = d3y = dCx + b

(2.6)

it is possible to obtain the correlations between wheel velocities as expressed in
Equation (2.7):

vL = v1x = v2x

vR = v3x = v4x

vF = v2y = v3y

vB = v1y = v4y

(2.7)

Where vL and vR represent the longitudinal component respectively of left and
right wheel velocities, while vF and vB are the lateral component of front and rear
wheels.
Combining Equations (2.4)-(2.7), it is possible to define the transformations that
link together wheel velocities with the robot speed:

vL

vR

vF

vB

 =


1 −c
1 c

0 −xICR + b

0 −xICR − a


vx
ω

 (2.8)

Assuming the radius of each wheel to be r, it is possible to express in matrix form
the rotational speed of both left and right wheels as follows:

ωwheels =
ωL
ωR

 = 1
r

vL
vR

 (2.9)

Finally, the relations between the robot speed and the wheels velocity can be
therefore developed from the inverse formula:vx

ω

 = r

 ωL+ωR

2
−ωL+ωR

2c

 (2.10)

From Equation (2.10), it is possible to understand that the pair of velocities ωL
and ωR can be treated as control kinematic input as well as vx and ω. Actually,
since the wheels are directly actuated by the motor, by setting the desired linear

30

2.1. Bilby Rover description Chapter 2. Introduction to Bilby Rover

speed vx and ω as control inputs of the robot platform, the values of ωL and
ωR can be retrieved from the inverse formula of the Equation (2.10) and sent as
commands for the motors connected to the wheels.

2.1.2 Sensing unit

Autonomous control and operation of the mobile robot relies heavily on external
sensor information. Actually, sensors are devices capable of converting a physical
event or quantity into an electrical signal, allowing measurements to be made [33].
Therefore, robotic sensors provide robots with the ability to detect and sense,
thereby acting in a way similar to sensory organs for living organisms. Leveraging
sensors, the robot becomes aware of its surroundings.
Addressing the specific application of the project, the Bilby Rover is equipped
with a YDLIDAR X4 sensor, installed in a dedicated housing on the top panel of
the robot body, as it possible to see in the exploded view in Figure 2.3.

Figure 2.8: YDLIDAR X4 (Source: www.ydlidar.com)

Before discussing the technical specifications of YDLIDAR X4, it is worth
outlining briefly the operating principle of LiDAR sensors.

LiDAR technology

LiDAR, acronym for Light Detection And Ranging, is a remote sensing technology
that uses light in the form of pulsed laser beams to measure distances to a selected
target. LiDAR uses electromagnetic waves in optical and infrared wavelengths
and is an active sensor, implying that it sends out an EM wave and receives back
the reflected signal [34]. On the one hand, its operating mechanism is similar to
that of radar and sonar sensors, apart from the fact that it works at much shorter
lengths than radio and sound waves. On the other, its working wavelength is

31

2.1. Bilby Rover description Chapter 2. Introduction to Bilby Rover

similar to that of passive electro-optical sensors, except that it provides its own
radiation rather than using already existing ones.
LiDAR sensors feature three main components: the transmitter, the receiver and
the detector. Figure 2.9 provides a basic schematic of the LiDAR architecture.

Figure 2.9: LiDAR conceptual diagram (Source: adapted from [34])

A waveform generator produces the laser beam needed to retrieve the range
information, usually harnessing a diode laser or a diode-pumped solid-state laser
[34]. The LiDAR needs a transmitting optical aperture to emit the light towards the
target and a receiving optical aperture to properly capture the reflected EM wave.
In this regard, there are two possible configurations available: monostatic LiDAR,
in which a single aperture is used for both the transmitter and the receiver, and
bistatic LiDAR, in which the transmitting and the receiving part have dedicated
openings. The LiDAR operating principle is relatively straightforward: the sensor
emits laser beams towards a selected target and measures the time it takes for
the EM wave to bounce off the target and return to its source (Time of Flight,
ToF). The time between the emitted and the reflected pulse allows calculating
with accuracy the distance to each object [35]: since electromagnetic waves travel
at the speed of light (approximately 299 792 458 m/s), the distance to the target
can be measured as follows:

d = c · ToF
2 (2.11)

where d is the distance to the target, c is the speed of light, and ToF is the Time
of Flight, namely the time elapsed between the emission of the laser beam and
the reception of the reflected beam at the receiver.

32

2.1. Bilby Rover description Chapter 2. Introduction to Bilby Rover

LiDAR sensors are often used as mapping and imaging devices. By capturing
millions of precise distance-measuring points every second, called point clouds,
LiDARs can provide a complete digital map of the surrounding environment, from
which information on the position, shape and behaviour of objects can be retrieved.
Such a property makes LiDAR a compelling solution for a broad range of appli-
cations and across various domains, such as archaeology, agriculture, seismology,
automation, smart retail, as well as other military and civil applications.

YDLIDAR X4

YDLIDAR X4 is a two-dimensional 360-degree rangefinder developed by Shenzhen
EAI Technology Co. Ltd and equipped with the necessary optics, electricity and
design algorithm to achieve high-frequency and high-precision distance measure-
ment.
This particular LiDAR is a bistatic sensor (meaning that transmitter and receiver
have a dedicated aperture) using a point-pulsed infrared laser which, in combina-
tion with a specific optical lens, is deployed for the transmission and reception
of the signal to achieve high-frequency ranging during operation. Thanks to a
360-degree rotating mechanical structure, driven by an electric motor connected
to it, the sensor continuously produces angular information and point cloud data
of the scanning environment during the measurement. The optical parameters are
available on the manufacturer website and are summarised below:

Table 2.1: YDLIDAR X4 Optical parameters

Parameter Min Mean Max Unit

Wavelength 775 785 795 nm
Laser Power - 3 5 mW

The technical specifications of YDLIDAR X4 are enlisted below:

• 360-degree scanning field of view for distance measurement

• 10 m ranging distance

• Ranging frequency up to 5 KHz

• Small distance error, stable performance and high accuracy

• Strong resistance to ambient light interference

• Motor frequency ranging between 6 Hz-12 Hz

33

2.1. Bilby Rover description Chapter 2. Introduction to Bilby Rover

• Low power consumption

The overall dimensions of the LiDAR device are reported in Figure 2.10.

Figure 2.10: YDLIDAR X4 dimensions (Source: www.ydlidar.com)

2.1.3 Processing Unit

Coordination and control of the robot’s operations is handled by a Raspberry Pi
4 Model B board, which will be installed on the Bilby Rover chassis.
The Raspberry Pi 4 Model B is a credit-card sized, fully programmable single-
board computer (SBC), and is the latest product in the popular Raspberry Pi
computer range, offering considerable enhancements in processor speed, multimedia
performance, memory, and connectivity over its predecessors. Key features of
this product are documented in the reference manual [36] and include a high-
performance 64-bit quad-core processor, dual-display support at resolutions up
to 4K via a dual micro-HDMI port, hardware video decoding up to 4Kp60, 4GB
of RAM, dual-band 2.4/5.0 GHz wireless LAN, Bluetooth 5.0, Gigabit Ethernet,
USB 3.0 and PoE capability [36].

34

2.1. Bilby Rover description Chapter 2. Introduction to Bilby Rover

Figure 2.11: Raspberry Pi Model B (Source: www.raspberrypi.org)

Raspberry Pi comes with a fully functional operating system called Raspberry
Pi OS, a Debian-based distribution developed specifically for the single-board
computer and loaded onto an SD card flashed in a dedicated slot in the computer
board. Based on an ARM processor, which can run the Linux-based operating
system, Raspberry Pi can be adequately used as a desktop when connected
with peripherals such as a screen, keyboard and mouse. Nonetheless, what sets
Raspberry Pi computers apart from other desktops is the presence of a GPIO
connector, namely 40 general-purpose input/output pins that can be controlled by
software [37]. Such feature allows the Raspberry Pi to be interfaced with electronic
circuits; therefore, units such as buttons, LEDs and motors can be controlled using
the Raspberry Pi board as in a microcontroller. In addition, thanks to internet
connectivity, Raspberry Pi offers a viable solution for remotely monitoring and
controlling the robot on which it is mounted. In this way, the device fulfils the
purpose of connecting the robotic platform to a remote control station (i.e. a
computer) via Wi-Fi network, thus enabling the following functionalities:

• Receive data and commands from the control station

• Convey instructions to the microcontrollers

• Retrieve information from devices and sensors connected to the single-board
computer.

35

2.1. Bilby Rover description Chapter 2. Introduction to Bilby Rover

2.1.4 Overall system architecture

Although the assembly of the physical robot is outside the scope of the project
and will be left as a future development, it is worth providing an overview of the
overall system architecture to build a clear picture of all the components, mostly
to support the robot assembly task that will be carried out by future students.
Actually, in addition to the components described in the previous sections, it
will be necessary to integrate the robot with specific devices that will enable the
locomotive capabilities of the platform, namely motors and motor drivers.

As general guidelines, the idea is to employ two DC motors, one per side, which
must be appropriately connected to the system of belts and pulleys to enable the
transmission of rotational movement to the four wheels of the Bilby Rover across
the entire kinematic chain. While the transmission of movement downstream of
the motors is ensured by the correct coupling of the various components up to
the wheels, the drive control of the motors themselves is carried out via specific
commands that are managed by the Raspberry Pi SBC, which to all effects serves
the function of a microcontroller. In this connection, a motor driver must be
employed, acting as an interface between the motors and the control circuits. Since
motors typically require a high amount of current, while control circuits work on
low current signals, the motor driver comes in handy, being an integrated circuit
chip that is designed to take the low current control signal and then transform it
into a higher current signal that can drive motors. In simple terms, despite the
different possible topologies of the device, a motor driver can control the direction
of the motor according to the commands and instructions it receives from the
controller, thus allowing the conversion of a signal into the effective movement of
the actuators.

Figure 2.12: High-level system architecture

36

2.2. SLAM Chapter 2. Introduction to Bilby Rover

In view of these considerations, Figure 2.12 presents an overview of the system
architecture, including the connections between the main devices deployed on the
robotic platform of the Bilby Rover.

2.2 SLAM

An autonomous mobile robot needs to tackle two critical issues to navigate its
surroundings: mapping the environment and tracking its relative position within
the map. However, real-world applications in GPS-denied areas, such as man-
ufacturing sites, require robust mapping and perception techniques to enable
mobile systems to navigate autonomously in complex environments [38]. The
close interdependence between localization and mapping operations dramatically
increases the complexity of the problem, thus requiring both tasks to be addressed
at the same time. Actually, on the one hand, in order to move accurately, a
mobile robot must have an accurate map of the environment; on the other hand,
in order to build an accurate map, the tracking positions of mobile robots must
be known precisely [39]. In this context, the research community has pointed out
that Simultaneous Localization and Mapping (SLAM) is a promising technology to
solve this problem. SLAM is a method that involves the simultaneous estimation
of the state of the robot, equipped with on-board sensors, and the construction of
a model of the environment (namely a map) that the sensors are perceiving [40].
Starting from an undefined position in an unknown environment, the robot locates
its position through repeated observations of its surroundings during motion, and
simultaneously builds an incremental map of the environment based on its position,
thereby achieving the goal of simultaneous positioning and map construction [39].
Therefore, the term SLAM, which is used for both the problem itself and the
algorithmic solutions that attempt to solve it, refers to the chicken-egg problem of
building a map - which requires localization - while using this map for localization
[41].

The aim of this section is to provide an overview of the literature on Simultaneous
Localization and Mapping, with a brief reference to the analytical formulation of
the problem. In the following, the two main SLAM techniques, Visual SLAM and
LiDAR SLAM, will be presented, focusing on their characteristics and structural
features.

37

2.2. SLAM Chapter 2. Introduction to Bilby Rover

2.2.1 Problem formulation

The purpose is to provide a summary of the SLAM problem statement, referring to
the main variables at stake. However, the discussion will not go into much detail
because, as it will be seen in Chapter 4, the SLAM algorithm will be implemented
automatically by a dedicated middleware software (ROS), which provides built-in
libraries to tackle the problem using data coming from sensors. Therefore, only
general guidelines for understanding the subject matter are hereby presented.

In essence, Simultaneous Localization and Mapping refers to the probabilistic
method used to construct a 2D or 3D map of an unknown environment under
imperfect localization. Although, in general, the robot at any given time t is
defined by 6 degrees of freedom, from the perspective of a considerable number
of applications, a substantial part of SLAM research focuses only on 2D space,
that is with 3-DoF robots defined by (x0, x1, θ), as seen in Figure 2.4. One or
multiple sensors installed on the robot platform provide at every time t sensor
readings zt, which are processed into a map mt. There are two different ways in
which environment observations can be leveraged for SLAM implementation:

• External sensors can detect and locate landmarks, namely distinguishable
features that can be identified in fixed positions: two consecutive observations
of the same landmark at times t and t+ 1 allow for the assessment of the
relative movement δxt of the robot, that is, the relative change in the robot’s
position, which can be denoted as xt+1 = xt + δxt (see Figure 2.13)

• Registration can be employed, meaning a method that creates spatial con-
straints by spatially aligning sensor data based on their readings. For
instance, a LiDAR scans a part of the environment to generate a profile of
distances to the nearest obstacle. Two successive scans can be registered by
finding the spatial transformation - and hence the relative movement δxt of
the robot - that leads to the best fit of the two scans (see Figure 2.14).

38

2.2. SLAM Chapter 2. Introduction to Bilby Rover

Figure 2.13: Landmarks recognition

Figure 2.14: Constraints generated through registration

In addition to sensing the environment, the robot can use its internal sensors and
control inputs in combination with appropriate models to estimate its poses. This
information is denoted by ut, just like the standard notation for the control inputs
in a system. For example, motor control inputs for a robot with a two-wheel

39

2.2. SLAM Chapter 2. Introduction to Bilby Rover

differential drive can be used in combination with a forward kinematic model to
estimate its motion [41].

A critical factor in the SLAM problem is the uncertainty associated with the
motion estimation, and consequently related to the prediction of robot poses.
It is therefore possible to assume a probability distribution P (xt) for each time
step t, where xt defines the robot position at a given time. The movement of
the robot in time leads to a sequence of poses or trajectory that is denoted by
x0:t. Likewise, the related sensor observations, control inputs and maps will be
denoted accordingly as z0:t, u0:t, and m0:t. Each motion estimate introduces an
extra uncertainty and the cumulative error grows indefinitely. Purely sequential
motion estimates would lead to an unlimited drift in pose estimates since they
add up errors in the local coordinate systems of the robot, as it can be seen in
the following figure that provides an illustration of the covariance in x0 and x1

coordinates (θ coordinate is omitted for the sake of simplicity).

Figure 2.15: SLAM uncertainty: drift in pose estimate

This drift in estimation errors can be bounded through the exploitation of loop
closures, which consist in generating spatial constraints between a pose estimate
xn and a previously visited location xn−k (0 < k < n). Based on non-sequential
observations of the same landmark or non-sequential registration of sensor data,
loop closures create anchor points in the environment coordinate frame that help
to limit the incremental error in pose estimation. SLAM implementations usually
try to exploit different types of loop closures. Actually, loop closures can be
set between pose estimates that are close in time (for instance, between xn and
xn−2), which is also referred to as tracking; more importantly, loop closures can be
established when the robot returns to a previously visited location after travelling
for some time. All in all, loop closures are crucial in SLAM as they represent a

40

2.2. SLAM Chapter 2. Introduction to Bilby Rover

key element in bounding uncertainty and cumulative error in sequential motion
estimates [41].

Figure 2.16: SLAM multiple loop closures

On the base of these considerations, it is possible to formulate the SLAM
problem from a more formal point of view. Loosely speaking, given a set of
sensor observations z0:t and control inputs u0:t, SLAM is aimed at finding the most
probable trajectory (as a discrete set of robot poses) and environment map as:

x∗
0:t,m

∗ = arg max
x0:t,m

[p(x0:t,m|z0:t, u0:t)] (2.12)

Equation (2.12) expresses the probability distribution of the actual robot pose
and map conditioned by the coordinates of landmarks and history of control inputs.

The implementation of the SLAM algorithm is usually organised in two main
parts: the front-end and the back-end. The front-end abstracts sensor datasets
into models that are suitable for estimation, while the back-end performs inference
on the abstracted data provided by the front-end [40]. In other words, the front-
end is responsible for applying specific methods that generate spatial constraints
(feature recognition and loop closure). These results, which are correct in princi-
ple but affected by noise, are refined in the back-end with generic probabilistic
optimization algorithms, which aim to find as many matches as possible among
data, while rejecting the one that seems to be similar but originates from different
environmental areas. Furthermore, the back-end can provide feedback to the
front-end for loop closure detection and verification [41]. The basic architecture

41

2.2. SLAM Chapter 2. Introduction to Bilby Rover

of SLAM is outlined in Figure 2.17

Figure 2.17: SLAM architecture

2.2.2 Review of SLAM state of the art

The SLAM algorithm exploits information from sensors that allow perceiving
the surrounding environment: it is usually operated with photographic sensors
like cameras, ranging sensors like LiDARs, or depth cameras. Depending on the
sensors applied, it can be classified as Visual SLAM or LiDAR SLAM, which are
the two most mainstream practical approaches [42].

Visual SLAM

As the name suggests, Visual SLAM (or vSLAM) uses images captured by cameras
and other imaging sensors. Visual SLAM can use simple cameras (grand-angle, fish-
eye and spherical cameras), compound-eye cameras (stereo and multi-cameras) and
RGB-D cameras (depth and ToF cameras) [43]. The large volume of information
provided by vision sensors can be leveraged to detect natural landmarks in the
surrounding environment. Landmark detection, coupled with graph optimisation
techniques, allows achieving flexibility in SLAM implementation. Monocular
SLAM (also known as Mono-SLAM), proposed in 2007, is regarded as the origin
of many Visual-SLAM techniques: in this practice, a single camera is used as the
only sensor [44]. Reflecting the dualistic anatomy typical of SLAM systems, Mono-
SLAM makes use of an Extended Kalman Filter as a back-end to track the feature
points abstracted in the front-end. Uncertainty is expressed by a probability
density function. From the observation model and recursive computation, the
mean and variance of the posterior probability distribution are obtained [44]. In
short, the robot motion is estimated by matching image features extracted in

42

2.2. SLAM Chapter 2. Introduction to Bilby Rover

different poses to construct a feature map, which can be represented as:

Mfeature = {f(x, y, z)} (2.13)

where f(x, y, z) denotes that on the world position (x, y, z), there is a feature
f(x, y, z) [44].
Unlike feature-based methods such as Mono-SLAM, direct visual SLAM methods
have been developed in recent years, with the aim of estimating robot motion
directly through pixel values, taking into account relative brightness. LSD-SLAM
(Large-Scale Direct Monocular SLAM) applies this direct method, estimating the
depth values of each pixel in the image to construct a map of the environment
[43].

On the other hand, SVO (Semi-Direct Monocular Visual Odometry), also called
sparse direct method, tries to combine feature points with direct methods to track
some key points in the environment, and then assesses the movement and position
of the camera based on the information gathered around the key points.

RGB-D SLAM makes use of RGB-D cameras to provide both colour and depth
information retrievable from the field of view, acting as a combination of a camera
and a LiDAR sensor. Hence, depth images acquired through the camera are used
to measure the minimum distance of each pixel in the frame; these results are
then combined to obtain global map information. The camera pose is obtained by
minimising the error function, which combines the intensity and depth error of
the pixels [44].

LiDAR SLAM

LiDAR SLAM uses distance readings acquired by sensing devices, namely Light
Detection and Ranging sensors. Compared to visual sensors, LiDAR sensors
have the advantage of being less sensitive to light interference and changes in
environmental conditions [45]. In addition, cameras are directional, so they detect
objects placed in the direction in which they are oriented; LiDAR sensors, on
the other hand, generally offer a 360-degree field of view, obtaining a complete
point cloud model from the surrounding environment. Therefore, the laser sensor
provides 2D or 3D point cloud data that ensures high-precision distance measure-
ments, thus working very effectively for map construction. On the other hand, a
disadvantage of LiDAR sensors is that the point density decreases with distance
due to the divergence between the laser beams [46]. In addition, matching laser

43

2.2. SLAM Chapter 2. Introduction to Bilby Rover

point clouds generally requires high computing power, so processes need to be
optimised to improve speed. Due to these challenges, LiDAR SLAM may involve
the fusion of other measurement results such as wheel odometry and IMU data [43].

Early SLAM research often used LiDAR as the main sensor and the Extended
Kalman Filter (EKF), which was applied to estimate the pose of the robot. How-
ever, EKF shows significant limitations in the accuracy of the results: especially
for highly non-linear systems, this method produces many truncation errors, which
can lead to improper localization. Particle filter approaches have been introduced
to tackle such limitations in non-linear systems, however resulting in an increase
in computational power proportional to the increase in the number of particles.

