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Abstract 
Superconducting (SC) cables and magnets in the past decades have enabled fundamental 

discoveries in the field of high-energy physic, amazing steps forward in the research on a clean 

energy based on nuclear fusion and a significant increase in the power transfer capability, as 

well as reduction of transmission loss and construction cost, for power cables. Different kinds 

of SC cables are available, according to the applications, based on different SC materials and 

different concept for their cooling (conduction-cooling, coolant bath of forced-flow). The SC 

cables for fusion, for instance, are mainly based on a thousand of thin strands, embedding the 

low-critical-temperature superconducting (LTS) material, twisted together and pulled inside a 

metal jacket (the so-called cable-in-conduit concept). The coolant, supercritical Helium at 

4.5 K and 5 bar flows inside the porous matrix originated by the strands. The SC cables for 

power transmission typically adopt high-critical-temperature superconducting (HTS) tapes, 

stacked on a stabilizing former and cooled by a forced flow of liquid nitrogen at 77 K. The 

cables are surrounded by the cryostat. 

Focusing on forced-flow SC cables, which are crucial both for fusion applications and for 

power transmission, the availability of an appropriate, reliable and flexible modelling of the 

SC cables is of paramount importance. In the field of fusion cables, several numerical tools are 

well established for the analysis of the transients in fusion (LTS) cables, as the 4C code, 

developed at DENERG few years ago. In the field of power transmission cables, few numerical 

tools are available for the HTS cables, based on a very simplified modelling. 

A single model, flexible enough to cope with both LTS and HTS cables for fusion 

applications and power transmission, respectively, is missing from the research arena. The 

aim of the present thesis is the conceptual development of a single tool for the analysis of 

thermal-hydraulic transients in SC cables, though from the very beginning to be capable to 

model LTS, as well as HTS cables. Euler-like sets of 1D equations should be used to model the 

fluid flow along the cable, for an arbitrary number of fluid regions in single phase. The fluid 

equations need to be coupled to 1D transient heat conduction equations, for the SC 

strands/tapes and for the stabilizer elements and jacket/insulation layers/cryostat. The spatial 

grid used to discretize the equations with a finite element scheme should account for non-

uniform elements distribution along the cable, while the time-marching scheme should take 

advantage of an adaptive time stepping. 

The model should be developed based on a user-friendly concept of a graphical interface 

that allows to easily define the cable topology, to choose the appropriate numerical solvers 

and run the simulations, checking the evolution of selected thermal-hydraulic variables during 

the code execution.  

In perspective, the model needs to be extended to include also a lumped electrical model.





TABLE OF CONTENTS 

iii 

TABLE OF CONTENTS 

List of symbols .....................................................................................................................vii 

List of acronyms ...................................................................................................................xi 

1 Introduction .................................................................................................................... 1 

1.1 Context ................................................................................................................... 1 

1.2 Overview of modeling of SC cables for fusion applications ................................... 4 

1.3 Overview of modeling of SC cables for power applications .................................. 6 

1.4 Aim and novelty of the work ................................................................................ 10 

1.5 Structure of the thesis ......................................................................................... 11 

2 Mesoscale modelling of superconductors ................................................................... 13 

2.1 Mathematical model ............................................................................................ 13 

2.1.1 Fluid components equations ...................................................................... 14 

2.1.2 Solid components equations ...................................................................... 15 

2.1.3 Coupling of equations ................................................................................. 17 

2.1.4 The final set of PDEs .................................................................................... 18 

2.1.4.1 Case study equations ............................................................................... 18 

2.1.4.1.1 3P-HTS configuration ........................................................................ 18 

2.1.4.1.2 ITER LTS Toroidal Field Coil configuration ........................................ 20 

2.1.5 Summary ..................................................................................................... 21 

2.2 Numerical schemes .............................................................................................. 22 

2.2.1 Spatial discretization with Finite Elements Method (FEM) ........................ 22 

2.2.1.1 Mesh construction ................................................................................... 24 

2.2.2 Time discretization ...................................................................................... 27 

2.2.3 Summary ..................................................................................................... 29 

3 Code description .......................................................................................................... 31 

3.1 The SC2 code organization in nutshell ................................................................. 31 

3.1.1 SC2 architecture .......................................................................................... 31 

3.1.2 SC2 input and output organization ............................................................. 37 

3.1.3 Summary ..................................................................................................... 41 

3.2 Code kernel: Conductors, FluidComponents and SolidComponents classes ...... 41 



 

iv 

3.2.1 FluidComponents class ............................................................................... 43 

3.2.2 SolidComponents class ............................................................................... 44 

3.2.3 Conductors class ......................................................................................... 47 

3.2.3.1 __init__ method ...................................................................................... 49 

3.2.4 Summary ..................................................................................................... 55 

3.3 Simulation class: the steps through the solution................................................. 55 

3.3.1 Fluid components initialization ................................................................... 57 

3.3.2 Solid components initialization ................................................................... 60 

3.3.3 BCs application and problem solution ........................................................ 61 

3.3.4 Summary ..................................................................................................... 61 

3.4 A user-friendly GUI ............................................................................................... 62 

3.4.1 Run… ........................................................................................................... 63 

3.4.2 …and check (real-time visualization of the results) .................................... 68 

3.4.3 Summary ..................................................................................................... 68 

3.5 Ease of post processing ........................................................................................ 68 

3.5.1 How the data are managed ........................................................................ 68 

3.5.2 Default post processing .............................................................................. 78 

3.5.3 Advanced post processing .......................................................................... 80 

3.5.4 Summary ..................................................................................................... 84 

4 SC2 Verification and Validation .................................................................................... 85 

4.1 Convergence analyses .......................................................................................... 85 

4.1.1 Space convergence ..................................................................................... 87 

4.1.2 Time convergence ....................................................................................... 88 

4.1.3 Summary ..................................................................................................... 90 

4.2 Validation against the 4C code ............................................................................ 90 

4.2.1 Benchmark with the 4C code: an HTS power cable .................................... 91 

4.2.2 Benchmark with the 4C code: an ITER LTS Toroidal Field Coil cable .......... 99 

4.2.3 Summary ................................................................................................... 109 

4.3 SC2 versatility checks ......................................................................................... 110 

4.3.1 Inner benchmark: INTIAL .......................................................................... 111 

4.3.2 Inner benchmark: BE vs CN ....................................................................... 120 



TABLE OF CONTENTS 

v 

4.3.3 Inner benchmark: backflow ...................................................................... 121 

4.3.4 Inner benchmark: refined mesh ............................................................... 127 

4.3.5 Summary ................................................................................................... 130 

5 Conclusions and future perspectives ......................................................................... 131 

A Extended form of equations ....................................................................................... 135 

B Matrix elements ......................................................................................................... 141 

B.1 General form of matrices and vectors ............................................................... 141 

B.2 3P-HTS case study: matrices and vectors .......................................................... 148 

B.3 ITER-TF case study: matrices and vectors .......................................................... 150 

C Evaluation of the properties of the solid components .............................................. 155 

D Input data of the simulations ..................................................................................... 159 

D.1 3P-HTS input data .............................................................................................. 159 

D.2 ITER-TF input data .............................................................................................. 163 

E Further details ............................................................................................................ 169 

E.1 How to compile input files ................................................................................. 169 

E.2 Interfaces and coupling between components ................................................. 169 

Bibliography ...................................................................................................................... 171 

 





LIST OF SYMBOLS 

vii 

LIST OF SYMBOLS 

Scalar quantities 

Quantity Symbol Unit SI 
hydraulic diameter 𝐷ℎ m 
inverse characteristic time �̃� 1/s 
specific heat at constant pressure 𝑐𝑝 J/kg/K 
specific heat at constant volume 𝑐𝑣 J/kg/K 
localized pressure drop coefficient 𝑘𝑓,𝑙𝑜𝑐 − 

mass flow rate �̇� 
kg

s
 

energy source term 𝛬𝑒 W/m3 
momentum source term 𝛬𝑣 J/m4 
mass source term 𝛬𝜌 kg/(m3 s) 
parameter to keep into account the kind of interface 𝜆𝑣 − 
reference value 𝜉0 − 
heat transfer coefficient ℎ W/(m2 K) 
length of the j-th subinterval Δ𝑥𝑗 − 
energy variation Δ𝐸 J 
mass variation Δ𝑚 kg 
pressure drop Δ𝑝 Pa 
time increment Δ𝑡 s 
cross section Σ m2 
heat capacity 𝐶 J/(m3 K) 
average fluid acceleration in fluid component object 𝐹 m/s2 
mass transport coefficient 𝐾′ ms 
momentum transport coefficient 𝐾′′ m2 
energy transport coefficient 𝐾′′′ m3/s 
conductor length 𝐿 m 
number of something (according to the subscript), 

with no subscript the number of inner nodes of the spatial 
discretization of the domain. 

