

POLITECNICO DI TORINO

Corso di Laurea Magistrale

in Ingegneria Energetica e Nucleare

Tesi di Laurea Magistrale
Object oriented modeling of LTS and HTS superconducting cables

Relatore Candidato

Prof. Laura Savoldi Daniele Placido

Prof. Roberto Silvestro Poccia

Anno accademico 2020/2021

i

Abstract
Superconducting (SC) cables and magnets in the past decades have enabled fundamental

discoveries in the field of high-energy physic, amazing steps forward in the research on a clean

energy based on nuclear fusion and a significant increase in the power transfer capability, as

well as reduction of transmission loss and construction cost, for power cables. Different kinds

of SC cables are available, according to the applications, based on different SC materials and

different concept for their cooling (conduction-cooling, coolant bath of forced-flow). The SC

cables for fusion, for instance, are mainly based on a thousand of thin strands, embedding the

low-critical-temperature superconducting (LTS) material, twisted together and pulled inside a

metal jacket (the so-called cable-in-conduit concept). The coolant, supercritical Helium at

4.5 K and 5 bar flows inside the porous matrix originated by the strands. The SC cables for

power transmission typically adopt high-critical-temperature superconducting (HTS) tapes,

stacked on a stabilizing former and cooled by a forced flow of liquid nitrogen at 77 K. The

cables are surrounded by the cryostat.

Focusing on forced-flow SC cables, which are crucial both for fusion applications and for

power transmission, the availability of an appropriate, reliable and flexible modelling of the

SC cables is of paramount importance. In the field of fusion cables, several numerical tools are

well established for the analysis of the transients in fusion (LTS) cables, as the 4C code,

developed at DENERG few years ago. In the field of power transmission cables, few numerical

tools are available for the HTS cables, based on a very simplified modelling.

A single model, flexible enough to cope with both LTS and HTS cables for fusion

applications and power transmission, respectively, is missing from the research arena. The

aim of the present thesis is the conceptual development of a single tool for the analysis of

thermal-hydraulic transients in SC cables, though from the very beginning to be capable to

model LTS, as well as HTS cables. Euler-like sets of 1D equations should be used to model the

fluid flow along the cable, for an arbitrary number of fluid regions in single phase. The fluid

equations need to be coupled to 1D transient heat conduction equations, for the SC

strands/tapes and for the stabilizer elements and jacket/insulation layers/cryostat. The spatial

grid used to discretize the equations with a finite element scheme should account for non-

uniform elements distribution along the cable, while the time-marching scheme should take

advantage of an adaptive time stepping.

The model should be developed based on a user-friendly concept of a graphical interface

that allows to easily define the cable topology, to choose the appropriate numerical solvers

and run the simulations, checking the evolution of selected thermal-hydraulic variables during

the code execution.

In perspective, the model needs to be extended to include also a lumped electrical model.

TABLE OF CONTENTS

iii

TABLE OF CONTENTS

List of symbols ...vii

List of acronyms ...xi

1 Introduction .. 1

1.1 Context ... 1

1.2 Overview of modeling of SC cables for fusion applications 4

1.3 Overview of modeling of SC cables for power applications 6

1.4 Aim and novelty of the work .. 10

1.5 Structure of the thesis ... 11

2 Mesoscale modelling of superconductors ... 13

2.1 Mathematical model .. 13

2.1.1 Fluid components equations .. 14

2.1.2 Solid components equations .. 15

2.1.3 Coupling of equations ... 17

2.1.4 The final set of PDEs .. 18

2.1.4.1 Case study equations ... 18

2.1.4.1.1 3P-HTS configuration .. 18

2.1.4.1.2 ITER LTS Toroidal Field Coil configuration .. 20

2.1.5 Summary ... 21

2.2 Numerical schemes .. 22

2.2.1 Spatial discretization with Finite Elements Method (FEM) 22

2.2.1.1 Mesh construction ... 24

2.2.2 Time discretization .. 27

2.2.3 Summary ... 29

3 Code description .. 31

3.1 The SC2 code organization in nutshell ... 31

3.1.1 SC2 architecture .. 31

3.1.2 SC2 input and output organization ... 37

3.1.3 Summary ... 41

3.2 Code kernel: Conductors, FluidComponents and SolidComponents classes 41

iv

3.2.1 FluidComponents class ... 43

3.2.2 SolidComponents class ... 44

3.2.3 Conductors class ... 47

3.2.3.1 __init__ method .. 49

3.2.4 Summary ... 55

3.3 Simulation class: the steps through the solution... 55

3.3.1 Fluid components initialization ... 57

3.3.2 Solid components initialization ... 60

3.3.3 BCs application and problem solution .. 61

3.3.4 Summary ... 61

3.4 A user-friendly GUI ... 62

3.4.1 Run… ... 63

3.4.2 …and check (real-time visualization of the results) 68

3.4.3 Summary ... 68

3.5 Ease of post processing .. 68

3.5.1 How the data are managed .. 68

3.5.2 Default post processing .. 78

3.5.3 Advanced post processing .. 80

3.5.4 Summary ... 84

4 SC2 Verification and Validation .. 85

4.1 Convergence analyses .. 85

4.1.1 Space convergence ... 87

4.1.2 Time convergence ... 88

4.1.3 Summary ... 90

4.2 Validation against the 4C code .. 90

4.2.1 Benchmark with the 4C code: an HTS power cable 91

4.2.2 Benchmark with the 4C code: an ITER LTS Toroidal Field Coil cable 99

4.2.3 Summary ... 109

4.3 SC2 versatility checks ... 110

4.3.1 Inner benchmark: INTIAL .. 111

4.3.2 Inner benchmark: BE vs CN ... 120

TABLE OF CONTENTS

v

4.3.3 Inner benchmark: backflow .. 121

4.3.4 Inner benchmark: refined mesh ... 127

4.3.5 Summary ... 130

5 Conclusions and future perspectives ... 131

A Extended form of equations ... 135

B Matrix elements ... 141

B.1 General form of matrices and vectors ... 141

B.2 3P-HTS case study: matrices and vectors .. 148

B.3 ITER-TF case study: matrices and vectors .. 150

C Evaluation of the properties of the solid components .. 155

D Input data of the simulations ... 159

D.1 3P-HTS input data .. 159

D.2 ITER-TF input data .. 163

E Further details .. 169

E.1 How to compile input files ... 169

E.2 Interfaces and coupling between components ... 169

Bibliography .. 171

LIST OF SYMBOLS

vii

LIST OF SYMBOLS

Scalar quantities

Quantity Symbol Unit SI
hydraulic diameter 𝐷ℎ m
inverse characteristic time �̃� 1/s
specific heat at constant pressure 𝑐𝑝 J/kg/K
specific heat at constant volume 𝑐𝑣 J/kg/K
localized pressure drop coefficient 𝑘𝑓,𝑙𝑜𝑐 −

mass flow rate �̇�
kg

s

energy source term 𝛬𝑒 W/m3
momentum source term 𝛬𝑣 J/m4
mass source term 𝛬𝜌 kg/(m3 s)
parameter to keep into account the kind of interface 𝜆𝑣 −
reference value 𝜉0 −
heat transfer coefficient ℎ W/(m2 K)
length of the j-th subinterval Δ𝑥𝑗 −
energy variation Δ𝐸 J
mass variation Δ𝑚 kg
pressure drop Δ𝑝 Pa
time increment Δ𝑡 s
cross section Σ m2
heat capacity 𝐶 J/(m3 K)
average fluid acceleration in fluid component object 𝐹 m/s2
mass transport coefficient 𝐾′ ms
momentum transport coefficient 𝐾′′ m2
energy transport coefficient 𝐾′′′ m3/s
conductor length 𝐿 m
number of something (according to the subscript),

with no subscript the number of inner nodes of the spatial
discretization of the domain.

𝑁 −

contact perimeter 𝑃 m
linear heat source 𝑄 W/m
total linear heat sources in nodal point 𝑄1, 𝑄2 W/m
temperature 𝑇 K
speed of sound 𝑐 m/s
specific energy 𝑒 J/kg
friction factor 𝑓 −
i-th iteration 𝑖 −
thermal conductivity 𝑘 W/(m K)
pressure 𝑝 Pa
time 𝑡 s
velocity 𝑣 m/s

viii

Quantity Symbol Unit SI
specific enthalpy 𝑤 J/kg
spatial coordinate 𝑥 m
generic vector element 𝑦 −
Gruneisen parameter 𝛷 −
hydraulic coefficient of the fluid component 𝛼 1/(kg m)
smoothing coefficient 𝛿 −
relative error 𝜀 −
𝜃-method coefficient 𝜃 −
generic solution value (velocities, pressures or

temperatures)
𝜉 −

density 𝜌 kg/m3
generic property value of fluid or solid components 𝜒 −
partial derivative operation 𝜕 −

Functions and finite element subspace

Quantity Symbol
finite-dimensional subspace Vh
j-th sub interval of the spatial discretization 𝐼𝑗

generic function (e.g. material property) 𝑓(…)
basis function of the finite dimensional subspace 𝜓
function that belongs to the finite dimensional subspace 𝜔
value of the function at the nodal point �̅�

Matrices and vectors

Quantity Symbol
matrix of basis function of the finite dimensional subspace Ψ
matrix of test functions of the finite dimensional subspace Ω
advection matrix 𝐴
stiffness matrix 𝐴𝑠𝑦𝑠

conductive matrix 𝐾
mass matrix 𝑀
source terms matrix 𝑆
not null vector constituting the diagonals of the advection matrix 𝑨
not null vector constituting the diagonal of the conductive matric 𝑲
not null vector constituting the diagonal of the mass matric 𝑴
vector of the linear heat source 𝑸
not null vector constituting the diagonal of the source term matrix 𝑺
vector of the temperature 𝑻
known term vector 𝒃
vector of the pressure 𝒑
vector of the source terms 𝒔
vector of unknowns 𝒖
vector of the velocity 𝒗
generic vector 𝒚

LIST OF SYMBOLS

ix

Quantity Symbol
error vector 𝜺
generic vector of the solution (velocities, pressures or temperatures) 𝝃
generic vector of property of fluid or solid components 𝝌
null vector 𝟎
identity vector 𝟏

Subscript and superscripts

Symbol Meaning
∥ hydraulic parallel
⊥ transversal direction
4𝐶 values obtained from simulation with the 4C code

𝐵𝐸 Backward Euler
𝐶 close
𝐶𝐻1 fluid component CHAN_1
𝐶𝐻2 fluid component CHAN_2
𝐶𝑁 Crank-Nicolson

𝐺𝑎𝑢𝑠𝑠
quantity evaluated in the midpoint (Gauss point) of the spatial

discretization of the domain
𝐽𝐾1 jacket component Z_JACKET_1
𝐽𝑜𝑢𝑙𝑒 heat due to Joule effect in the strand(s)
𝑂 open
𝑆𝐶2 values obtained from simulation with the SC2 code
𝑆𝑇1 strand component STR_MIX_1

𝑆𝑖𝑚1 first simulation to perform the inner benchmark, the reference one
𝑆𝑖𝑚2 first simulation to perform the inner benchmark, the test one
𝑇 temperature
𝑎 left end of the refined region
𝑎𝑣𝑒 average
𝑏 right end of the refined region

𝑏𝑎𝑐𝑘 backward flow simulation (flow from right to left)
𝑏𝑒𝑔 begin (of the transient)
𝑐ℎ fluid component (channel)
𝑐𝑎 generic fluid component (channel)

𝑐𝑜𝑎𝑟𝑠𝑒 coarse region
𝑐𝑜𝑛𝑑 conductor
𝑐𝑜𝑛𝑣 space or time convergence analysis
𝑒𝑛𝑑 end (of the transient)
𝑒𝑞 total number of mathematical equations to model the conductor
𝑒𝑥𝑡 external heat
𝑓𝑖 generic current-carrying solid component (strand)
𝑓𝑙𝑜𝑤 forward flow simulation (flow from left to right)
𝑔𝑙𝑜𝑏𝑎𝑙 global error
𝑖, 𝑗 indexes (e.g. of the generic node of the spatial discretization)
𝑖𝑛 generic non-current-carrying solid component (jacket)

x

Symbol Meaning
𝑖𝑛𝑙 inlet

𝑖𝑛𝑛𝑒𝑟 𝑏𝑒𝑛𝑐ℎ inner benchmark
𝑖𝑛𝑝𝑢𝑡 input files
𝑗𝑘 non-current-carrying solid component (jacket)
𝑙 left

𝑚𝑎𝑖𝑛 main diagonal
𝑚𝑎𝑡 materials constituting the solid components
𝑛𝑒𝑤 actual evaluated value

𝑛𝑜𝑑𝑎𝑙
quantity evaluated in the nodes of the spatial discretization of the

domain
𝑜𝑙𝑑 previous evaluated value
𝑜𝑢𝑡 outlet

𝑜𝑢𝑡𝑒𝑟 𝑏𝑒𝑛𝑐ℎ outer benchmark
𝑝 pressure
𝑟 right
𝑟𝑒𝑓 refined region or refined mesh
𝑠𝑐𝑜𝑚𝑝 solid components (both current-carrying and non-current-carrying)
𝑠𝑑 spatial discretization

𝑠𝑚𝑜𝑜𝑡
smoot transition from coarse to refined mesh (or from refined to

coarse)
𝑠𝑡 current-carrying solid component (strand)
𝑠𝑢𝑏 sub diagonal
𝑠𝑢𝑝 super diagonal

𝑡𝑐 thermal contact
𝑡𝑜𝑡 total number of equations to be solved after the spatial discretization
𝑡𝑟𝑦 attempt value
𝑢𝑛𝑖 uniform mesh
𝑣 velocity
𝜁 generic time step

LIST OF ACRONYMS

xi

LIST OF ACRONYMS

Acronym Meaning
0D Zero-dimensional
1D One-dimensional
2D Two-dimensional
3D Three-dimensional
3P-HTS Three Phase Coaxial High Critical Temperature Superconducting
AC Alternate Current
AM4 Adams Moulton method of fourth order
BC Boundary Condition
BE Backward Euler
CFD Computational Fluid Dynamics
CFETR China Fusion Engineering Test Reactor
CICC Cable-In-Conduit Conductors
CN Crank-Nicolson
CSV Comma Separated Value
DC Direct Current
DENERG Dipartimento Energia
DTT Divertor Tokamak Test
EPRI Electric Power Research Institute
EPS Encapsulated PostScript
EU-DEMO European Demonstration Reactor
FD Finite Differences
FDM Finite Differences Method
FDTD Finite Differences Time Domain
FEM Finite Elements Method
GUI Graphical User Interface
HELIAS HELIcal Advanced Stellarator
HEP High-Energy Physics
HTC Heat Transfer Coefficient
HTS High Critical Temperature Superconducting
IBVP Initial Boundary Value Problem
ID Identifier
ITER International Thermonuclear Experimental Reactor
ITER-TF ITER Low Critical Temperature Superconducting Toroidal Field Coil
JA-DEMO Japanese Demonstration Reactor
JT-60SA Japan Tokamak 60 Super Advanced
K-DEMO Korean Demonstration Reactor
LTS Low Critical Temperature Superconducting
MRI Magnetic Resonance Imaging
NMR Nuclear Magnetic Resonance
ODE Ordinary Differential Equation
OOP Object-Oriented Programming

xii

Acronym Meaning
PDE Partial Differential Equation
PDEPE Parabolic-Elliptic Partial Differential Equations
PPLP Polypropylene Laminated Paper
SC Superconducting
SHe Supercritical Helium
SMES Superconducting Magnetic Energy Storage
SPARC Short Pulse Affordable Robust Compact
TFC Toroidal Field Coils
TSV Tab-Separated Value
UML Unified Modeling Language
V&V Verification and Validation
VE Volume Element
VEM Volume Element Model

1 INTRODUCTION

1

CHAPTER 1

1 INTRODUCTION

Superconducting cables and magnets in the past decades have enabled fundamental

discoveries in the field of high-energy physics [1], amazing steps forward in the research on a

clean energy based on nuclear fusion [2] and a significant increase in the power transfer

capability, as well as reduction of transmission loss and construction cost, for power cables

[3]. Different kinds of SC cables are available, according to the applications, based on different

SC materials and different concept for their cooling (conduction-cooling, coolant bath of

forced-flow): in this thesis the focus is on forced-flow SC cables.

The background in which the present work is inserted is contextualized in the section 1.1

on the level of applications and in the sections 1.2 and 1.3 on that of the current tools available

for the modeling. After outlining the objectives (see section 0), the structure of the thesis is

summarized in section 1.5.

1.1 CONTEXT

The research on nuclear fusion as a possible technology for a CO2-free power production,

capable to reduce the many issues related to the nuclear fission plants [4], [5], is flourishing

around the world, with magnetic confinement devices being designed or constructed, by both

public enterprises and private companies, to address the physics and technological challenges

that are still open. Despite the alternative configuration and design choices, all the large fusion

machine recently entered in operation, under commissioning or design are superconductive.

On the side of the stellarator/heliotron configuration [6], the two world largest operating

machines, namely Wendelstein 7-X [7]–[9] in Germany and the Large Helical Device [10], [11]

in Japan, rely on superconducting coils employing low critical temperature superconducting

material [12], cooled by Helium mainly in forced flow conditions. Future machines, such as

that targeted by the public consortium EUROfusion (namely, the HELIcal Advanced Stellarator,

so called HELIAS machine [13]) or by the private company Reinassance Fusion, will be designed

taking advantage of the recent development in both LTS and high-critical temperature

superconductors [14], respectively.

On the side of the tokamak configuration, while the ITER machine [15], [16] is under

construction in France, the main parties collaborating for that huge nuclear fusion experiment

are separately working on the next step toward a commercial use of fusion power [17]. The

China Fusion Engineering Test Reactor (CFETR) [18], designed to bridge the fusion experiments

between ITER and a nuclear fusion power station, addresses steady-state operation and

tritium self-sustainment, the end of the conceptual design phase. Its design currently relies on

both LTS and HTS cable-in-conduit conductors (CICC) [19]. The European DEMOnstration

reactor (EU-DEMO), in the European roadmap to fusion [20], should go beyond ITER and

shows for the first time that electricity can be generated from the fusion process. The EU-

1.1 CONTEXT

2

DEMO has just finished its pre-conceptual design phase, and its magnetic system is based on

the use of CICC, with different variants still open including both LTS and hybrid LTS/HTS coils

[21]. The Japanese DEMO (JA-DEMO) [22] is also designed as a superconducting machine, and,

relying on the technical maturity of the LTS Nb3Sn technology, it has adopted Nb3Sn as the

prime superconductor (SC) option, at least for the Toroidal Field Coils (TFC). The design of the

magnet system of the Korean DEMO (K-DEMO) [23] is based on the use of well-established

Nb3Sn and NbTi CICC [24], while the American pilot power plant, ARC [25], bets on the

development of fusion-class HTS magnets [26], with a demountable structure, that should be

already adopted in the wingdings of the SPARC machine [27], coming first (and soon) in the

American accelerated pathway to fusion energy. Even the “satellite” tokamaks, which should

complement the physics advancement reachable through the deployment of ITER within a

“broader approach” to fusion energy [28], such as the JT-60SA and the Italian Divertor

Tokamak Test (DTT) facility are or will be fully superconductive. The JT-60SA, under

commissioning in Japan [29], uses LTS CICC for all the coils [30], while for the DTT, HTS cables

are being considered as an insert to the Central Solenoid [31].

The use of superconducting cables is not limited to the specific technology of nuclear

fusion but covers other applications of strategic interest, such as the transport of power and

the transportations. For these areas, technologies are based on HTS cables because they,

having a high value of critical temperature can be cooled using less expensive fluids than He,

which is mandatory for the proper functioning of LTS cables, thus reducing the cost [32]. In

any case, the cost of the technology does not depend exclusively on the choice of the thermo-

vector fluid and is nowadays comparable with that of Nb3Sn cables as it is still immature [33].

A further advantage compared to LTS (in particular to Nb3Sn) that makes them suitable for

this applications, is the lower dependence of the critical current on strain in the compression

region, behavior weakly influenced by small increases in temperature and magnetic field [34].

Compared to ordinary copper or aluminum cables, HTS cables have additional advantages

that justify the renewed and growing interest in this technology. If on the one hand

superconductivity allows to carry a power 3 to 5 times larger than the one transported by a

conventional cable with the same or less losses [35], on the other hand this allows, with the

same size, to carry a higher power minimizing the visual impact, land consumption and

environmental footprint, to be associated also to the generation of less intense magnetic

fields. In addition, they operate at lower voltages with benefits on structures that are less

complex, smaller and therefore less expensive. Finally, the fault current limiting functionalities

is embedded in the cables [36].

Two main families of HTS cables are nowadays available, known as first and second

generations [37], [38], that differs from materials, manufacturing, characteristics and employs

[39]. Another classification can be done according to the transported current, distinguishing

between the alternate current (AC) and the direct current (DC). The formers are mainly used

for connections in urban environments, the first real word application occurred in Georgia

with the cables energization on January 05 2000 [40]. Another example is the permanent

installation of the first long length transmission level voltage HTS power cable in the Long

1 INTRODUCTION

3

Island Power Authority grid in 2007 [41]. AC HTS cables can also be employed to interconnect

particularly energy intensive industrial applications by means of short length links [42].

DC cables are suitable for connections over long distances. Among the main applications

of these cables, of considerable interest is the connection of isolated renewable energy

sources with centrally located load centers [43], [44]. Thanks to their advantages over ordinary

cables, DC HTS cables represent a possible solution to the problem of the growing demand for

energy by metropolis (such as New York or Tokyo) which, at the same time, have saturated

the underground metropolitan installations, overcoming in this way the grid bottlenecks [45].

The prospect of designing a compact and lightweight electric propulsion system, alongside the

possibility of reduced installation costs, makes HTS DC cables attractive in the transportation

sector as well [46], [47].

Figure 1.1-1 shows some typical examples of cables topology and configuration both of LTS

and HTS type and for both fusion reactors and power transport applications.

Figure 1.1-1 Examples of LTS and HTS cables for fusion and power transport applications: (a) ITER Toroidal

Field coil LTS two region CICC [courtesy of ENEA]; (b) ENEA EU-DEMO LTS [courtesy of ENEA], (c) ENEA HTS

[courtesy of ENEA]; (d) HTS cold dielectric AC [32]; (e) HTS warm dielectric DC [32].

1.2 OVERVIEW OF MODELING OF SC CABLES FOR FUSION APPLICATIONS

4

1.2 OVERVIEW OF MODELING OF SC CABLES FOR FUSION APPLICATIONS

Being the use of forced-flow SC cables so relevant both for fusion applications and for

power transmission, the availability of an appropriate, reliable and flexible modeling of the

forced-flow SC cables is of paramount importance. In the field of fusion cables, several

numerical tools are well established for the analysis of the transients in LTS cables, and namely

the 4C code [48], the THEA/SUPERMAGNET Suite [49], and the VINCENTA/VENICIA suite [50].

Among the numerical tools mentioned above, the 4C code, which is proprietary and not

available for commercial use, is largely the most validated among the ones quoted above [51].

It is able to perform steady and transient Thermal, Hydraulic and Electric analyses of forced-

flow SC cables and magnets. It consists of a multi-conductor model [52] for the simulation of

thermal-hydraulic transients in SC winding packs wound with ITER-like 2-channels CICCs or 1-

channel CICCs, for which one-dimensional (1D) mass, momentum and energy conservation, in

the non-conservative variables velocity pressure and temperature, are solved for the coolant

(Supercritical He, SHe) in the different cooling channels, while transient heat diffusion is solved

separately for the strands and the jacket. The possibility of a slow variation of coolant and

solid cross sections along the cables was introduced several years ago in the code to account

for the peculiar topology of joints [53]. A lumped-parameter model for the current distribution

is embedded, that can account for the current repartition among the different conductive

elements of the cable, but not for any current diffusion along the cable length. The heat

conduction through bulky metal structures that embed the winding pack is also accounted for

in the 4C code, but it becomes relevant only in presence of, e.g., the casing of a tokamak

Toroidal Field Coils, bearing very high Lorentz forces. The cryogenic circuit that feed the

magnets can also be modeled through a devoted library of cryogenic components, developed

in the object-oriented language Modelica [54], [55]. The 4C model for the SC cables, developed

in Fortran 77/Fortran 90, uses 1st order Finite Elements Method (FEM) for the spatial

discretization with an adaptive grid, while an implicit (Backward Euler, BE) or semi-implicit

scheme (Crank-Nicholson, CN) for the time marching, with an accuracy up to the 2nd order and

the possibility to adapt the time stepping to capture steep variation in the cable transients.

The code is based on a RUN-THEN-CHECK paradigm: the transient driver is pre-set in the

simulation setup and cannot be modified during the code execution. The code allows to save

the time evolution of selected variables (SHe velocity and pressure, solid and fluid

temperatures, …) at selected locations, and the spatial profiles of the entire solution at given

times during the transients; the post-processing is typically performed using a different

software (MATLAB, Excel, …). The code has been originally developed for LTS cables, however

a model for HTS cables (H4C, [56]) has been recently added to the 4C code family, which allows

easily to model HTS macro-strands such as those shown in Figure 1.1-1, and includes a

distributed-parameter model for the current distribution. However the H4C, which is currently

under validation [31], is not suited for ITER-like LTS cables as it includes a simplified treatment

for the thermal-hydraulic coupling between different cooling channels.

The commercial code THEA/SUPERMAGNET is able to perform steady and transient

thermal, hydraulic and electric analyses of forced-flow SC cables. The model solves 1D mass,

momentum and energy conservation for the coolant (SHe) in the non-conservative variables

1 INTRODUCTION

5

velocity pressure and temperature, and energy conservation for the solid elements along each

cable, and current diffusion and distribution along the cable, with distributed parameters for

both thermal-hydraulic and electric models. An arbitrary number of thermal, hydraulic and

electric components can be mutually coupled on the cable cross-section, with different

possible materials forming the cable (SC, stabilizer, insulator, …) and their cross section can

also vary along the cable to account for joints. An ancillary lumped model of the cryogenic

circuit connected to the cable/magnet is also available. The model solver uses finite elements

in space, with an adaptive grid, and an adaptive multi-step time marching scheme, with an

accuracy up to the 3rd order. Although a post-processor is available within the tool, no

interactive simulations are possible. The code structure is declared as “open”, upon payment

of the license fee, and in fact it has already been applied to the modeling/design of HTS

magnets or inserts in the fusion field [57]. Note, however, that the applicability of models that

cannot account for transversal gradients across the HTS strand cross section are controversial,

see [58], and for that a different approach could be needed [56].

VINCENTA/VENECIA is another commercial package, aimed at the transient thermal-

hydraulic simulation of large SC magnet system and accounting for several possible coolants

simultaneously: helium, in the different states – superfluid, supercritical – 2-phase

homogeneous mixture, but also nitrogen, hydrogen, oxygen, neon and water. The code is

applicable to a wide range of devices including not only fusion devices, for which a validation

of the code against experimental results is provided [59], but also magnet systems for NMR

and MRI and superconducting motors, generators and SMES. It is based on a modular

structure, with an individual set of algebraic, differential equations and equations in partial

derivatives describing each component of the system (SC cables, pumps, valves and heat

exchangers, and the like). Fluid flows are modeled using a 1D approximation, solving

conservation laws in the non-conservative variables velocity, pressure and enthalpy, and they

can be connected each-other and to two-dimensional (2D) models of the solid elements. The

spatial discretization of the derivatives is performed through Finite Differences Method (FDM)

with accuracy up to 5th order, while a semi-explicit splitting-up scheme for parabolic partial

differential equations is implemented for the time marching. As also in 4C, when different

conductors are modeled, each conductor can have a different meshing to better capture

regions where the gradients of the drivers/solutions could be steep. Real-time monitoring of

the results is included in the software, with also a Graphical User Interface (GUI) allowing for

the selection of the task directory, checkout of input file and connection between cable

elements, visualization of 2D mesh for the solids, launch of simulation, selection and plotting

of results, but still within the Run-THEN-check paradigm. The programming language of

VINCENTA/VENECIA is inferred from the website to be FORTRAN.

Although few benchmarks are available on couples of the above-mentioned tools [60], the

different codes have never been applied to the same test case and rigorously benchmarked.

The main features of the codes are highlighted and compared in Table 1.2-1.

1.3 OVERVIEW OF MODELING OF SC CABLES FOR POWER APPLICATIONS

6

Table 1.2-1 Comparison of the main features of 4C, THEA/SUPERMAGNET and VINCENTA/VENICIA codes.

Features 4C THEA/SUPERMAGNET VINCENTA/VENICIA

Use Proprietary Need to pay a licence Commercial

Program language Fortran 77/90 Fortran Fortran

Geometry
ITER-like CICCs up

to 2 channels
Arbitrary

Wide range of

geometries

Multi fluids No (SHe) No (SHe)
Yes (He, N2, H2, O2,

Ne, H2O)

LTS Yes Yes Yes

HTS Yes Yes Yes

Spatial

discretization

scheme

1st order FEM FEM 5th order FDM

Time integration

scheme

Adaptive BE or

CN

3rd order adaptive multi-

step

semi-explicit splitting-

up

GUI No No Yes

Post processing
Performed with

external tools
Inner post processor

Inner pre and post

processor

Validation Yes Yes Yes

Paradigm Run then check Run then check Run then check

1.3 OVERVIEW OF MODELING OF SC CABLES FOR POWER APPLICATIONS

The landscape of modeling HTS cables for power transport appears very distant from that

previously described in section 1.2 for LTS and HTS cables used for plasma magnetic

confinement. This is due to the different designs and peculiarities of the latter category of

cables, some of them are shown in Figure 1.3-1. In fact, the bibliographic search carried out

has shown that currently there is no tool analogous to 4C, THEA/SUPOERMAGNET or

VINCENTA/VENICIA that can be used for thermal-fluid dynamic and electromagnetic modeling

of generic HTS cable for power applications. In the literature it is possible to find numerous

examples of ad hoc modeling developed to solve specific problems, most of them in stationary

condition, using commercial software or developing home-made algorithms, but a robust

1 INTRODUCTION

7

comprehensive model in terms of thermal-hydraulic and electrical transient models is still

missing.

The first 1D model for compressible fluids involving the solution of Euler-like equations in

nonconservative form dates back to the late 1970s [61]. The chronological evolution of

mathematical and numerical models developed to simulate SC cables is contained in a section

of [62]. Here an overview, though not exhaustive, of the models developed since 2010 to

simulate the behavior of these cables is presented.

The Volume Element Model is an often-used discretization method, which consists in the

decomposition of the domain into Volume Elements (VE). A model based on this formulation

is proposed in [63] for HTS DC cables. The computational domain is divided into nine layers,

each modeled with a different VE to which energy conservation applies. In the energy

equations, terms that account for the heat transfer by conduction, convection and radiation

are suitably considered, to keep into account different operational, environmental and design

conditions. The proposed model is two-dimensional (2D) since the discretization affects both

the axial and radial directions. Regarding the thermodynamic properties of the cooling fluid

Figure 1.3-1 Collection HTS cables design for power transport both in single-phase and in three-phase

configurations. (a) three-phase concentric cable with external return of liquid nitrogen [61]; (b) three-phase cable

described in [62], (c) schematic of the three in-one cable concept from [63]; (d) design of a single-phase cable

with single path for the coolant [courtesy of Nexans].

1.3 OVERVIEW OF MODELING OF SC CABLES FOR POWER APPLICATIONS

8

(helium), they are calculated as a function of temperature and pressure, except for the

thermal conductivity and viscosity which are considered constant. As far as the constitutive

relations are of concern, the Dittus-Boelter correlation is adopted to evaluate the heat

transfer coefficients. The model is applicable for both stationary and transient studies. In the

former case, the system of equations is solved by the Newton-Raphson method, in the latter

the time integration of the system of ordinary differential equations (ODEs) is performed

according to a fourth order Runge-Kutta numerical scheme.

The model described above is applied in [64] and improved in [65] where the equations

are integrated with a model for fluids and solids heat equations based on three dimensionless

groups, namely time, temperature and pressure; then dimensionless variables such as specific

heat, heat transfer coefficient, thermal conductivity, mass, mass flow rate, scale time and

global heat transferhave been defined. The idea is also extended to the pumping power

equation, introduced in [64], and to the heat generation equation due to current transmission,

evaluated starting from the Ohm and Wiedemann-Franz laws.

VEM is also exploited in [66] to model the cable designed by the Electric Power Research

Institute (EPRI) [67]. The paper is relevant since the system of differential equations resulting

from the application of the model is solved using the flexible parabolic-elliptic partial

differential equations (PDEPE) solver integrated in MATLAB [68]. The model keeps into

account conductive, convective and radiative heat transfer; the only heat source comes from

the surrounding environment in superconducting conditions.

However, when the transition to the normal state occurs in the conducting layer, inner

power generation is considered.

The model is further developed by introducing coupling with current, for which a finite

difference time-domain (FDTD) based analysis is used [69]. Specifically, the coupling of the

thermal and electrical problems is at the level of the heat source term representing the Joule

effect losses. A bidirectional coupling follows: on the one hand the Joule effect has an impact

on the temperature of the superconductor, on the other hand the temperature influences its

thermal resistivity characterized by a strongly nonlinear behavior.

In order to analyze the behavior in a failure situation of the 30 m HTS cable used in the

Sumimoto Electric Industry experiment at Kumatori [70], a 1D finite difference (FD) based

modeling is proposed in [71] in which the time-dependent heat equations in solids are

discussed and the contributions of heat fluxes are evaluated by applying Fourier's law. The

heat transfer coefficients are obtained using Dittus-Boelter correlation. At each time instant,

the properties of the coolant (liquid nitrogen) are calculated using the GASPAK software

package [72]. A zero-dimensional (0D) model for calculating the pressure drop of the cooling

circuit is also proposed in the article.

Shabagin developed an alternative model to those considered so far for modeling three-

phase AC HTS cables [73], which is tested with the geometry and operating parameters of the

cable used in the AmpaCity project [74]. The calculation of electrical dissipations due to the

use of AC is based on the elliptic Norris equation. The thermal model considers the radial and

the axial direction. Along the radial coordinate the stationary heat equation in cylindrical

1 INTRODUCTION

9

coordinates is adopted for solid layers; boundary conditions (BCs) take into account both

convection at the surface and thermal contact between solid layers of different thermal

conductivity. With this choice of equations and boundary conditions, the 2D and symmetrical

temperature field on each conductor cross section is described. In the axial direction, the

steady state 1D fluid temperature variation is deduced starting from the differential energy

balance of the fluid flow in an infinitesimal volume of length 𝑑𝑧. The roughness of the tube is

considered in a corrected heat transfer coefficient, evaluated from correlations, and different

equations are obtained for the supply and for the return flow. The 2D solid temperature radial

distribution and the 1D axial coolant temperature distribution are linked by the wall

temperatures; the result is a 3D steady state model. As far as the hydraulic model is

considered, the pressure drops are evaluated with Darcy-Weisbach equation and friction

factor comes from Karman-Nikuradse correlation. The solution algorithm is programmed in

MATLAB.

The same model is adopted in [75] where the equations are discretized using the FD

method, and in [76] where four different cooling options are compared. In the latter reference

the roughness of the surface is neglected, thus the friction factor is evaluated from the

Colebrook equation.

The three phase coaxial HTS cables described in [77] is modeled with a Finite Element

Methods (FEM) that takes into account the heat transfer between the polypropylene

laminated paper (PPLP) and the super conductor layers combined with analytical model to

evaluate the temperature distribution when the coolant circulation occurs inside the cable.

The equivalent thermal resistance is exploited to compute the overall thermal conductivity of

the superconducting layer and the PPLP merged in only one equivalent solid. The same kind

of cable is modeled with a 1D ODE network analysis in Sinda/Fluint commercial tool [78], after

that the friction factor to evaluate the pressure drop is evaluated with Computational Fluid

Dynamics (CFD) and compared with the available empirical correlations [79].

Within the European Project BEST PATHS [80] the Italian company RSE s.p.a. has

developed a new mathematical model for the thermo-fluid dynamic simulation, able to

describe the behavior of different cryogenic fluids in forced convection inside the cryostat of

superconducting cables [81]. The model is 1D axial and derives from the manipulation of the

equations of conservation of mass, momentum and energy. Many simplifying assumptions are

considered: uniform cross section, constant material properties on the cross section, steady

state regime, one-dimensional motion field, internal volumetric power generation is a

function only of the axial coordinate, heat transfer by conduction between adjacent fluid

volumes is neglected. The strength of this model is that it can be applied to all coolant of

interest, since the thermophysical properties of these fluids are calculated as a function of

temperature and density with the same analytical formulas, whose coefficients are a function

of the chosen fluid. The final result is a set of two steady-state and nonlinear ordinary

differential equations. The shear stress is computed with the Fanning friction factor calculated

with Katheder correlation.

1.4 AIM AND NOVELTY OF THE WORK

10

So far, the emphasis has been on dynamic thermo-fluid modeling of HTS power transport

cables. A similar kaleidoscope of solutions exists for their electromagnetic modeling. A review

of the evolution of these models is, for example, in [82].

In reference [83], the importance of modeling is emphasized in order to improve the

design and performance of HTS cables. A simplified transient condition model, implemented

through PSCAD/EMTDC software [84], is proposed for a multilayer coaxial HTS system with

the addition of a copper former, used as a protection in case of overheating during a fault to

bypass the transient current. The solution is obtained by exploiting the software libraries that

however limit to eight the maximum number of layers available for cable discretization. Cables

that require a description with a larger number of layers must be traced back to a simplified

model with no more than eight layers. The presence of the copper former requires this

simplification: the electrical resistances of the HTS cable are kept constant and equal to the

maximum ones, which is a reasonable assumption during transient conditions due to the

quench phenomenon, while those of the successive layers of copper vary to take into account

the temperature increase due to the loss of the superconductive state of the cable.

Finally, methods for design optimization of second-generation HTS cables and applied to

both single-phase and three-phase coaxial cables are proposed in [85]. The goal is to find the

uniform current distribution between the conductor layers: the electrical circuit model of the

cable, described as an electrical parallel of several branches, namely one for each layer of

superconductive tapes, and a 3D finite element model are combined. The authors also show

that manufacturing imprecision have non-negligible effects on the current distribution within

the layers in multilayer HTS cables.

Hence the need to develop a reliable and robust software, including both thermo-fluid

dynamic and electromagnetic models, which allows to use the most suitable coolant and able

to model any geometric and topological configuration of HTS cables for power transport.

1.4 AIM AND NOVELTY OF THE WORK

The aim of the thesis is to develop the embryo of a new software dedicated to the

modeling of superconducting cables at the mesoscale level, focusing on thermal-fluid dynamic

aspects.

The design of the tool builds on the experience gained over twenty years of developing

the codes already mentioned, in particular the solutions adopted by 4C, while introducing

innovative ideas.

In the first place, it undertakes the road of the open source [86], taking advantage of a

diffusion of the code and a wide use that allows to test several configurations, putting in

evidence not only the virtues but above all the problems still not resolved or identified.

The second paradigm shift is the use of Object-Oriented Programming (OOP), which allows

high flexibility in modeling different cables designs and topologies. In addition, the

implemented material libraries ensure that the code is natively designed to model both LTS

1 INTRODUCTION

11

and HTS conductors. Because of this versatility, the code is suitable to model the cables crafted

for both fusion and power transmission, the main areas of interest of the technology.

The new concept of the Run-AND-check, opposed to the Run-THEN-check, is introduced

which allows to keep under control the outcome of the simulation in real time and change the

driver while running. User can interact with the simulation thanks to a user-friendly GUI.

Last but not least, an auxiliary tool is developed, also equipped with a graphical interface,

to perform some advanced post processing of the data, above all the benchmarks for the

validation.

The code is validated against 4C by considering two case studies characterized by different

topologies and different operating temperatures. The first one is a power transport conductor

of the HTS type [77], the second one is the cable used for the realization of toroidal magnets

in ITER and belongs to the LTS category [87]. All these analyses are carried out with the

developed auxiliary tool, which is in turn tested.

1.5 STRUCTURE OF THE THESIS

The mathematical model for mesoscale modeling of superconducting cables from a

thermo-fluid dynamic perspective is described in depth in chapter 2, along with the methods

adopted for numerical discretization in space and time. The equations are first presented in

their general form and then detailed for the two case studies considered.

Chapter 3 is devoted entirely to the description of the code. There, the object-oriented

approach used is detailed, highlighting the interactions and the class hierarchy, some of which

are extensively discussed to underline the different strategies implemented with respect to

4C code. The idea behind Run-AND-check and the potential of the GUI is also shown. Finally,

the data analysis performed implicitly by the code and the further analyses enabled by the

auxiliary tool are discussed.

Analysis of the results of simulations performed for spatial and time convergence studies

of the code, validation against 4C, and numerous inner benchmarks are the subject of chapter

4.

Conclusions and prospects for the future can be found in chapter 5.

2 MESOSCALE MODELLING OF SUPERCONDUCTORS

13

CHAPTER 2

2 MESOSCALE MODELLING OF SUPERCONDUCTORS

The modeling of superconductors magnet is a multi-physical and multi-scale problem. To

deal with the different time and spatial scales, the complex structure of the cable and the

tricky interaction between the cable constituents, three different modeling level scales are

adopted: macroscale, mesoscale and microscale. The first and the latter concern respectively

the whole set of winding packs (i.e. a magnet) [88]–[90] and each cable basic components,

such as extremely detailed regions of the channel to evaluate friction factors and/or heat

transfer coefficients [91]–[93]. The mesoscale is at conductor (or at most at winding pack)

level and it is considered in this work. Indeed, this approach is suitable both for the conductors

used to make the magnetic field in fusion applications and to the ones used to transport

power.

This chapter is organized as follows: the first section deals with the mathematical model

used to describe the cables according to the mesoscale modeling, that will lead to a not linear

system of partial differential equations (PDEs) in time and space, whose space and time

numerical discretization are proposed in the second section.

2.1 MATHEMATICAL MODEL

The main aim of this section is to describe the mathematical model used to simulate the

behavior of the superconducting cables, both from the coolant and solid structures point of

view. A single conductor is considered in the following discussion. The developed tool (SC2

code) is thought to be extremely flexible and capable to model several thermodynamics

configurations, so a quite general form of the equations is presented here.

The first assumption, of the set of hypotheses applied for that mathematical model, is that

the cables can be modeled with a one-dimensional model since their length or longitudinal

dimension is from three up to more than five orders of magnitude larger than the transverse

ones (height and width respectively), therefore a single value is representative of the

properties throughout the cross section. Cables are composed of two macro regions, namely

the fluid and the solid one that are mathematically described separately. In general, a

conductor can be described with 𝑁𝑐ℎ channels, 𝑁𝑠𝑡 current-carrying solids also called strands

and 𝑁𝑗𝑘 jackets, global notation for non-current-carrying solids. It is assumed that the coolant

behaves as a compressible fluid and that each channel is described by its own set of

independent Euler-like equations that can be coupled by means of suitable source terms. Each

solid component is described with a 1D time dependent heat transfer equation and their

boundaries are considered adiabatic. Conductor cross section is assumed to be constant along

its length and the potential contribute is neglected in the definition of the coolant specific

energy.

2.1 MATHEMATICAL MODEL

14

2.1.1 FLUID COMPONENTS EQUATIONS

The generic channel is modeled by a set of three hyperbolic equations that stand for the

conservation of mass, momentum and energy; their general conservative form is proposed in

the following equation:

{

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑣

𝜕𝑥
= Λ𝜌

𝜕𝜌𝑣

𝜕𝑡
+
𝜕𝜌𝑣2

𝜕𝑥
+
𝜕𝑝

𝜕𝑥
= Λ𝑣

𝜕𝜌𝑒

𝜕𝑡
+
𝜕𝜌𝑒𝑣

𝜕𝑥
+
𝜕𝑝𝑣

𝜕𝑥
= Λ𝑒

 (2.1-1)

Solving this system allows to directly obtain the fluid density, velocity and specific energy.

However, its solution requires, at each time step, an iterative algorithm since some terms

exhibit an implicit dependence on pressure and temperature, that are not the outcomes of

the solution. Consequently, computational cost and execution time increase. Pressure

gradient, heat transfer and conductive terms, for example, are expressed in an implicit form

of these quantities and they cannot be neglected in the study of the transient. For this reason,

a new form of the system was deduced [94] expressing the conservation equations as function

of the non-conservative set of variables velocity, pressure and temperature, resulting in the

corresponding equations written below:

{

𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑥
+
1

𝜌

𝜕𝑝

𝜕𝑥
=
1

𝜌
 (𝛬𝑣 − 𝑣𝛬𝜌)

𝜕𝑝

𝜕𝑡
+ 𝜌𝑐2

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑝

𝜕𝑥
= 𝛷 [𝛬𝑒 − 𝑣𝛬𝑣 − (𝑤 −

𝑣2

2
−
𝑐2

𝛷
)𝛬𝜌]

𝜕𝑇

𝜕𝑡
+ 𝛷𝑇

 𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑥
=

1

𝜌𝑐𝑣
[𝛬𝑒 − 𝑣𝛬𝑣 − (𝑤 −

𝑣2

2
− 𝛷𝑐𝑣𝑇)𝛬𝜌]

 (2.1-2)

For the physical meaning of the symbols refer to the list of symbols; some characteristics

of this set of equations will be put in evidence. It is a set of first order partial differential

equations in time and space; since the only spatial coordinate is the 𝑥 that is the coordinate

along the cable length, the equation is 1D in space. The first equation is called the velocity

equation, the second the pressure equation and the third the temperature equation, they are

coupled since in the left-hand side in all the equations the velocity appears, while the pressure

is common to the first two equations; other coupling terms can be found in the right-hand

side which collects the source terms. This set of PDEs is also not linear and the non-linearity is

due to the 𝑣
𝜕

𝜕𝑥
 addendum in all the equations (the typical advective term), as well as to the

coefficients, since the thermophysical properties (𝜌, 𝑐 and Φ) are function of both pressure

and temperature and these functions itself can be not linear. Moreover, the product 𝑇
 𝜕𝑣

𝜕𝑥
 is

of the same kind of the advective one. Further examples of non-linearity are visible in the

right-hand side (one for all the
𝑣2

2
 in the energy transfer trinomials).

2 MESOSCALE MODELLING OF SUPERCONDUCTORS

15

As already said, the right-hand side groups all the source terms which are constructed

combining the 𝛬 whose definition can be found in appendix A and will be recalled later in this

discussion; they respectively represents the mass source (𝛬𝜌), the momentum source (𝛬𝑣) and

the energy source (𝛬𝑒). The momentum source definition involves friction factor while heat

transfer coefficients are necessary to compute the energy one. These so-called transport

coefficients are evaluated with some constitutive relations that are obtained experimentally

or numerically exploiting microscale CFD simulation campaigns.

To practically solve each set of equations the initial condition and closure relations should

be provided; the first allows a proper initialization of the numerical problem while for each

channel different closure sets of BCs are allowed, provided the inlet temperature is assigned,

together with one inlet and one outlet condition either on pressure or velocity.

Before addressing the solid equations, it is essential to explain the relevance of the

hypothesis that each channel is modeled with its own independent set of Euler-like equations.

If the channels are isolated, i.e. there is no transfer of mass, momentum and energy among

the channels, or if the channels are at the most in thermal contact (only energy exchange),

velocity, pressure and temperature of each channel are weakly influenced by the

corresponding variables of the others, so to each channel must correspond a set of non-

conservative variables (𝑣, 𝑝 and 𝑇). This is true also in the case in which the channels are in

hydraulic parallel, that means that there is a fraction of their contact perimeter that is open

and through which occurs transfer not only of energy, but also of mass and momentum. Due

to possible different hydraulic characteristics, the fluid velocity in the channels may be

different even though they are subject to the same pressure drop, so at least channels

velocities must be different in the set of equations that describe them. As far as pressures and

temperatures are concerned, to understand why also these two variables need to be specific

of the channel, the different time scales that characterize some phenomena came into play.

There may be situations in which, the time scale in which the information of the change of

pressure and temperature in the channel is propagated, is of a different magnitude from that

in which it is transmitted from one channel to another. Not taking this phenomenon into

account can lead to completely incorrect or non-physical results. A typical example is quench.

The need for different sets of pressure and temperature values for different channels has been

well established in literature [95], [96].

2.1.2 SOLID COMPONENTS EQUATIONS

Solid components are modeled with the cartesian transient 1D heat equation.

Although the left-hand side of the equation is the same for strands and jacket, the right-

hand side differs in the coupling terms with both jackets and strands respectively, thus both

the general equations for the generic strand 𝑓𝑖 and jacket 𝑖𝑛 are indicated below:

2.1 MATHEMATICAL MODEL

16

Σ𝑓𝑖𝜌𝑓𝑖𝑐𝑝,𝑓𝑖
𝜕𝑇𝑓𝑖

𝜕𝑡
− Σ𝑓𝑖

𝜕

𝜕𝑥
(𝑘𝑓𝑖

𝜕𝑇𝑓𝑖

𝜕𝑥
)

= ∑ 𝑃𝑓𝑖,𝑠𝑡ℎ𝑓𝑖,𝑠𝑡 (𝑇𝑠𝑡 − 𝑇𝑓𝑖)

𝑁𝑐ℎ

𝑠𝑡=1

 + ∑ 𝑃𝑓𝑖,𝑠𝑡ℎ𝑓𝑖,𝑠𝑡 (𝑇𝑠𝑡 − 𝑇𝑓𝑖)

𝑁𝑠𝑡

𝑠𝑡≠𝑓𝑖

+ ∑ 𝑃𝑓𝑖,𝑗𝑘ℎ𝑓𝑖,𝑗𝑘 (𝑇𝑗𝑘 − 𝑇𝑓𝑖) + 𝑄𝑓𝑖,𝐽𝑜𝑢𝑙𝑒 + 𝑄𝑓𝑖,𝑒𝑥𝑡

𝑁𝑗𝑘

𝑗𝑘=1

(2.1-3)

Σ𝑖𝑛𝜌𝑖𝑛𝑐𝑝,𝑖𝑛
𝜕𝑇𝑖𝑛
𝜕𝑡

− Σ𝑖𝑛
𝜕

𝜕𝑥
(𝑘𝑖𝑛

𝜕𝑇𝑖𝑛
𝜕𝑥

)

= ∑ 𝑃𝑖𝑛,𝑐ℎℎ𝑖𝑛,𝑐ℎ (𝑇𝑐ℎ − 𝑇𝑖𝑛)

𝑁𝑐ℎ

𝑐ℎ=1

 + ∑ 𝑃𝑖𝑛,𝑠𝑡ℎ𝑖𝑛,𝑠𝑡 (𝑇𝑠𝑡 − 𝑇𝑖𝑛)

𝑁𝑠𝑡

𝑠𝑡=1

+ ∑ 𝑃𝑖𝑛,𝑗𝑘ℎ𝑖𝑛,𝑗𝑘 (𝑇𝑗𝑘 − 𝑇𝑖𝑛) + 𝑄𝑖𝑛,𝐽𝑜𝑢𝑙𝑒 + 𝑄𝑖𝑛,𝑒𝑥𝑡

𝑁𝑗𝑘

𝑗𝑘≠𝑖𝑛

(2.1-4)

Cross section, density, specific heat and thermal conductivity are computed keeping into

account that both strands and jackets are, in general, multi materials components. For

instance, strands can be made of superconducting filaments in a matrix of stabilizer, typically

copper, while jackets can be made by stainless steel and glass-epoxy insulating. In appendix C

the problem is addressed with more detail.

The main features of these equations are their parabolic nature, the inherent non-linearity

ascribed to the products 𝜌𝑐
𝜕𝑇

𝜕𝑡
 and 𝑘

𝜕𝑇

𝜕𝑥
 since thermophysical properties are function of

temperature (themselves are generally not linear) and the coupling terms with other solids

and/or channels that build up part of the right-hand side, together with the drivers. To solve

each solid component equation an initial condition should be given, besides one inlet and one

outlet boundary conditions need to be applied. Thanks to the above hypothesis the

homogeneous Neumann (adiabatic) BCs can be easily used.