In 2007, Gmapping method was introduced, becoming a milestone for LiDAR-
SLAM. This approach, based on an improved particle filter, allows enhancing
the positioning accuracy while reducing computational complexity leveraging on
adaptive resampling techniques.

As an alternative to probabilistic approaches, optimization-based methods have
been introduced in the last decade: Karto-SLAM uses sparse pose adjustment to
solve the problem of non-linear optimization, while Hector-SLAM – which will be
discussed in Chapter 4 in further detail – uses the Gauss-Newton method to solve
the problem of scan matching [44].

In general terms, with LiDAR SLAM, motion is evaluated sequentially by matching
point cloud readings from laser sensors. The computed motion (robot trajectory)
is then exploited to locate the robot within the scanned environment and the 2D
or 3D point cloud information can be represented in an occupancy grid map [43].
Typically, the LiDAR SLAM system consists of a LiDAR odometry front-end to
perform scan matching and a back-end that performs optimisation algorithms to
obtain a globally optimised map and the complete trajectory of the robot. In
parallel to the pre-processing of the raw front-end data, loop closure detection
plays an important role, providing spatial constraints between poses captured
at the same location but at different times. For the front-end, Iterative Closest
Point (ICP), Normalized Distribution Transform (NDT) and Correlative Scan
Matcher (CSM) are typical algorithms commonly used for matching 2D LiDAR
scans: these methods aim at estimating the rigid body transformation between
two laser scans, thus allowing the prediction of the robot pose [44].

44

2.2. SLAM Chapter 2. Introduction to Bilby Rover

Figure 2.18: Overview of the 2D SLAM system

The main challenges in the implementation of a 2D LiDAR SLAM system re-
volve around three main requirements. Firstly, the front-end should be designed to
be computationally efficient and robust to initialization errors, generating accept-
able data models for loop closure detection and system optimization. Secondly, an
efficient loop closure detection algorithm must be employed to limit incremental
drifts when loops are detected. Finally, an accurate and robust optimization
back-end is needed to reject false loop closures: several back-end algorithms exist,
such as incremental smoothing and mapping (iSAM), which is a graph-based
optimization method that, based on the results generated by the front-end and
loop closure detection, provides a consistent trajectory as well as an optimized map.

In this regard, Occupancy Grid Maps (OGM) are the most widely used out-
put of LiDAR SLAM techniques. It features a 2D map that represents the
obstacles on the LiDAR plane:

Mgrid = {mg(x, y)} (2.14)

where mg(x, y) denotes the probability of a map cell to be occupied or not.
Generally, the value of mg(x, y) can be 1 if the grid cell (x, y) is occupied or 0 if
the same cell is not occupied.

45

Chapter 3

Webots Simulations

Before addressing the implementation of the SLAM algorithm, which is the ulti-
mate objective of this dissertation, it is also useful to explore other applications of
the Bilby Rover, which are made possible by the combined installation of sensors
other than the LiDAR. The structure of the robot, as a matter of fact, makes
it amenable to a broad array of potential applications, notably in an industrial
setting. However, it goes without saying that a detailed understanding of the
sensors employed is essential: the correct execution of a given task is the product
of an accurate choice of the most suitable sensors for the intended application, in
conjunction with a precise calibration of the sensors involved.

In this context, a key tool that is exploited for the proper installation of sensors
and for predicting the optimal behaviour of the robot and the suitability of its
application is virtual simulation. Especially in industrial engineering, simulation
has recently gained in prominence due to the spread of the Industry 4.0 paradigm,
based on Cyber-Physical Systems, becoming progressively central to improve
decision-making processes [47]. Simulation is a valuable working tool in industry,
serving to study and test the behaviour of systems, thus providing a cheap, safe
and fast analysis instrument for multiple applications in many fields and across
multiple domains [48]. Simulation has attained a level of technology that delivers
high flexibility and integration capabilities needed for product design, development
and production efficiency towards a fully digital simulation environment. Simula-
tion can be used to cover the lifecycle of a product, from conceptual design to
final product assembly and testing without the need for any physical application.
Industrial demand is actually increasing due to the significant benefits brought
by simulation, such as cost savings, process efficiency, and shorter delivery times
[49]. Simulation has been recognized as a powerful tool for visualization, planning

46

Chapter 3. Webots Simulations

and strategy in several areas of research and development, playing an important
role in the unfolding of the “digital factory”. Simulation opens up a wide range of
options for creative problem solving, allowing industrial systems to be examined
and tested although they do not physically exist. The use of simulation tools
makes it possible to avoid hazards, accidents, unnecessary design changes and
long cycle times. All these factors make the production process smoother and, if
used correctly, make the process more cost-effective [50].

Research and work on the development of autonomous robots has always been a
very complex activity, involving long development times and monetary efforts. In
addition, during physical tests, robots have often proved to be inconsistent with
their theoretical models, showing many unexpected variables. Robotic simulation
has emerged as a solution to provide a low-cost and easily accessible environment
for robot development. The benefits of robotic simulation technology have been
recognized by scientific and engineering communities, with applications ranging
from simple robot path simulation to full robot cell layout modelling. Robot
simulation is a key feature of modern, agile manufacturing systems, as it allows
a robotic system to be visualized and tested, even if it does not physically exist.
Fast-growing industries will increasingly rely on advanced robotics technology,
which allows the prediction of the performance of robot programs generated
off-line. The rising demand for short production cycles as well as high product
quality requires greater flexibility in the production process. This flexibility can be
reached, for example, through the integration of robots into the production shop
floor. The greatest advantage of robots is their flexibility and modularity, namely
their ability to be adapted to new production tasks. Effective, intuitive and fast
programming are essential to take advantage of robot flexibility. Today, most
industrial robots are still programmed online, but this method is not a suitable
approach for modern production systems. Conversely, an off-line programming
approach could be leveraged to significantly shorten programming and set-up
times. In such a way, any robotic program written off-line can be tested before
launching the actual production system. Robotic simulation techniques allow
robotic programs to be created and optimised without interfering with production,
thus reducing downtime. Furthermore, off-line programming also offers the oppor-
tunity to exploit simulation technology to test a variety of scenarios and processes.
In general, simulation aids the designer of a robotic system to determine the
appropriate choice of the robot and its components, including power supplies,
tools, equipment and sensors [50].

47

3.1. Webots simulator Chapter 3. Webots Simulations

In this chapter, the objective will be to simulate the Bilby Rover engaged in
specific tasks, thanks to the combined installation of different sensors. For this
purpose, Webots - a software dedicated to robotic simulation - will be used.

Therefore, the chapter is structured as follows: the first section is dedicated
to the description of Webots software and its main functionalities. In the second
section, the steps for constructing the Bilby Rover model and for importing it into
Webots environment are outlined. Finally, the following sections will be devoted
to illustrate some examples of specific applications of the robot, describing the
enabling technologies underlining the execution of a certain task.

3.1 Webots simulator

Webots is an open-source three-dimensional mobile robot simulator developed by
Cyberbotics Ltd. in collaboration with the Swiss Federal Institute of Technology
(EPFL) in Lausanne. It was originally introduced as a research tool to investigate
various control algorithms in mobile robotics. Since December 2018, Webots is
released as an open source software under the Apache 2.0 license.
Webots is used in thousands of universities and research centres around the world
and is promoted as a reliable, thoroughly tested, well-documented technology in
continuous evolution, with the aim of significantly reducing design, implementation
and testing time, thereby fostering an agile development process. It is a complete
development environment created with the objective of guiding the modelling,
programming and simulation of mainly mobile and autonomous robots. Webots
offers a rapid prototyping environment that allows the user creating 3D virtual
worlds and arbitrarily complex scenarios that may include more than one robot as
well as simple passive objects [51]. For each object in the simulation, it is possible
to specify a series of properties, such as shape, colour, texture, mass, friction,
etc. In addition, each robot can be equipped with a large number of sensors
and actuators, available for use in the platform. Webots offers the possibility
to program robots to exhibit the desired behavior, simulate them in realistic
ways, and eventually transfer the resulting programs to real robots [52]. Actually,
Webots contains a number of interfaces to real mobile robots, so that once the
simulated robot behaves as expected, it is possible to transfer its control program
to a real robot, like e-puck, DARwIn-OP, Nao, and others [51]. It also offers the
possibility of reproducing high-quality simulations with an appealing graphical
interface, as well as taking snapshots of the current situation or recording videos

48

3.1. Webots simulator Chapter 3. Webots Simulations

during the execution of a simulation.

Figure 3.1: The four development steps in the Webots platform

Webots runs on Windows, Linux and Mac OS X and is suitable for research
and educational projects related to mobile robotics. Many mobile robotics projects
have relied on Webots for years in the following areas:

• Prototyping of mobile robots (such as in academic research, automotive
industry, aeronautics, vacuum cleaner industry, hobbyists)

• Robot locomotion research (i.e. study of the performance of legged, hu-
manoids, quadrupeds, and flying robots)

• Adaptive behaviour research (genetic algorithms, neural networks, and
Artificial Intelligence)

• Multi-agent research (focused on swarm intelligence, collaborative robot
groups)

• Robotics teaching (robotics, C/C++/Java/Python programming lessons)

49

3.1. Webots simulator Chapter 3. Webots Simulations

3.1.1 Modelling

Webots provides users with the ability to create complex environments for mobile
robot simulations, using advanced hardware-accelerated OpenGL technologies.
In Webots, a world can be defined as a 3D representation of the properties of
the robots and their environment, containing a description of each object in it -
whether passive or active - specifying position, orientation, shape, type, physical
properties. Worlds are organised as hierarchical structures outlined in the scene
tree of the simulation environment.

Moreover, Webots offers a wide range of pre-built robot models available in
its embedded library, but it also allows designing new robots freely by combining
together elementary objects. In addition, Webots supports importing complex 3D
models into its scene tree from the majority of 3D modelling software. There are
many compatible formats, including VRML, STL, Collada, Blender, Wavefront,
3D Studio mesh.

The Webots platform comes with a library containing a wide range of sensors,
which can be installed on the robot model and calibrated according to needs
(including range, noise, frequency, field of view, to name a few parameters). The
library includes distance sensors (i.e. infrared, ultrasonic, laser sensors), light
sensors, touch sensors, global positioning sensors (GPS), force sensors, gyroscopes,
compass, cameras, accelerometers, radio receivers (for inter-robot communication),
incremental encoders for wheels, and others. Similarly, a library of actuators
is also supplied, including motors (both linear and rotational), brakes, displays,
connectors, LEDs, and speakers, to mention a few [52].

3.1.2 Programming

After the world and robots to be examined have been configured, the controller
must be programmed to make the robot display the desired behaviour. A controller
is a computer program that manages a specific robot in a world file. The controller
can be written in one of the various languages available on Webots: the APIs
originally provided by Webots are those designed for the use of the C language,
but, based on these, APIs have also been provided for C++, Java, Python, Matlab.
The controller can be implemented using Webots built-in development environment
or any other third-party tool. However, it is worth stressing that, despite the
syntactic differences between the languages mentioned above, they all share the
same low-level implementation. Therefore, as long as the sequence of functions

50

3.1. Webots simulator Chapter 3. Webots Simulations

and method calls does not change, each programming language will lead to the
same simulation results.
Usually a controller process runs in an endless loop until it is terminated by
Webots on one of the following events:

• Webots quits

• The simulation is reset

• The world is reloaded

• A new simulation is loaded

• The controller name is changed

In addition to the regular controller, Webots features another important element
called supervisor. The supervisor generally performs operations that are carried
out by human operators rather than by robots. Thus, in general, it is not a robot
physically present in the scene but just an abstract process that has the possibility
to intervene in the simulation in a similar way as a human supervisor could do
during a real test. The supervisor can be written in one of the languages listed
above but, unlike regular robot controllers, this type of process has access to more
extensive APIs and to privileged operations. These operations allow to obtain
information about any object in the scene and to modify it in an automated
way. A supervisor can perform operations such as instantly moving a robot to
any position, stopping and restarting the simulation, taking snapshots, recording
videos of the simulation, and so on. The main task entrusted to a supervisor is
therefore to manage the simulation and to process specific data in favour of the
whole development process: actually, a supervisor is often employed to retrieve
statistics on the controller performance to be used in optimisation algorithms.

3.1.3 Simulation

Webots relies on the concept of virtual time, which makes it possible to reproduce
a simulation at a much faster speed than the real one, up to, in the extreme
case, fully exploiting the capabilities of the hardware on which it is running.
The elementary time interval used in the simulation process is called the sim-
ulation step and can be configured according to needs, depending on whether
greater precision or greater speed in completing the simulation is being sought [52].

Webots employs the Open Dynamics Engine (ODE) for the simulation of physical

51

3.1. Webots simulator Chapter 3. Webots Simulations

laws and interactions between objects in the scene. A wide range of objects can
compose the scene to be simulated including robots, light sources of various types,
floors, walls, obstacles, and many other entities. The properties of each object, such
as shape, appearance, mass and friction coefficients, are individually configurable
and are then used during the simulation to reproduce the desired characteristics of
the corresponding real objects. If the standard operation of the ODE is not suffi-
cient for certain purposes or if it is necessary to introduce special physical laws (e.g.
viscous friction in fluids), the physics simulator can be extended by means of plug-
ins that can be programmed by the developer and tailored for the specific task [51].

In Webots, the operations of the controller are based on a cyclic process in
which, at each iteration, the inputs provided by the sensors are collected and
then processed to generate outputs sent to the actuators. As far as simulation is
concerned, the controller and simulator run as two independent processes that
communicate with each other. At each repetition, the controller must actively
request the intervention of Webots in order to carry out the simulation of a time
interval, called control step, which substantially represents the time duration
of the controller iteration. During this operation, Webots will actually put the
controller program into practice by updating the status of the actuators and
evaluating their interactions with other objects. The effective duration of this
operation depends on the speed at which Webots is performing the simulation: it
can be much longer, (approximately) equal or even shorter than the control step,
depending on whether the requested simulation is particularly computationally
demanding or not. At the end of each operation step, the simulation status is
refreshed and the updated value assumed by the sensors is transferred to the
controller program.

3.1.4 Transfer to real robots

Once the simulated robot behaves correctly in the virtual world, the controller
can be transferred to real mobile robots. Webots was originally designed with
this distinguishing transfer capability in mind, providing a programming interface
easily portable to physically existing robots. Webots already comprises transfer
system for a series of robots including e-puck, DARwIn-OP, Khepera, and He-
misson. Obviously, since the simulation is only an approximation of the physics
of the real robot, some tuning is always necessary when developing a transfer
mechanism, which will affect the simulated model so that it better matches the
behaviour of the real robot [51].

52

3.2. Bilby Rover modelling on Webots Chapter 3. Webots Simulations

Often, the simplest approach to transferring the controller program to a real
robot is to develop a remote control system. In this case, the control program is
executed on the computer, but instead of sending commands and reading sensor
data from the simulated robot, it sends commands and reads sensor data from
the real robot. The development of such a remote control system can be achieved
by writing the implementation of the Webots API functions as a short library.
Webots already provides some facilities to implement a remote control library:
this can be exploited as a plugin to a controller, which, once associated with the
Robot node, will be executed automatically when running the controller [51].

Cross-compilation is the main alternative to the remote control method. The
development of a cross-compilation system will allow the Webots controller to be
compiled into a processor embedded in the robot platform. Thus, the source code
written for the Webots simulation will run on the real robot itself, and there will
be no need to have a permanent PC connection to the robot, as with the remote
control system. However, this method is only possible if the robot processor can
be programmed in C, C++, Java or Python. Unlike the remote control system,
the cross-compilation method requires the source code of the Webots controller to
be recompiled using the cross-compilation tools specific to the processor installed
in the robot [51].

3.2 Bilby Rover modelling on Webots

As discussed in Section 3.1, the first task to fulfil before running a Webots
simulation is to correctly setup the robot model. Owing to the fact that the
Bilby Rover model is a custom design developed by the W Booth School of
Engineering Practice and Technology at McMaster University, the robot is not
available and ready to use in the standard robot library on the Webots simulator
platform. To tackle this issue, the software offers two main solutions to design a
customised robot: one is to model the robot by aggregating simple elementary
components together to obtain the desired shapes (elementary components such
Box, Sphere, Cylinder, and Capsule), and the other is to import the robot model
from third-party 3D modelling software. The first alternative is undoubtedly the
most convenient solution if the structure of the robot is fairly simple and does
not feature elaborate geometries. A representative example is the robot shown in
Figure 3.2.

53

3.2. Bilby Rover modelling on Webots Chapter 3. Webots Simulations

Figure 3.2: 3D view of a sample four-wheeled robot built with elementary solids

As it can be observed, the robot is made up of a box-shaped body, four
cylindrical wheels and two distance sensors mounted in the front part. This robot,
which is mainly used for educational purposes and to practice with the simulator
platform, does not pose any particular criticality in its structure, being made
up of elementary geometric solids, such as boxes and cylinders. It goes without
saying that for the construction of similar models, the simplest solution is to
aggregate elementary components directly by modelling the robot in the Webots
scene. Conversely, when it comes to modelling more sophisticated robots, this
solution presents important limitations, at the expense of the accuracy of the
resulting model and of the time required to build a robot using only elementary
geometric shapes. To give a rough idea, one might think of constructing a vehicle
suspension or a gearbox by progressively aggregating elementary solids. However,
although feasible in theory, the design of these components using such approach
would result, in practice, in a model with poor structural accuracy and, above all,
would take much longer than using 3D modelling software specifically dedicated
to mechanical design. Therefore, in the case of robots with a particularly complex
structure, the most convenient solution is to design the model in dedicated third-
party software and then import it into the Webots platform. In the light of these
considerations and bearing in mind the complexity of the Bilby Rover structure,
the procedure to follow is definitely the latter.

Before importing the robot, it is necessary to create on the Webots simula-

54

3.2. Bilby Rover modelling on Webots Chapter 3. Webots Simulations

tor a new world, which is a file containing information such as where the objects
are located, what they look like, how they interact with each other, what the
background is, how gravity, friction, masses of the objects, and other parameters
are defined. In general, the world file defines the initial state of the simulation. The
different objects present in the world file are called nodes and they are organized
hierarchically in a tree structure named Scene tree; on their turn, nodes may
contain many sub-nodes. The graphic interface can be thus divided into two main
sub-windows: the 3D window, which is the 3D representation of the Scene tree,
and the scene tree view, that is the hierarchical schematization of the Scene tree,
where the different nodes can be visualized and modified. After world setup, it
usually lists the following nodes:

• WorldInfo, containing the global parameters of the simulation

• Viewpoint, defining the main viewpoint camera parameters

• TexturedBackground, defining the background of the scene

• TexturedBackgroundLight, defining the light associated to the background

• RectangleArena, defining a floor surrounded by walls

Figure 3.3: Webots Scene Tree and 3D Window showing a rectangular arena

Once the empty scene is created, it is necessary to import the robot model into
Webots platform. However, before proceeding with this operation, it is necessary
to clarify a number of rules that must be observed to configure the hierarchical

55

3.2. Bilby Rover modelling on Webots Chapter 3. Webots Simulations

structure of the robot on Webots.

Webots platform comes with a library of different nodes, corresponding to different
real or virtual entities in the structure of a robot. A Solid node represents a rigid
body, namely a body whose deformation can be neglected. Soft and articulated
bodies are not rigid bodies. For instance, a wheel rim is a rigid body, whereas
a tyre or an articulated robotic arm is not. Webots physics engine is designed
to simulate only rigid bodies. Therefore, an important step when planning a
simulation is to decompose the various entities into separate rigid bodies [51]. To
define a rigid body, it is thus necessary to create a Solid node, within which it is
possible to define several sub-nodes corresponding to the characteristics of the
rigid body in question. The graphic representation of the Solid node is specified
by the Shape nodes that populate its list of children. The collision boundaries
of the body are set in its boundingObject field. Finally, the Physics field defines
whether the object belongs to the dynamic or static environment [51].

Two distinct solids within the robot structure are connected by Joint nodes,
which are used to add one or more degrees of freedom between its parent and its
child. Therefore, nodes derived from Joint enable various types of constraints to
be created between connected Solid nodes. The most widely used in robotics is the
HingeJoint node, which allows configuring rotational motors including wheels. In
addition, a Joint node can be monitored or actuated by adding a PositionSensor
node or a Motor node to its device field. Finally, devices such as sensors and
actuators should be direct children of a Robot, Solid or Joint node.