𝑁 − 

contact perimeter 𝑃 m 
linear heat source 𝑄 W/m 
total linear heat sources in nodal point 𝑄1, 𝑄2 W/m 
temperature 𝑇 K 
speed of sound 𝑐 m/s 
specific energy 𝑒 J/kg 
friction factor 𝑓 − 
i-th iteration 𝑖 − 
thermal conductivity 𝑘 W/(m K) 
pressure 𝑝 Pa 
time 𝑡 s 
velocity 𝑣 m/s 



 

viii 

Quantity Symbol Unit SI 
specific enthalpy 𝑤 J/kg 
spatial coordinate 𝑥 m 
generic vector element 𝑦 − 
Gruneisen parameter 𝛷 − 
hydraulic coefficient of the fluid component 𝛼 1/(kg m) 
smoothing coefficient 𝛿 − 
relative error 𝜀 − 
𝜃-method coefficient 𝜃 − 
generic solution value (velocities, pressures or 

temperatures) 
𝜉 − 

density 𝜌 kg/m3 
generic property value of fluid or solid components 𝜒 − 
partial derivative operation 𝜕 − 

Functions and finite element subspace 

Quantity Symbol 
finite-dimensional subspace Vh 
j-th sub interval of the spatial discretization 𝐼𝑗 

generic function (e.g. material property) 𝑓(… ) 
basis function of the finite dimensional subspace 𝜓 
function that belongs to the finite dimensional subspace 𝜔 
value of the function at the nodal point �̅� 

Matrices and vectors 

Quantity Symbol 
matrix of basis function of the finite dimensional subspace Ψ 
matrix of test functions of the finite dimensional subspace Ω 
advection matrix 𝐴 
stiffness matrix 𝐴𝑠𝑦𝑠 

conductive matrix 𝐾 
mass matrix  𝑀 
source terms matrix 𝑆 
not null vector constituting the diagonals of the advection matrix 𝑨 
not null vector constituting the diagonal of the conductive matric 𝑲 
not null vector constituting the diagonal of the mass matric 𝑴 
vector of the linear heat source  𝑸 
not null vector constituting the diagonal of the source term matrix 𝑺 
vector of the temperature 𝑻 
known term vector 𝒃 
vector of the pressure 𝒑 
vector of the source terms 𝒔 
vector of unknowns 𝒖 
vector of the velocity 𝒗 
generic vector  𝒚 



LIST OF SYMBOLS 

ix 

Quantity Symbol 
error vector 𝜺 
generic vector of the solution (velocities, pressures or temperatures) 𝝃 
generic vector of property of fluid or solid components 𝝌 
null vector 𝟎 
identity vector 𝟏 

Subscript and superscripts 

Symbol Meaning 
∥ hydraulic parallel 
⊥ transversal direction 
4𝐶 values obtained from simulation with the 4C code 

𝐵𝐸 Backward Euler 
𝐶 close 
𝐶𝐻1 fluid component CHAN_1 
𝐶𝐻2 fluid component CHAN_2 
𝐶𝑁 Crank-Nicolson 

𝐺𝑎𝑢𝑠𝑠 
quantity evaluated in the midpoint (Gauss point) of the spatial 

discretization of the domain 
𝐽𝐾1 jacket component Z_JACKET_1 
𝐽𝑜𝑢𝑙𝑒 heat due to Joule effect in the strand(s) 
𝑂 open 
𝑆𝐶2 values obtained from simulation with the SC2 code 
𝑆𝑇1 strand component STR_MIX_1 

𝑆𝑖𝑚1 first simulation to perform the inner benchmark, the reference one 
𝑆𝑖𝑚2 first simulation to perform the inner benchmark, the test one 
𝑇 temperature 
𝑎 left end of the refined region 
𝑎𝑣𝑒 average  
𝑏 right end of the refined region 

𝑏𝑎𝑐𝑘 backward flow simulation (flow from right to left) 
𝑏𝑒𝑔 begin (of the transient) 
𝑐ℎ fluid component (channel) 
𝑐𝑎 generic fluid component (channel) 

𝑐𝑜𝑎𝑟𝑠𝑒  coarse region 
𝑐𝑜𝑛𝑑 conductor 
𝑐𝑜𝑛𝑣 space or time convergence analysis 
𝑒𝑛𝑑 end (of the transient) 
𝑒𝑞 total number of mathematical equations to model the conductor 
𝑒𝑥𝑡 external heat 
𝑓𝑖 generic current-carrying solid component (strand) 
𝑓𝑙𝑜𝑤 forward flow simulation (flow from left to right) 
𝑔𝑙𝑜𝑏𝑎𝑙 global error 
𝑖, 𝑗 indexes (e.g. of the generic node of the spatial discretization) 
𝑖𝑛 generic non-current-carrying solid component (jacket) 



 

x 

Symbol Meaning 
𝑖𝑛𝑙 inlet 

𝑖𝑛𝑛𝑒𝑟 𝑏𝑒𝑛𝑐ℎ inner benchmark 
𝑖𝑛𝑝𝑢𝑡 input files 
𝑗𝑘 non-current-carrying solid component (jacket) 
𝑙 left  

𝑚𝑎𝑖𝑛 main diagonal 
𝑚𝑎𝑡 materials constituting the solid components 
𝑛𝑒𝑤 actual evaluated value 

𝑛𝑜𝑑𝑎𝑙 
quantity evaluated in the nodes of the spatial discretization of the 

domain  
𝑜𝑙𝑑 previous evaluated value 
𝑜𝑢𝑡 outlet 

𝑜𝑢𝑡𝑒𝑟 𝑏𝑒𝑛𝑐ℎ outer benchmark  
𝑝 pressure 
𝑟 right 
𝑟𝑒𝑓 refined region or refined mesh 
𝑠𝑐𝑜𝑚𝑝 solid components (both current-carrying and non-current-carrying) 
𝑠𝑑 spatial discretization 

𝑠𝑚𝑜𝑜𝑡 
smoot transition from coarse to refined mesh (or from refined to 

coarse) 
𝑠𝑡 current-carrying solid component (strand) 
𝑠𝑢𝑏 sub diagonal 
𝑠𝑢𝑝 super diagonal 

𝑡𝑐 thermal contact 
𝑡𝑜𝑡 total number of equations to be solved after the spatial discretization 
𝑡𝑟𝑦 attempt value 
𝑢𝑛𝑖 uniform mesh 
𝑣 velocity 
𝜁 generic time step  



LIST OF ACRONYMS 

xi 

LIST OF ACRONYMS 

Acronym Meaning 
0D Zero-dimensional 
1D One-dimensional 
2D Two-dimensional 
3D Three-dimensional 
3P-HTS Three Phase Coaxial High Critical Temperature Superconducting 
AC Alternate Current 
AM4 Adams Moulton method of fourth order 
BC Boundary Condition 
BE Backward Euler 
CFD Computational Fluid Dynamics 
CFETR China Fusion Engineering Test Reactor 
CICC Cable-In-Conduit Conductors 
CN Crank-Nicolson 
CSV Comma Separated Value 
DC Direct Current 
DENERG Dipartimento Energia 
DTT Divertor Tokamak Test 
EPRI Electric Power Research Institute 
EPS Encapsulated PostScript 
EU-DEMO European Demonstration Reactor 
FD Finite Differences 
FDM Finite Differences Method 
FDTD Finite Differences Time Domain 
FEM Finite Elements Method 
GUI Graphical User Interface 
HELIAS HELIcal Advanced Stellarator 
HEP High-Energy Physics 
HTC Heat Transfer Coefficient 
HTS High Critical Temperature Superconducting 
IBVP Initial Boundary Value Problem 
ID Identifier 
ITER International Thermonuclear Experimental Reactor 
ITER-TF ITER Low Critical Temperature Superconducting Toroidal Field Coil 
JA-DEMO Japanese Demonstration Reactor 
JT-60SA Japan Tokamak 60 Super Advanced 
K-DEMO Korean Demonstration Reactor 
LTS Low Critical Temperature Superconducting 
MRI Magnetic Resonance Imaging 
NMR Nuclear Magnetic Resonance 
ODE Ordinary Differential Equation 
OOP Object-Oriented Programming 



 

xii 

Acronym Meaning 
PDE Partial Differential Equation 
PDEPE Parabolic-Elliptic Partial Differential Equations 
PPLP Polypropylene Laminated Paper 
SC Superconducting 
SHe Supercritical Helium 
SMES Superconducting Magnetic Energy Storage 
SPARC Short Pulse Affordable Robust Compact 
TFC Toroidal Field Coils 
TSV Tab-Separated Value 
UML Unified Modeling Language 
V&V Verification and Validation 
VE Volume Element 
VEM Volume Element Model 



1 INTRODUCTION 

1 

CHAPTER 1 

1 INTRODUCTION 

Superconducting cables and magnets in the past decades have enabled fundamental 

discoveries in the field of high-energy physics [1], amazing steps forward in the research on a 

clean energy based on nuclear fusion [2] and a significant increase in the power transfer 

capability, as well as reduction of transmission loss and construction cost, for power cables 

[3]. Different kinds of SC cables are available, according to the applications, based on different 

SC materials and different concept for their cooling (conduction-cooling, coolant bath of 

forced-flow): in this thesis the focus is on forced-flow SC cables. 

The background in which the present work is inserted is contextualized in the section 1.1 

on the level of applications and in the sections 1.2 and 1.3 on that of the current tools available 

for the modeling. After outlining the objectives (see section 0), the structure of the thesis is 

summarized in section 1.5. 

1.1 CONTEXT 

The research on nuclear fusion as a possible technology for a CO2-free power production, 

capable to reduce the many issues related to the nuclear fission plants [4], [5], is flourishing 

around the world, with magnetic confinement devices being designed or constructed, by both 

public enterprises and private companies, to address the physics and technological challenges 

that are still open. Despite the alternative configuration and design choices, all the large fusion 

machine recently entered in operation, under commissioning or design are superconductive. 

On the side of the stellarator/heliotron configuration [6], the two world largest operating 

machines, namely Wendelstein 7-X [7]–[9] in Germany and the Large Helical Device [10], [11] 

in Japan, rely on superconducting coils employing low critical temperature superconducting 

material [12], cooled by Helium mainly in forced flow conditions. Future machines, such as 

that targeted by the public consortium EUROfusion (namely, the HELIcal Advanced Stellarator, 

so called HELIAS machine [13]) or by the private company Reinassance Fusion, will be designed 

taking advantage of the recent development in both LTS and high-critical temperature 

superconductors [14], respectively. 