Before deeper analyze the global system of equations, it is worthily to take a closer look

to the drivers.

As can be seen from the above equations, there are two kind of heating source: the power

generated by the Joule effect (𝑄𝐽𝑜𝑢𝑙𝑒) and the external heating (𝑄𝑒𝑥𝑡). The former is due to

the loss of superconductivity in strands or to the fact that some fraction of the current may

be transported by some non-current-carrying solids in off-normal operating conditions. The

latter is linear power externally introduced in the strands and it is the relevant driver for a

couple of reasons: in the first place while studying superconducting cable transient they are

always induced by an external heating of solid components (either strands or jackets),

secondly in the present model the current module is not available yet, so the only possibility

to induce a transient is by means of the external heating.

2 MESOSCALE MODELLING OF SUPERCONDUCTORS

17

2.1.3 COUPLING OF EQUATIONS

So far, the equations that models mathematically fluid and solid components were

described separately. Since in the right-hand side of equations just reported there are coupling

terms between fluid and solid components, they cannot be solved individually; in other words,

all the above-mentioned equations must be solved as a single set of PDEs. The number of

equations making up the system increases proportionally to the detail with which the

conductor is discretized into its basic components, according to the following law:

𝑁𝑒𝑞 = 3𝑁𝑐ℎ + 𝑁𝑠𝑡 + 𝑁𝑗𝑘 (2.1-5)

There are six possibilities for the coupling that are managed by means of a coupling matrix:

1. channel-channel.

2. channel-strand.

3. channel-jacket.

4. strand-strand.

5. strand-jacket (or jacket-strand).

6. jacket-jacket.

To clarify the first three possibilities, the general expression of the source terms (𝛬𝜌, 𝛬𝑣

and 𝛬𝑒) for the 𝑐𝑎 channel should be recalled from appendix A, where further information can

be found.

𝛬𝜌
𝑐𝑎 =

∑ 𝐾𝑐𝑎,𝑐ℎ
′𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎 (𝑝𝑐ℎ − 𝑝𝑐𝑎)

𝐿Σ𝑐𝑎

(2.1-6)

𝛬𝑣
𝑐𝑎 =

∑ 𝐾𝑐𝑎,𝑐ℎ
′′𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎 (𝑝𝑐ℎ − 𝑝𝑐𝑎)

𝐿Σ𝑐𝑎
− 𝜌𝑐𝑎𝐹𝑐𝑎

(2.1-7)

𝛬𝑒
𝑐𝑎 =

∑ 𝐾𝑐𝑎,𝑐ℎ
′′′𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎 (𝑝𝑐ℎ − 𝑝𝑐𝑎)

𝐿Σ𝑐𝑎
+
∑ (𝑃𝑐𝑎,𝑐ℎ

𝑜 ℎ𝑐𝑎,𝑐ℎ
𝑜 + 𝑃𝑐𝑎,𝑐ℎ

𝑐 ℎ𝑐𝑎,𝑐ℎ
𝑐)

𝑁𝑐ℎ
𝑐ℎ≠𝑐𝑎 (𝑇𝑐ℎ − 𝑇𝑐𝑎)

Σ𝑐𝑎

+
∑ 𝑃𝑐𝑎,𝑠𝑡ℎ𝑐𝑎,𝑠𝑡
𝑁𝑠𝑡
𝑠𝑡=1 (𝑇𝑠𝑡 − 𝑇𝑐𝑎)

Σ𝑐𝑎
+
∑ 𝑃𝑐𝑎,𝑗𝑘ℎ𝑐𝑎,𝑗𝑘
𝑁𝑗𝑘
𝑗𝑘=1

(𝑇𝑗𝑘 − 𝑇𝑐𝑎)

Σ𝑐𝑎

(2.1-8)

The first addendum of each source term is evaluated with the open contact perimeter

between the channels, hidden in the terms 𝐾𝑐𝑎,𝑐ℎ
′ , 𝐾𝑐𝑎,𝑐ℎ

′′ and 𝐾𝑐𝑎,𝑐ℎ
′′′ as can be seen in

appendix A. Two possibilities arise, the first is that the channels in contact are in hydraulic

parallel which means that their open perimeter fraction is larger than zero, so their equations

are fully coupled; the second considers that there is only thermal contact between channels.

In this last case, the open fraction of the contact perimeter is zero, thus only the energy source

couples the channels thanks to the addendum:

∑ 𝑃𝑐𝑎,𝑐ℎ
𝐶 ℎ𝑐𝑎,𝑐ℎ

𝐶𝑁𝑐ℎ
𝑐ℎ≠𝑐𝑎 (𝑇𝑐ℎ − 𝑇𝑐𝑎)

Σ𝑐𝑎

(2.1-9)

2.1 MATHEMATICAL MODEL

18

The last two contributions to 𝛬𝑒 account also for the coupling between channel-strand

and channel-jacket if the contact perimeters are not null; these are analogous to the first

addendum of the right-hand side in equations (2.1-3) and (2.1-4).

There are three kinds of coupling among solids, two homogeneous (strand-strand and

jacket-jacket) and one heterogeneous or hybrid (strand-jacket or jacket-strand), that appears

in both the general equations for strands and jackets. The homogeneous kind is specific of the

equation, thus the coupling between strands is described in the strand equation, analogously

coupling between jackets can be found in the jacket equation. In any case, the three

contributions to the right-hand sides will actually have an impact only if the contact perimeter

is larger than zero, otherwise they count for nothing.

2.1.4 THE FINAL SET OF PDES

Once defined how the equations are coupled, it is convenient to rewrite them in a matrix

form that allows to handle them more easily. To this purpose some notation should be

introduced: 𝒖 and 𝒔 are respectively the unknowns and source vectors while 𝑀, 𝐴, 𝐾 and 𝑆

are the square matrices of coefficients. Their general definition can be found in appendix B.1.

The elements of the last matrix came from the right-hand side of the PDEs since there are

terms that includes the unknowns, so 𝒔 is built only by the Joule and external linear power

sources of solid components. The matrix form of the set is:

𝑀
𝜕𝒖

𝜕𝑡
+ 𝐴

𝜕𝒖

𝜕𝑥
+
𝜕

𝜕𝑥
(𝐾

𝜕𝒖

𝜕𝑥
) + 𝑆𝒖 = 𝒔

(2.1-10)

This set cannot be classified according to the typical PDE classification since it combines

both the hyperbolic and parabolic features.

What follows is a paragraph that shows what form takes the set of equations in the two

case studies considered in this thesis. The corresponding matrices for their matrix formulation

can be found in appendix B.2 and B.3.

2.1.4.1 CASE STUDY EQUATIONS

Chapter 4 is devoted to the analysis of the simulation results obtained with the SC2 code

for two different conductors, the three-phase coaxial HTS cable, also called 3P-HTS, designed

by Lee [77] and the ITER LTS Toroidal Field Coil (shortly ITER-TF) cable [87]. Here, to put in

practice what discussed above, the extended, full set of equations is provided for both the

configurations.

2.1.4.1.1 3P-HTS CONFIGURATION

The first conductor configuration considered in this work is the three-phase coaxial HTS

superconductor whose topology is depicted in Figure 2.1-1. The inner cylinder is made by a multi

material structure composed by the copper former surrounded by several concentric layers

of HTS and insulating material made by PPLP; the coolant flows through the hollow region

between this structure and the cryostat. From the mesoscale analysis point of view, this cable

can be discretized using three basic components, one fluid and two solids; indeed, the multi-

2 MESOSCALE MODELLING OF SUPERCONDUCTORS

19

material region can be thought as a single current-carrying solid (subscript 𝑆𝑇1), while the

cryostat belongs to the non-current-carrying category, indicated as 𝐽𝐾1. The cable is cooled

with liquid helium and the channel subscript is 𝐶𝐻1. The total number of equations is given

by (2.1-5) and in this case the system is made by only five equations.

The coupling between the components is deduced from Figure 2.1-1: coolant flows between

the jacket and the strand and there is only thermal contact; there is no contact among the

solid components.

On the basis of the previous considerations, the following system of equations can be

obtained:

{

𝜕𝑣𝐶𝐻1
𝜕𝑡

+ 𝑣𝐶𝐻1
𝜕𝑣𝐶𝐻1
𝜕𝑥

+
1

𝜌𝐶𝐻1

𝜕𝑝𝐶𝐻1
𝜕𝑥

=
𝛬𝑣
𝐶𝐻1

𝜌𝐶𝐻1
𝜕𝑝𝐶𝐻1
𝜕𝑡

+ 𝜌𝐶𝐻1𝑐𝐶𝐻1
2

𝜕𝑣𝐶𝐻1
𝜕𝑥

+ 𝑣𝐶𝐻1
𝜕𝑝𝐶𝐻1
𝜕𝑥

= 𝛷𝐶𝐻1[𝛬𝑒
𝐶𝐻1 − 𝑣𝐶𝐻1𝛬𝑣

𝐶𝐻1]

𝜕𝑇𝐶𝐻1
𝜕𝑡

+ 𝛷𝐶𝐻1𝑇𝐶𝐻1
 𝜕𝑣𝐶𝐻1
𝜕𝑥

+ 𝑣𝐶𝐻1
𝜕𝑇𝐶𝐻1
𝜕𝑥

=
1

𝜌𝐶𝐻1𝑐𝑣,𝐶𝐻1
[𝛬𝑒
𝐶𝐻1 − 𝑣𝐶𝐻1𝛬𝑣

𝐶𝐻1]

Σ𝑆𝑇1𝜌𝑆𝑇1𝑐𝑆𝑇1
𝜕𝑇𝑆𝑇1
𝜕𝑡

− Σ𝑆𝑇1
𝜕

𝜕𝑥
(𝑘𝑆𝑇1

𝜕𝑇𝑆𝑇1
𝜕𝑥

) = 𝑃𝐶𝐻1,𝑆𝑇1ℎ𝐶𝐻1,𝑆𝑇1(𝑇𝐶𝐻1 − 𝑇𝑆𝑇1) + 𝑄𝑆𝑇1,𝑒𝑥𝑡

Σ𝐽𝐾1𝜌𝐽𝐾1𝑐𝐽𝐾1
𝜕𝑇𝐽𝐾1
𝜕𝑡

− Σ𝐽𝐾1
𝜕

𝜕𝑥
(𝑘𝐽𝐾1

𝜕𝑇𝐽𝐾1
𝜕𝑥

) = 𝑃𝐶𝐻1,𝐽𝐾1ℎ𝐶𝐻1,𝐽𝐾1(𝑇𝐶𝐻1 − 𝑇𝐽𝐾1) + 𝑄𝐽𝐾1,𝑒𝑥𝑡

 (2.1-11)

Being:

𝛬𝜌
𝐶𝐻1 = 0 (2.1-12)

𝛬𝑣
𝐶𝐻1 = −𝜌𝐶𝐻1𝐹𝐶𝐻1 (2.1-13)

Figure 2.1-1 Cross section of the three phase coaxial HTS cable [79].

2.1 MATHEMATICAL MODEL

20

𝛬𝑒
𝐶𝐻1 =

𝑃𝐶𝐻1,𝑆𝑇1ℎ𝐶𝐻1,𝑆𝑇1(𝑇𝑆𝑇1 − 𝑇𝐶𝐻1)

Σ𝐶𝐻1
+
𝑃𝐶𝐻1,𝐽𝐾1ℎ𝐶𝐻1,𝐽𝐾1(𝑇𝐽𝐾1 − 𝑇𝐶𝐻1)

Σ𝐶𝐻1

(2.1-14)

The source terms of the 3P-HTS case study do not have the coupling addendum between

channels since only one channel is considered. Moreover, it is taken into account that the

current cannot be modeled considering only the external heating as driver in the solid

component equations.

2.1.4.1.2 ITER LTS TOROIDAL FIELD COIL CONFIGURATION

ITER-TF topology is shown in the following Figure 2.1-2. It is the typical design of a two

regions cable-in-conduit conductor made by a circular jacket, six petals of superconducting

strands wrapped around a central helical spiral that delimits the hole, the central channel,

from the bundle, the annular region of interstices in petals through which the coolant flows.

The simplest discretization of this cable dictates the use of two fluid components that

respectively models the hole (subscript 𝐶𝐻1) and the bundle (subscript 𝐶𝐻2) and two solid

components, one for the strand (𝑆𝑇1) to model all the six petals and one for the jacket (𝐽𝐾1).

According to equation (2.1-5) the total number of equations in this configuration is eight,

six for the fluid components and one for each solid component.

Figure 2.1-2 ITER LTS Toroidal Field Coil configuration [courtesy of ENEA]

As far as couplings are of concern, from the Figure 2.1-2 it can be seen that hole and bundle

are in hydraulic parallel thanks to the helical spiral, the bundle is also in contact with both the

solid components, finally there is thermal contact between strand and jacket. This

configuration is more complicated than the 3P-HTS one. Since the current is not modeled yet

by the code, only the external heating power is considered as driver in the solid component

equations.

The full system of PDEs is written as follows:

2 MESOSCALE MODELLING OF SUPERCONDUCTORS

21

{

𝜕𝑣𝐶𝐻1
𝜕𝑡

+ 𝑣𝐶𝐻1
𝜕𝑣𝐶𝐻1
𝜕𝑥

+
1

𝜌𝐶𝐻1

𝜕𝑝𝐶𝐻1
𝜕𝑥

=
1

𝜌𝐶𝐻1
 (𝛬𝑣

𝐶𝐻1 − 𝑣𝐶𝐻1𝛬𝜌
𝐶𝐻1)

𝜕𝑣𝐶𝐻2
𝜕𝑡

+ 𝑣𝐶𝐻2
𝜕𝑣𝐶𝐻2
𝜕𝑥

+
1

𝜌𝐶𝐻2

𝜕𝑝𝐶𝐻2
𝜕𝑥

=
1

𝜌𝐶𝐻2
 (𝛬𝑣

𝐶𝐻2 − 𝑣𝐶𝐻2𝛬𝜌
𝐶𝐻2)

𝜕𝑝𝐶𝐻1
𝜕𝑡

+ 𝜌𝐶𝐻1𝑐𝐶𝐻1
2

𝜕𝑣𝐶𝐻1
𝜕𝑥

+ 𝑣𝐶𝐻1
𝜕𝑝𝐶𝐻1
𝜕𝑥

= 𝛷𝐶𝐻1 [𝛬𝑒
𝐶𝐻1 − 𝑣𝐶𝐻1𝛬𝑣

𝐶𝐻1 − (𝑤𝐶𝐻1 −
𝑣𝐶𝐻1
2

2
−
𝑐𝐶𝐻1
2

𝛷𝐶𝐻1
)𝛬𝜌

𝐶𝐻1]

𝜕𝑝𝐶𝐻2
𝜕𝑡

+ 𝜌𝐶𝐻2𝑐𝐶𝐻2
2

𝜕𝑣𝐶𝐻2
𝜕𝑥

+ 𝑣𝐶𝐻2
𝜕𝑝𝐶𝐻2
𝜕𝑥

= 𝛷𝐶𝐻2 [𝛬𝑒
𝐶𝐻2 − 𝑣𝐶𝐻2𝛬𝑣

𝐶𝐻2 − (𝑤𝐶𝐻2 −
𝑣𝐶𝐻2
2

2
−
𝑐𝐶𝐻2
2

𝛷𝐶𝐻2
)𝛬𝜌

𝐶𝐻2]

𝜕𝑇𝐶𝐻1
𝜕𝑡

+ 𝛷𝐶𝐻1𝑇𝐶𝐻1
 𝜕𝑣𝐶𝐻1
𝜕𝑥

+ 𝑣𝐶𝐻1
𝜕𝑇𝐶𝐻1
𝜕𝑥

=
1

𝜌𝐶𝐻1𝑐𝑣,𝐶𝐻1
[𝛬𝑒

𝐶𝐻1 − 𝑣𝐶𝐻1𝛬𝑣
𝐶𝐻1 − (𝑤𝐶𝐻1 −

𝑣𝐶𝐻1
2

2
− 𝛷𝐶𝐻1𝑐𝑣,𝐶𝐻1𝑇𝐶𝐻1)𝛬𝜌

𝐶𝐻1]

𝜕𝑇𝐶𝐻2
𝜕𝑡

+ 𝛷𝐶𝐻2𝑇𝐶𝐻2
 𝜕𝑣𝐶𝐻2
𝜕𝑥

+ 𝑣𝐶𝐻2
𝜕𝑇𝐶𝐻2
𝜕𝑥

=
1

𝜌𝐶𝐻2𝑐𝑣,𝐶𝐻2
[𝛬𝑒

𝐶𝐻2 − 𝑣𝐶𝐻2𝛬𝑣
𝐶𝐻2 − (𝑤𝐶𝐻2 −

𝑣𝐶𝐻2
2

2
− 𝛷𝐶𝐻2𝑐𝑣,𝐶𝐻2𝑇𝐶𝐻2)𝛬𝜌

𝐶𝐻2]

Σ𝑆𝑇1𝜌𝑆𝑇1𝑐𝑆𝑇1
𝜕𝑇𝑆𝑇1
𝜕𝑡

− Σ𝑆𝑇1
𝜕

𝜕𝑥
(𝑘𝑆𝑇1

𝜕𝑇𝑆𝑇1
𝜕𝑥

) = 𝑃𝐶𝐻2,𝑆𝑇1ℎ𝐶𝐻2,𝑆𝑇1(𝑇𝐶𝐻2 − 𝑇𝑆𝑇1) + 𝑃𝑆𝑇1,𝐽𝐾1ℎ𝑆𝑇1,𝐽𝐾1(𝑇𝐽𝐾1 − 𝑇𝑆𝑇1) + 𝑄𝑆𝑇1,𝑒𝑥𝑡

Σ𝐽𝐾1𝜌𝐽𝐾1𝑐𝐽𝐾1
𝜕𝑇𝐽𝐾1

𝜕𝑡
− Σ𝐽𝐾1

𝜕

𝜕𝑥
(𝑘𝐽𝐾1

𝜕𝑇𝐽𝐾1

𝜕𝑥
) = 𝑃𝐶𝐻2,𝐽𝐾1ℎ𝐶𝐻2,𝐽𝐾1(𝑇𝐶𝐻2 − 𝑇𝐽𝐾1) + 𝑃𝑆𝑇1,𝐽𝐾1ℎ𝑆𝑇1,𝐽𝐾1(𝑇𝑆𝑇1 − 𝑇𝐽𝐾1) + 𝑄𝐽𝐾1,𝑒𝑥𝑡

 (2.1-15)

Where the source terms for hole and bundle assume these forms:

𝛬𝜌
𝐶𝐻1 =

𝐾𝐶𝐻1,𝐶𝐻2
′ (𝑝𝐶𝐻2 − 𝑝𝐶𝐻1)

𝐿Σ𝐶𝐻1
 (2.1-16)

𝛬𝑣
𝐶𝐻1 =

𝐾𝐶𝐻1,𝐶𝐻2
′′ (𝑝𝐶𝐻2 − 𝑝𝐶𝐻1)

𝐿Σ𝐶𝐻1
− 𝜌𝐶𝐻1𝐹𝐶𝐻1 (2.1-17)

𝛬𝑒
𝐶𝐻1 =

𝐾𝐶𝐻1,𝐶𝐻2
′′′ (𝑝𝐶𝐻2 − 𝑝𝐶𝐻1)

𝐿Σ𝐶𝐻1

+
(𝑃𝐶𝐻1,𝐶𝐻2

𝑜 ℎ𝐶𝐻1,𝐶𝐻2
𝑜 + 𝑃𝐶𝐻1,𝐶𝐻2

𝑐 ℎ𝐶𝐻1,𝐶𝐻2
𝑐)(𝑇𝐶𝐻2 − 𝑇𝐶𝐻1)

Σ𝐶𝐻1

(2.1-18)

𝛬𝜌
𝐶𝐻2 =

𝐾𝐶𝐻1,𝐶𝐻2
′ (𝑝𝐶𝐻1 − 𝑝𝐶𝐻2)

𝐿Σ𝐶𝐻2
 (2.1-19)

𝛬𝑣
𝐶𝐻2 =

𝐾𝐶𝐻1,𝐶𝐻2
′′ (𝑝𝐶𝐻1 − 𝑝𝐶𝐻2)

𝐿Σ𝐶𝐻2
− 𝜌𝐶𝐻2𝐹𝐶𝐻2 (2.1-20)

𝛬𝑒
𝐶𝐻2 =

𝐾𝐶𝐻1,𝐶𝐻2
′′′ (𝑝𝐶𝐻1 − 𝑝𝐶𝐻2)

𝐿Σ𝐶𝐻2

+
(𝑃𝐶𝐻1,𝐶𝐻2

𝑜 ℎ𝐶𝐻1,𝐶𝐻2
𝑜 + 𝑃𝐶𝐻1,𝐶𝐻2

𝑐 ℎ𝐶𝐻1,𝐶𝐻2
𝑐)(𝑇𝐶𝐻1 − 𝑇𝐶𝐻2)

Σ𝐶𝐻2

+
𝑃𝐶𝐻2,𝑆𝑇1ℎ𝐶𝐻2,𝑆𝑇1(𝑇𝑆𝑇1 − 𝑇𝐶𝐻2)

Σ𝐶𝐻2
+
𝑃𝐶𝐻2,𝐽𝐾1ℎ𝐶𝐻2,𝐽𝐾1(𝑇𝐽𝐾1 − 𝑇𝐶𝐻2)

Σ𝐶𝐻2

(2.1-21)

2.1.5 SUMMARY

The mathematical model for the mesoscale analysis of superconductors has been

discussed in this section. The most important hypotheses of the model are the 1D

approximation and the fact that each channel is described by its own independent set of Euler-

like PDEs for inviscid compressible fluids (equation (2.1-2)), eventually coupled with the other

channels. Solid components are treated with the cartesian 1D transient heat transfer equation

considering that boundaries are adiabatic. Conductor cross section does not change along the

2.2 NUMERICAL SCHEMES

22

conductor length and the potential energy term is neglected in the coolant specific internal

energy evaluation.

The total number of equations is given by equation (2.1-5), their general form is shown

together with a detailed explanation of their main features. A focus on the drivers, which

belong to the right-hand side of solid components equations, is provided.

Particular attention is given to the coupling of the equations practically managed with a

coupling matrix and ruled by the contact perimeter between channels, channels and solid and

between solids.

The general system of partial differential equations can be more easily handled when it is

rewritten in its matrix form (equation (2.1-10)). The section ends with two examples of sets of

equations whose solution will be deeply developed in chapter 4.

Next section explains how to solve numerically the mathematical model, to be

implemented in an object-oriented fashion

2.2 NUMERICAL SCHEMES

Equation (2.1-10) derived in the previous section is the matrix form of a coupled not linear

system of PDEs which is first order in time and second order in space. Having acknowledged

the impossibility of analytically solving the system in question, the solution of the problem is

approached numerically. As far as the spatial discretization is concerned, the choice falls on

the Finite Elements Methods, already adopted in the 4C and Supermagnet Code (for Gandalf).

The time discretization is performed with an implicit method (such as Backward Euler or

Crank-Nicolson) due to the stiffness of the problem; indeed, implicit methods in general

benefit of a better stability properties compared to the explicit ones.

The adopted procedure is known as the Galerkin method (actually it is a class of methods)

to solve the initial boundary value problem (IBVP) and it consist of a first discretization in

space, that reduces the complexity of the problem converting it from a system of PDEs to a

system of ordinary differential equations, and a subsequently integration in time.

The remainder of this section shed the light on the topic providing guidelines of the

selected methods for the solution.

FEM to solve PDEs is described in [97], a short description of the Galerkin methods can be

found in [98] while [99] has a chapter devoted to the solution of ODEs.

2.2.1 SPATIAL DISCRETIZATION WITH FINITE ELEMENTS METHOD (FEM)

The cable length (computational domain [0, 𝐿]) is discretized with 𝑁 + 2 nodal points 0 =

 𝑥0 < 𝑥1… < 𝑥𝑁 < 𝑥𝑁+1 = 𝐿 . This partition results into 𝑁 + 1 subintervals 𝐼𝑗 = (𝑥𝑗−1, 𝑥𝑗) of

length Δ𝑥𝑗 = 𝑥𝑗 − 𝑥𝑗−1 ∀ 𝑗 = 1,…𝑁 + 1.

The finite-dimensional subspace 𝑉ℎ is defined as the set of functions 𝜔 = 𝜔(𝑥) such that

𝜔 ∈ Vh: 𝜔 ∈ C
1 ∀ 𝐼𝑗 and 𝜔(0) = 𝜔(L) = 0. To construct these functions, the values at the

2 MESOSCALE MODELLING OF SUPERCONDUCTORS

23

nodal points can be exploited �̅�𝑖 = 𝜔(𝑥j), together with the basis functions of Vh, the so-

called hat functions, that are defined in this way:

𝜓𝑗 ∈ Vh, 𝑗 = 1, … ,𝑁:
(2.2-1)

𝜓𝑗(𝑥𝑖) = {
1 𝑖𝑓 𝑖 = 𝑗
0 𝑖𝑓 𝑖 ≠ 𝑗 𝑖, 𝑗 = 1,… ,𝑁

 (2.2-2)

The generic function 𝜔 ∈ Vh can be expressed in a unique way as a linear combination of

the above defined basis functions, i.e.:

𝜔(𝑥) = ∑�̅�𝑖𝜓 𝑖(𝑥), ∀𝑥 ∈ [0, 𝐿]

𝑁

𝑖=1

 (2.2-3)

Going back to the equation (2.1-10), the next step in the spatial discretization with FEM is

its reformulations in the weak form according to a suitable matrix 𝛺 of test functions 𝜔 ∈ Vh:

∫𝛺𝑀
𝜕𝒖

𝜕𝑡
𝑑𝑥

𝐿

0

+∫𝛺𝐴
𝜕𝒖

𝜕𝑥
𝑑𝑥 + ∫𝛺

𝜕

𝜕𝑥
(𝐾

𝜕𝒖

𝜕𝑥
)

𝐿

0

𝑑𝑥

𝐿

0

+∫𝛺𝑆𝒖𝑑𝑥 = ∫𝛺𝒔 𝑑𝑥

𝐿

0

𝐿

0

 (2.2-4)

that can be rewritten in a more manageable way applying the Green theorem to the

conduction integral and remembering that 𝜔(0) = 𝜔(L) = 0:

∫𝛺
𝜕

𝜕𝑥
(𝐾

𝜕𝒖

𝜕𝑥
)

𝐿

0

𝑑𝑥 = −∫
𝑑𝛺

𝑑𝑥
∗ 𝐾

𝜕𝒖

𝜕𝑥

𝐿

0

𝑑𝑥 (2.2-5)

This will allow to construct an approximation of 𝒖 as a linear combination of the hat

functions 𝜓𝑗 ∈ 𝑉ℎ that are only piecewise 𝐶1:

∫𝛺𝑀
𝜕𝒖

𝜕𝑡
𝑑𝑥

𝐿

0

+∫𝛺𝐴
𝜕𝒖

𝜕𝑥
𝑑𝑥 − ∫

𝑑𝛺

𝑑𝑥
∗ 𝐾

𝜕𝒖

𝜕𝑥

𝐿

0

𝑑𝑥

𝐿

0

+∫𝛺𝑆𝒖𝑑𝑥 = ∫𝛺𝒔 𝑑𝑥

𝐿

0

𝐿

0

 (2.2-6)

It must be premised that, to deal with numerical oscillations when the dominant terms are

the advective rather than the conductive ones, some elements on the 𝐾 matrix are modified

adding an artificial diffusion as prescribed by the upwind method.

The approximation �̃� of the exact solution (𝒖) takes the following form:

�̃�(𝑥, 𝑡) = ∑𝛹𝑗 �̅�𝑗(𝑡), ∀𝑥 ∈ [0, 𝐿]

𝑁

𝑗=1

 (2.2-7)

if �̅�𝑗is the vector of the values of the nodal approximation of 𝒖.

Choosing 𝜔 = 𝜓𝑖, or in other words 𝛺 = 𝛹𝑖, and introducing the above decomposition in

equation (2.2-6) the following system is obtained:

2.2 NUMERICAL SCHEMES

24

∫𝛹𝑖𝑀

𝐿

0

∑𝛹𝑗
𝑑 �̅�𝑗

𝑑𝑡

𝑁

𝑗=1

𝑑𝑥 + ∫𝛹𝑖𝐴

𝐿

0

∑
𝑑𝛹𝑗

𝑑𝑥
 �̅�𝑗

𝑁

𝑗=1

𝑑𝑥 − ∫
𝑑𝛹𝑖
𝑑𝑥

∗ 𝐾∑
𝑑𝛹𝑗

𝑑𝑥
 �̅�𝑗

𝑁

𝑗=1

𝐿

0

𝑑𝑥

+ ∫𝛹𝑖𝑆∑𝛹𝑗 �̅�𝑗

𝑵

𝑗=1

𝑑𝑥 = ∫𝛹𝑖𝒔 𝑑𝑥

𝐿

0

𝐿

0

 ∀𝑖 = 1, … , 𝑁

(2.2-8)

As can be seen in appendix B.1 the matrices 𝑀 , 𝐴 , 𝐾 and 𝑆 are square matrices of

dimension 𝑁𝑡𝑜𝑡,𝑒𝑞x𝑁𝑡𝑜𝑡,𝑒𝑞 while the above equation is a system of 𝑁 equations. Each equation

of the system is itself a small system of 𝑁𝑡𝑜𝑡,𝑒𝑞 equations, so to each nodal point are associated

𝑁𝑡𝑜𝑡,𝑒𝑞 unknowns; in other words the whole dimension of the above system is given by:

𝑁𝑡𝑜𝑡 = 𝑁𝑒𝑞(𝑁 + 2)
(2.2-9)

since to the nodes corresponding to 𝑖 = 0 and 𝑖 = 𝑁 + 1 are related 𝑁𝑒𝑞 closure equations

(boundary conditions).

Equation (2.2-8) can be written in a new matrix form:

𝑀𝑠𝑑

𝑑𝒖𝒔𝒅
𝑑𝑡

+ (𝐴𝑠𝑑 + 𝐾𝑠𝑑 + 𝑆𝑠𝑑)𝒖𝒔𝒅 = 𝒔𝒔𝒅
(2.2-10)

That is a system of 𝑁𝑡𝑜𝑡 ordinary differential equations in time to which suitable initial

conditions must be applied.

2.2.1.1 MESH CONSTRUCTION

The above dissertation is general because it does not refer to a specific kind of mesh

generation. Indeed, there are several possibilities and this section is devoted to illustrate the

ones implemented in the SC2 code, that is equipped with both uniform and not uniform

meshes. Recall that the computational domain [0, 𝐿] is partitioned in 𝑁 + 1 sub-intervals 𝐼𝑗 =

(𝑥𝑗−1, 𝑥𝑗) of length 𝛥𝑥𝑗 = 𝑥𝑗 − 𝑥𝑗−1 ∀ 𝑗 = 1, … , 𝑁 + 1 ; by definition 𝛥𝑥 = max(𝛥𝑥𝑗) is a

measure of how fine is the partition.

The uniform mesh is obtained imposing that the partition is uniform in the computational

domain, in other words, it means that the spatial discretization parameter is constant and its

value is given by:

𝛥𝑥𝑗 =
𝐿

𝑁 + 1
 ∀ 𝑗 = 1,…𝑁 + 1

(2.2-11)

In this case the above defined measure coincides with the generic Δ𝑥𝑗 so for simplicity the

spatial discretization parameter is called Δ𝑥. The uniform mesh is the easiest alternative and

it has the virtue of being inexpensive from a computational point of view, but it is convenient

only for those problems where the drivers are smooth or does not change sharply in space.

To deal with these other situations more sophisticated meshes should be adopted.

The non-uniform mesh is a class of meshes that are characterized by one or more regions

with a finer discretization parameter and others with coarser ones. They are suitable to

2 MESOSCALE MODELLING OF SUPERCONDUCTORS

25

discretize the space when the location of the gradients of the drivers are well known. The

extension of the refined regions is tuned to cover these steep variations while the smoother

ones are discretized with a larger discretization parameter. This larger flexibility with respect

to the uniform mesh is balanced by a not negligible computational cost for its generation. SC2

code is equipped with the single region non-uniform mesh characterized by only one refined

zone; it is generated guaranteeing that the number of nodal points is kept constant and equal

to 𝑁 + 2.

The refined region [𝑥𝑟𝑒𝑓,𝑎 , 𝑥𝑟𝑒𝑓,𝑏] with 𝑥𝑟𝑒𝑓,𝑎 ∈ [0, 𝐿) and 𝑥𝑟𝑒𝑓,𝑏 ∈ (0, 𝐿] of length:

𝐿𝑟𝑒𝑓 = 𝑥𝑟𝑒𝑓,𝑏 − 𝑥𝑟𝑒𝑓,𝑎
(2.2-12)

is uniformly discretized with 𝑁𝑟𝑒𝑓 < 𝑁 + 2 nodal points, so the refined spatial discretization

paranmeter is given by:

𝛥𝑥𝑟𝑒𝑓 =
𝐿𝑟𝑒𝑓

𝑁𝑟𝑒𝑓 − 1
 (2.2-13)

The remaining 𝑁𝑐𝑜𝑎𝑟𝑠𝑒 = 𝑁 + 2 − 𝑁𝑟𝑒𝑓 nodes are used to build the two coarse regions on

the left and on the right of the refined one, and they are distributed according to their length

by means of a weighted average:

𝑁𝑐𝑜𝑎𝑟𝑠𝑒,𝑙 =
𝑥𝑟𝑒𝑓,𝑎 − 0

𝐿 − 𝐿𝑟𝑒𝑓
 𝑁𝑐𝑜𝑎𝑟𝑠𝑒 (2.2-14)

𝑁𝑐𝑜𝑎𝑟𝑠𝑒,𝑟 =
𝐿 − 𝑥𝑟𝑒𝑓,𝑏

𝐿 − 𝐿𝑟𝑒𝑓
 𝑁𝑐𝑜𝑎𝑟𝑠𝑒 (2.2-15)

The transition from the left coarse region to the refined one and from the refined region

to the right coarse region should not be too sharp to avoid numerical instability, therefore to

gradually decreasing/increasing the discretization parameter respectively a smoothing

coefficient 𝛿 is introduced and exploited into two distinct while loops, both defined with the

following condition:

𝛥𝑥𝑡𝑟𝑦

𝛥𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑛𝑒𝑤
> 𝛿 (2.2-16)

The numerator of the inequality (2.2-16) is the value of the uniform discretization

parameter obtained if the remaining length of the coarse region is uniformly discretized with

the nodes still available. If after 𝑖𝑙 iterations the left coarse region is the interval [0, 𝑥𝑙] with

𝑥𝑙 ≤ 𝑥𝑟𝑒𝑓,𝑎 and the remaining nodes are 𝑁𝑐𝑜𝑎𝑟𝑠𝑒,𝑙 − 𝑖𝑙, results:

𝛥𝑥𝑡𝑟𝑦,𝑙 =
𝑥𝑙 − 0

𝑁𝑐𝑜𝑎𝑟𝑠𝑒,𝑙 − 𝑖𝑙 − 1
 (2.2-17)

while the denominator is defined as:

2.2 NUMERICAL SCHEMES

26

𝛥𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑛𝑒𝑤,𝑙 = 𝛥𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑜𝑙𝑑,𝑙𝛿 = 𝛥𝑥𝑟𝑒𝑓𝛿
𝑖𝑙 (2.2-18)

If equation (2.2-16) is verified Δ𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑛𝑒𝑤,𝑙 is used as discretization parameter and a new

iteration takes place setting:

𝑥𝑙 = 𝑥𝑙 − 𝛥𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑛𝑒𝑤,𝑙
(2.2-19)

Analogously if the right coarse region corresponds to the interval [𝑥𝑟 , 𝐿] with 𝑥𝑟 ≥ 𝑥𝑟𝑒𝑓,𝑏

after 𝑖𝑟 iterations the remaining nodes are 𝑁𝑐𝑜𝑎𝑟𝑠𝑒,𝑟 − 𝑖𝑟, thus:

𝛥𝑥𝑡𝑟𝑦,𝑟 =
𝐿 − 𝑥𝑟

𝑁𝑐𝑜𝑎𝑟𝑠𝑒,𝑟 − 𝑖𝑟 − 1
 (2.2-20)

𝛥𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑛𝑒𝑤,𝑟 = 𝛥𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑜𝑙𝑑,𝑟𝛿 = 𝛥𝑥𝑟𝑒𝑓𝛿
𝑖𝑟 (2.2-21)

Figure 2.2-1 Not uniform, asymmetric mesh in a computational domain of 10 𝑚 with one refined region in [3,5] 𝑚 and
two coarse regions. The total number of elements is 200, the refined region is discretized using 120 elements, while 𝛿 =
1.2. (a) zoom of the smooth transition from coarse left to refined region; (b) zoom of the smooth transition from refined to
the right coarse region; (c) whole mesh. Y axes is meaningless.

2 MESOSCALE MODELLING OF SUPERCONDUCTORS

27

A new iteration is needed if the ratio is larger than the smoothing coefficient and the new

value of the coordinates is computed exploit 𝛥𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑛𝑒𝑤,𝑟 as discretization parameter:

𝑥𝑟 = 𝑥𝑟 + 𝛥𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑛𝑒𝑤,𝑟 (2.2-22)

When the above inequality is not verified anymore, the remaining fractions of the coarse

regions are uniformly discretized with the residual nodes. In general, the refined zone is not

centered in the domain resulting with different lengths of the coarse regions leading to 𝑖𝑙 ≠

𝑖𝑟 and, finally, 𝛥𝑥𝑙 ≠ 𝛥𝑥𝑟.

The borderline cases of a refined region that starts form one of the edge of the domain

are kept into account by the algorithm; in these cases either 𝑥𝑟𝑒𝑓,𝑎 = 0 or 𝑥𝑟𝑒𝑓,𝑏 = 𝐿 and only

one coarse region should be discretized with all the 𝑁𝑐𝑜𝑎𝑟𝑠𝑒 nodes.

An example of single refined region non-uniform mesh is shown in Figure 2.2-1.

2.2.2 TIME DISCRETIZATION

The set of equations (2.2-10) results from the application of the FEM and therefore it is

coupled, moreover the total number of equations is proportional to both the number of basic

components adopted to model the conductor and to the number of nodes used to discretize

the conductor length. The only reasonable strategy to solve this problem is to apply a

numerical method to integrate the ODEs, that is the second step of the Galerkin procedure.

Since the matrix (𝐴𝑠𝑑 + 𝐾𝑠𝑑 + 𝑆𝑠𝑑) may be bad conditioned the problem should be

treated as stiff and explicit methods (as Forward Euler) are not suitable in this case because

they may require an excessively small time-step to solve it accurately. Based on the previous

considerations, implicit methods are the only alternative: Backward Euler and Crank-Nicolson

are considered, which can be seen as special cases of the more general 𝜃-method, introduced

below, with 𝜃 ∈ [0,1].

Let denote with the superscript 𝜁 the variables at time 𝑡 and with 𝜁 + 1 the variables at

time 𝑡 + Δ𝑡; specifically, 𝒖𝒔𝒅
𝜁

 and 𝒖𝒔𝒅
𝜁+1

 are respectively an approximation of 𝒖𝒔𝒅 at time 𝑡 and

𝑡 + Δ𝑡. The 𝜃-method yields:

𝑀𝑠𝑑
𝜁+1 𝒖𝒔𝒅

𝜁+1
− 𝒖𝒔𝒅

𝜁

Δ𝑡
+ (1 − 𝜃)(𝐴𝑠𝑑

𝜁
+ 𝐾𝑠𝑑

𝜁
+ 𝑆𝑠𝑑

𝜁
)𝒖𝒔𝒅

𝜁
+ 𝜃(𝐴𝑠𝑑

𝜁+1
+ 𝐾𝑠𝑑

𝜁+1
+ 𝑆𝑠𝑑

𝜁+1
)𝒖𝒔𝒅

𝜁+1

= (1 − 𝜃)𝒔𝒔𝒅
𝜁
+ 𝜃𝒔𝒔𝒅

𝜁+1

(2.2-23)

Reshaping the above equation returns:

[
𝑀𝑠𝑑
𝜁+1

Δ𝑡
+ 𝜃(𝐴𝑠𝑑

𝜁+1
+ 𝐾𝑠𝑑

𝜁+1
+ 𝑆𝑠𝑑

𝜁+1
)] 𝒖𝒔𝒅

𝜁+1

= [
𝑀𝑠𝑑
𝜁+1

Δ𝑡
− (1 − 𝜃)(𝐴𝑠𝑑

𝜁
+ 𝐾𝑠𝑑

𝜁
+ 𝑆𝑠𝑑

𝜁
)] 𝒖𝒔𝒅

𝜁
+ (1 − 𝜃)𝒔𝒔𝒅

𝜁
+ 𝜃𝒔𝒔𝒅

𝜁+1

(2.2-24)

2.2 NUMERICAL SCHEMES

28

For 𝜃 = 1 it is the Backward Euler method while to 𝜃 =
1

2
 corresponds the Crank-Nicolson

numerical scheme.

In the equation (2.2-24) information at both time steps 𝜁 and 𝜁 + 1 are required. As far as

the external sources vector approximation 𝒔𝒔𝒅 is considered, there is no problem since they

are well known and can be explicitly evaluated at each new time step. The same cannot be

said for the matrices since their elements depend on the solution at the new time step

because the problem is not linear. In order to avoid iterations at each time step to get the

solution, that are not avoidable if bisection or Newton methods are applied to solve the not

linear system of equations, a linearization of the system is necessary exploiting the frozen

coefficients concept. This means that the solution obtained at the previous time step is used

to evaluate the coefficients of the matrices, at the new time step; consequently, the solution

of the system is more accurate the smaller the adopted time step. In practice it is assumed

that:

[
𝑀𝑠𝑑
𝜁+1

Δ𝑡
+ 𝜃(𝐴𝑠𝑑

𝜁+1
+𝐾𝑠𝑑

𝜁+1
+ 𝑆𝑠𝑑

𝜁+1
)] 𝒖𝒔𝒅

𝜁+1
≈ [

𝑀𝑠𝑑
𝜁

Δ𝑡
+ 𝜃(𝐴𝑠𝑑

𝜁
+𝐾𝑠𝑑

𝜁
+ 𝑆𝑠𝑑

𝜁
)] 𝒖𝒔𝒅

𝜁+1
 (2.2-25)

[
𝑀𝑠𝑑
𝜁+1

Δ𝑡
− (1 − 𝜃)(𝐴𝑠𝑑

𝜁
+ 𝐾𝑠𝑑

𝜁
+ 𝑆𝑠𝑑

𝜁
)] 𝒖𝒔𝒅

𝜁

≈ [
𝑀𝑠𝑑
𝜁

Δ𝑡
− (1 − 𝜃)(𝐴𝑠𝑑

𝜁
+ 𝐾𝑠𝑑

𝜁
+ 𝑆𝑠𝑑

𝜁
)] 𝒖𝒔𝒅

𝜁

(2.2-26)

The linearized system to be solved is:

[
𝑀𝑠𝑑
𝜁

Δ𝑡
+ 𝜃(𝐴𝑠𝑑

𝜁
+ 𝐾𝑠𝑑

𝜁
+ 𝑆𝑠𝑑

𝜁
)] 𝒖𝒔𝒅

𝜁+1

= [
𝑀𝑠𝑑
𝜁

Δ𝑡
− (1 − 𝜃)(𝐴𝑠𝑑

𝜁
+ 𝐾𝑠𝑑

𝜁
+ 𝑆𝑠𝑑

𝜁
)] 𝒖𝒔𝒅

𝜁
+ (1 − 𝜃)𝒔𝒔𝒅

𝜁
+ 𝜃𝒔𝒔𝒅

𝜁+1

(2.2-27)

and it can be rewritten in the compact form:

𝐴𝑠𝑦𝑠𝒖𝒔𝒅
𝜁+1

= 𝒃 (2.2-28)

Being:

𝐴𝑠𝑦𝑠 = [
𝑀𝑠𝑑
𝜁

Δ𝑡
+ 𝜃(𝐴𝑠𝑑

𝜁
+ 𝐾𝑠𝑑

𝜁
+ 𝑆𝑠𝑑

𝜁
)] (2.2-29)

𝒃 = [
𝑀𝑠𝑑
𝜁

Δ𝑡
− (1 − 𝜃)(𝐴𝑠𝑑

𝜁
+ 𝐾𝑠𝑑

𝜁
+ 𝑆𝑠𝑑

𝜁
)] 𝒖𝒔𝒅

𝜁
+ (1 − 𝜃)𝒔𝒔𝒅

𝜁
+ 𝜃𝒔𝒔𝒅

𝜁+1
 (2.2-30)

The 𝜃-method is a class of single step methods, in the sense that to compute the numerical

solution at the time step 𝜁 + 1 only the information at the previous time step (𝜁) is required.

Its order of convergence is at most 2 for Crank-Nicolson (1 for Backward Euler).

2 MESOSCALE MODELLING OF SUPERCONDUCTORS

29

Regardless the numerical scheme adopted to numerically integrate the system of ODEs

(2.2-28), the outcome is a linear system of algebraic equations characterized by a banded

matrix 𝐴𝑠𝑦𝑠 . It is solved by applying a band solver that is computationally cheaper than

method of elimination of Gauss, being the number of operations lower or equal to 𝑐 𝑁𝑡𝑜𝑡 with

𝑐 an integer number evaluated as a function of the bandwidth of matrix 𝐴𝑠𝑦𝑠.

2.2.3 SUMMARY

The mesoscale mathematical modelling of the cable yields a not linear coupled system of

parabolic partial differential equations that, that is solved numerically. The Galerkin method

is applied to the IBVP that prescribed first a discretization in space leading to a system of ODEs

that are subsequently numerically integrated.

The spatial discretization is performed according to the FEM recipe that would lead to a

global convergence in space between the first and the order, due to the upwind terms. Mesh

construction can be done with both uniform and not uniform with single refined region

strategies, that are suitable for different kinds of drivers: the former is generally cheap and

performs well if there are smooth or slowly changing drivers, the latter is developed to deal

with a priori known spatial gradients and its computational cost may be not negligible.

Two possibilities are foreseen to the numerical integration providing solutions that have

different order of convergence in time, namely the single step BE and CN methods are

implemented resulting in first and second order numerical schemes respectively, both

particular cases of the 𝜃-method.

To deal with the not linearities the frozen coefficients concept is applied whose accuracy

increases as the time step decreases.

The banded system of linear algebraic equations that is obtained from the application of

the Galerkin procedure is solved with an algorithm for generic band matrix without pivoting.

3 CODE DESCRIPTION

31

CHAPTER 3

3 CODE DESCRIPTION

As mentioned in the introductory chapter 1, this work is to be considered as the

preliminary step for the development of a new software for mesoscale modelling of

superconducting cables. The previous chapter 2 focused on the numerical methods adopted

for the spatial and temporal discretizations used to solve the problem. In this chapter the focus

is on the structure and organization of the software with the aim of highlighting the main

features and potential, which include:

• an object-oriented design exploiting class;

• a flexible topology since the object-oriented design allows to build the conductor as a

combination of an arbitrary number of current-carrying (strands) and non-current-

carrying (jackets) solid components, that can be characterized by different materials,

and fluid channels;

• a Graphical User Interface to run the simulation and that implements the Run-AND-

check philosophy;

• an automatic basic post processing of the simulation results;

• an external tool for the advanced post processing of the outcomes.

Section 3.1 provides an overview of the code architecture and the input files and the

management of the output ones, specifically an in-depth look at class design that build up the

conductor is offered in section 3.2. The chapter proceeds whit section 0 by analyzing the

classes used to manage the different phases of the simulation, with emphasis on initialization

and the application of boundary conditions. Section 3.4 discusses the main features of the

graphical interface and the implementation of the real-time check of the simulation results.

Finally, the intrinsic processing of the results is shown, as well as the possibilities offered by

the external tool for more refined analyzes (0).

3.1 THE SC2 CODE ORGANIZATION IN NUTSHELL

The content of this section is twofold, the first subsection provides general description of

the code architecture while the second focuses on the input and output organization.

3.1.1 SC2 ARCHITECTURE

The SC2 code is designed to model forced flow superconducting cables, alternatively called

conductors, which in turn are composed by several basic components, in an object-oriented

fashion. Although in the current code state only one conductor is addressed by the model, the

code architecture allows easily to extend the modeling to several conductors simultaneously.

It is completely written in Python 3 [100] and it relies on few libraries:

• os that allows to interact with the operating system;

3.1 THE SC2 CODE ORGANIZATION IN NUTSHELL

32

• warning to prompt warning messages to the user;

• numpy [101] and scipy [102] that are heavily used to deal with numerical schemes;

• pandas [103] is exploited to manage the output files as data frames and to manipulate

them easily;

• openpyxl [104] that allows to deal with the input files that are provided in the form of

Excel spreadsheets;

• matplotlib [105] is a powerful library to make plots;

• tkinter is chosen to build the graphical user interface.

Usually, extended and complex Python codes are organized into several modules, each

one accomplishing a specific task; the SC2 code makes no exception.

All SC2 modules are collected into the root directory SCMagnetCode and can be

distinguished among primary and secondary (or ancillary) modules. Being an Object-Oriented

Program, ten of the eleven primary modules deal with class, used to construct objects.

Before going on, it is worthily to define what are class and object in Python. Define a class

is a way to bound data and functionality together to create data-structure; in other words, it

is the blueprint for how something should be defined according to the user. When a class is

defined, it is important to keep in mind that it does not contain any kind of data, moreover it

creates a new type of object so that new instances of that type can be made, that is objects

are constructed from class. Each class instance can have attributes attached to it for

maintaining its state and can also have methods (the functions defined inside the class) that

allow to modify its state. As a final remark, it should be reminded that Python class supports

inheritance, a feature that is exploited in the code.

Once the differences among class and object are clarified, a short description of the

primary modules used in SC2 code is provided, highlighting the relationship between classes.

They are listed in Table 3.1-1 that summarizes the nomenclature adopted in this thesis for the

classes and their objects. To avoid ambiguity, in the remainder of this work a color scheme is

introduced to distinguish classes from objects, attributes from methods and methods

functions:

• class names are written in purple;

• object names in green;

• class methods in blue;

• class attributes in dark blue;

• functions are marked in dark red;

• finally, dictionaries kesy as in bold.

To further improve the clarity of the exposition, a font code is also introduced to distinguish

between files such as the modules or the input files and folders. The formers are written in

Arial, the latter are in Cambria.

3 CODE DESCRIPTION

33

Table 3.1-1 List of the main modules that build up the SC2 code, together with the adopted nomenclature for
the classes and objects. Modules and classes chare the same name. Notice that the Simulation_starter module is
not associated to a class, and therefore to any objects.

Module name Class name Object name

Simulation_starter
SC2_GUI SC2_GUI gui

Simulations Simulations simulation (rarely sim)
Conductors Conductors CONDUCTOR

FluidComponents FluidComponents CHAN (rarely fluidcomponent)
SolidComponents SolidComponents solidcomponent

Jacket Jacket Z_JACKET
Strands Strands strand

MixSCStabilizer MixSCStabilizer STR_MIX
SuperConductor SuperConductor STR_SC

Stabilizer Stabilizer STR_STAB

The Simulations_starter.py module makes an instance of the class SC2_GUI that

generates both the root and the main windows of the GUI; in particular, the mainloop of the

main window rules the whole code. While choosing the directories that groups the input files,

user also makes an instance of the class Simulations, defined in module Simulations.py. This

class will be further investigated in a next section, for the time being it is enough to know that

it allows to make instances of class Conductors and that its methods allow to execute all the

simulation steps; its objects store global information about the simulation. The class

Simulations has the same name of the module in which it is defined. This is not by chance

since this naming schemes avoids ambiguity and simplify the code architecture.