Having these rules in mind, it is possible to start designing the node hierar-
chy used to model the robot. The first step is to determine which part of the robot
should be modelled as a Solid node. In this specific project, the operation is almost
straightforward and the Bilby Rover can be divided in six solid nodes: the body
(including covers, the underbody frame and driveline made up of belts and pulleys,
which will not be considered as active components for the sake of the simulation),
the LiDAR, and the four wheels. The second step is to determine which Solid node
is configured as a Robot node (parent entity) in the Scene Tree. Such choice is
usually arbitrary, even if a solution is often much easier to implement. In this case,
the Bilby Rover body is assigned to the Robot node: such choice allows exploiting
the symmetry of the structure, aiding the computation of joint parameters and
the estimation of the devices position during their installation. Based on this
choice, joints (for wheels) and devices (i.e. LiDAR and other sensors) will be set

56

3.2. Bilby Rover modelling on Webots Chapter 3. Webots Simulations

as children of the Robot node. Figure 3.4 and Figure 3.5 depict respectively the
high-level and low-level representation of Bilby Rover solid nodes hierarchy.

Figure 3.4: High-level representation of Bilby Rover nodes hierarchy

Figure 3.5: Low-level representation of Bilby Rover nodes hierarchy

Based on the graph shown in Figure 3.5, the same structure must be replicated
in the scene tree on Webots. For this purpose, the structure of the robot must
be broken down into the six distinct solids (the body, the LiDAR and the four
wheels) on SolidWorks, where the model has been designed by the McMaster’s W
Booth School of Engineering Practice and Technology.

57

3.2. Bilby Rover modelling on Webots Chapter 3. Webots Simulations

Figure 3.6: Isolated components (body, LiDAR, wheels) imported into Webots

Subsequently, these main components are exported separately as Collada files
and then imported into Webots using a designated function in the file menu. Once
imported, the files are then nested inside the relative node within the robot hierar-
chical structure, coinciding with the position indicated by the reddish rectangle in
Figure 3.5. In this regard, it is necessary to specify the coordinates of the position
of the wheels and the LiDAR sensor with respect to the reference system attached
to the root node, namely the body frame.

At this point, the last step is to establish the parameters associated with both the
HingeJoint and the Lidar node. For each HingeJoint there are three fields that
must be filled in:

• jointParameters, in which a HingeJointParameters node is created, allowing
the anchor and axis of rotation of each wheel joint to be defined

• device, in which a RotationalMotor node is introduced to provide wheels
actuation. The RotationalMotor nodes must be labelled with a specific name
for each wheel, so that they can be called and instantiated in the controller
codes to forward commands.

• endPoint, where a Solid node is added, containing the wheel shape imported
from the 3D modelling software, according to the procedure described above.

As far as LiDAR is concerned, the relative node comes with a series of fields that
allow the setting of the technical specifications of the sensor to mirror the actual
functionalities of the real device. In the light of the YDLIDAR X4 data sheet (see
Section 2.1.2), some relevant fields of the Lidar node are configured, such as field
of view, horizontal resolution, minimum and maximum range and measurement
resolution. Again, the Lidar node is labelled with a name to be referenced by the
controller.
Once these steps are implemented, the Bilby Rover setup will be properly config-
ured on Webots and will result as depicted in the Figure 3.7.

58

3.3. Bilby Rover applications Chapter 3. Webots Simulations

Figure 3.7: Bilby Rover in Webots simulator

To enable the desired behaviour of the robot, a controller must be assigned to
it. The controller can be programmed using different languages, such as C, C++,
Java and Python and the source code is shown and can be edited in a window in
the Webots simulator interface.

The robot node has a field called controller that defines which controller is
currently associated with the robot. Therefore, the procedure is to generate the
programming code according to needs and depending on the sensors involved
in the particular application and store it in the project folder. Then, the same
controller must be associated via the appropriate field in the robot hierarchical
structure, allowing the system to behave as desired.

3.3 Bilby Rover applications

The objective of this section is to describe the development of a set of simulations
aimed at studying applications made possible by the integrated use of sensors
installed on the Bilby Rover. Although the ultimate goal is to implement the
SLAM algorithm for the physical robot, virtual simulations of other applications
are a useful tool to give an overview of the range of functionalities of the robot,
highlighting its potentials and limitations.

Therefore, in the following paragraphs a number of examples that have been
developed on the Webots simulator will be proposed. Although the range of
applications could be manifold, the focus is on some functionalities and behaviours
that could be useful in an industrial scenario, such as for shop floor operations.

59

3.3. Bilby Rover applications Chapter 3. Webots Simulations

3.3.1 Keyboard Teleoperation

The purpose of this application is to simulate the teleoperation of the Bilby Rover.
In simple terms, teleoperation refers to the task or activity itself of operating a
vehicle or system remotely [53]. The research conducted in the area of robotic
teleoperation is extensive and has been explored since the mid-twentieth cen-
tury. The research is strongly interdisciplinary and tackles a broad variety of
aspects regarding human-robot interaction, mobile robotics and visualization.
Originally, research on teleoperation was conducted to enable human operators
to work remotely in hazardous environments. Telerobots are generally mobile
platforms that accept instructions from a remote human operator. Furthermore,
in addition to receiving commands from the operator, robots can be equipped
with specific sensors and actuators that allow them to perform complex tasks,
such as object recognition, mapping, exploration and localization. Due to the
variety of applications, teleoperation has been widely used in recent decades in
different fields, such as space exploration, mining, medical, surveillance, inspection
in environments restricted to humans and rescue [54].

A teleoperation setup is usually a master-slave system: in such a configura-
tion, the master device is controlled by the operator and the slave device is placed
in the remote side [54]. The key components needed to develop telerobotics
applications are control (algorithm and real time implementation), sensors (i.e.
world sensing and information processing) and wireless communication, which are
interconnected as showed in Figure 3.8.

Figure 3.8: General block diagram of a mobile robot teleoperation system

By definition, the human operator manually interacts with the teleoperation

60

3.3. Bilby Rover applications Chapter 3. Webots Simulations

system via the input device, whereas the telerobot senses and performs actions in
the far distant environment. There are many devices used to control the remote
system in teleoperation, such joystick, keyboard, mouse and touchscreens.

In the present simulation, the intention is to implement a simple algorithm
to enable teleoperation with a low Level of Automation (LOA). The low LOA im-
plies that the human operator has direct manual control of the robot by providing
the input command through a dedicated peripheral device [53]. More precisely, the
user will be able to command the movement of the Bilby Rover via the keyboard:
by pressing the arrow keys on the keyboard, the user will send commands to the
robot, which will move in the specified direction.

To develop the teleoperation system, a new controller code is created and inserted
into the specific field in the robot hierarchical structure. In this respect, it should
be pointed out that the Webots API (Application Programming Interface) has
an extensive library, whose classes must be included in the code in order to call
up the functions available for the various simulated devices. By calling up the
Robot node library, its relative functions are enabled in order to interact with
components such as sensors and actuators. Similarly, the Keyboard library must
be invoked to trigger a series of functions that allow the controller program to read
keys pressed on the computer keyboard when the Webots 3D window is selected
and the simulation is running [51]. During the simulation, therefore, the user is
asked to press the arrow keys to indicate the direction in which the robot should
move. The controller code then receives the keyboard input and, based on the
designated direction, sets the motors’ speed to perform the desired manoeuvre.

When setting the speed given to the motors, it is necessary to take into ac-
count the kinematic model of the Bilby Rover, briefly outlined in Section 2.1.1.
Actually, as the structure features four conventional non-steering wheels, the Bilby
Rover is a non-holonomic system, having only one controllable degree of freedom,
namely the longitudinal x-coordinate. Consequently, the robot will not pose any
criticality in moving back and forth, since the movement is directly controllable
through the actuation of the wheels. On the contrary, the steering manoeuvres
cannot be performed by direct control of the θ-coordinate, but they are carried
out through a combination of speeds given to the four wheels, according to the
equations given in Equation (2.10). For this reason, when the up and down arrows
are pressed, the controller assigns the same speed to all four wheels. On the
contrary, when the user presses the side arrows, the controller calculates the speeds

61

3.3. Bilby Rover applications Chapter 3. Webots Simulations

according to the Equation (2.10): the differential speed between the left and right
wheels will allow the robot to turn.

However, it should be stressed that, given the configuration of the system, the
instantaneous centre of rotation will not fall within the mobile platform, since
the robot cannot perform complete turns on itself, as it happens with differential
drive robots or system equipped with mechanum wheels. Therefore, it must be
kept in mind that, given the inherent complexity of trajectory control, the robot
must be used with caution in restricted spaces or in abrupt manoeuvres.

Furthermore, in order to enhance the accuracy of trajectory control, it is necessary
to find a workaround to avoid wheel slip in the longitudinal direction. In fact, in
case of slippage, the robot could respond with delay to the user’s commands, as
the wheels would turn freely due to the lack of the proper friction to move the
robot in the desired direction. To compensate for this problem, a higher friction
between the rear wheels and the ground is set in the Webots simulation. This
expedient, which in practice corresponds to using rear wheels made of a different
material compared to the front ones, allows the robot to turn more smoothly
and to increase responsiveness to user commands by reducing the possibility of
longitudinal slippage.

Figure 3.9: Teleoperated robot simulation on Webots

62

3.3. Bilby Rover applications Chapter 3. Webots Simulations

3.3.2 Line Following

The aim of this section is to describe the instructions and steps to implement a
basic line following behaviour for the Bilby Rover. Line-following robots have been
deployed in many industrial and commercial applications for quite a long time.
The drive to use these systems for motion dynamics is motivated by their inherent
simplicity of construction and programming. These robots can be flexibly config-
ured for any track layout within a factory, commercial space and even hospitals.
The use of line-following robots in factories is an integral part of automating the
handling of materials and semi-finished products [55]. Traditionally, jib cranes,
conveyor belts, overhead cranes and forklifts have been used to transfer material
or products between different workstations or warehouses. Over the years, how-
ever, such material handling equipment has showed some significant limitations:
actually, forklifts require fuel and tank replacements, with increasing maintenance
costs, jib-cranes and conveyor belts take up space in the plant shop floor, and
overhead cranes can be very hazardous for the employees sharing the same working
area. Currently, with Industry 4.0 at its peak, autonomous technologies are used
in every aspect of product development, logistics and management. The use of
line-following robots represents a promising solution to overcome these issues and
delivers valuable results for the efficient transportation of work-in-process good on
factory floors [55]. In general, the hardware of line following robots consists of the
robot body, motors, sensors and control boards, while the software handles the
programming code, sensors parameters, and the controller design to communicate
with the sensors and actuators installed on the robotic system.

The sensors play a fundamental role in the implementation of the line following
behaviour. For this application, vision sensors must be mounted on the robot
platform to detect and differentiate the colour of the path from the one of the
surroundings, and, in turn, they allow the robot to adjust its trajectory to follow
the track. In the present simulation, the line to be followed has to be segmented
from the factory floor using a set of two infrared sensors, working simultaneously.
In general, infrared sensors are equipped with two distinct diodes: one is in charge
of sending IR rays (transmitter), while the other receives back the reflected rays
(receiver). The specificity of infrared sensors is closely linked to the absorption or
reflection properties of the different materials that are affected by IR radiation.
Indeed, if the IR rays impact on a white surface, they are completely reflected,
whereas if the rays are directed at a black surface, they are absorbed or slightly
reflected. At the level of the sensor, which is equipped with specific circuitry,

63

3.3. Bilby Rover applications Chapter 3. Webots Simulations

the different amount of light that is collected by the receiver is translated into
a different signal, namely into a higher (white surface) or lower (black surface)
output voltage. The difference in voltage, therefore, is the discriminating element
that permits to distinguish the colours that are captured by the sensors and,
consequently, provides the necessary inputs for the line-following action to take
place [56].

On Webots simulator platform, a factory environment is created, featuring a
black closed path traced on the white floor.

Figure 3.10: Webots scene for line-following simulation

Considering the line-following task to be accomplished, the two infrared sensors
are installed in the front part of the Bilby Rover platform, pointing downwards on
the ground. The sensors are placed 70mm apart from each other and symmetrically
with respect to the longitudinal plane: given that the width of the designed path
is equal to 100 mm, the configuration of the sensors ensures that their rays will
stay always within the black line.

64

3.3. Bilby Rover applications Chapter 3. Webots Simulations

Figure 3.11: Infrared sensors configuration (IR rays are the red lines)

At this point, once the scene and the robot have been correctly configured, it
is necessary to create the controller code to enable line-following behaviour. The
code can be divided into two main parts:

• Initialization: in this section, the different API functions are called from the
library and instantiated. In this code segment, the sensors and actuators
of the Bilby Rover are initialised and triggered, thus allowing them to be
controlled in the main cycle of the program.

• Actuation: this part of the code is inherent to the execution and imple-
mentation of the previously initialised sensors and actuators. This code
segment is placed in a loop that is repeated indefinitely until the simulation
is stopped. In this loop, the controller recursively receives output data from
the infrared sensors and, based on the returned values, issues commands to
the motors to adjust the trajectory, allowing the line to be followed.

The basic algorithm is fairly straightforward: the controller continuously reads
the output values from infrared sensors, through which it can figure out whether
the device beams are bumping into the black line or the white floor; as a matter
of fact, the output values returned by the sensors will be different. Therefore,

65

3.3. Bilby Rover applications Chapter 3. Webots Simulations

as long as both sensors intercept the black line, the controller drives the wheels
with the same speed in order to move the robot in the forward direction. On the
contrary, as soon as one of the two sensors reports that it is intercepting the white
floor, the controller issues commands to the motors setting a speed differential
between left and right wheels, thus activating the steering mechanism to adjust
the trajectory:

• If the left sensor detects the white colour, the controller sends the right
motors the command to rotate in the opposite direction with respect to the
left ones, thus steering the robot to the right.

• If the right sensor detects the white colour, the controller sends the left
motors the command to rotate in the opposite direction with respect to the
right ones, thus steering the robot to the left.

Figure 3.12 provides a basic schematic of the line following behaviour, showing
the black path, the robot trajectory and the sensing module installed on the Bilby
Rover.

Figure 3.12: Line-following behaviour with infrared sensors

Therefore, this mechanism enables the robot to travel over the black path,
turning left or right and even taking U-turns. The infrared sensors allow the

66

3.3. Bilby Rover applications Chapter 3. Webots Simulations

robot to perceive the world and to guide its motion by differentiating the line
colour from its surroundings. This difference between black and non-black pixels
is detected and processed to accede the motion of the robot [55].

Finally, referring to a possible future work aimed at improving the robot perfor-
mance, it would be also necessary to address the safety issue. In this context, a
suggestion to improve the performance of the robot would be to install a set of
distance sensors (e.g. ultrasonic sensors) that allow the robot to perceive obstacles
in its path. The integration of these devices, if appropriately programmed with a
controller code, allows the robot to travel autonomously along the path and to
stop to avoid collision with an obstacle. This measure would increase the safety
of the robot operations, especially in environments shared with human operators.

3.3.3 Lane Keeping and Object Recognition

The aim of this section is to develop a simulation in which the Bilby Rover is made
to move along a lane delimited by side lines and stop if an obstacle is detected
along its path. Therefore, the simulation requires the implementation of two
specific functions to be performed in parallel: on the one hand, the robot must
be configured and programmed to move while following the lane; on the other
hand, the robot must be equipped with specific visual sensors that, appropriately
calibrated and coded, enable the scanning of the surrounding environment and
the identification of the presence of any obstacles.

To address this twofold purpose, two types of visual sensors are used as enabling
technologies: infrared sensors and a smart camera. Respectively, the infrared
sensors are responsible for providing the necessary data for the lane-keeping task,
while the smart camera is the device that makes obstacle identification possible.

The logic behind the application of ultra-red sensors for lane keeping is almost
the same as the one illustrated in Section 3.3.2. Leveraging the light reflection
and absorption properties of different colours, infrared sensors enable the robot
to differentiate the track from the two side lines, thus allowing it to adjust its
trajectory, by means of the feedback mechanism depicted in Figure 3.13. Actually,
depending on the colour inspected by IR rays, infrared sensors output different
values (proportionally to the amount of light reflected back to the receiving diode),
which are used as discriminant elements to distinguish colours.

67

3.3. Bilby Rover applications Chapter 3. Webots Simulations

Figure 3.13: Control loop for the lane-keeping task

So, as soon as the sensors sense the presence of the white line, which is a
warning of unintentional lane departure, the motors are actuated to activate
a steering mechanism to direct the robot back to the center of the lane. The
turning direction for the steering manoeuvre is established according to the sensor
intercepting the white line: for instance, if the sensor installed on the left-hand
side identifies the line, the motors will be actuated to steer to the right, and vice
versa. For the sake of clarity, the algorithm underlying the lane-keeping capability
using two infrared sensors can be illustrated by the flowchart in Figure 3.14

Figure 3.14: Lane-keeping algorithm flowchart

While lane keeping is based on the harnessing of infrared sensors, the object

68

3.3. Bilby Rover applications Chapter 3. Webots Simulations

recognition function is enabled by the installation of a smart camera on the robot
body.

Since the 1990s, smart cameras have achieved remarkable popularity and market
acceptance, notably in the surveillance and machine vision industries. Owing to
intelligent image processing and purposely-engineered pattern recognition algo-
rithms running on powerful microprocessors, a smart camera can perform tasks
beyond simply taking photos and videos, such as image analysis and event/pattern
recognition [57], thus representing a key technological enabler to build active and
automated control systems for many applications.

What differentiates smart cameras from general purpose ones is the type of
tasks performed by the embedded image processor and the output generated by
the device. In this regard, a smart camera can be defined as a vision system that is
capable of extracting application-specific information from captured images, gen-
erating event descriptions or decisions that are fed into an intelligent, automated
system. The ultimate goal of smart cameras is to implement a mechanism that
can mimic the functioning of the human eyes and brain, thereby making sense
of the captured images through artificial intelligence [57]. It is worth stressing
that a camera that comes with an integrated image processing capability does not
necessarily qualify as an intelligent camera, as this attribute is strictly dependent
on the purpose of the image processing. Actually, although many consumer digital
cameras are equipped with built-in image processing capabilities (such as focus,
exposure control, image compression, to name a few), most of them are mainly
targeted just at producing better quality images. By contrast, the main purpose
of image processing in smart cameras is to generate descriptions of events and
guide decision-making processes in an automated control system.

The construction of intelligent cameras requires the integration of computer
vision, machine vision and embedded systems technologies. Both machine and
computer vision are concerned with building devices or systems that can retrieve
valuable information from images and take decisions based on the acquired data.
Embedded systems technology, instead, is dedicated to building systems that are
low-power, low-cost and robust enough to operate reliably in real-world conditions.
Figure 3.15 provides the simplified functional diagram of a smart camera.

69

3.3. Bilby Rover applications Chapter 3. Webots Simulations

Figure 3.15: Simplified functional diagram of smart camera (Source: [57])

Intelligent cameras feature integrated optics that are designed to efficiently cap-
ture light, which is then forwarded to an image capture block, typically consisting
of a solid-state image sensor and associated circuitry to implement the conversion
from light to a digitized image array. The digital signal is then processed by the
Application-Specific Information Processing (ASIP) block, which is responsible
for understanding and describing what is happening in the captured images, gen-
erating information that aids decision-making in the intelligent control system.
Finally, the communication interface is capable of receiving instructions from
the host via the I/O ports and, in turn, transmitting data or issuing commands
to the user or control system. Recalling the parallelism with humans, while
the optics replicate the function of human eyes, the ASIP block can be suitably
compared to the brain. On the hardware side, the ASIP block incorporates one
or more microprocessors with associated memory, communication buses and other
components. On the software side, the ASIP executes advanced image processing
algorithms to gather relevant information, identify patterns, detect events and
generate inputs for decision-making processes. In general, both hardware and
software must be designed specifically for the selected application, taking into
account technical requirements and performance specifications [57].

In this specific application, smart camera technology is leveraged to identify
obstacles along the route of the robot: the vision sensor, suitably configured
for this purpose, captures images of the surrounding environment and alerts the
control system if an object is detected. This alert triggers the response of the
control system, which stops the robot at a safety distance and lets it move again
as soon as the track is free from any obstruction.

On the Webots simulation platform, a factory environment is created, featuring a
closed lane delimited by two white stripes running around a sample production
department.

70

3.3. Bilby Rover applications Chapter 3. Webots Simulations

Figure 3.16: Webots scene for lane-keeping and obstacle detection simulation

Considering the lane-keeping task to be accomplished, the two infrared sensors
are installed sideways in the front part of the Bilby Rover platform, pointing
towards white lines. The sensors are placed 120 mm apart from each other and
symmetrically with respect to the longitudinal plane: given that the width of
the designed lane is equal to 1.5 m, the sensors are suitably oriented to ensure
their rays to stay always within the track delimited by white lines. In addition to
the infrared sensors, a Camera node is included in the Bilby Rover tree diagram.
The device is installed in the front panel of the robot and oriented to capture the
environment in front of it. Figure 3.17 illustrates the integrated installation of
the aforementioned sensing devices. The window overlay that appears on the top
right shows the image captured by the smart camera.