On the side of the tokamak configuration, while the ITER machine [15], [16] is under 

construction in France, the main parties collaborating for that huge nuclear fusion experiment 

are separately working on the next step toward a commercial use of fusion power [17]. The 

China Fusion Engineering Test Reactor (CFETR) [18], designed to bridge the fusion experiments 

between ITER and a nuclear fusion power station, addresses steady-state operation and 

tritium self-sustainment, the end of the conceptual design phase. Its design currently relies on 

both LTS and HTS cable-in-conduit conductors (CICC) [19]. The European DEMOnstration 

reactor (EU-DEMO), in the European roadmap to fusion [20], should go beyond ITER and 

shows for the first time that electricity can be generated from the fusion process. The EU-
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DEMO has just finished its pre-conceptual design phase, and its magnetic system is based on 

the use of CICC, with different variants still open including both LTS and hybrid LTS/HTS coils 

[21]. The Japanese DEMO (JA-DEMO) [22] is also designed as a superconducting machine, and, 

relying on the technical maturity of the LTS Nb3Sn technology, it has adopted Nb3Sn as the 

prime superconductor (SC) option, at least for the Toroidal Field Coils (TFC). The design of the 

magnet system of the Korean DEMO (K-DEMO) [23] is based on the use of well-established 

Nb3Sn and NbTi CICC [24], while the American pilot power plant, ARC [25], bets on the 

development of fusion-class HTS magnets [26], with a demountable structure, that should be 

already adopted in the wingdings of the SPARC machine [27], coming first (and soon) in the 

American accelerated pathway to fusion energy. Even the “satellite” tokamaks, which should 

complement the physics advancement reachable through the deployment of ITER within a 

“broader approach” to fusion energy [28], such as the JT-60SA and the Italian Divertor 

Tokamak Test (DTT) facility are or will be fully superconductive. The JT-60SA, under 

commissioning in Japan [29], uses LTS CICC for all the coils [30], while for the DTT, HTS cables 

are being considered as an insert to the Central Solenoid [31]. 

The use of superconducting cables is not limited to the specific technology of nuclear 

fusion but covers other applications of strategic interest, such as the transport of power and 

the transportations. For these areas, technologies are based on HTS cables because they, 

having a high value of critical temperature can be cooled using less expensive fluids than He, 

which is mandatory for the proper functioning of LTS cables, thus reducing the cost [32]. In 

any case, the cost of the technology does not depend exclusively on the choice of the thermo-

vector fluid and is nowadays comparable with that of Nb3Sn cables as it is still immature [33]. 

A further advantage compared to LTS (in particular to Nb3Sn) that makes them suitable for 

this applications, is the lower dependence of the critical current on strain in the compression 

region, behavior weakly influenced by small increases in temperature and magnetic field [34]. 

Compared to ordinary copper or aluminum cables, HTS cables have additional advantages 

that justify the renewed and growing interest in this technology. If on the one hand 

superconductivity allows to carry a power 3 to 5 times larger than the one transported by a 

conventional cable with the same or less losses [35], on the other hand this allows, with the 

same size, to carry a higher power minimizing the visual impact, land consumption and 

environmental footprint, to be associated also to the generation of less intense magnetic 

fields. In addition, they operate at lower voltages with benefits on structures that are less 

complex, smaller and therefore less expensive. Finally, the fault current limiting functionalities 

is embedded in the cables [36]. 

Two main families of HTS cables are nowadays available, known as first and second 

generations [37], [38], that differs from materials, manufacturing, characteristics and employs 

[39]. Another classification can be done according to the transported current, distinguishing 

between the alternate current (AC) and the direct current (DC). The formers are mainly used 

for connections in urban environments, the first real word application occurred in Georgia 

with the cables energization on January 05 2000 [40]. Another example is the permanent 

installation of the first long length transmission level voltage HTS power cable in the Long 
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Island Power Authority grid in 2007 [41]. AC HTS cables can also be employed to interconnect 

particularly energy intensive industrial applications by means of short length links [42]. 

DC cables are suitable for connections over long distances. Among the main applications 

of these cables, of considerable interest is the connection of isolated renewable energy 

sources with centrally located load centers [43], [44]. Thanks to their advantages over ordinary 

cables, DC HTS cables represent a possible solution to the problem of the growing demand for 

energy by metropolis (such as New York or Tokyo) which, at the same time, have saturated 

the underground metropolitan installations, overcoming in this way the grid bottlenecks [45]. 

The prospect of designing a compact and lightweight electric propulsion system, alongside the 

possibility of reduced installation costs, makes HTS DC cables attractive in the transportation 

sector as well [46], [47]. 

Figure 1.1-1 shows some typical examples of cables topology and configuration both of LTS 

and HTS type and for both fusion reactors and power transport applications. 

Figure 1.1-1 Examples of LTS and HTS cables for fusion and power transport applications: (a) ITER Toroidal 

Field coil LTS two region CICC [courtesy of ENEA]; (b) ENEA EU-DEMO LTS [courtesy of ENEA], (c) ENEA HTS 

[courtesy of ENEA]; (d) HTS cold dielectric AC [32]; (e) HTS warm dielectric DC [32]. 
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1.2 OVERVIEW OF MODELING OF SC CABLES FOR FUSION APPLICATIONS 

Being the use of forced-flow SC cables so relevant both for fusion applications and for 

power transmission, the availability of an appropriate, reliable and flexible modeling of the 

forced-flow SC cables is of paramount importance. In the field of fusion cables, several 

numerical tools are well established for the analysis of the transients in LTS cables, and namely 

the 4C code [48], the THEA/SUPERMAGNET Suite [49], and the VINCENTA/VENICIA suite [50]. 

Among the numerical tools mentioned above, the 4C code, which is proprietary and not 

available for commercial use, is largely the most validated among the ones quoted above [51]. 

It is able to perform steady and transient Thermal, Hydraulic and Electric analyses of forced-

flow SC cables and magnets. It consists of a multi-conductor model [52] for the simulation of 

thermal-hydraulic transients in SC winding packs wound with ITER-like 2-channels CICCs or 1-

channel CICCs, for which one-dimensional (1D) mass, momentum and energy conservation, in 

the non-conservative variables velocity pressure and temperature, are solved for the coolant 

(Supercritical He, SHe) in the different cooling channels, while transient heat diffusion is solved 

separately for the strands and the jacket. The possibility of a slow variation of coolant and 

solid cross sections along the cables was introduced several years ago in the code to account 

for the peculiar topology of joints [53]. A lumped-parameter model for the current distribution 

is embedded, that can account for the current repartition among the different conductive 

elements of the cable, but not for any current diffusion along the cable length. The heat 

conduction through bulky metal structures that embed the winding pack is also accounted for 

in the 4C code, but it becomes relevant only in presence of, e.g., the casing of a tokamak 

Toroidal Field Coils, bearing very high Lorentz forces. The cryogenic circuit that feed the 

magnets can also be modeled through a devoted library of cryogenic components, developed 

in the object-oriented language Modelica [54], [55]. The 4C model for the SC cables, developed 

in Fortran 77/Fortran 90, uses 1st order Finite Elements Method (FEM) for the spatial 

discretization with an adaptive grid, while an implicit (Backward Euler, BE) or semi-implicit 

scheme (Crank-Nicholson, CN) for the time marching, with an accuracy up to the 2nd order and 

the possibility to adapt the time stepping to capture steep variation in the cable transients. 

The code is based on a RUN-THEN-CHECK paradigm: the transient driver is pre-set in the 

simulation setup and cannot be modified during the code execution. The code allows to save 

the time evolution of selected variables (SHe velocity and pressure, solid and fluid 

temperatures, …) at selected locations, and the spatial profiles of the entire solution at given 

times during the transients; the post-processing is typically performed using a different 

software (MATLAB, Excel, …). The code has been originally developed for LTS cables, however 

a model for HTS cables (H4C, [56]) has been recently added to the 4C code family, which allows 

easily to model HTS macro-strands such as those shown in Figure 1.1-1, and includes a 

distributed-parameter model for the current distribution. However the H4C, which is currently 

under validation [31], is not suited for ITER-like LTS cables as it includes a simplified treatment 

for the thermal-hydraulic coupling between different cooling channels. 

The commercial code THEA/SUPERMAGNET is able to perform steady and transient 

thermal, hydraulic and electric analyses of forced-flow SC cables. The model solves 1D mass, 

momentum and energy conservation for the coolant (SHe) in the non-conservative variables 
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velocity pressure and temperature, and energy conservation for the solid elements along each 

cable, and current diffusion and distribution along the cable, with distributed parameters for 

both thermal-hydraulic and electric models. An arbitrary number of thermal, hydraulic and 

electric components can be mutually coupled on the cable cross-section, with different 

possible materials forming the cable (SC, stabilizer, insulator, …) and their cross section can 

also vary along the cable to account for joints. An ancillary lumped model of the cryogenic 

circuit connected to the cable/magnet is also available. The model solver uses finite elements 

in space, with an adaptive grid, and an adaptive multi-step time marching scheme, with an 

accuracy up to the 3rd order. Although a post-processor is available within the tool, no 

interactive simulations are possible. The code structure is declared as “open”, upon payment 

of the license fee, and in fact it has already been applied to the modeling/design of HTS 

magnets or inserts in the fusion field [57]. Note, however, that the applicability of models that 

cannot account for transversal gradients across the HTS strand cross section are controversial, 

see [58], and for that a different approach could be needed [56]. 