Going forward with the top-down approach, the next module to be discussed is

Conductors.py that defines the homonym class Conductors. This class is a container of the

five classes that are used to build the cable. One of the most important method of a class is

the inner __init__ method that is automatically called when a class is instanced to create an

object. When this is done for the class Conductors, the conductor object type is build invoking

its inner constructor method __init__. Among the numerous actions performed by this

method, probably the most important is the instantiation of the classes that correspond to

cable basic components like FluidComponents, Jacket, MixSCStabilizer, SuperConductor and

Stabilizer. These objects are stored in suitable Python dictionaries as lists that are attributes

of the conductor object, so they are always available, together with both their attributes and

methods, when the conductor object is instantiated. Indeed, since magnets can be composed

of several cables, class Simulations allows to instantiate more than one conductor object at

time and they are stored in a Python list as well; therefore it is not necessary to instantiate it

whenever a conductor object is required: it will be selected from the list_of_Conductors

attribute of class Simulations and it will bring all the instantiated basic components object that

actually build the cable. Furthermore, Conductors methods allow to initialize the cables, get

its topology and the kind of interfaces between each component and evaluate both

thermophysical and electromagnetic properties of materials, together with the transport

3.1 THE SC2 CODE ORGANIZATION IN NUTSHELL

34

properties such as friction factor for fluid components and heat transfer coefficients between

fluid components, fluid and solid components and between solid components.

The above discussion concerns three of the ten classes used in the code. It was said that

of the remaining seven, five are devoted to the cable basic components, thus two remain

undefined, namely classes SolidComponents and Strands. At this point, it is worthily that the

reader is aware of how these seven classes interacts and are organized; to this purpose, class

hierarchy is represented in Figure 3.1-1: it is based on the different typology of materials and

their role in the actual cable. The first main subdivision is among FluidComponents and

SolidComponents; the former class is dedicated to model the coolant and its instances define

the fluidcomponent python objects (more often called CHAN as it will be clear later on); the

latter class deals with the solid components that constitutes the cable.

Figure 3.1-1 UML diagram of the relationships between the classes.

Since solid materials in a cable can be roughly distinguished into jacket and strand,

exploiting the powerful concept of Python class inheritance, the classes Jacket and Strands are

both build as child class of the class SolidComponents. This is useful since all the attributes

and methods that are defined in the parent class (SolidComponents in this case) are inherited

by the child classes (Jacket and Strands) so that in the child classes are defined only attributes

3 CODE DESCRIPTION

35

and methods that are not in common. As far as Jacket class is concerned, its Z_JACKET objects

correspond to a basic conductor component, as well as fluidcomponent objects. To extend

the SC2 flexibility, three (instead of only one) kinds of strand objects can be instantiated, each

descending from a specific child class of the parent class Strands and constituting the third

and last kind of basic component of the cable. Again, all the common features will be defined

in the parent class Strands, while specific attributes and methods are detailed in the child

class. The kinds of basic strands that can be defined are:

1. STR_MIX object that allows to model a strand that is made of both superconductor

and stabilizer materials;

2. STR_SC object to introduce pure superconducting strand;

3. STR_STAB object to which correspond a stabilizing strand.

There are no restrictions on the use of this basic components, i.e. the user can adopt a

single kind of basic strand or implement and combine the three of them to better discretize

the cable topology, according to the level of detail required by the analysis.

Secondary modules are grouped into two subfolders called respectively

Properties_of_materials and UtilityFunctions. The former, as its name says, is the subfolder

that includes all the materials properties. On the one hand, for each fluid material both a

module with functions to evaluate thermophysical properties and a subfolder with tables from

which these functions interpolate can be found; on the other hand, for each solid material all

the function that describes the thermophysical and electromagnetic (if any) properties are

collected in a module. The self-explanatory name of the module identifies the material to

which it refers. For instance, module named Nb3Sn_properties.py contain all the functions

related to the properties of Nb3Sn.

In subfolder UtilityFunctions there are functional modules that achieves specific and

quite different purposes such as read the input files or load the fluid tables, initialize both fluid

and solid components, perform the march in time on the algorithm, write the output files and

make plots. A short description of these modules can be found in the following Table 3.1-2,

they are explained in detail in subsequent sections.

3.1 THE SC2 CODE ORGANIZATION IN NUTSHELL

36

Table 3.1-2 List and description of the functional modules in subfolder UtilityFunctions.

Module name Description

Auxiliary_functions.py

Stores functions that allow to read the
auxiliary input files, load the fluid tables
and perform the binary search in
pressure and temperature to compute,
by interpolation, fluid thermophysical
properties.

Gen_Flow.py

Functions that allow to evaluate the
initialization of fluid components
variables (velocity, pressure and
temperature) according to the value of
flag INTIAL, the conductor topology and
the kind of interface between fluid
components objects.

InitializationFunctions.py

The function that reads and loads the
main input files and the one that builds
the spatial discretization of the cable are
both in this module.

Output.py

Collects several functions that writes the
output files of both solution spatial
distribution and time evolution in Tab
Separated Values (TSV) format using the
pandas library.

Plots.py

Groups all the functions that allow to
make the default plot of both variables’
spatial distribution and time evolution,
together with their initialization.

SolidComponents_temperature_initialization.py

Functions that allow to evaluate the
initialization of solid components
temperature according to the value of
flag INTIAL, the conductor topology and
the kind of interface between fluid and
solid components and between solids.

Transient_solution_functions.py

This is the most important and complex
of all these modules. It manages the
adaptive time step evaluation, the
coefficient matrix and known term
vector assembly according to the Finite
Element method and the solution of the
resulting linear system of equation at
each time step, together with the
application of BCs according to flag
INTIAL.

3 CODE DESCRIPTION

37

3.1.2 SC2 INPUT AND OUTPUT ORGANIZATION

Before starting the simulation, user must provide input data to set the simulation features,

build the conductor and its basic components, construct the grid, impose the drivers, define

cable topology and interfaces and, last but not least, compile the diagnostic to save the

output.

This procedure is carried out with the aid of suitable input files in the form of Excel

spreadsheets (extension .xlsx) that must be compiled before each run. User can find them in

the subfolder called Description_of_Components and they can be further organized into

subfolders, each containing a complete set of input files. The set is composed by main input

files that are necessary for the simulation and must be filled-in at each simulation and auxiliary

input files. The latter are thought to increase driver input flexibility as external heat, operation

current and magnetic field, to assign time dependent boundary conditions or to assign strands

strain according to a complicated function of both time and space. Typically, they are read if

the value of some flags is negative. Since their peculiarity, they will not be further detailed in

this section that concentrates on the main input files. Generally speaking, the information

provided with them refers to three well defined levels which are, from top to bottom,

simulation level, cable level and basic components level, according to the fact that the input

files are loaded into the code as attributes of objects simulation, CONDUCTOR or each one of

the required basic components. Typically, Python built-in dictionary data type is exploited to

store the information carried by this input files. For a simulation with a single cable there

seven main input files are required, specifically one input file at simulation level, four at

conductor level and two at basic components level. Auxiliary input files always belong to the

last level and their number is variable. Since the modelling of more cables is foreseen by SC2,

if more than one cable is to be modeled, user should provide as many input files of the third

level as the number of the defined cables, therefore the total number of input file is

proportional to that number and can be written in this way:

𝑁𝑖𝑛𝑝𝑢𝑡 = 1 + 3 + (2 + 1)𝑁𝑐𝑜𝑛𝑑 (3.1-1)

The reason why the number of cables in the above formula is multiplied by (2 + 1) and

not by 2 is that file conductor_couplig.xlsx, even though belongs to the second level, has a

completely different structure with respect to all the other input files, so a new file of this type

must be compiled for each cable. Indeed, while the others are organized by columns, each

one identifying a different cable or, within the same cable, different fluid and solid

components, each sheet of conductor_couplig.xlsx workbook holds matrix. Main input file

compilation is illustrated in appendix E.1, here all of them are listed and concisely depicted:

1. Transitory_Input.xlsx: it is at simulation level, so its input values are saved in a

simulation attribute, dictionary transient_input, and it allows to set global information

about the simulation. Being the master of all the input files, it is the first file read when

the code is launched. Table 3.1-3 lists the input data that user can set compiling it.

3.1 THE SC2 CODE ORGANIZATION IN NUTSHELL

38

Table 3.1-3 List of the input data to be provided in the input file Transitory_Input.xlsx: details about units,
the type and its meaning are given for each input data.

Variable name Unit SI Variable type Meaning

SIMULATION − string simulation name
MAGNET − string Input file name that defines conductors

TEND s float Simulation end time
IADAPTIME − integer Flag for the time adaptivity

STPMIN s float Minimum time step
STPMAX s float Maximum time step
TIMEREF s float Time when the most refined step is adopted
TAUREF s float Time duration of the most refined grid

2. conductor_definition.xlsx: it is the file that contains all the information about the

cable(s) to be simulated, so it is at conductor level. It can be divided into two parts, the

first with the name to all the other input files (both main and auxiliary) to be read; the

second with the input data for the cable(s). This file split is put in evidence by the

following Table 3.1-4 and Table 3.1-5; two dictionaries, attributes of CONDUCTOR

object, stores these inputs namely file_input and dict_input.

Table 3.1-4 List of the input data to be provided in the input file conductor_definition.xlsx. Details about
units, the type and its meaning are given for each input data: variables related to the name of all the other input
files to be loaded in order to perform the simulation.

Variable name
Unit

SI
Variable

type
Meaning

EXTERNAL_ALPTHAB − string
auxiliary file name to get magnetic field

gradient
EXTERNAL_BFIELD − string auxiliary file name to get magnetic field

EXTERAL_CURRENT − string auxiliary file name to get operating current
EXTERNAL_FLOW − string auxiliary file name to get flow input variables
EXTERNAL_HEAT − string auxiliary file name to get external heating

EXTERNAL_STRAIN − string auxiliary file name to get strand strain

GRID_DEFINITION − string
main file name to define conductor grid

features

OPERATION − string
main file name to set conductor components

operation properties

OUTPUT − string
main file name to define times to save
solution spatial distribution and spatial

coordinates to save solution time evolution

STRUCTURE_COUPLING − string
main file name to define conductor topology

and evaluate heat transfer coefficient

STRUCTURE_ELEMENTS − string
main file name to set conductor components

input data

3 CODE DESCRIPTION

39

Table 3.1-5 List of the input data to be provided in the input file conductor_definition.xlsx. Details about units,
the type and its meaning are given for each input data: input data that characterizes the conductor.

Variable
name

Unit
SI

Variable
type

Meaning

XLENGTH m float conductor length
IOPFUN − integer flag that defines current space and time dependence

IOP0_TOT A float total initial operating current transported by the cable
ISJOINT − integer flag to define the presence of the joints

XJBEG m float
beginning of the heated zone by joule effect in the inlet

joint, if any

XJBEIN m float
end of the heated zone by joule effect in the inlet joint,

if any

XJBEOUT m float
beginning of the heated zone by joule effect in the

outlet joint, if any

XJENOUT m float
end of the heated zone by joule effect in the outlet

joint, if any

MAXNOD − integer
maximum number of nodes for conductor spatial

discretization

METHOD − integer
flag to define the numerical solution method for the

system of ODE in time

UPWIND − integer
flag that switches on the upwind discretization in all

the fluid equations according to the chosen METHOD

3. conductor_grid.xlsx: whit this file user specifies the kind of grid (uniform, refined,

adaptive) and parameters to be adopted for the spatial discretization, listed in Table

3.1-6 below. This input file is also at cable level and the CONDUCTOR dictionary

attribute created to store its information is called dict_discretization.

Table 3.1-6 List of the input data to be provided in the input file conductor_grid.xlsx. Details about units, the
type and its meaning are given for each input data.

Variable
name

Unit
SI

Variable
type

Meaning

NELEMS − integer number of elements of the mesh
ITYMSH − integer flag to define the mesh property
NELREF − integer number of spatial elements in the refined zone
XBREFI m float starting point of the refined zone
XEREFI m float end point of the refined zone
SIZMIN m float minimum spatial mesh size, if refined
SIZMAX m float maximum spatial mesh size, if refined

DXINCRE − float
size increase ratio for the spatial mesh, from initially

refined zone outwards

4. conductor_input.xlsx: this file is at components level, therefore the workbook is

composed by five sheets, one for each kind of basic components that can be used to

3.1 THE SC2 CODE ORGANIZATION IN NUTSHELL

40

build the cable. User must compile only the sheets that needs to initialize the cable

basic components used in the simulation. It is devoted to the definition of the main

features of the different conductor components, e.g. geometry, fluids and solid

materials. Each basic component object has a dictionary attribute called dict_input to

store these parameters.

5. conductor_operation.xlsx: this workbook inherits the same structure of file

conductor_input.xlsx and it is the second main input file that belongs to the lowest

level. With this file, user can define flow initial conditions and operating parameters

(drivers) for the cable solid components such as magnetic field, current and external

heating. Attribute dict_operation is a dictionary that holds these values defined for

each of the five basic component objects.

6. After the assignment of the input data for the conductor components, the conductor

topology and the interface parameters like the heat transfer coefficients between

different components are fully characterized in the eight sheets of file

conductor_coupling.xlsx. Its information is saved in dedicated CONDUCTOR

dictionaries attributes in form of matrices, that share the same name with the sheets.

7. conductor_diagnostic.xlsx: is the last of the main input files and belongs to the cable

level. It is used for the output analysis, since in its two sheets, called Space and Time
respectively, user can specify the times at which the solution spatial distribution should

be saved and set the spatial location of sensors to get variables time evolution for each

cable. The times and spatial coordinates are stored in two different arrays that are

attributes of CONDUCTOR object, namely Space_save and Time_save.

The last part of this subsection explains shortly how the output of the simulation is

organized, since this problem is also managed by the code. The output of the simulation is

both in the form of data files with the extension .tsv and of vector figures in the .eps format

saved in Simulations_results subfolder. Thanks to the GUI, user can group together several

simulations with similar (but not exactly the same) input data in subfolders inside

Simulations_results, therefore this subfolder will contain an arbitrary number of sub-

subfolders, which are further divided according to the solution method, each of them related

to a specific simulation. The structure of this last folder is the object of this concluding part. A

first distinction is among the data files and the figures: the formers are grouped in Output

folder while the latter in the Figures folder. The inner structure of this folders is the same:

there are four folders to distinguish between initialization, spatial distributions, time

evolutions and final solution, respectively called Initialization, Space, Time and Solution.

Inside each of these folders there are as many folders as the number of the initialized

conductors in the simulation whose name correspond to the conductor identifier. As far as

Output path is concerned, each conductor output data files are stored within the

corresponding folder, while figures are grouped according to the conductor components in

the homonym folder of the Figures path.

3 CODE DESCRIPTION

41

3.1.3 SUMMARY

To sum up, the SC2 code is a Python 3 object-oriented program thought to model thermal

behavior of the superconducting cables, tested to model a single cable (for the time being).

Its core is organized into eleven primary modules; of them only the launcher one,

Simulation_Starter.py, does not define a class, while the others ten define likewise classes.

Being a code equipped with a graphical user interface, one of them is dedicated to this feature

and it is called SC2_GUI.py. Class Simulation manages both the conductor objects definition

and the steps of the algorithm, while the others build up the cable, which is constructed

combining only five kinds of basic conductor components objects, namely CHAN, Z_JACKET

and one or an arbitrary combination of the three strands kinds (STR_MIX, STR_SC and

STR_STAB). This simple structure is achieved exploiting python class inheritance on the classes

that defines the solid components objects.

The secondary modules are grouped into two subfolders. Properties_of_materials
collects all the fluid and solid material thermophysical and electromagnetic properties, while

UtilityFunctions is where modules with different goals can be found.

The input files, in the form of excel worksheets, are stored in the subfolder

Description_of_Components and can be divided into two groups: main input files to be

compiled by the user for each new simulation, and other auxiliary ones available to extend

input flexibility.

This section ends with a short but exhaustive description of the output organization into

subfolders within the Simulations_results directory, as allowed by the GUI.

3.2 CODE KERNEL: CONDUCTORS, FLUIDCOMPONENTS AND

SOLIDCOMPONENTS CLASSES

Having described the entire architecture of the code in the previous section, attention is

paid to the classes that contribute to building the cable, proposing a description of the main

attributes and methods which characterize them.

FluidComponents and SolidComponents classes have most of their attributes in common:

the same kind of information is stored in a variable that has the same name regardless of the

class. What distinguishes the two classes are their methods and the inheritance that is only a

feature of SolidComponents class. Class Conductors has many attributes, but the same

rationale is used also for this case: the same kind of information is stored in attributes with

the same name. In this way it is easy to access the required variables and this is not error

prone since each attribute belongs to a different object, even if they share the same name.

The common attributes of these classes are listed and shortly described in Table 3.2-1.

It is a good practice to define all the attributes of a class in its __init__ method, so all the

above-mentioned attributes (and the not mentioned ones) are at least declared in the

constructor method of the class to which they belong.

3.2 CODE KERNEL: CONDUCTORS, FLUIDCOMPONENTS AND SOLIDCOMPONENTS CLASSES

42

For each class the attribute NAME is already defined in Table 3.1-1, while the ID

construction is explained in section 5E.1.

The class Conductors does not have the dict_operation attribute, which is replaced by

file_input, that keeps track of the input files to be red and loaded.

Table 3.2-1 List of the attributes in common between the Conductors, FluidComponents and SolidComponents
classes. The class to which they belong and a brief description are given.

Attribute Conductors
Fluid-

Components
Solid-

Components
Description

NAME X X X

Name of the object, it is
always the same for

objects belonging to the
same class.

ID X X X

Object identifier, it
changes for each object of
the same class and allows

to uniquely identify the
object. It came from the

input files.

dict_input X X X
Dictionary to load the

input data.

dict_operation X X
Dictionary to load the
operation parameters.

dict_node_pt X X X

Dictionary to save
thermophysical and/or

electromagnetic
properties values in the

nodal points.

dict_Gauss_pt X X X

Dictionary to save
thermophysical and/or

electromagnetic
properties values in the

Gauss points.

The last two attributes of Table 3.2-1 not only store different quantities but are also

differently organized according that they belong to Conductors or FluidComponents and

SolidComponents. Generally speaking, dict_node_pt and dict_Gauss_pt contain the same

properties that are evaluated in two different locations and in two different ways. In the

former dictionary the properties are evaluated in the node of the spatial discretization; the

latter stores the same quantities evaluated in the Gauss point which is the mid-point of each

interval of the partition of the domain. The evaluation of the properties in the Gauss points

requires a minimum amount of information in the nodal points.

The initialization or the solution of the linear system of equations, provides at each time

step this minimum data set that is the spatial distribution of the unknown variables in the

3 CODE DESCRIPTION

43

nodal points, namely velocity, pressure and temperature for each fluid component and

temperature for each solid component.

This are the arguments of the functions used to evaluate all the other properties in the

nodal points.

𝝌𝑛𝑜𝑑𝑎𝑙 = 𝑓(𝝃𝑛𝑜𝑑𝑎𝑙, …)
(3.2-1)

To evaluate the properties in the Gauss points, two paths can be followed. The simplified

one is to take the average value in each interval of the partition of the domain:

𝜒𝑖,𝐺𝑎𝑢𝑠𝑠 =
𝜒𝑖,𝑛𝑜𝑑𝑎𝑙 + 𝜒𝑖+1,𝑛𝑜𝑑𝑎𝑙

2
 𝑖 = 0,… ,𝑁 (3.2-2)

The second implies to evaluate only the solution in the Gauss points:

𝜉𝑖,𝐺𝑎𝑢𝑠𝑠 =
𝜉𝑖,𝑛𝑜𝑑𝑎𝑙 + 𝜉𝑖+1,𝑛𝑜𝑑𝑎𝑙

2
 𝑖 = 0,… ,𝑁

(3.2-3)

and then use this information as arguments of the functions to evaluate the other properties

in the Gauss points:

𝝌𝐺𝑎𝑢𝑠𝑠 = 𝑓(𝝃𝐺𝑎𝑢𝑠𝑠, …)
(3.2-4)

The first strategy is currently adopted in the 4C; if dealt with the array smart notation it

will allow to reduce the computational cost of the algorithm, however it is less accurate with

respect to the last one implemented in SC2 code.

In any case, the 𝝌𝐺𝑎𝑢𝑠𝑠 and 𝝃𝐺𝑎𝑢𝑠𝑠 vectors have one less element than the nodal ones.

In the following three subsections, some details on the last two attributes of Table 3.2-1

are supplied, then the methods of the class are explained. Whenever it is possible, the

methods are developed using the array-smart notation; this applies to the whole code in

general.

3.2.1 FLUIDCOMPONENTS CLASS

As the name prefix suggest, dict_node_pt and dict_Gauss_pt are two dictionaries.

Inasmuch attributes of CHAN objects, their keys store several fluid properties, as well as the

transport properties like the friction factor and the steady state heat transfer coefficients. To

each dictionary key corresponds a numpy array of length 𝑁 + 2. The list of dictionary keys and

their meaning is given in Table 3.2-2.

After that the main attributes of the class are described, it is worthily that the reader is

aware of the method that it makes available to the user.

As mentioned, the most important method of a class is its inner __init__ method that is

the constructor of the object when the class is instantiated. Fluid components class provides

several other methods. Eval_fluid_comp_properties and Eval_properties allow to evaluate the

CHAN properties both in nodal or Gauss points according to the value of the keyword (or

3.2 CODE KERNEL: CONDUCTORS, FLUIDCOMPONENTS AND SOLIDCOMPONENTS CLASSES

44

named) argument “Where” while the kind of fluid can be specified with the keyword argument

“Fluid”, a flag that selects the correct tables.

Compute_denisty_and_mass_flow_rate is a method introduced to easily evaluate, at each

time step, the density and the mass flow rate (both at the inlet and at the outlet) in the nodal

points to be saved together with the solution at the user required time step. As before, the

kind of fluid is specified by the named argument “Fluid”.

Friction factor is computed with different correlations as function of Reynolds and of the

channel geometry in Friction method that calls the Newton_f and User_Friction methods; the

latter allows to employ a user defined correlation for the friction factor. This is one of the

methods that contains the constitutive relations introduced in section 2.1.1.

Finally, Compute_velocity and Compute_mass_flow are invoked in Gen_Flow.py module

to compute the flow initialization, if inlet and outlet pressure are provided together with inlet

temperature.

Table 3.2-2 List of dictionaries dict_node_pt and dict_Gauss_pt keys and their description.

Key Description

velocity Coolant velocity spatial distribution
pressure Coolant pressure spatial distribution
temperature Coolant temperature spatial distribution
density Coolant density spatial distribution
enthalpy Coolant enthalpy spatial distribution
Gruneisen Coolant Gruneisen spatial distribution
sound_speed Coolant speed of sound spatial distribution
spec_heat_p Coolant specific heat at constant pressure spatial distribution
spec_heat_v Coolant specific heat at constant volume spatial distribution
ther_cond Coolant thermal conductivity spatial distribution
viscosity Coolant dynamic viscosity spatial distribution
Reynolds Coolant Reynolds dimensionless number spatial distribution
Prandtl Coolant Prandtl dimensionless number spatial distribution
mass_flow_rate Coolant mass flow rate spatial distribution
htc_steady Coolant steady state heat transfer coefficient spatial distribution
friction Coolant friction factor spatial distribution

3.2.2 SOLIDCOMPONENTS CLASS

In this section not only the parent class SolidComponents but also all their child and

grandchild classes are considered, to detail what arguments and methods are in common

thanks to the inheritance properties and what are specific of the class. The top-down approach

is followed; the class hierarchy is shown in Figure 3.1-1.

All the attributes reported in Table 3.2-2 are listed in class SolidComponents but they are

declared in the __init__ method of the basic solid components classes: Jacket, MixSCStabilizer,

SuperConductor and Stabilizer. Since there is no need to build a solidcomponent object, this

3 CODE DESCRIPTION

45

parent class does not have the __init__ method, nevertheless there are several other methods

used to evaluate properties and set the drivers.

Eval_sol_comp_properties and Eval_properties are a couple of methods that allow to

evaluate some thermophysical properties like density, specific heat, thermal conductivity and

electrical resistivity. The kind of object and its composition are taken into account with

suitable flags and if-else branches; the average properties for the composite objects are

computed as explained in appendix C. These methods can be used to evaluate the properties

both in nodal and Gauss points thanks to the keyword argument “Where”. The functions for

the material are imported from modules stored in Properties_of_material subfolder.

Method Get_I initializes the electrical current in each solid component object. Even though

the electrical module is not developed yet, this method is already foreseen in this class. The

same can be said for Get_B_field that computes the magnetic field in each solid component

both in nodal and Gauss points exploiting the “Where” argument.

Get_Q is thought to compute the external heating according to the value of the flag IQFUN,

the named argument “Method” keeps into account the method chosen to integrate the

system of ODEs. If IQFUN is larger than zero, this method calls Q0_where that determines the

square wave in time and space for the external heating according to the input parameters in

conductor_operation.xlsx workbook.

The last two methods JHTFLX_new_0 and Set_energy_counters allow to initialize to zero

the vectors that represents the Joule heating and the external and Joule heating energies,

respectively. These initializations are performed according to the selected solution method

with the keyword “Method”.

Child class Strands does not add other attributes to the ones already established in class

SolidComponents and, as the previous, it does not have the __init__ method since there is no

need to build strand objects. Its methods are inherited by the three strand kinds and are briefly

described below.

Get_alphaB is the one devoted to the evaluation of the magnetic field gradient in the

strands and at the time being it is not used since there is no current, however it is already

integrated in the SC2 code; as usual the properties can be evaluated in nodal or in Gauss points

by specifying the keyword “Where”.

Methods Get_superconductor_critical_prop and Eval_critical_properties evaluate the

superconductor critical properties. They can distinguish both the location, nodal or mid-point

thanks to the named argument “Where”, and the kind of superconductor: available choices

are NbTi, Nb3Sn and RE123. The correct functions are imported from modules

NbTi_properties.py, Nb3Sn_properties.py and RE123_properties.py collected in

subfolder Properties_of_materials. Since Nb3Sn critical properties are function of the strain

in the strand, the method Get_EPS allows to determine it according to the value of the flag

IEPS in the input file conductor_operations.xlsx. Again, both the evaluation in nodal and in

Gauss points are allowed exploiting the “Where” keyword.

3.2 CODE KERNEL: CONDUCTORS, FLUIDCOMPONENTS AND SOLIDCOMPONENTS CLASSES

46

Classes Jacket, MixSCStabilizer, SuperConductor and Stabilizer only have the __init__

method where the inherited attributes from the parent class SolidComponents are (at least)

declared when the class is instantiated. Although the attributes dict_nodal_pt and

dict_Gauss_pt are the same in these classes, as a consequence of the different methods that

are used to construct them, their keys can be very different according to the object to which

they belong; this is clarified in the following Table 3.2-3.

Table 3.2-3 List of dictionaries dict_node_pt and dict_Gauss_pt keys together with their description. Note
that not all the keys are available for the dictionaries, according to the class these attributes belong.

Key Jacket
MixSC-

Stabilizer
Super-

Conductor
Stabilizer Description

alpha_B X X X
Solid component gradient
of the magnetic field spatial
distribution

B_field X X X X
Solid component magnetic
field spatial distribution

density X X X X
Solid component density
spatial distribution

el_resist X X X X
Solid component electrical
resistivity spatial
distribution

Epsilon X X
Solid component strain
spatial distribution

J_critical X X
Solid component critical
current density spatial
distribution

spec_heat_p X X X X
Solid component specific
heat at constant pressure
spatial distribution

T_critical X X
Solid component critical
temperature spatial
distribution

T_cur_sharing X X
Solid component current
sharing temperature
spatial distribution

T_cur_sharing_min X X

Solid component minimum
current sharing
temperature spatial
distribution

temperature X X X X
Solid component
temperature spatial
distribution

ther_cond X X X X
Solid component thermal
conductivity spatial
distribution

Only two of the four classes, MixSCStabilizer and SuperConductor, have the full set of keys

since they need both thermophysical and electromagnetic properties to be described, while

3 CODE DESCRIPTION

47

the Z_JACKET objects are completely described with only the former ones plus the magnetic

field. STR_STAB, in addition to the thermophysical properties, also requires the magnetic field

and its gradient but not the set of critical properties since it is not a superconductor. To be

picky, the STR_MIX and STR_SC actually have the whole set of keys only if the critical

properties of the superconductor material are function of the strain, as in the case of Nb3Sn,

otherwise also in this case the last key is missing from the dictionaries.

Dictionary dict_nodal_pt has also the keys for the drivers that are not shared with

dict_Gauss_pt, these are EXTFLX, JHTFLX, EEXT and EJHT. The first two are summed together

as follows to build the key Q1 and Q2 in the dict_Gauss_pt that are used to construct the load

contribution to the known term vector:

𝑄1𝑖 = 𝐸𝑋𝑇𝐹𝐿𝑋𝑖 + 𝐽𝐻𝑇𝐹𝐿𝑋𝑖 𝑖 = 0, … , 𝑁 (3.2-5)

𝑄2𝑖 = 𝐸𝑋𝑇𝐹𝐿𝑋𝑖+1 + 𝐽𝐻𝑇𝐹𝐿𝑋𝑖+1 𝑖 = 0,… ,𝑁 (3.2-6)

3.2.3 CONDUCTORS CLASS

This class is quite complicated since it manages all the other classes discussed above. Many

other attributes are associated to its objects and in this section only the most important are

considered. Two of them are the already introduced dictionaries dict_node_pt and

dict_Gauss_pt, the others are dict_discretization, dict_Step, dict_obj_inventory and

dict_topology. The reader should have noticed that all the above attributes are Python

dictionaries: actually, this Python built-in data type is extremely powerful and useful to

organize data and information that belongs to the same kind, and easily access them calling

the corresponding key. In this way the code is more readable, especially if the keys are self-

explanatory.

If dict_node_pt and dict_Gauss_pt belong to CONDUCTOR objects, they are used to store

the heat transfer coefficients between fluid components, fluid and solid components and

between solid components. They are nested dictionaries organized as shown below:

htc dummy dictionary and its sub-dictionary declaration

dict_dummy[“HTC”] = dict()

dict_dummy[“HTC”][“ch_ch”] = dict()

dict_dummy[“HTC”][“ch_ch”][“Open”] = dict()

dict_dummy[“HTC”][“ch_ch”][“Close”] = dict()

dict_dummy[“HTC”][“ch_sol”] = dict()

dict_dummy[“HTC”][“sol_sol”] = dict()

where dict_dummy is the generic dictionary dict_node_pt or dict_Gauss_pt. The main key HTC

is associated with a dictionary that stores all the values of the heat transfer coefficients. This

dictionary has three keys (ch_ch, ch_sol and sol_sol) to keep into account the three possible

kinds of interfaces, to which are associated other dictionaries. The last two, ch_sol and sol_sol,

3.2 CODE KERNEL: CONDUCTORS, FLUIDCOMPONENTS AND SOLIDCOMPONENTS CLASSES

48

have keys that identifies the objects that constitute the interface. The convention is that the

keys are constructed joining the objects ID alphabetically with an underscore, for example if

CHAN_1 and STR_MIX_1 constitute an interface the key name is CHAN_1_STR_MIX_1 and this

key will belong to dictionary ch_sol since it is between a fluid and a solid component. The

value of this key is an array of heat transfer coefficients evaluated calling Get_transp_coeff

and Eval_transp_coeff methods of the class according to the information stored in input file

conductor_couplign.xlsx; they can distinguish if the evaluation should be done in the nodal

rather than in the Gauss points thanks to the keyword “Where”. These methods and

specifically Eval_transp_coeff implements the second kind of constitutive relations discussed

in section 2.1.1.

Dictionary ch_ch is different from the previous two since it keeps into account that

channels can have both open or close contact perimeter that lead to different values of the

heat transfer coefficients, therefore another dictionary level is added with the keys Open and

Close. Both dictionaries have the same structure described for ch_sol and sol_sol.

Attribute dict_Gauss_pt stores also the transport coefficients, 𝐾’ , 𝐾’’ and 𝐾’’’ that are

deeply depicted in appendix A, so together with the HTC key three other keys (K1, K2 and K3)

are added, to which are associated likewise dictionaries to store these values. Each of these

dictionaries has a set of interface keys of the kind CHAN_i_CHAN_j with 𝑖 > 𝑗 with values the

transport coefficient array. These coefficients can be evaluated only for fluid components with

a not null value of the open perimeter fraction and their evaluation is performed with the

properties in the Gauss points.

Dictionary dict_discretization has three keys Grid_input, N_nod and xcoord. The first is a

dictionary itself that stores the input data loaded from file conductor_grid.xlsx for the i-th

CONDUCTOR, the second has the number of nodes of the spatial discretization, since the

number of elements, that is the number of intervals, is provided in input, while the third is the

numpy array of the spatial discretization. This single array is used for all the cable components

whenever it is necessary.

Another dictionary, dict_Step, is devoted to store two arrays essentials for the solution of

the linear system of equations. The first is associated to the key SYSVAR and it is the array of

the initialization at the initial time step and the array of the solution at each subsequent time

steps; the second key is called SYSLOD and it considers the contribution of the external source

of heating in the solid components. Both are used to build the known term vector, but they

can be thought as matrices with fixed number of rows (equal to 𝑁𝑡𝑜𝑡) and a variable number

of columns that is function of the method used to numerically integrate the linear system of

equations.

The last two mentioned attributes dict_obj_inventory and dict_topology have a well-

organized and articulated structure that will be addressed in the following subsection. It is

time to take a closer look to the methods of the class. The conductor constructor is discussed

in the next section since it is quite complicated; as a matter of fact, it invokes other methods

that in turn rely on other methods and all of them will be somehow explained in that section.

For the time being the focus is on the methods that are not called by __init__.

3 CODE DESCRIPTION

49

The method Initialization accomplishes several tasks: it builds the conductor mesh,

initializes the fluid and solid components variables, initializes current, magnetic field and

drivers for each solid component, constructs and initializes dict_Step attribute and saves the

computed thermophysical and electromagnetic properties in suitable files. Last but not least,

it starts the real time plot of selected variables, that will be discussed lather on. Several of

these operations are performed invoking functions from modules in subfolder

Utility_Function or other class methods like Operating_conditions, that evaluate at each time

steps solid components current, magnetic field and its gradient together with the external

drivers calling the methods discussed in section 3.2.2. This method also invokes CONDUCTOR

Eval_Gauss_point that on the one hand evaluate both fluid and solid components

thermophysical and electromagnetic properties (if any) in the Gauss points, taking advantage

of the components methods presented above; on the other hand invokes Get_transp_coeff

with the “Where” keyword set to Gauss to compute the heat transfer coefficients in the mid-

points.

The Post_processing method is similar to the Operating_conditions one but it allows to

evaluate the quantities in the nodal points, moreover it invokes functions

Save_space_convergence and Save_time_converence to store data useful if space and/or

time convergence analysis should be performed.

3.2.3.1 __INIT__ METHOD

This method can be roughly subdivided into four main actions:

1) read and load the content of the primary input files;

2) instantiate the cable components according to the information obtained with the

previous step;

3) get the conductor topology;

4) define all the other attributes.

Here the second and third points of the list are detailed.

In order to have an exhaustive picture of the conductor components, the attribute

dict_obj_inventory is introduced that, as its name suggests, is a Python dictionary that keeps

track of the inventory of the defined objects, grouping them in several categories (see Figure

3.2-1). Each of these categories are the keys of this dictionary to which a nested dictionary is

associated; key names are FluidComponents, MixSCStabilizer, Stabilizer, SuperConductor,

Jacket, Strands, SolidComponents and Conductor_components. Please notice that, apart

from the last one, all the keys coincide with the name of the classes that defines the cable

components objects. The first five dictionaries have three keys:

1. Name: string value that corresponds to the kind of the object, it will be assigned to the

NAME attribute of the class and used as the root of the object identifier;

2. Number: integer value that represents the total number of instantiated objects of the

kind specified in Name;

3. Objects: Python list that stores all the instantiated objects of the corresponding class.

3.2 CODE KERNEL: CONDUCTORS, FLUIDCOMPONENTS AND SOLIDCOMPONENTS CLASSES

50

Figure 3.2-1 Nested structure of the attribute dict_obj_inventory of class Conductors.

If no objects of a basic kind are instantiated Number is equal to zero, the Objects list is

empty while the Name key shows the object name in any case.

The dict_obj_inventory is declared as a dictionary in the __init__ method and its structure

is built within the method Conductor_components_instance that instantiates all the

conductor components defined by the user in primary input files conductor_input.xlsx and

conductor_operation.xlsx. For each sheet in these files, after the check that the number of

defined objects and their identifiers are the same, the corresponding class is instantiated to

create the objects, that are stored in the dictionaries above described. An error is raised if the

sheet name is not equal to one of the foreseen five possibilities. Outside the loop, the lists of

the dictionaries Strands, SolidComponents and Conductor_components are sorted

alphabetically and the total number of objects that belongs to each key is computed. The flow

chart of the method is proposed in Figure 3.2-2.

3 CODE DESCRIPTION

51

Figure 3.2-2 Flow chart of method Conductor_component_instance of class Conductors, invoked during the

conductor definition by the __init__ method.

3.2 CODE KERNEL: CONDUCTORS, FLUIDCOMPONENTS AND SOLIDCOMPONENTS CLASSES

52

The topology of the conductor is fully described in the attribute dict_topology that is

another example of structured nested dictionaries. Analogously to dict_obj_inventory, it is

declared as a dictionary in __init__ method while its structure is developed in method

Get_conductor_topology. To understand the architecture of this dictionary, it is crucial to

explain the different kinds of interface foreseen in the SC2 code between conductor

components. As already discussed about the dict_node_pt or the dict_Gauss_pt attributes of

CONDUCTOR objects, there are three physically meaningful interfaces, namely interface

between fluid components, interface between fluid and solid components and interfaces

between solid components. From the design point of view, the last two possibilities can only

be due to thermal contact between two or more components. From the fluid components side

there are two physical relevant alternatives, and namely the hydraulic parallel and the thermal

contact; the former means that the fluid components do not only exchange energy through

the close fraction of the contact perimeter, but they also exchange mass, momentum and

energy through the open fraction. These two possibilities modify significantly the coupling

between the fluid equations as described in section 2.1.3, and have an impact on flow

initialization and boundary conditions application that will be discussed in section 0. The main

issue related to the hydraulic parallel configuration is that the properties of the fluid in one

channel, especially the pressure, cannot be considered independently from the properties in

the other linked channels; moreover, the transitive property must be guaranteed in order to

not make serious mistakes. According to this property, if there are three channels with

identifiers CHAN_1, CHAN_2 and CHAN_3 and if CHAN_1 is in hydraulic parallel with CHAN_2

and CHAN_2 is in hydraulic parallel with CHAN_3, then CHAN_1 and CHAN_3 are also in

hydraulic parallel and they constitute a group of channels in hydraulic parallel. This is currently

kept into account in dict_topology. The possible interfaces for fluid components are clarified

in Figure 3.2-3.

There is another possibility left that is not achievable in practice and not physically relevant

but can be useful form the computational point of view when debugging, that is the absence

of interfaces between components. When this condition is applied to the fluid components

the resulting channels that are not in contact are called standalone channels; analogously for

the solid components. It is also allowed to remove the interfaces between fluid and solid

components. A standalone channel that is not in thermal nor in hydraulic parallel with other

channels is a condition that may occur so only the standalone channels are modeled in SC2

code.

Figure 3.2-3 Graphic representation of the three kind of interfaces between fluid components.

3 CODE DESCRIPTION

53

Taking into account these observations, it is easier to introduce and describe the structure

of attribute dict_topology declared as follows:

nested dictionaries declaration

self.dict_topology[“ch_ch”] = dict()

self.dict_topology[“ch_ch”][“Hydraulic_parallel”] = dict()

self.dict_topology[“ch_ch”][“Thermal_contact”] = dict()

self.dict_topology[“Stand_alone”] = dict()

self.dict_topology[“ch_sol”] = dict()

self.dict_topology[“sol_sol”] = dict()

The four possibilities are the main keys of the dictionary to which other dictionaries are

associated as values, except for the Standalone_channels that is a list of the CHAN objects that

are isolated from other channels.

The first key is split into two dictionaries: Hydraulic_parallel for fluid components in

hydraulic parallel, including the ones that are in parallel due to the transient properties;

Thermal_contact that groups the channels that are only in thermal contact. The third level is

a set of dictionaries that are identified by the reference component, i.e. the first component

in alphabetical order that constitutes the interfaces. This is the last dictionary level; its keys

are:

• ID of the components that contributes to the interface: the corresponding value is the

interface identifier, a list of strings that are obtained joining alphabetically with an

underscore the components identifiers;

• Actual_number: integer value that represent the current number of components that

constitute the interface; it is used in the dictionary construction.

• Number: integer, the total number of the components belonging to the interface;

• Group: list of all the objects that build the interfaces, its length must be equal to the

value in key Number. In the case of fluid components in hydraulic parallel, the list

keeps into account also the channels that are not directly in contact but indeed they

are thanks to the transitive properties.

A set of methods of class Conductors are devoted to gather cable topology exploiting only

the information in contact_perimeter_flag and in open_perimeter_fraction sheets of file

conductor_coupling.xlsx, the latter is used to determine if two channels are directly in

hydraulic parallel or only in thermal contact. The content of this input file is described in

appendix E.2.

When the object is instantiated, __init__ method invokes the Get_conductor_topology

method. Interfaces between solid components and interfaces between fluid and solid

components are quite straightforward to obtain since they are provided as input in sheet

contact_perimetre_flag. The complicated part is the one relative to the interfaces between

fluid components, since basing only on the value of the flag does not allow to get all the

channels in hydraulic parallel, because the ones for which the transitive properties should be

3.2 CODE KERNEL: CONDUCTORS, FLUIDCOMPONENTS AND SOLIDCOMPONENTS CLASSES

54

applied are not explicitly specified. This problem can be overcome looking at the rows and

columns index of the channels submatrix. To explain the idea, recall the previous example of

the three channels above. The configuration and the corresponding submatrix are shown in

Figure 3.2-4.

If Get_conductor_topology treats this configuration as does for the interfaces between

the solid components, the transitive properties would not be applied since the results is that

CHAN_1 and CHAN_2 are in hydraulic parallel as well as CHAN_2 and CHAN_3 but not CHAN_1

and CHAN_3 because the value of the flag is 0; however, they are in hydraulic parallel. To get

this, the method does not limit to read the values of the flags, but it interprets the hidden

information looking at the rows and columns index. The flag associated to the interface

CHAN_1_CHAN_2 is in (1,2) while the one associated to the interface CHAN_2_CHAN_3 is in

(2,3). The column index (2) of the first is equal to the row index (2) of the second; subordinate

methods to Get_conductor_topology catch this equality and establish that also CHAN_1 and

CHAN_3 even if they do not constitute an interface, are in hydraulic parallel. This applies only

if both the open perimeter fractions are larger than zero.

In general, this search is applied to all the pair of channels that are in direct hydraulic

parallel to find all the others that are indirectly related to them, constituting a group of fluid

components in hydraulic parallel. Practically this is done with method Get_hydraulic_parallel

that in turn calls Search_on_ind_col and Search_on_ind_row. After that all the channels in

hydraulic parallel are found, Get_conductor_topology identifies the ones in thermal contact

invoking Get_thermal_contact_channels. It can occur that a channel is both in hydraulic

parallel with some channels and in thermal contact with others; in this case, the method

knows that the hydraulic parallel condition is stronger than the thermal contact one, so in the

flow initialization it is treated like a channel that belong to a group of fluid components in

hydraulic parallel. Finally, the Find_Standalone_channels method is used to collect all the

CHAN_1 CHAN_2 CHAN_3

CHAN_1 0 1 0

CHAN_2 0 1

CHAN_3 0

CHAN_1 CHAN_2 CHAN_3

CHAN_1 0 0.2 0

CHAN_2 0 0.3

CHAN_3 0

(a) (b)

Figure 3.2-4 (a) fluid components configuration with CHAN_1 and CHAN_2 and CHAN_2 and CHAN_3 in
direct hydraulic parallel, therefore by the transitive property also CHAN_1 and CHAN_3 are in hydraulic
parallel;(b) top right matrix is the fluid components submatrix in sheet contact_perimeter_flag while the
bottom right is the corresponding submatrix in sheet open_perimeter_fraction. Notice the conditional
formatting in the cell, green cells should be filled, yellow cells should not, finally red cells are protected and
cannot be edited.

3 CODE DESCRIPTION

55

channels that are not in hydraulic parallel nor in thermal contact with other fluid components

(if any).

The other interfaces are dealt directly by method Get_conductor_topology.

3.2.4 SUMMARY

This section describes with some level of detail the main attributes and methods of the

classes that, altogether, participate in the mesoscale modeling of the cable. One of the basic

philosophies adopted is that the same kind of information is stored in attributes that have the

same name, and the same basic structure, while belonging to different objects. Unlike

FluidComponents and SolidComponents classes that have a small amount of attributes, class

Conductors has several attributes, many of them are well structured nested dictionaries.

Among them the most important are dict_object_inventory and dict_topology. The section

also describes the methods of the classes; emphasis is given to the __init__ method of the

Conductors class that allows to initialize all the other objects and get their topology.

3.3 SIMULATION CLASS: THE STEPS THROUGH THE SOLUTION

The Simulation class handles all the steps of the simulation at the higher level and it is

integrated with the graphical user interface that will be described in the next section. The

essential flow chart of the code is shown in Figure 3.3-1 and ultimately it coincides with the

method of this class.

The constructor method __init__ takes care of reading the first of the main input file,

Transitory_Input.xlsx calling the external function Read_input_file. The carried information

are saved in the attribute transient_input,a python dictionary data type. Two other important

tasks of this method are:

- build the base path, necessary to read all the input files including

Transitory_Input.xlsx.

- declare the list of conductors in the corresponding attributes list_of_Conducutors , set

equal to python list.

Simulation has two distinct methods that perform, respectively, the instance of class

Conductor and the CONDUCTOR object initialization; the reason behind is that when more

than one cable has to be modeled their initialization is subordinated to their interface. Method

Conductor_instance, as its name suggests, is devoted creating the objects. The input file

conductor_definition.xlsx is read at this point and a loop on the total number of conductors

in cell B1 is performed to make an instance of the class Conductor that calls the __init__

method of the class deeply discussed in section 3.2.3.1; then the objects are appended to the

list_of_Conductors attribute. After the loop, auxiliary function Load_fluid_tables from module

Auxiliary_functions.py is invoked to load the proper fluid properties according to the fluids

used in the simulation. In this way the tables are loaded only once and stored in the dictionary

dict_fluid_tables, an attribute of the class Simulation. Finally, the sheet

CONDUCTOR_COUPLING of workbook conductor_definition.xlsx is red and saved. This sheet

was not discussed until now: it contains a matrix that describes the interfaces between the

3.3 SIMULATION CLASS: THE STEPS THROUGH THE SOLUTION

56

Figure 3.3-1 Essential flow chart of the SC2 code.

conductors in the same way of file conductor_coupling.xlsx; however, since in this thesis a

single cable is considered, it has no effects.

For each instantiated object method, Conductor_initialization invokes the

CONDUCTOR.Initialization method that, in turn, initializes its basic components. This method

was shortly discussed in section 3.2, at this point it is worthily that the reader is aware of how

the fluid and solid components initialization is evaluated, because it is one of the most

important steps of the whole procedure. The former is managed by the module

Gen_Flow.py, the latter by the module SolidComponents_initialization.py. Further details

are give in following sections 3.3.1 and 3.3.2, while the problem solution is addressed in

section 3.3.3.

3 CODE DESCRIPTION

57

3.3.1 FLUID COMPONENTS INITIALIZATION

There are several possibilities for the fluid components initialization that are ruled by the

flag INTIAL, as an example the algorithms used to perform the initialization when the flag value

is |1|, |2|, |5|, are explained below. The first important consideration is that for positive value

of the flag, data came from the main input files, while if is negative they are loaded from

ancillary input files. Table 3.3-1 below summarizes the initialized properties for the different

value of INTIAL.

Alongside the flag value, another factor affecting fluid initialization is cable topology;

indeed, for the same value of INTIAL, different algorithms are implemented according that the

fluid components are in hydraulic parallel or not. It is worthy to mention that if the channels

are not in hydraulic parallel, they can be initialized with different values of INTIAL, however if

they belong to the same group of channels in hydraulic parallel, the same initial data must be

provided for all of them, that means the same absolute value of the flag must be provided in

the CHAN sheet of workbook conductor_input.xlsx. Function Check_INTIAL_values

guarantees that this initialization is correctly done by the user.

Table 3.3-1 Effects on the fluid components initialization and on the application of the boundary conditions
according to three possible values of the flag INTIAL, as far as fluid components are considered.

INTIAL Initialization Boundary condtions Notes

±1

𝑝𝑖𝑛𝑙 𝑝𝑖𝑛𝑙

𝑇𝑖𝑛𝑙 𝑇𝑖𝑛𝑙 Used as BC if 𝑣𝑖𝑛𝑙 > 0
𝑝𝑜𝑢𝑡 𝑝𝑜𝑢𝑡

𝑇𝑜𝑢𝑡 𝑇𝑜𝑢𝑡 Used as BC if 𝑣𝑜𝑢𝑡 < 0

±2

�̇�𝑖𝑛𝑙 𝑣𝑖𝑛𝑙 𝑣𝑖𝑛𝑙 from �̇�𝑖𝑛𝑙
𝑝𝑖𝑛𝑙 𝑇𝑖𝑛𝑙 Used as BC if 𝑣𝑖𝑛𝑙 > 0

𝑇𝑖𝑛𝑙 𝑝𝑜𝑢𝑡
𝑝𝑜𝑢𝑡 evaluated in flow

initialization
𝑇𝑜𝑢𝑡 𝑇𝑜𝑢𝑡 Used as BC if 𝑣𝑜𝑢𝑡 < 0

±5

�̇�𝑖𝑛𝑙 𝑣𝑖𝑛𝑙 𝑣𝑖𝑛𝑙 from �̇�𝑖𝑛𝑙
𝑇𝑖𝑛𝑙 𝑇𝑖𝑛𝑙 Used as BC if 𝑣𝑖𝑛𝑙 > 0
𝑝𝑜𝑢𝑡 𝑝𝑜𝑢𝑡

𝑇𝑜𝑢𝑡 𝑇𝑜𝑢𝑡 Used as BC if 𝑣𝑜𝑢𝑡 < 0

The easiest initialization occurs when INTIAL is equal to ±1 and the CHAN objects are not

in hydraulic parallel. In this case all the objects can be initialized independently from the

others. Since both the inlet and outlet pressure are known, the average pressure of the

channel can be evaluated and used to compute the properties, density and dynamic viscosity,

at the average pressure and inlet temperature. They are passed to the FluidComponents class

method Comupute_velocity that computes the velocity reversing the equation of the

hydraulic characteristic:

Δ𝑝 =
2𝑓𝜌𝐿𝑣2

𝐷ℎ
 (3.3-1)

3.3 SIMULATION CLASS: THE STEPS THROUGH THE SOLUTION

58

Moreover, this method returns the friction factor evaluated as function of Reynolds and

geometry with the method Friction. The initial mass flow rate is determined with sign

according to the relation of order among the inlet and outlet pressure.