71

3.3. Bilby Rover applications Chapter 3. Webots Simulations

Figure 3.17: Vision sensors configuration

However, it must be emphasised that the Camera node itself provides the
basic functionality of a general purpose camera, without any object recognition
capability. Although real intelligent cameras have built-in components respon-
sible for implementing image processing algorithms, Webots platform provides
the user with a number of tools to simulate the intelligent functionalities of the
visual sensor. In this regard, by adding a Recognition node in the respective
field within the tree graph of the Camera node, the sensor becomes capable
of recognizing objects that are captured in the image. In real practice, object
identification is the outcome of the implementation of targeted algorithms based
on artificial intelligence and machine and computer vision. However, for the
sake of simplicity, in the Webots simulator, object recognition is made possible
through a workaround: by initializing the recognitionColor field of the objects
in the scene that have to be identified as obstacles, the smart camera will be
able to detect them. In other words, this mechanism corresponds to marking
the objects to be detected with an identifier recognizable to the eyes of the camera.

At this point, once the scene and the robot have been correctly setup, it is
necessary to generate the controller code to activate the desired behaviour of the
Bilby Rover. The program is composed of two macro parts. The first segment
is responsible for initializing the sensors and actuators, which are instantiated

72

3.3. Bilby Rover applications Chapter 3. Webots Simulations

and enabled, allowing them to be controlled in the main code loop. The second
part contains the implementation functions that are repeated recursively until
the simulation is stopped. In this cycle, the controller receives output data from
both the infrared sensors and the smart camera. On the one hand, the infrared
sensor values are leveraged for controlling the motors to execute the lane keeping
task; on the other hand, the controller continuously monitors the smart camera
data readings and, as soon as an obstacle is detected, it issues a command to stop
the robot at a safety distance until the obstacle is removed from the camera’s
field of view. Based on these considerations, the flowchart of Figure 3.14 can
be integrated with the obstacle detection function, thus providing a complete
representation of the behaviour triggered by the robot controller. The resulting
modified flowchart is shown in Figure 3.18.

Figure 3.18: Flowchart of lane-keeping and obstacle detection algorithm

Through the implementation of the algorithm described in Figure 3.18, the
Bilby Rover will move following the trajectory defined by the lane and stop at

73

3.3. Bilby Rover applications Chapter 3. Webots Simulations

a distance of 0.5 m from the identified obstacle, which in this case is a worker
crossing the path. When the obstacle is removed from the smart camera field
of view, the robot will resume moving along its intended path. The integrated
approach of these vision sensors - infrared sensors and smart camera - allows the
robot to move autonomously while ensuring the safety of its operations through
the obstacle avoidance functionality.

3.3.4 Platooning control of a robot cluster

The present section describes the design and implementation of a simulation in
which a cluster of two autonomous mobile robots are coordinated to move as a
platoon.

Platooning is a coordination technique for groups of mobile modules, which
seeks to ensure that each unit moves close to its preceding neighbour, thus forming
a so-called platoon [58]. A platoon consists of a specific cluster in which the first
robot is the leader, while the other robots are the followers: in such a configuration,
each follower must follow the previous one to keep the formation [59]. Platooning
has some interesting applications to autonomous vehicles in intelligent trans-
portation systems: concurrent studies show that the deployment of platooning
technology in vehicles and into the transportation infrastructure in general holds
the promise of significant improvements to traffic safety and efficiency, allowing
to lower traffic jams and air pollution in urban areas [60]. In this respect, truck
platooning is the most prominent example of this technological application: it
entails the connection of two or more trucks in convoy, using networking technology
and automated driving support systems. These vehicles automatically maintain a
close distance between each other when they are connected for certain parts of a
route, for example on motorways [61]. Truck platooning has great potential in
terms of creating safer, cleaner and more efficient road transport in the future,
which is why the major truck manufacturers are already carrying out the first
real-world tests to bring these platoons to European roads.

Platooning coordination of a group of two Bilby Rover robots is addressed in
this section. In the considered system, the first robot is the leader, which moves
at a predefined speed along an arbitrary path delimited by side lines, exploiting
the algorithm for lane-keeping based on infrared sensor technology illustrated in
section 3.3.3. The second robot, instead, is the follower, which, as soon as detects
the presence of the leader, must precisely follow the route of the leader in front

74

3.3. Bilby Rover applications Chapter 3. Webots Simulations

of it and maintain the desired safety distance from that same vehicle. For this
purpose, on Webots platform, the same factory environment illustrated in Section
3.3.3 has been replicated (see Figure 3.16): two Bilby Rover robots are therefore
imported in the simulator world scene.

Figure 3.19: Webots scene with two Bilby Rover robots (leader and follower)

To make platooning technology effective, a set of devices must be installed on
the robotic platforms, with the aim of enhancing perception capabilities of the
robots. To clarify the necessary devices, it is essential to describe the operations
of the robots and to understand which functionalities must be enabled to obtain
the desired behaviour. Actually, among the requirements associated with the
control of a platooning system, longitudinal and lateral control are the most
relevant ones. Longitudinal control is aimed at stabilizing the distance between
the leading vehicle and the following vehicle, while lateral control is concerned
with aligning the follower’s direction relative to the leader robot in front of it.
This control consists in keeping the angle between the leader and the follower close
to zero [62]. In the present simulation, the purpose is to enable the formation of
the platooning cluster where the relative position information between the two
modules is retrieved from a local sensing device. For this purpose, a radar sensor
can be employed to fulfil this task.

Radar (short for Radio Detection and Ranging) is an active detection device
that leverages electromagnetic waves in the radio or microwaves domain to detect,
locating, tracking and recognizing objects of various kinds at even considerable
distances [63]. Radar sensors typically involve radiating, in a pulsed or continuous

75

3.3. Bilby Rover applications Chapter 3. Webots Simulations

way, beams of electromagnetic energy towards a defined target in a region of
interest via a transmitting antenna. When electromagnetic waves bump into
the target, a portion of the radiated energy is reflected back towards the radar
system. A receiver embedded in the output side of the antenna extracts the desired
reflected signals, allowing measuring the location of the target in terms of distance
and angular direction. Figure 3.20 shows a simplified functional diagram of the
radar sensor, featuring the major elements involved in the process of transmitting
and propagating the radiated beam and receiving the reflected signal back to the
source. Although technical features may vary for a given radar, which can be
simpler or more complex, the major subsystems include a transmitter, antenna,
receiver, and signal processor.

Figure 3.20: Simplified functional diagram of a radar (Source: adapted from [64])

EM waves, generated by the transmitter, are taken as input by the antenna
and introduced into the propagation medium, typically the atmosphere. A trans-
mit/receive (T/R) device – which is usually a circulator or a switch - is the
responsible for providing a connection point so that the transmitter and the
receiver can both be attached to the same antenna simultaneously, while ensuring
a constant isolation between the transmitter and receiver side to protect sensi-
tive components from the high-powered transmitted signal [64]. The radiated
EM waves propagate through the environment to the target. After bumping
off the target, a fraction of the radiated signal is reflected back to the source,
captured by the antenna and applied to the receiver circuits. The signal is then
processed to be finally sorted and analysed by the signal processor, which is
capable of extracting valuable information about the detected object, such as the
distance, or range, and the angular direction. Distance is retrieved by computing
the total time it takes for the EM waves to make the round trip to target and

76

3.3. Bilby Rover applications Chapter 3. Webots Simulations

back at the speed of light (Time of Flight computation); instead, the angular
direction of a target is found from the direction in which the antenna is point-
ing at the moment in which the reflected signal is received. Moreover, through
consecutive measurements of the target location at successive instants of time,
radar technology makes it possible to estimate the trajectory of the detected object.

According to the above considerations, a Radar node is introduced in the tree
diagram of the Bilby Rover follower on Webots simulator. The detection sensor is
thus configured by modifying fields of interest to replicate the desired technical
specifications of a real device, such as the minimum and maximum range, vertical
and horizontal field of view, as well as the resolution. The radar sensor thereby
installed on the Bilby Rover follower (see Figure 3.21), after having identified the
platooning leader during the simulation, continuously feeds the control system
with relevant information, such as the distance D and the azimuth θa (orientation
relative to the follower) of the robot in front of it [62]. This information is indeed
used as input data for the control algorithm that activates the trajectory tracking
behaviour, forcing the second robot in the cluster to follow the path of the robot
in front of it.

Figure 3.21: Radar installation on the follower (frustum defined by blue lines)

In addition to the radar sensor, the two Bilby Rovers forming the platooning
cluster require the integration of appropriate devices to establish a communication
link between the two modules. Actually, while on one hand the radar supplies
information regarding the position, on the other hand it is also required to contin-
uously track the speed of the leading robot, so as to adjust the speed profile of

77

3.3. Bilby Rover applications Chapter 3. Webots Simulations

the entire formation accordingly, thus avoiding possible collision situations and
ensuring a constant distance between the modules. The general communication
scheme requires the leader robot to broadcast at any discrete time slot speed
information, which is then collected by the follower robot and used as input data
in the control algorithm, allowing the speed to be tuned to match the one set by
the leader.

In this simulation, communication between the two modules is accomplished
through the deployment of emitters and receivers on the robot platforms: in this
case, the leader robot continuously broadcasts information through the emitter,
while the follower harnesses the receiver to capture the transmitted speed data,
thus establishing a unidirectional communication scheme. Therefore, on Webots
simulator, emitter and receiver nodes are introduced in the tree graph of the
leader and follower Bilby Rover, respectively. Figure 3.22 provides an illustration
of the arrangement of the platooning system, highlighting the formation of the
two robots and the technologies involved.

Figure 3.22: Platooning formation

After the scene is suitably setup, it is essential to generate the controller
program to enable the desired performance.

As far as the leader robot is concerned, its controller code is aimed at implementing
the lane-following behaviour that has already been described in Section 3.3.3.
In addition, while moving independently along the path, the leader is asked to
broadcast its speed at every time slot via an emitter, which has to be properly

78

3.3. Bilby Rover applications Chapter 3. Webots Simulations

initialised together with the other devices installed on the robot.

With regards to the robot follower, the source code, as usual, includes a first part
devoted to the initialization of the sensors and actuators installed on the Bilby
Rover platform. In this section of the code, the different devices are instantiated
and labelled using a specific tag that allows them to be called up in the algorithm,
thereby providing access to their specific functions. Following the preliminary
initialization part, it is necessary to actuate the devices by routing application-
specific commands generated through the processing of data from the sensors.
The developed algorithm aims at the generation of the following mechanism. The
robot repeatedly monitors data provided by the radar to investigate the presence
of a robot in front of it: this is done by continuously polling the sensor with a
dedicated function that returns the number of identified targets. If no target is
revealed, the robot is controlled to move following the path by exploiting the
lane-keeping algorithm discussed in Section 3.3.3.

As soon as the target is identified by the radar - in this case the leader of
the platooning group - the distance between the two robots starts to be measured
at each time slot: it must be stressed that one of the goals of platooning is
actually to ensure a distance that is as stable as possible. As the follower robot
initially moves at a faster speed than the leader, the distance from the front robot
is progressively reduced. Hence, when the range between the two modules is
recorded below a pre-determined threshold, the follower robot retrieves the speed
information of the leader via the receiver and, consequently, it issues commands
to the motors to adjust the speed profile accordingly.

Upon the establishment of this initial connection, the data provided by the
radar are again exploited to trigger trajectory tracking behaviour. Actually, the
radar constantly provides the control system with information pertaining to the
azimuth of the leader, namely its angular direction measured relative to the
follower. The azimuth value is therefore kept under close observation to verify the
alignment of the two platforms and it is used as input to the control algorithm
according to the following logic. If the azimuth is lower than a certain threshold
(0.1 rad), it is assumed that the two robots are reasonably aligned; therefore,
the motors are actuated to move the follower robot forwards without applying
any correction to its trajectory. By contrast, if the azimuth exceeds the said
threshold, it is considered that the leader and follower robots are no longer aligned
as they should be. This consequently triggers an immediate response from the

79

3.3. Bilby Rover applications Chapter 3. Webots Simulations

control system, which transmits commands to the motor to implement a steering
mechanism capable of restoring the proper alignment between the two robots.
Owing to this reiterative cycle of sensors interrogation and devices actuation,
the robot in the platoon behaves as a reactive system with trajectory tracking
capabilities without relying on the use of infrared sensors for path recognition.
The flowchart in Figure 3.23 provides a schematic block illustration of the main
control loop of the robot.

Figure 3.23: Block diagram of the platooning control algorithm

As a final consideration, it is worth pointing out that the proposed control
program is applicable to both the follower and the leader, provided that both
platforms are equipped with the same devices. Actually, as it is possible to see also

80

3.3. Bilby Rover applications Chapter 3. Webots Simulations

in Figure 3.23, the controller code, depending on the data received as output from
the radar sensor, can enable two different behaviours: if the target is identified,
the controller sends the necessary commands to establish the platooning cluster as
described above; instead, if no target is identified, the controller issues commands
to execute the lane-following mechanism by using the infrared sensors. For this
reason, the same controller can be used for the robot leader; furthermore, this
makes it possible for the leader to become on its turn a follower if a new robot is
identified in front of it.

This solution thus ensures that the same control code can be applied to all
robots, enhancing modularity and flexibility of the platooning formation. However,
this also requires each robot (not only the leader module) to broadcast its speed
via an emitter, so that every system can be the potential leader for the next robot.

3.3.5 Obstacle avoidance control

The purpose of this simulation is to develop an algorithm for controlling the Bilby
Rover to achieve efficient and smooth navigation in an unknown environment,
based on the idea of Braitenberg vehicles.

In conditions that are dangerous for humans and their environment, the use
of robots can be a solution to overcome these problems and avoid potential haz-
ards for the workers. In this framework, mobile robots, equipped with different
types of sensors, can move around and investigate in open areas, rooms, and
even industrial fields. Various devices can be employed to determine the obstacle
free path and the exact position of the robot [65]. In order to navigate safely
in an unknown environment, a mobile robot needs to deal with the uncertainty
and imprecise, or incomplete, information about the environment in a timely
manner. This results in real-time demands on the navigation system [66]. When
it comes to the definition of the robot navigation problem, it can be generally
decomposed into two sub-tasks: goal-seeking and collision-avoidance. For this
purpose, Braitenberg vehicle strategy can be used to navigate the movements of
the robot, thus enabling the desired behaviour to carry out the intended task.

Braitenberg vehicles have been used in robotics for decades on an empirical basis
and were conceived in the 1980s by the Italian-Austrian cyberneticist Valentino
Braitenberg, who conducted a series of thought experiments concerning the design
of a set of vehicles. By means of elementary couplings, the sensors of these

81

3.3. Bilby Rover applications Chapter 3. Webots Simulations

systems directly influence the actuators, through inhibition or excitation, giving
rise to even very complex global behaviours. For instance, by coupling sensors
in various ways to the motors of a differential drive vehicle, a wide range of
behaviours can be replicated, which, from the observer’s point of view, can be
interpreted as fear, aggression, love, and other behaviours in relation to the sources.

In practice, Braitenberg vehicles attempt to qualitatively replicate sensor-based
animal movement and have been widely used in fields other than robotics, such
as Artificial Intelligence, Neural Networks and Swarm Optimization. In the most
basic applications, what is modelled is the movement of animals to or from a
defined stimulus. The goal is to implement a robotic movement to replicate this
behaviour, known in biology as positive or negative taxis: while positive taxis is a
goal-seeking technique, negative taxis concerns avoidance behaviour [67]. Several
Braitenberg vehicles have been deployed to provide robots with these capabilities
on an experimental basis. Figure 3.24 provides a schematic illustration of these
systems, named respectively Vehicle 2a, 2b, 3a, and 3b.

Figure 3.24: Braitenberg Vehicles 2a, 2b, 3a, 3b (Source: [67])

Both Vehicles 2 and 3 are equipped with two sensors and two motors, but with
different configuration schemes. For Vehicles 2a and 3a, each sensor is connected
to the motor on the same side, which is referred to as direct-connection; instead,
for Vehicles 2b and 3b, each sensor is connected to the motor on the opposite side,
which is defined cross-connection. Moreover, plus (+) and minus (-) signs can be
observed in Figure 3.24: + means that the higher sensor readings, the faster the
motors rotate; by contrast, - means that the higher the readings, the slower the
motors rotate [66].

Considering the configurations of Vehicles 2a and 2b, if the system approaches a
source from one side, the sensor closest to the source will be excited more than

82

3.3. Bilby Rover applications Chapter 3. Webots Simulations

the other; as a result, the motor connected to this sensor will be activated to
rotate faster. Owing to the different connection patterns, this will trigger two
different behaviours: actually, Vehicle 2a runs away, departing from the source,
while Vehicle 2b moves towards it, heading to the source. Considering the con-
figuration of Vehicles 3, while approaching the source, Vehicle 3a moves towards
it, while Vehicle 3b drifts away from it [66]. The difference in behaviour between
vehicles 2 and 3 is related to the negative connections between the sensors and
the corresponding motors in 3a and 3b: indeed, in this case, the higher the sensor
readings, the lower the speed of the corresponding motors. This justifies the
different response to the presence of the source.

According to the described configurations and the derived behaviours, it is reason-
able to assume that Vehicles 2b and 3a are suitable for the purpose of goal-seeking.
In fact, Vehicle 2b drives faster towards the source once it is detected, as if
attracted by it; Vehicle 3a, instead, approaches the source at a slower speed. In
contrast, Vehicles 2a and 3b can be identified as suitable for obstacle avoidance.
However, Vehicle 3b is preferable for the purpose of collision avoidance, as it
represents a safer solution: as a matter of fact, it is safer for a mobile robot to
slow down and avoid obstacles rather than accelerating towards them and then
performing the avoidance [66].

Based on the above analysis, the aim is to develop a navigation scheme for
the Bilby Rover, allowing it to move in an unknown environment and avoid
obstacles by replicating the behaviour of the Braitenberg 3b Vehicle. For this
purpose, the tuning scheme is based on sensor readings from the Lidar sensor
installed on the robot. The values that will be used as references in this system
are the angle coordinates and the object distance obtained from the sensing device.
However, due to the nature of the stimulus and sensing hardware, there must
be a necessary sensor data processing between sensing and motor actuation: for
this reason, Bilby Rover will not be a Braitenberg 3b vehicle in the strict sense.
Therefore, the Braitenberg Vehicle model can be exploited to design the robotic
controller at the steering level [67].

On the Webots simulation platform, a factory environment is created, where
several objects are located, including the Bilby Rover, as it is possible to see in
Figure 3.25.

83

3.3. Bilby Rover applications Chapter 3. Webots Simulations

Figure 3.25: Webots scene for collision avoidance simulation

At this point, it is required to configure the Lidar node, which has been already
introduced in the Robot tree graph upon the creation of the Bilby Rover model
in Section 3.2. For this purpose, the ranging sensor is required to scan the area
in front of the robot, covering a 180° horizontal field of view. Other technical
parameters are initialized to replicate the characteristic of a real device, namely
the minimum and maximum range, the number of emitted beams, and the sensor
resolution. Chapter 2 already illustrates the basic principles underlying LiDAR
technology; therefore, they will not be proposed again in this section.

Figure 3.26 depicts the Bilby Rover robot equipped with the Lidar, where blue
rays represent the beams – forming the so-called Point Cloud - emitted by the
ranging sensor to retrieve distance information during the simulation.

After the complete set-up of the world scene and the Bilby Rover, it is nec-
essary to program the controller code, thus triggering the behaviour to replicate
a Braitenberg 3b Vehicle. After the initialization of actuators and sensors in
the first part, the main loop develops the control algorithm that receives range
measurements as input and, in turn, after processing range information, outputs
the necessary commands to perform obstacle avoidance. Figure 3.27 depicts the
overall block diagram of the obstacle avoidance system.