VINCENTA/VENECIA is another commercial package, aimed at the transient thermal-

hydraulic simulation of large SC magnet system and accounting for several possible coolants 

simultaneously: helium, in the different states – superfluid, supercritical – 2-phase 

homogeneous mixture, but also nitrogen, hydrogen, oxygen, neon and water. The code is 

applicable to a wide range of devices including not only fusion devices, for which a validation 

of the code against experimental results is provided [59], but also magnet systems for NMR 

and MRI and superconducting motors, generators and SMES. It is based on a modular 

structure, with an individual set of algebraic, differential equations and equations in partial 

derivatives describing each component of the system (SC cables, pumps, valves and heat 

exchangers, and the like). Fluid flows are modeled using a 1D approximation, solving 

conservation laws in the non-conservative variables velocity, pressure and enthalpy, and they 

can be connected each-other and to two-dimensional (2D) models of the solid elements. The 

spatial discretization of the derivatives is performed through Finite Differences Method (FDM) 

with accuracy up to 5th order, while a semi-explicit splitting-up scheme for parabolic partial 

differential equations is implemented for the time marching. As also in 4C, when different 

conductors are modeled, each conductor can have a different meshing to better capture 

regions where the gradients of the drivers/solutions could be steep. Real-time monitoring of 

the results is included in the software, with also a Graphical User Interface (GUI) allowing for 

the selection of the task directory, checkout of input file and connection between cable 

elements, visualization of 2D mesh for the solids, launch of simulation, selection and plotting 

of results, but still within the Run-THEN-check paradigm. The programming language of 

VINCENTA/VENECIA is inferred from the website to be FORTRAN.  

Although few benchmarks are available on couples of the above-mentioned tools [60], the 

different codes have never been applied to the same test case and rigorously benchmarked.  

The main features of the codes are highlighted and compared in Table 1.2-1. 
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Table 1.2-1 Comparison of the main features of 4C, THEA/SUPERMAGNET and VINCENTA/VENICIA codes. 

Features 4C THEA/SUPERMAGNET VINCENTA/VENICIA 

Use Proprietary Need to pay a licence Commercial 

Program language Fortran 77/90 Fortran Fortran 

Geometry 
ITER-like CICCs up 

to 2 channels 
Arbitrary 

Wide range of 

geometries 

Multi fluids No (SHe) No (SHe) 
Yes (He, N2, H2, O2, 

Ne, H2O) 

LTS Yes Yes Yes 

HTS Yes Yes Yes 

Spatial 

discretization 

scheme 

1st order FEM FEM 5th order FDM 

Time integration 

scheme 

Adaptive BE or 

CN 

3rd order adaptive multi-

step 

semi-explicit splitting-

up 

GUI No No Yes 

Post processing 
Performed with 

external tools 
Inner post processor 

Inner pre and post 

processor 

Validation Yes Yes Yes 

Paradigm Run then check Run then check Run then check 

1.3 OVERVIEW OF MODELING OF SC CABLES FOR POWER APPLICATIONS 

The landscape of modeling HTS cables for power transport appears very distant from that 

previously described in section 1.2 for LTS and HTS cables used for plasma magnetic 

confinement. This is due to the different designs and peculiarities of the latter category of 

cables, some of them are shown in Figure 1.3-1. In fact, the bibliographic search carried out 

has shown that currently there is no tool analogous to 4C, THEA/SUPOERMAGNET or 

VINCENTA/VENICIA that can be used for thermal-fluid dynamic and electromagnetic modeling 

of generic HTS cable for power applications. In the literature it is possible to find numerous 

examples of ad hoc modeling developed to solve specific problems, most of them in stationary 

condition, using commercial software or developing home-made algorithms, but a robust 
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comprehensive model in terms of thermal-hydraulic and electrical transient models is still 

missing.  

The first 1D model for compressible fluids involving the solution of Euler-like equations in 

nonconservative form dates back to the late 1970s [61]. The chronological evolution of 

mathematical and numerical models developed to simulate SC cables is contained in a section 

of [62]. Here an overview, though not exhaustive, of the models developed since 2010 to 

simulate the behavior of these cables is presented.  

The Volume Element Model is an often-used discretization method, which consists in the 

decomposition of the domain into Volume Elements (VE). A model based on this formulation 

is proposed in [63] for HTS DC cables. The computational domain is divided into nine layers, 

each modeled with a different VE to which energy conservation applies. In the energy 

equations, terms that account for the heat transfer by conduction, convection and radiation 

are suitably considered, to keep into account different operational, environmental and design 

conditions. The proposed model is two-dimensional (2D) since the discretization affects both 

the axial and radial directions. Regarding the thermodynamic properties of the cooling fluid 

Figure 1.3-1 Collection HTS cables design for power transport both in single-phase and in three-phase 

configurations. (a) three-phase concentric cable with external return of liquid nitrogen [61]; (b) three-phase cable 

described in [62], (c) schematic of the three in-one cable concept from [63]; (d) design of a single-phase cable 

with single path for the coolant [courtesy of Nexans]. 
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(helium), they are calculated as a function of temperature and pressure, except for the 

thermal conductivity and viscosity which are considered constant. As far as the constitutive 

relations are of concern, the Dittus-Boelter correlation is adopted to evaluate the heat 

transfer coefficients. The model is applicable for both stationary and transient studies. In the 

former case, the system of equations is solved by the Newton-Raphson method, in the latter 

the time integration of the system of ordinary differential equations (ODEs) is performed 

according to a fourth order Runge-Kutta numerical scheme. 

The model described above is applied in [64] and improved in [65] where the equations 

are integrated with a model for fluids and solids heat equations based on three dimensionless 

groups, namely time, temperature and pressure; then dimensionless variables such as specific 

heat, heat transfer coefficient, thermal conductivity, mass, mass flow rate, scale time and 

global heat transferhave been defined. The idea is also extended to the pumping power 

equation, introduced in [64], and to the heat generation equation due to current transmission, 

evaluated starting from the Ohm and Wiedemann-Franz laws. 

VEM is also exploited in [66] to model the cable designed by the Electric Power Research 

Institute (EPRI) [67]. The paper is relevant since the system of differential equations resulting 

from the application of the model is solved using the flexible parabolic-elliptic partial 

differential equations (PDEPE) solver integrated in MATLAB [68]. The model keeps into 

account conductive, convective and radiative heat transfer; the only heat source comes from 

the surrounding environment in superconducting conditions. 

However, when the transition to the normal state occurs in the conducting layer, inner 

power generation is considered. 

The model is further developed by introducing coupling with current, for which a finite 

difference time-domain (FDTD) based analysis is used [69]. Specifically, the coupling of the 

thermal and electrical problems is at the level of the heat source term representing the Joule 

effect losses. A bidirectional coupling follows: on the one hand the Joule effect has an impact 

on the temperature of the superconductor, on the other hand the temperature influences its 

thermal resistivity characterized by a strongly nonlinear behavior. 

In order to analyze the behavior in a failure situation of the 30 m HTS cable used in the 

Sumimoto Electric Industry experiment at Kumatori [70], a 1D finite difference (FD) based 

modeling is proposed in [71] in which the time-dependent heat equations in solids are 

discussed and the contributions of heat fluxes are evaluated by applying Fourier's law. The 

heat transfer coefficients are obtained using Dittus-Boelter correlation. At each time instant, 

the properties of the coolant (liquid nitrogen) are calculated using the GASPAK software 

package [72]. A zero-dimensional (0D) model for calculating the pressure drop of the cooling 

circuit is also proposed in the article. 

Shabagin developed an alternative model to those considered so far for modeling three-

phase AC HTS cables [73], which is tested with the geometry and operating parameters of the 

cable used in the AmpaCity project [74]. The calculation of electrical dissipations due to the 

use of AC is based on the elliptic Norris equation. The thermal model considers the radial and 

the axial direction. Along the radial coordinate the stationary heat equation in cylindrical 
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coordinates is adopted for solid layers; boundary conditions (BCs) take into account both 

convection at the surface and thermal contact between solid layers of different thermal 

conductivity. With this choice of equations and boundary conditions, the 2D and symmetrical 

temperature field on each conductor cross section is described. In the axial direction, the 

steady state 1D fluid temperature variation is deduced starting from the differential energy 

balance of the fluid flow in an infinitesimal volume of length 𝑑𝑧. The roughness of the tube is 

considered in a corrected heat transfer coefficient, evaluated from correlations, and different 

equations are obtained for the supply and for the return flow. The 2D solid temperature radial 

distribution and the 1D axial coolant temperature distribution are linked by the wall 

temperatures; the result is a 3D steady state model. As far as the hydraulic model is 

considered, the pressure drops are evaluated with Darcy-Weisbach equation and friction 

factor comes from Karman-Nikuradse correlation. The solution algorithm is programmed in 

MATLAB. 

The same model is adopted in [75] where the equations are discretized using the FD 

method, and in [76] where four different cooling options are compared. In the latter reference 

the roughness of the surface is neglected, thus the friction factor is evaluated from the 

Colebrook equation. 

The three phase coaxial HTS cables described in [77] is modeled with a Finite Element 

Methods (FEM) that takes into account the heat transfer between the polypropylene 

laminated paper (PPLP) and the super conductor layers combined with analytical model to 

evaluate the temperature distribution when the coolant circulation occurs inside the cable. 

The equivalent thermal resistance is exploited to compute the overall thermal conductivity of 

the superconducting layer and the PPLP merged in only one equivalent solid. The same kind 

of cable is modeled with a 1D ODE network analysis in Sinda/Fluint commercial tool [78], after 

that the friction factor to evaluate the pressure drop is evaluated with Computational Fluid 

Dynamics (CFD) and compared with the available empirical correlations [79]. 