If the objects are in hydraulic parallel it must be taken into account that both inlet and

outlet pressure instantly equalize to the average value. Therefore, the average inlet and outlet

pressure are evaluated and with these the average pressure of the channels:

𝑝𝑖𝑛𝑙,𝑎𝑣𝑒 =
∑ 𝑝𝑖𝑛𝑙,𝑖
𝑁𝑐ℎ,∥
𝑖

𝑁𝑐ℎ,∥

(3.3-2)

𝑝𝑜𝑢𝑡,𝑎𝑣𝑒 =
∑ 𝑝𝑜𝑢𝑡,𝑖
𝑁𝑐ℎ,∥
𝑖

𝑁𝑐ℎ,∥

(3.3-3)

𝑝𝑎𝑣𝑒 =
𝑝𝑖𝑛𝑙,𝑎𝑣𝑒 + 𝑝𝑜𝑢𝑡,𝑎𝑣𝑒

2
 (3.3-4)

Density and dynamic viscosities are evaluated at 𝑝𝑎𝑣𝑒 and 𝑇𝑖𝑛𝑙,𝑖 and with these parameters

method Comupute_velocity is invoked to get the velocity and the friction factor of each

channel; then the inlet mass flow rate is evaluated with the correct sign. Another important

difference is that if 𝑝𝑖𝑛𝑙,𝑎𝑣𝑒 and 𝑝𝑜𝑢𝑡,𝑎𝑣𝑒 differs from the values in input, the average values are

used when BCs are applied.

Initialization performed with INITIAL ±2 or ±5 is not that much different when the

channel is only in thermal contact or it is isolated. Since in both cases the inlet mass flow rate

is given, the goal here is to find the value of the missing pressure, respectively the outlet

pressure in the first case and the inlet pressure in the second one. The algorithm described in

detail is the one used if flag is |2|, then the changes to deal with the other values are discussed.

An initial guess on the pressure drop is evaluated using the inlet properties exploiting the

hydraulic characteristic equation (3.3-1) with the correct sign according to the inlet mass flow

rate that can be positive or negative to simulate a back flow. At this point an iterative

procedure starts, the outlet pressure is evaluated as:

𝑝𝑜𝑢𝑡 = 𝑝𝑖𝑛𝑙 − Δ𝑝𝑜𝑙𝑑 (3.3-5)

and it is exploited to evaluate the average pressure at which the properties (density, dynamic

viscosity, Reynolds and friction factor) are recomputed to evaluate the new value of the

pressure drop. The iterations end when the relative error is lower than the tolerance or the

maximum number of iterations is reached.

If INTIAL is equal to ±5 the initial guess on the pressure drop is evaluated at 𝑝𝑜𝑢𝑡 and 𝑇𝑖𝑛𝑙

and in the iterative procedure the inlet pressure rather than the outlet one is computed at

each iteration as:

𝑝𝑖𝑛𝑙 = 𝑝𝑜𝑢𝑡 + Δ𝑝 (3.3-6)

These evaluated values are also used as boundary conditions.

3 CODE DESCRIPTION

59

If the fluid components are in hydraulic parallel, the above iterative procedure can no

longer be applied because the mass flow rate repartition according to the channel

characteristic must be considered; as a matter of fact, it is not true in general, that the inlet

mass flow rate provided by the user for the channels is the actual value. SC2 code computes

them guaranteeing the respect of the physics and of the mass balance.

To compute the pressure-drop, the hydraulic characteristic of each channel is determined

and it is approximated with a parable having vertex in the origin of the Cartesian reference

frame (Δ𝑝, �̇�):

Δ𝑝𝑖 = Δ𝑝 = 𝛼𝑖�̇�𝑖𝑛𝑙,𝑖
2 𝑖 = 1,… ,𝑁𝑐ℎ,∥

(3.3-7)

with:

𝛼𝑖 =
2𝐿𝑓𝑖

𝐷ℎ,𝑖Σ𝑖
2𝜌𝑖

 𝑖 = 1,… ,𝑁𝑐ℎ,∥
(3.3-8)

This approximation is based on the hypothesis that the friction factor is weakly dependent

from the velocity, and it is the more accurate the more turbulent the motion is, as can be seen

from a Moody diagram.

If flag is equal to |2| the average inlet pressure is evaluated to keep into account that in

this case the pressure instantly equalize and this is exploited to compute the properties of

each channel at 𝑝𝑖𝑛𝑙,𝑎𝑣𝑒 and 𝑇𝑖𝑛𝑙,𝑖 ; else if INTIAL is |5| the average outlet pressure is

determined to get the fluid components properties at 𝑝𝑜𝑢𝑡,𝑎𝑣𝑒and 𝑇𝑖𝑛𝑙,𝑖.

At this point, the algorithm is the same in both cases and the 𝛼𝑖 can be evaluated. The

total inlet mass flow rate is given by:

�̇�𝑖𝑛𝑙,∥ = ∑ �̇�𝑖𝑛𝑙,𝑖

𝑁𝑐ℎ,∥

𝑖=1

(3.3-9)

Since the pressure drop is the same for all the channels of the group, results that:

�̇�𝑖𝑛𝑙,𝑖 = √
Δ𝑝

𝛼𝑖

(3.3-10)

Substituting in the equation of the total mass flow rate and isolating the Δ𝑝 yields:

Δ𝑝 = (
�̇�𝑖𝑛𝑙,∥

∑ 𝛼
𝑖

−
1
2𝑁𝑐ℎ,∥

𝑖=1

)

2

(3.3-11)

Known the pressure drop of the channels, the real mass flow rate distribution can be

evaluated exploiting equation (3.3-1) keeping into account the actual flow direction, then the

check on the mass conservation is performed.

3.3 SIMULATION CLASS: THE STEPS THROUGH THE SOLUTION

60

Finally, the missing pressure value is evaluated:

𝑝𝑜𝑢𝑡 = 𝑝𝑖𝑛𝑙,𝑎𝑣𝑒 − Δ𝑝 𝑖𝑓 𝐼𝑁𝑇𝐼𝐴𝐿 = ±2 (3.3-12)

𝑝𝑖𝑛𝑙 = 𝑝𝑜𝑢𝑡,𝑎𝑣𝑒 + Δ𝑝 𝑖𝑓 𝐼𝑁𝑇𝐼𝐴𝐿 = ±5 (3.3-13)

As usual this value is used also when the boundary conditions must be applied.

3.3.2 SOLID COMPONENTS INITIALIZATION

Flag INTIAL applies also to solid components, the allowed values are 0 and ±1. In the first

case solid components temperature spatial distribution is initialized basing on the initial fluid

components temperature distribution. Two possibilities are contemplated:

1) solid components are in thermal contact with fluid components.

2) solid components are not in thermal contact with fluid components.

In the former case, the initial temperature spatial distribution is evaluated as the average

weighted on the contact perimeters of the channels in contact with the solid components:

𝑇𝑠𝑐𝑜𝑚𝑝,𝑖𝑛𝑖 =
∑ 𝑃𝑐ℎ,𝑠𝑐𝑜𝑚𝑝𝑇𝑐ℎ,𝑖𝑛𝑖
𝑁𝑐ℎ,𝑡𝑐
𝑐ℎ

∑ 𝑃𝑐ℎ,𝑠𝑐𝑜𝑚𝑝
𝑁𝑐ℎ,𝑡𝑐
𝑐ℎ

 (3.3-14)

while in the latter it is assumed to be equal to the minimum temperature spatial distribution

among the ones of the fluid components.

User can impose the initial temperature spatial distribution of the solid components

setting the value of the flag equal to |1|: as usual positive value means that the values came

from the main input file, negative value implies that the temperature initialization is loaded

from a secondary input file. This last possibility allows more flexibility on the initialization;

indeed, for INTIAL +1 the temperature is a linear distribution between inlet and outlet

temperature given in input. This initialization can be done for all the solid components

independently from the conductor topology, the thermal imbalance is reinstated during the

transient evolution since the energy balance (3.3-15) must be guaranteed. The thermal energy

deposited in the solid components at the initial time is disposed by the coolant flow, as a result

the solid components temperature decrease while the outlet temperature of the coolant

increase and their value is halfway from the initial temperature and the coolant inlet

temperature.

∑ ∫𝑑𝑥 Σ𝑠𝑐𝑜𝑚𝑝 [(𝜌𝑠𝑐𝑜𝑚𝑝𝑐𝑝,𝑠𝑐𝑜𝑚𝑝𝑇𝑠𝑐𝑜𝑚𝑝)𝑡𝑏𝑒𝑔
− (𝜌𝑠𝑐𝑜𝑚𝑝𝑐𝑝,𝑠𝑐𝑜𝑚𝑝𝑇𝑠𝑐𝑜𝑚𝑝)𝑡𝑒𝑛𝑑

]

𝐿

0

𝑁𝑠𝑐𝑜𝑚𝑝

𝑠𝑐𝑜𝑚𝑝=1

= ∑ ∫ 𝑑𝑡 [(�̇�𝑐ℎ 𝑤𝑐ℎ)0 − (�̇�𝑐ℎ 𝑤𝑐ℎ)𝐿]

𝑡𝑒𝑛𝑑

𝑡𝑏𝑒𝑔

𝑁𝑐ℎ

𝑐ℎ=1

(3.3-15)

3 CODE DESCRIPTION

61

The final task of function initialization is to call function Plot_properties with the keyword

What set to “Initialization”, that plots the fluid and solid components properties spatial

distributions.

3.3.3 BCS APPLICATION AND PROBLEM SOLUTION

The problem solution is addressed at global level by the method Conductor_solution,

where is placed the while loop in time. All the functions needed to achieve this goal are

collected in module Transient_solution_functions.py. Until the end time of the simulation

is reached a new time step for each conductor is evaluated with function Get_time_step, that

will allow to use an adaptive time step. Then, for each conductor, the properties and external

drivers are evaluated at the Gauss points calling the method Operation_conditions of class

Conductor; these quantities are necessary to build the matrix elements and the known term

vector of the system of equations. This is done in function Step, that keeps into account the

selected method to integrate the ODE system with the named key “Method”. As stated in the

end of section 2.2.2, the final coefficient matrix of the system 𝐴𝑠𝑦𝑠 is a banded matrix and only

the band, i.e. the not null diagonals, are evaluated and stored to decrease the computational

time and save memory. Function Step non only limits to the matrix and known term vector

construction, it also applies the BCs and solves the linear system of equations.

As far as the application of the boundary condition is concern, solid components are

considered adiabatic, while for fluid components it is again ruled by flag INTIAL; it allows

different sets of boundary conditions, provided the inlet temperature is assigned, together

with one inlet and one outlet condition either on pressure or velocity. In case of a back flow,

negative outlet velocity, the outlet temperature is also imposed. Table 3.3-1 also shows the

values imposed on the known term vector for different flag values; on the coefficient matrix

the column corresponding to the parameter is zeroed out apart from the row index that

identifies the main diagonal, that is set equal to one.

The resulting linear system of equation is solved exploiting a method for banded matrices

without pivoting. First, 𝐴𝑠𝑦𝑠 is reduced to a non-singular system of equations, then the

backward substitution method is applied to get the solution. The solution array is subdivided

into smaller arrays that collect the spatial distribution at the current time step of the

unknowns, namely velocity, pressure and temperature for the fluid components and the

temperature for the solid components that are used as initialization for a new computation.

During the loop, some spatial distributions and time evolutions are saved in suitable files.

At the end of the transient, method Conductor_post_processing further elaborates these data

making plots of the solution, spatial distributions at user required time steps and time

evolutions at given spatial locations, as is deeply discussed in section 0.

3.3.4 SUMMARY

Class Simulation direct from the higher possible level all the steps of the simulation. Its

constructor method reads the first of the main input files and saves its content in an attribute.

Among this information the name of the next main input file to be red is found and thanks to

it the instantiation of class Conductors can be done within method Conductor_instantiation.

3.4 A USER-FRIENDLY GUI

62

After that, all the user defined cables are instantiated, they are initialized invoking method

Conductor_initialization. In this section attention was paid in describing the effects of the

conductor topology and the given input values, according to INTIAL flag value, on the fluid

components initialization, as well as the possibility foreseen for the solid component

initializations.

The while loop to solve the transient can be found in method Conductor_solution and at

each new time step it calls the Step function, one of the most important functions of all the

code that builds the coefficient matrix of the system and the known term vector exploiting as

much as possible the array smart notation, considering the numerical scheme chosen to march

in time, applies the BC and solves the resulting linear system of equations.

Finally, a rough post processing of the data is performed calling

Conductor_post_processing method.

3.4 A USER-FRIENDLY GUI

SC2 graphical user interface is developed in module SC2_GUI. It is written exploiting the

python standard library tkinter and it is based on the python class concept. Even if it is still in an

embryonic phase of the realization, it allows user to easily manage the essentials actions to run

a simulation. It consists of two parts, on the one hand the main window to deal with the

simulation, on the other hand the real time plots of selected variables.

The GUI main window consists of a menu bar with five so called cascades as shown in Figure

3.4-1, whose options are briefly explained in Table 3.4-1.

Figure 3.4-1 SC2 Graphical User Interface main window; menu bar composed by five cascades.

To each option of the cascade correspond one or more class methods that actually make the

selected actions. As an example, Load_input_file opens the window that allows to select the

folder where are stored the input file for the simulation; Create_directories and

Open_existing_directories respectively open the window to create a new file or an existing folder

in which save the simulation results; finally Run_simulation is the method that collects the cited

Simulation class methods that manages all the steps of the simulation.

3 CODE DESCRIPTION

63

Table 3.4-1 List of all the available options in the GUI distinguishing from the already and not yet
implemented. The table also provides a succinct description of the options.

Cascade Option Implemented Description

Simulation
input

Load input
data

yes
Allows user to select the directory where the
input flies for the simulation are saved.

Save
Simulation

results

Create
main

directory
yes

Allows user to create a new main folder
within directory Simulation_results in which
to save the results of a simulation set.

Open main
directory

yes
Allows user to save the result of a simulation
in an already existent main folder within
directory Simulation_results.

Simulation
control panel

Run yes When clicked the simulation begins.

Pause no If clicked the simulation pauses.

Continue no
Allows to continue the simulation once it
was paused.

Stop no
Arrest the simulation but does not close the
main window

Close yes
Closes the simulation main window killing
the simulation if in progress.

Simulation
drivers

Change
drivers

no
Allows to change the drivers of the
simulation while in progress to correct some
unexpected behavior.

Help?
User guide:
input files

yes
Link to a pdf file that collects detailed
information on the input file compilation.

3.4.1 RUN…

To give a sample of the ease of interaction with the interface, this section consists of a

short tutorial on how to run a simulation, provided the input files are correctly filled by the

user.

The first step is to open the code with a text editor and run the Simulation_starter.py

module or execute it from a terminal. As mentioned in section 3.1 this module makes an

instance of class SC2_GUI that results in the pop up of the GUI main window (see Figure 3.4-1).

3.4 A USER-FRIENDLY GUI

64

At this point there are only two available options, the “Load simulation input data” in

cascade “Simulation input” and the help guide for the input files compilation. To load the input

files, click on the cascade “Simulation input” and select the only available options as shown in

Figure 3.4-2.

A window will pop up and it lists the folders within directory Description_of_components;

users should select the folder where the compiled input files for the current simulation will be

saved, for example test_ITER_TF_heating as in the following Figure 3.4-3.

Figure 3.4-3 Dialog windows that pop ups when the command “Load input data” is selected by the user. It

allows to select from the folder that collects the different sets of input files (Description_of_Components) the

one edited for the current simulation.

Figure 3.4-2 GUI menu bar cascades options available at the beginning of the simulation: (left) command
“Load input data” allows to read and load all the user defined input files; (right) “User guide: input files” gives
support in the input file compilation.

3 CODE DESCRIPTION

65

Once the folder is selected the option Load simulation input data in cascade “Simulation

input” is no longer available (Figure 3.4-4), however both the options of the second cascade

are now clickable.

The user could decide to save the simulation results in a new main folder of the

Simulation_results directory or to store them in an already existing main folder. In the former

case, the option “Create simulation main directory” can be selected, in the latter the

command “Open simulation main directory” should be considered. and Figure 3.4-6 shows

the windows that will be opened whether either alternative is selected.

Figure 3.4-4 After the selection of the input folder: (left) command “Load input data” is no longer available;
(right) possible choices for saving the output, new main directory or already existing main directory.

Figure 3.4-5 Dialog windows that pop ups when the command “Create main directory” is selected by the user. It

allows to create a new main directory where to save the outcome of the simulations (both .tsv files and .eps figures)

directly in the folder that gathers all the outcomes (Simulation_results).

3.4 A USER-FRIENDLY GUI

66

The first choice allows to create a new folder inside directory Simulation_results as shown
in ; the second choice opens a window that shows the list of already created folders in the
directory.

In this tutorial the first approach is selected, the new folder where the outcome of the

simulation will be saved is called GUI_tutorial. Now, since the code knows where to store the

simulation results, commands “Create simulation main directory” and “Open simulation main

directory” are no longer available in the cascade “Save Simulation results”. User should

consider the third cascade and press the only clickable option (“Run”) to launch the simulation

as shown in Figure 3.4-8.

An information box, that inform the user that the simulation is launched, will open; click

“Ok” to close the box (Figure 3.4-7). At the end of the simulation and of the default post

processing another window similar to the previous one informs that the whole procedure has

been completed successfully; again, click the “Ok” button to close the window.

To close the GUI, select the command “Close” in the “Simulation control panel” cascade

as shown in Figure 3.4-9, the only one still available except the help guide at this point. Whit this

last action the simulation session ends.

Figure 3.4-6 Dialog windows that pop ups when the command “Open main directory” is selected by the user. It
allows to open an already existent main directory where to save the outcome of the simulations (both .tsv files and
.eps figures) directly in the folder that gathers all the outcomes (Simulation_results).

3 CODE DESCRIPTION

67

Figure 3.4-9 To close the simulation session, select the command “Close” form the “Simulation control panel”

cascade.

Figure 3.4-8 After deciding where to save the simulation results: (left) both commands in “Save
Simulation results” cascade are no longer available; (right) command “Run” in the “Simulation control panel”
to start the simulation.

Figure 3.4-7 Information box: (left) after launching the simulation, a window informs of the start of the
simulation showing its name, clicking the Ok button the simulation begins; (right) at the end of the simulation
a windows shows up confirming the correct execution of the simulation and the default post-processing of
the data.

3.5 EASE OF POST PROCESSING

68

3.4.2 …AND CHECK (REAL-TIME VISUALIZATION OF THE RESULTS)

One of the innovative features of the code is the Run-AND-check paradigm compared to

the Run-THEN-check used in other code [48]–[50]. This new concept is achieved with the

combination of two options in the GUI: the possibility of change the driver as the simulation

progresses and the real time visualization of the results. As cited at the beginning of section

3.4, the former is not yet available, however the latter is already reality. After that, the

command “Run” is clicked to start the simulation and the information window is closed, a

group of figure appears that shows the time evolution of the maximum temperatures of fluid

components as well as their inlet and outlet mass flow rate, and solid components maximum

temperature. All these plots update at each new time step, so they allow to have an idea on

what is going on during the simulation, for instance if there are some unexpected oscillations

or if odd values of temperatures are obtained during the transient. Exploiting the information

provided by these figures, the user should be able to evaluate if change the drivers to correct

the simulation outcome.

3.4.3 SUMMARY

The graphical interface of the code, although in an embryonic state, allows the user to

execute the basic instructions for launching the simulation and to keep its progress under

control, thanks to the real-time graphs of some relevant parameters such as maximum

temperatures and inlet and outlet mass flow rates.

It assumes the form of an interactive menu bar composed of five cascades for a total of

ten commands, not all yet available. The path to launch a simulation is straightforward and it

is described in section 3.4.1

3.5 EASE OF POST PROCESSING

The outcome of a generic simulation is a bunch of data that must be stored, organized and

eventually further elaborated to get the desired results. This digression extends and

completes what was introduced in section 0 about the folder organization. Specifically, the

first section clarifies how the output of a single simulation and of a set of simulations is

grouped and exhibited to user; the second and the last sections deal with the data

postprocessing, respectively describing the default and the advanced post processing main

features.

3.5.1 HOW THE DATA ARE MANAGED

The processing of the output of the simulation is twofold according that it is used to

produce basic plots or to perform further analyzes. In this thesis, the first is referred as default

post processing while the latter as advanced post processing and they will be addressed in the

following two sections respectively; the current one explains how the data are organized and

stored by the SC2 code.

3 CODE DESCRIPTION

69

The above cited classification is not the only possible one; the program is able to

distinguish if a data is saved by default or because it is asked by the user, as well as the kind

of data saved (if it is a spatial distribution or a time evolution of the considered properties).

Before diving deeper into these details, the main input file conductor_diagnostic.xlsx is

further explained. As mentioned in section 0, the workbook is composed by sheets Space and

Time that respectively allow user to set, for each defined cable, times (sheet Space) and

coordinates (sheet Times) at which spatial distributions and time evolutions are saved. An

arbitrary number of independent values can be provided by user for both the sheets;

moreover, it is not mandatory although recommended, that the values are sorted. Initial and

final spatial distributions together with inlet and outlet time evolutions are automatically

saved by the code, so user cannot enter these sensors. The limit case of empty sheets is

foreseen and, in this case, only the initialization and the spatial distribution at the end of the

simulation are saved; analogously the inlet and outlet time evolutions are stored by default.

Figure 3.5-1 Tree of the folder Simulation_result.

3.5 EASE OF POST PROCESSING

70

Figure 3.5-2 Tree of the Output subfolder. Notice the recurrent inner structure of the tree.

The general structure of the directory Simulations_results is shown in Figure 3.5-1. For

the time being, let’s focus on a folder that collects the outcome of a single simulation, such as

TEND_100_STPMIN_0.1_NELEMS_100 in Figure 3.5-2. The Output sub-directory groups four

folders: Initialization, Solution, Space and Time. Two of them are devoted to store the data

required with conductor_diagnostic.xlsx, respectively Space for the spatial distributions and

Time for the time evolutions. Both these folders share the same organization, as shown in

Figure 3.5-2: they collect a subfolder for each defined cable, named with the conductor ID,

3 CODE DESCRIPTION

71

and the Benchmark subfolder that will be discussed later. The Tab-Separated Value (TSV,

extension .tsv) format is chosen to save the data since it is supported by Pandas and uses a

not ambiguous separator as opposed to the Comma Separated Value (CSV) extension,

however it is not the smarter solution as will be discussed in the final chapter 5. In general, all

files are equipped with a header that uniquely identify their content; they are created only if

the basic conductor component object of a specific kind is defined to model the cable.

As far as spatial distribution is considered, the saving procedure consists of two steps:

1. for each time in input, SC2 code calls the function Save_simulation_space that

writes files that collects the conductor spatial discretization and the relevant

properties; Table 3.5-1 reports for each basic component the adopted naming

scheme and the properties stored. These data are saved during the transient

solution.

2. At the end of the transient a single file for each relevant property is generated in

which the spatial distribution at all the given times is saved. This reshape is

automatically performed by the code thanks to function

Reorganize_spatial_distribution, exploiting pandas DataFrame features and allows

a more manageable data processing. Further details can be obtained from Table

3.5-1.

A single file called xcoord.tsv collects the conductor spatial discretization at all the

required times since, if the mesh is adaptive, it may change from one time step to another.

Time evolutions are saved in files that are organized similarly to the reorganized file of the

spatial distribution described above. For each component and for its relevant property, a file

that collects the time evolutions at the given spatial coordinates together with the time steps

is created by function Save_simulation_time that writes and updates files as shown in Table

3.5-2.

3.5 EASE OF POST PROCESSING

72

Table 3.5-1 Naming scheme and content of the files saved to store the spatial distributions of variables at the
user defined time steps. Both formats are detailed.

Object Name scheme Example Content

CHAN

CHAN.ID_([t]s)_sd.t
sv

CHAN_1_(5.0s)_sd.
tsv

Spatial discretization, channel
velocity, pressure, temperature and
density spatial distributions at user

required time = t (ex 5.0 s).

CHAN.ID_density_s
d.tsv

CHAN_1_density_s
d.tsv

Channel density spatial distributions
at all the user required time steps.

CHAN.ID_pressure
_sd.tsv

CHAN_1_pressure_
sd.tsv

Channel pressure spatial distributions
at all the user required time steps.

CHAN.ID_temperat
ure_sd.tsv

CHAN_1_temperatu
re_sd.tsv

Channel temperature spatial
distributions at all the user required

time steps.

CHAN.ID_velocity_s
d.tsv

CHAN_1_velocity_s
d.tsv

Channel velocity spatial distributions
at all the user required time steps.

STR_MIX

STR_MIX.ID_([t]s)_
sd.tsv

STR_MIX_1_(5.0s)
_sd.tsv

Spatial discretization and mix strand
temperature spatial distribution at

user required time = t (ex 5.0 s).

STR_MIX.ID_tempe
rature_sd.tsv

STR_MIX_1_tempe
rature_sd.tsv

Mix strand temperature spatial
distributions at all the user required

time steps.

STR_SC

STR_SC.ID_([t]s)_s
d.tsv

STR_SC_1_(5.0s)_
sd.tsv

Spatial discretization and
superconductor strand temperature
spatial distribution at user required

time = t (ex 5.0 s).

STR_SC.ID_temper
ature_sd.tsv

STR_SC_1_temper
ature_sd.tsv

Superconductor strand temperature
spatial distributions at all the user

required time steps.

STR_STAB

STR_STAB.ID_([t]s)
_sd.tsv

STR_STAB
1(5.0s)_sd.tsv

Spatial discretization and stabilizer
strand temperature spatial

distribution at user required time = t
(ex 5.0 s).

STR_STAB.ID_tem
perature_sd.tsv

STR_STAB_1_temp
erature_sd.tsv

Stabilizer strand temperature spatial
distributions at all the user required

time steps.

Z_JACKET

Z_JACKET.ID_([t]s)
_sd.tsv

Z_JACKET_1_(5.0s
)_sd.tsv

Spatial discretization and jacket
temperature spatial distribution at

user required time = t (ex 5.0 s).

Z_JACKET.ID_temp
erature_sd.tsv

Z_JACKET_1_temp
erature_sd.tsv

Jacket temperature spatial
distributions at all the user required

time steps.

3 CODE DESCRIPTION

73

Table 3.5-2 Naming scheme and content of the files saved to store the time evolutions of variables at user
defined spatial coordinates.

Object Name scheme Example Content

CHAN

CHAN.ID_density_t
e.tsv

CHAN_1_density_te
.tsv

Time steps and channel density
time evolutions at all user
required spatial locations.

CHAN.ID_inlet_outl
et_te.tsv

CHAN_1_inlet_outle
t_te.tsv

Time steps and channel inlet and
outlet velocity, pressure,

temperature density and mass
flow rate time evolutions.

CHAN.ID_pressure
_te.tsv

CHAN_1_pressure_
te.tsv

Time steps and channel pressure
time evolutions at all user
required spatial locations.

CHAN.ID_temperat
ure_te.tsv

CHAN._1_temperat
ure_te.tsv

Time steps and channel
temperature time evolutions at all

user required spatial locations.

CHAN.ID_velocity_t
e.tsv

CHAN_1_velocity_t
e.tsv

Time steps and channel velocity
time evolutions at all user
required spatial locations.

STR_MIX

STR_MIX.ID_B_fiel
d_te.tsv

STR_MIX_1_B_field
_te.tsv

Time steps and mix strand
magnetic field time evolutions at
all user required spatial locations.

STR_MIX.ID_T_cur
_sharing_te.tsv

STR_MIX_1_T_cur
_sharing_te.tsv

Time steps and mix strand current
sharing temperature time

evolutions at all user required
spatial locations.

STR_MIX.ID_tempe
rature_te.tsv

STR_MIX_1_tempe
rature_te.tsv

Time steps and mix strand
temperature time evolutions at all

user required spatial locations.

STR_SC

STR_SC.ID_B_field
_te.tsv

STR_SC_1_B_field
_te.tsv

Time steps and superconductor
strand magnetic field time

evolutions at all user required
spatial locations.

STR_SC.ID_T_cur_
sharing_te.tsv

STR_SC_1_T_cur_
sharing_te.tsv

Time steps and superconductor
strand current sharing

temperature time evolutions at all
user required spatial locations.

STR_SC.ID_temper
ature_te.tsv

STR_SC_1_temper
ature_te.tsv

Time steps and superconductor
strand temperature time

evolutions at all user required
spatial locations.

STR_STAB
STR_STAB.ID_B_fi

eld_te.tsv
STR_STAB_1_B_fi

eld_te.tsv

Time steps and stabilizer strand
magnetic field time evolutions at
all user required spatial locations.

3.5 EASE OF POST PROCESSING

74

Object Name scheme Example Content

STR_STAB.ID_tem
perature_te.tsv

STR_STAB_1_temp
erature_te.tsv

Time steps and stabilizer strand
temperature time evolutions at all

user required spatial locations.

Z_JACKET
Z_JACKET.ID_temp

erature_te.tsv
Z_JACKET_1_temp

erature_te.tsv

Time steps and jacket temperature
time evolutions at all user
required spatial locations.

From Table 3.5-2 results that files named CHAN.ID_inlet_outlet_te.tsv collect channels

inlet and outlet velocity, pressure, temperature, density and mass flow rate. This is another

example of default data saving and it is contemplated to better handle channels inlet and

outlet properties.

Both the Space and Time folders contain the subfolder Benchmark. In this directory the

user should save the files of the spatial distributions and the time evolutions he/she gets from

other codes in order to perform the outer benchmark. Typically, there is only one more level

that coincides with the folders named with the CONDUCTOR.ID where all the useful files

should be saved, as can be seen from Figure 3.5-2.

The other two Output sub-directories, Initialization and Solution, are the locations where

the code saves the simulation initialization and the final solution respectively. These two

folders have the same organization: they collect the same number of folders as the number

of defined cables, named with the CONDUCTOR.ID, in which files with the first and last

obtained spatial distributions are stored respectively: indeed, the properties stored in these

files are the same, the difference being the time at which they are evaluated, namely 𝑡 =

𝑡𝑏𝑒𝑔 = 0 𝑠 in folder Initialization and 𝑡 = 𝑡𝑒𝑛𝑑 𝑠 in folder Solution. The file content is

detailed in Table 3.5-3 while an example of tree is again in Figure 3.5-2. The function in charge

of this is Save_properties.

To certify the accuracy of the solution obtained with a simulation, typically space and time

convergence analyzes should be accomplished, and in this case, several simulations are run

that only differs for a single input value apart from all the others. Specifically, the space

convergence is performed changing the number of elements of the spatial discretization while

for the time convergence some orders of magnitude of the time step are explored. For these

reasons, both analyzes define a set of simulations. Inside the folder that represents the chosen

method for the ODE system solution (Figure 3.5-1), there are collected all the simulations

performed with that method together with the folders Space_convergence and

Time_convergence. These are created by default by SC2 code and they are devoted to save

and organize the data useful for space and time convergence analyzes, respectively. They

share a similar structure that will be described here; while reading, refer to that expand the

tree of these folders.

3 CODE DESCRIPTION

75

Table 3.5-3 Naming scheme and content of the files that stores the initial and the final spatial distributions
of the variables.

Object Name scheme Example Content

CHAN CHAN.ID.tsv CHAN_1.tsv

Conductor spatial discretization and
channel initial/final spatial distributions

of velocity, pressure, temperature,
density, enthalpy, entropy, thermal

conductivity, Grunaisen, speed of sound,
specific heat at both constant pressure

and volume, Reynolds and Prandtl
dimensionless number together with

mass flow rate.

STR_MIX STR_MIX.ID.tsv STR_MIX_1.tsv

Conductor spatial discretization and mix
strand initial/final magnetic field,
temperature and current sharing
temperature spatial distributions.

STR_SC STR_SC.ID.tsv STR_SC_1.tsv

Conductor spatial discretization and
superconductor strand initial/final

magnetic field, temperature and current
sharing temperature spatial distributions.

STR_STAB STR_STAB.ID.tsv STR_STAB_1.tsv

Conductor spatial discretization and
stabilizer strand initial/final magnetic

field and temperature spatial
distributions.

Z_JACKET Z_JACKET.ID.tsv Z_JACKET_1.tsv
Conductor spatial discretization and

jacket initial/final temperature spatial
distribution.

3.5 EASE OF POST PROCESSING

76

Figure 3.5-3 Tree of the convergence analyzes subfolders: (a) Space_convergence; (b) Time_convergece. The
structure of the trees is symmetric.

3 CODE DESCRIPTION

77

The folder Space_convergence groups folders that are related to the set of simulations

used to perform the space convergence study. Each folder name is built combining the end

time of the simulation and the minimum value of the time step, as shown in . Within this folder

there are the well-known Output and Figures sub-folders that are used to save the outputs

of the simulations and the plots. Beyond the usual folders, the tree shows three files with the

extension tsv. The first file, CONDUCTOR.ID_delta_x.tsv, stores both the number of

elements and the discretization parameters used to make the space convergence analysis; the

second is called CONDUCTOR.ID_mass_energy_sc.tsv and here are saved the values of

the global mass and energy balances on the conductor, together with the number of elements

and the discretization parameters. These balances are performed at the end of the simulation

invoking the method Mass_energy_balance of class Conductors:

Δ𝑚 = Δ𝑡 (∑�̇�𝑖,𝑖𝑛𝑙

𝑁𝑐ℎ

𝑖

− ∑�̇�𝑖,𝑜𝑢𝑡

𝑁𝑐ℎ

𝑖

) (3.5-1)

Δ𝐸 = Δ𝑡 [∑�̇�𝑖,𝑖𝑛𝑙 (𝑤𝑖,𝑖𝑛𝑙 +
𝑣𝑖,𝑖𝑛𝑙
2

2
)

𝑁𝑐ℎ

𝑖

− ∑�̇�𝑖,𝑜𝑢𝑡 (𝑤𝑖,𝑜𝑢𝑡 +
𝑣𝑖,𝑜𝑢𝑡
2

2
)

𝑁𝑐ℎ

𝑖

] (3.5-2)

In the last equation the contribution of the potential energy (𝑔𝑧) is neglected.

Inside the other folders the spatial distribution of the solution at the end of the simulation

is saved. The naming scheme and the content of the files is shown in Table 3.5-4.

Table 3.5-4 Naming scheme and content of the files saved to store the solution spatial distribution at the end
of the simulation to perform the space convergence analysis.

Object Name scheme Example Content

CHAN CHAN.ID_(N+1).tsv CHAN_1_(100).tsv
Channel velocity, pressure
and temperature spatial

distributions at TEND.

STR_MIX STR_MIX.ID_(N+1).tsv STR_MIX_1_(100).tsv
Mix strand temperature

spatial distribution at TEND

STR_SC STR_SC.ID_(N+1).tsv STR_SC_1_(100).tsv
Superconductor strand

temperature spatial
distribution at TEND

STR_STAB STR_STAB.ID_(N+1).tsv STR_STAB_1_(100).tsv
Stabilizer strand

temperature spatial
distribution at TEND

Z-JACKET Z_JACKET.ID_(N+1).tsv Z_JACKET_1_(100).tsv
Jacket temperature spatial

distribution at TEND

The architecture of folder Time_convergence is dual with respect to folder

Space_convergence. The first difference is that the subfolder names are obtained joining the

end time of the simulation and the number of elements used to perform the spatial

discretization. The inner structure is very similar, starting from the presence of Output and

3.5 EASE OF POST PROCESSING

78

Figures folders. In the former, each cable has its own folder that is organized as described

above, furthermore there are the three files analogous to the previous case. File

CONDUCTOR.ID_mass_energy_tc.tsv stores the time steps used for the analysis and the

values of mass and energy balance evaluated with the different time steps according to

equations (3.5-1) and (3.5-2) at the end of the simulations. The time steps used to perform

the analysis are stored in file CONDUCTOR.ID_delta_t.tsv while for each conductor basic

components the values are organized as explained in the following Table 3.5-5.

Both folders Space_convergence and Time_convergence are supervised by function

Save_convergence_data, that is able to deal with the similarities and the differences that

characterize space and time convergence analyzes. This function does not create files called

CONDUCTOR.ID_sc_outcome_mass_energy.tsv and

CONDUCTOR.ID_tc_outcome_mass_energy.tsv that will be addressed in section 3.5.3.

Table 3.5-5 Naming scheme and content of the files saved to store the spatial distribution of the solution at
the end of the simulation to perform the time convergence analysis.

Object Name scheme Example Content

CHAN CHAN.ID_(STPMINs).tsv CHAN_1_(0.1s).tsv

Channel velocity,
pressure and

temperature spatial
distributions at TEND.

STR_MIX STR_MIX.ID_(STPMINs).tsv STR_MIX_1_(0.1s).tsv
Mix strand

temperature spatial
distribution at TEND.

STR_SC STR_SC.ID_(STPMINs).tsv STR_SC_1_(0.1s).tsv
Superconductor strand

temperature spatial
distribution at TEND.

STR_STAB STR_STAB.ID_(STPMINs).tsv STR_STAB_1_(0.1s).tsv
Stabilizer strand

temperature spatial
distribution at TEND.

Z-JACKET Z_JACKET.ID_(STPMINs).tsv Z_JACKET_1_(0.1s).tsv
Jacket temperature

spatial distribution at
TEND.

3.5.2 DEFAULT POST PROCESSING

The default post processing consists of creating plots of the properties stored for the single

simulation, organized as described above. These are stored in the Figures subfolder that has

the same structure of the Output one. Indeed, also in this directory there are the four folders

Initialization, Solution, Space and Time that respectively collects the figures of the

initialization, the solution, the spatial distribution and the time evolution. The basic structure

of all these folders coincides with the group of folders named with the basic components ID

collected within the CONDUCTOR.ID folder, as shown in Figure 3.5-4. The outer benchmark

outcomes are saved in sub-folder Benchmark of Space and Time. The figure name

3 CODE DESCRIPTION

79

corresponds to the plotted properties and the selected format is the vectorial Encapsulated

PostScript (EPS).

Figure 3.5-4 Tree of the subfolder Figures. Notice the recurrent inner structure of the tree.

3.5 EASE OF POST PROCESSING

80

The figures in Initialization and Solution folders are standard since in each figure a single

curve is plotted, corresponding to the initial or final spatial distribution of the properties listed

in. These figures are automatically realized by the code thanks to function Plot_properties,

regardless of user input and can be useful to check if the simulation input data are correct and

if the corresponding solution is reasonable.

The management of the spatial distributions and time evolutions is less straightforward

because, as mentioned, user in conductor_diagnostic.xlsx can prescribe an arbitrary

number of times and spatial locations; therefore, making a single figure for each value not is

not practical to understand and compare the outcomes. Basing on these considerations, the

spatial distributions and time evolutions plots are automatically grouped together into multi-

axes figures exploiting the tools of matplotlib python library. Each figure can show at most

twenty curves subdivided into no more than four horizontal subplots, that means that a

maximum of five curves can be shown for each subplot. Subplots are filled with curves in such

a way that their distribution is as uniform as possible to improve the readability of the figure.

The data are tidied up according to the times and spatial locations respectively, sorted in

ascending way. Each subplot is equipped with its own legend while the title and the horizontal

axis are shared to enhance the readability. If user asks for more than twenty values, the curves

are subdivided into several figures with just the same structure; they can be distinguished

thanks to a numerical suffix in the name, for instance velocity_1.eps and velocity_2.eps and

the legend labels are always sorted in ascending way. The function that performs this task is

called Make_plots that works for both space distributions and time evolutions plots.

3.5.3 ADVANCED POST PROCESSING

Advanced post processing means analyzing data from convergence studies and

benchmarking against other codes. These analyzes can be done with an ancillary tool of the

program based on the GUI shown in Figure 3.5-5 that is a menu bar that allows to select

between several options, briefly explained in Table 3.5-6.

Figure 3.5-5 Graphical User Interface main window on the auxiliary tool for the advanced post processing of
the data; menu bar composed by six cascades.

3 CODE DESCRIPTION

81

Table 3.5-6 List and description of all the available cascades in the GUI auxiliary tool for the advanced post
processing.

Cascade Description

Space
convergence

performs the space convergence analysis using the data collected in
folder Space_convergence.

Time convergence
performs the time convergence analysis with the data found in folder

Time_convergence.

Compare space
convergence

allows user to compare the results of the space convergence
analyzes according to the time steps.

Compare time
convergence

allows user to compare the results of time convergence analyzes
according to the number of elements.

Outer benchmark
is the cascade devoted to make the benchmark of the solution

obtained with the SC2 code against the solution obtained with other
validated codes for the same simulation, in this work it is the 4C.

Innerbenhmark
can be used to check the inner consistency of the code once the
benchmark against other validated codes is thoroughly verified.

The space convergence analysis is performed by changing the number of elements that

are used to make the spatial discretization of the computational domain, keeping all the rest

of the input frozen. On the other hand, the time convergence is performed changing the time

step used to march in time. The former requires that a new steady state is reached while the

latter must be done at a time for which the transient is not yet exhausted. In any case, the

solution spatial distributions at the last time step (the end of the simulation) are used to make

the analysis, together with the values of the mass and energy balances. These data are stored

in folders Space_convergence and Time_convergence as described in section 3.5.1 and are

used to evaluate the overall error of each simulation.

The outcome is stored in files in the Space_convergence or Time_convergence Output

subfolder according to the same criteria described above (refers to For all of these inner

benchmark kinds, user can chose three possible outcomes namely the full benchmark that

make the comparison in both space and time, the space only and the time only that

respectively performs the comparisons only on the spatial distributions and on the time

evolutions.

Regardless of the selected benchmark (outer or inner), the figures obtained after the

analysis are characterized by two horizontal subplots that share the abscissa axis. The top one

compares no more than 2 pairs of curves to verify if they overlap; the bottom one is a

semilogarithmic plot of the relative error that shows up to two curves. Each subplot has its

legend and its title to better identify what they represent. If it is an outer benchmark, these

figures are saved in the Benchmark subfolders of Space and Time folders within the Figures

directory, while if it is an inner benchmark the figures are saved inside the directory

Inner_Benchmark_results where the same nested structure discussed above is replied. In any

case, their organization follows the schemes extensively discussed in the previous sections.

3.5 EASE OF POST PROCESSING

82

Examples of space and time convergence analyzes as well as benchmarks with respect to

4C and inner ones can be found in the next chapter.

Table 3.5-7); moreover, figures in logarithmic scale are automatically realized to easily

control if the expected orders of convergence are achieved.

The outer benchmark against 4C code is executed comparing available data for spatial

distributions and time evolutions not only of the solution, but also of the channel inlet and

outlet mass flow rates, after that they are preprocessed in a format that is coherent to the

one adopted by the SC2 code. The outer benchmark procedure consists of two steps: the

check of the coherence of the data for both the codes and then the comparison of the spatial

distributions and time evolutions, the strictly speaking benchmark.

The last available advanced post processing is the one that allows to perform the inner

benchmark of the code. In this case, since the structure of the data files is always the same,

the data preprocessing is not necessary. Exploiting the GUI, user can select the pair of

simulations to be compared, how the results should be saved inside

Inner_Benchmark_results, a directory at the same level of Simulation_results, the kind of

benchmark to be done and the outcomes to get. At the time being three kind of inner

benchmark are allowed:

1. Standard compares two simulations without acting on the data of the simulations;

2. Backflow compares the two simulations keeping into account that the flow directions

are different in the two simulations;

3. Refined mesh compares the simulations knowing that they differ in the number of

elements of the spatial discretizations, that impact on the error evaluation since the

arrays of the spatial distributions do not have the same length.

For all of these inner benchmark kinds, user can chose three possible outcomes namely

the full benchmark that make the comparison in both space and time, the space only and the

time only that respectively performs the comparisons only on the spatial distributions and on

the time evolutions.

Regardless of the selected benchmark (outer or inner), the figures obtained after the

analysis are characterized by two horizontal subplots that share the abscissa axis. The top one

compares no more than 2 pairs of curves to verify if they overlap; the bottom one is a

semilogarithmic plot of the relative error that shows up to two curves. Each subplot has its

legend and its title to better identify what they represent. If it is an outer benchmark, these

figures are saved in the Benchmark subfolders of Space and Time folders within the Figures

directory, while if it is an inner benchmark the figures are saved inside the directory

Inner_Benchmark_results where the same nested structure discussed above is replied. In any

case, their organization follows the schemes extensively discussed in the previous sections.

Examples of space and time convergence analyzes as well as benchmarks with respect to

4C and inner ones can be found in the next chapter.

3 CODE DESCRIPTION

83

Table 3.5-7 Naming scheme and content of the files saved to store the outcomes of the space and time
convergence analyzes.

Object
Convergence

analysis
Name scheme Example Content

CHAN

Space
CHAN.ID_sc_
outcome.tsv

CHAN_1_sc_o
utcome.tsv

Number of elements,
spatial discretization

pitches and relative errors
on velocity, pressure and

temperature spatial
distributions.

Time
CHAN.ID_tc_o

utcome.tsv
CHAN_1_tc_o

utcome.tsv

Time steps and relative
errors on velocity,

pressure and temperature
spatial distributions.

STR_MIX

Space
STR_MIX.ID_s
c_outcome.tsv

STR_MIX_1_s
c_outcome.tsv

Number of elements,
spatial discretization

pitches and relative errors
on temperature spatial

distribution.

Time
STR_MIX.ID_t
c_outcome.tsv

STR_MIX_1_t
c_outcome.tsv

Time steps and relative
errors on temperature

spatial distribution.

STR_SC

Space
STR_SC.ID_s
c_outcome.tsv

STR_SC_1_sc
_outcome.tsv

Number of elements,
spatial discretization

pitches and relative errors
on temperature spatial

distribution.

Time
STR_SC.ID_tc
_outcome.tsv

STR_SC_1_tc
_outcome.tsv

Time steps and relative
errors on temperature

spatial distribution.

STR_STAB

Space
STR_STAB.ID
_sc_outcome.t

sv

STR_STAB_1
_sc_outcome.t

sv

Number of elements,
spatial discretization

pitches and relative errors
on temperature spatial

distribution.

Time
STR_STAB.ID
_tc_outcome.t

sv

STR_STAB_1
_tc_outcome.t

sv

Time steps and relative
errors on temperature

spatial distribution.

Z_JACKET Space
Z_JACKET.ID
_sc_outcome.t

sv

Z_JACKET_1_
sc_outcome.ts

v

Number of elements,
spatial discretization

pitches and relative errors
on temperature spatial

distribution.

3.5 EASE OF POST PROCESSING

84

Object
Convergence

analysis
Name scheme Example Content

Time
Z_JACKET.ID
_tc_outcome.t

sv

Z_JACKET_1_
tc_outcome.tsv

Time steps and relative
errors on temperature

spatial distribution.

CONDUCTOR

Space

CONDUCTOR
.ID_sc_outcom
e_mass_energ

y.tsv

CONDUCTOR
_1_sc_outcom
e_mass_energ

y.tsv

Number of elements,
spatial discretization

pitches and relative errors
on mass and energy

balance

Time

CONDUCTOR
.ID_tc_outcom
e_mass_energ

y.tsv

CONDUCTOR
_1_tc_outcom
e_mass_energ

y.tsv

Time steps and relative
errors on mass and energy

balance

3.5.4 SUMMARY

The well-structured and nested organization of the output of the simulation and the post

processing of the data are the main topics of this section. SC2 code automatically saves a large

amount of data, from the initialization to the solution spatial distributions, as well as the inlet

and outlet time evolutions of channels main properties as velocity, pressure, temperature,

density and mass flow rate. User can ask to save other data at specific times and spatial

coordinates compiling the main input file conductor_diagnostic.xlsx. Currently, the selected

extension of the files is the Tab Separated Value format, but other possibilities will be

considered. Both the default and user required data are then converted into suitable vectorial

figures (.eps) that constitutes the outcome of the default post processing.

In order to perform the space and time convergence analyzes, the code saves for each

simulation the final solution spatial distributions and the mass and energy balances computed

at the last time step in “ad hoc” created folders. These files can be analyzed with a tool whose

GUI allows several kinds of analyzes: alongside the convergence studies, the inner and outer

benchmarks are also managed by this application, provided the required data are stored in

the dedicated Benchmark folders if the latter is considered. These further elaborations are

referred to as advanced postprocessing.

4 SC2 VERIFICATION AND VALIDATION

85

CHAPTER 4

4 SC2 VERIFICATION AND VALIDATION

The Verification and Validation phase of data is certainly required developing a new

software. This can be carried out with respect to experiments conducted in the laboratory or

by using other validated software. In this work, the second option was adopted, the reference

code is 4C code [54], [55], [88].

A first fundamental step in code V&V is the check that the properties of materials are

correctly evaluated from the corresponding functions. For the time being, these functions are

an optimized python version of the 4C subroutine written in Fortran 90; whenever it is possible

the numpy array smart notation is introduced to reduce the computational time and numpy

available functions substitute the home-made ones. As mentioned in section 3.1.1, functions

for material properties are grouped in modules by material; except the solid material density,

that is assumed constant, all other properties are functions of variables which are passed as

arguments to the function.

Generally, the benchmark is performed exploiting a parametric scan by fixing all the

parameters that can vary except one, which is varied in order to evaluate the behavior of the

function with respect to that parameter. For the sake of brevity, the results of this step are

not discussed here, nonetheless the outcome of the comparisons is positive. An indirect proof

of this statement are the results presented below.

The chapter is divided into three sections. The first describes the results of the space and

time convergence analyses, followed by validation considerations with respect to 4C code in

section 4.2, while internal verifications are left to the last section.

As a final remark, in order to limit the number of figures shown, only the most relevant

ones are brought to the reader's attention, some of them being constructed to condense a

considerable amount of information. Furthermore, the time evolutions and spatial

distributions of the jacket are omitted because they do not bring further information; this

helps to increase the clearness of the plots.

4.1 CONVERGENCE ANALYSES

The convergence analysis of the SC2 code is presented in this section. It is necessary to

inspect if the theoretical order of convergence discussed in sections 2.2.1 and 2.2.2 are

actually achieved.

The study is performed at low temperature considering the transient heating of an ITER-

TF cable, whose general description, topology, and modeling are described in sections

2.1.4.1.1 and 0. The topology, material and geometrical data of the cable are reported in

appendix D.2 while the other inputs of the simulation are summarized in the following Table

4.1-1.

4.1 CONVERGENCE ANALYSES

86

Table 4.1-1 Input data for the low temperature ITER-TF simulation launched to perform the space and the
time convergence analysis.

Variable Value Unit

ITYMSH 0 (uniform) −
TEND 15.0 s
INTIAL 1 −
TINL 4.5 K
PINL 6 bar

POUT 5.9 bar
Q0 250 W/m

XQBEG 4.0 m
XQEND 6.0 m
TQBEG 10.0 s
TQEND 20.0 s

The overall expected space convergence order of the code is between one and two since

the finite element method applied here to discretize the space would lead to a second order

which is preserved by the applied boundary conditions (homogeneous Neumann for the solid

components and Dirichlet for the fluid components) but it is contaminated and downgraded

by the extra upwind terms. The order of convergence in time of the 𝜃-method is a function of

𝜃. It is expected that the global order of convergence in time is exactly one if 𝜃 = 1 (i.e., the

Backward Euler numerical scheme), while the second order is foreseen for 𝜃 =
1

2
, as this case

corresponds to the Crank-Nicolson method.

The convergence analyses are carried out exploiting the post processing external tool

mentioned in 3.5.3, the focus here are the global errors evaluated.

Firstly, the relative error for each variable is evaluated from the solution spatial

distribution array:

𝜀 =
||𝝃𝑛𝑜𝑑𝑎𝑙 − 𝝃𝑛𝑜𝑑𝑎𝑙,𝑟𝑒𝑓||

‖𝝃𝑛𝑜𝑑𝑎𝑙,𝑟𝑒𝑓 − 𝜉0‖
 (4.1-1)

according to the classical definition of the Euclidean norm:

‖𝒚‖ = √(𝒚, 𝒚) = √∑𝑦𝑖
2

𝑖

 (4.1-2)

𝜉0 is an arbitrary reference value introduced to avoid that the denominator is always not null

or too close to zero, especially with temperature arrays; it is chosen to be equal to the inlet

value of the spatial distribution obtained with the most refined grid or time step, i.e.:

𝜉0 = 𝜉𝑛𝑜𝑑𝑎𝑙,𝑟𝑒𝑓,1 (4.1-3)

To obtain the global error, these errors should be reshaped as follows.