84

3.3. Bilby Rover applications Chapter 3. Webots Simulations

Figure 3.26: Environment scanning with Lidar sensor

Figure 3.27: Flowchart describing collision-avoidance algorithm

The control system repeatedly polls the Lidar to retrieve the array containing
distance readings from the sensor which scans the environment in front of the Bilby

85

3.3. Bilby Rover applications Chapter 3. Webots Simulations

Rover. At each time step, the controller monitors the distance to the obstacles and,
by assigning specific weights to measured range values, calculates the cumulative
obstacle for both the left and the right side of the robot: in these calculations,
obstacles farther than a certain threshold (d > 1m) are neglected. Based on the
cumulative obstacles calculated on the left and right side, the controller code
calculates the speed values to be assigned to the motors, in order to move the
Bilby Rover to avoid any collision. So, for instance, in the presence of an obstacle
detected on the right side of the robot, the controller reads the distance values
from the lidar and, after processing them suitably, generates a series of commands
to trigger the steering mechanism aimed at avoiding the obstacle. Therefore,
right-hand motors are made to rotate at a certain speed, while the left-hand motor
is forced to rotate more slowly or even in the opposite direction. This response,
whereby a higher excitation of the right-hand sensor corresponds to a lower speed
of the left-hand motor, is consistent with Braitenberg 3b Vehicle model. As a
result, the robotic platform will be forced to turn to the left, thus deviating from
its trajectory and avoiding collision with the detected obstacle. The opposite
mechanism applies if the obstacle is identified on the left side. It is also worth
noting that the speed value to be assigned to the motors is calculated as a function
of the sensor readings: different values of the cumulative obstacle will produce
different system responses, hence different speeds to be assigned to the motors.

The results of the present simulation show that the Bilby Rover manages to
navigate the room without hitting or crashing into the walls or obstacles, success-
fully implementing a Braitenberg-like behaviour.

3.3.6 Wall following

The purpose of this section is to present the steps to develop and simulate a basic
wall-following control of the mobile robot Bilby Rover, which is intended to tra-
verse a maze-like environment and stop once it reaches its destination. Therefore,
the robot’s objective is twofold: on the one hand, it must be able to navigate the
environment by following the walls, and on the other hand, it must be equipped
with perception capabilities to sense the arrival at the designated destination.
These behaviours are empowered by the deployment of specific sensors on the
robot’s body, namely ultrasonic and radar sensors. While the ultrasonic sensors
are responsible for supplying the necessary tools to ensure the stability of the
wall-following behaviour, the radar sensor - whose basic principles are outlined in
Section 3.3.4 - will have to inspect the surrounding environment during navigation,

86

3.3. Bilby Rover applications Chapter 3. Webots Simulations

thus recognizing the presence of the target destination.

Wall, corridor and path following are essential behaviours for robot in many
workspaces, requiring viable obstacle avoidance techniques [68]. A wall following
robot has the primary task to follow the wall by maintaining its movement. In
many robots, ultrasonic sensors are used for wall and corridor following.

A sonar or ultrasonic sensor uses the propagation of acoustic energy at higher
frequencies than normal hearing to extract information from the environment [69].
This device typically transmits a short pulse of ultrasonic waves towards a target,
which reflects the sound back to the sensor. Similarly to other ranging devices, the
system then measures the time for the echo to return to the sensor and computes
the distance to the target using the speed of sound in the medium, as follows:

d = ToF · vc
2 (3.1)

Where d is the distance to the target, ToF (Time of Flight) defines the time
elapsed between the emission of the sound waves and the reception of the echo at
the source, and vc is the speed of sound in the medium. Figure 3.28 provides a
simplified scheme of the ultrasonic sensor functional diagram, showing its basic
features.

Figure 3.28: Ultrasonic sensor functional diagram (Source: adapted from [71])

A typical ultrasonic sensor comprises a clock (signal) generator, a controller

87

3.3. Bilby Rover applications Chapter 3. Webots Simulations

to excite a transducer to transmit sound waves and receive the echo, a processor
and an output amplifier to handle the return signal [70], which make up the
Data Acquisition Unit. During the time period from transmitting sound waves
to receiving the echo, the ultrasonic sensor gives a high-level signal to the DAU,
which leverages a timer to compute the interval in which the signal remains high
[71]. This data is used as input for the ToF to compute the distance as showed in
Equation (3.1).

Thus, leveraging the mounted sensors, the robot is capable of sensing the distance
between the wall and itself along the operation. Besides, these distances are
processed to generate the proper movement with the involvement of a specific
controller [73].

To test the wall following ability of the robot, a maze-like environment is designed
on the Webots simulator through a suitable arrangement of walls. In addition, a
cardboard box is included in the world scene to pinpoint the destination position
of the robot. This choice is realistic, as in industrial settings robots are often
instructed to navigate autonomously along a defined route to reach a material
loading or unloading station, thereby using the robots themselves as a material
handling equipment.

Figure 3.29: Webots scene for wall-following algorithm

Once imported in the scene, the Bilby Rover model is completed with the
installation of the radar, in charge of detecting the target destination, and two

88

3.3. Bilby Rover applications Chapter 3. Webots Simulations

ultrasonic sensors: the latter are placed on the precise direction that allows the
robot to sense the presence of left-side and front-side walls accurately. Figure 3.30
illustrates the configuration of the robot, where red rays represent the direction
of sound waves emitted by the front and side sonar sensors, while the blue lines
define the frustum of the radar installed on the top panel. It is worth noting that
the radar is purposely oriented to scan the environment on the right side of the
robot, because, considering the navigation scheme, the Bilby Rover approaches
the destination leaving the carton box on its right.

Figure 3.30: Sensors configuration for wall-following and target identification

At this point, it is necessary to generate the controller code to enable the
desired wall following behaviour, getting finally to the destination. For this pur-
pose, all sensors and actuators are initialized and instantiated in the first part
of the controller code, labelling them with identification tags to call them in the
main loop. Once initialization is completed, it is necessary to set up the control
algorithm, leveraging sensor data.

There are two main abstractions in the wall following algorithm: the sensors
and the controller. Sensors are the means that allow pulling data from the envi-
ronment, interpreting the wall model, and estimating the robot position relative
to the walls. The controller, based on the wall model, issues command to ensure
a smooth navigation of the system through the maze. Supposed that the robot
moves by following a wall detected on the left, based on ultrasonic sensor readings,
it is possible to highlight four different situations, which trigger in turn four

89

3.3. Bilby Rover applications Chapter 3. Webots Simulations

alternative responses of the system. Figure 3.31 provides a schematic summary of
the four cases, with the relative behaviours triggered by the control system.

Figure 3.31: Schematic summary of wall configurations and relative responses

According to these considerations, the implementation of the wall-following
algorithm is quite straightforward: at each time step, the controller processes the
output data from the ultrasonic sensors and, based on their readings, matches the
robot’s position to one of the four schematic situations outlined in Figure 3.31.
Then, based on the identified wall configuration, it sends commands to the motors
to activate the desired response accordingly.

Figure 3.32: Flowchart describing the robot control loop

90

3.3. Bilby Rover applications Chapter 3. Webots Simulations

To integrate the robot performance with the capability of recognizing the
established destination, at each cycle the controller monitors the output data
coming from the radar. If the radar does not identify any target, the control
system drives the motors to implement the wall following function; conversely, if
the target is detected, the controller issues the orders to prevent the motors from
rotating, thus stopping the robot in front of the designated destination.

For the sake of clarity, the flowchart depicted in Figure 3.32 provides a schematic
of the main control loop underlying robot behaviour in the present simulation.

91

Chapter 4

Hector-SLAM implementation

The capability to acquire a general model of the surrounding environment and to
position itself in it is a key ability of truly autonomous robots, which must be able
to operate in real world settings [72]. The ability to perceive the environment and
to locate in it are crucial for robots to carry out their assigned tasks. Environ-
mental maps are required in a wide range of applications including autonomous
navigation, obstacle avoidance, urban search and rescue (USAR), and surveillance
tasks, both in outdoor and indoor areas. Mapping knowledge of a room or of a
building is extremely important for robots in the execution of their duties as well
as for humans who might need to access a certain area that would be otherwise
difficult to reach. By mapping a room, information about the environment is
thereby generated [73].

To tackle the requirements of accurate maps for robot navigation, Simultaneous
Localization and Mapping (SLAM) has emerged as the priority mapping method,
becoming a key technology in the field of robotics, automation and computer
vision [73]. Research in SLAM and in the navigation of unknown areas has been
attracting considerable interest in recent years, proving impressive results and
several suggested implementations harnessing the potential of a variety of sensory
devices. Many algorithms have been developed and tested to address the need
to find a solution to the SLAM problem. In this respect, Chapter 2 proposes a
short summary of the state of the art of SLAM technology, highlighting the most
widely used techniques in the industrial field.

The objective of this chapter is to test the suitability of the Hector-SLAM algo-
rithm in view of its application on the Bilby Rover robot, which, by exploiting the
LiDAR sensor, would be expected to provide a 2D map while moving within an

92

4.1. Review of the Hector algorithm Chapter 4. Hector-SLAM implementation

indoor environment. In this framework, the YDLIDAR X4 sensor is used as an
indoor scanner. Raspberry Pi 4 B single board computer (SBC) is used to access
the LiDAR data and then send it to a computer wirelessly to process it into a
map. This computer and the SBC are integrated into a robot operating system
(ROS). The Hector-SLAM algorithm determines the position of the robot based
on the scan match of the LiDAR data. Then, the LiDAR data will be exploited to
determine the obstacles encountered by the robot, which will then be represented
in occupancy grid maps.

The chapter is structured as follows. The first section is devoted to the math-
ematical discussion of the Hector algorithm developed by the Hector Team of
the Technical University of Darmastadt for the solution of the SLAM problem.
The second section is dedicated to the description of Robot Operating System
(ROS), an open-source middleware that is become a de-facto standard for the
development of robotic software modules: its features and functionalities will be
briefly presented. In the third section, the methodology followed in the imple-
mentation of the Hector algorithm will be illustrated: the configuration of the
architecture employed together with the ROS-based libraries used, will be covered
in detail, providing an overview of the systems and tools needed for running the
simulations. In the last section, finally, the results of the tests performed in the
chapter will be proposed, with considerations on the suitability of the algorithm
in the perspective of its integration on the Bilby Rover robot.

4.1 Review of the Hector algorithm

Hector algorithm is an open source implementation of the 2D SLAM technique
proposed by Kohlbrecher, von Stryk, Meyer and Klingauf at the Technical Univer-
sity of Darmstadt [72]. The Hector SLAM algorithm is designed to enable accurate
environmental perception and self-localization while preserving low computational
burdens. It can be applied for SLAM in small-scale settings where large loops do
not have to be necessarily closed and where leveraging the high sampling frequency
of modern 2D LiDAR systems is advantageous [72]. Compared to the majority
of SLAM grid-map techniques, the Hector algorithm does not rely on accurate
odometry information, and hence it is particularly suited for robotic platforms
with restricted processing capabilities [74]. The Hector algorithm serves as a
SLAM front-end, aiming to provide online robot motion estimation in real time,
without performing any back-end pose graph optimization, as described in Chapter

93

4.1. Review of the Hector algorithm Chapter 4. Hector-SLAM implementation

2. Although the system does not provide explicit loop closure detection, it is
reasonably accurate for many real-world scenarios. Actually, by taking advantage
of the low distance measurement noise and high scanning rate of modern LiDAR
sensors, the reliability and precision can be much higher than that offered by
odometry data, if available at all.

The Hector SLAM technique relies on the use of laser scanning to construct
a grid map of the surroundings, exploiting the process of scan matching, which
seeks to align laser scans with each other or with an already existing map. In this
framework, the alignment problem is viewed as an optimization problem and it is
thereby tackled by employing the Gauss-Newton approach: drawing inspiration
from the relevant work in computer vision, the basic idea in the scan-to-map
matching algorithm is to use the Gauss-Newton approach to find a local optimal
solution to align the LiDAR scans with the map learned so far [75]. Hence,
the approach is concerned with finding the optimal alignment of the laser beam
endpoints with the generated map by iterating the Gauss-Newton algorithm to
find the rigid transformation ξ = (px, py, ψ)T that minimizes

ξ∗ = arg min
ξ

nØ
i=1

[1−M(Si(ξ))]2 (4.1)

That is, the algorithm has the objective to find the transformation that maximizes
the probability at the scan points in the map. In Equation (4.1), ξ = (px, py, ψ)T

indicates the position and orientation of the mobile carrier in the global coordinate
system, n indicates the number of scan points, and Si(ξ) is a function of ξ that
converts a LiDAR scan point si(si,x, si,y)T from the local to the global coordinate
system, according to Equation (4.2):

Si(ξ) =
cosψ −sinψ
sinψ cosψ

si,x
si,y

+
px
py

 (4.2)

Finally the function M(Si(ξ) will return the occupancy probability at the coordi-
nates given by Si(ξ).

The iterative Gauss-Newton method is a gradient descend algorithm. However,
since the discrete nature of occupancy grid maps does not allow for the direct com-
putation of interpolated values or derivatives, the method of bilinear interpolation
is exploited to calculate the occupancy probability and gradient [75]. Intuitively,
the grid map cell values can be viewed as samples of an underlying continuous

94

4.1. Review of the Hector algorithm Chapter 4. Hector-SLAM implementation

probability distribution. Given a continuous map coordinate Pm, the occupancy
value M(Pm) together with the gradient ∇M(Pm) = (δM

δx
(Pm), δM

δy
(Pm)) can be

approximated by using the four nearest integer coordinates around it, as showed
in Figure 4.1. Linear interpolation along x and y axis yields to the formulation
proposed in Equation (4.3):

M(Pm) ≈ y − y0

y1 − y0

A
x− x0

x1 − x0
M(P11) + x1 − x

x1 − x0
M(P01)

B

+ y1 − y
y1 − y0

A
x− x0

x1 − x0
M(P10) + x1 − x

x1 − x0
M(P00)

B (4.3)

From this, derivates can be approximated as:

δM

δx
(Pm) ≈ y − y0

y1 − y0
(M(P11)−M(P01)) + y1 − y

y1 − y0
(M(P10)−M(P00)) (4.4)

δM

δy
(Pm) ≈ x− x0

x1 − x0
(M(P11)−M(P10)) + x1 − x

x1 − x0
(M(P01)−M(P00)) (4.5)

Figure 4.1: Bilinear filtering for Pm in the occupancy grid map (Source: [72])

The problem stated in Equation (4.1) is solved iteratively. Given an initial
estimate of the pose ξ0, the objective is to compute ∆ξ that minimizes the error
measure according to

nØ
i=1

[1−M(Si(ξ + ∆ξ))]2 → 0 (4.6)

95

4.2. SLAM implementation using ROSChapter 4. Hector-SLAM implementation

By applying the first order Taylor expansion to M(Si(ξ + ∆ξ), Equation (4.6)
becomes:

nØ
i=1

C
1−M(Si(ξ))−∇M(Si(ξ))

δSi(ξ)
δξ

∆ξ
D2

→ 0 (4.7)

By setting the partial derivative with respect to ∆ξ to zero, Equation (4.7) can
be minimized as follows:

2
nØ
i=1

C
∇M(Si(ξ))

δSi(ξ)
δξ

DTC
1−M(Si(ξ))−∇M(Si(ξ))

δSi(ξ
δξ

∆ξ
D

= 0 (4.8)

where from Equation (4.2)

δSi(ξ)
δξ

=
(1 0 −sin(ψ)si,x −cos(ψ)si,y

0 1 cos(ψ)si,x −sin(ψ)si,y

 (4.9)

Solving for ∆ξ yields the Gauss-Newton equation for the minimization problem:

∆ξ = H−1
nØ
i=1

C
∇M(Si(ξ))

δSi
δξ

DT
[1−M(Si(ξ))] (4.10)

where

H =
C
∇M(Si(ξ))

δSi
δξ

DTC
∇M(Si(ξ))

δSi
δξ

D
(4.11)

4.2 SLAM implementation using ROS

After the review of the algebraic calculations underlying Hector algorithm proposed
in Section 4.1, the aim of this section is to describe the testing methodology and
results of Hector-SLAM in an indoor environment, where all the experiments are
carried out based on the Robot Operating System (ROS), a robotic middleware
for the large-scale integration of devices to build robotic systems. Actually,
members of the team Hector from the Technical University of Darmstadt have
developed a dedicated software to perform Simultaneous Localization and Mapping
in unstructured environments which is available as an open source package for
ROS, called hector_slam. This section thus provides the background knowledge
required to understand the work presented in this chapter, including information
about ROS framework and the modules provided by the hector_slam package to
perform Simultaneous Localization and Mapping.

96

4.2. SLAM implementation using ROSChapter 4. Hector-SLAM implementation

4.2.1 Robot Operating System (ROS)

The robotics community has achieved remarkable breakthroughs in recent years,
offering cutting-edge robotic hardware and developing algorithms that help those
robots operate with an increasing level of autonomy [77]. Despite these rapid
advances, robots still pose significant challenges for developers and researchers
owing to the increasing complexity of the systems: writing software for robots
is difficult, especially as the scale and scope of robotics continues to grow [78].
Different types of robots can have extremely different hardware, making code
reuse non-trivial; moreover, as more functionalities are introduced, the software
gradually becomes more complex and, together with the breadth of skills required,
makes the need to develop robotic architectures capable of supporting large-scale
software integration compelling. To deal with these challenges, a wide variety of
robotics frameworks have been developed to manage complexity and facilitate
rapid prototyping of software for experiments. In this context, ROS was originally
developed in 2007 by the Stanford Artificial Intelligence Laboratory and, since
2008, Willow Garage has started to make contributions to the native framework,
with improvements to the core software and an increasing number of packages to
form a broader software ecosystem.

The official description of ROS is:

ROS is an open-source, meta-operating system for your robot. It provides the
services you would expect from an operating system, including hardware abstrac-
tion, low-level device control, implementation of commonly-used functionality,
message-passing between processes, and package management. It also provides
tools and libraries for obtaining, building, writing, and running code across multiple
computers [79].

According to the proposed definition, ROS can be defined as an open-source
framework designed to build software for various types of robots, providing li-
braries and tools that facilitate the process of creating and connecting complex
robotic systems [80], thus resulting in a middleware architecture that does not
replace, but rather works alongside a traditional operating system [77].

The ROS philosophy can be summarised and framed within five main design
criteria [78]:

• Peer-to-peer (distributed): a ROS-based system consists of a number of

97

4.2. SLAM implementation using ROSChapter 4. Hector-SLAM implementation

processes and programs - possibly running on a number of different hosts
- networked together at runtime in a peer-to-peer topology over defined
APIs. For instance, many service robots are typically equipped with sev-
eral on-board computers that are connected via Ethernet. This network
server, in turn, is connected to external machines that are responsible for
performing computationally intensive tasks such as computer vision and
object recognition. The peer-to-peer topology makes it possible to overcome
the limitations of frameworks based on the central server, which proves to
be inconvenient in case of computers connected in a heterogeneous network.
However, the common thread in these frameworks is the need for communi-
cation among multiple processes: the peer-to-peer topology calls for a sort
of search mechanism to allow processes to find each other at runtime. For
this purpose, ROS provides the master mechanism, which will be described
in the following.

• Tools-based: to manage the overall complexity of the framework, instead of
building a monolithic development and execution environment, ROS relies
on a set of tools that are deployed to build and run various components,
including tools for compilation, data plotting, parameters configuration,
visualization of peer-to-peer connection topology, documentation generation,
and so on. Custom tools can also be written by the user in the form of new
packages.

• Multi-lingual: designed to be language-neutral, ROS supports four pro-
gramming languages, such C++, Python, Octave, and LISP. Actually,
peer-to-peer configuration relies only on XML-RPC, for which a reasonable
implementation exists in most major languages, either by directly writing
the full library that interacts with ROS core, or by building a wrapper of
the ROS C++ library.

• Thin (light-weight): ROS tries to overcome the limitations of many robotics
software projects, which, although containing drivers and algorithms that
could be conceptually transferred to other external projects, in practice are
based on a code that is so entangled with the middleware that it is difficult
to extract and reuse outside its original context. To cope with this issue,
ROS is built by developing algorithms and drivers in independent libraries,
following a modular logic. By putting virtually all the complexity in libraries
and creating small executables that expose the desired functionality to ROS,
it is then possible to facilitate the extraction and reuse of code beyond its

98

4.2. SLAM implementation using ROSChapter 4. Hector-SLAM implementation

original scope.

• Free and Open-Source: ROS source code is publicly available and distributed
under the terms of the BSD License, which allows the development of both
non-commercial and commercial projects.

The implementation of the ROS software is based on a set of fundamental compo-
nents, namely nodes, messages, topics, and services.

The execution of ROS is partitioned into smaller pieces of code, called nodes, which
are responsible for performing dedicated tasks. In a broader sense, nodes can be
considered as mostly stand-alone programs that perform computations. Based
on the modular logic underlying the ROS environment, a robotic application is
usually a collection of nodes that run in parallel and provide a specific task. For
this to work, these nodes must be able to communicate with each other. The
part of ROS that aids this communication is called ROS master, which provides a
lookup mechanism that allows ROS to be initialized and nodes to find each other
through registration.