Within the European Project BEST PATHS [80] the Italian company RSE s.p.a. has 

developed a new mathematical model for the thermo-fluid dynamic simulation, able to 

describe the behavior of different cryogenic fluids in forced convection inside the cryostat of 

superconducting cables [81]. The model is 1D axial and derives from the manipulation of the 

equations of conservation of mass, momentum and energy. Many simplifying assumptions are 

considered: uniform cross section, constant material properties on the cross section, steady 

state regime, one-dimensional motion field, internal volumetric power generation is a 

function only of the axial coordinate, heat transfer by conduction between adjacent fluid 

volumes is neglected. The strength of this model is that it can be applied to all coolant of 

interest, since the thermophysical properties of these fluids are calculated as a function of 

temperature and density with the same analytical formulas, whose coefficients are a function 

of the chosen fluid. The final result is a set of two steady-state and nonlinear ordinary 

differential equations. The shear stress is computed with the Fanning friction factor calculated 

with Katheder correlation. 
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So far, the emphasis has been on dynamic thermo-fluid modeling of HTS power transport 

cables. A similar kaleidoscope of solutions exists for their electromagnetic modeling. A review 

of the evolution of these models is, for example, in [82]. 

In reference [83], the importance of modeling is emphasized in order to improve the 

design and performance of HTS cables. A simplified transient condition model, implemented 

through PSCAD/EMTDC software [84], is proposed for a multilayer coaxial HTS system with 

the addition of a copper former, used as a protection in case of overheating during a fault to 

bypass the transient current. The solution is obtained by exploiting the software libraries that 

however limit to eight the maximum number of layers available for cable discretization. Cables 

that require a description with a larger number of layers must be traced back to a simplified 

model with no more than eight layers. The presence of the copper former requires this 

simplification: the electrical resistances of the HTS cable are kept constant and equal to the 

maximum ones, which is a reasonable assumption during transient conditions due to the 

quench phenomenon, while those of the successive layers of copper vary to take into account 

the temperature increase due to the loss of the superconductive state of the cable. 

Finally, methods for design optimization of second-generation HTS cables and applied to 

both single-phase and three-phase coaxial cables are proposed in [85]. The goal is to find the 

uniform current distribution between the conductor layers: the electrical circuit model of the 

cable, described as an electrical parallel of several branches, namely one for each layer of 

superconductive tapes, and a 3D finite element model are combined. The authors also show 

that manufacturing imprecision have non-negligible effects on the current distribution within 

the layers in multilayer HTS cables. 

Hence the need to develop a reliable and robust software, including both thermo-fluid 

dynamic and electromagnetic models, which allows to use the most suitable coolant and able 

to model any geometric and topological configuration of HTS cables for power transport. 

1.4 AIM AND NOVELTY OF THE WORK 

The aim of the thesis is to develop the embryo of a new software dedicated to the 

modeling of superconducting cables at the mesoscale level, focusing on thermal-fluid dynamic 

aspects. 

The design of the tool builds on the experience gained over twenty years of developing 

the codes already mentioned, in particular the solutions adopted by 4C, while introducing 

innovative ideas. 

In the first place, it undertakes the road of the open source [86], taking advantage of a 

diffusion of the code and a wide use that allows to test several configurations, putting in 

evidence not only the virtues but above all the problems still not resolved or identified. 

The second paradigm shift is the use of Object-Oriented Programming (OOP), which allows 

high flexibility in modeling different cables designs and topologies. In addition, the 

implemented material libraries ensure that the code is natively designed to model both LTS 
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and HTS conductors. Because of this versatility, the code is suitable to model the cables crafted 

for both fusion and power transmission, the main areas of interest of the technology. 

The new concept of the Run-AND-check, opposed to the Run-THEN-check, is introduced 

which allows to keep under control the outcome of the simulation in real time and change the 

driver while running. User can interact with the simulation thanks to a user-friendly GUI.  

Last but not least, an auxiliary tool is developed, also equipped with a graphical interface, 

to perform some advanced post processing of the data, above all the benchmarks for the 

validation. 

The code is validated against 4C by considering two case studies characterized by different 

topologies and different operating temperatures. The first one is a power transport conductor 

of the HTS type [77], the second one is the cable used for the realization of toroidal magnets 

in ITER and belongs to the LTS category [87]. All these analyses are carried out with the 

developed auxiliary tool, which is in turn tested. 

1.5 STRUCTURE OF THE THESIS 

The mathematical model for mesoscale modeling of superconducting cables from a 

thermo-fluid dynamic perspective is described in depth in chapter 2, along with the methods 

adopted for numerical discretization in space and time. The equations are first presented in 

their general form and then detailed for the two case studies considered. 

Chapter 3 is devoted entirely to the description of the code. There, the object-oriented 

approach used is detailed, highlighting the interactions and the class hierarchy, some of which 

are extensively discussed to underline the different strategies implemented with respect to 

4C code. The idea behind Run-AND-check and the potential of the GUI is also shown. Finally, 

the data analysis performed implicitly by the code and the further analyses enabled by the 

auxiliary tool are discussed. 

Analysis of the results of simulations performed for spatial and time convergence studies 

of the code, validation against 4C, and numerous inner benchmarks are the subject of chapter 

4. 

Conclusions and prospects for the future can be found in chapter 5.
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CHAPTER 2 

2 MESOSCALE MODELLING OF SUPERCONDUCTORS 

The modeling of superconductors magnet is a multi-physical and multi-scale problem. To 

deal with the different time and spatial scales, the complex structure of the cable and the 

tricky interaction between the cable constituents, three different modeling level scales are 

adopted: macroscale, mesoscale and microscale. The first and the latter concern respectively 

the whole set of winding packs (i.e. a magnet) [88]–[90] and each cable basic components, 

such as extremely detailed regions of the channel to evaluate friction factors and/or heat 

transfer coefficients [91]–[93]. The mesoscale is at conductor (or at most at winding pack) 

level and it is considered in this work. Indeed, this approach is suitable both for the conductors 

used to make the magnetic field in fusion applications and to the ones used to transport 

power.  

This chapter is organized as follows: the first section deals with the mathematical model 

used to describe the cables according to the mesoscale modeling, that will lead to a not linear 

system of partial differential equations (PDEs) in time and space, whose space and time 

numerical discretization are proposed in the second section. 

2.1 MATHEMATICAL MODEL  

The main aim of this section is to describe the mathematical model used to simulate the 

behavior of the superconducting cables, both from the coolant and solid structures point of 

view. A single conductor is considered in the following discussion. The developed tool (SC2 

code) is thought to be extremely flexible and capable to model several thermodynamics 

configurations, so a quite general form of the equations is presented here. 

The first assumption, of the set of hypotheses applied for that mathematical model, is that 

the cables can be modeled with a one-dimensional model since their length or longitudinal 

dimension is from three up to more than five orders of magnitude larger than the transverse 

ones (height and width respectively), therefore a single value is representative of the 

properties throughout the cross section. Cables are composed of two macro regions, namely 

the fluid and the solid one that are mathematically described separately. In general, a 

conductor can be described with 𝑁𝑐ℎ channels, 𝑁𝑠𝑡 current-carrying solids also called strands 

and 𝑁𝑗𝑘  jackets, global notation for non-current-carrying solids. It is assumed that the coolant 

behaves as a compressible fluid and that each channel is described by its own set of 

independent Euler-like equations that can be coupled by means of suitable source terms. Each 

solid component is described with a 1D time dependent heat transfer equation and their 

boundaries are considered adiabatic. Conductor cross section is assumed to be constant along 

its length and the potential contribute is neglected in the definition of the coolant specific 

energy. 
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2.1.1 FLUID COMPONENTS EQUATIONS 

The generic channel is modeled by a set of three hyperbolic equations that stand for the 

conservation of mass, momentum and energy; their general conservative form is proposed in 

the following equation: 

{
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 (2.1-1) 

Solving this system allows to directly obtain the fluid density, velocity and specific energy. 

However, its solution requires, at each time step, an iterative algorithm since some terms 

exhibit an implicit dependence on pressure and temperature, that are not the outcomes of 

the solution. Consequently, computational cost and execution time increase. Pressure 

gradient, heat transfer and conductive terms, for example, are expressed in an implicit form 

of these quantities and they cannot be neglected in the study of the transient. For this reason, 

a new form of the system was deduced [94] expressing the conservation equations as function 

of the non-conservative set of variables velocity, pressure and temperature, resulting in the 

corresponding equations written below: 
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 (2.1-2) 

For the physical meaning of the symbols refer to the list of symbols; some characteristics 

of this set of equations will be put in evidence. It is a set of first order partial differential 

equations in time and space; since the only spatial coordinate is the 𝑥 that is the coordinate 

along the cable length, the equation is 1D in space. The first equation is called the velocity 

equation, the second the pressure equation and the third the temperature equation, they are 

coupled since in the left-hand side in all the equations the velocity appears, while the pressure 

is common to the first two equations; other coupling terms can be found in the right-hand 

side which collects the source terms. This set of PDEs is also not linear and the non-linearity is 

due to the 𝑣
𝜕

𝜕𝑥
 addendum in all the equations (the typical advective term), as well as to the 

coefficients, since the thermophysical properties (𝜌, 𝑐 and Φ) are function of both pressure 

and temperature and these functions itself can be not linear. Moreover, the product 𝑇
 𝜕𝑣

𝜕𝑥
 is 

of the same kind of the advective one. Further examples of non-linearity are visible in the 

right-hand side (one for all the 
𝑣2

2
 in the energy transfer trinomials). 
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As already said, the right-hand side groups all the source terms which are constructed 

combining the 𝛬 whose definition can be found in appendix A and will be recalled later in this 

discussion; they respectively represents the mass source (𝛬𝜌), the momentum source (𝛬𝑣) and 

the energy source (𝛬𝑒). The momentum source definition involves friction factor while heat 

transfer coefficients are necessary to compute the energy one. These so-called transport 

coefficients are evaluated with some constitutive relations that are obtained experimentally 

or numerically exploiting microscale CFD simulation campaigns. 