4 SC2 VERIFICATION AND VALIDATION

87

Arrays 𝜺𝑖 are constructed collecting the values of the error at a given spatial discretization

pitch (or time step), then the average value of the elements for each of these arrays is

computed that, in turn, constitutes the elements of the global error array 𝜺𝒈𝒍𝒐𝒃𝒂𝒍. Practically,

if 𝑁𝑐𝑜𝑛𝑣 is the total number of chosen spatial discretization pitches (or time steps) used to

perform the space convergence (or the time convergence) analysis,

𝜺𝑖 =

[

𝜺𝒗,𝒄𝒉,𝒊
𝜺𝒑,𝒄𝒉,𝒊
𝜺𝑻,𝒄𝒉,𝒊
𝜺𝑻,𝒔𝒕,𝒊
𝜺𝑻,𝒋𝒌,𝒊]

 𝑓𝑜𝑟 𝑖 = 1,… ,𝑁𝑐𝑜𝑛𝑣 (4.1-4)

being 𝜺𝒗,𝒄𝒉,𝒊 the array of the velocity errors for each channel evaluated with the 𝑖𝑡ℎ spatial

discretization pitch (or time step) as described above, and so on. Finally, the elements of the

global error array are defined as:

𝜀𝑔𝑙𝑜𝑏𝑎𝑙,𝑖 =
∑ 𝜀𝑗
𝑁𝑒𝑞
𝑗=1

𝑁𝑒𝑞
 𝑓𝑜𝑟 𝑖 = 1,… ,𝑁𝑐𝑜𝑛𝑣

(4.1-5)

The space convergence is addressed first, followed by the time convergence of both BE

and CN numerical schemes. The figures shown in this section are obtained with the “Compare

space convergence” or “Compare time convergence” cascades of the post processing tool.

4.1.1 SPACE CONVERGENCE

The simulations for the space convergence are performed with inputs of Table 4.1-1 at

fixed time step reducing the spatial discretization pitch of spatial discretization; the selected

solution method is BE. Since it is not mandatory to perform a space convergence at the steady

state, although recommended whenever is possible, in this case the end time of the simulation

is in the middle of the heating phase where there are still transient conditions. The chosen

time steps and spatial discretization pitches to perform the analysis are shown in Table 4.1-2

while the outcomes are plotted in Figure 4.1-1.

As can be seen from the logarithmic scale Figure 4.1-1, the slope of both the curves is such

that to one order of magnitude on the abscissa axes the global error decreases of more than

one order of magnitude but less than two resulting in a convergence order of about 1.2, that

is in agreement with the previsions.

Table 4.1-2 Simulation performed with the ITER-TF configuration at low temperature. Number of elements
for the spatial discretizations (discretization parameter in round brackets) used to perform the space convergence
analysis and the two considered time steps.

𝚫𝒕 𝒔
𝐍𝐄𝐋𝐄𝐌𝐒𝟏
(𝚫𝒙𝟏 𝒎)

𝐍𝐄𝐋𝐄𝐌𝐒𝟐
(𝚫𝒙𝟐 𝒎)

𝐍𝐄𝐋𝐄𝐌𝐒𝟑
(𝚫𝒙𝟑 𝒎)

𝐍𝐄𝐋𝐄𝐌𝐒𝟒
(𝚫𝒙𝟒 𝒎)

𝐍𝐄𝐋𝐄𝐌𝐒𝟓
(𝚫𝒙𝟓 𝒎)

0.5
2000 (0.005) 1000 (0.01) 200 (0.05) 100 (0.1) 50 (0.2)

0.1

4.1 CONVERGENCE ANALYSES

88

Figure 4.1-1 Simulation performed with the ITER-TF configuration at low temperature. Space convergence

analysis in logarithmic scale at 15 s for two time-steps. Solid circles represent actual values, solid or dashed lines

give an idea of the trend.

4.1.2 TIME CONVERGENCE

The time convergence analysis is the outcome of a set of simulations that share the same

input data of Table 4.1-1, the same number of elements but characterized by different time

steps to march in time. Both the time convergences are fulfilled with two spatial discretization

parameters, the chosen values are collected in Table 4.1-3 and Table 4.1-4.

Table 4.1-3 Simulation performed with the ITER-TF configuration at low temperature. Time steps for the time
convergence analysis with Backward Euler numerical schemes and the number of elements for the two set of
simulations (discretization parameter in round brackets), about two orders of magnitude are explored.

𝑵𝑬𝑳𝑬𝑴𝑺
(𝚫𝒙 𝒎)

𝚫𝒕𝟏 𝒔 𝚫𝒕𝟐 𝒔 𝚫𝒕𝟑 𝒔 𝚫𝒕𝟒 𝒔 𝚫𝒕𝟓 𝒔 𝚫𝒕𝟔 𝒔

2000 (0.005)
0.02 0.05 0.1 0.2 0.5 1.0

200 (0.05)

4 SC2 VERIFICATION AND VALIDATION

89

Table 4.1-4 Simulation performed with the ITER-TF configuration at low temperature. Time steps for the time
convergence analysis with Crank-Nicolson numerical schemes and the number of elements for the two set of
simulations (discretization parameter in round brackets), more than two orders of magnitude are explored.

𝑵𝑬𝑳𝑬𝑴𝑺
(𝚫𝒙 𝒎)

𝚫𝒕𝟏 𝒔 𝚫𝒕𝟐 𝒔 𝚫𝒕𝟑 𝒔 𝚫𝒕𝟒 𝒔 𝚫𝒕𝟓 𝒔 𝚫𝒕𝟔 𝒔 𝚫𝒕𝟕 𝒔 𝚫𝒕𝟖 𝒔 𝚫𝒕𝟗 𝒔 𝚫𝒕𝟏𝟎 𝒔

2000 (0.005)
0.005 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0

200 (0.05)

Figure 4.1-2 collects the results of the time convergence analysis in two logarithmic

subplots. The top one refers to Backward Euler numerical scheme while the bottom shows the

Crank-Nicolson convergence. The errors shown are computed differently for the two

methods. As far as BE is concerned, the points in the Figure 4.1-2 (a) correspond to the global

error of the simulation, equation (4.1-5); the subplot shows that the order of convergence

meets the expectations being exactly one in the range [0.1,1.0] 𝑠 for both the considered

number of elements.

Figure 4.1-2 Simulation performed with the ITER-TF configuration at low temperature. Time convergence

analysis results in logarithmic scale at 15 s for two different number of elements for the spatial discretization

(listed in the legend). (a) Backward Euler the global error is shown; (b) Crank-Nicolson, only the error on the

temperature of the strand is shown.

4.2 VALIDATION AGAINST THE 4C CODE

90

The algorithm implementing the CN method is more sensitive to errors introduced by the

coupling of the conductor components. For this reason, the convergence performed by

calculating the global error of a set of simulations in which the components are thermally

coupled (i.e., non-zero heat transfer coefficients), is altered by the errors introduced by the

coupling, returning a convergence order of one at most. Hence, the sets of simulations to

study the convergence of this numerical scheme contemplate the fully decoupled

configurations of the cable, obtained imposing that the heat transfer coefficients of appendix

D.2 are all equal to 0. In this case the global error definition is no longer meaningful since only

the temperature of STR_MIX object is changing; therefore, the time convergence considers

only the errors on this variable computed according to equation (4.1-1), shown in Figure 4.1-2
(b). The second order convergence is verified for both the considered number of elements in

the range [0.01,0.1], which can be extended up to 1 s for 200 elements.

4.1.3 SUMMARY

The outcome of the convergence analyses both in space and time for the ITER-TF design is

the topic of this section. The common input data to all the simulations can be found in

appendix D, while the specific ones are collected in the tables of the current section. Having

agreed on the definition of the error, the results are presented in Figure 4.1-1 and Figure 4.1-2

with an appropriate logarithmic scale on both axes. Globally, both the analyses reproduced

the expected results: the space convergence order is between one and two due to the

combination of the FEM for the spatial discretization and the upwind (boundary conditions do

not affect the order of convergence); BE and CN returns the expected order of convergence

as well, the difference being that for the former the overall error can be exploited, while for

the latter the STR_MIX temperature error is considered since, in this case, the conductor

components should be decoupled to obtain the foreseen results.

4.2 VALIDATION AGAINST THE 4C CODE

Once that the expected order of convergence of the algorithms implemented in the SC2

code are confirmed, the V&V proceeds with the comparison of the simulations with the results

obtained from another widely validated and verified code, such as 4C code. The benchmark,

involving both cable types described in sections 2.1.4.1.1 and 0, is the topic of the following

two sections. Actually, in the two configurations considered only the geometry and the

topology of the cable are different: both the same coolant and the same superconducting

material are used for simulations. In order to test the different initializations allowed by the

code, the INTIAL 1 and INTIAL 5 options are considered for both configurations. These options,

as discussed in the section 4.3.1, imply two different sets of boundary conditions; besides, it

shows that the INTIAL 2 option from the point of view of boundary conditions does not differ

from INTIAL 5, so it is not considered here. Input data concerning the geometry, materials,

topology, friction factors and heat transfer coefficients are reported in appendix D; here, the

focus is on the main hypotheses made in order to limit the number of degrees of freedom in

the simulation, effectively simplifying the comparison: namely, imposing both the values of

the heat transfer coefficients (between fluid components, fluid and solid components and

4 SC2 VERIFICATION AND VALIDATION

91

between solid components) and the friction factors of the fluid components to a constant

value, chosen to be representative of the typical order of magnitude of the parameters.

The simulation to achieve both benchmarks is a transient heating and cooling of the cable

until the initial steady state is reached. The external heat source has the shape of a square

wave in space and time and the heat is deposited directly on the strands.

This introductive section ends shortly describing what is behind the outer benchmark GUI

commands of the post processing tool. It is a two steps procedure, the first being the check

for the coherence of the data and the second the actual benchmark.

The coherence check is a preliminary condition to be verified aiming to guarantee that the

saved data of the spatial distributions at given times and the time evolutions at given

coordinates are coherent. In fact, the values corresponding to the space-time intersection

must be the same irrespective of the array to which they belong, whether a spatial distribution

or a time evolution. If this trivial but fundamental condition is verified for both the codes, the

data can be trusted and the tool moves forward to the benchmark, that is the comparison of

the saved spatial distributions and time evolutions of the solution variables. The generic

relative error array is defined as:

𝜺𝒐𝒖𝒕𝒆𝒓 𝒃𝒆𝒏𝒄𝒉 =
|𝝃 − 𝝃𝟒𝑪|

|𝝃𝟒𝑪 − 𝜉0|
 (4.2-1)

where:

𝜉0 = 1.5max(|𝝃𝟒𝑪|)
(4.2-2)

With this definition of 𝜉0, the denominator never tends towards 0 and therefore the error

never diverges, leading to a misunderstanding of the comparison.

The following sections share the same structure. They begin completing the picture of the

input data needed to run the simulation, continue with a short physical description of the

simulation outcomes and end discussing the comparison with the 4C code.

4.2.1 BENCHMARK WITH THE 4C CODE: AN HTS POWER CABLE

This section deals with the benchmark of the 3P-HTS configuration against the 4C code.

Table 4.2-1 gathers the input data of the executed simulations.

When INTIAL 1 is considered, the inlet and outlet pressure are chosen such that the inlet

mass flow rate is 0.1 kg/s. The small pressure drop associated to this flow is related to the

tiny value of the channel friction factor, see appendix D.1. Conversely when the flag is INTIAL

5, the outlet pressure is chosen such that the inlet pressure, given the inlet flow rate, is equal

to the inlet pressure of the previous case. In this way the initialization is the same for the two

simulations and the outcome is determined by the imposition of the boundary conditions.

The results of the benchmark with INTIAL 1 are summarized in Figure 4.2-1 and Figure

4.2-2, which show, respectively, the time evolution and the spatial distribution of the variables

constituting the solution, which are the velocity, pressure and temperature of the fluid and

4.2 VALIDATION AGAINST THE 4C CODE

92

the temperature of the strand. To achieve better legibility, the temperature of the jacket is

not shown as it does not add significant information to the graph.

To complete the picture, the global errors at three selected spatial locations and times are

also shown in Figure 4.2-3.

Table 4.2-1 Input data for the simulation performed at high temperature with the 3P-HTS configuration; the
second column refers to the simulation with INTIAL set equal to 1, the third column shows the data for the
simulation with INTIAL set equal to 5.

 INTIAL 1 INTIAL 5
Variable Value Value Unit

METHOD 0 (BE) 0 (BE) −
ITMESH 0 (uniform) 0 (uniform) −
NELEMS 200 200 −

TEND 300.0 300.0 𝑠
INTIAL 1 5 −
TINL 60 60 K
PINL 6 - bar

POUT 5.99 5.99 bar
MDTIN − 0.1 kg/s

Q0 3000 3000 W/m
XQBEG 4.0 4.0 m
XQEND 6.0 6.0 m
TQBEG 10.0 10.0 s
TQEND 25.0 25.0 s

As can be seen from the figures, the two codes calculate essentially the same solution

(error of the order of 10−5), except at initialization where there is the maximum global error

(3.2 10−5) for each of the coordinates considered. The reason for this is to be found in the

different initialization algorithms of the two codes. As mentioned in section 0, the SC2

manipulates the equation of the hydraulic characteristic to carry out the initialization of the

fluid variables; on the other hand, the 4C adopts an iterative process starting from an assumed

velocity value and providing, at each iteration, the calculation of an equivalent hydraulic

diameter weighted on the friction factor.

4 SC2 VERIFICATION AND VALIDATION

93

Figure 4.2-1 High temperature 3P-HTS simulation with INTIAL 1: time evolution variables at 5 m. Solid

lines refer to SC2 values, dot-dashed and dotted lines refer to 4C values: (a) fluid velocity, (b) fluid pressure,

(c) fluid and strand temperatures.

In any case, both codes give a good approximation of the real thermo-hydraulic behavior

of the conductor. As a result of heating, the temperature of the strand increases, and the

spatial shape of the source is clearly visible in Figure 4.2-2 (c). Another consequence of the

heating is the pressurization of the channel, which, however, is inhibited by the low density of

He at that high temperature. In fact, the channel pressure does not deviate significantly from

the initial value during the entire duration of the transient (see Figure 4.2-1 (b)). However, the

increase in fluid temperature due to convective heat exchange further reduces the density.

Given the negligible change in pressure, the flow rate is practically constant and,

consequently, a reduction in density corresponds to an increase in velocity as can be seen in

Figure 4.2-1 (a) and Figure 4.2-2 (a). The marked difference between strand and coolant

temperatures is due to the different volumetric heat capacity of the materials, being that of

solid components two orders of magnitude larger than that of the fluid. This large

temperature difference, together with the coolant flow rate, favors the removal of the heat

4.2 VALIDATION AGAINST THE 4C CODE

94

energy introduced by the source and justifies the need to use a linear power of 3000 W/m to

obtain a peak temperature difference of about 10 K.

Figure 4.2-2 High temperature 3P-HTS simulation with INTIAL 1: spatial distribution variables at 18 s. Solid

lines refer to SC2 values, dot-dashed and dotted lines refer to 4C values: (a) fluid velocity, (b) fluid pressure, (c)

fluid and strand temperatures.

4 SC2 VERIFICATION AND VALIDATION

95

Figure 4.2-3 High temperature 3P-HTS simulation with INTIAL 1. Relative errors in semi logarithmic: (a) time
evolution errors at 4.0 𝑚, 5.0 𝑚 and 6.0 𝑚; (b) spatial distribution errors at 5.0 𝑠, 16.0 𝑠 and 40.0 𝑠.

4.2 VALIDATION AGAINST THE 4C CODE

96

Attention is now shifted to the INTIAL 5 case, for which the benchmark results are shown

in Figure 4.2-4 regarding the temporal evolution, in Figure 4.2-5 representing the spatial

distribution, while the global error at three different spatial coordinates and times is shown in

Figure 4.2-6. The physics of the simulation is now determined by the fact that the inlet velocity

is fixed while the pressure can vary. However, since even in this case the pressure variation is

not relevant, the time evolution and the spatial distribution are not very different from those

shown for the previous case.

Figure 4.2-4 High temperature 3P-HTS simulation with INTIAL 5: time evolution variables at 5 𝑚. Solid lines
refer to SC2 values, dot-dashed and dotted lines refer to 4C values: (a) fluid velocity, (b) fluid pressure, (c) fluid
and strand temperatures.

Observing the global error, this is about an order of magnitude greater than that calculated

for the INTIAL 1 case, but its value is still such as to conclude that the two codes are equivalent.

As can be seen from Figure 4.2-3 and Figure 4.2-6, the average global error for the case

where INTIAL is equal to 1 is of the order of magnitude 10−5, while in the case where the flag

is set equal to 5 it is of the order of magnitude 10−4. The small value of these relative errors

4 SC2 VERIFICATION AND VALIDATION

97

ratifies the success of the benchmark; however, the result should not be taken for granted

given the differences between the two codes, in particular the one concerning the calculation

of properties in Gauss nodes. The comparison of the global errors of the helium, strand and

jacket properties is proposed in Figure 4.2-7 for two spatial discretizations performed with

200 and 2000 elements, respectively. The properties are evaluated according to the strategies

of the two codes using the spatial distributions of temperature and pressure at 18 s.

Figure 4.2-5 High temperature 3P-HTS simulation with INTIAL 5: spatial distribution variables at 18 𝑠. Solid
lines refer to SC2 values, dot-dashed and dotted lines refer to 4C values: (a) fluid velocity, (b) fluid pressure, (c)
fluid and strand temperatures.

For consistency, the error on the generic property is defined as:

𝜺𝒈𝒂𝒖𝒔𝒔 =
|𝛘𝑔𝑎𝑢𝑠𝑠,𝑆𝐶2 − 𝛘𝑔𝑎𝑢𝑠𝑠,4𝐶 |

|𝛘𝑔𝑎𝑢𝑠𝑠,4𝐶 |
 (4.2-3)

The global error is computed as the average error of the properties.

4.2 VALIDATION AGAINST THE 4C CODE

98

The maximum errors are located in correspondence of the temperature gradients close to

the heated region and they are reported for clarity in Table 4.2-2. In fact, it is precisely at steep

variations in temperature (and pressure when required) that the two strategies differ most:

the overall error increases by many orders of magnitude, up to 10 for strand properties. The

relevant contribution is due to the strand properties, however the errors are already small to

give relevant effects.

The figure also shows that by increasing the number of elements by an order of magnitude,

the difference between the values calculated by the two methods is reduced by almost two

orders of magnitudes.

Figure 4.2-6 High temperature benchmark 3P-HTS with INTIAL 5. Relative errors in semi logarithmic scale: (a)
time evolution errors at 4.0 𝑚, 5.0 𝑚 and 6.0 𝑚; (b) spatial distribution errors at 5.0 𝑠, 16.0 𝑠 and 40.0 𝑠.

Table 4.2-2 3P-HTS configuration with INTIAL 1: maximum global error from the comparison on the properties
evaluated in Gauss points according to SC2 and 4C implementation at 18 𝑠.

NELEMS fluid strand Jacket

200 4.7e-10 4.4e-4 2.3e-8
2000 3.8e-12 7.1e-6 2.3e-10

4 SC2 VERIFICATION AND VALIDATION

99

Figure 4.2-7 High temperature 3P-HTS INTIAL 1: spatial distribution of the global errors at 18 𝑠 from the
comparison of the properties evaluated in the Gauss points according to the SC2 and 4C implementations, in semi
logarithmic scale at high temperature. Two number of elements for the spatial discretizations are considered: (a)
fluid properties, (b) strand properties, (c) jacket properties.

In conclusion, for the considered temperature range, the solution at each time step is not

strongly affected by the recipe used to evaluate the properties in the Gauss node, so the

benchmark is successfully completed.

4.2.2 BENCHMARK WITH THE 4C CODE: AN ITER LTS TOROIDAL FIELD COIL CABLE

The benchmark results for the ITER-TF configuration are analyzed in this section. The input

data that identify the simulations are collected in Table 4.2-3.

As mentioned in the introduction to the section, also for the ITER-TF geometry the

comparison of the results obtained is carried out for two characteristic values of the INTIAL

4.2 VALIDATION AGAINST THE 4C CODE

100

flag. As there are two fluid components in hydraulic parallel, the value of the flag must be the

same for both.

Table 4.2-3 Input data for the simulation performed at low temperature with the ITER-TF configuration; the
second column refers to the simulation with INTIAL set equal to 1, the third column shows the data for the
simulation with INTIAL set equal to 5.

 INTIAL 1 INTIAL 5
Variable Value Value Unit

METHOD 0 (BE) 0 (BE) −
ITMESH 0 (uniform) 0 (uniform) −
NELEMS 200 200 −

TEND 100.0 100.0 s
INTIAL 1 5 −
TINL 4.5 4.5 K
PINL 6 - bar

POUT 5.9 5.9 bar
MDTIN_1 − 8.4 10−3 kg/s
MDTIN_2 − 1.24510−2 kg/s

Q0 250 250 W/m
XQBEG 4.0 4.0 m
XQEND 6.0 6.0 m
TQBEG 10.0 10.0 s
TQEND 20.0 20.0 s

For the sake of simplicity, the first set of input data applies the same initial values to both

the conductor channels, but this is no longer true for the second set since for the two channels

a different value of the inlet mass flow rate is assigned. These guess values approximate the

initial inlet mass flow rates computed with the first simulation, used as input parameters in

the second run. As discussed in section 4.3.1, these two simulations give different results and

constitute a test case to check the capability of the SC2 code to manage different fluid dynamic

operating conditions. For the time being they are considered separately, and the focus is on

the benchmark with the 4C. In the following, first the results obtained are commented by

comparing the simulations with INTIAL 1, and then those corresponding to INTIAL 5.

The curves shown in Figure 4.2-8 and Figure 4.2-9 represent, respectively, the time

evolutions and spatial distributions in an appropriate spatial coordinate and at a defined time

step. The absence of the pressure and temperature curves for the first channel, the hole, in

Figure 4.2-8 is due to the fact that these time evolutions are not available in 4C for the case

hand.

Looking at the above Figure 4.2-8 and Figure 4.2-9, it could be concluded that, similarly to

the previous section, the benchmark is positive. To quantify the accuracy of that agreement,

Figure 4.2-10 shows the global error of the solution in three spatial coordinates and three time

steps. As with the 3P-HTS configuration, before heating starts and once its effects ends, the

two codes are in perfect agreement, except for the already discussed difference on

initialization.

4 SC2 VERIFICATION AND VALIDATION

101

Figure 4.2-8 ITER-TF with INTIAL 1: time evolution variables at 5 m . Solid lines refer to SC2 values, dot-dashed

lines refer to 4C values: (a) fluid velocities, (b) fluid pressure, (c) fluid temperature (d) strand temperature.

Note, however, that in this specific case, arises during the heating and cooling transient
where the errors increase by up to three orders of magnitude. The main reason for this
difference in results is the non-linearity of material properties at low temperatures, which is
captured differently by the two strategies implemented in the codes for calculating properties
in the Gauss node. This is supported by the Figure 4.2-11 which compares, for two different
spatial discretizations, the global error of the fluid, strand and jacket properties, calculated
with the spatial distribution of temperature and pressure at 15 s, i.e., in the middle of the
heating phase of the transient. The errors are defined by equation (4.2-3), the maximum
values are given in Table 4.2-4 for ease of reading.

The global fluid error shown in Figure 4.2-11 (a) refers to the second channel, i.e., the

bundle, as it is affected by a greater temperature variation than the first one, as can be seen

from Figure 4.2-11 (c).

4.2 VALIDATION AGAINST THE 4C CODE

102

Figure 4.2-9 ITER-TF with INTIAL 1: spatial distribution variables at 16 𝑠. Solid lines refer to SC2 values, dot-
dashed and dotted lines refer to 4C values: (a) fluid velocities, (b) fluid pressures, (c) fluid temperatures, (d) strand
temperature.

Table 4.2-4 ITER-TF configuration with INTIAL 1 and INTIAL 5: maximum global error from the comparison on
the properties evaluated in Gauss points according to SC2 and 4C implementation at 15 𝑠.

 INTIAL 1 INTIAL 5

NELEMS fluid strand Jacket fluid strand Jacket
200 7.4e-3 3.0e-3 7e-4 6.5e-4 7.5e-4 1.2e-4

2000 2.5e-4 4.3e-5 9.7e-6 4.1e-5 1.1e-5 1.5e-6

It is important to note that the errors are in general much greater than those shown in the

analogous Figure 4.2-7, reflecting the fact that in the temperature range considered, the

properties are strongly non-linear and the two recipes give different values. Errors increase

significantly (up to six orders of magnitude) at temperature gradients. By refining the mesh,

the error tends to reduce as expected, but the reduction in maximum error is only one order

of magnitude compared to two at high temperature.

4 SC2 VERIFICATION AND VALIDATION

103

Figure 4.2-10 Benchmark ITER-TF with INTIAL 1. Relative global errors in semi logarithmic scale of the: (a)
time evolution errors at 4.0 𝑚, 5.0 𝑚 and 6.0 𝑚; (b) spatial distribution errors at 5.0 𝑠, 16.0 𝑠 and 40.0 𝑠.

The consequence of the superimposition of these non-negligible errors on the properties

of each component of the conductor is the different prediction of the solution of the problem

during the heating and cooling phases of the cable, which leads to the errors shown in the

Figure 4.2-10.

4.2 VALIDATION AGAINST THE 4C CODE

104

Figure 4.2-11 ITER-TF INTIAL 1: spatial distribution of the global errors at 15 𝑠 from the comparison of the
properties evaluated in the Gauss points according to the SC2 and 4C implementations, in semi logarithmic scale
at low temperature. Two number of elements for the spatial discretizations are considered: (a) fluid properties,
(b) strand properties, (c) jacket properties.

Moving on to the comparison analysis of the INTIAL 5 case, for which refer to Figure 4.2-12,

Figure 4.2-13 and Figure 4.2-14 which show the time evolutions, spatial distributions and global

errors respectively.

The comparison of these simulations has some peculiarities compared to the previous

case. Specifically, observing Figure 4.2-14 it can be seen that the error remains low during the

significant phases of the transient: although increasing by an order of magnitude within the

heated region, they are a couple of orders of magnitude smaller than in the INTIAL 1 case and

comparable with those obtained by the benchmarks with the 3P-HTS geometry. On the other

hand, the error during the initialization phase is increased at the inlet throughout the duration

of the transient. Both phenomena are directly attributable to the different initialization and

application of boundary conditions compared to the case where the INTIAL flag is initialized

4 SC2 VERIFICATION AND VALIDATION

105

at 1, but for different reasons. More details on the different strategies used by SC2 to initialize

fluid components and boundary conditions are discussed in section 0.

The justification for the tendentially lower errors during the transient is twofold. Taking

into account the figures concerning the time evolutions (Figure 4.2-12) and the spatial

distributions (Figure 4.2-13), it is found that the temperature gradients are less steep and the

temperature values lower than in the INTIAL 1 case and, consequently, the error resulting

from the use of the two methods for the calculation of the properties in the Gauss node is

reduced, with a consequent beneficial effect on the comparison of the results obtained with

Figure 4.2-12 ITER-TF with INTIAL 5: time evolution variables at 5 𝑚. Solid lines refer to SC2 values, dot-
dashed lines refer to 4C values: (a) fluid velocities, (b) fluid pressure, (c) fluid temperature (d) strand temperature.

the two codes, (see Figure 4.2-15). The maximum errors are listed in Figure 4.2-9 ITER-TF with

INTIAL 1: spatial distribution variables at 16 𝑠. Solid lines refer to SC2 values, dot-dashed and dotted lines refer
to 4C values: (a) fluid velocities, (b) fluid pressures, (c) fluid temperatures, (d) strand temperature.

Table 4.2-4 and from a direct comparison with the one obtained with INTIAL 1 results that their
value is almost one order of magnitude lower for both the considered spatial discretizations.

4.2 VALIDATION AGAINST THE 4C CODE

106

Figure 4.2-13 ITER-TF with INTIAL 5: spatial distribution variables at 16 𝑠. Solid lines refer to SC2 values, dot-
dashed and dotted lines refer to 4C values: (a) fluid velocities, (b) fluid pressures, (c) fluid temperatures, (d) strand
temperature.

4 SC2 VERIFICATION AND VALIDATION

107

Figure 4.2-14 Benchmark ITER-TF with INTIAL 5. Relative global errors in semi logarithmic scale: (a) time

evolution errors at 4.0 m, 5.0 m and 6.0 m; (b) spatial distribution errors at 5.0 s, 16.0 s and 40.0 s.

4.2 VALIDATION AGAINST THE 4C CODE

108

Figure 4.2-15 ITER-TF INTIAL 5: spatial distribution of the global errors at 15 s from the comparison of the

properties evaluated in the Gauss points according to the SC2 and 4C implementations, in semi logarithmic scale

at low temperature. Two number of elements for the spatial discretizations are considered: (a) fluid properties,

(b) strand properties, (c) jacket properties.

Regarding the problem at initialization, reference is made to the Figure 4.2-16 which

represents an enlargement of the spatial distribution of the He velocity in the two channels.

The velocity imposed as boundary conditions on the inlet in the two codes is different, with

relative error close to 10%. Both these values are calculated during initialization and then

imposed as a boundary condition in the time steps following the initial one. The value

calculated by SC2 code is immediately consistent with the one calculated as the solution of

the problem in the other nodes of the spatial discretization; on the contrary, 4C predicts a

value that proves to be unreliable and the solution better approximates the correct value after

a settling length. At 0.6 m distance from the inlet the relative error for the velocity of both

fluid components is less than 10−4. It can therefore be concluded that the use of the hydraulic

characteristic equation of the channel to compute the initialization of the fluid properties,

4 SC2 VERIFICATION AND VALIDATION

109

provides more accurate results over the whole spatial discretization than the iterative strategy

proposed by 4C code.

Figure 4.2-16 TER-TF configurations with INTIAL 5: enlargement of the fluid velocities spatial distributions at
16 𝑠. (a) CHAN_1 velocities, (b) CHAN_2 velocities solid lines refer to SC2, dot-dashed lines refer to 4C; (c) relative
error in semi logarithmic scale.

In conclusion, excepted the differences highlighted and justified above, the benchmark

with INTIAL 5 has a positive result, see Figure 4.2-14 .

4.2.3 SUMMARY

A series of mandatory benchmarks, with a widely validated and recognized code (such as

4C code), have been carry out to validate the results obtained with the SC2 code. In this

running-in phase of the new code, an attempt has been made to minimize the sources of

possible differences between the results obtained with the two codes, so the values of the

heat transfer coefficients and friction factors have been set at constant and representative

values. Two geometries are considered, respectively that of a high-temperature

4.3 SC2 VERSATILITY CHECKS

110

superconducting cable for power transport (3P-HTS), and the ITER-TF configuration used to

build the set of toroidal magnets in the tokamaks, characterized by low-temperature

superconducting. For both, two different modes of initialization and application of boundary

conditions were compared.

There are two main differences between the codes that lead to small differences in the

results: the first is related to the different way in which the flow is initialized, the second is

due to the calculation of the properties in the Gauss nodes, which are necessary to construct

the elements of the matrix solving the set of equations relevant here.

The effects are in general quite unappreciable for the 3P-HTS cable since, as it consists of

only one cooling channel, the two initializations give similar results; moreover, the properties

at high temperature are globally more linear, also reducing the differences in the calculation

of the properties in Gauss points.

On the other hand, the ITER-TF geometry is more complex due to the presence of two

channels in hydraulic parallel for the coolant and consequently the number of degrees of

freedom for initialization increases. In fact, the two strategies produce different results, with

the one determined with SC2 proving to be more accurate: the benchmark shows a marked

difference between the two alternatives, with errors of almost 10% at the inlet. In addition,

the material properties are highly non-linear at low temperatures, so the calculation of the

properties in Gauss points also has a negative effect on the comparison of the simulations.

However, the method adopted in SC2 returns more accurate values as it evaluates the

properties at these virtual nodes by re-invoking the functions, rather than assuming that they

are the mean value of the properties at the nodes of the spatial discretization, as in 4C.

4.3 SC2 VERSATILITY CHECKS

A series of simulations have been accomplished to check the reliability and self-

consistency of the code, in a word its versatility. These checks regard the possibility of

imposing different initialization and boundary conditions (section 4.3.1) or to select different

numerical schemes for the solution 4.3.2, the ability of the code to handle backward flow

(when the outlet pressure is set to a value greater than the inlet one) discussed in section

4.3.3, together with the prospect of using a non-uniform mesh with a refined zone to optimize

computational costs, which is the topic of section 4.3.4.

The so-called inner benchmark bases its veracity on the consideration that the validation

against 4C was positive in the cases considered.

For the sake of conciseness, the simulations are carried out only for the ITER-TF design. As

usual, the common input data can be found in appendix D.2 while in each subsection the

specific data are reported to complete the picture.

The data analysis is done exploiting the “Inner Benchmark” cascade of the external post

processing tool. Coherently to what already done for the outer benchmark, the inner

benchmark error definition is given by:

4 SC2 VERIFICATION AND VALIDATION

111

𝜺𝒊𝒏𝒏𝒆𝒓 𝒃𝒆𝒏𝒄𝒉 =
|𝝃𝑺𝒊𝒎𝟏 − 𝝃𝑺𝒊𝒎𝟐 |

|𝝃𝑺𝒊𝒎𝟏 − 𝜉0|
 (4.3-1)

where:

𝜉0 = 1.5max(|𝝃𝑺𝒊𝒎𝟏|)
(4.3-2)

A suitable definition of 𝝃𝑺𝒊𝒎𝟏 and 𝝃𝑺𝒊𝒎𝟐 will be given the following sections 4.3.2, 4.3.3

and 4.3.4.

The global error is then defined as the average of the generic errors at a given spatial

coordinate or time.

4.3.1 INNER BENCHMARK: INTIAL

The main ways of initializing the flow were presented in section 0 and previously used to

benchmark with 4C (sections 4.2.1 and 4.2.2). A recap of the effects of the flag INTIAL on both

initialization and boundary conditions according to its value is proposed in Table 4.3-1. Here

the goal is twofold: to demonstrate that different outcomes of the simulation correspond to

those options, and query them to check that they are in accordance with the physics of the

problem being studied.

Expressly, it is expected that from the comparison of two simulations, one with INTIAL 1

the other with INTIAL 2 (or 5) the results will be quite different, while comparing INTIAL 2 with

INTIAL 5 the code is expected to return almost the same solution since these options have

more affinities than divergences.

Table 4.3-1 Effects on the initialization and on the application of the boundary conditions according to three
possible values of the flag INTIAL, as far as fluid components are considered.

INTIAL Initialization Boundary condtions Notes

±1

𝑝𝑖𝑛𝑙 𝑝𝑖𝑛𝑙

𝑇𝑖𝑛𝑙 𝑇𝑖𝑛𝑙 Used as BC if 𝑣𝑖𝑛𝑙 > 0
𝑝𝑜𝑢𝑡 𝑝𝑜𝑢𝑡

𝑇𝑜𝑢𝑡 𝑇𝑜𝑢𝑡 Used as BC if 𝑣𝑜𝑢𝑡 < 0

±2

�̇�𝑖𝑛𝑙 𝑣𝑖𝑛𝑙 𝑣𝑖𝑛𝑙 from �̇�𝑖𝑛𝑙
𝑝𝑖𝑛𝑙 𝑇𝑖𝑛𝑙 Used as BC if 𝑣𝑖𝑛𝑙 > 0

𝑇𝑖𝑛𝑙 𝑝𝑜𝑢𝑡
𝑝𝑜𝑢𝑡 evaluated in flow

initialization
𝑇𝑜𝑢𝑡 𝑇𝑜𝑢𝑡 Used as BC if 𝑣𝑜𝑢𝑡 < 0

±5

�̇�𝑖𝑛𝑙 𝑣𝑖𝑛𝑙 𝑣𝑖𝑛𝑙 from �̇�𝑖𝑛𝑙
𝑇𝑖𝑛𝑙 𝑇𝑖𝑛𝑙 Used as BC if 𝑣𝑖𝑛𝑙 > 0
𝑝𝑜𝑢𝑡 𝑝𝑜𝑢𝑡

𝑇𝑜𝑢𝑡 𝑇𝑜𝑢𝑡 Used as BC if 𝑣𝑜𝑢𝑡 < 0

4.3 SC2 VERSATILITY CHECKS

112

The specific input data used to execute the simulations are summarized in Table 4.3-2. The

inlet mass flow rate used for the simulation with INTIAL 2 and 5 approximates the ones

evaluated with the case INTIAL 1, furthermore note that the imposed pressure value is the

same. Having the same input data in common, although calculated from different initialization

conditions, the behavior of the simulations is only influenced by the application of boundary

conditions.

Table 4.3-2 Input data for the simulation performed at low temperature with the ITER-TF configuration; the
second column refers to the simulation with INTIAL 1, the third column shows the data for the simulation with
INTIAL 2 while the fourth collects the values for the simulation performed with INTIAL 5

Variable Value Unit

METHOD 0 (BE) 0 (BE) 0 (BE) −
ITMESH 0 (uniform) 0 (uniform) 0 (uniform) −
NELEMS 200 200 200 −

TEND 15.0 15.0 15.0 s
STPMIN 0.1 0.1 0.1 s
INTIAL 1 2 5 −
TINL 4.5 4.5 4.5 K
PINL 6. 6 − bar

POUT 5.9 − 5.9 bar
MDTIN_CH1 − 8.4 10−3 8.4 10−3 kg/s
MDTIN_CH2 − 1.248 10−2 1.248 10−2 kg/s

Q0 250 250 250 W/m
XQBEG 4.0 4.0 4.0 m
XQEND 6.0 6.0 6.0 m
TQBEG 10.0 10.0 10.0 s
TQEND 20.0 20.0 20.0 s

For this specific kind of inner benchmark, it is not meaningful to define an error since the

simulations are different. Firstly, the inner benchmark INTIAL 1 against INTIAL 5 is considered

and then the one INTIAL 2 against INTIAL 5.

On the basis of the above, the initial spatial distribution of the variables of both simulations

must be the same as confirmed by Figure 4.3-1. The initialization of this simulation is

characterized by a constant temperature spatial distribution at 4.5 K for all components (two

fluids and solid ones) since the INTIAL 0 is considered for the lattes (see Table D.2-5 and

4 SC2 VERIFICATION AND VALIDATION

113

Table D.2-6), and a linear pressure spatial distribution from the inlet value to the outlet

one. It is worth mention that the pressure behavior is the same in both the cooling channels,

as expected since they are in hydraulic parallel, and thus the pressure is equalized. Also, the

initial velocity spatial distribution is linear, it is not evident from the Figure 4.3-1 due to the very

small slope. Notice that curves perfectly overlap, meaning that the initializations are

equivalent.

Figure 4.3-1 Comparison of the initial spatial distribution of the ITER-TF cable simulations with INTIAL 1 and

INTIAL 5. Solid lines refer to INTIAL 1, dot-dashed and dotted lines refer to INTIAL 5. (a) fluid components velocities,

(b) fluid components pressures, (c) fluid components temperatures, (d) strand temperature.

The effects of the different boundary conditions application can be seen in Figure 4.3-2

that compares the time evolutions of the solution variables at the inlet for INTIAL 1 and INTIAL

5, as well as in Figure 4.3-3 and Figure 4.3-4 that respectively show the variable time evolutions in

the center of the conductor and the spatial distribution at 15 s, in the middle of the heating

phase.

4.3 SC2 VERSATILITY CHECKS

114

Figure 4.3-2 Comparison of the inlet time evolution of the ITER-TF cable simulations with INTIAL 1 and INTIAL
5. Solid lines refer to INTIAL 1, dot-dashed and dotted lines refer to INTIAL 5. (a) fluid components velocities, (b)
fluid components pressures, (c) fluid components temperatures, (d) strand temperature. The simulations end at
100.0 𝑠 but only the first 40.0 𝑠 are shown to improve the readability.

It is noteworthy that the two initializations and set of boundary conditions are almost

equivalent before the heating period starts and after that a new steady state is restored,

confirming that the initializations are equivalent from the point of view of the calculated

values. The differences raise during the heating and cooling phases of the transient because

the physic is different for the two sets of boundary conditions.

During the first 10 𝑠 of the transient the solution does not change that much as can be

seen from both Figure 4.3-2 and Figure 4.3-3. The temperatures are flat and almost equal to the

initial value (a small increase is due to the friction in the cable), both pressure and velocity

distributions are still linear and very close to the initial ones.

4 SC2 VERIFICATION AND VALIDATION

115

Figure 4.3-3 Comparison of the time evolution variables for the ITER-TF cable simulations performed with

INTIAL 1 and INTIAL 5 at 5 m. Solid lines refer to INTIAL 1, dot-dashed and dotted lines refer to INTIAL 5. (a) fluid

components velocities, (b) fluid components pressures, (c) fluid components temperatures, (d) strand

temperature. The simulations end at 100.0 s but only the first 40.0 s are shown to improve the readability.

At 10 s the heating is switched on and the heating phase of the transient begins, the

effects being the raise in temperature of the strand (and of the other cable components due

to the heat transfer), and the coolant pressurization which manifests differently depending on

the imposed boundary conditions. On the one hand, when the inlet and outlet pressure of the

fluids are imposed, the inlet pressure is constant in time (as well as the outlet one) while the

velocity changes according to the pressure drop, as visible in Figure 4.3-2 (a). On the other

hand, when only the outlet pressure is imposed as boundary condition, its value at the inlet

can vary such that the inlet velocity is constant, as can be inferred from Figure 4.3-2 (b). In

both cases within the conductor, the pressure will change consistently with the physics

described by the two cases, while the velocity is ruled by the local pressure drop, as shown in

Figure 4.3-3 (a, b) and Figure 4.3-4.

4.3 SC2 VERSATILITY CHECKS

116

Figure 4.3-4 Comparison of the spatial distribution variables for the ITER-TF cable simulations performed with

INTIAL 1 and INTIAL 5 at 15 s. Solid lines refer to INTIAL 1, dot-dashed and dotted lines refer to INTIAL 5. (a) fluid

components velocities, (b) fluid components pressures, (c) fluid components temperatures, (d) strand

temperature.

Focusing on the spatial distributions shown in Figure 4.3-4, at the considered time step both

the heating effects are appreciable: the first is the pressurization on the channels, the second

the global temperature raise of the conductor components. With INTIAL 1, the pressure is flat

and almost equal to the inlet value up to the lower edge of the heated region, consequently

the velocity is almost zero; beyond this spatial coordinate, the pressure starts to decrease, so

the local pressure drop is not zero and the velocity raises. The different velocity distribution

along the channels which, for part of its length, is characterized by a practically zero flow rate,

justifies the spatial temperature distribution of the strand (and consequently those of the

other components). As a matter of fact, along the first 4 m of the conductor, the main heat

transfer mechanism is the conduction that has a limited effect in a region close to the

beginning of the heated zone. Inside this region there is a sharp temperature gradient which

decreases progressively as the velocity increases, since more heat is removed by convection.

4 SC2 VERIFICATION AND VALIDATION

117

Outside the heated region the velocity still increases leading to a sharp negative temperature

spatial gradient.

Generally, when both the inlet and the outlet pressure are imposed as boundary

conditions it could happens that, at some spatial coordinates, the local pressure value is larger

than the inlet value. If such condition verifies, a backflow occurs: upstream the velocity is

negative since the coolant flow is reversed, downstream the velocity is positive and large since

the pressure drop is larger than the initial one, with dramatic consequences on the

temperature of the strand.

When INTIAL 5 is taken into account, the physics is different from that described so far;

the key is the different pressure distribution shown in Figure 4.3-4 (b). In this case the cable

pressurization involves the inlet as well, so the velocity never goes below the inlet value,

increasing where the effects of pressurization are most pronounced. This means that in this

configuration a back flow cannot begin since the maximum pressure is always at the inlet;

moreover, the imposed mass flow rate allows a more efficient heat removal with respect to

the previous case, as can be seen from the less steep gradients in Figure 4.3-4 (c, d).

The same physics can be seen from a different point of view in Figure 4.3-3. The different

shape of the temperature evolution is remarkable, as shown in Figure 4.3-3: very pronounced

gradients for INTIAL 1, compared to the smoother shape of INTIAL 5, again related to the

different pressurization which lead to a different velocity behavior, which has a smaller

variation in the case of INTIAL 5 than INTIAL 1. It should also be noted that, with the same

INTIAL, there is a different value for the He temperatures in the two channels. The lower

temperature in the hole compared to the bundle can be understood for two reasons. Firstly,

this channel is not in direct contact with the strand, but the heat flows by conduction and

convection through the spiral separating it from the bundle, therefore it is not directly affected

by the heating effects. In addition, as the velocities in the two channels are different, the

information about the temperature change propagates with different timing. Table 4.3-3

collects the maximum values of the channel pressure and of the strand temperature at the

considered time evolution and spatial distribution.

Table 4.3-3 Maximum values of the fluid components pressure and of the strand temperature for the low
temperature ITER-TF simulation with INTIAL 1 and INTIAL 5. The relative difference is also shown in the last row
of the table. In the first and third columns are reported the maximum values of the time evolution at 5 𝑚, while
in the second and in the fourth columns are reported the maximum values of the space distribution at 15 𝑠.

 Pressure 𝑴𝑷𝒂 Temperature 𝑲
 𝟓 𝒎 𝟏𝟓 𝒔 𝟓 𝒎 𝟏𝟓 𝒔

INTIAL 1 0.5999 0.6 12.02 7.84
INTIAL 5 0.6099 0.6134 7.17 6.67

Relative difference % 1.68 2.24 40.32 14.92

Figure 4.3-2 (c) shows that between 13.7 s and 15 s in the bundle (CH2) the inlet

temperature is not equal to the imposed value. This may appear an odd event, but it can be

explained remembering how the boundary conditions are applied. In Table 4.3-1 is remarked

that the inlet temperature is imposed only if the inlet velocity is larger than 0; since between

4.3 SC2 VERSATILITY CHECKS

118

13.7 s and 15 s the velocity is negative, this boundary condition is not imposed. Comparing

the peak temperature of the strand and of the bundle, it turns out that the channel

temperature is 0.1% larger than the strand one, but this is only related to numeric.

Twenty seconds after the start of the transient, the heat source is switched off and from

the time evolution, see Figure 4.3-3 (d), it can be seen that the temperature in the strand, and

therefore in all the other conductor components decreases: the second phase of the transient,

cooling down, begins. Fluid pressure drastically reduces, bringing velocities down to near pre-

heating values. At 30 s the temperature at 5 m has almost reached the initial value but the

heat is not yet exhausted since it propagates along the conductor.

At the end of the simulation (100 s) the steady state is restored.

Figure 4.3-5 Comparison of the time evolution variables for the ITER-TF cable simulations performed with
INTIAL 2 and INTIAL 5 at 5 𝑚. Solid lines refer to INTIAL 2, dot-dashed and dotted lines refer to INTIAL 5. (a) fluid
components velocities, (b) fluid components pressures, (c) fluid components temperatures, (d) strand
temperature. The simulations end at 100.0 𝑠 but only the first 40.0 𝑠 are shown to improve the readability.

4 SC2 VERIFICATION AND VALIDATION

119

Figure 4.3-6 Comparison of the spatial distribution variables for the low temperature ITER-TF simulations

performed with INTIAL 2 and INTIAL 5 at 15 s. Solid lines refer to INTIAL 2, dot-dashed and dotted lines refer to

INTIAL 5. (a) fluid components velocities, (b) fluid components pressures, (c) fluid components temperatures, (d)

strand temperature.

Ultimately, imposing both pressures at the inlet and outlet limits the pressurization of the

cable but can lead to a partial absence of coolant flow, or worse a backflow, with negative

effects on strand temperature. On the other hand, imposing the inlet velocity, while having

the advantage of limiting the peak temperature, subjects the cable to non-negligible

mechanical stress due to the inlet pressure increase.

The section ends commenting the inner benchmark INTIAL 2 against INTIAL 5. The main

difference between the two options is that in the former the outlet pressure is evaluated

starting from the information at the inlet in the initialization phase (as discussed in section 0),

while in the latter the outlet pressure is given as input data. Also in this case, the input data

presented in Table 4.3-2 are such that the simulations outcome is expected to be the same.

The time evolutions and the spatial evolution of the solution variables are shown in Figure

4.3-5 and Figure 4.3-6. All the curves perfectly overlap largely confirming what was foreseen.

4.3 SC2 VERSATILITY CHECKS

120

4.3.2 INNER BENCHMARK: BE VS CN

The time convergence analysis was performed considering both the methods available in

the SC2 code to integrate the ODE system of equations. This section shows that both methods

tend to the same solution when the same input data are given. The specific data are the same

of the second column of Table 4.3-2, i.e. INTIAL 1 is considered, but four simulations are

compared that differs for the time steps and the solution method according to the following

Table 4.3-4, grouped into two cases by the former input data.

Table 4.3-4 Minimum time steps and methods to integrate the final ODE system use to compare the outcome
obtained with Backward Euler and Crank-Nicolson numerical schemes for the ITER-TF configuration with INTIAL
1.

 S1 S2 S3 S4 Unit SI

STPMIN 0.1 0.01 s
METHOD 0 (BE) 1 (CN) 0 (BE) 1 (CN) −

The global errors of the spatial distributions and the time evolutions are evaluated taking

as reference simulation the one that implements the Backward Euler numerical scheme;

therefore, for the first case:

𝝃𝑺𝒊𝒎𝟏 = 𝝃𝑩𝑬,𝟎.𝟏𝒔

𝝃𝑺𝒊𝒎𝟐 = 𝝃𝑪𝑵,𝟎.𝟏𝒔

The trend of the overall error is plotted in Figure 4.3-7. The order of magnitude of both

the time evolutions errors (see Figure 4.3-7 (a)) and the spatial distributions errors (see Figure

4.3-7 (c)), when STPMIN is set to 0.1 s, is a sign that the two methods return a rather different

solution regardless of the time considered for the spatial distribution and the spatial

coordinates considered for the time evolutions. The only exception is the initialization

(𝑡𝑖𝑚𝑒 = 0 s), when the properties have the same value by definition. Decreasing by one

order of magnitude the time step the distance between the solutions is shortened, as

evidenced by the fact that the overall error is reduced by several orders of magnitude in Figure

4.3-7 (b, d).

The larger reduction of the error is for times lower than TQBEG and much larger than

TQEND when the cooling is almost completed. To give an idea, comparing the spatial

distribution error at 5 s of Figure 4.3-7 (c, d) there are almost seven orders of magnitude of

difference. Moreover, looking at the time evolutions Figure 4.3-7 (a, b), for the first case the

error increases rapidly, irrespective of the spatial coordinate considered, and even after the

end of heating, it does not decrease. On the contrary for the latter, at each spatial coordinate,

the error stabilizes at a small value before the beginning of the heating and reduces as the

heat introduced is dissipated. The error is still substantial during the heating up and cooling

down of the strand, being related to the different numeric of the methods, and more visible

when the heat source is switched on and off. To get reasonable results, a small time step

should be considered when Crank-Nicolson scheme is selected.