The main mechanism that ROS nodes use to communicate is the transmission
of messages, which consist of strictly typed data structures, including standard
primitive types (integer, floating point, Boolean, etc.) as well as arrays of primitive
types and constants with a variable level of complexity and nesting [78].

For nodes to communicate, they interact by publishing messages in topics, which
can be broadly defined as channels used by nodes to exchange asynchronous
information. In other terms, topics are buses where each node can publish mes-
sages following the message type standards. In turn, the other active nodes can
then subscribe to topics that are relevant to them and act upon data captured
on the topic [80]. The idea is that a node that wants to share information will
publish messages on the appropriate topic or topics; a node that wants to receive
information will subscribe to the topic or topics that it is interested in [77]. The
ROS master ensures that the publisher and subscribers can find each other, while
the messages themselves are sent directly from publisher to subscriber: nodes can
ask the master for a publisher or subscriber of a certain topic and nodes can then
communicate directly with each other [80], as depicted in Figure 4.2

99

4.2. SLAM implementation using ROSChapter 4. Hector-SLAM implementation

Figure 4.2: Asynchronous communication via topics

Although the topic-based publish-subscribe approach is the principal commu-
nication paradigm in ROS, it shows relevant limitations in case of synchronous
transactions, for instance when sending a message that requires a reply. Actually,
in certain tasks it is more efficient to let a node send a request for a message
rather than subscribing to a topic. This is particularly true for tasks that need a
lot of computing power but only need to be executed once in a while, so instead
of subscribing to a node that computes it in every iteration, it is preferable to
send a request only when it is needed to retrieve data from the intended node. In
this case, it is better to use services instead of topics. ROS services are defined
by a string name and a pair of typed messages, one for the request and one for
the response. A node provides a service by listening to an expected request and
then responding when the request is issued by another node. Simply put, the idea
is that a client node sends some data called a request to a server node and waits
for a reply. The server, upon receiving this request, performs some actions and
then sends some data as a response back to the client. The specific content of
the request and response data is determined by the service data type, which is
analogous to the message types transmitted through the topics. However, services
differ from messages in two main respects: services are bidirectional, as information
flows in both directions, unlike messages, for which, once published, there is no
notion of response; services are suitable for one-to-one communication, allowing
synchronous transaction between nodes. Therefore, each service is initiated by a

100

4.2. SLAM implementation using ROSChapter 4. Hector-SLAM implementation

node and the response returns to the same node; on the contrary, each message
is transmitted through a topic that may have several publishers and subscribers.
Figure 4.3 depicts the general scheme of service call communication between two
nodes.

Figure 4.3: Synchronous communication via services

To build a robust and modular robotic system and to support collaborative
development, ROS software is organised into packages, which are consistent
collections of files, typically comprising both executables and support files, that
are intended for a specific purpose [77]. Each package is identified by a manifest,
which is a file - called package.xml - that provides some details about the package,
including its name, maintainer and dependencies. The main advantage of the
package architecture is to make the code organized in its own subsystems, which
become specialized in performing a precise functionality so that other packages
and processes can exploit them in carrying out their tasks. The open-ended
nature of ROS packages allows for great variation in their structure and purpose:
some packages wrap existing software enabling the transfer of their functionalities,
others provide standalone libraries and executables, and still others provide scripts
to automate demonstrations and tests. The package-based structure aims to
divide ROS software into small and manageable segments, each of which can be
maintained and extended by its own team of developers [78].

4.2.2 hector_slam package

As mentioned in the introduction to Chapter 4, the Hector Team at the Technical
University of Darmstadt has provided an open source meta-package in ROS,

101

4.2. SLAM implementation using ROSChapter 4. Hector-SLAM implementation

called hector_slam, aimed at the implementation of the complex capabilities
underlying the SLAM algorithm for self-localization and mapping in unknown
environments, reported in Section 4.1. In line with the packaged architecture
of the ROS framework, hector_slam comprises a set of modules that form the
building blocks for a system capable of autonomous exploration in unstructured
environments such as those encountered in Urban Search and Rescue (USAR)
scenarios [81]. All modules were successfully applied and originally tested in the
RoboCup Rescue competition, an annual robotics tournament to promote research
in robotics and AI. Since then, the hector_slam package has been reused and
adopted by numerous research groups for a wide variety of tasks.

By exploiting the hector_slam package in the Robot Operating System, it
is possible to process LiDAR data in order to generate better and more ac-
curate mapping views, thus allowing the system to supply information about
the room map in real time. This is accomplished by executing a set of specifi-
cally designed nodes - embedded in libraries within the hector_slam metapack-
age - that are responsible for performing dedicated tasks. By definition of a
metapackage, referred to a bundle of applications, libraries and documentation,
hector_slam serves multiple scopes through the integration of the following mod-
ules: hector_compressed_map_transport, hector_geotiff, hector_geotiff_
plugins, hector_imu_attitude_to_tf, hector_map_server, hector_map_ to-
ols, hector_mapping, hector_marker_drawing, hector_nav_msgs, hector_sl-
am_launch, hector_trajectory_server. Each of them is purposely intended for
a specific application.

Considering the objectives of the present project, the relevant packages that will
be used in practice are hector_mapping, hector_geotiff, hector_slam_launch
and hector_trajectory_server.

hector_mapping is the node in charge of performing the SLAM, learning the
environment map and estimating the 2D platform pose at the frame rate of the
laser scanner, harnessing the high update frequency of modern LiDAR systems
(such as YDLIDAR X4). To work properly, whilst odometry data is not needed,
the hector_mapping node entails two main hardware requirements, namely a
source of laser scan data (transmitted as a sensor_msgs/LaserScan message)
and the tf package for the transformation of the scan data.

Transformations, or tf in short, are the way ROS deals with coordinate frames in

102

4.2. SLAM implementation using ROSChapter 4. Hector-SLAM implementation

space. Since the poses of each link in a robot can vary over time, it keeps track
of these changes and supplies tools to assist the user in making transformations
with the data. For instance, each robotic system moving in a space is defined
by at least two frames: map and base_link. The map coordinate frame is a
world-fixed reference system, with its z-axis pointing upwards. In a typical setup,
a localization component constantly recomputes the robot pose in the map frame
based on sensor observations with reduced drift over time [82]. The base_link
coordinate frame, on the other hand, is rigidly attached to the base of the mobile
robot in an arbitrary position or orientation. Hypothesizing now the presence
of a LiDAR installed on the robot, this will be defined by an additional frame,
which will be called laser_link. Since the range measurements captured by the
sensor are referenced to the laser_link itself, the advantage of the tf package is
that it automatically computes transformations between coordinate frames, thus
calculating the laser readings relative to any link of interest, allowing, for example,
to recompute the distance to obstacles with respect to the robot body, rather
than in relation to the sensor frame.

To provide a broader overview of the system, Figure 4.4 shows all potential frames
of interest in a simplified 2D view of a robot moving in a defined environment.

Figure 4.4: Coordinate frames for mobile platforms

Two frames are usually used between the map and the base_link. The odom
frame is a world-fixed reference system with respect to which the robot pose
can drift in time, serving as an accurate local short-term reference. In a conven-
tional setup, the odom frame is estimated based on a source of odometry, such as

103

4.2. SLAM implementation using ROSChapter 4. Hector-SLAM implementation

wheel/visual odometry, or on an inertial measurement unit. The base_footprint
frame does not provide height information and accounts for the 2D position and
orientation of the robot platform. Starting from this general configuration, the
different frames can be used or omitted depending on the specific application by
modifying the associated parameters in the package. For instance, in the case of
Hector-mapping, the odom frame will not be considered since odometry data is
not strictly necessary in the execution of the SLAM algorithm.

The basic working principle of the hector_mapping node is almost straight-
forward. Under the assumption that laser data is available, once initialised, the
node subscribes to the scan topic through which LaserScan messages containing
LiDAR readings are transmitted. Range measurements are automatically con-
verted with respect to the base_link via a tf node (base_link_to_laser4) that
periodically broadcasts the relative position between the laser_link and the
base_link. Then, the transformed range measurements are processed to perform
the scan matching and abstract the occupancy grid maps of the environment:
then, at each iteration, the hector_mapping node publishes the map data on
the map topic, which will be subscribed by other nodes, for example to display
the obtained results. Together with the map abstraction, the laser data is also
leveraged to perform the estimation of the current robot’s pose within the map
frame: the pose evaluation is published on a slam_out_pose topic. At the same
time, during program execution, a tf node (map_nav_broadcaster) is in charge
of broadcasting a transform between the map frame and the base frame, which
will be used by the hector_trajectory_server, as will be illustrated shortly.

hector_trajectory_server keeps track of the trajectories extracted from the
transmitted tf data and makes this information accessible via a service and a topic.
In other words, this package provides a node that is responsible for saving robot
trajectories that are abstracted from the tf data which is periodically broadcasted
between a given target frame (namely, base_link in this case) and a source frame
(map in this case). Internally, the program listens to tf, performs the necessary
transformations, and finally pushes the resulting poses into the saved trajectory,
which is updated on a regular basis. Unlike the hector_mapping node, which con-
tinuously streams map data on the related topic, the hector_trajectory_server
node internally saves the trajectory information as a nav_msgs/Path message,
which can be accessed using a service. Therefore, the node, upon request of any
service client within the network, acts as a service server, providing the necessary
information which is then published on a trajectory topic only when needed.

104

4.2. SLAM implementation using ROSChapter 4. Hector-SLAM implementation

Figure 4.5 provides a basic scheme that illustrates the relationships between each
node described so far and the topics that they communicate with, outlining a
synthetic picture of the process.

Figure 4.5: Diagram of implemented ROS nodes and topics

In the presented graph, circles and squares represent nodes and topics respec-
tively, while arrows indicate the direction in which communication takes place.

Assuming that the necessary sensor data is supplied to the system according
to ROS standards, once the packages are properly configured and executed, the
described nodes enable the construction of an accurate map of the environment,
as well as the extraction of the trajectory into a moving path, both of which
can be displayed in a ROS-based GUI interface. At this point, to make the
map and trajectory information available for further uses and purposes, such as
path planning and autonomous navigation, it is necessary to store the retrieved
information in dedicated files. For this purpose, a specific module provided by
the hector_slam metapackage comes in handy: hector_geotiff. This package
supports a node that can be used to save the occupancy grid map, robot trajectory
and objects of interest in GeoTIFF compliant images, which is a public domain
metadata standard that has georeferencing information embedded in the image.
The georeferencing information is included by means of tags that contain spatial
information about the image file, such as map projection, coordinate systems and
resolution.

In its basic mechanism, the node employs services to retrieve the requested
data:

• Map data is retrieved using a specific map service by forwarding the request
with a nav_msgs/GetMap message.

• The robot trajectory is retrieved by sending a trajectory service request
with the message hector_nav_msgs/GetRobotTrajectory

105

4.3. Hector-SLAM testing Chapter 4. Hector-SLAM implementation

By executing the hector_geotiff node, the program will generate a GeoTIFF
file that will be stored in the maps directory included in the package. This file
will then be available to other applications.

4.3 Hector-SLAM testing

To verify the performance of the Hector-SLAM algorithm described in the Sections
4.1 and 4.2.2, a LiDAR system has been designed and implemented in the view of
its potential integration into the Bilby Rover mobile robot. The ultimate goal is
to test the functionality and compatibility of the hector_slam package and of
the entire LiDAR system in order to ascertain its transfer viability to the robotic
platform to perform SLAM in indoor environments. The hardware description
and the implementation of the system using the Robot Operating System as well
as the experimental results are addressed in this section.

4.3.1 Hardware overview

Having to test the Hector-SLAM algorithm as a preliminary procedure to its inte-
gration on the physical robot, this allows keeping the system architecture rather
simple. As a matter of fact, the system will comprise only the components strictly
relevant for the execution of the algorithm. It goes without saying that the final ar-
chitecture of the robot will inevitably become more complex after the integration of
structural parts, such as the chassis and the body, and of the components involved
in locomotion, including wheels, motors and motor drivers with the related wirings.

Figure 4.6 depicts the two main hardware components used in the presented
set of experiments, namely the YDLIDAR X4 sensor and the Raspberry Pi Model
B single board computer, whose technical specifications have been already outlined
in Chapter 2. YDLiDAR X4 is used as an indoor 2D scanner, using the triangu-
lation method in determining the distance to the objects. The sensor typically
operates at a ranging frequency of 5 kHz and is equipped with a DC motor which
enables a 360° scanning of the environment, with an angular resolution of 0.25°
and a maximum effective range of 12.5 m. YDLIDAR X4 comes with USB adapter
board, which enables the sensor to be quickly interconnected with any computer,
and provides also a MicroUSB Power Interface (PWR) for auxiliary power supply,
which may be required in case the drive current from the standard USB interface
of the computer is too low to drive X4.

106

4.3. Hector-SLAM testing Chapter 4. Hector-SLAM implementation

Figure 4.6: Hardware components of the LiDAR system

The LiDAR is in turn connected to the single board computer Raspberry Pi
4B, which is used to access the sensor data and, owing to its small dimensions and
high computing capabilities, is widely suitable for robotics applications, serving as
a robot controller. The LiDAR data is then sent to a remote computer wirelessly
to externalize heavy calculations that would be computationally taxing on the
SBC, such as to process range measurements on the scan matching algorithm
to obtain map information. For this purpose, both remote computer and SBC
Raspberry Pi 4 are integrated into Robot Operating System, which – as it will be
further explained in Section 4.3.2 – offers a multi-machine functionality. For the
sake of completeness, Figure 4.7 shows the scheme of the overall system used in
the experiment.

Figure 4.7: System setup for the implementation of the Hector-SLAM algorithm

107

4.3. Hector-SLAM testing Chapter 4. Hector-SLAM implementation

4.3.2 Software and network setup

Regardless of its compact dimensions, Raspberry Pi 4, like all its predecessors, is
designed as an SBC module, so it can be effectively exploited as a minicomputer
for a broad range of applications, being particularly suited to serve as a micro-
controller for robotic platforms. Being a minicomputer, Raspberry Pi requires an
operating system to work. There is a wide variety of third party operating systems
compatible with Raspberry Pi, including Windows 10 IoT Core, MacOS and
Ubuntu Mate. Raspberry Pi OS, formerly called Raspbian, is a free Debian-based
computer operating system officially provided by the Raspberry Pi Foundation as
the primary operating system for the family of single-board computers. It includes
a set of basic programs and utilities which allow the development and execution of
programs, acting as a bridge between the user and the Pi hardware while managing
the CPU, memory, memory disk, GPIO pins and more [83]. As it is compatible
with the ROS middleware, in the present project Raspberry Pi OS is chosen as
the operating system for the SBC, and it is booted by installing it on an SD card
which is flashed into the Raspberry Pi. Once the operating system is correctly
configured, SSH (Secure Shell) is enabled: this is a network protocol that allows
the Pi board to be operated securely over a network by accessing its command line
from another computer. As a matter of fact, in view of the integration of the SBC
in the robotic platform that is intended to move autonomously in an environment,
it is necessary to access the Raspberry Pi without connecting it to a monitor and
other peripherals. Through SSH configuration, therefore, the Raspberry Pi will act
as a remote device, allowing the connection to it using a client on another machine.

On the laptop side, the operating system selected for this application is Ubuntu
18.04, which is a distribution based on the Linux kernel. In this regard, in order to
run the operating system, VMware Workstation Player is exploited as a virtualiza-
tion software to perform Virtual Machine operations, thus allowing Ubuntu 18.04
to be executed in an isolated and secure sandbox and in parallel with Windows
on the user’s laptop.

After the operating systems on both the Raspberry Pi and the remote com-
puter are correctly configured, Robot Operating System is installed on both
terminals. Among the different distributions available, ROS Melodic Morenia is
installed, being the one primarily targeted at the Ubuntu 18.04 release and fully
compatible with Raspberry Pi OS.

108

4.3. Hector-SLAM testing Chapter 4. Hector-SLAM implementation

The solution of installing ROS on both terminals - instead of installing it only
on the Raspberry Pi and controlling the operations remotely via SSH protocol -
reflects the purpose of creating a distributed real-time control architecture based
on ROS. Actually, although the Raspberry Pi is versatile and practical for many
applications, the execution of elaborated programs may require an excessive
amount of computing power compared to the capabilities of the single board
computer. Considering the specific application of this project as a reference, there
are two main tasks to be addressed: on the one hand it is necessary to retrieve
data from the Lidar sensor, on the other hand it is necessary to execute the scan
matching algorithm for the SLAM implementation. The real-time reading of the
sensor data requires a lower computational power, yet a higher frequency of loop
execution. Therefore, keeping this function on the Raspberry Pi is the best solu-
tion, as it is also evident given the configuration of the system, whereby the Lidar
has to be installed on the robot platform. On the contrary, the scan matching
algorithm entails the execution of much heavier calculations, which is something
that the Raspberry Pi does not easily handle. In this scenario, to reduce power
consumption and to minimize the number of lags, it is advisable to externalize
the implementation of the Hector-SLAM algorithm to another computer, working
remotely from the Raspberry Pi.

Robot Operating System comes in handy for this purpose, being designed with
a distributed computing in mind [84]. A running ROS system may comprise a
massive number of nodes, scattered across multiple machines that communicate
with each other through a bidirectional connectivity between all pairs of terminals.
As a matter of fact, a properly configured node makes no assumptions about
where in the network it is running, thus allowing computation to be relocated
at runtime to match available resources [85]. Deploying a ROS system across
multiple machines is almost straightforward: one of the machines is designated to
run the master, which must be unique; all the nodes in the network, therefore,
must be configured to use the same master, regardless of the terminal on which
each program is running. This connection is established via the IP address of
every machine in the network: in such a way, each machine is able to advertise
itself with a recognizable name so that all the other machines in the distributed
setup can resolve. In this ROS distributed network, the master device is in charge
of running the ROS core, which entails the implementation of the ROS master
instance, providing topic name services and managing peers connection.

Under these considerations, the main purpose is to leverage the ROS distributed

109

4.3. Hector-SLAM testing Chapter 4. Hector-SLAM implementation

computing environment to establish a master-slave relationship between the Rasp-
berry Pi and the remote computer. In such a framework, the SBC will be the
master, responsible for running the master node, while the remote laptop will
serve as the slave in the network. The Figure 4.8 provides a basic representation of
the distributed network configuration with the definition of the relative functions
carried out by the individual instances.

Figure 4.8: Master-Slave configuration of the network

Considering the configuration of the network and the related allocation of
tasks, at this point specific ROS packages need to be installed on the two ma-
chines to perform their associated tasks. In this framework, two packages are
necessary: on the slave machine, the hector_slam package is installed for the
implementation of the SLAM algorithm as described in the 4.2.2 section; as far as
the ROS master is concerned, the ydlidar package must be integrated into the
ROS environment. The ydlidar package is provided directly by the YDLIDAR
X4 sensor manufacturer, Shenzhen EAI Technology Co. Ltd, and it consists of
all the software components, files and information that must be supplied for the
device to be supported by the operating system and interfaced with ROS.

Among the modules included in the package, the file launcher lidar.launch
allows the execution of a dedicated node that powers the LiDAR while retrieving
sensor data, thereby processing the sensor measurements to extract range informa-
tion and iteratively broadcasting it on the /scan topic. Through the exploitation
of the distributed network that provides bidirectional connectivity between the
master and the slave, thus allowing real-time peer-to-peer communication between

110

4.3. Hector-SLAM testing Chapter 4. Hector-SLAM implementation

the two terminals, the ROS slave running on the remote computer subscribes
to the /scan topic to fetch the stream of range measurements and exploits this
information to perform SLAM, as described in the Section 4.1. The resulting
map and trajectory can then be displayed in rviz, namely a dedicated graphical
interface embedded into ROS.

Figure 4.9 depicts a high-level representation of the distributed network pro-
cess, showing the ROS core and the two main nodes - ydlidar and hector_slam -
that communicate over their relative topics, represented as squares in the scheme,
to enable the visualization of the results on rviz.

Figure 4.9: High-level representation of the distributed network process

111

4.3. Hector-SLAM testing Chapter 4. Hector-SLAM implementation

4.3.3 Results and analysis

Distance measurements

Before implementing the Hector-SLAM algorithm, as a preliminary step, a set of
LiDAR measurements is collected. In this respect, the YDLIDAR X4 is connected
to the Raspberry Pi and is operated via a dedicated launch program; scan readings
are acquired by subscribing to the /scan topic, where the ydlidar node publishes
range information at each loop iteration. For the sake of the accuracy, the
experimental measurements are repeated 10 times for each sample distance; the
results obtained are then averaged. The Table 4.1 shows the results of the distance
measurements in a range between 0.5 m and 5 m, providing the error expressed
in percentage. Producing an average error of 0.253%, the results demonstrate the
suitability of the sensor for indoor mapping.