To practically solve each set of equations the initial condition and closure relations should 

be provided; the first allows a proper initialization of the numerical problem while for each 

channel different closure sets of BCs are allowed, provided the inlet temperature is assigned, 

together with one inlet and one outlet condition either on pressure or velocity. 

Before addressing the solid equations, it is essential to explain the relevance of the 

hypothesis that each channel is modeled with its own independent set of Euler-like equations. 

If the channels are isolated, i.e. there is no transfer of mass, momentum and energy among 

the channels, or if the channels are at the most in thermal contact (only energy exchange), 

velocity, pressure and temperature of each channel are weakly influenced by the 

corresponding variables of the others, so to each channel must correspond a set of non-

conservative variables (𝑣, 𝑝 and 𝑇). This is true also in the case in which the channels are in 

hydraulic parallel, that means that there is a fraction of their contact perimeter that is open 

and through which occurs transfer not only of energy, but also of mass and momentum. Due 

to possible different hydraulic characteristics, the fluid velocity in the channels may be 

different even though they are subject to the same pressure drop, so at least channels 

velocities must be different in the set of equations that describe them. As far as pressures and 

temperatures are concerned, to understand why also these two variables need to be specific 

of the channel, the different time scales that characterize some phenomena came into play. 

There may be situations in which, the time scale in which the information of the change of 

pressure and temperature in the channel is propagated, is of a different magnitude from that 

in which it is transmitted from one channel to another. Not taking this phenomenon into 

account can lead to completely incorrect or non-physical results. A typical example is quench. 

The need for different sets of pressure and temperature values for different channels has been 

well established in literature [95], [96]. 

2.1.2 SOLID COMPONENTS EQUATIONS  

Solid components are modeled with the cartesian transient 1D heat equation.  

Although the left-hand side of the equation is the same for strands and jacket, the right-

hand side differs in the coupling terms with both jackets and strands respectively, thus both 

the general equations for the generic strand 𝑓𝑖 and jacket 𝑖𝑛 are indicated below: 
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Σ𝑓𝑖𝜌𝑓𝑖𝑐𝑝,𝑓𝑖
𝜕𝑇𝑓𝑖

𝜕𝑡
− Σ𝑓𝑖

𝜕

𝜕𝑥
(𝑘𝑓𝑖

𝜕𝑇𝑓𝑖

𝜕𝑥
)

= ∑ 𝑃𝑓𝑖,𝑠𝑡ℎ𝑓𝑖,𝑠𝑡 (𝑇𝑠𝑡 − 𝑇𝑓𝑖)

𝑁𝑐ℎ

𝑠𝑡=1

 +  ∑ 𝑃𝑓𝑖,𝑠𝑡ℎ𝑓𝑖,𝑠𝑡 (𝑇𝑠𝑡 − 𝑇𝑓𝑖)

𝑁𝑠𝑡

𝑠𝑡≠𝑓𝑖

+ ∑ 𝑃𝑓𝑖,𝑗𝑘ℎ𝑓𝑖,𝑗𝑘 (𝑇𝑗𝑘 − 𝑇𝑓𝑖)  + 𝑄𝑓𝑖,𝐽𝑜𝑢𝑙𝑒 + 𝑄𝑓𝑖,𝑒𝑥𝑡

𝑁𝑗𝑘

𝑗𝑘=1

  

(2.1-3) 

Σ𝑖𝑛𝜌𝑖𝑛𝑐𝑝,𝑖𝑛
𝜕𝑇𝑖𝑛
𝜕𝑡

− Σ𝑖𝑛
𝜕

𝜕𝑥
(𝑘𝑖𝑛

𝜕𝑇𝑖𝑛
𝜕𝑥

)

= ∑ 𝑃𝑖𝑛,𝑐ℎℎ𝑖𝑛,𝑐ℎ (𝑇𝑐ℎ − 𝑇𝑖𝑛)
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 +  ∑ 𝑃𝑖𝑛,𝑠𝑡ℎ𝑖𝑛,𝑠𝑡 (𝑇𝑠𝑡 − 𝑇𝑖𝑛)

𝑁𝑠𝑡

𝑠𝑡=1

+ ∑ 𝑃𝑖𝑛,𝑗𝑘ℎ𝑖𝑛,𝑗𝑘 (𝑇𝑗𝑘 − 𝑇𝑖𝑛)  + 𝑄𝑖𝑛,𝐽𝑜𝑢𝑙𝑒 + 𝑄𝑖𝑛,𝑒𝑥𝑡

𝑁𝑗𝑘

𝑗𝑘≠𝑖𝑛

  

(2.1-4) 

Cross section, density, specific heat and thermal conductivity are computed keeping into 

account that both strands and jackets are, in general, multi materials components. For 

instance, strands can be made of superconducting filaments in a matrix of stabilizer, typically 

copper, while jackets can be made by stainless steel and glass-epoxy insulating. In appendix C 

the problem is addressed with more detail. 

The main features of these equations are their parabolic nature, the inherent non-linearity 

ascribed to the products 𝜌𝑐
𝜕𝑇

𝜕𝑡
 and 𝑘

𝜕𝑇

𝜕𝑥
 since thermophysical properties are function of 

temperature (themselves are generally not linear) and the coupling terms with other solids 

and/or channels that build up part of the right-hand side, together with the drivers. To solve 

each solid component equation an initial condition should be given, besides one inlet and one 

outlet boundary conditions need to be applied. Thanks to the above hypothesis the 

homogeneous Neumann (adiabatic) BCs can be easily used. 

Before deeper analyze the global system of equations, it is worthily to take a closer look 

to the drivers.  

As can be seen from the above equations, there are two kind of heating source: the power 

generated by the Joule effect (𝑄𝐽𝑜𝑢𝑙𝑒) and the external heating (𝑄𝑒𝑥𝑡). The former is due to 

the loss of superconductivity in strands or to the fact that some fraction of the current may 

be transported by some non-current-carrying solids in off-normal operating conditions. The 

latter is linear power externally introduced in the strands and it is the relevant driver for a 

couple of reasons: in the first place while studying superconducting cable transient they are 

always induced by an external heating of solid components (either strands or jackets), 

secondly in the present model the current module is not available yet, so the only possibility 

to induce a transient is by means of the external heating.  
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2.1.3 COUPLING OF EQUATIONS 

So far, the equations that models mathematically fluid and solid components were 

described separately. Since in the right-hand side of equations just reported there are coupling 

terms between fluid and solid components, they cannot be solved individually; in other words, 

all the above-mentioned equations must be solved as a single set of PDEs. The number of 

equations making up the system increases proportionally to the detail with which the 

conductor is discretized into its basic components, according to the following law: 

𝑁𝑒𝑞 = 3𝑁𝑐ℎ + 𝑁𝑠𝑡 + 𝑁𝑗𝑘  (2.1-5) 

There are six possibilities for the coupling that are managed by means of a coupling matrix: 

1. channel-channel. 

2. channel-strand. 

3. channel-jacket. 

4. strand-strand.  

5. strand-jacket (or jacket-strand). 

6. jacket-jacket. 

To clarify the first three possibilities, the general expression of the source terms (𝛬𝜌, 𝛬𝑣 

and 𝛬𝑒) for the 𝑐𝑎 channel should be recalled from appendix A, where further information can 

be found. 

𝛬𝜌
𝑐𝑎 =

∑ 𝐾𝑐𝑎,𝑐ℎ
′𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎 (𝑝𝑐ℎ − 𝑝𝑐𝑎)

𝐿Σ𝑐𝑎
  

(2.1-6) 

𝛬𝑣
𝑐𝑎 =

∑ 𝐾𝑐𝑎,𝑐ℎ
′′𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎 (𝑝𝑐ℎ − 𝑝𝑐𝑎)

𝐿Σ𝑐𝑎
− 𝜌𝑐𝑎𝐹𝑐𝑎 

(2.1-7) 

𝛬𝑒
𝑐𝑎 =

∑ 𝐾𝑐𝑎,𝑐ℎ
′′′𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎 (𝑝𝑐ℎ − 𝑝𝑐𝑎)

𝐿Σ𝑐𝑎
+
∑ (𝑃𝑐𝑎,𝑐ℎ

𝑜 ℎ𝑐𝑎,𝑐ℎ
𝑜 + 𝑃𝑐𝑎,𝑐ℎ

𝑐 ℎ𝑐𝑎,𝑐ℎ
𝑐 )

𝑁𝑐ℎ
𝑐ℎ≠𝑐𝑎 (𝑇𝑐ℎ − 𝑇𝑐𝑎)

Σ𝑐𝑎

+
∑ 𝑃𝑐𝑎,𝑠𝑡ℎ𝑐𝑎,𝑠𝑡
𝑁𝑠𝑡
𝑠𝑡=1 (𝑇𝑠𝑡 − 𝑇𝑐𝑎)

Σ𝑐𝑎
+
∑ 𝑃𝑐𝑎,𝑗𝑘ℎ𝑐𝑎,𝑗𝑘
𝑁𝑗𝑘
𝑗𝑘=1

(𝑇𝑗𝑘 − 𝑇𝑐𝑎)

Σ𝑐𝑎
 

(2.1-8) 

The first addendum of each source term is evaluated with the open contact perimeter 

between the channels, hidden in the terms 𝐾𝑐𝑎,𝑐ℎ
′ , 𝐾𝑐𝑎,𝑐ℎ

′′  and 𝐾𝑐𝑎,𝑐ℎ
′′′  as can be seen in 

appendix A. Two possibilities arise, the first is that the channels in contact are in hydraulic 

parallel which means that their open perimeter fraction is larger than zero, so their equations 

are fully coupled; the second considers that there is only thermal contact between channels. 