4 SC2 VERIFICATION AND VALIDATION

121

Figure 4.3-7 Global errors in semi logarithmic scale for the comparison between Backward Euler and Crank-
Nicolson with INTIAL 1 for the ITER-TF cable configuration. (a) time evolutions with 𝑆𝑇𝑃𝑀𝐼𝑁 = 0.1 𝑠 at 4.0 𝑚,
5.0 𝑚 and 6.0 𝑚 ; (b) time evolutions with 𝑆𝑇𝑃𝑀𝐼𝑁 = 0.01 𝑠 at 4.0 𝑚 , 5.0 𝑚 and 6.0 𝑚 ; (c) spatial
distributions with 𝑆𝑇𝑃𝑀𝐼𝑁 = 0.1 𝑠 at 5.0 𝑠 , 15.0 𝑠 and 30.0 𝑠 ;(d) spatial distributions with 𝑆𝑇𝑃𝑀𝐼𝑁 =
 0.01 𝑠 at 5.0 𝑠, 15.0 𝑠 and 30.0 𝑠.

4.3.3 INNER BENCHMARK: BACKFLOW

So far, a considerable fraction of the simulations has been carried out with the initialization

option set to 1, in comments to the results the inlet corresponds to the left end of the cable

and the outlet to the right one. This is only a convention, from a strictly physical point of view,

as the inlet corresponds to the coordinate at which the pressure is maximum and the outlet

to that at minimum pressure. Therefore, if practically the coordinates where the pressures are

maximum and minimum are exchanged, i.e., the maximum pressure is imposed at the right

end of the conductor and the minimum at the left one as shown in Figure 4.3-8, the inlet and

outlet are also exchanged and the result, all else being equal, physically does not change.

4.3 SC2 VERSATILITY CHECKS

122

Figure 4.3-8 Relationship between the maximum and minimum pressure and inlet and outlet flow distribution
for the forward and the backward configurations.

The aim of this section is to proof that the SC2 code can abide by this basic law of fluid

dynamics. In the light of the above, the use of INTIAL 1 is again justified: it is the only option

among those considered that allows the pressures at the ends of the cable to be imposed.

The analysis is carried out considering three sets of simulations each characterized by a

given imposed pressure drop on the cable and composed by two simulations that differs from

the values of the pressure at the ends of the conductor. The reference pressure drop, 0.1 bar,

is the one adopted also in the previous sections; the other two are respectively one fifth and

five times the reference value, namely 0.02 bar and 0.5 bar. Table 4.3-5 collects the input

data shared by the six simulations, while Table 4.3-6 focuses on the initialization of the

simulations; geometry, topology, heat transfer coefficients and the like are defined in

appendix D.2. Please, note that to swap the inlet and the outlet in the simulation, the inlet

and outlet pressure in the backward simulations are shifted:

𝑝𝑖𝑛𝑙,𝑏𝑎𝑐𝑘 = 𝑝𝑜𝑢𝑡,𝑓𝑜𝑟𝑤 (4.3-3)

𝑝𝑜𝑢𝑡,𝑏𝑎𝑐𝑘 = 𝑝𝑖𝑛𝑙,𝑓𝑜𝑟𝑤 (4.3-4)

Moreover, all the simulations have the same maximum (inlet) pressure, while the

minimum (outlet) changes to get the desired pressure drop.

4 SC2 VERIFICATION AND VALIDATION

123

As far as the error evaluation is of concern, conventionally the reference simulation is the

one with the flow from left to right, called forward flow (shortly forw), while the test

simulation has the flow from right to left and it is called backward flow (or back), thus:

𝝃𝑺𝒊𝒎𝟏 = 𝝃𝒇𝒐𝒓𝒘 (4.3-5)

𝝃𝑺𝒊𝒎𝟐 = 𝝃𝒃𝒂𝒄𝒌 (4.3-6)

Table 4.3-5 Input data for all six simulations used to check the consistency of a forward and a backward flow
for the ITER-TF configuration at low temperature with INTIAL 1.

Variable Value Unit SI

METHOD 0 (BE) −
ITMESH 0 (uniform) −
NELEMS 200 −
INTIAL 1 −
TEND 15.0 s

STPMIN 0.1 s
Q0 250 W/m

XQBEG 4.0 m
XQEND 6.0 m
TQBEG 10.0 s
TQEND 20.0 s

Table 4.3-6 Initialization values for INTIAL1 according to the required pressure drop and the kind of
simulation, namely forward or backward flow. Notice that the inlet and outlet pressure values exchanges moving
from a forward to a backward simulation. Selected configuration is ITER-TF at low temperature.

 𝚫𝒑 = 𝟎. 𝟏 𝐛𝐚𝐫 𝚫𝒑 = 𝟎. 𝟎𝟐 𝐛𝐚𝐫 𝚫𝒑 = 𝟎. 𝟓 𝐛𝐚𝐫
Unit

Variable forward backward forward backward forward backward

TINL 4.5 4.5 4.5 4.5 4.5 4.5 K
PINL 6 5.9 6 5.98 6 5.5 bar

POUT 5.9 6 5.98 6 5.5 6 bar

To practically compute the error the array 𝝃𝒃𝒂𝒄𝒌 should be tipped over; moreover, if it is a

velocity, its sign should also be changed as its direction is opposite to the reference one.

Spatial distributions of the solution exemplify the outcomes of the comparison and are

summarized in the following Figure 4.3-9, Figure 4.3-10 and Figure 4.3-11.

4.3 SC2 VERSATILITY CHECKS

124

Figure 4.3-9 Comparison of the spatial distributions obtained with the forward and backward flow

simulations for the low temperature ITER-TF configuration with INTIAL 1 and 𝛥𝑝 = 0.1 bar at 15 s. Solid lines

refer to the forward flow, dot-dashed lines refer to the backward flow. (a) fluid components velocities; (b) fluid

components pressure; (c) fluid components temperatures; (d) strand temperature; (e) global error in semi

logarithmic scale.

4 SC2 VERIFICATION AND VALIDATION

125

Figure 4.3-10 Comparison of the spatial distributions obtained with the forward and backward flow

simulations for the low temperature ITER-TF configuration with INTIAL 1 and 𝛥𝑝 = 0.02 bar at 15 s. Solid lines

refer to the forward flow, dot-dashed lines refer to the backward flow. (a) fluid components velocities; (b) fluid

components pressure; (c) fluid components temperatures; (d) strand temperature; (e) global error in semi

logarithmic scale.

The pairs of curves represented in the first four subplots of Figure 4.3-9,Figure 4.3-10 and Figure

4.3-11 are symmetrical with respect to the midpoint of the spatial coordinate, that is the center

of gravity of the cable, which shows that the code distinguishes the position of the inlet and

outlet in the two cases. The final proof can be found in subplots (e) of Figure 4.3-9, Figure 4.3-10

and Figure 4.3-11, that show, for all the three sets of simulation considered, an almost negligible

value of the global relative error. That means that the SC2 recognizes where the inlet and the

outlet are located according to the imposed pressure values and that the fluid dynamics

implemented in the code is the same, regardless of their location.

4.3 SC2 VERSATILITY CHECKS

126

Figure 4.3-11 Compare spatial distributions results obtained with the forward and backward flow simulations

for the low temperature ITER-TF configuration with INTIAL 1 and 𝛥𝑝 = 0.5 bar at 15 s. Solid lines refer to the

forward flow, dot-dashed lines refer to the backward flow. (a) fluid components velocities; (b) fluid components

pressure; (c) fluid components temperatures; (d) strand temperature; (e) global error in semi logarithmic scale.

Figure 4.3-9, Figure 4.3-10 and Figure 4.3-11 may look very similar to each other, but on closer

inspection they have differences worth mentioning, related to the different pressure drop

imposed on the cable. Indeed, its behavior at the considered time is governed by the pressure,

or better by the pressurization induced by the heat source. For the first set of simulations

(Δ𝑝 = 0.1 bar) the maximum pressure is still the one imposed at the inlet that is constant up

to the lower edge of the heated zone (4.0 m). This occurs in both the channels since they are

in hydraulic parallel. As a consequence, the coolant velocity is zero up to this coordinate,

because the local pressure drop is zero, and then starts to increase as the local pressure

becomes lower than the inlet. This has an impact on the shape of the temperature spatial

4 SC2 VERIFICATION AND VALIDATION

127

distributions: as the velocity increases in the heated region the spatial gradient decreases,

upstream the temperature is practically equal to the inlet value and downstream the heat is

transported both by conduction and, mainly, by convection.

Considering Figure 4.3-10 characterized by (Δ𝑝 = 0.02 bar), the pressurization is such that

inside the heated region the pressure becomes larger than the inlet value so a backflow occurs

almost in the center of the cable, as can be seen from Figure 4.3-10 (a). The shape of the

temperature profiles is flat in the heated region and almost spatially symmetric thanks to the

backflow that transport the heat in both the directions.

Finally, looking at the last Figure 4.3-11 another different scenario appears. In this case the

pressure drop is such that the flow pressurization is almost negligible and localized in the

heated region as can be seen from the velocity increase in Figure 4.3-11 (a). This can be

explained considering that the gain in pressure, due to the heat, is almost compensated by

the local pressure drop related to a large velocity. The temperature distribution in Figure 4.3-11

(c) is similar to the one shown in Figure 4.3-9, but the gradient in the heated region is less steep

due to the larger coolant mass flow rate that allows to exhaust a larger amount of heat. The

ultimate consequence is a lower hot spot value in the cable.

4.3.4 INNER BENCHMARK: REFINED MESH

The last section deals with the availability of a refined mesh that allows to reduce the

computational time of the algorithm, reducing the density of spatial discretization nodes

where they are least needed. A comparison of two simulations that differ in the type of mesh

used is proposed aiming to demonstrate that the error on the solution does not diverge. The

reference simulation employs a uniform mesh while the other make use of a refined mesh,

hence:

𝝃𝑺𝒊𝒎𝟏 = 𝝃𝒖𝒏𝒊
(4.3-7)

𝝃𝑺𝒊𝒎𝟐 = 𝝃𝒓𝒆𝒇 (4.3-8)

As usual, the not modified data of the simulations can be found in appendix D.2, the

specific input data are instead collected in Table 4.3-7; notice the different number of

elements used in the two simulations and the needed of extra input data to set the simulation

with the non-uniform mesh that do not appear in the set of input data for the uniform one.

As can be seen form Table 4.3-7, the heating interval is only 0.5 s, quite short compared

to the other used in the previous simulations while the linear heat power is one order of

magnitude larger, to simulate an impulse of heat that then propagates along the conductor,

the so-called heat slug. The linear power source is chosen to achieve a temperature rise of at

least two degrees in the bundle. Also, the time at which the heating starts is changed and it is

such that the average coolant flow is already in the refined zone but not yet in the heated

region. The He average inlet velocity value is 0.356 m/s, obtained from:

4.3 SC2 VERSATILITY CHECKS

128

𝑣𝑎𝑣𝑒,𝑖𝑛𝑙 =
𝑣𝑐ℎ1,𝑖𝑛𝑙 Σ𝑐ℎ1 + 𝑣𝑐ℎ2,𝑖𝑛𝑙 Σ𝑐ℎ2

Σ𝑐ℎ1 + Σ𝑐ℎ2
 (4.3-9)

Table 4.3-7 Input data for the simulations with the uniform and not uniform (refined) meshes for the ITER-TF
configuration with INTIAL 1.

Variable Value Unit

METHOD 0 (BE) 0 (BE) −
ITMESH 0 (uniform) 1 (refined) −
NELEMS 2000 500 −
NELREF − 400 −
XBREFI − 4.0 m
XEREFI − 6.0 m

DXINCRE − 1.2 −
TEND 14.0 14.0 𝑠

STPMIN 0.1 0.1 s
INTIAL 1 1 −
TINL 4.5 4.5 K
PINL 6 6 bar

POUT 5.9 5.9 bar
Q0 3000 3000 W/m

XQBEG 4.2 4.2 m
XQEND 5.8 5.8 m
TQBEG 11.5 11.5 s
TQEND 12.0 12.0 s

Some characteristic times are collected in Table 4.3-8, evaluated at the average inlet

velocity; it also justifies the end time of the simulation.

Table 4.3-8 Times at which the average initial flow reaches some relevant coordinates.

Coordinates 𝐦 XBREFI XQBEG XQMID XQEND XEREFI XLENGTH

Time s 11.2 11.8 14.0 16.3 16.9 20.1

Note that the heated region is included in the refined zoned, because here the largest

temperature spatial gradients are expected during the heating times, therefore the need of a

larger number of elements to catch these gradients. The coordinates of the refined zone that

do not belong to the heated region allow to resolve the steepest part of the gradient.

The simulation with the refined mesh is carried out with one fourth of the elements of

uniform one. The refined region is discretized using 400 elements, the same number of

elements dedicated to the same interval in the uniform mesh; the remaining 100 elements

are distributed outside the refined region. Thanks to the symmetry of the refined region with

respect to the center of gravity of the cable, 50 elements are used to discretize the interval

[0,4) and the other 50 are used to discretize the interval (6,10]. The algorithm to build the

refined mesh is described in section 2.2.1.1.

4 SC2 VERIFICATION AND VALIDATION

129

Figure 4.3-12 Comparison of the spatial distributions obtained with the uniform and refined meshes for the

low temperature ITER-TF configuration with INTIAL 1 and at 11.8 s. Solid lines refer to the uniform mesh, dot-

dashed lines refer to the not uniform mesh. (a) fluid components velocities; (b) fluid components pressure; (c) fluid

components temperatures; (d) strand temperature; (e) global error in semi logarithmic scale.

When calculating the error, the code has to deal with vectors of different lengths, and the

values must be compared at the same coordinates. The problem is outside the refined region

since inside, by construction, the coordinates belonging to the range of the refined region

coincide in both discretizations. Outside the refined region values in correspondence of the

coordinates of the non-uniform mesh are evaluated interpolating the values obtained with

the uniform one. In this way two arrays of the same length, equal to the number of nodes

used in the non-uniform mesh, are built and they can be compared since their values are

evaluated at the same spatial coordinates.

The results of the data processing are shown in Figure 4.3-12. The first four subplots (a-d) of

Figure 4.3-12 show the behavior of the solution spatial distribution for both considered meshes,

demonstrating that the phenomena discussed several times are correctly captured even if

fewer elements are used outside the heated region. The final proof is contained in the last

subplot (Figure 4.3-12 (e)) which shows the spatial distribution of the global error of the solution

4.3 SC2 VERSATILITY CHECKS

130

at 11.8 s . The error is ruled mainly by the temperature gradients. As the temperature

increases, the error increases outside the refined region, as the spatial gradient gets steeper

the error tends to increase, until it enters the refined region where there is a reduction of a

couple of orders of magnitude. A final remark concerns the unexpected behavior of the error

at the boundary of the domain, which is related to the imposition of the fluid components

temperature as boundary conditions. At the considered time step, the inlet velocity is negative

and the outlet velocity is positive in both the channels, see Figure 4.3-12 (a); so, recalling what

summarized in Table 4.3-1, neither the inlet nor the outlet temperatures are imposed in both

simulations. The evaluated temperatures are influenced by the different number of elements

used for the spatial discretizations and, therefore, their value will be different giving a larger

error.

4.3.5 SUMMARY

This section summarizes the results of the analysis of internal benchmarks, i.e.,

comparisons between different simulations launched with the same code. The possibility of

performing this comparison is based on the assumption that, since the benchmarks with 4C

are positive, the results of the simulations performed with SC2 are reliable.

The internal comparisons involve testing different initialization possibilities, such as using

different methods for integrating the ODE system over time, making the results independent

of the position of the inlet and outlet and, finally, defining a non-uniform mesh to reduce

computational costs. The salient features of the results obtained are highlighted.

As regards the comparison of the different initializations, the three main possibilities were

compared, namely INTIAL 1 INTIAL 2 and INTIAL 5. The results confirmed expectations, namely

that setting the different flag leads to different results, depending on the initialization values,

since the physics of the problem changes. In practice, the imposed boundary conditions

change. Comparing instead INTIAL 2 with INTIAL 5 leads to the same results because the only

difference is in how the initial values are obtained, while the boundary conditions are the

same. It was also pointed out that the physics implemented by the code is plausible.

The comparison of the results obtained with BE and CN confirms, once again, that to obtain

accurate results with the latter, small values of the time step must be adopted. In fact, the

agreement between the two methods is better with STPMIN equal to 0.01 s than with 0.1 s,

but the errors are still high during the heating and cooling phases.

The three sets of simulations defined to test the fluid dynamics implemented in SC2,

imposing three different pressure drops using INTIAL 1, gave consistent results that

conformed to expectations: the code recognizes the location of the inlet and outlet according

to the order relationship between the pressures assigned and consequently calculates the

solution by attributing the correct sign to the velocity.

Finally, it has been shown that the use of the non-uniform mesh produces globally

acceptable results; within the refined zone the error compared to the solution obtained with

a uniform mesh decreases by approximately two orders of magnitude.

5 CONCLUSIONS AND FUTURE PERSPECTIVES

131

CHAPTER 5

5 CONCLUSIONS AND FUTURE PERSPECTIVES

The purpose of this thesis work can be declined in two key points of equal importance and

interconnected: the first is the conceptual design and first implementation of a new tool for

modeling LTS and HTS superconducting cables, the second consists in the rigorous procedure

of verification and validation of the developed tool with respect to the existing and validated

4C code.

The novelty of the tool with respect to the ones already available in the scientific

community relies in its object-oriented nature. Exploiting the potentialities of the classes and

of the objects they instantiate, it has been shown the simplicity with which it is possible to

study different topologies of conductors, supplying exclusively inputs on the number and the

typology of the components that build the conductor, the geometry and the materials of

which they are composed, as well as the operating conditions and the strategies to be applied

for the solution of the problem.

In order to achieve the second objective, the verification of the algorithms is based on the

control of the expected convergence orders in both space and time, together with the correct

representation of the physics of the considered problem. On the other hand, validation is

based on benchmarking against 4C code for two configurations that differ in topology,

operating temperature, and application:

• the three-phase coaxial high critical temperature superconducting cables (3P-HTS);

• the ITER toroidal field coil low critical temperature superconductive cables (ITER-TF).

Both configurations have been studied with two different initializations and related

boundary conditions: INTIAL 1 corresponds to an initialization that imposes the pressures at

the ends of the cable and the initial temperature and applies the same values as boundary

conditions; with INTIAL 5 the flow is initialized starting from the inlet mass flow rate and

temperature together with the outlet pressure, so the boundary conditions imposed are the

inlet velocity and temperature and the outlet pressure.

By means of a series of inner benchmarks and stability checks, the verification of the other

characteristics of the code was then completed.

The correct representation of the physics of the problem, as well as being implicitly verified

through the benchmark with 4C code, has been further investigated and confirmed with the

benchmarks performed by adopting three values of the INTIAL flag, specifically 1, 2 and 5. It

was found that adopting different flags (INTIAL 1 and INTIAL 5) leads to different results,

consistent with the operating conditions of the cable, while comparing INTIAL 2 with INTIAL 5

confirms that the two initializations are equivalent, the only difference being the way in which

the outlet pressure is obtained.

132

Comparison of the solution obtained with BE and with CN confirms that a smaller time

step is required to obtain accurate solutions with the latter.

Further verification of the correct representation of physics was achieved by verifying that

the position of the inlet and outlet of the conductor was related to the pressure values at the

inlet and outlet, i.e., that the inlet is located where the pressure is maximum and the outlet

where it is minimum. This study was carried out with INTIAL 1 for different values of the

pressure drop (0.1 bar, 0.02 bar and 0.5 bar) with the inlet pressure set at 6 bar. Not only it

was found that by exchanging the inlet pressure with the outlet one the direction of flow is

correctly reversed, but it was also seen that different pressure drops correspond to different

thermal-fluid dynamics behaviors of the cable, again confirming the ability of the tool to

correctly simulate physics.

Finally, the consistency of the solution obtained with a non-uniform, refined mesh around

the heated region was verified, compared to that obtained with a uniform mesh. Again, the

benchmark was successful.

The validation with 4C code is influenced by the differences between the algorithms

implemented in the two codes, in particular the different initialization procedure and the

calculation of the properties in the Gauss nodes, essential for the construction of the matrix

of the coefficients of the system. The effects of the former are particularly evident in the

determination of the initial velocity distribution for the ITER-TF configuration with INTIAL 5,

being the errors of the order of 10−1. The recipe adopted for the calculation of the properties

in the Gauss node has a non-negligible impact on the accuracy of the solution, a fortiori when

considering the LTS due to the marked nonlinearity of the material properties in this

temperature window 4.5 K - 20 K.

Based on the above analysis, it can be concluded that the SC2 algorithms are successfully

verified and validated, the results are consistent and accurate. The two configurations

considered sanction the versatility of the code and its ability to handle different topologies.

On this front, further simulation campaigns aimed at deepening the verification and

validation of the SC2 code must necessarily be carried out. It is appropriate to perform tests

with configurations that involve the use of more materials, a greater number of components

and different topologies from those examined in this work, also allow to test more

sophisticated computational strategies, and not yet implemented in SC2.

In fact, from this point of view, it still offers a limited number of options. Computational

improvements can be obtained by implementing time step and grid adaptivity, as well as

introducing new possibilities for numerical integration of the ODE system such as the fourth-

order Adams-Moulton method (AM4). As far as the spatial discretization, higher order FEM

should be considered to enhance the convergence of the solution. An interesting alternative

to the FEM to consider is the VEM, already widely used in the literature for this type of analysis

as highlighted in section 1.3. A further increase in performance would be achieved by replacing

the methods currently used for solving the linear system of equations with python's built-in

solvers.

5 CONCLUSIONS AND FUTURE PERSPECTIVES

133

SC2 code also needs to be extended as it is not yet able to handle the radiative heat

transfer or to model cables electromagnetically. The modeling of different conductors, already

possible in the developed tool, should be complemented by a suitable coupling between the

conductors.

The graphical interface can and must be further developed. In particular, the “Simulation

control panel” cascade must be completed to allow the user to interact with the simulation

and “Simulation drivers” must be developed to definitively introduce the Run-AND-check

philosophy (see Table 3.4-1). Moreover, new functionalities can be added, such as input data

compilation and thus the construction of the conductor topology, the choice of the extension

of the default figures and their structure (number of subplots and number of curves depicted

in each of them).

As a final remark, the code also needs to be improved in terms of style and data

organization. A good support for the first aspect can be found by following the suggestions

and indications in PEP8 [106]. On the other hand, saving data in an orderly fashion [107]

simplifies the routines dedicated to post processing and plotting. Finally, the use of binary and

columnar format such as hdf5 or parquet would allow an easier management of the data,

making the most of the potential of pandas for advanced post processing.

A EXTENDED FORM OF EQUATIONS

135

APPENDIX A
A EXTENDED FORM OF EQUATIONS

This appendix shows the extended form of the general equations that constitute the

system of PDEs to be solved. Specifically, the source terms of the fluid components set of

equations are written explicitly, then the general expression of velocity, pressure and

temperature equations are proposed.

The Euler like set of equations in non-conservative variables is:

{

𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑥
+
1

𝜌

𝜕𝑝

𝜕𝑥
=
1

𝜌
 (𝛬𝑣 − 𝑣𝛬𝜌)

𝜕𝑝

𝜕𝑡
+ 𝜌𝑐2

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑝

𝜕𝑥
= 𝛷 [𝛬𝑒 − 𝑣𝛬𝑣 − (𝑤 −

𝑣2

2
−
𝑐2

𝛷
)𝛬𝜌]

𝜕𝑇

𝜕𝑡
+ 𝛷𝑇

 𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑥
=

1

𝜌𝑐𝑣
[𝛬𝑒 − 𝑣𝛬𝑣 − (𝑤 −

𝑣2

2
− 𝛷𝑐𝑣𝑇)𝛬𝜌]

 (A-1)

There are three source terms, the mass 𝛬𝜌, the momentum 𝛬𝑣 and the energy one 𝛬𝑒.

The derivation of the above equations can be found in [94]. The generic source terms for

fluid component 𝑐𝑎 that interacts with 𝑁𝑐ℎ − 1 fluid components are shown below.

𝛬𝜌
𝑐𝑎 =

∑ 𝐾𝑐𝑎,𝑐ℎ
′𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎 (𝑝𝑐ℎ − 𝑝𝑐𝑎)

𝐿Σ𝑐𝑎

(A-2)

𝛬𝑣
𝑐𝑎 =

∑ 𝐾𝑐𝑎,𝑐ℎ
′′𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎 (𝑝𝑐ℎ − 𝑝𝑐𝑎)

𝐿Σ𝑐𝑎
− 𝜌𝑐𝑎𝐹𝑐𝑎

(A-3)

𝛬𝑒
𝑐𝑎 =

∑ 𝐾𝑐𝑎,𝑐ℎ
′′′𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎 (𝑝𝑐ℎ − 𝑝𝑐𝑎)

𝐿Σ𝑐𝑎

+
∑ (𝑃𝑐𝑎,𝑐ℎ

𝑜 ℎ𝑐𝑎,𝑐ℎ
𝑜 + 𝑃𝑐𝑎,𝑐ℎ

𝑐 ℎ𝑐𝑎,𝑐ℎ
𝑐)

𝑁𝑐ℎ
𝑐ℎ≠𝑐𝑎 (𝑇𝑐ℎ − 𝑇𝑐𝑎)

Σ𝑐𝑎

+
∑ 𝑃𝑐𝑎,𝑠𝑡ℎ𝑐𝑎,𝑠𝑡
𝑁𝑠𝑡
𝑠𝑡=1 (𝑇𝑠𝑡 − 𝑇𝑐𝑎)

Σ𝑐𝑎
+
∑ 𝑃𝑐𝑎,𝑗𝑘ℎ𝑐𝑎,𝑗𝑘
𝑁𝑗𝑘
𝑗𝑘=1

(𝑇𝑗𝑘 − 𝑇𝑐𝑎)

Σ𝑐𝑎

(A-4)

𝐹𝑐𝑎 =
2𝑓𝑐𝑎𝑣𝑐𝑎

2

𝐷ℎ.𝑐𝑎
= 𝑣𝑐𝑎�̃�𝑐𝑎

(A-5)

�̃�𝑐𝑎 =
2𝑓𝑐𝑎|𝑣𝑐𝑎|

𝐷ℎ.𝑐𝑎
 (A-6)

To see what is hidden behind the transport coefficients 𝐾𝑐𝑎,𝑐ℎ
′ , 𝐾𝑐𝑎,𝑐ℎ

′′ and 𝐾𝑐𝑎,𝑐ℎ
′′′ , the

transversal velocity between two channels in hydraulic parallel should be introduced. It can

be modeled as:

136

𝑣⊥,𝑐𝑎,𝑐ℎ =

{

√
2|𝑝𝑐ℎ − 𝑝𝑐𝑎|

𝑘𝑓,𝑙𝑜𝑐 𝑝𝑐ℎ

𝑝𝑐ℎ − 𝑝𝑐𝑎
|𝑝𝑐ℎ − 𝑝𝑐𝑎|

, 𝑝𝑐ℎ − 𝑝𝑐𝑎 ≥ 0

√
2|𝑝𝑐ℎ − 𝑝𝑐𝑎|

𝑘𝑓,𝑙𝑜𝑐 𝑝𝑐𝑎

𝑝𝑐ℎ − 𝑝𝑐𝑎
|𝑝𝑐ℎ − 𝑝𝑐𝑎|

, 𝑝𝑐ℎ − 𝑝𝑐𝑎 < 0

 (A-7)

The transport coefficients are defined as follows:

𝐾𝑐𝑎,𝑐ℎ
′ =

{

Σ⊥,𝑐𝑎,𝑐ℎ √

2𝜌𝑐ℎ
𝑘𝑓,𝑙𝑜𝑐|𝑝𝑐ℎ − 𝑝𝑐𝑎|

, 𝑣⊥,𝑐𝑎,𝑐ℎ ≥ 0

Σ⊥,𝑐𝑎,𝑐ℎ √
2𝜌𝑐𝑎

𝑘𝑓,𝑙𝑜𝑐|𝑝𝑐ℎ − 𝑝𝑐𝑎|
, 𝑣⊥,𝑐𝑎,𝑐ℎ < 0

 (A-8)

𝐾𝑐𝑎,𝑐ℎ
′′ = {

𝐾𝑐𝑎,𝑐ℎ
′ 𝜆𝑣𝑣𝑐ℎ, 𝑣⊥,𝑐𝑎,𝑐ℎ ≥ 0

𝐾𝑐𝑎,𝑐ℎ
′ 𝜆𝑣𝑣𝑐𝑎, 𝑣⊥,𝑐𝑎,𝑐ℎ < 0

 (A-9)

𝐾𝑐𝑎,𝑐ℎ
′′′ =

{

 𝐾𝑐𝑎,𝑐ℎ

′ [𝑤𝑐ℎ +
(𝜆𝑣𝑣𝑐ℎ)

2

2
] , 𝑣⊥,𝑐𝑎,𝑐ℎ ≥ 0

𝐾𝑐𝑎,𝑐ℎ
′ [𝑤𝑐𝑎 +

(𝜆𝑣𝑣𝑐𝑎)
2

2
] , 𝑣⊥,𝑐𝑎,𝑐ℎ < 0

 (A-10)

The parameter 𝜆𝑣 allows to keep into account if the interface is able or not to absorb

momentum, according to its structure. For an helicoidal interface 𝜆𝑣 ≅ 1, while if the channels

coupling is realized with small holes it can be assumed that 𝜆𝑣 ≅ 0.

The unit of measure of the transport coefficients and of the source terms are reported in

Table B.1-1.

Table B.1-1 Transport coefficient and source terms units of measure.

Quantity 𝑲′ 𝑲′′ 𝑲′′′ 𝚲𝝆 𝚲𝒗 𝚲𝒆

Unit SI ms m2 m3/s kg/(m3 s) J/m4 ≡ kg/(m2 s2) W/m3 ≡ kg/(ms3)

From the above definitions results that:

𝐾𝑐ℎ,𝑐𝑎
′ = 𝐾𝑐𝑎,𝑐ℎ

′ 𝑐𝑎, 𝑐ℎ = 1, … , 𝑁𝑐ℎ (A-11)

𝐾𝑐ℎ,𝑐𝑎
′′ = 𝐾𝑐𝑎,𝑐ℎ

′′ 𝑐𝑎, 𝑐ℎ = 1, … , 𝑁𝑐ℎ (A-12)

𝐾𝑐ℎ,𝑐𝑎
′′′ = 𝐾𝑐𝑎,𝑐ℎ

′′′ 𝑐𝑎, 𝑐ℎ = 1, … , 𝑁𝑐ℎ (A-13)

Substituting the full expression of the source terms in equation (A-1) the extended version

of the equations can be obtained. Their final forms are proposed here.

A EXTENDED FORM OF EQUATIONS

137

Velocity equation for the 𝑐𝑎-th channel that interacts with 𝑁𝑐ℎ − 1 fluid components, 𝑁𝑠𝑡

strands components and 𝑁𝑗𝑘 jacket components:

𝜕𝑣𝑐𝑎
𝜕𝑡

+ 𝑣𝑐𝑎
𝜕𝑣𝑐𝑎
𝜕𝑥

+
1

𝜌𝑐𝑎

𝜕𝑝𝑐𝑎
𝜕𝑥

+ 𝑣𝑐𝑎�̃�𝑐𝑎

−
𝑝𝑐𝑎

𝐿𝜌𝑐𝑎Σ𝑐𝑎
∑ (𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ

′ − 𝐾𝑐𝑎,𝑐ℎ
′′)

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

+
1

𝐿𝜌𝑐𝑎Σ𝑐𝑎
∑ (𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ

′ − 𝐾𝑐𝑎,𝑐ℎ
′′)𝑝𝑐ℎ

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

= 0

(A-14)

Pressure equation for the 𝑐𝑎-th channel that interacts with 𝑁𝑐ℎ − 1 fluid components, 𝑁𝑠𝑡

strands components and 𝑁𝑗𝑘 jacket components:

𝜕𝑝𝑐𝑎
𝜕𝑡

+ 𝜌𝑐𝑎𝑐𝑐𝑎
2
𝜕𝑣𝑐𝑎
𝜕𝑥

+ 𝑣𝑐𝑎
𝜕𝑝𝑐𝑎
𝜕𝑥

− 𝛷𝑐𝑎𝜌𝑐𝑎�̃�𝑐𝑎𝑣𝑐𝑎
2

+
𝛷𝑐𝑎𝑝𝑐𝑎
𝐿Σ𝑐𝑎

∑ [𝐾𝑐𝑎,𝑐ℎ
′′′ − 𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ

′′ − (𝑤𝑐𝑎 −
𝑣𝑐𝑎
2

2
−
𝑐𝑐𝑎
2

𝛷𝑐𝑎
)𝐾𝑐𝑎,𝑐ℎ

′]

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

−
𝛷𝑐𝑎
𝐿Σ𝑐𝑎

∑ [𝐾𝑐𝑎,𝑐ℎ
′′′ − 𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ

′′ − (𝑤𝑐𝑎 −
𝑣𝑐𝑎
2

2
−
𝑐𝑐𝑎
2

𝛷𝑐𝑎
)𝐾𝑐𝑎,𝑐ℎ

′]

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

𝑝𝑐ℎ

+
𝛷𝑐𝑎𝑇𝑐𝑎
Σ𝑐𝑎

[∑ (𝑃𝑐𝑎,𝑐ℎ
𝑂 ℎ𝑐𝑎,𝑐ℎ

𝑂 + 𝑃𝑐𝑎,𝑐ℎ
𝐶 ℎ𝑐𝑎,𝑐ℎ

𝐶)

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

+ ∑ 𝑃𝑐𝑎,𝑠𝑡 ℎ𝑐𝑎,𝑠𝑡

𝑁𝑠𝑡

𝑠𝑡=1

+ ∑ 𝑃𝑐𝑎,𝑗𝑘 ℎ𝑐𝑎,𝑗𝑘

𝑁𝑗𝑘

𝑗𝑘=1

]

−
𝛷𝑐𝑎
Σ𝑐𝑎

[∑ (𝑃𝑐𝑎,𝑐ℎ
𝑂 ℎ𝑐𝑎,𝑐ℎ

𝑂 + 𝑃𝑐𝑎,𝑐ℎ
𝐶 ℎ𝑐𝑎,𝑐ℎ

𝐶)

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

𝑇𝑐ℎ

+ ∑ 𝑃𝑐𝑎,𝑠𝑡 ℎ𝑐𝑎,𝑠𝑡

𝑁𝑠𝑡

𝑠𝑡=1

𝑇𝑠𝑡 + ∑ 𝑃𝑐𝑎,𝑗𝑘 ℎ𝑐𝑎,𝑗𝑘

𝑁𝑗𝑘

𝑗𝑘=1

𝑇𝑗𝑘] = 0

(A-15)

Temperature equation for the 𝑐𝑎 -th channel that interacts with 𝑁𝑐ℎ − 1 fluid

components, 𝑁𝑠𝑡 strands components and 𝑁𝑗𝑘 jackets components:

138

𝜕𝑇𝑐𝑎
𝜕𝑡

+ 𝛷𝑐𝑎𝑇𝑐𝑎
 𝜕𝑣𝑐𝑎
𝜕𝑥

+ 𝑣𝑐𝑎
𝜕𝑇𝑐𝑎
𝜕𝑥

−
�̃�𝑐𝑎𝑣𝑐𝑎

2

𝑐𝑣,𝑐𝑎

+
𝑝𝑐𝑎

𝐿𝜌𝑐𝑎Σ𝑐𝑎𝑐𝑣,𝑐𝑎
∑ [𝐾𝑐𝑎,𝑐ℎ

′′′ − 𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ
′′

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

− (𝑤𝑐𝑎 −
𝑣𝑐𝑎
2

2
− 𝛷𝑐𝑎𝑐𝑣,𝑐𝑎 𝑇𝑐𝑎)𝐾𝑐𝑎,𝑐ℎ

′]

−
1

𝐿𝜌𝑐𝑎Σ𝑐𝑎𝑐𝑣,𝑐𝑎
∑ [𝐾𝑐𝑎,𝑐ℎ

′′′ − 𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ
′′

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

− (𝑤𝑐𝑎 −
𝑣𝑐𝑎
2

2
− 𝛷𝑐𝑎𝑐𝑣,𝑐𝑎 𝑇𝑐𝑎)𝐾𝑐𝑎,𝑐ℎ

′] 𝑝𝑐ℎ

+
𝑇𝑐𝑎

𝜌𝑐𝑎Σ𝑐𝑎𝑐𝑣,𝑐𝑎
[∑ (𝑃𝑐𝑎,𝑐ℎ

𝑂 ℎ𝑐𝑎,𝑐ℎ
𝑂 + 𝑃𝑐𝑎,𝑐ℎ

𝐶 ℎ𝑐𝑎,𝑐ℎ
𝐶)

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

+ ∑ 𝑃𝑐𝑎,𝑠𝑡 ℎ𝑐𝑎,𝑠𝑡

𝑁𝑠𝑡

𝑠𝑡=1

+ ∑ 𝑃𝑐𝑎,𝑗𝑘 ℎ𝑐𝑎,𝑗𝑘

𝑁𝑗𝑘

𝑗𝑘=1

]

−
1

𝜌𝑐𝑎Σ𝑐𝑎𝑐𝑣,𝑐𝑎
[∑ (𝑃𝑐𝑎,𝑐ℎ

𝑂 ℎ𝑐𝑎,𝑐ℎ
𝑂 + 𝑃𝑐𝑎,𝑐ℎ

𝐶 ℎ𝑐𝑎,𝑐ℎ
𝐶)

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

𝑇𝑐ℎ

+ ∑ 𝑃𝑐𝑎,𝑠𝑡 ℎ𝑐𝑎,𝑠𝑡

𝑁𝑠𝑡

𝑠𝑡=1

𝑇𝑠𝑡 + ∑ 𝑃𝑐𝑎,𝑗𝑘 ℎ𝑐𝑎,𝑗𝑘

𝑁𝑗𝑘

𝑗𝑘=1

𝑇𝑗𝑘] = 0

(A-16)

For the sake of completeness, the extended version of the 1D transient heat transfer

equations for the genetic strand and jacket objects are also shown in this appendix.

Full extension of the transient one-dimensional heat transfer equation for the 𝑓𝑖-th strand

that interacts with 𝑁𝑐ℎ fluid components, 𝑁𝑠𝑡 − 1 strands component and 𝑁𝑗𝑘 jackets

components:

Σ𝑓𝑖𝜌𝑓𝑖𝑐𝑓𝑖
𝜕𝑇𝑓𝑖

𝜕𝑡
− Σ𝑓𝑖

𝜕

𝜕𝑥
(𝑘𝑓𝑖

𝜕𝑇𝑓𝑖

𝜕𝑥
)

+ 𝑇𝑓𝑖 (∑ 𝑃𝑓𝑖,𝑐ℎℎ𝑓𝑖,𝑐ℎ +

𝑁𝑐ℎ

𝑐ℎ=1

∑ 𝑃𝑓𝑖,𝑠𝑡ℎ𝑓𝑖,𝑠𝑡 +

𝑁𝑠𝑡

𝑠𝑡≠𝑓𝑖

∑ 𝑃𝑓𝑖,𝑗𝑘ℎ𝑓𝑖,𝑗𝑘

𝑁𝑗𝑘

𝑗𝑘=1

)

− ∑ 𝑃𝑓𝑖,𝑐ℎℎ𝑓𝑖,𝑐ℎ𝑇𝑐ℎ −

𝑁𝑐ℎ

𝑐ℎ=1

∑ 𝑃𝑓𝑖,𝑠𝑡ℎ𝑓𝑖,𝑠𝑡𝑇𝑠𝑡 −

𝑁𝑠𝑡

𝑠𝑡=𝑓𝑖

∑ 𝑃𝑓𝑖,𝑗𝑘ℎ𝑓𝑖,𝑗𝑘

𝑁𝑗𝑘

𝑗𝑘=1

𝑇𝑗𝑘

= 𝑄𝑓𝑖,𝐽𝑜𝑢𝑙𝑒 + 𝑄𝑓𝑖,𝑒𝑥𝑡

(A-17)

Full extension of the transient one-dimensional heat transfer equation for the 𝑖𝑛-th jacket

that interacts with 𝑁𝑐ℎ fluid components, 𝑁𝑠𝑡 strands component and 𝑁𝑗𝑘 − 1 jackets

components:

A EXTENDED FORM OF EQUATIONS

139

Σ𝑖𝑛𝜌𝑖𝑛𝑐𝑖𝑛
𝜕𝑇𝑖𝑛
𝜕𝑡

− Σ𝑖𝑛
𝜕

𝜕𝑥
(𝑘𝑖𝑛

𝜕𝑇𝑖𝑛
𝜕𝑥

)

+ 𝑇𝑖𝑛 (∑ 𝑃𝑖𝑛,𝑐ℎℎ𝑖𝑛,𝑐ℎ +

𝑁𝑐ℎ

𝑐ℎ=1

∑ 𝑃𝑖𝑛,𝑠𝑡ℎ𝑖𝑛,𝑠𝑡 +

𝑁𝑠𝑡

𝑠𝑡=1

∑ 𝑃𝑖𝑛,𝑗𝑘ℎ𝑖𝑛,𝑗𝑘

𝑁𝑗𝑘

𝑗𝑘≠𝑖𝑛

)

− ∑ 𝑃𝑖𝑛,𝑐ℎℎ𝑖𝑛,𝑐ℎ𝑇𝑐ℎ −

𝑁𝑐ℎ

𝑐ℎ=1

∑ 𝑃𝑖𝑛,𝑠𝑡ℎ𝑖𝑛,𝑠𝑡𝑇𝑠𝑡 −

𝑁𝑠𝑡

𝑠𝑡=1

∑ 𝑃𝑖𝑛,𝑗𝑘ℎ𝑖𝑛,𝑗𝑘

𝑁𝑗𝑘

𝑗𝑘≠𝑖𝑛

𝑇𝑗𝑘

= 𝑄𝑖𝑛,𝐽𝑜𝑢𝑙𝑒 + 𝑄𝑖𝑛,𝑒𝑥𝑡

(A-18)

From this form of the equations it is possible to get the elements of the matrices and the

known term vector that appears in equation (2.1-10). These are proposed in appendix B.1.

B MATRIX ELEMENTS

141

APPENDIX B
B MATRIX ELEMENTS

This appendix is divided into three sections. First the general form of the elements of the

matrices and vectors that appear in the matrix equation of the system are shown, then the

real shape of these matrices are proposed for the two study cases.

B.1 GENERAL FORM OF MATRICES AND VECTORS

The matrix form of the PDEs system is:

𝑀
𝜕𝒖

𝜕𝑡
+ 𝐴

𝜕𝒖

𝜕𝑥
+
𝜕

𝜕𝑥
(𝐾

𝜕𝒖

𝜕𝑥
) + 𝑆𝒖 = 𝒔

(B-1)

This section describes the general shape of both vectors and matrices that appears in the

above equation.

Recall that the number of degrees of freedom, the number of unknowns, is given by:

𝑁𝑒𝑞 = 3𝑁𝑐ℎ + 𝑁𝑠𝑡 + 𝑁𝑗𝑘 (B-2)

This implies that 𝒖 and 𝒔 are columns vectors ∈ ℝ𝑁𝑒𝑞,1; their general structure is:

𝒖 =

[

𝒗𝒄𝒉
𝒑𝒄𝒉
𝑻𝒄𝒉
𝑻𝒔𝒕
𝑻𝒋𝒌]

 (B-3)

𝒔 = [

𝟎
𝑸𝒔𝒕
𝑸𝒋𝒌

] (B-4)

with 𝒗𝒄𝒉 , 𝒑𝒄𝒉 and 𝑻𝒄𝒉 ∈ ℝ𝑁𝑐ℎ,1 , 𝑻𝒔𝒕 ∈ ℝ
𝑁𝑠𝑡,1 and 𝑻𝒋𝒌 ∈ ℝ

𝑁𝑗𝑘,1 ; 𝟎 is the null vector in

ℝ3𝑁𝑐ℎ,1, finally 𝑸𝒔𝒕𝒓𝒂𝒏𝒅 and 𝑸𝒋𝒂𝒄𝒌𝒆𝒕 are respectively vectors of ℝ𝑁𝑠𝑡,1 and ℝ𝑁𝑗𝑘,1.

𝒗𝒄𝒉 = [𝑣𝑐ℎ] 𝑐ℎ = 1,… ,𝑁𝑐ℎ (B-5)

𝒑𝒄𝒉 = [𝑝𝑐ℎ] 𝑐ℎ = 1,… ,𝑁𝑐ℎ (B-6)

𝑻𝒄𝒉 = [𝑇𝑐ℎ] 𝑐ℎ = 1,… ,𝑁𝑐ℎ (B-7)

𝑻𝒔𝒕 = [𝑇𝑠𝑡] 𝑠𝑡 = 1,… ,𝑁𝑠𝑡
(B-8)

𝑻𝒋𝒌 = [𝑇𝑗𝑘] 𝑗𝑘 = 1,… ,𝑁𝑗𝑘 (B-9)

𝑸𝒔𝒕 = [𝑄𝑠𝑡,𝐽𝑜𝑢𝑙𝑒 + 𝑄𝑠𝑡,𝑒𝑥𝑡] 𝑠𝑡 = 1,… ,𝑁𝑠𝑡
(B-10)

B.1 GENERAL FORM OF MATRICES AND VECTORS

142

𝑸𝒋𝒌 = [𝑄𝑗𝑘,𝐽𝑜𝑢𝑙𝑒 + 𝑄𝑗𝑘,𝑒𝑥𝑡] 𝑗𝑘 = 1,… ,𝑁𝑗𝑘 (B-11)

The matrices of equation (2.1-10) are sparse square matrices of ℝ𝑁𝑒𝑞,𝑁𝑒𝑞. Looking at the

extended general form of the equations listed in appendix A, their elements can be deduced.

The 𝑀 matrix is diagonal:

𝑀 = 𝑑𝑖𝑎𝑔(𝟏,𝑴𝒔𝒕,𝑴𝒋𝒌)
(B-12)

where 𝟏 is the vector of ones in ℝ3𝑁𝑐ℎ,1, 𝑴𝒔𝒕 ∈ ℝ
𝑁𝑠𝑡,1 and 𝑴𝒋𝒌 ∈ ℝ

𝑁𝑗𝑘,1 with:

𝑴𝒔𝒕 = [Σ𝑠𝑡𝜌𝑠𝑡𝑐𝑝,𝑠𝑡] 𝑠𝑡 = 1,… ,𝑁𝑠𝑡
(B-13)

𝑴𝒋𝒌 = [Σ𝑗𝑘𝜌𝑗𝑘𝑐𝑝,𝑗𝑘] 𝑗𝑘 = 1,… ,𝑁𝑗𝑘 (B-14)

The 𝐴 matrix is banded with four not null diagonals including the main one: specifically,

the upper 𝑁𝑐ℎ-th super diagonal (𝑨𝒔𝒖𝒑,𝒗nd the lowers 𝑁𝑐ℎ-th (𝑨𝒔𝒖𝒃,𝒑) and 2𝑁𝑐ℎ-th (𝑨𝒔𝒖𝒃,𝑻)

diagonals are not null together with the main diagonal (𝑨𝒎𝒂𝒊𝒏). The elements of these

diagonals are shown in their vectorial form.

𝑨𝒎𝒂𝒊𝒏 = [

𝒗𝒄𝒉
𝒗𝒄𝒉
𝒗𝒄𝒉
𝟎𝒎𝒂𝒊𝒏

] ∈ ℝ𝑁𝑒𝑞,1 (B-15)

𝑨𝒔𝒖𝒑,𝒗 = [
𝑨𝒗
𝟎𝒔𝒖𝒑,𝒗

] ∈ ℝ2𝑁𝑐ℎ+𝑁𝑠𝑡+𝑁𝑗𝑘,1 (B-16)

𝑨𝒔𝒖𝒃,𝒑 = [
𝑨𝒑
𝟎𝒔𝒖𝒃,𝒑

] ∈ ℝ2𝑁𝑐ℎ+𝑁𝑠𝑡+𝑁𝑗𝑘,1 (B-17)

𝑨𝒔𝒖𝒃,𝑻 = [
𝑨𝑻
𝟎𝒔𝒖𝒃,𝑻

] ∈ ℝ𝑁𝑐ℎ+𝑁𝑠𝑡+𝑁𝑗𝑘,1 (B-18)

𝑨𝒎𝒂𝒊𝒏 is the vector corresponding to the main diagonal of 𝐴: its elements are the channels

velocities and 𝑁𝑠𝑡 + 𝑁𝑗𝑘 zeros collected into the vector 𝟎𝒎𝒂𝒊𝒏 ∈ ℝ
𝑁𝑠𝑡+𝑁𝑗𝑘,1.

The values of the not null super diagonal are collected in vector 𝑨𝒔𝒖𝒑,𝒗at is composed in

turn by a not null vector 𝑨𝒗 ∈ ℝ
𝑁𝑐ℎ,1 and a null vector 𝟎𝒔𝒖𝒑,𝒗 ∈ ℝ

𝑁𝑐ℎ+𝑁𝑠𝑡+𝑁𝑗𝑘,1he subscript 𝑣

refers to the fact that these terms came from the coefficient of partial derivative
𝜕𝑝

𝜕 𝑥
 in the

velocity equations:

𝑨𝒗 = [
1

𝜌𝑐ℎ
] 𝑐ℎ = 1,… ,𝑁𝑐ℎ (B-19)

The two not null sub-diagonals are also composed by a combination of a not null and a

null vectors. The former comes from partial derivative
𝜕𝑣

𝜕 𝑥
 in the pressure equations, so it is

called 𝑨𝒔𝒖𝒃,𝒑; its not null elements are the coefficients that multiply this derivative, that is:

B MATRIX ELEMENTS

143

𝑨𝒑 = [𝜌𝑐ℎ𝑐𝑐ℎ
2] 𝑐ℎ = 1,… ,𝑁𝑐ℎ (B-20)

so it has the same dimension of 𝑨𝒗, 𝑨𝒑 ∈ ℝ
𝑁𝑐ℎ,1, and this implies that 𝟎𝒔𝒖𝒃,𝒑 is identical to

𝟎𝒔𝒖𝒑,𝒗inally, 𝑨𝑻 groups the not null elements of the second sub-diagonal that correspond to

the coefficients that multiply the derivative
𝜕𝑣

𝜕 𝑥
 in the temperature equation, therefore also

𝑨𝑻 ∈ ℝ
𝑁𝑐ℎ,1; since the global dimension of the diagonal is 𝑁𝑐ℎ + 𝑁𝑠𝑡 + 𝑁𝑗𝑘, the null vector

𝟎𝒔𝒖𝒃,𝑻 ∈ ℝ
𝑁𝑠𝑡+𝑁𝑗𝑘,1 as 𝟎𝒎𝒂𝒊𝒏.

𝑨𝑻 = [𝛷𝑐ℎ𝑇𝑐ℎ] 𝑐ℎ = 1,… ,𝑁𝑐ℎ (B-21)

The 𝐾 matrix is diagonal and collects the coefficients of the second derivative in space:

𝐾 = 𝑑𝑖𝑎𝑔(𝟎,𝑲𝒔𝒕, 𝑲𝒋𝒌)
(B-22)

where 𝟎 is the already mentioned vector of zeros in ℝ3𝑁𝑐ℎ,1, 𝑲𝒔𝒕 ∈ ℝ
𝑁𝑠𝑡,1 and 𝑲𝒋𝒌 ∈ ℝ

𝑁𝑗𝑘,1

with:

𝑲𝒔𝒕 = [−Σ𝑠𝑡𝑘𝑠𝑡] 𝑠𝑡 = 1, … ,𝑁𝑠𝑡
(B-23)

𝑲𝒋𝒌 = [−Σ𝑗𝑘𝑘𝑗𝑘] 𝑗𝑘 = 1,… ,𝑁𝑗𝑘 (B-24)

The last matrix is 𝑆 that collects all the remaining addendums on the left-hand side of the

equations. Its construction is not trivial as the previous matrices and its sparsity pattern is

function of the cable topology. It is composed by twenty fife sub-matrices whose elements

will be discussed in the last part of this section.