Table 4.1: Distance measurements

Nominal value Measured value Error
[m] [m] [%]
0.500 0.501 0.30
1.000 0.996 0.35
1.500 1.495 0.33
2.000 1.993 0.34
2.500 2.497 0.11
3.000 2.990 0.32
3.500 3.493 0.20
4.000 3.990 0.26
4.500 4.494 0.13
5.000 4.991 0.19

Average error 0.253

Hector-SLAM results

The configured hardware and software are harnessed to implement the Hector-
SLAM algorithm to generate the map of unknown environments and simultaneously
track the position within the map. To this end, a series of experiments are carried
out in two different environments: a living room of reduced dimensions and a
conference room of greater size. To simulate the movement of the robotic platform
across the room, the LiDAR sensor and the Raspbbery Pi are installed on a
wheeled cart and then moved manually to scan the surrounding area. The LiDAR
data is then extracted from the Raspberry Pi and then sent to the remote computer
to be processed and visualised using the rviz visualisation tool. Once the mapping

112

4.3. Hector-SLAM testing Chapter 4. Hector-SLAM implementation

process is complete, the abstracted map is saved in a GeoTIFF file that is stored
in a dedicated directory. In this respect, it is necessary to exploit ground truth to
verify the accuracy of the estimation results. To provide a reference, Figures 4.10
and 4.11 provide drawings of the rooms to be mapped.

Figure 4.10: Drawing of the room 1 (living room)

Figure 4.11: Drawing of the room 2 (conference room)

The results obtained from the implementation of the Hector-SLAM algorithm
are displayed and compared with the reference design in Figure 4.12 and 4.13 to
gauge the precision of the map constructed in both environments. Furthermore,
Tables 4.2 and 4.3 provide a comparison between the nominal values of the most
relevant features in the map and the measured values during the mapping process.

113

4.3. Hector-SLAM testing Chapter 4. Hector-SLAM implementation

From the analysis of the obtained results, it is possible to highlight a remarkable
accuracy of the constructed maps, showing an average error of 2.93% and 2.96%
respectively for room 1 and room 2.

Figure 4.12: Comparison between reference design and constructed map (room 1)

Table 4.2: Comparison between nominal and measured values (room 1)

Room 1 - Living room
Wall index Nominal value Measured value

[m] [m]
A 4.270 4.269
B 1.920 1.923
C 1.760 1.769
D 1.120 1.192
E 1.220 1.231
F 2.650 2.692
G 0.350 0.385
H 2.000 2.038
I 1.370 1.462
L 1.350 1.346
M 2.640 2.692
N 1.250 1.285
O 0.960 1.008

114

4.3. Hector-SLAM testing Chapter 4. Hector-SLAM implementation

Figure 4.13: Comparison between reference design and constructed map (room 2)

Table 4.3: Comparison between nominal and measured values (room 2)

Room 2 - Conference room
Wall index Nominal value Measured value

[m] [m]
A 0.600 0.649
B 1.770 1.702
C 3.040 3.010
D 2.020 2.001
E 0.590 0.610
F 2.550 2.590
G 1.310 1.399
H 3.000 2.950
I 4.080 4.100
L 2.690 2.710
M 1.500 1.549
N 2.700 2.801
O 1.360 1.356
P 1.440 1.599

Based on the outcomes of these experiments, it can be reasonably assumed that
the system per se and the algorithm can also be compatible and work efficiently
when embedded on the Bilby Rover robot platform.

115

Conclusions and Future Work

In this thesis, stemming from the collaboration with McMaster University’s W
Booth School of Engineering Practice and Technology, the autonomous mobile
robot Bilby Rover has been studied and simulated.

After introducing the landscape of Industry 4.0, exploring its characteristics
and opportunities in the manufacturing industry, the study focused on the de-
scription of the Bilby Rover robot, which was designed by a team of students
from McMaster University using a CAD software dedicated to mechanical design.
Based on the 3D model, the overall objective of this thesis has been to investigate
the performance of the Bilby Rover engaged in various tasks and to explore a
series of technologies that provides the robot with the capability to perceive
its surroundings, a fundamental condition for any mobile platform employed in
the real world applications. To this end, the project has been divided into two
macro-sections, each of them devoted to a specific objective.

In the first section, the objective has been to explore a series of applications
of the Bilby Rover enabled by the integrated deployment of specific sensors, suit-
ably calibrated for the intended functions. In this connection, the study was
pursued by harnessing the potential of virtual simulation, which represents a
fundamental tool for planning and visualization, opening a wide range of options
for problem solving and allowing the examination of the robotic system even
if it does not physically exist yet. Using Webots robotic simulator, different
behaviours - typically helpful in an industrial setting - have been simulated, such
as line-following, lane-tracking and object recognition, platooning control, obstacle
avoidance, and wall-following. For each of these behaviours, dedicated sensors
with optimal operational capabilities for the designated application have been
selected.

116

Conclusions and Future Work

In the second section, the goal has been to study the Simultaneous Localiza-
tion and Mapping (SLAM) problem, in view of the implementation of these
technologies on the Bilby Rover robot. In this context, the Hector-SLAM al-
gorithm has been tested by building a distributed architecture on ROS. The
YDLIDAR X4 sensor has been used as an indoor 2D scanner and connected to
the SBC Raspberry Pi 4 B, which has been leveraged to access the distance
measurements. The extracted LiDAR data have been then sent wirelessly to a
remote computer, in charge of executing the Hector-SLAM algorithm to process
the range information into a map of the environment. The results of the mapping
experiments have been presented, demonstrating a remarkable accuracy that
makes the constructed architecture suitable for real-world Bilby Rover operations.

Given the objectives achieved, possible future developments are various and
diverse, as the study is still at an embryonic stage. In this regard, from the
hardware point of view, the assembly of the physical robot is certainly left as
a future development. In this respect, the platform will have to be integrated
with specific components necessary for navigation, namely motors and motor
drivers, which must be suitably selected for the system depending on technical
specifications and connected with the relevant wirings and power supply. From
the software point of view, the ROS framework will have to be configured with
dedicated packages to allow the Raspberry Pi to be interfaced with motors through
motor drivers. In such a way, the actuation of motors can be triggered through
commands issued directly by the Raspberry Pi, which will act as a microcontroller
board allowing the robot to move in the environment.
Once the Raspberry Pi and the motors are properly connected and after verifying
the functionality of the Hector-SLAM algorithm, a further development could
be to install modules that enable path planning and autonomous exploration
without the need of any human intervention or command, thus relying only on
the knowledge of the environmental map. Also for this purpose, the Hector team
has developed packages dedicated to the development of these functionalities,
which can be integrated on the ROS framework in order to increase the level of
autonomy and the perception capabilities of the Bilby Rover.

117

Appendix A

Webots Simulations

A.1 Keyboard Teleoperation

from controller import Robot, Keyboard

#create the Robot instance
robot = Robot()

#get the time step of the current world.
TIME_STEP = 32

kb=Keyboard()
kb.enable(TIME_STEP)

wheels = []
wheelsNames = [’wheel1_motor’, ’wheel2_motor’,

’wheel3_motor’, ’wheel4_motor’]
for i in range(4):

wheels.append(robot.getDevice(wheelsNames[i]))
wheels[i].setPosition(float(’inf’))
wheels[i].setVelocity(0.0)

leftSpeed=0.0
rightSpeed=0.0

print(’Click on the World window to enable Keyboard Teleoperation’)
print(’==’)

118

A.1. Keyboard Teleoperation Chapter A. Webots Simulations

print(’Press UP key to move forward, DOWN key to go backwards’)
print(’Press RIGHT key to turn right, LEFT key to turn left’)
print(’Release the key to stop the robot’)
print(’==’)

#main loop
while robot.step(TIME_STEP) != -1:

key=kb.getKey()
if (key==Keyboard.UP):

#print(’Moving forward’)
leftSpeed=4.0
rightSpeed=4.0

elif (key==Keyboard.DOWN):
#print(’Moving backwards’)
leftSpeed=-4.0
rightSpeed=-4.0

elif (key==Keyboard.LEFT):
#print(’Turning left’)
leftSpeed=-15.9562
rightSpeed=17.9562

elif (key==Keyboard.RIGHT):
#print(’Turning right’)
leftSpeed=17.9562
rightSpeed=-15.9562

else:
leftSpeed=0.0
rightSpeed=0.0

wheels[2].setVelocity(leftSpeed)
wheels[3].setVelocity(rightSpeed)
wheels[0].setVelocity(leftSpeed)
wheels[1].setVelocity(rightSpeed)

119

A.2. Line Following Chapter A. Webots Simulations

A.2 Line Following

from controller import Robot

def run_robot(robot):
timestep=32
max_speed=6.28
#Motors
wheels = []
wheelsNames = [’wheel1_motor’, ’wheel2_motor’,

’wheel3_motor’, ’wheel4_motor’]
for i in range(4):

wheels.append(robot.getDevice(wheelsNames[i]))
wheels[i].setPosition(float(’inf’))
wheels[i].setVelocity(0.0)

#Enable IR sensors
left_ir=robot.getDevice(’ir0’)
left_ir.enable(timestep)
right_ir=robot.getDevice(’ir1’)
right_ir.enable(timestep)

print(’IR-enabled line following behaviour’)
#Step simulation
while robot.step(timestep) != -1:

#read IR sensors
left_ir_value=left_ir.getValue()
right_ir_value=right_ir.getValue()

leftSpeed=max_speed
rightSpeed=max_speed

if (left_ir_value < right_ir_value):
#print("Turn right")
rightSpeed=-25.4343
leftSpeed=25.4343

elif (right_ir_value < left_ir_value):

120

A.2. Line Following Chapter A. Webots Simulations

#print("Turn left")
leftSpeed=-25.4343
rightSpeed=25.4343

wheels[2].setVelocity(leftSpeed)
wheels[3].setVelocity(rightSpeed)
wheels[0].setVelocity(leftSpeed)
wheels[1].setVelocity(rightSpeed)

if __name__=="__main__":
my_robot=Robot()
run_robot(my_robot)

121

A.3. Lane Keeping and Object Recognition Chapter A. Webots Simulations

A.3 Lane Keeping and Object Recognition

from controller import Robot

def run_robot(robot):
timestep=32
max_speed=15
#Motors
wheels = []
wheelsNames = [’wheel1_motor’, ’wheel2_motor’,

’wheel3_motor’, ’wheel4_motor’]
for i in range(4):

wheels.append(robot.getDevice(wheelsNames[i]))
wheels[i].setPosition(float(’inf’))
wheels[i].setVelocity(0.0)

#Enable IR sensors
left_ir=robot.getDevice(’ir2’)
left_ir.enable(timestep)
right_ir=robot.getDevice(’ir3’)
right_ir.enable(timestep)

#Enable camera
camera=robot.getDevice(’camera’)
camera.enable(timestep)
camera.recognitionEnable(timestep)

detection=0
print(’Lane Following with smart camera for object recognition’)
print(’===’)
#Step simulation
while robot.step(timestep) != -1:

object=camera.getRecognitionObjects()
if len(object)>0:

detection+=1
leftSpeed=0
rightSpeed=0
if detection==1:

122

A.3. Lane Keeping and Object Recognition Chapter A. Webots Simulations

print(’WARNING: Obstacle Detected’)
print(’Waiting for the pedestrian to cross the road’)
print(’==’)

else:
detection=0
#read IR sensors
left_ir_value=left_ir.getValue()
right_ir_value=right_ir.getValue()

leftSpeed=max_speed
rightSpeed=max_speed

if (left_ir_value < 10):
#print("Turn right")
rightSpeed=-9.7498
leftSpeed=9.7498

elif (right_ir_value < 10):
#print("Turn left")
leftSpeed=-9.7498
rightSpeed=9.7498

wheels[2].setVelocity(leftSpeed)
wheels[3].setVelocity(rightSpeed)
wheels[0].setVelocity(leftSpeed)
wheels[1].setVelocity(rightSpeed)

if __name__=="__main__":
my_robot=Robot()
run_robot(my_robot)

123

A.4. Platooning control of a robot cluster Chapter A. Webots Simulations

A.4 Platooning control of a robot cluster

from controller import Robot, RadarTarget
import struct

def run_robot(robot):
timestep=32
max_speed=15
#Motors
wheels = []
wheelsNames = [’wheel1_motor’, ’wheel2_motor’,

’wheel3_motor’, ’wheel4_motor’]
for i in range(4):

wheels.append(robot.getDevice(wheelsNames[i]))
wheels[i].setPosition(float(’inf’))
wheels[i].setVelocity(0.0)

#Enable IR sensors
left_ir=robot.getDevice(’ir2’)
left_ir.enable(timestep)
right_ir=robot.getDevice(’ir3’)
right_ir.enable(timestep)

#Enable radar
radar=robot.getDevice(’radar’)
radar.enable(timestep)

#Enable receiver
receiver=robot.getDevice(’receiver’)
receiver.enable(timestep)

#Create instance of emitter
emitter=robot.getDevice(’emitter’)

print(’Radar-Emitter-Receiver-enabled Platooning-like behaviour’)
#Step simulation
while robot.step(timestep) != -1:

target_number=radar.getNumberOfTargets()

124

A.4. Platooning control of a robot cluster Chapter A. Webots Simulations

#print(’number of targets seen: ’, target_number)
if target_number==0:

#read IR sensors
left_ir_value=left_ir.getValue()
right_ir_value=right_ir.getValue()

leftSpeed=max_speed
rightSpeed=max_speed

if (left_ir_value < 10):
#print("Turn right")
rightSpeed=-9.7498
leftSpeed=9.7498

elif (right_ir_value < 10):
#print("Turn left")
leftSpeed=-9.7498
rightSpeed=9.7498

else:
if receiver.getQueueLength()>0:

message=receiver.getData()
data=struct.unpack("i",message)

target=RadarTarget()
target=radar.getTargets()
#print(target[0].distance)
#rint(target[0].azimuth)
#print(target[0].speed)
#print(’============’)
#if the robot is too close, it must slow down
if (target[0].distance)>0.7:

left_ir_value=left_ir.getValue()
right_ir_value=right_ir.getValue()

leftSpeed=max_speed
rightSpeed=max_speed

if (left_ir_value < 10):

125

A.4. Platooning control of a robot cluster Chapter A. Webots Simulations

#print("Turn right")
rightSpeed=-9.7498
leftSpeed=9.7498

elif (right_ir_value < 10):
#print("Turn left")
leftSpeed=-9.7498
rightSpeed=9.7498

else:
leftSpeed=data[0]
rightSpeed=data[0]
#print(rightSpeed)
if (target[0].azimuth) <-0.1:

leftSpeed=-9.7498
rightSpeed=9.7498
#print(’turning left’)

elif (target[0].azimuth) >0.1:
leftSpeed=9.7498
rightSpeed=-9.7498
#print(’turning right’)

wheels[2].setVelocity(leftSpeed)
wheels[3].setVelocity(rightSpeed)
wheels[0].setVelocity(leftSpeed)
wheels[1].setVelocity(rightSpeed)

message = struct.pack(’i’,max_speed)
emitter.send(message)

if __name__=="__main__":
my_robot=Robot()
run_robot(my_robot)

126

A.5. Obstacle avoidance control Chapter A. Webots Simulations

A.5 Obstacle avoidance control

import math
from controller import Robot

robot=Robot()
TIME_STEP=int(robot.getBasicTimeStep())

#define constants
CRUISING_SPEED=5.0
MAX_SPEED=6.4
OBSTACLE_THRESHOLD=0.1
DECREASE_FACTOR=0.9
BACK_SLOWDOWN=0.9

def gaussian(x,mu,sigma):
return (1/(sigma*math.sqrt(2*math.pi)))*math.exp(-((x-mu)

*(x-mu))/(2*sigma*sigma))

#Enable Lidar
lidar=robot.getDevice(’lidar’)
lidar.enable(TIME_STEP)
lidar.enablePointCloud()

lidar_width=lidar.getHorizontalResolution()
half_width=int(lidar_width/2)
max_range=lidar.getMaxRange()
range_threshold=max_range/80

#initialize Braitenberg coefficients
braiten=[]
for i in range(lidar_width):

braiten.append(0)

for i in range(lidar_width):
braiten[i]=gaussian(i, lidar_width/2, lidar_width/5)

127

A.5. Obstacle avoidance control Chapter A. Webots Simulations

#Motors
wheelsNames=[’wheel1_motor’,’wheel2_motor’,

’wheel3_motor’,’wheel4_motor’]
wheels=[]
for i in range(4):

wheels.append(robot.getDevice(wheelsNames[i]))
wheels[i].setPosition(float(’inf’))
wheels[i].setVelocity(0.0)

#initialize speed for each wheel
backleftspeed=0.0
frontleftspeed=0.0
frontrightspeed=0.0
backrightspeed=0.0

#initialize dynamic variables
left_obstacle=0.0
right_obstacle=0.0
avoidwall=0
#main Loop
while robot.step(TIME_STEP)!=-1:

#get lidar values
lidar_values=lidar.getRangeImage()

#apply Braiteberg coefficients on lidar values:
#near obstacle sensed on the left side
for i in range(half_width):

#far obstacles are neglected
if lidar_values[i]<range_threshold:

left_obstacle+=braiten[i]*(1-lidar_values[i]/max_range)

#near obstacle sensed on the right side
j=lidar_width-i-1
if lidar_values[j]<range_threshold:

right_obstacle+=braiten[j]*(1-lidar_values[j]/max_range)

#overall front obstacle
obstacle=left_obstacle+right_obstacle

128

A.5. Obstacle avoidance control Chapter A. Webots Simulations

#compute speed according to information on obstacles
if obstacle>OBSTACLE_THRESHOLD:

speed_factor=(1-DECREASE_FACTOR*obstacle)*MAX_SPEED/obstacle
frontleftspeed=speed_factor*left_obstacle
frontrightspeed=speed_factor*right_obstacle
backleftspeed=BACK_SLOWDOWN*frontleftspeed
backrightspeed=BACK_SLOWDOWN*frontrightspeed

else:
backleftspeed=CRUISING_SPEED
frontleftspeed=CRUISING_SPEED
backrightspeed=CRUISING_SPEED
frontrightspeed=CRUISING_SPEED

if avoidwall>0:
avoidwall-=1
if lidar_values[0]>lidar_values[179]:

#Turn left
backleftspeed=-1.0
frontleftspeed=-1.0
backrightspeed=1.0
frontrightspeed=1.0

else:
#Turn right
backleftspeed=1.0
frontleftspeed=1.0
backrightspeed=-1.0
frontrightspeed=-1.0

else:
if backleftspeed<1.1 and backrightspeed<1.1
and frontrightspeed<1.1 and frontleftspeed<1.1:

avoidwall=100

#set velocity to the wheels
wheels[0].setVelocity(frontleftspeed)
wheels[1].setVelocity(frontrightspeed)
wheels[2].setVelocity(backleftspeed)
wheels[3].setVelocity(backrightspeed)

129

A.6. Wall following Chapter A. Webots Simulations

A.6 Wall following

from controller import Robot, RadarTarget

def run_robot(robot):
timestep=32
max_speed=10
#Motors
wheels = []
wheelsNames = [’wheel1_motor’, ’wheel2_motor’,

’wheel3_motor’, ’wheel4_motor’]
for i in range(4):

wheels.append(robot.getDevice(wheelsNames[i]))
wheels[i].setPosition(float(’inf’))
wheels[i].setVelocity(0.0)

#Enable Sonar sensors
left_sonar=robot.getDevice(’sonar0’)
left_sonar.enable(timestep)
front_sonar=robot.getDevice(’sonar1’)
front_sonar.enable(timestep)

#Enable radar
radar=robot.getDevice(’radar’)
radar.enable(timestep)

goal=1
dest=0
print(’Sonar-based Wall Following behaviour’)
#Step simulation
while robot.step(timestep) != -1:

target_number=radar.getNumberOfTargets()

#read Sonar sensors
distance_left=left_sonar.getValue()
distance_front=front_sonar.getValue()

left_wall=left_sonar.getValue()<50

130

A.6. Wall following Chapter A. Webots Simulations

front_wall=front_sonar.getValue()<50
leftSpeed=max_speed
rightSpeed=max_speed

if front_wall:
#print(’Turn right’)
leftSpeed=9.7498
rightSpeed=-9.7498

else:
if left_wall:

#print(’Drive forward’)
leftSpeed=max_speed
rightSpeed=max_speed
if distance_left<10:

#print(’Too close’)
leftSpeed=9.7498
rightSpeed=-9.7498

else:
#print(’Turn left’)
leftSpeed=-9.7498
rightSpeed=9.7498

if target_number>0:
target=RadarTarget()
target=radar.getTargets()
#print(target[0].distance)
if (target[0].distance)<0.5:

leftSpeed=0.0
rightSpeed=0.0
goal=0

if goal==0:
if dest==0:

print("Arrived to the target")
dest=1

131

A.6. Wall following Chapter A. Webots Simulations

wheels[2].setVelocity(leftSpeed)
wheels[3].setVelocity(rightSpeed)
wheels[0].setVelocity(leftSpeed)
wheels[1].setVelocity(rightSpeed)

if __name__=="__main__":
my_robot=Robot()
run_robot(my_robot)

132

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisors from
Politecnico di Torino, Prof. Giovanni Belingardi and Prof. Maria Pia Cavatorta,
whose patient guidance, enthusiastic encouragement and support were invaluable
for me to formulate and develop my thesis in such difficult times.