In this last case, the open fraction of the contact perimeter is zero, thus only the energy source 

couples the channels thanks to the addendum: 

∑ 𝑃𝑐𝑎,𝑐ℎ
𝐶 ℎ𝑐𝑎,𝑐ℎ

𝐶𝑁𝑐ℎ
𝑐ℎ≠𝑐𝑎 (𝑇𝑐ℎ − 𝑇𝑐𝑎)

Σ𝑐𝑎
 

(2.1-9) 
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The last two contributions to 𝛬𝑒 account also for the coupling between channel-strand 

and channel-jacket if the contact perimeters are not null; these are analogous to the first 

addendum of the right-hand side in equations (2.1-3) and (2.1-4). 

There are three kinds of coupling among solids, two homogeneous (strand-strand and 

jacket-jacket) and one heterogeneous or hybrid (strand-jacket or jacket-strand), that appears 

in both the general equations for strands and jackets. The homogeneous kind is specific of the 

equation, thus the coupling between strands is described in the strand equation, analogously 

coupling between jackets can be found in the jacket equation. In any case, the three 

contributions to the right-hand sides will actually have an impact only if the contact perimeter 

is larger than zero, otherwise they count for nothing. 

2.1.4 THE FINAL SET OF PDES 

Once defined how the equations are coupled, it is convenient to rewrite them in a matrix 

form that allows to handle them more easily. To this purpose some notation should be 

introduced: 𝒖 and 𝒔 are respectively the unknowns and source vectors while 𝑀, 𝐴, 𝐾 and 𝑆 

are the square matrices of coefficients. Their general definition can be found in appendix B.1. 

The elements of the last matrix came from the right-hand side of the PDEs since there are 

terms that includes the unknowns, so 𝒔 is built only by the Joule and external linear power 

sources of solid components. The matrix form of the set is:  

𝑀
𝜕𝒖

𝜕𝑡
+ 𝐴

𝜕𝒖

𝜕𝑥
+
𝜕

𝜕𝑥
(𝐾

𝜕𝒖

𝜕𝑥
) + 𝑆𝒖 = 𝒔 

(2.1-10) 

This set cannot be classified according to the typical PDE classification since it combines 

both the hyperbolic and parabolic features. 

What follows is a paragraph that shows what form takes the set of equations in the two 

case studies considered in this thesis. The corresponding matrices for their matrix formulation 

can be found in appendix B.2 and B.3. 

2.1.4.1 CASE STUDY EQUATIONS 

Chapter 4 is devoted to the analysis of the simulation results obtained with the SC2 code 

for two different conductors, the three-phase coaxial HTS cable, also called 3P-HTS, designed 

by Lee [77] and the ITER LTS Toroidal Field Coil (shortly ITER-TF) cable [87]. Here, to put in 

practice what discussed above, the extended, full set of equations is provided for both the 

configurations. 

2.1.4.1.1 3P-HTS CONFIGURATION 

The first conductor configuration considered in this work is the three-phase coaxial HTS 

superconductor whose topology is depicted in Figure 2.1-1. The inner cylinder is made by a multi 

material structure composed by the copper former surrounded by several concentric layers 

of HTS and insulating material made by PPLP; the coolant flows through the hollow region 

between this structure and the cryostat. From the mesoscale analysis point of view, this cable 

can be discretized using three basic components, one fluid and two solids; indeed, the multi-
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material region can be thought as a single current-carrying solid (subscript 𝑆𝑇1), while the 

cryostat belongs to the non-current-carrying category, indicated as 𝐽𝐾1. The cable is cooled 

with liquid helium and the channel subscript is 𝐶𝐻1. The total number of equations is given 

by (2.1-5) and in this case the system is made by only five equations. 

The coupling between the components is deduced from Figure 2.1-1: coolant flows between 

the jacket and the strand and there is only thermal contact; there is no contact among the 

solid components. 

On the basis of the previous considerations, the following system of equations can be 

obtained: 

{
 
 
 
 
 

 
 
 
 
 

𝜕𝑣𝐶𝐻1
𝜕𝑡

+ 𝑣𝐶𝐻1
𝜕𝑣𝐶𝐻1
𝜕𝑥

+
1

𝜌𝐶𝐻1

𝜕𝑝𝐶𝐻1
𝜕𝑥

=
𝛬𝑣
𝐶𝐻1

𝜌𝐶𝐻1
𝜕𝑝𝐶𝐻1
𝜕𝑡

+ 𝜌𝐶𝐻1𝑐𝐶𝐻1
2

𝜕𝑣𝐶𝐻1
𝜕𝑥

+ 𝑣𝐶𝐻1
𝜕𝑝𝐶𝐻1
𝜕𝑥

= 𝛷𝐶𝐻1[𝛬𝑒
𝐶𝐻1 − 𝑣𝐶𝐻1𝛬𝑣

𝐶𝐻1]

𝜕𝑇𝐶𝐻1
𝜕𝑡

+ 𝛷𝐶𝐻1𝑇𝐶𝐻1
 𝜕𝑣𝐶𝐻1
𝜕𝑥

+ 𝑣𝐶𝐻1
𝜕𝑇𝐶𝐻1
𝜕𝑥

=
1

𝜌𝐶𝐻1𝑐𝑣,𝐶𝐻1
[𝛬𝑒
𝐶𝐻1 − 𝑣𝐶𝐻1𝛬𝑣

𝐶𝐻1]

Σ𝑆𝑇1𝜌𝑆𝑇1𝑐𝑆𝑇1
𝜕𝑇𝑆𝑇1
𝜕𝑡

− Σ𝑆𝑇1
𝜕

𝜕𝑥
(𝑘𝑆𝑇1

𝜕𝑇𝑆𝑇1
𝜕𝑥

) = 𝑃𝐶𝐻1,𝑆𝑇1ℎ𝐶𝐻1,𝑆𝑇1(𝑇𝐶𝐻1 − 𝑇𝑆𝑇1) + 𝑄𝑆𝑇1,𝑒𝑥𝑡

Σ𝐽𝐾1𝜌𝐽𝐾1𝑐𝐽𝐾1
𝜕𝑇𝐽𝐾1
𝜕𝑡

− Σ𝐽𝐾1
𝜕

𝜕𝑥
(𝑘𝐽𝐾1

𝜕𝑇𝐽𝐾1
𝜕𝑥

) = 𝑃𝐶𝐻1,𝐽𝐾1ℎ𝐶𝐻1,𝐽𝐾1(𝑇𝐶𝐻1 − 𝑇𝐽𝐾1) + 𝑄𝐽𝐾1,𝑒𝑥𝑡

 (2.1-11) 

Being: 

𝛬𝜌
𝐶𝐻1 = 0  (2.1-12) 

𝛬𝑣
𝐶𝐻1 = −𝜌𝐶𝐻1𝐹𝐶𝐻1 (2.1-13) 

 

Figure 2.1-1 Cross section of the three phase coaxial HTS cable [79]. 
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𝛬𝑒
𝐶𝐻1 =

𝑃𝐶𝐻1,𝑆𝑇1ℎ𝐶𝐻1,𝑆𝑇1(𝑇𝑆𝑇1 − 𝑇𝐶𝐻1)

Σ𝐶𝐻1
+
𝑃𝐶𝐻1,𝐽𝐾1ℎ𝐶𝐻1,𝐽𝐾1(𝑇𝐽𝐾1 − 𝑇𝐶𝐻1)

Σ𝐶𝐻1
 

(2.1-14) 

The source terms of the 3P-HTS case study do not have the coupling addendum between 

channels since only one channel is considered. Moreover, it is taken into account that the 

current cannot be modeled considering only the external heating as driver in the solid 

component equations. 

2.1.4.1.2 ITER LTS TOROIDAL FIELD COIL CONFIGURATION 

ITER-TF topology is shown in the following Figure 2.1-2. It is the typical design of a two 

regions cable-in-conduit conductor made by a circular jacket, six petals of superconducting 

strands wrapped around a central helical spiral that delimits the hole, the central channel, 

from the bundle, the annular region of interstices in petals through which the coolant flows. 

The simplest discretization of this cable dictates the use of two fluid components that 

respectively models the hole (subscript 𝐶𝐻1) and the bundle (subscript 𝐶𝐻2) and two solid 

components, one for the strand (𝑆𝑇1) to model all the six petals and one for the jacket (𝐽𝐾1). 

According to equation (2.1-5) the total number of equations in this configuration is eight, 

six for the fluid components and one for each solid component. 

 

Figure 2.1-2 ITER LTS Toroidal Field Coil configuration [courtesy of ENEA]  

As far as couplings are of concern, from the Figure 2.1-2 it can be seen that hole and bundle 

are in hydraulic parallel thanks to the helical spiral, the bundle is also in contact with both the 

solid components, finally there is thermal contact between strand and jacket. This 

configuration is more complicated than the 3P-HTS one. Since the current is not modeled yet 

by the code, only the external heating power is considered as driver in the solid component 

equations. 