𝑆 =

[

𝑆𝑣𝑐ℎ,𝑣𝑐ℎ 𝑆𝑣𝑐ℎ,𝑝𝑐ℎ 𝑆𝑣𝑐ℎ,𝑇𝑐ℎ 𝑆𝑣𝑐ℎ,𝑇𝑠𝑡 𝑆𝑣𝑐ℎ,𝑇𝑗𝑘
𝑆𝑝𝑐ℎ,𝑣𝑐ℎ 𝑆𝑝𝑐ℎ,𝑝𝑐ℎ 𝑆𝑝𝑐ℎ,𝑇𝑐ℎ 𝑆𝑝𝑐ℎ,𝑇𝑠𝑡 𝑆𝑝𝑐ℎ,𝑇𝑗𝑘
𝑆𝑇𝑐ℎ,𝑣𝑐ℎ 𝑆𝑇𝑐ℎ,𝑝𝑐ℎ 𝑆𝑇𝑐ℎ,𝑇𝑐ℎ 𝑆𝑇𝑐ℎ,𝑇𝑠𝑡 𝑆𝑇𝑐ℎ,𝑇𝑗𝑘
𝑆𝑇𝑠𝑡,𝑣𝑐ℎ 𝑆𝑇𝑠𝑡,𝑝𝑐ℎ 𝑆𝑇𝑠𝑡,𝑇𝑐ℎ 𝑆𝑇𝑠𝑡,𝑇𝑠𝑡 𝑆𝑇𝑠𝑡,𝑇𝑗𝑘
𝑆𝑇𝑗𝑘,𝑣𝑐ℎ 𝑆𝑇𝑗𝑘,𝑝𝑐ℎ 𝑆𝑇𝑗𝑘,𝑇𝑐ℎ 𝑆𝑇𝑗𝑘,𝑇𝑠𝑡 𝑆𝑇𝑗𝑘,𝑇𝑗𝑘]

 (B-25)

The first important point to clarify is the dimensions of the sub-matrices: nine groups can

be identified as shown in equation (B-25) The upper left three by three block of matrices

(upper side) is characterized by square matrices ∈ ℝ𝑁𝑐ℎ,𝑁𝑐ℎ. The first three matrices of the

fourth and fifth columns are rectangular matrices ∈ ℝ𝑁𝑐ℎ,𝑁𝑠𝑡 and ∈ ℝ𝑁𝑐ℎ,𝑁𝑗𝑘 respectively;

while the first three matrices on the fourth and fifth rows belongs respectively to ℝ𝑁𝑠𝑡,𝑁𝑐ℎ and

ℝ𝑁𝑗𝑘,𝑁𝑐ℎ. The last four matrices belong each to a specific group. The two on the main diagonal

are squared ∈ ℝ𝑁𝑠𝑡,𝑁𝑠𝑡 and ∈ ℝ𝑁𝑗𝑘,𝑁𝑗𝑘 respectively, finally the last two are rectangular

𝑆𝑇𝑗𝑘,𝑇𝑠𝑡 ∈ ℝ
𝑁𝑗𝑘,𝑁𝑠𝑡 and 𝑆𝑇𝑠𝑡,𝑇𝑗𝑘 ∈ ℝ

𝑁𝑠𝑡,𝑁𝑗𝑘 .

In the following, the matrices are described proceeding by column.

B.1 GENERAL FORM OF MATRICES AND VECTORS

144

 𝑆𝑣𝑐ℎ,𝑣𝑐ℎ , 𝑆𝑝𝑐ℎ,𝑣𝑐ℎ and 𝑆𝑇𝑐ℎ,𝑣𝑐ℎ are diagonal matrices. Their elements correspond to the

coefficients that multiply the channel velocity of the fourth addendum in velocity, pressure

and temperature equations.

𝑆𝑣𝑐ℎ,𝑣𝑐ℎ = 𝑑𝑖𝑎𝑔(�̃�)
(B-26)

𝑆𝑝𝑐ℎ,𝑣𝑐ℎ = 𝑑𝑖𝑎𝑔(𝑺𝒑𝒄𝒉,𝒗𝒄𝒉)
(B-27)

𝑆𝑇𝑐ℎ,𝑣𝑐ℎ = 𝑑𝑖𝑎𝑔(𝑺𝑻𝒄𝒉,𝒗𝒄𝒉)
(B-28)

Being

�̃� = [�̃�𝑐ℎ] 𝑐ℎ = 1,… ,𝑁𝑐ℎ
(B-29)

𝑺𝒑𝒄𝒉,𝒗𝒄𝒉 = [−�̃�𝑐ℎ𝜌𝑐ℎ𝛷𝑐ℎ𝑣𝑐ℎ] 𝑐ℎ = 1,… ,𝑁𝑐ℎ (B-30)

𝑺𝑻𝒄𝒉,𝒗𝒄𝒉 = [−
�̃�𝑐ℎ𝑣𝑐ℎ
𝑐𝑣,𝑐ℎ

] 𝑐ℎ = 1,… ,𝑁𝑐ℎ
(B-31)

Matrices 𝑆𝑇𝑠𝑡,𝑣𝑐ℎ and 𝑆𝑇𝑗𝑘,𝑣𝑐ℎ are identically null since there are no terms multiplied by

channel velocity in the solid equations.

Next the terms multiplied by pressure are considered that contribute to build-up the five

matrices of the second column. Analogously to the previous case, the heat equation does not

have such addendums so matrices 𝑆𝑇𝑠𝑡,𝑝𝑐ℎ and 𝑆𝑇𝑗𝑘,𝑝𝑐ℎ are full of zeros.

𝑆𝑣𝑐ℎ,𝑝𝑐ℎ, 𝑆𝑝𝑐ℎ,𝑝𝑐ℎ and 𝑆𝑇𝑐ℎ,𝑝𝑐ℎare square matrices ∈ ℝ𝑁𝑐ℎ,𝑁𝑐ℎ.

𝑆𝑣𝑐ℎ,𝑝𝑐ℎ = [

𝑆1,1
𝑣,𝑝 ⋯ 𝑆1,𝑁𝑐ℎ

𝑣,𝑝

⋮ ⋱ ⋮
𝑆𝑁𝑐ℎ,1
𝑣,𝑝 ⋯ 𝑆𝑁𝑐ℎ,𝑁𝑐ℎ

𝑣,𝑝
] (B-32)

𝑆𝑐𝑎,𝑐𝑎
𝑣,𝑝 = −

∑ (𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ
′ − 𝐾𝑐𝑎,𝑐ℎ

′′)
𝑁𝑐ℎ
𝑐ℎ≠𝑐𝑎

𝐿𝜌𝑐𝑎Σ𝑐𝑎
 𝑐𝑎 = 1,… ,𝑁𝑐ℎ

(B-33)

𝑆𝑐𝑎,𝑐ℎ
𝑣,𝑝 =

𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ
′ − 𝐾𝑐𝑎,𝑐ℎ

′′

𝐿𝜌𝑐𝑎Σ𝑐𝑎
 𝑐𝑎, 𝑠𝑡 = 1,… ,𝑁𝑐ℎ

(B-34)

𝑆𝑝𝑐ℎ,𝑝𝑐ℎ = [

𝑆1,1
𝑝 ⋯ 𝑆1,𝑁𝑐ℎ

𝑝

⋮ ⋱ ⋮
𝑆𝑁𝑐ℎ,1
𝑝 ⋯ 𝑆𝑁𝑐ℎ,𝑁𝑐ℎ

𝑝
] (B-35)

𝑆𝑐𝑎,𝑐𝑎
𝑝 =

𝛷𝑐𝑎
𝐿Σ𝑐𝑎

∑ [𝐾𝑐𝑎,𝑐ℎ
′′′ − 𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ

′′ − (𝑤𝑐𝑎 −
𝑣𝑐𝑎
2

2
−
𝑐𝑐𝑎
2

𝛷𝑐𝑎
)𝐾𝑐𝑎,𝑐ℎ

′]

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

 𝑐𝑎

= 1, … ,𝑁𝑐ℎ

(B-36)

B MATRIX ELEMENTS

145

𝑆𝑐𝑎,𝑐ℎ
𝑝 = −

𝛷𝑐𝑎
𝐿Σ𝑐𝑎

[𝐾𝑐𝑎,𝑐ℎ
′′′ − 𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ

′′ − (𝑤𝑐𝑎 −
𝑣𝑐𝑎
2

2
−
𝑐𝑐𝑎
2

𝛷𝑐𝑎
)𝐾𝑐𝑎,𝑐ℎ

′] 𝑐𝑎, 𝑠𝑡

= 1,… ,𝑁𝑐ℎ

(B-37)

𝑆𝑇𝑐ℎ,𝑝𝑐ℎ = [

𝑆1,1
𝑇𝑐ℎ,𝑝 ⋯ 𝑆1,𝑁𝑐ℎ

𝑇𝑐ℎ,𝑝

⋮ ⋱ ⋮

𝑆𝑁𝑐ℎ,1
𝑇𝑐ℎ,𝑝 ⋯ 𝑆𝑁𝑐ℎ,𝑁𝑐ℎ

𝑇𝑐ℎ,𝑝
] (B-38)

𝑆𝑐𝑎,𝑐𝑎
𝑇𝑐ℎ,𝑝 =

∑ [𝐾𝑐𝑎,𝑐ℎ
′′′ − 𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ

′′ − (𝑤𝑐𝑎 −
𝑣𝑐𝑎
2

2 − 𝛷𝑐𝑎𝑐𝑣,𝑐𝑎 𝑇𝑐𝑎)𝐾𝑐𝑎,𝑐ℎ
′]

𝑁𝑐ℎ
𝑐ℎ≠𝑐𝑎

𝐿𝜌𝑐𝑎Σ𝑐𝑎𝑐𝑣,𝑐𝑎
𝑐𝑎

= 1,… ,𝑁𝑐ℎ

(B-39)

𝑆𝑐𝑎,𝑐ℎ
𝑇𝑐ℎ,𝑝 = −

𝐾𝑐𝑎,𝑐ℎ
′′′ − 𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ

′′ − (𝑤𝑐𝑎 −
𝑣𝑐𝑎
2

2 − 𝛷𝑐𝑎𝑐𝑣,𝑐𝑎 𝑇𝑐𝑎)𝐾𝑐𝑎,𝑐ℎ
′

𝐿𝜌𝑐𝑎Σ𝑐𝑎𝑐𝑣,𝑐𝑎
𝑐𝑎, 𝑠𝑡

= 1,… ,𝑁𝑐ℎ

(B-40)

The attention is now moved towards the set of matrices grouped in the third column of

equation (B-25) whose elements are the coefficients that multiply the channel temperature.

It is possible to notice from equation (A-14) that there is no reference to 𝑇𝑐ℎ, so the elements

of 𝑆𝑣𝑐ℎ,𝑇𝑐ℎ are 0 every where. On the contrary, both pressure and temperature show these

addendums thus 𝑆𝑝𝑐ℎ,𝑇𝑐ℎ and 𝑆𝑇𝑐ℎ,𝑇𝑐ℎ are not identically null.

𝑆𝑝𝑐ℎ,𝑇𝑐ℎ = [

𝑆1,1
𝑝,𝑇𝑐ℎ ⋯ 𝑆1,𝑁𝑐ℎ

𝑝,𝑇𝑐ℎ

⋮ ⋱ ⋮

𝑆𝑁𝑐ℎ,1
𝑝,𝑇𝑐ℎ ⋯ 𝑆𝑁𝑐ℎ,𝑁𝑐ℎ

𝑝,𝑇𝑐ℎ

] (B-41)

𝑆𝑐𝑎,𝑐𝑎
𝑝,𝑇𝑐ℎ =

𝛷𝑐𝑎
Σ𝑐𝑎

[∑ (𝑃𝑐𝑎,𝑐ℎ
𝑂 ℎ𝑐𝑎,𝑐ℎ

𝑂 + 𝑃𝑐𝑎,𝑐ℎ
𝐶 ℎ𝑐𝑎,𝑐ℎ

𝐶)

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

+ ∑ 𝑃𝑐𝑎,𝑠𝑡 ℎ𝑐𝑎,𝑠𝑡

𝑁𝑠𝑡

𝑠𝑡=1

+ ∑ 𝑃𝑐𝑎,𝑗𝑘 ℎ𝑐𝑎,𝑗𝑘

𝑁𝑗𝑘

𝑗𝑘=1

] 𝑐𝑎 = 1,… ,𝑁𝑐ℎ

(B-42)

𝑆𝑐𝑎,𝑐ℎ
𝑝,𝑇𝑐ℎ = −

𝛷𝑐𝑎
Σ𝑐𝑎

(𝑃𝑐𝑎,𝑐ℎ
𝑂 ℎ𝑐𝑎,𝑐ℎ

𝑂 + 𝑃𝑐𝑎,𝑐ℎ
𝐶 ℎ𝑐𝑎,𝑐ℎ

𝐶)𝑐𝑎, 𝑠𝑡 = 1,… , 𝑁𝑐ℎ (B-43)

𝑆𝑇𝑐ℎ,𝑇𝑐ℎ = [

𝑆1,1
𝑇𝑐ℎ ⋯ 𝑆1,𝑁𝑐ℎ

𝑇𝑐ℎ

⋮ ⋱ ⋮

𝑆𝑁𝑐ℎ,1
𝑇𝑐ℎ ⋯ 𝑆𝑁𝑐ℎ,𝑁𝑐ℎ

𝑇𝑐ℎ

] (B-44)

B.1 GENERAL FORM OF MATRICES AND VECTORS

146

𝑆𝑐𝑎,𝑐𝑎
𝑇𝑐ℎ

=
∑ (𝑃𝑐𝑎,𝑐ℎ

𝑂 ℎ𝑐𝑎,𝑐ℎ
𝑂 + 𝑃𝑐𝑎,𝑐ℎ

𝐶 ℎ𝑐𝑎,𝑐ℎ
𝐶)

𝑁𝑐ℎ
𝑐ℎ≠𝑐𝑎 + ∑ 𝑃𝑐𝑎,𝑠𝑡 ℎ𝑐𝑎,𝑠𝑡

𝑁𝑠𝑡
𝑠𝑡=1 + ∑ 𝑃𝑐𝑎,𝑗𝑘 ℎ𝑐𝑎,𝑗𝑘

𝑁𝑗𝑘
𝑗𝑘=1

𝜌𝑐𝑎Σ𝑐𝑎𝑐𝑣,𝑐𝑎
𝑐𝑎

= 1,… ,𝑁𝑐ℎ

(B-45)

𝑆𝑐𝑎,𝑐ℎ
𝑇𝑐ℎ = −

(𝑃𝑐𝑎,𝑐ℎ
𝑂 ℎ𝑐𝑎,𝑐ℎ

𝑂 + 𝑃𝑐𝑎,𝑐ℎ
𝐶 ℎ𝑐𝑎,𝑐ℎ

𝐶)

𝜌𝑐𝑎Σ𝑐𝑎𝑐𝑣,𝑐𝑎
𝑐𝑎, 𝑠𝑡 = 1,… ,𝑁𝑐ℎ

(B-46)

Due to the coupling between fluid and solid components, also the last two matrices show

elements that differ from 0.

𝑆𝑇𝑠𝑡,𝑇𝑐ℎ = [𝑆𝑠𝑡,𝑐ℎ
𝑇𝑠𝑡,𝑇𝑐ℎ] = [−𝑃𝑠𝑡,𝑐ℎℎ𝑠𝑡,𝑐ℎ] 𝑠𝑡 = 1,… ,𝑁𝑠𝑡; 𝑐ℎ = 1,… ,𝑁𝑐ℎ (B-47)

𝑆𝑇𝑗𝑘,𝑇𝑐ℎ = [𝑆
𝑗𝑘,𝑐ℎ

𝑇𝑗𝑘,𝑇𝑐ℎ] = [−𝑃𝑗𝑘,𝑐ℎℎ𝑗𝑘,𝑐ℎ] 𝑗𝑘 = 1,… ,𝑁𝑗𝑘; 𝑐ℎ = 1,… , 𝑁𝑐ℎ (B-48)

The last two columns refer to the temperature of the solid components, respectively

strands and jackets temperatures and they are analyzed in parallel since they are quite similar.

One more time, in the velocity equation there are no terms that refers to the temperature so

both matrices 𝑆𝑣𝑐ℎ,𝑇𝑠𝑡and 𝑆𝑣𝑐ℎ,𝑇𝑗𝑘are filled with 0.

From the pressure equations (A-15) the contributions are of the form:

𝑆𝑝𝑐ℎ,𝑇𝑠𝑡 = [𝑆𝑐ℎ,𝑠𝑡
𝑝,𝑇𝑠𝑡] = [−

𝛷𝑐ℎ𝑃𝑐ℎ,𝑠𝑡 ℎ𝑐ℎ,𝑠𝑡
Σ𝑐ℎ

] 𝑐ℎ = 1,… ,𝑁𝑐ℎ; 𝑠𝑡 = 1, … ,𝑁𝑠𝑡
(B-49)

𝑆𝑝𝑐ℎ,𝑇𝑗𝑘 = [𝑆
𝑐ℎ,𝑗𝑘

𝑝,𝑇𝑗𝑘] = [−
𝛷𝑐ℎ𝑃𝑐ℎ,𝑗𝑘 ℎ𝑐ℎ,𝑗𝑘

Σ𝑐ℎ
] 𝑐ℎ = 1,… ,𝑁𝑐ℎ; 𝑗𝑘 = 1,… ,𝑁𝑗𝑘 (B-50)

respectively for coefficients that multiply strands and jacket temperatures.

The analogous matrices that came from the terms of the temperature equation (A-16) are:

𝑆𝑇𝑐ℎ,𝑇𝑠𝑡 = [𝑆𝑐ℎ,𝑠𝑡
𝑇𝑐ℎ,𝑇𝑠𝑡] = [−

𝑃𝑐ℎ,𝑠𝑡 ℎ𝑐ℎ,𝑠𝑡
𝜌𝑐ℎΣ𝑐ℎ𝑐𝑣,𝑐ℎ

] 𝑐ℎ = 1,… ,𝑁𝑐ℎ; 𝑠𝑡 = 1,… ,𝑁𝑠𝑡
(B-51)

𝑆𝑇𝑐ℎ,𝑇𝑗𝑘 = [𝑆
𝑐ℎ,𝑗𝑘

𝑇𝑐ℎ,𝑇𝑗𝑘] = [−
𝑃𝑐ℎ,𝑗𝑘 ℎ𝑐ℎ,𝑗𝑘

𝜌𝑐ℎΣ𝑐ℎ𝑐𝑣,𝑐ℎ
] 𝑐ℎ = 1,… ,𝑁𝑐ℎ; 𝑗𝑘 = 1,… ,𝑁𝑗𝑘 (B-52)

These are the last matrices that have elements coming from the fluid components

equations. The remaining four matrices are built considering only the 1-D transient heat

transfer equations. Let focus on the matrices on the main diagonal 𝑆𝑇𝑠𝑡,𝑇𝑠𝑡 and 𝑆𝑇𝑗𝑘,𝑇𝑗𝑘; their

elements are the coefficients that multiply the strand (jacket) temperature.

𝑆𝑇𝑠𝑡,𝑇𝑠𝑡 = [

𝑆1,1
𝑇𝑠𝑡 ⋯ 𝑆1,𝑁𝑠𝑡

𝑇𝑠𝑡

⋮ ⋱ ⋮

𝑆𝑁𝑠𝑡,1
𝑇𝑠𝑡 ⋯ 𝑆𝑁𝑠𝑡,𝑁𝑠𝑡

𝑇𝑠𝑡

] (B-53)

B MATRIX ELEMENTS

147

𝑆𝑓𝑖,𝑓𝑖
𝑇𝑠𝑡 = ∑ 𝑃𝑓𝑖,𝑐ℎℎ𝑓𝑖,𝑐ℎ +

𝑁𝑐ℎ

𝑐ℎ=1

∑ 𝑃𝑓𝑖,𝑠𝑡ℎ𝑓𝑖,𝑠𝑡 +

𝑁𝑠𝑡

𝑠𝑡≠𝑓𝑖

∑ 𝑃𝑓𝑖,𝑗𝑘ℎ𝑓𝑖,𝑗𝑘

𝑁𝑗𝑘

𝑗𝑘=1

 𝑓𝑖 = 1, … , 𝑁𝑠𝑡
(B-54)

𝑆𝑓𝑖,𝑠𝑡
𝑇𝑠𝑡 = −𝑃𝑓𝑖,𝑠𝑡ℎ𝑓𝑖,𝑠𝑡 𝑓𝑖, 𝑠𝑡 = 1,… ,𝑁𝑠𝑡

(B-55)

𝑆𝑇𝑗𝑘,𝑇𝑗𝑘 =

[

 𝑆1,1

𝑇𝑗𝑘 ⋯ 𝑆1,𝑁𝑗𝑘
𝑇𝑗𝑘

⋮ ⋱ ⋮

𝑆𝑁𝑗𝑘,1
𝑇𝑗𝑘 ⋯ 𝑆𝑁𝑗𝑘,𝑁𝑗𝑘

𝑇𝑗𝑘

]

 (B-56)

𝑆
𝑖𝑛,𝑖𝑛

𝑇𝑗𝑘 = ∑ 𝑃𝑖𝑛,𝑐ℎℎ𝑖𝑛,𝑐ℎ +

𝑁𝑐ℎ

𝑐ℎ=1

∑ 𝑃𝑖𝑛,𝑠𝑡ℎ𝑖𝑛,𝑠𝑡 +

𝑁𝑠𝑡

𝑠𝑡=1

∑ 𝑃𝑖𝑛,𝑗𝑘ℎ𝑖𝑛,𝑗𝑘

𝑁𝑗𝑘

𝑗𝑘≠𝑖𝑛

 𝑖𝑛 = 1,… ,𝑁𝑗𝑘
(B-57)

𝑆
𝑖𝑛,𝑗𝑘

𝑇𝑗𝑘 = −𝑃𝑖𝑛,𝑗𝑘ℎ𝑖𝑛,𝑗𝑘 𝑖𝑛, 𝑗𝑘 = 1,… ,𝑁𝑗𝑘 (B-58)

Finally, matrices 𝑆𝑇𝑗𝑘,𝑇𝑠𝑡 and 𝑆𝑇𝑠𝑡,𝑇𝑗𝑘 keep into account the coupling between strands and

jackets, their elements are the coefficients that multiply the strand (jacket) temperature in

the jacket (strand) equations, respectively.

𝑆𝑇𝑗𝑘,𝑇𝑠𝑡 = [𝑆𝑗𝑘,𝑠𝑡
𝑇𝑗𝑘,𝑇𝑠𝑡] = [−𝑃𝑗𝑘,𝑠𝑡ℎ𝑗𝑘,𝑠𝑡] 𝑗𝑘 = 1,… , 𝑁𝑗𝑘; 𝑠𝑡 = 1,… ,𝑁𝑠𝑡

(B-59)

𝑆𝑇𝑠𝑡,𝑇𝑗𝑘 = [𝑆
𝑠𝑡,𝑗𝑘

𝑇𝑠𝑡,𝑇𝑗𝑘] = [−𝑃𝑠𝑡,𝑗𝑘ℎ𝑠𝑡,𝑗𝑘] 𝑠𝑡 = 1,… ,𝑁𝑠𝑡; 𝑗𝑘 = 1, … , 𝑁𝑗𝑘 (B-60)

It is worthy to notice that matrix 𝑆 is not symmetric.

B.2 3P-HTS CASE STUDY: MATRICES AND VECTORS

148

B.2 3P-HTS CASE STUDY: MATRICES AND VECTORS

In this section the explicit form of the matrices and of the vectors for the case study 3P-

HTS are proposed. Here, the cable is discretized using one channel, one strand and one jacket;

therefore, there are three fluid equations and two solid components equations to be solved

for a total of five unknowns, i.e. 𝑁𝑒𝑞 = 5. The vectors belong to the vectorial space ℝ5,1 while

the matrices ℝ5,5. The channel is in contact with both the strand and the jacket, but the solid

components are not in mutual contact. The only driver is the external heating in the strand.

𝒖 =

[

𝑣𝐶𝐻1
𝑝𝐶𝐻1
𝑇𝐶𝐻1
𝑇𝑆𝑇1
𝑇𝐽𝐾1]

 (B-61)

𝒔 =

[

0
0
0

𝑄𝑆𝑇1,𝑒𝑥𝑡
0]

 (B-62)

𝑀 =

[

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 Σ𝑆𝑇1𝜌𝑆𝑇1𝑐𝑝,𝑆𝑇1 0

0 0 0 0 Σ𝐽𝐾1𝜌𝐽𝐾1𝑐𝑝,𝐽𝐾1]

 (B-63)

𝐴 =

[

 𝑣𝐶𝐻1

1

𝜌𝐶𝐻1
0 0 0

𝜌𝐶𝐻1𝑐𝐶𝐻1
2 𝑣𝐶𝐻1 0 0 0

𝛷𝐶𝐻1𝑇𝐶𝐻1 0 𝑣𝐶𝐻1 0 0
0 0 0 0 0
0 0 0 0 0]

 (B-64)

𝐾 =

[

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −Σ𝑆𝑇1𝑘𝑆𝑇1 0
0 0 0 0 −Σ𝐽𝐾1𝑘𝐽𝐾1]

(B-65)

𝑆 =

[

�̃�𝐶𝐻1 0 0 0 0

𝑆𝐶𝐻1,𝐶𝐻1
𝑝,𝑣 0 𝑆𝐶𝐻1,𝐶𝐻1

𝑝,𝑇𝑐ℎ 𝑆𝐶𝐻1,𝑆𝑇1
𝑝,𝑇𝑠𝑡 𝑆𝐶𝐻1,𝐽𝐾1

𝑝,𝑇𝑗𝑘

𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ,𝑣 0 𝑆𝐶𝐻1,𝐶𝐻1

𝑇𝑐ℎ 𝑆𝐶𝐻1,𝑆𝑇1
𝑇𝑐ℎ,𝑇𝑠𝑡 𝑆𝐶𝐻1,𝐽𝐾1

𝑇𝑐ℎ,𝑇𝑗𝑘

0 0 𝑆𝐶𝐻1,𝑆𝑇1
𝑇𝑠𝑡,𝑇𝑐ℎ −𝑆𝐶𝐻1,𝑆𝑇1

𝑇𝑠𝑡,𝑇𝑐ℎ 0

0 0 𝑆𝐶𝐻1,𝐽𝐾1
𝑇𝑗𝑘,𝑇𝑐ℎ 0 −𝑆𝐶𝐻1,𝐽𝐾1

𝑇𝑗𝑘,𝑇𝑐ℎ
]

 (B-66)

B MATRIX ELEMENTS

149

𝑆𝐶𝐻1,𝐶𝐻1
𝑝,𝑣 = −�̃�𝐶𝐻1𝜌𝐶𝐻1𝛷𝐶𝐻1𝑣𝐶𝐻1 (B-67)

𝑆𝐶𝐻1,𝐶𝐻1
𝑝,𝑇𝑐ℎ =

𝛷𝐶𝐻1(𝑃𝐶𝐻1,𝑆𝑇1 ℎ𝐶𝐻1,𝑆𝑇1 + 𝑃𝐶𝐻1,𝐽𝐾1 ℎ𝐶𝐻1,𝐽𝐾1)

Σ𝐶𝐻1

(B-68)

𝑆𝐶𝐻1,𝑆𝑇1
𝑝,𝑇𝑠𝑡 = −

𝛷𝐶𝐻1𝑃𝐶𝐻1,𝑆𝑇1 ℎ𝐶𝐻1,𝑆𝑇1
Σ𝐶𝐻1

 (B-69)

𝑆𝐶𝐻1,𝐽𝐾1
𝑝,𝑇𝑗𝑘 = −

𝛷𝐶𝐻1𝑃𝐶𝐻1,𝐽𝐾1 ℎ𝐶𝐻1,𝐽𝐾1
Σ𝐶𝐻1

 (B-70)

𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ,𝑣 = −

�̃�𝐶𝐻1𝑣𝐶𝐻1
𝑐𝑣,𝐶𝐻1

(B-71)

𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ =

𝑃𝐶𝐻1,𝑆𝑇1 ℎ𝐶𝐻1,𝑆𝑇1 + 𝑃𝐶𝐻1,𝐽𝐾1 ℎ𝐶𝐻1,𝐽𝐾1
𝜌𝐶𝐻1Σ𝐶𝐻1𝑐𝑣,𝐶𝐻1

 (B-72)

𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ =

𝑃𝐶𝐻1,𝑆𝑇1 ℎ𝐶𝐻1,𝑆𝑇1 + 𝑃𝐶𝐻1,𝐽𝐾1 ℎ𝐶𝐻1,𝐽𝐾1
𝜌𝐶𝐻1Σ𝐶𝐻1𝑐𝑣,𝐶𝐻1

 (B-73)

𝑆𝐶𝐻1,𝑆𝑇1
𝑇𝑐ℎ,𝑇𝑠𝑡 = −

𝑃𝐶𝐻1,𝑆𝑇1 ℎ𝐶𝐻1,𝑆𝑇1
𝜌𝐶𝐻1Σ𝐶𝐻1𝑐𝑣,𝐶𝐻1

 (B-74)

𝑆𝐶𝐻1,𝐽𝐾1
𝑇𝑐ℎ,𝑇𝑗𝑘 = −

𝑃𝐶𝐻1,𝐽𝐾1 ℎ𝐶𝐻1,𝐽𝐾1
𝜌𝐶𝐻1Σ𝐶𝐻1𝑐𝑣,𝐶𝐻1

 (B-75)

𝑆𝐶𝐻1,𝑆𝑇1
𝑇𝑠𝑡,𝑇𝑐ℎ = −𝑃𝐶𝐻1,𝑆𝑇1ℎ𝐶𝐻1,𝑆𝑇1

(B-76)

𝑆𝑆𝑇1,𝑆𝑇1
𝑇𝑠𝑡 = 𝑃𝐶𝐻2,𝑆𝑇1ℎ𝐶𝐻2,𝑆𝑇1 = −𝑆𝐶𝐻1,𝑆𝑇1

𝑇𝑠𝑡,𝑇𝑐ℎ (B-77)

𝑆𝐶𝐻1,𝐽𝐾1
𝑇𝑗𝑘,𝑇𝑐ℎ = −𝑃𝐶𝐻1,𝐽𝐾1ℎ𝐶𝐻1,𝐽𝐾1

(B-78)

𝑆𝐽𝐾1,𝐽𝐾1
𝑇𝑗𝑘 = 𝑃𝐶𝐻2,𝐽𝐾1ℎ𝐶𝐻2,𝐽𝐾1 = −𝑆𝐶𝐻1,𝐽𝐾1

𝑇𝑗𝑘,𝑇𝑐ℎ
(B-79)

B.3 ITER-TF CASE STUDY: MATRICES AND VECTORS

150

B.3 ITER-TF CASE STUDY: MATRICES AND VECTORS

In this section the explicit form of the matrices and of the vector for the case study ITER-

TF are proposed. In the present case, the cable is discretized with two channels, one strand

and one jacket; therefore, there are six fluid equations and two solid components equations

to be solved for a total of eight unknowns, i.e. 𝑁𝑒𝑞 = 8. The vectors belong to the vectorial

space ℝ8,1 while the matrices ℝ8,8. The two channels are in hydraulic parallel, the two solid

components are in thermal contact while only the second channel is in contact with both the

strand and the jacket. The only driver is the external heating in the strand.

𝒖 = [𝑣𝐶𝐻1 𝑝𝐶𝐻1 𝑇𝐶𝐻1 𝑣𝐶𝐻2 𝑝𝐶𝐻2 𝑇𝐶𝐻2 𝑇𝑆𝑇1 𝑇𝐽𝐾1]𝑇 (B-80)

𝒔 = [0 0 0 0 0 0 𝑄𝑆𝑇1,𝑒𝑥𝑡 0]𝑇 (B-81)

𝑀 =

[

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 Σ𝑆𝑇1𝜌𝑆𝑇1𝑐𝑝,𝑆𝑇1 0

0 0 0 0 0 0 0 Σ𝐽𝐾1𝜌𝐽𝐾1𝑐𝑝,𝐽𝐾1]

 (B-82)

𝐴 =

[

 𝑣𝐶𝐻1 0

1

𝜌𝐶𝐻1
0 0 0 0 0

0 𝑣𝐶𝐻2 0
1

𝜌𝐶𝐻2
0 0 0 0

𝜌𝐶𝐻1𝑐𝐶𝐻1
2 0 𝑣𝐶𝐻1 0 0 0 0 0

0 𝜌𝐶𝐻2𝑐𝐶𝐻2
2 0 𝑣𝐶𝐻2 0 0 0 0

𝛷𝐶𝐻1𝑇𝐶𝐻1 0 0 0 𝑣𝐶𝐻1 0 0 0
0 𝛷𝐶𝐻2𝑇𝐶𝐻2 0 0 0 𝑣𝐶𝐻2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0]

 (B-83)

𝐾 =

[

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −Σ𝑆𝑇1𝑘𝑆𝑇1 0
0 0 0 0 0 0 0 −Σ𝐽𝐾1𝑘𝐽𝐾1]

 (B-84)

B MATRIX ELEMENTS

151

𝑆

=

[

�̃�𝐶𝐻1 0 𝑆𝐶𝐻1,𝐶𝐻1

𝑣,𝑝
−𝑆𝐶𝐻1,𝐶𝐻1

𝑣,𝑝
0 0 0 0

0 �̃�𝐶𝐻2 −𝑆𝐶𝐻2,𝐶𝐻2
𝑣,𝑝

𝑆𝐶𝐻2,𝐶𝐻2
𝑣,𝑝

0 0 0 0

𝑆𝐶𝐻1,𝐶𝐻1
𝑝,𝑣

0 𝑆𝐶𝐻1,𝐶𝐻1
𝑝

−𝑆𝐶𝐻1,𝐶𝐻1
𝑝

𝑆𝐶𝐻1,𝐶𝐻1
𝑝,𝑇𝑐ℎ −𝑆𝐶𝐻1,𝐶𝐻1

𝑝,𝑇𝑐ℎ 0 0

0 𝑆𝐶𝐻2,𝐶𝐻2
𝑝,𝑣

−𝑆𝐶𝐻2,𝐶𝐻2
𝑝

𝑆𝐶𝐻2,𝐶𝐻2
𝑝

𝑆𝐶𝐻2,𝐶𝐻1
𝑝,𝑇𝑐ℎ 𝑆𝐶𝐻2,𝐶𝐻2

𝑝,𝑇𝑐ℎ 𝑆𝐶𝐻2,𝑆𝑇1
𝑝,𝑇𝑠𝑡 𝑆𝐶𝐻2,𝐽𝐾1

𝑝,𝑇𝑗𝑘

𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ,𝑣 0 𝑆𝐶𝐻1,𝐶𝐻1

𝑇𝑐ℎ,𝑝 −𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ,𝑝 𝑆𝐶𝐻1,𝐶𝐻1

𝑇𝑐ℎ −𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ 0 0

0 𝑆𝐶𝐻2,𝐶𝐻2
𝑇𝑐ℎ,𝑣 −𝑆𝐶𝐻2,𝐶𝐻2

𝑇𝑐ℎ,𝑝 𝑆𝐶𝐻2,𝐶𝐻2
𝑇𝑐ℎ,𝑝 𝑆𝐶𝐻2,𝐶𝐻1

𝑇𝑐ℎ 𝑆𝐶𝐻2,𝐶𝐻2
𝑇𝑐ℎ 𝑆𝐶𝐻2,𝑆𝑇1

𝑇𝑐ℎ,𝑇𝑠𝑡 𝑆𝐶𝐻2,𝐽𝐾1
𝑇𝑐ℎ,𝑇𝑗𝑘

0 0 0 0 0 𝑆𝐶𝐻2,𝑆𝑇1
𝑇𝑠𝑡,𝑇𝑐ℎ 𝑆𝑆𝑇1,𝑆𝑇1

𝑇𝑠𝑡 𝑆𝑆𝑇1,𝐽𝐾1
𝑇𝑠𝑡,𝑇𝑗𝑘

0 0 0 0 0 𝑆𝐶𝐻2,𝐽𝐾1
𝑇𝑗𝑘,𝑇𝑐ℎ 𝑆𝐽𝐾1,𝑆𝑇1

𝑇𝑗𝑘,𝑇𝑠𝑡 𝑆𝐽𝐾1,𝐽𝐾1
𝑇𝑗𝑘

]

(B-85)

𝑆𝐶𝐻1,𝐶𝐻1
𝑣,𝑝 = −

𝑣𝐶𝐻1𝐾𝐶𝐻1,𝐶𝐻2
′ − 𝐾𝐶𝐻1,𝐶𝐻2

′′

𝐿𝜌𝐶𝐻1Σ𝐶𝐻1

(B-86)

𝑆𝐶𝐻1,𝐶𝐻2
𝑣,𝑝 =

𝑣𝐶𝐻1𝐾𝐶𝐻1,𝐶𝐻2
′ − 𝐾𝐶𝐻1,𝐶𝐻2

′′

𝐿𝜌𝐶𝐻1Σ𝐶𝐻1
= −𝑆𝐶𝐻1,𝐶𝐻1

𝑣,𝑝
(B-87)

𝑆𝐶𝐻2,𝐶𝐻2
𝑣,𝑝 = −

𝑣𝐶𝐻2𝐾𝐶𝐻1,𝐶𝐻2
′ − 𝐾𝐶𝐻1,𝐶𝐻2

′′

𝐿𝜌𝐶𝐻2Σ𝐶𝐻2

(B-88)

𝑆𝐶𝐻2,𝐶𝐻1
𝑣,𝑝 =

𝑣𝐶𝐻2𝐾𝐶𝐻1,𝐶𝐻2
′ − 𝐾𝐶𝐻1,𝐶𝐻2

′′

𝐿𝜌𝐶𝐻2Σ𝐶𝐻2
= −𝑆𝐶𝐻2,𝐶𝐻2

𝑣,𝑝
(B-89)

𝑆𝐶𝐻1,𝐶𝐻1
𝑝,𝑣 = −�̃�𝐶𝐻1𝜌𝐶𝐻1𝛷𝐶𝐻1𝑣𝐶𝐻1 (B-90)

𝑆𝐶𝐻1,𝐶𝐻1
𝑝 =

𝛷𝐶𝐻1
𝐿Σ𝐶𝐻1

[𝐾𝐶𝐻1,𝐶𝐻2
′′′ − 𝑣𝐶𝐻1𝐾𝐶𝐻1,𝐶𝐻2

′′ − (𝑤𝐶𝐻1 −
𝑣𝐶𝐻1
2

2
−
𝑐𝐶𝐻1
2

𝛷𝐶𝐻1
)𝐾𝐶𝐻1,𝐶𝐻2

′] (B-91)

𝑆𝐶𝐻1,𝐶𝐻2
𝑝 = −

𝛷𝐶𝐻1
𝐿Σ𝐶𝐻1

[𝐾𝐶𝐻1,𝐶𝐻2
′′′ − 𝑣𝐶𝐻1𝐾𝐶𝐻1,𝐶𝐻2

′′ − (𝑤𝐶𝐻1 −
𝑣𝐶𝐻1
2

2
−
𝑐𝐶𝐻1
2

𝛷𝐶𝐻1
)𝐾𝐶𝐻1,𝐶𝐻2

′]

= −𝑆𝐶𝐻1,𝐶𝐻1
𝑝

(B-92)

𝑆𝐶𝐻1,𝐶𝐻1
𝑝,𝑇𝑐ℎ =

𝛷𝐶𝐻1(𝑃𝐶𝐻1,𝐶𝐻2
𝑂 ℎ𝐶𝐻1,𝐶𝐻2

𝑂 + 𝑃𝐶𝐻1,𝐶𝐻2
𝐶 ℎ𝐶𝐻1,𝐶𝐻2

𝐶)

Σ𝐶𝐻1

(B-93)

𝑆𝐶𝐻1,𝐶𝐻2
𝑝,𝑇𝑐ℎ = −

𝛷𝐶𝐻1(𝑃𝐶𝐻1,𝐶𝐻2
𝑂 ℎ𝐶𝐻1,𝐶𝐻2

𝑂 + 𝑃𝐶𝐻1,𝐶𝐻2
𝐶 ℎ𝐶𝐻1,𝐶𝐻2

𝐶)

Σ𝐶𝐻1
= −𝑆𝐶𝐻1,𝐶𝐻1

𝑝,𝑇𝑐ℎ
(B-94)

𝑆𝐶𝐻2,𝐶𝐻2
𝑝,𝑣 = −�̃�𝐶𝐻2𝜌𝐶𝐻2𝛷𝐶𝐻2𝑣𝐶𝐻2 (B-95)

𝑆𝐶𝐻2,𝐶𝐻2
𝑝 =

𝛷𝐶𝐻2
𝐿Σ𝐶𝐻2

[𝐾𝐶𝐻1,𝐶𝐻2
′′′ − 𝑣𝐶𝐻2𝐾𝐶𝐻1,𝐶𝐻2

′′ − (𝑤𝐶𝐻2 −
𝑣𝐶𝐻2
2

2
−
𝑐𝐶𝐻2
2

𝛷𝐶𝐻2
)𝐾𝐶𝐻1,𝐶𝐻2

′] (B-96)

𝑆𝐶𝐻2,𝐶𝐻1
𝑝 = −

𝛷𝐶𝐻2
𝐿Σ𝐶𝐻2

[𝐾𝐶𝐻1,𝐶𝐻2
′′′ − 𝑣𝐶𝐻2𝐾𝐶𝐻1,𝐶𝐻2

′′ − (𝑤𝐶𝐻2 −
𝑣𝐶𝐻2
2

2
−
𝑐𝐶𝐻2
2

𝛷𝐶𝐻2
)𝐾𝐶𝐻1,𝐶𝐻2

′]

= −𝑆𝐶𝐻2,𝐶𝐻2
𝑝

(B-97)

B.3 ITER-TF CASE STUDY: MATRICES AND VECTORS

152

𝑆𝐶𝐻2,𝐶𝐻1
𝑝,𝑇𝑐ℎ = −

𝛷𝐶𝐻2(𝑃𝐶𝐻1,𝐶𝐻2
𝑂 ℎ𝐶𝐻1,𝐶𝐻2

𝑂 + 𝑃𝐶𝐻1,𝐶𝐻2
𝐶 ℎ𝐶𝐻1,𝐶𝐻2

𝐶)

Σ𝐶𝐻2

(B-98)

𝑆𝐶𝐻2,𝐶𝐻2
𝑝,𝑇𝑐ℎ =

𝛷𝐶𝐻2
Σ𝐶𝐻2

(𝑃𝐶𝐻1,𝐶𝐻2
𝑂 ℎ𝐶𝐻1,𝐶𝐻2

𝑂 + 𝑃𝐶𝐻1,𝐶𝐻2
𝐶 ℎ𝐶𝐻1,𝐶𝐻2

𝐶 + 𝑃𝐶𝐻2,𝑆𝑇1 ℎ𝐶𝐻2,𝑆𝑇1

+ 𝑃𝐶𝐻2,𝐽𝐾1 ℎ𝐶𝐻2,𝐽𝐾1)

(B-99)

𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ,𝑣 = −

�̃�𝐶𝐻1𝑣𝐶𝐻1
𝑐𝑣,𝐶𝐻1

(B-100)

𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ,𝑝 =

𝐾𝐶𝐻1,𝐶𝐻2
′′′ − 𝑣𝐶𝐻1𝐾𝐶𝐻1,𝐶𝐻2

′′ − (𝑤𝐶𝐻1 −
𝑣𝐶𝐻1
2

2 − 𝛷𝐶𝐻1𝑐𝑣,𝐶𝐻1 𝑇𝐶𝐻1)𝐾𝐶𝐻1,𝐶𝐻2
′

𝐿𝜌𝐶𝐻1Σ𝐶𝐻1𝑐𝑣,𝐶𝐻1

(B-101)

𝑆𝐶𝐻1,𝐶𝐻2
𝑇𝑐ℎ,𝑝 = −

𝐾𝐶𝐻1,𝐶𝐻2
′′′ − 𝑣𝐶𝐻1𝐾𝐶𝐻1,𝐶𝐻2

′′ − (𝑤𝐶𝐻1 −
𝑣𝐶𝐻1
2

2 − 𝛷𝐶𝐻1𝑐𝑣,𝐶𝐻1 𝑇𝐶𝐻1)𝐾𝐶𝐻1,𝐶𝐻2
′

𝐿𝜌𝐶𝐻1Σ𝐶𝐻1𝑐𝑣,𝐶𝐻1
= −𝑆𝐶𝐻1,𝐶𝐻1

𝑇𝑐ℎ,𝑝

(B-102)

𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ =

𝑃𝐶𝐻1,𝐶𝐻2
𝑂 ℎ𝐶𝐻1,𝐶𝐻2

𝑂 + 𝑃𝐶𝐻1,𝐶𝐻2
𝐶 ℎ𝐶𝐻1,𝐶𝐻2

𝐶

𝜌𝐶𝐻1Σ𝐶𝐻1𝑐𝑣,𝐶𝐻1

(B-103)

𝑆𝐶𝐻1,𝐶𝐻2
𝑇𝑐ℎ = −

𝑃𝐶𝐻1,𝐶𝐻2
𝑂 ℎ𝐶𝐻1,𝐶𝐻2

𝑂 + 𝑃𝐶𝐻1,𝐶𝐻2
𝐶 ℎ𝐶𝐻1,𝐶𝐻2

𝐶

𝜌𝐶𝐻1Σ𝐶𝐻1𝑐𝑣,𝐶𝐻1
= −𝑆𝐶𝐻1,𝐶𝐻1

𝑇𝑐ℎ
(B-104)

𝑆𝐶𝐻2,𝐶𝐻2
𝑇𝑐ℎ,𝑣 = −(𝐹 ̃_𝐶𝐻2 𝑣_𝐶𝐻2)/𝑐_(𝑣, 𝐶𝐻2) (B-105)

𝑆𝐶𝐻2,𝐶𝐻2
𝑇𝑐ℎ,𝑝 =

𝐾𝐶𝐻1,𝐶𝐻2
′′′ − 𝑣𝐶𝐻2𝐾𝐶𝐻1,𝐶𝐻2

′′ − (𝑤𝐶𝐻2 −
𝑣𝐶𝐻2
2

2 − 𝛷𝐶𝐻2𝑐𝑣,𝐶𝐻2 𝑇𝐶𝐻2)𝐾𝐶𝐻1,𝐶𝐻2
′

𝐿𝜌𝐶𝐻2Σ𝐶𝐻2𝑐𝑣,𝐶𝐻2

(B-106)

𝑆𝐶𝐻2,𝐶𝐻1
𝑇𝑐ℎ,𝑝 = −

𝐾𝐶𝐻1,𝐶𝐻2
′′′ − 𝑣𝐶𝐻2𝐾𝐶𝐻1,𝐶𝐻2

′′ − (𝑤𝐶𝐻2 −
𝑣𝐶𝐻2
2

2 − 𝛷𝐶𝐻2𝑐𝑣,𝐶𝐻2 𝑇𝐶𝐻2)𝐾𝐶𝐻1,𝐶𝐻2
′

𝐿𝜌𝐶𝐻2Σ𝐶𝐻2𝑐𝑣,𝐶𝐻2
= −𝑆𝐶𝐻2,𝐶𝐻2

𝑇𝑐ℎ,𝑝

(B-107)

𝑆𝐶𝐻2,𝐶𝐻1
𝑇𝑐ℎ = −

𝑃𝐶𝐻1,𝐶𝐻2
𝑂 ℎ𝐶𝐻1,𝐶𝐻2

𝑂 + 𝑃𝐶𝐻1,𝐶𝐻2
𝐶 ℎ𝐶𝐻1,𝐶𝐻2

𝐶

𝜌𝐶𝐻2Σ𝐶𝐻2𝑐𝑣,𝐶𝐻2

(B-108)

𝑆𝐶𝐻2,𝐶𝐻2
𝑇𝑐ℎ

=
𝑃𝐶𝐻1,𝐶𝐻2
𝑂 ℎ𝐶𝐻1,𝐶𝐻2

𝑂 + 𝑃𝐶𝐻1,𝐶𝐻2
𝐶 ℎ𝐶𝐻1,𝐶𝐻2

𝐶 + 𝑃𝐶𝐻2,𝑆𝑇1 ℎ𝐶𝐻2,𝑆𝑇1 + 𝑃𝐶𝐻2,𝐽𝐾1 ℎ𝐶𝐻2,𝐽𝐾1
𝜌𝐶𝐻2Σ𝐶𝐻2𝑐𝑣,𝐶𝐻2

(B-109)

𝑆𝐶𝐻2,𝑆𝑇1
𝑇𝑐ℎ,𝑇𝑠𝑡 = −

𝑃𝐶𝐻2,𝑆𝑇1 ℎ𝐶𝐻2,𝑆𝑇1
𝜌𝐶𝐻2Σ𝐶𝐻2𝑐𝑣,𝐶𝐻2

 (B-110)

𝑆𝐶𝐻2,𝐽𝐾1
𝑇𝑐ℎ,𝑇𝑗𝑘 = −

𝑃𝐶𝐻2,𝐽𝐾1 ℎ𝐶𝐻2,𝐽𝐾1
𝜌𝐶𝐻2Σ𝐶𝐻2𝑐𝑣,𝐶𝐻2

 (B-111)

𝑆𝐶𝐻2,𝑆𝑇1
𝑇𝑠𝑡,𝑇𝑐ℎ = −𝑃𝐶𝐻2,𝑆𝑇1ℎ𝐶𝐻2,𝑆𝑇1

(B-112)

B MATRIX ELEMENTS

153

𝑆𝑆𝑇1,𝑆𝑇1
𝑇𝑠𝑡 = 𝑃𝐶𝐻2,𝑆𝑇1ℎ𝐶𝐻2,𝑆𝑇1 + 𝑃𝑆𝑇1,𝐽𝐾1ℎ𝑆𝑇1,𝐽𝐾1 (B-113)

𝑆𝑆𝑇1,𝐽𝐾1
𝑇𝑠𝑡,𝑇𝑗𝑘 = −𝑃𝑆𝑇1,𝐽𝐾1ℎ𝑆𝑇1,𝐽𝐾1

(B-114)

𝑆𝐶𝐻2,𝐽𝐾1
𝑇𝑗𝑘,𝑇𝑐ℎ = −𝑃𝐶𝐻2,𝐽𝐾1ℎ𝐶𝐻2,𝐽𝐾1

(B-115)

𝑆𝐽𝐾1,𝑆𝑇1
𝑇𝑗𝑘,𝑇𝑠𝑡 = −𝑃𝑆𝑇1,𝐽𝐾1ℎ𝑆𝑇1,𝐽𝐾1

(B-116)

𝑆𝐽𝐾1,𝐽𝐾1
𝑇𝑗𝑘 = 𝑃𝐶𝐻2,𝐽𝐾1ℎ𝐶𝐻2,𝐽𝐾1 + 𝑃𝑆𝑇1,𝐽𝐾1ℎ𝑆𝑇1,𝐽𝐾1

(B-117)

C EVALUATION OF THE PROPERTIES OF THE SOLID COMPONENTS

155

APPENDIX C
C EVALUATION OF THE PROPERTIES OF THE SOLID COMPONENTS

The correct formulation of the average properties for solid components are discussed in

this appendix. The proposed formulation is validated since it allows the respect of the first

principle of the Thermodynamic, the energy conservation. The appendix ends showing that a

different formulation of the average specific heat leads to the violation of the energy

conservation.