I would like to thank my supervisor from McMaster University, Prof. Ishwar Singh,
for giving me the opportunity to join this project and for guiding me throughout
the development of my thesis, providing me with the tools I needed to choose the
right direction and successfully complete my dissertation.

I would like to acknowledge the Roboteurs team, especially Reiner Schmidt,
Anoop Gadhrri and Yih-Chyuan Hsiao, for their incredible contribution and will-
ingness to share their experience with me to overcome the obstacles I encountered
along the way.

In addition, I would like to thank my family and my beloved ones for their
wise advice and sympathetic ear, always encouraging me during these months.
Finally, I could not have completed this thesis without the support of my friends,
who provided stimulating discussions as well as happy distractions to rest my
mind outside of my research.

133

Bibliography

[1] L. Belli, L. Davoli, A. Medioli, P. L. Marchini, G. Ferrari, (2019) Toward
Industry 4.0 With IoT: Optimizing Business Processes in an Evolving Manu-
facturing Factory, Front. ICT 6:17. doi: 10.3389/fict.2019.00017

[2] Deloitte, (2015) Industry 4.0 Challenges and Solutions for the Digital Trans-
formation and Use of Exponential Technologies, Switzerland, Zurich

[3] Plarform Industrie 4.0, Industrie 4.0 – What is it? (https://www.plattform-
i40.de/PI40/Navigation/EN/Industrie40/WhatIsIndustrie40/what-is-
industrie40.html)

[4] iSCOOP, Industrie 4.0: the fourth industrial revolution – guide to Industrie
4.0 (https://www.i-scoop.eu/industry-4-0/)

[5] A. Rojko, (2017) Industry 4.0 Concept: Background and Overview, iJIM –
Vol. 11, No. 5

[6] H. Kagermann, R. Anderl, J. Gausemeier, G. Schuh, W. Wahlster, (2016) In-
dustrie 4.0 in a Global Context: Strategies for Cooperating with International
Partners (acatech STUDY), Munich: Herbert Utz Verlag

[7] K. Schwab, (2016) The Fourth Industrial Revolution: what it means, how to
respond, World Economic Forum

[8] M. Lorenz, M. Rüßmann, M. Waldner, P. Engel, M. Harnisch, J. Justus,
(2015), Industry 4.0: The Future of Productivity and Growth in Manufacturing
Industries, BCG publications

[9] S. Vaidya, P. Ambad, S. Bhosle, (2018) Industry 4.0 – A Glimpse, 2nd
International Conference on Materials Manufacturing and Design Engineering,
Procedia Manufacturing

[10] K. Witkowski, (2017), Internet of Things, Big Data, Industry 4.0 - Innovative
Solutions in Logistics and Supply Chains Management, 7th International

134

Bibliography Bibliography

Conference on Engineering, Project, and Production Management, Procedia
Engineering

[11] M. Brettel, N. Friederichsen, M. Keller, (2014), How Virtualization, Decen-
tralization and Network Building Change the Manufacturing Landscape: An
Industry 4.0 Perspective, International Journal of Mechanical, Aerospace,
Industrial, Mechatronic and Manufacturing Engineering, Vol. 8

[12] Deloitte The Netherlands, (2015), Industry 4.0 – An Introduction

[13] T. Burns et al, (2019) A Review of Interoperability Standards for Industry
4.0, Procedia Manufacturing 38, 646–653

[14] Y. Liao et al, (2017) The Role of Interoperability in The Fourth Industrial
Revolution Era, IFAC PapersOnLine 50-1, 12434–12439

[15] IEEE, IEEE Standard Computer Dictionary: A Compilation of IEEE Stan-
dard Computer Glossaries, IEEE Std 610, pp. 1-217, 1991.

[16] OTTO Motors (2017), Interoperability Is Key to Lean Manufacturing in
Industry 4.0

[17] D. A Zakoldaev et al, (2019): The interoperability of cyber-physical systems
in digital manufacturing of the Industry 4.0, Journal of Physics: Conference
Series 1399 044019

[18] A. Parrot, L. Warshaw, (2017) Industry 4.0 and the digital twin - Manufac-
turing meets its match, Deloitte University Press

[19] M. Marques, C. Agostinho, G. Zacharewicz, R. Goncalves, (2017) Decen-
tralized decision support for intelligent manufacturing in Industry, JAISE -
Journal of Ambient Intelligence and Smart Environments, IOS Press, 9 (3),
pp.299-313. ff10.3233/AIS-170436ff. ffhal-01517407f

[20] F. Almada Lobo, Manufacturing Software for Industry 4.0 – Embracing
Decentralization, Elektor Business Magazine

[21] Swisslog, How Industry 4.0 Design Principles Are Shaping the Future of
Intralogistics

[22] N. G. Carvalho, E. W. Cazarini, (2020) Industry 4.0 – What is it?, Industry
4.0 – Current Status and Future Trends, IntechOpen, DOI: 10.5772/Inte-
chopen.90068

135

Bibliography Bibliography

[23] B. Vogel-Heuser, D. Hess, (2016) Industry 4.0–Prerequisites and Visions,
Guest Editorial, IEEE Transactions On Automation Science And Engineering,
Vol. 13, No. 2

[24] M. Teulieres, P. J. Tilley, L. Bolz, P. M. Ludwig-Dehm, S. Wägner, (2019), In-
dustrial robotics - Insights into the sector’s future growth dynamics, McKinsey
& Company

[25] D. Küpper, M. Lorenz, C. Knizek, K. Kuhlmann, A. Maue, R. Lässig, T.
Buchner, (2019) Advanced Robotics in the Factory of the Future, Boston
Consulting Group

[26] A. Grau, M. Indri, L. L. Bello and T. Sauter, (2017) Industrial robotics in
factory automation: From the early stage to the Internet of Things, IECON
2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society,
Beijing, pp. 6159-6164, doi: 10.1109/IECON.2017.8217070

[27] Z. Gao, T. Wanyama, I. Singh, A. Gadhrri, R. Schmidt, (2020) From Industry
4.0 to Robotics 4.0 - A Conceptual Framework for Collaborative and Intelligent
Robotic Systems, Procedia Manufacturing 46: 591-99

[28] B. Bayram, G. İnce, (2017) Advances in Robotics in the Era of Industry 4.0,
Industry 4.0: Managing The Digital Transformation, Springer International,
187-200.

[29] R. Goel, P. Gupta, (2019) Robotics and Industry 4.0, A Roadmap to Industry
4.0: Smart Production, Sharp Business and Sustainable Development, 157-69,
Springer International, Advances in Science, Technology & Innovation

[30] J.A. Batlle, A. Barjau, (2009), Holonomy in mobile robots, Robotics and
Autonomous Systems 57, 433–440, Elsevier

[31] M. Poienariu, M. Georgescu, V. Chiroiu, L. Munteanu, (2009), On the
dynamics of non-holonomic systems

[32] K. Kozłowski, D. Pazderski, (2004) Modelling and control of a 4-wheel skid-
steering mobile robot, International Journal of Applied Mathematics and
Computer Science, Vol. 14, No. 4, 477–496

[33] M. Papoutsidakis, K. Kalovrektis, C. Drosos, G. Stamoulis, (2017) Design
of an Autonomous Robotic Vehicle for Area Mapping and Remote Monitor-
ing, International Journal of Computer Applications 167(12), 36-41, DOI:
10.5120/ijca2017914496

136

Bibliography Bibliography

[34] P. McManamon, (2019) LiDAR Technologies and Systems, SPIE, Re-
trieved from https://app.knovel.com/hotlink/toc/id:kpLDARTS03/lidar-
technologies-systems/lidar-technologies-systems

[35] LeddarTech, Why LiDAR – A brief introduction to LiDAR Technology and
its Market Applications, https://leddartech.com/why-lidar/

[36] Raspberry Pi Trading Ltd, (2021) Raspberry Pi 4 Computer Model B,
www.raspberrypi.org

[37] E. Küçükkülahlı, R.Güler, (2015) Open Source Mobile Robot with Raspberry
Pi, Balkan Journal of Electrical & Computer Engineering, Vol.3, No. 4, DOI:
10.17694/bajece.29976

[38] S. Saeedi, M. Trentini, M. Seto, H. Li, (2016) Multiple-Robot Simultaneous
Localization and Mapping: A Review, J. Field Robotics, 33, 3-46

[39] B. Huang, J. Zhao, J. Liu, (2020) A Survey of Simultaneous Localization and
Mapping with an Envision in 6G Wireless Networks, Nanyang Technological
University, Singapore

[40] C. Cadena et al., (2016) Past, Present, and Future of Simultaneous Localiza-
tion and Mapping: Toward the Robust-Perception Age, IEEE Transactions on
Robotics, vol. 32, no. 6, pp. 1309-1332 doi: 10.1109/TRO.2016.2624754

[41] A. Birk, M. Pfingsthorn, (2016) Simultaneous Localization and Mapping
(SLAM), Encyclopedia of Electrical and Electronics Engineering: Wiley

[42] Y. Chen, J. Tang, C. Jiang, L. Zhu, M. Lehtomäki, H. Kaartinen, R. Kai-
jaluoto, Y. Wang, J. Hyyppä, H. Hyyppä, H. Zhou, L. Pei, R. Chen, (2018)
The Accuracy Comparison of Three Simultaneous Localization and Map-
ping (SLAM)-Based Indoor Mapping Technologies, Sensors, 18 (10): 3228.
https://doi.org/10.3390/s18103228

[43] Mathworks, What is SLAM? 3 things you need to know,
https://it.mathworks.com/discovery/slam.html

[44] G. Jiang, L. Yin, S. Jin, C. Tian, X. Ma, Y. Ou, (2019) A Simultaneous
Localization and Mapping (SLAM) Framework for 2.5D Map Building Based
on Low-Cost LiDAR and Vision Fusion, Applied Sciences

137

Bibliography Bibliography

[45] C. Chen, L. Pei, C. Xu, D. Zou, Y. Qi, Y. Zhu, T. Li, (2019) Trajectory
Optimization of LiDAR SLAM Based on Local Pose Graph, China Satellite
Navigation Conference (CSNC)

[46] F. Jiménez, M. Clavijo, J. Juana, (2018) LiDAR-based SLAM algorithm
for indoor scenarios, The Seventh International Conference on Advances in
Vehicular Systems, Technologies and Applications

[47] A. Polenghi, L. Fumagalli, I. Roda, (2018) Role of simulation in industrial
engineering: focus on manufacturing systems, ScienceDirect: IFAC Paper-
sOnLine 51-11, 496–501

[48] F. Hosseinpour, H. Hajihosseini, (2009) Importance of Simulation in Manu-
facturing

[49] C. Murphy, T. Perera, (2001) Role of simulation in industries: the defini-
tion and potential role of simulation within an aerospace company, Confer-
ence: Proceedings of the 33nd conference on Winter simulation, 829-837,
DOI:10.1145/564124.564241

[50] P. Neto, J. N. Pires, A. Moreira, (2010) Robot path simulation: A low cost
solution based on CAD, 2010 IEEE Conference on Robotics, Automation and
Mechatronics, 333 - 338

[51] Cyberbotics Ltd, Webots User Guide, http://www.cyberbotics.com

[52] O. Michel, (2004) Professional Mobile Robot Simulation, International Journal
of Advanced Robotic Systems, DOI:10.5772/5618

[53] W. A. Isop, C. Gebhardt, T. Nägeli, F. Fraundorfer, O. Hilliges, D. Schmal-
stieg, (2019) High-Level Teleoperation System for Aerial Exploration of Indoor
Environments, Frontiers in Robotics and AI, DOI:10.3389/frobt.2019.00095

[54] R.G. Boboc, H. Moga, D. Talabă, (2012) A Review of Current Applications
in Teleoperation of Mobile Robots, Bulletin of the Transilvania University of
Braşov Series I: Engineering Sciences, Vol. 5 (54), No. 2

[55] S. Oswal, D. Saravanakumar, (2021) Line following robots on factory floors:
Significance and Simulation study using CoppeliaSim, IOP Conference Series:
Materials Science and Engineering, 1012 012008

[56] M. S. Islam, M. A. Rahman, (2013) Design and Fabrication of Line Follower
Robot, Asian Journal of Applied Science and Engineering, Vol. 2, No. 2

138

Bibliography Bibliography

[57] F. Real, F. Berry, (2010) Smart Cameras: Fundamentals, Technologies and
Applications, Smart Cameras, DOI: 10.1007/978-1-4419-0953-43

[58] M. Della Vedova, T. Facchinetti, A. Ferrara, A. Martinelli, (2009) Real-time
Platooning of Mobile Robots: Design and Implementation, Proceedings of
12th IEEE International Conference on Emerging Technologies and Factory
Automation DOI: 10.1109/ETFA.2009.5347246

[59] B. Brogliato, C. C. de Wit, (1999) Stability issues for vehicle platooning
in automated highway systems, IEEE International Conference on Control
Applications

[60] E. V. Filho et al., (2020) Towards a Cooperative Robotic Platooning Testbed,
IEEE International Conference on Autonomous Robot Systems and Compe-
titions (ICARSC) DOI: 10.1109/ICARSC49921.2020.9096132.

[61] ACEA, (2017) What is truck platooning?
https://www.acea.be/uploads/publications/Platooningroadmap.pdf

[62] G. Klančar, Gregor, D. Matko, S. Blazic, (2009) Wheeled Mobile Robots
Control in a Linear Platoon, Journal of Intelligent and Robotic Systems
DOI:10.1007/s10846-008-9285-7

[63] M. I. Skolnik, (2020) Radar, Encyclopedia Britannica,
https://www.britannica.com/technology/radar

[64] J. A. Scheer, W. A. Holm, (2010) Introduction and Radar Overview, Principles
of Modern Radar: Basic Principles

[65] D. Hutabarat, D. Purwanto, M. Rivai, H. Hutomo, (2019) Lidar-based Obsta-
cle Avoidance for the Autonomous Mobile Robot, 12th International Confer-
ence on Information & Communication Technology and System

[66] X. Yang, R. V. Patel, M. Moallem, (2006) A Fuzzy–Braitenberg Navigation
Strategy for Differential Drive Mobile Robots, J Intell Robot Syst, 47: 101-124,
DOI: 10.1007/s10846-006-9055-3

[67] I. Rano, (2012) A model and formal analysis of Braitenberg vehicles 2
and 3, IEEE International Conference on Robotics and Automation DOI:
10.1109/ICRA.2012.6224583

139

Bibliography Bibliography

[68] S. M. Antoun, P. J. McKerrow, (2010) Wall following with a single ultrasonic
sensor, Conference: Intelligent Robotics and Applications - Third Interna-
tional Conference, ICIRA 2010, Shanghai, China, November 10-12, 2010.
Proceedings, Part II, DOI: 10.1007/978-3-642-16587-013

[69] L. Kleeman, R. Kuc, (2008) Sonar Sensing, Springer Handbook of Robotics,
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-522

[70] Design World Staff, (2011) The Search for a Better Proximity Sensor Starts
Here, https://www.designworldonline.com/the-search-for-a-better-proximity-
sensor-starts-here/

[71] K. G. Panda, D. Agrawal, A. Nshimiyimana, A. Hossain, (2016) Effects of
environment on accuracy of ultrasonic sensor operates in millimetre range,
Perspectives in Science, DOI: 10.1016/j.pisc.2016.06.024

[72] H. Suwoyo, C. Deng, Y. Tian, A. Adriansyah, (2018) Improving a Wall-
Following Robot Performance with a PID-Genetic Algorithm Controller, Pro-
ceeding of EECSI 2018

[73] S. Kohlbrecher, O. Von Stryk, J. Meyer, U. Klingauf, (2011) A flexible
and scalable SLAM system with full 3D motion estimation, IEEE Interna-
tional Symposium on Safety, Security, and Rescue Robotics (SSRR), DOI:
10.1109/SSRR.2011.6106777

[74] M. Rivai, D. Hutabarat, Z. M. J. Nafis, (2020) 2D mapping using omni-
directional mobile robot equipped with LiDAR, TELKOMNIKA Telecom-
munication, Computing, Electronics and Control, Vol. 18, No. 3, DOI: :
10.12928/TELKOMNIKA.v18i3.14872

[75] Z. Xuexi, L. Guokun, F. Genping, X. Dongliang, L. Shiliu, (2019) SLAM
Algorithm Analysis of Mobile Robot Based on Lidar, Proceedings of the 38th
Chinese Control Conference

[76] J. Wen, C. Qian, J. Tang, H. Liu, W. Ye, X. Fan, (2018) 2D LiDAR SLAM
Back-End Optimization with Control Network Constraint for Mobile Mapping,
Sensors 2018, 18, 3668; DOI:10.3390/s18113668

[77] J. M. O’Kane, (2013) A Gentle Introduction to ROS,
http://www.cse.sc.edu/ jokane/agitr/

140

Bibliography Bibliography

[78] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,(2009) R.
Wheeler, A. Ng, ROS: an open-source Robot Operating System, ICRA work-
shop on open source software

[79] ROSwiki, What is ROS? http://wiki.ros.org/ROS/Introduction

[80] A. Palsson, M. Smedberg, (2017) Investing Simultaneous Localization and
Mapping for AGV systems, University of Gothenburg

[81] S. Kohlbrecher, J. Meyer, T. Graber, K. Petersen,U. Klingauf, O. von Stryk,
(2014) Hector Open Source Modules for Autonomous Mapping and Navigation
with Rescue Robots, Conference: Robot Soccer World Cup, DOI: 10.1007/978-
3-662-44468-958

[82] Wim Meeussen, (2010) Coordinate Frames for Mobile Platforms,
https://www.ros.org/reps/rep-0105.html

[83] D. Calin, (2020) How To Install ROS Melodic, rosserial, and more on Rasp-
berry Pi 4 (Raspbian Buster), https://www.intorobotics.com/how-to-install-
ros-melodic-rosserial-and-more-on-raspberry-pi-4-raspbian-buster/

[84] ROSwiki, Running ROS across multiple machines,
http://wiki.ros.org/ROS/Tutorials/MultipleMachines

[85] ROSwiki, Network Setup, http://wiki.ros.org/ROS/NetworkSetup

141

	Introduction
	Industry 4.0
	Industrie 4.0: the fourth industrial revolution
	Through the industrial revolutions

	Building blocks of Industry 4.0
	Big Data and Analytics
	Autonomous Robots
	Simulation
	Horizontal and Vertical System Integration
	The Industrial Internet of Things
	Cybersecurity
	The Cloud
	Additive Manufacturing
	Augmented Reality

	Industry 4.0 design principles
	Interoperability
	Virtualization
	Decentralization
	Real-time capability
	Service orientation
	Modularity

	Robotics: from the early stages to the IoT
	The evolution of industrial robotics
	Applications of Robotics in Industry 4.0

	Introduction to Bilby Rover
	Bilby Rover description
	Robotic body
	Sensing unit
	Processing Unit
	Overall system architecture

	SLAM
	Problem formulation
	Review of SLAM state of the art

	Webots Simulations
	Webots simulator
	Modelling
	Programming
	Simulation
	Transfer to real robots

	Bilby Rover modelling on Webots
	Bilby Rover applications
	Keyboard Teleoperation
	Line Following
	Lane Keeping and Object Recognition
	Platooning control of a robot cluster
	Obstacle avoidance control
	Wall following

	Hector-SLAM implementation
	Review of the Hector algorithm
	SLAM implementation using ROS
	Robot Operating System (ROS)
	hector_slam package

	Hector-SLAM testing
	Hardware overview
	Software and network setup
	Results and analysis

	Conclusions and Future Work
	Webots Simulations (1)
	Keyboard Teleoperation
	Line Following
	Lane Keeping and Object Recognition
	Platooning control of a robot cluster
	Obstacle avoidance control
	Wall following

	Acknowledgements
	Bibliography