First, let show that the currently used average formulas are correct. If the solid

components object is constituted by 𝑁𝑚𝑎𝑡 materials the average density, specific heat,

thermal conductivity and heat capacity are evaluated according to the following definitions:

𝜌 =
Σ1𝜌1 +⋯+ Σ𝑖𝜌𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡𝜌𝑁𝑚𝑎𝑡

Σ1 +⋯+ Σ𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡
=
∑ Σ𝑖𝜌𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1

 (C-1)

𝑐𝑝 =
Σ1𝜌1𝑐𝑝1 +⋯+ Σ𝑖𝜌𝑖𝑐𝑝𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡𝜌𝑁𝑚𝑎𝑡𝑐𝑝𝑁𝑚𝑎𝑡

Σ1𝜌1 +⋯+ Σ𝑖𝜌𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡𝜌𝑁𝑚𝑎𝑡
=
∑ Σ𝑖𝜌𝑖𝑐𝑝𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1 𝜌𝑖

 (C-2)

𝑘 =
Σ1𝑘1 +⋯+ Σ𝑖𝑘𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡𝑘𝑁𝑚𝑎𝑡

Σ1 +⋯+ Σ𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡
=
∑ Σ𝑖𝑘𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1

 (C-3)

𝐶 =
Σ1𝜌1𝑐𝑝1 +⋯+ Σ𝑖𝜌𝑖𝑐𝑝𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡𝜌𝑁𝑚𝑎𝑡𝑐𝑝𝑁𝑚𝑎𝑡

Σ1 +⋯+ Σ𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡
=
∑ Σ𝑖𝜌𝑖𝑐𝑝𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1 𝜌𝑖

 (C-4)

The transient one-dimensional heat transfer equation for a multi material solid

component, like mixed strands or jackets, with no energy source reads:

∑ Σ𝑖𝜌𝑖𝑐𝑝𝑖
𝜕𝑇𝑖
𝜕𝑡

− ∑ Σ𝑖
𝜕

𝜕𝑥
(𝑘𝑖

𝜕𝑇𝑖
𝜕𝑥
) = 0

𝑁𝑚𝑎𝑡

𝑖=1

𝑁𝑚𝑎𝑡

𝑖=1

(C-5)

Assuming that cross sections are constant and that the temperature dependence in space

and time is always the same for each component, this equation can be written in a different

form. Since:

𝑇1(𝑥, 𝑡) = 𝑇2(𝑥, 𝑡) = ⋯ = 𝑇𝑖(𝑥, 𝑡) = ⋯ = 𝑇𝑁𝑚𝑎𝑡(𝑥, 𝑡) = 𝑇(𝑥, 𝑡)
(C-6)

it is possible to collect both time and space temperature derivatives, moreover the cross

section is constant, therefore:

(Σ1𝜌1𝑐𝑝1 +⋯+ Σ𝑖𝜌𝑖𝑐𝑝𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡𝜌𝑁𝑚𝑎𝑡𝑐𝑝𝑁𝑚𝑎𝑡)
𝜕𝑇

𝜕𝑡

−
𝜕

𝜕𝑥
[(Σ1𝑘1 +⋯+ Σ𝑖𝑘𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡𝑘𝑁𝑚𝑎𝑡)

𝜕𝑇

𝜕𝑥
] = 0

(C-7)

156

Let divide both left- and right-hand side by the total cross section 𝐴:

Σ1𝜌1𝑐𝑝1 +⋯+ Σ𝑖𝜌𝑖𝑐𝑝𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡𝜌𝑁𝑚𝑎𝑡𝑐𝑝𝑁𝑚𝑎𝑡
Σ

𝜕𝑇

𝜕𝑡

−
𝜕

𝜕𝑥
(
Σ1𝑘1 +⋯+ Σ𝑖𝑘𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡𝑘𝑁𝑚𝑎𝑡

Σ

𝜕𝑇

𝜕𝑥
) = 0

(C-8)

Exploiting the definitions (C-2)and (C-3), the above equation can be written as:

𝐶
𝜕𝑇

𝜕𝑡
−
𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) = 0

(C-9)

that is the transient 1D heat equation for a homogeneous material, with no external source.

In SC2 code, instead of the average heat capacity, the average density and the average

specific heat at constant pressure are used. The two formulations are equivalent if the

averages are defined as in (C-1)-(C-4). To proof this, the starting equation is:

Σ𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
− 𝐴

𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) = 0

(C-10)

Introducing equation (C-1) and (C-2) inside equation (C-5) yields:

Σ
∑ Σ𝑖𝜌𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖𝜌𝑖𝑐𝑝𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1 𝜌𝑖

𝜕𝑇

𝜕𝑡
− Σ

𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) = 0 (C-11)

That simplifies to:

Σ
∑ Σ𝑖𝜌𝑖𝑐𝑝𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1

𝜕𝑇

𝜕𝑡
− Σ

𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) = 0 (C-12)

Dividing by Σ and remembering the definition (C-4) the above equation becomes equal to

equation (C-9).

To complete the proof, let show that from equation (C-9) it is possible to get (C-10).

Substituting in (C-9) the definition (C-4) gives:

∑ Σ𝑖𝜌𝑖𝑐𝑝𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1

𝜕𝑇

𝜕𝑡
−
𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) = 0 (C-13)

Multiplying and dividing the first addendum on the left-hand side by ∑ Σ𝑖𝜌𝑖
𝑁𝑚𝑎𝑡
𝑖=1 , adjusting the

terms results in:

∑ Σ𝑖𝜌𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖𝜌𝑖𝑐𝑝𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖𝜌𝑖
𝑁𝑚𝑎𝑡
𝑖=1

𝜕𝑇

𝜕𝑡
−
𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) = 0 (C-14)

Recognizing the definitions of the average density and average specific heat given in

equations (C-1) and (C-2), this equation is the same of equation (C-10). Therefore, with the

C EVALUATION OF THE PROPERTIES OF THE SOLID COMPONENTS

157

definitions given in (C-1)-(C-4)equations (C-9) and (C-10)are equivalent, so the current choice

does not violate the first principle of the thermodynamics.

In the end, if the definition of the specific heat at constant pressure (C-2) is replaced by

the following one (C-15), the energy conservation is no longer guaranteed since the resulting

equation is not equivalent to (C-9).

𝑐𝑝 =
∑ Σ𝑖𝑐𝑝𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1

 (C-15)

Substituting (C-1) and the above in equation (C-5) yields:

Σ
∑ Σ𝑖𝜌𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖𝑐𝑝𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1

𝜕𝑇

𝜕𝑡
− Σ

𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) = 0 (C-16)

which simplifies to:

(∑ Σ𝑖𝜌𝑖
𝑁𝑚𝑎𝑡
𝑖=1)(∑ Σ𝑖𝑐𝑝𝑖

𝑁𝑚𝑎𝑡
𝑖=1)

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1

𝜕𝑇

𝜕𝑡
− Σ

𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) = 0 (C-17)

that, being not equivalent to equation (C-9), does not respect the conservation of energy.

D INPUT DATA OF THE SIMULATIONS

159

APPENDIX D
D INPUT DATA OF THE SIMULATIONS

This appendix contains the data tables needed to perform the simulations used to carry

out the convergence studies and the external and internal benchmarks which are common to

all the simulations. The first section contains the data for the 3P-HTS geometry, the second

one summarizes the data for the ITER-TF geometry.

D.1 3P-HTS INPUT DATA

Figure D.1-1 shows a sketch of the conductor geometry and topology.

Table D.1-1 Input data to be set in the workbooks Transitory_Input.xlsx and conductor_definition.xlsx.

Variable Value Unit SI Meaning

IADAPTIME 0 -
Flag for the time adaptivity: no adaptivity (constant

time step)
XLENGHT 10.0 m Conductor length
IOPFUN 0 - Flag for the current function: constant

IOP0_TOT 0 A Total current transported at time = 0 s

UPWIND 1 -
Flag to switch on/off the upwind discretization in all

the fluid equations: on

(a) (b)

Figure D.1-1 Three phase coaxial HTS cable configuration: (a) radial view; (c) cross section. Note that
in (b) the region HTS and PPLP are collapsed in a single one. Non-scale figure.

D.1 3P-HTS INPUT DATA

160

Table D.1-2 Input data to be set in the CHAN sheet of the workbook conductor_input.xlsx. Cross section and
hydraulic diameter computed from data in [77].

Variable Value Unit SI Meaning

CROSSECTION 1.81 10−3 m2 Channel cross section
FLUID_TYPE 𝐻𝑒 - Type of coolant: helium

HYDIAMETER 1.601 10−2 m Hydraulic diameter

COSTETA 1 -
Cosine of the angle between the cable and

the x axis
VOID_FRACTION 1 - Void fraction of the channel

IFRICTION −99 -
Flag to select the correlation for the

friction factor: user defined

FRICTION_MULTIPLIER 1.00 10−3 -
Multiplier of the friction factor: the actual

value in this case

ISRECTANGULAR 0 -
Flag to set the shape of the channel:

circular

SIDE1 0.00 m
Side of the rectangle if ISRECTANGULAR

equal 1

SIDE2 0.00 m
Side of the rectangle if ISRECTANGULAR

equal 1

Table D.1-3 Input data to be set in the STR_MIX sheet of the workbook conductor_input.xlsx. Cross section
and stabilizer non-stabilizer ratio computed from data in [77], copper residual resistance ratio] and
superconductor scaling properties from [87].

Variable Value Unit SI Meaning

CROSSECTION 3.22 10−3 m2 Strand total cross section

COSTETA 1.00 -
Cosine of the angle between the

cable and the x axis
STAB_NON_STAB 2.047 - Stabilizer non stabilizer ratio

NUM_MATERIAL_TYPES 2 -
Number of materials making up the

strand

ISTABILIZER 1 -
Flag for the stabilizer material:

copper (Cu)
RRR 100 - Copper residual resistance ratio

ISUPERCONDUCTOR 2 -
Flag for the superconductor material:

Nb3Sn
c0 1.21508 1011 AT/m2 Property of superconductor scaling

Bc20m 32.35 T Property of superconductor scaling
Tc0m 16.22 K Property of superconductor scaling

D INPUT DATA OF THE SIMULATIONS

161

Table D.1-4 Input data to be set in the Z_JACKET sheet of the workbook conductor_input.xlsx. Cross section
computed from data in [77].

Variable Value Unit SI Meaning

CROSSECTION_JK 1.33 10−3 m2 Pure jacket cross section
CROSSECTION_IN 0.00 m2 Insulation cross section

NUM_MATERIAL_TYPES 1 - Number of materials making up the jacket

IMATERIAL_JK 1 -
Flag for pure jacket material: stainless

steel
IMATERIAL_IN 0 - Flag for insulation material: no insulation

COSTETA 1.00 -
Cosine of the angle between the cable

and the x axis

Table D.1-5 Input data to be set in the STR_MIX sheet of the workbook conductor_operation.xlsx.

Variable Value Unit SI Meaning

IEPS 0 - Flag to define the strain along the strand: no strain
EPS 0 - Value of the strain along the strand

IQFUN 1 -
Flag for the heat source shape: square wave in space

and time

INTIAL 0 -
Flag to define how to initialize the STR_MIX

temperature spatial distribution: from channel initial
temperature

Table D.1-6 Input data to be set in the Z_JACKET sheet of the workbook conductor_operation.xlsx.

Variable Value Unit SI Meaning

IQFUN 0 - Flag for the heat source shape: no heat source

INTIAL 0 -
Flag to define how to initialize the Z_JACKET temperature

spatial distribution: from channel initial temperature

Table D.1-7 Contact perimeter flags, dimensionless. If 1 cable components are in contact, if 0 there is no
contact between the components. Values to be inserted in sheet contact_perimeter_flag of workbook
conductor_coupling.xlsx.

 CHAN_1 STR_MIX_1 Z_JACKET_1

CHAN_1 0 1 1
STR_MIX_1 0 0 0
Z_JACKET_1 0 0 0

Table D.1-8 Contact perimeter in m; values to be inserted in sheet contact_perimeter of workbook
conductor_coupling.xlsx. Values computed from data in [77].

 CHAN_1 STR_MIX_1 Z_JACKET_1

CHAN_1 0 0.20096 0.25133
STR_MIX_1 0 0 0
Z_JACKET_1 0 0 0

D.1 3P-HTS INPUT DATA

162

Table D.1-9 Flags to select the correlation to compute the heat transfer coefficients, dimensionless. Flag on
the channel main diagonal: correlation to evaluate the steady heat transfer coefficients for channel objects (not
used in this case); other values: flag to select the correlation to evaluate interface heat transfer coefficients, if -1
they are user defined. Values to be inserted in sheet HTC_choice of workbook conductor_coupling.xlsx.

 CHAN_1 STR_MIX_1 Z_JACKET_1

CHAN_1 0 −1 −1
STR_MIX_1 0 0 0
Z_JACKET_1 0 0 0

Table D.1-10 Values of the heat transfer coefficient if user defined, in 𝑊/𝑚2/𝐾. Values to be inserted in sheet
contact_HTC of workbook conductor_coupling.xlsx.

 CHAN_1 STR_MIX_1 Z_JACKET_1

CHAN_1 0 1000 1000
STR_MIX_1 0 0 0
Z_JACKET_1 0 0 0

Table D.1-11 Values for the heat transfer coefficient dimensionless multipliers, when needed; to be inserted
in sheet HTC_multiplier of workbook conductor_coupling.xlsx.

 CHAN_1 STR_MIX_1 Z_JACKET_1

CHAN_1 0 1 1
STR_MIX_1 0 0 0
Z_JACKET_1 0 0 0

Table D.1-12 Fraction of the contact perimeter between fluid components which is actually open,
dimensionless. Values to be inserted in sheet open_perimeter_fract of workbook conductor_coupling.xlsx.

 CHAN_1 STR_MIX_1 Z_JACKET_1

CHAN_1 0 0 0
STR_MIX_1 0 0 0
Z_JACKET_1 0 0 0

Table D.1-13 Thickness of the interface between fluid elements, in m. Values to be inserted in sheet
interf_thickness of workbook conductor_coupling.xlsx.

 CHAN_1 STR_MIX_1 Z_JACKET_1

CHAN_1 0 0 0
STR_MIX_1 0 0 0
Z_JACKET_1 0 0 0

D INPUT DATA OF THE SIMULATIONS

163

Table D.1-14 Multiplier for the transport properties in the open fraction of the perimeter between fluid
components, dimensionless. Values to be inserted in sheet trans_transp_multiplier of workbook
conductor_coupling.xlsx.

 CHAN_1 STR_MIX_1 Z_JACKET_1

CHAN_1 0 0 0
STR_MIX_1 0 0 0
Z_JACKET_1 0 0 0

D.2 ITER-TF INPUT DATA

Figure D.2-1 shows a sketch of the conductor geometry.

Figure D.2-1 Sketch of the cross section of the ITER-TF configuration. Coolant He in cyan, mixed
strand of Cu and NB3Sn in black and jacket/insulation in grey. Not scaled figure.

D.2 ITER-TF INPUT DATA

164

Table D.2-1 Input data to be set in the workbooks Transitory_Input.xlsx and conductor_definition.xlsx.

Variable Value Unit SI Meaning

IADAPTIME 0 -
Flag for the time adaptivity: no adaptivity (constant time

step)
XLENGHT 10.0 m Conductor length
IOPFUN 0 - Flag for the current function: constant

IOP0_TOT 0 A Total current transported at time = 0 s

UPWIND 1 -
Flag to switch on/off the upwind discretization in all the

fluid equations: on

Table D.2-2 Input data to be set in the CHAN sheet of the workbook conductor_input.xlsx. Cross sections
and hydraulic diameters computed from data in [87].

Variables Value
Unit

SI
Meaning

 CHAN_1 CHAN_2 m2 Channel cross section
CROSSECTION 5.0265 10−5 3.6965 10−4 - Type of coolant: helium
FLUID_TYPE He He m Hydraulic diameter

HYDIAMETER 8.0 10−3 3.2676 10−4 -
Cosine of the angle

between the cable and the
x axis

COSTETA 1 1 - Void fraction of the channel

VOID_FRACTION 1 0.313 -
Flag to select the

correlation for the friction
factor: user defined

IFRICTION −99 −99 -
Multiplier of the friction

factor: the actual value in
this case

FRICTION_MULTIPLIER 0.02 0.02 -
Flag to set the shape of the

channel: circular

ISRECTANGULAR 0 0 m
Side of the rectangle if

ISRECTANGULAR equal 1

SIDE1 0.00 0.00𝐸 m
Side of the rectangle if

ISRECTANGULAR equal 1
SIDE2 0.00 0.00 m2 Channel cross section

D INPUT DATA OF THE SIMULATIONS

165

Table D.2-3 Input data to be set in the STR_MIX sheet of the workbook conductor_input.xlsx. Cross section
and stabilizer non-stabilizer ratio computed from data in [87], copper residual resistance ratio and Nb3Sn scaling
properties came from the same paper.

Variable Value
Unit

SI
Meaning

CROSSECTION 7.54 10−4 m2 Strand total cross section

COSTETA 0.9699 -
Cosine of the angle between the cable

and the x axis
STAB_NON_STAB 2.0846 - Stabilizer non stabilizer ratio

NUM_MATERIAL_TYPES 2 -
Number of materials making up the

strand

ISTABILIZER 1 -
Flag for the stabilizer material: copper

(Cu)
RRR 197.71 - Copper residual resistance ratio

ISUPERCONDUCTOR 2 -
Flag for the superconductor material:

Nb3Sn

c0 1.21508 1011
AT

m2
 Property of superconductor scaling

Bc20m 32.35 T Property of superconductor scaling
Tc0m 16.22 K Property of superconductor scaling

Table D.2-4 Input data to be set in the Z_JACKET sheet of the workbook conductor_input.xlsx. Cross sections
computed from data in [87].

Variable Value Unit SI Meaning

CROSSECTION_JK 3.0699 10−4 m2 Pure jacket cross section
CROSSECTION_IN 2.7966 10−4 m2 Insulation cross section

NUM_MATERIAL_TYPES 2 -
Number of materials making up the

jacket

IMATERIAL_JK 1 -
Flag for pure jacket material: stainless

steel
IMATERIAL_IN 1 - Flag for insulation material: glass-epoxy

COSTETA 1.00𝐸 + 00 -
Cosine of the angle between the cable

and the x axis

Table D.2-5 Input data to be set in the STR_MIX sheet of the workbook conductor_operation.xlsx.

Variable Value Unit Meaning

IEPS 0 - Flag to define the strain along the strand: no strain
EPS 0 - Value of the strain along the strand

IQFUN 1 - Flag for the heat source shape: square wave in space and time

INTIAL 0 -
Flag to define how to initialize the STR_MIX temperature spatial

distribution: from channel initial temperature

D.2 ITER-TF INPUT DATA

166

Table D.2-6 Input data to be set in the Z_JACKET sheet of the workbook conductor_operation.xlsx.

Variable Value Unit Meaning

IQFUN 0 - Flag for the heat source shape: no heat source

INTIAL 0 -
Flag to define how to initialize the Z_JACKET temperature spatial

distribution: from channel initial temperature

Table D.2-7 Contact perimeter flags, dimensionless. If 1 cable components are in contact, if 0 there is no
contact between the components. Values to be inserted in sheet contact_perimeter_flag of workbook
conductor_coupling.xlsx.

 CHAN_1 CHAN_2 STR_MIX_1 Z_JACKET_1

CHAN_1 0 1 0 0
CHAN_2 0 0 1 1

STR_MIX_1 0 0 0 1
Z_JACKET_1 0 0 0 0

Table D.2-8 Contact perimeter in m; values to be inserted in sheet contact_perimeter of workbook
conductor_coupling.xlsx. Values computed from data in [87].

 CHAN_1 CHAN_2 STR_MIX_1 Z_JACKET_1

CHAN_1 0 0.009 𝜋 0 0
CHAN_2 0 0 3.7275 0.094356

STR_MIX_1 0 0 0 0.031452
Z_JACKET_1 0 0 0 0

Table D.2-9 Flags to select the correlation to compute the heat transfer coefficients, dimensionless. Flag on
the channel main diagonal: correlation to evaluate the steady heat transfer coefficients for channel objects (not
used in this case); other values: flag to select the correlation to evaluate interface heat transfer coefficients, if -1
they are user defined. Values to be inserted in sheet HTC_choice of workbook conductor_coupling.xlsx.

 CHAN_1 CHAN_2 STR_MIX_1 Z_JACKET_1

CHAN_1 0 −1 0 0
CHAN_2 0 0 −1 −1

STR_MIX_1 0 0 0 −1
Z_JACKET_1 0 0 0 0

Table D.2-10 Values of the heat transfer coefficient if user defined, in 𝑊/𝑚2/𝐾. Values to be inserted in sheet
contact_HTC of workbook conductor_coupling.xlsx.

 CHAN_1 CHAN_2 STR_MIX_1 Z_JACKET_1

CHAN_1 0 1000 0 0
CHAN_2 0 0 1000 1000

STR_MIX_1 0 0 0 500
Z_JACKET_1 0 0 0 0

D INPUT DATA OF THE SIMULATIONS

167

Table D.2-11 Values for the heat transfer coefficient dimensionless multipliers, when needed; to be inserted
in sheet HTC_multiplier of workbook conductor_coupling.xlsx.

 CHAN_1 CHAN_2 STR_MIX_1 Z_JACKET_1

CHAN_1 0 1 0 0
CHAN_2 0 0 1 1

STR_MIX_1 0 0 0 1
Z_JACKET_1 0 0 0 0

Table D.2-12 Fraction of the contact perimeter between fluid components which is actually open,
dimensionless. Values to be inserted in sheet open_perimeter_fract of workbook conductor_coupling.xlsx.
Values from data in [87].

 CHAN_1 CHAN_2 STR_MIX_1 Z_JACKET_1

CHAN_1 0 0.293 0 0
CHAN_2 0 0 0 0

STR_MIX_1 0 0 0 0
Z_JACKET_1 0 0 0 0

Table D.2-13 Thickness of the interface between fluid elements, in m. Values to be inserted in sheet
interf_thickness of workbook conductor_coupling.xlsx from [87].

 CHAN_1 CHAN_2 STR_MIX_1 Z_JACKET_1

CHAN_1 0 0.001 0 0
CHAN_2 0 0 0 0

STR_MIX_1 0 0 0 0
Z_JACKET_1 0 0 0 0

Table D.2-14 Multiplier for the transport properties in the open fraction of the perimeter between fluid
components, dimensionless. Values to be inserted in sheet trans_transp_multiplier of workbook
conductor_coupling.xlsx.

 CHAN_1 CHAN_2 STR_MIX_1 Z_JACKET_1

CHAN_1 0 1 0 0
CHAN_2 0 0 0 0

STR_MIX_1 0 0 0 0
Z_JACKET_1 0 0 0 0

E FURTHER DETAILS

169

APPENDIX E
E FURTHER DETAILS

This appendix is devoted to describing aspects that are too detailed to be mentioned

within the main body of the thesis and are not essential to the overall understanding of the

work, although it does provide additional information about them. Section E.1 is a nod to the

compilation of the input files, while section E.2 describes the contents of the input file.

E.1 HOW TO COMPILE INPUT FILES

All the main input files apart from conductor_coupling.xlsx, are organized by columns;
since they share the same structure, the following illustrates how to compile file
conductor_definition.xlsx.

The workbook is composed of a single sheet called CONDUCTOR, that is also the root of
the object identifier (ID) reported in cell A1. The first four columns of this sheet define the
variable name, its unit including the specification “flag” for flags variables, the variable type
(float, integer or string) and the variable description respectively; starting from the fifth
column user can define cables. To do this, it is sufficient to write an integer number in the first
row of the fifth column that must be larger or equal than one; automatically the sheet will
compile the second and third rows of the same columns which hold respectively a counter
and the cable identifier. Object ID is constructed starting from the root or object name
(CONDUCTOR in this example) and the integer number provided by the user, joined by an
underscore. The total value of the cable counter is reported in cell B1 and it is updated when
a new column is initialized.

Bear in mind that basic components objects with the same IDs are not allowed within the
same cable as well as different cables with the same IDs, so for each new column a not already
used integer number must be provided.

The conductor_coupling.xlsx workbook is composed by a set of eight sheets, each of
them characterized by a square matrix. The rows and columns of this matrices corresponds to
the IDs of the cable basic components objects previously defined; since they are symmetric,
only the upper triangular region must be filled by the user. In these sheets the conditional
formatting is introduced to help user with the compilation of matrices.

E.2 INTERFACES AND COUPLING BETWEEN COMPONENTS

In the eight sheets of conductor_coupling.xlsx primary input file, user sets the interfaces

between components, the heat transfer coefficients and the multiplier to determine the

transported mass, momentum and energy coefficients through fluid components open

contact perimeter.

In sheet contact_perimeter_flag, matrix element meaning is the wetted or contact

perimeter flags: if 1 there is at least thermal contact between fluid components, fluid and solid

components and between solid components, if 0 there is no interfaces. The contact perimeter

E.2 INTERFACES AND COUPLING BETWEEN COMPONENTS

170

length must be provided in the second sheet (contact_perimeter) and not 0 values must be

inserted in the cells with a value of the contact perimeter flag equal to 1; this rule applies to

all the sheets. Conditional formatting is thought and introduced to guide user in matrix filling

phase of the input file compilation. To fully describe the interfaces between fluid components,

user should compile the open_perimeter_fraction matrix whose elements represent the open

fraction of the contact perimeters. It is a number in the range [0,1) and if larger than zero it

means that the channels are in hydraulic parallel.

Heat transfer coefficient (HTC) are evaluated starting from the flag values of the matrix in

sheet HTC_choice. On the main diagonal the elements corresponding to channels are used to

choose the correlation with which the channels steady heat transfer coefficient is to be

computed; flag values on the upper triangular matrix allows to select the value of the interface

heat transfer coefficient: if positive it is evaluated with a correlation, the final value is obtained

correcting the computed heat transfer coefficient by the multiplier provided by the user in

sheet HTC_multiplier; if negative it is directly imposed by user writing its value in sheet

contact_HTC. The thickness of the interface between channels is exploited to evaluate the

wall thermal resistance that appears in the formula to evaluate the heat transfer coefficient

between channels. Heat transfer coefficients and channels friction factors are evaluated by

method Get_transp_coeff of class Conductor.

The last sheet trans_transp_multiplier holds the multiplier for the transport properties

through the open fraction of the channels contact perimeter, but it is not used at the time

being in SC2.

BIBLIOGRAPHY

171

BIBLIOGRAPHY

[1] L. Rossi, “Superconductivity: Its role, its success and its setbacks in the LARGE HADRON
COLlider of CERN,” Supercond. Sci. Technol., 2010, doi: 10.1088/0953-
2048/23/3/034001.

[2] P. Bruzzone, “Superconductivity and fusion energy - The inseparable companions,”
Supercond. Sci. Technol., 2015, doi: 10.1088/0953-2048/28/2/024001.

[3] H. Jones, “Superconductors in the transmission of electricity and networks,” Energy
Policy, 2008, doi: 10.1016/j.enpol.2008.09.063.

[4] A. Horvath and E. Rachlew, “Nuclear power in the 21st century: Challenges and
possibilities,” Ambio, 2016, doi: 10.1007/s13280-015-0732-y.

[5] J. Adelerhof, M. B. Thoopal, D. Lee, and C. Hardy, “Clean and Sustainable Fusion Energy
for the Future,” PAM Rev. Energy Sci. Technol., 2015, doi: 10.5130/pamr.v1i0.1384.

[6] J. L. Johnson, “Stellarator and Heliotron Devices,” Nucl. Fusion, 1999, doi: 10.1088/0029-
5515/39/2/701.

[7] M. Wanner et al., “Design and construction of WENDELSTEIN 7-X,” Fusion Eng. Des.,
2001, doi: 10.1016/S0920-3796(01)00239-3.

[8] R. C. Wolf et al., “Wendelstein 7-X Program - Demonstration of a Stellarator Option for
Fusion Energy,” IEEE Trans. Plasma Sci., 2016, doi: 10.1109/TPS.2016.2564919.

[9] V. Erckmann et al., “W7-X project: scientific basis and technical realization,” 1998, doi:
10.1109/fusion.1997.685662.

[10] M. Fujiwara et al., “Overview of LHD experiments,” Nuclear Fusion. 2001, doi:
10.1088/0029-5515/41/10/305.

[11] A. Iiyoshi et al., “Overview of the large helical device project,” Nucl. Fusion, 1999, doi:
10.1088/0029-5515/39/9y/313.

[12] T. Rummel et al., “The superconducting magnet system of the stellarator wendelstein 7-
X,” 2012, doi: 10.1109/TPS.2012.2184774.

[13] F. Warmer, C. D. Beidler, A. Dinklage, and R. Wolf, “From W7-X to a HELIAS fusion power
plant: Motivation and options for an intermediate-step burning-plasma stellarator,”
Plasma Phys. Control. Fusion, 2016, doi: 10.1088/0741-3335/58/7/074006.

[14] V. Queral, F. A. Volpe, D. Spong, S. Cabrera, and F. Tabarés, “Initial Exploration of High-
Field Pulsed Stellarator Approach to Ignition Experiments,” J. Fusion Energy, 2018, doi:
10.1007/s10894-018-0199-5.

[15] N. Holtkamp, “An overview of the ITER project,” Fusion Eng. Des., 2007, doi:
10.1016/j.fusengdes.2007.03.029.

[16] K. Fiore, “Nuclear energy and sustainability: Understanding ITER,” Energy Policy, 2006,
doi: 10.1016/j.enpol.2005.07.008.

172

[17] C. Llewellyn Smith and D. Ward, “Fusion,” Energy Policy, 2008, doi:
10.1016/j.enpol.2008.09.071.

[18] Y. Wan et al., “Overview of the present progress and activities on the CFETR,” Nuclear
Fusion. 2017, doi: 10.1088/1741-4326/aa686a.

[19] L. Muzzi, G. De Marzi, A. Di Zenobio, and A. Della Corte, “Cable-in-conduit conductors:
Lessons from the recent past for future developments with low and high temperature
superconductors,” Superconductor Science and Technology. 2015, doi: 10.1088/0953-
2048/28/5/053001.

[20] T. Donné, “European Research Roadmap to the Realisation of Fusion Energy,”
EUROfusion, 2018.

[21] K. Sedlak et al., “Advance in the conceptual design of the European DEMO magnet
system,” Supercond. Sci. Technol., 2020, doi: 10.1088/1361-6668/ab75a9.

[22] K. Tobita et al., “Overview of the DEMO conceptual design activity in Japan,” Fusion Eng.
Des., 2018, doi: 10.1016/j.fusengdes.2018.04.059.

[23] K. Kim et al., “Design concept of K-DEMO for near-term implementation,” Nucl. Fusion,
2015, doi: 10.1088/0029-5515/55/5/053027.

[24] H. W. Kim et al., “Design updates of magnet system for Korean fusion demonstration
reactor, K-DEMO,” Fusion Eng. Des., 2019, doi: 10.1016/j.fusengdes.2019.02.012.

[25] B. N. Sorbom et al., “ARC: A compact, high-field, fusion nuclear science facility and
demonstration power plant with demountable magnets,” Fusion Eng. Des., 2015, doi:
10.1016/j.fusengdes.2015.07.008.

[26] D. G. Whyte, J. Minervini, B. LaBombard, E. Marmar, L. Bromberg, and M. Greenwald,
“Smaller & Sooner: Exploiting High Magnetic Fields from New Superconductors for a
More Attractive Fusion Energy Development Path,” J. Fusion Energy, 2016, doi:
10.1007/s10894-015-0050-1.

[27] D. Whyte, “Small, modular and economically attractive fusion enabled by high
temperature superconductors,” 2019, doi: 10.1098/rsta.2018.0354.

[28] T. Tsunematsu, “Broader Approach to fusion energy,” Fusion Eng. Des., 2009, doi:
10.1016/j.fusengdes.2009.02.029.

[29] P. Barabaschi, Y. Kamada, and H. Shirai, “Progress of the JT-60SA project,” Nucl. Fusion,
vol. 59, no. 11, 2019, doi: 10.1088/1741-4326/ab03f6.

[30] A. Pizzuto et al., “JT-60SA toroidal field magnet system,” 2008, doi:
10.1109/TASC.2008.920827.

[31] A. Zappatore et al., “Modeling Quench Propagation in the ENEA HTS Cable-In-Conduit
Conductor,” IEEE Trans. Appl. Supercond., 2020, doi: 10.1109/TASC.2020.3001035.

[32] H. Jones, “Superconductors in the transmission of electricity and networks,” Energy
Policy, vol. 36, no. 12, pp. 4342–4345, Dec. 2008, doi: 10.1016/j.enpol.2008.09.063.

BIBLIOGRAPHY

173

[33] A. P. Malozemoff, J. Yuan, and C. M. Rey, “5 - High-temperature superconducting (HTS)
AC cables for power grid applications,” in Superconductors in the Power Grid, C. Rey, Ed.
Woodhead Publishing, 2015, pp. 133–188.

[34] D. Uglietti, “A review of commercial high temperature superconducting materials for
large magnets: from wires and tapes to cables and conductors,” Supercond. Sci. Technol.,
vol. 32, no. 5, p. 053001, Apr. 2019, doi: 10.1088/1361-6668/ab06a2.

[35] G. Venkataramanan and B. K. Johnson, “A superconducting DC transmission system
based on VSC transmission technologies,” IEEE Trans. Appl. Supercond., vol. 13, no. 2, pp.
1922–1925, Jun. 2003, doi: 10.1109/TASC.2003.812947.

[36] D. I. Doukas, “Superconducting Transmission Systems: Review, Classification, and
Technology Readiness Assessment,” IEEE Trans. Appl. Supercond., vol. 29, no. 5, pp. 1–5,
Aug. 2019, doi: 10.1109/TASC.2019.2895395.

[37] K. Sato, “Present Status and Future Perspective of High-Temperature Superconductors,”
p. 13.

[38] Y. Xie et al., “Second-Generation HTS Conductor Design and Engineering for Electrical
Power Applications,” IEEE Trans. Appl. Supercond., vol. 19, no. 3, pp. 3009–3013, Jun.
2009, doi: 10.1109/TASC.2009.2018499.

[39] V. E. Sytnikov, V. S. Vysotsky, I. P. Radchenko, and N. V. Polyakova, “1G versus 2G-
comparison from the practical standpoint for HTS power cables use,” J. Phys. Conf. Ser.,
vol. 97, p. 012058, Feb. 2008, doi: 10.1088/1742-6596/97/1/012058.

[40] J. P. Stovall et al., “Installation and operation of the Southwire 30-meter high-
temperature superconducting power cable,” IEEE Trans. Appl. Supercond., vol. 11, no. 1,
pp. 2467–2472, Mar. 2001, doi: 10.1109/77.920363.

[41] J. F. Maguire et al., “Development and Demonstration of a HTS Power Cable to Operate
in the Long Island Power Authority Transmission Grid,” IEEE Trans. Appl. Supercond., vol.
17, no. 2, pp. 2034–2037, Jun. 2007, doi: 10.1109/TASC.2007.898359.

[42] D. Zhang et al., “Testing Results for the Cable Core of a 360 m/10 kA HTS DC Power Cable
Used in the Electrolytic Aluminum Industry,” IEEE Trans. Appl. Supercond., vol. 23, no. 3,
pp. 5400504–5400504, Jun. 2013, doi: 10.1109/TASC.2012.2236812.

[43] D.-H. Yoon, “A Feasibility Study on HTS Cable for the Grid Integration of Renewable
Energy,” Phys. Procedia, vol. 45, pp. 281–284, Jan. 2013, doi:
10.1016/j.phpro.2013.05.022.

[44] L. Xiao et al., “Development of a 10 kA HTS DC Power Cable,” IEEE Trans. Appl.
Supercond., vol. 22, no. 3, pp. 5800404–5800404, Jun. 2012, doi:
10.1109/TASC.2011.2176090.

[45] H. J. Kim and K. Hur, “Expanded Adoption of HTS Cables in a Metropolitan Area and its
Potential Impact on the Neighboring Electric Power Grid,” IEEE Trans. Appl. Supercond.,
vol. 22, no. 3, pp. 5800704–5800704, Jun. 2012, doi: 10.1109/TASC.2011.2176700.

[46] S. K. Shrivastava, “Application of Superconductivity in Electric Power and Transportation
System,” vol. 11, no. 4, p. 9.

174

[47] B. Gamble, G. Snitchler, and T. MacDonald, “Full Power Test of a 36.5 MW HTS Propulsion
Motor,” IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 1083–1088, Jun. 2011, doi:
10.1109/TASC.2010.2093854.

[48] L. Savoldi Richard, F. Casella, B. Fiori, and R. Zanino, “The 4C code for the cryogenic circuit
conductor and coil modeling in ITER,” Cryogenics, 2010, doi:
10.1016/j.cryogenics.2009.07.008.

[49] M. Bagnasco, D. Bessette, L. Bottura, C. Marinucci, and C. Rosso, “Progress in the
integrated simulation of thermal-hydraulic operation of the ITER magnet system,” 2010,
doi: 10.1109/TASC.2010.2043836.

[50] D. Bessette, N. Shatil, and E. Zapretilina, “Simulations of the ITER toroidal field coil
operation with the VINCENTA code,” 2006, doi: 10.1109/TASC.2006.873258.

[51] R. Zanino and L. S. Richard, “Multiscale approach and role of validation in the thermal-
hydraulic modeling of the ITER superconducting magnets,” IEEE Trans. Appl. Supercond.,
2013, doi: 10.1109/TASC.2012.2236134.

[52] L. Savoldi and R. Zanino, “M & M: Multi-conductor Mithrandir code for the simulation of
thermal-hydraulic transients in superconducting magnets,” Cryogenics, 2000, doi:
10.1016/S0011-2275(00)00027-8.

[53] R. Zanino, P. Santagati, L. Savoldi, and C. Marinucci, “Joint+conductor thermal-hydraulic
experiment and analysis on the Full Size Joint Sample using MITHRANDIR 2.1,” IEEE Trans.
Appl. Supercond., 2000, doi: 10.1109/77.828427.

[54] R. Zanino, R. Bonifetto, C. Hoa, and L. S. Richard, “Verification of the predictive
capabilities of the 4C code cryogenic circuit model,” 2014, doi: 10.1063/1.4860896.

[55] R. Zanino, R. Bonifetto, F. Casella, and L. Savoldi Richard, “Validation of the 4C code
against data from the HELIOS loop at CEA Grenoble,” 2013, doi:
10.1016/j.cryogenics.2012.04.010.

[56] A. Zappatore, R. Heller, L. Savoldi, M. J. Wolf, and R. Zanino, “A new model for the analysis
of quench in HTS cable-in-conduit conductors based on the twisted-stacked-tape cable
concept for fusion applications,” Supercond. Sci. Technol., 2020, doi: 10.1088/1361-
6668/ab895b.

[57] M. Lewandowska, A. Dembkowska, R. Heller, and M. Wolf, “Thermal-hydraulic analysis
of an HTS DEMO TF coil,” Cryogenics, 2018, doi: 10.1016/j.cryogenics.2018.10.014.

[58] A. Zappatore, W. H. Fietz, R. Heller, L. Savoldi, M. J. Wolf, and R. Zanino, “A critical
assessment of thermal–hydraulic modeling of HTS twisted-stacked-tape cable
conductors for fusion applications,” Supercond. Sci. Technol., Aug. 2019, doi:
10.1088/1361-6668/ab20a9.

[59] V. Amoskov et al., “Validation of VINCENTA modelling based on an experiment with the
central solenoid model coil of the international thermonuclear experimental reactor,”
Plasma Devices Oper., 2006, doi: 10.1080/10519990500518001.

BIBLIOGRAPHY

175

[60] S. Nicollet, D. Bessette, D. Ciazynski, J. L. Duchateau, and B. Lacroix, “Cross checking of
Gandalf and Vincenta on the CS behaviour during ITER reference scenario,” 2010, doi:
10.1063/1.3422315.

[61] V. D. Arp, “Stability and thermal quenches in force-cooled superconducting cables. Final
report,” National Bureau of Standards, Washington, DC (USA), PB-85-141018, May 1979.
Accessed: Mar. 12, 2021. [Online]. Available: https://www.osti.gov/biblio/6032647.

[62] L. Bottura, “Thermal, Hydraulic, and Electromagnetic Modeling of Superconducting
Magnet Systems,” IEEE Trans. Appl. Supercond., vol. 26, no. 3, pp. 1–7, Apr. 2016, doi:
10.1109/TASC.2016.2544253.

[63] J. A. Souza, J. C. Ordonez, R. Hovsapian, and J. V. C. Vargas, “Thermal Modeling of Helium
Cooled High-Temperature Superconducting DC Transmission Cable,” IEEE Trans. Appl.
Supercond., vol. 21, no. 3, pp. 947–952, Jun. 2011, doi: 10.1109/TASC.2010.2099196.

[64] C. L. Buiar and J. V. C. Vargas, “Thermodynamic Analisis Applied to Superconducting DC
Cable Model,” 14th Braz. Congr. Therm. Sci. Eng., p. 8, 22-09 2012.

[65] C. L. Buiar, J. V. C. Vargas, and J. C. Ordonez, “Dimensionless High Temperature
Superconducting (HTS) DC Cable Model,” p. 7, 2013.

[66] D. I. Doukas, A. I. Chrysochos, T. A. Papadopoulos, D. P. Labridis, L. Harnefors, and G.
Velotto, “Volume Element Method for Thermal Analysis of Superconducting DC
Transmission Cable,” IEEE Trans. Appl. Supercond., vol. 27, no. 4, pp. 1–8, Jun. 2017, doi:
10.1109/TASC.2017.2656785.

[67] C. E. Bruzek et al., “Cable Conductor Design for the High-Power MgB2 DC
Superconducting Cable Project of BEST PATHS,” IEEE Trans. Appl. Supercond., vol. 27, no.
4, pp. 1–5, Jun. 2017, doi: 10.1109/TASC.2016.2641338.

[68] “MATLAB - Il linguaggio del calcolo tecnico.”
https://it.mathworks.com/products/matlab.html (accessed Mar. 14, 2021).

[69] D. I. Doukas, A. I. Chrysochos, T. A. Papadopoulos, D. P. Labridis, L. Harnefors, and G.
Velotto, “Coupled Electro-Thermal Transient Analysis of Superconducting DC
Transmission Systems Using FDTD and VEM Modeling,” IEEE Trans. Appl. Supercond., vol.
27, no. 8, pp. 1–8, Dec. 2017, doi: 10.1109/TASC.2017.2749500.

[70] T. Masuda et al., “Test Results of a 30 m HTS Cable for Yokohama Project,” IEEE Trans.
Appl. Supercond., vol. 21, no. 3, pp. 1030–1033, Jun. 2011, doi:
10.1109/TASC.2010.2093109.

[71] Y. Sato, K. Agatsuma, X. Wang, and A. Ishiyama, “Temperature and Pressure Simulation
of a High-Temperature Superconducting Cable Cooled by Subcooled \mboxLN_2 With
Fault Current,” IEEE Trans. Appl. Supercond., vol. 25, no. 3, pp. 1–5, Jun. 2015, doi:
10.1109/TASC.2014.2387119.

[72] “Horizon Technologies...GASPAK Software.” http://www.htess.com/gaspak.htm
(accessed Mar. 14, 2021).

176

[73] E. Shabagin, C. Heidt, S. Strauß, and S. Grohmann, “Modelling of 3D temperature profiles
and pressure drop in concentric three-phase HTS power cables,” Cryogenics, vol. 81, pp.
24–32, Jan. 2017, doi: 10.1016/j.cryogenics.2016.11.004.

[74] M. Stemmle, F. Merschel, M. Noe, and A. Hobl, “Ampacity project - worldwide first
superconducting cable and fault current limiter installation in a German city center,”
22nd Int. Conf. Electr. Distrib., pp. 0742–0742, Jan. 2013, doi: 10.1049/cp.2013.0905.

[75] W. T. B. de Sousa, D. Kottonau, J. Bock, and M. Noe, “Investigation of a Concentric Three-
Phase HTS Cable Connected to an SFCL Device,” IEEE Trans. Appl. Supercond., vol. 28, no.
4, pp. 1–5, Jun. 2018, doi: 10.1109/TASC.2018.2794586.

[76] D. Kottonau, W. T. B. de Sousa, J. Bock, and M. Noe, “Design Comparisons of Concentric
Three-Phase HTS Cables,” IEEE Trans. Appl. Supercond., vol. 29, no. 6, pp. 1–8, Sep. 2019,
doi: 10.1109/TASC.2019.2897893.

[77] S.-J. Lee, H.-J. Sung, M. Park, D. Won, J. Yoo, and H. S. Yang, “Analysis of the Temperature
Characteristics of Three-Phase Coaxial Superconducting Power Cable according to a
Liquid Nitrogen Circulation Method for Real-Grid Application in Korea,” Energies, vol. 12,
no. 9, p. 1740, May 2019, doi: 10.3390/en12091740.

[78] “SINDA/FLUINT.” https://www.crtech.com/products/sindafluint (accessed Mar. 14,
2021).

[79] C. Lee, D. Kim, S. Kim, D. Y. Won, and H. S. Yang, “Thermo-Hydraulic Analysis on Long
Three-Phase Coaxial HTS Power Cable of Several Kilometers,” IEEE Trans. Appl.
Supercond., vol. 29, no. 5, pp. 1–5, Aug. 2019, doi: 10.1109/TASC.2019.2900710.

[80] “Best Paths - Project.” http://www.bestpaths-project.eu/en/project (accessed Mar. 14,
2021).

[81] G. Angeli, M. Bocchi, M. Ascade, V. Rossi, A. Valzasina, and L. Martini, “Development of
Superconducting Devices for Power Grids in Italy: Update About the SFCL Project and
Launching of the Research Activity on HTS Cables,” IEEE Trans. Appl. Supercond., vol. 27,
no. 4, pp. 1–6, Jun. 2017, doi: 10.1109/TASC.2016.2639022.

[82] F. Grilli, “Numerical Modeling of HTS Applications,” IEEE Trans. Appl. Supercond., vol. 26,
no. 3, pp. 1–8, Apr. 2016, doi: 10.1109/TASC.2016.2520083.

[83] T.-T. Nguyen et al., “A Simplified Model of Coaxial, Multilayer High-Temperature
Superconducting Power Cables with Cu Formers for Transient Studies,” Energies, vol. 12,
no. 8, p. 1514, Apr. 2019, doi: 10.3390/en12081514.

[84] “Home | PSCAD.” https://www.pscad.com/ (accessed Mar. 14, 2021).

[85] S. S. Fetisov, V. V. Zubko, A. A. Nosov, S. Y. Zanegin, and V. S. Vysotsky, “Review of the
design, production and tests of compact AC HTS power cables,” Prog. Supercond. Cryog.,
vol. 22, no. 4, pp. 31–39, 2020, doi: 10.9714/psac.2020.22.4.031.

[86] K. Glinos, “EU Open Science.” Dec. 13, 2019, Accessed: Mar. 15, 2021. [Online]. Available:
https://ec.europa.eu/info/sites/info/files/research_and_innovation/knowledge_public
ations_tools_and_data/documents/ec_rtd_factsheet-open-science_2019.pdf.

BIBLIOGRAPHY

177

[87] R. Zanino, D. Bessette, and L. S. Richard, “Quench analysis of an ITER TF coil,” Fusion Eng.
Des., vol. 85, no. 5, pp. 752–760, Aug. 2010, doi: 10.1016/j.fusengdes.2010.04.056.

[88] R. Bonifetto, F. Buonora, L. S. Richard, and R. Zanino, “4C Code Simulation and
Benchmark of ITER TF Magnet Cool-Down From 300 K to 80 K,” IEEE Trans. Appl.
Supercond., vol. 22, no. 3, pp. 4902604–4902604, Jun. 2012, doi:
10.1109/TASC.2011.2177233.

[89] L. S. Richard, R. Bonifetto, A. Foussat, N. Mitchell, K. Seo, and R. Zanino, “Mitigation of
the Temperature Margin Reduction due to the Nuclear Radiation on the ITER TF Coils,”
IEEE Trans. Appl. Supercond., vol. 23, no. 3, pp. 4201305–4201305, Jun. 2013, doi:
10.1109/TASC.2013.2238977.

[90] L. S. Richard et al., “Analysis of the Effects of the Nuclear Heat Load on the ITER TF
Magnets Temperature Margin,” IEEE Trans. Appl. Supercond., vol. 24, no. 3, pp. 1–4, Jun.
2014, doi: 10.1109/TASC.2013.2280720.

[91] R. Zanino, S. Giors, and R. Mondino, “CFD Modeling of ITER Cable‐in‐Conduit
Superconductors. Part I: Friction in the Central Channel,” AIP Conf. Proc., vol. 823, no. 1,
pp. 1009–1016, Apr. 2006, doi: 10.1063/1.2202514.

[92] R. Zanino, S. Giors, and R. Mondino, “CFD modeling of ITER cable-in-conduit
superconductors: Part II. Effects of spiral geometry on the central channel pressure
drop,” Fusion Eng. Des., vol. 81, no. 23, pp. 2605–2610, Nov. 2006, doi:
10.1016/j.fusengdes.2006.07.006.

[93] R. Zanino and S. Giors, “Cfd modeling of iter cable-in-conduit superconductors. part v:
combined momentum and heat transfer in rib roughened pipes,” AIP Conf. Proc., vol.
985, no. 1, pp. 1261–1268, Mar. 2008, doi: 10.1063/1.2908481.

[94] R. Zanino, S. De Palo, and L. Bottura, “A two-fluid code for the thermohydraulic transient
analysis of CICC superconducting magnets,” J. Fusion Energy, vol. 14, no. 1, pp. 25–40,
Mar. 1995, doi: 10.1007/BF02214031.

[95] R. Zanino and C. Marinucci, “Heat slug propagation in QUELL. Part I: Experimental setup
and 1-fluid GANDALF analysis,” Cryogenics, vol. 39, no. 7, pp. 585–593, Jul. 1999, doi:
10.1016/S0011-2275(99)00074-0.

[96] R. Zanino and C. Marinucci, “Heat slug propagation in QUELL. Part II: 2-fluid MITHRANDIR
analysis,” Cryogenics, vol. 39, no. 7, pp. 595–608, Jul. 1999, doi: 10.1016/S0011-
2275(99)00075-2.

[97] C. Johnson, Numerical solution of partial differential equations by the finite element
method, Dover ed. Mineola, N.Y: Dover Publications, 2009.

[98] J. Cooper, Introduction to Partial Differential Equations with MATLAB. Boston, MA:
Birkhäuser Boston, 1998.

[99] A. Quarteroni, F. Saleri, and P. Gervasio, Scientific Computing with MATLAB and Octave,
vol. 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014.

[100] “The Python Standard Library — Python 3.9.2 documentation.”
https://docs.python.org/3/library/ (accessed Mar. 18, 2021).

178

[101] “NumPy.” https://numpy.org/ (accessed Mar. 18, 2021).

[102] “SciPy — SciPy v1.6.1 Reference Guide.” https://docs.scipy.org/doc/scipy/reference/
(accessed Mar. 18, 2021).

[103] “pandas - Python Data Analysis Library.” https://pandas.pydata.org/ (accessed Mar.
18, 2021).

[104] “openpyxl - A Python library to read/write Excel 2010 xlsx/xlsm files — openpyxl 3.0.7
documentation.” https://openpyxl.readthedocs.io/en/stable/ (accessed Mar. 18, 2021).

[105] “Matplotlib: Python plotting — Matplotlib 3.3.4 documentation.”
https://matplotlib.org/ (accessed Mar. 18, 2021).

[106] “PEP 8 -- Style Guide for Python Code,” Python.org.
https://www.python.org/dev/peps/pep-0008/ (accessed Mar. 17, 2021).

[107] H. Wickham, “Tidy Data,” J. Stat. Softw., vol. 059, no. i10, 2014, Accessed: Mar. 17,
2021. [Online]. Available: https://ideas.repec.org/a/jss/jstsof/v059i10.html.