The full system of PDEs is written as follows: 
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{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝜕𝑣𝐶𝐻1
𝜕𝑡

+ 𝑣𝐶𝐻1
𝜕𝑣𝐶𝐻1
𝜕𝑥

+
1

𝜌𝐶𝐻1

𝜕𝑝𝐶𝐻1
𝜕𝑥

=
1

𝜌𝐶𝐻1
 (𝛬𝑣

𝐶𝐻1 − 𝑣𝐶𝐻1𝛬𝜌
𝐶𝐻1) 

𝜕𝑣𝐶𝐻2
𝜕𝑡

+ 𝑣𝐶𝐻2
𝜕𝑣𝐶𝐻2
𝜕𝑥

+
1

𝜌𝐶𝐻2

𝜕𝑝𝐶𝐻2
𝜕𝑥

=
1

𝜌𝐶𝐻2
 (𝛬𝑣

𝐶𝐻2 − 𝑣𝐶𝐻2𝛬𝜌
𝐶𝐻2)

𝜕𝑝𝐶𝐻1
𝜕𝑡

+ 𝜌𝐶𝐻1𝑐𝐶𝐻1
2

𝜕𝑣𝐶𝐻1
𝜕𝑥

+ 𝑣𝐶𝐻1
𝜕𝑝𝐶𝐻1
𝜕𝑥

= 𝛷𝐶𝐻1 [𝛬𝑒
𝐶𝐻1 − 𝑣𝐶𝐻1𝛬𝑣

𝐶𝐻1  − (𝑤𝐶𝐻1 −
𝑣𝐶𝐻1
2

2
−
𝑐𝐶𝐻1
2

𝛷𝐶𝐻1
)𝛬𝜌

𝐶𝐻1]

𝜕𝑝𝐶𝐻2
𝜕𝑡

+ 𝜌𝐶𝐻2𝑐𝐶𝐻2
2

𝜕𝑣𝐶𝐻2
𝜕𝑥

+ 𝑣𝐶𝐻2
𝜕𝑝𝐶𝐻2
𝜕𝑥

= 𝛷𝐶𝐻2 [𝛬𝑒
𝐶𝐻2 − 𝑣𝐶𝐻2𝛬𝑣

𝐶𝐻2  − (𝑤𝐶𝐻2 −
𝑣𝐶𝐻2
2

2
−
𝑐𝐶𝐻2
2

𝛷𝐶𝐻2
)𝛬𝜌

𝐶𝐻2]

𝜕𝑇𝐶𝐻1
𝜕𝑡

+ 𝛷𝐶𝐻1𝑇𝐶𝐻1
 𝜕𝑣𝐶𝐻1
𝜕𝑥

+ 𝑣𝐶𝐻1
𝜕𝑇𝐶𝐻1
𝜕𝑥

=
1

𝜌𝐶𝐻1𝑐𝑣,𝐶𝐻1 
[𝛬𝑒

𝐶𝐻1 − 𝑣𝐶𝐻1𝛬𝑣
𝐶𝐻1 − (𝑤𝐶𝐻1 −

𝑣𝐶𝐻1
2

2
− 𝛷𝐶𝐻1𝑐𝑣,𝐶𝐻1𝑇𝐶𝐻1)𝛬𝜌

𝐶𝐻1]

𝜕𝑇𝐶𝐻2
𝜕𝑡

+ 𝛷𝐶𝐻2𝑇𝐶𝐻2
 𝜕𝑣𝐶𝐻2
𝜕𝑥

+ 𝑣𝐶𝐻2
𝜕𝑇𝐶𝐻2
𝜕𝑥

=
1

𝜌𝐶𝐻2𝑐𝑣,𝐶𝐻2 
[𝛬𝑒

𝐶𝐻2 − 𝑣𝐶𝐻2𝛬𝑣
𝐶𝐻2 − (𝑤𝐶𝐻2 −

𝑣𝐶𝐻2
2

2
− 𝛷𝐶𝐻2𝑐𝑣,𝐶𝐻2𝑇𝐶𝐻2)𝛬𝜌

𝐶𝐻2] 

Σ𝑆𝑇1𝜌𝑆𝑇1𝑐𝑆𝑇1
𝜕𝑇𝑆𝑇1
𝜕𝑡

− Σ𝑆𝑇1
𝜕

𝜕𝑥
(𝑘𝑆𝑇1

𝜕𝑇𝑆𝑇1
𝜕𝑥

) = 𝑃𝐶𝐻2,𝑆𝑇1ℎ𝐶𝐻2,𝑆𝑇1(𝑇𝐶𝐻2 − 𝑇𝑆𝑇1) + 𝑃𝑆𝑇1,𝐽𝐾1ℎ𝑆𝑇1,𝐽𝐾1(𝑇𝐽𝐾1 − 𝑇𝑆𝑇1) + 𝑄𝑆𝑇1,𝑒𝑥𝑡

Σ𝐽𝐾1𝜌𝐽𝐾1𝑐𝐽𝐾1
𝜕𝑇𝐽𝐾1

𝜕𝑡
− Σ𝐽𝐾1

𝜕

𝜕𝑥
(𝑘𝐽𝐾1

𝜕𝑇𝐽𝐾1

𝜕𝑥
) = 𝑃𝐶𝐻2,𝐽𝐾1ℎ𝐶𝐻2,𝐽𝐾1(𝑇𝐶𝐻2 − 𝑇𝐽𝐾1) + 𝑃𝑆𝑇1,𝐽𝐾1ℎ𝑆𝑇1,𝐽𝐾1(𝑇𝑆𝑇1 − 𝑇𝐽𝐾1) + 𝑄𝐽𝐾1,𝑒𝑥𝑡

 (2.1-15) 

Where the source terms for hole and bundle assume these forms: 

𝛬𝜌
𝐶𝐻1 =

𝐾𝐶𝐻1,𝐶𝐻2
′ (𝑝𝐶𝐻2 − 𝑝𝐶𝐻1)

𝐿Σ𝐶𝐻1
  (2.1-16) 

𝛬𝑣
𝐶𝐻1 =

𝐾𝐶𝐻1,𝐶𝐻2
′′ (𝑝𝐶𝐻2 − 𝑝𝐶𝐻1)

𝐿Σ𝐶𝐻1
− 𝜌𝐶𝐻1𝐹𝐶𝐻1 (2.1-17) 

𝛬𝑒
𝐶𝐻1 =

𝐾𝐶𝐻1,𝐶𝐻2
′′′ (𝑝𝐶𝐻2 − 𝑝𝐶𝐻1)

𝐿Σ𝐶𝐻1

+
(𝑃𝐶𝐻1,𝐶𝐻2

𝑜 ℎ𝐶𝐻1,𝐶𝐻2
𝑜 + 𝑃𝐶𝐻1,𝐶𝐻2

𝑐 ℎ𝐶𝐻1,𝐶𝐻2
𝑐 )(𝑇𝐶𝐻2 − 𝑇𝐶𝐻1)

Σ𝐶𝐻1
 

(2.1-18) 

𝛬𝜌
𝐶𝐻2 =

𝐾𝐶𝐻1,𝐶𝐻2
′ (𝑝𝐶𝐻1 − 𝑝𝐶𝐻2)

𝐿Σ𝐶𝐻2
  (2.1-19) 

𝛬𝑣
𝐶𝐻2 =

𝐾𝐶𝐻1,𝐶𝐻2
′′ (𝑝𝐶𝐻1 − 𝑝𝐶𝐻2)

𝐿Σ𝐶𝐻2
− 𝜌𝐶𝐻2𝐹𝐶𝐻2 (2.1-20) 

𝛬𝑒
𝐶𝐻2 =

𝐾𝐶𝐻1,𝐶𝐻2
′′′ (𝑝𝐶𝐻1 − 𝑝𝐶𝐻2)

𝐿Σ𝐶𝐻2

+
(𝑃𝐶𝐻1,𝐶𝐻2

𝑜 ℎ𝐶𝐻1,𝐶𝐻2
𝑜 + 𝑃𝐶𝐻1,𝐶𝐻2

𝑐 ℎ𝐶𝐻1,𝐶𝐻2
𝑐 )(𝑇𝐶𝐻1 − 𝑇𝐶𝐻2)

Σ𝐶𝐻2

+
𝑃𝐶𝐻2,𝑆𝑇1ℎ𝐶𝐻2,𝑆𝑇1(𝑇𝑆𝑇1 − 𝑇𝐶𝐻2)

Σ𝐶𝐻2
+
𝑃𝐶𝐻2,𝐽𝐾1ℎ𝐶𝐻2,𝐽𝐾1(𝑇𝐽𝐾1 − 𝑇𝐶𝐻2)

Σ𝐶𝐻2
 

(2.1-21) 

2.1.5 SUMMARY 

The mathematical model for the mesoscale analysis of superconductors has been 

discussed in this section. The most important hypotheses of the model are the 1D 

approximation and the fact that each channel is described by its own independent set of Euler-

like PDEs for inviscid compressible fluids (equation (2.1-2)), eventually coupled with the other 

channels. Solid components are treated with the cartesian 1D transient heat transfer equation 

considering that boundaries are adiabatic. Conductor cross section does not change along the 
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conductor length and the potential energy term is neglected in the coolant specific internal 

energy evaluation.  

The total number of equations is given by equation (2.1-5), their general form is shown 

together with a detailed explanation of their main features. A focus on the drivers, which 

belong to the right-hand side of solid components equations, is provided. 

Particular attention is given to the coupling of the equations practically managed with a 

coupling matrix and ruled by the contact perimeter between channels, channels and solid and 

between solids. 

The general system of partial differential equations can be more easily handled when it is 

rewritten in its matrix form (equation (2.1-10)). The section ends with two examples of sets of 

equations whose solution will be deeply developed in chapter 4.  

Next section explains how to solve numerically the mathematical model, to be 

implemented in an object-oriented fashion 

2.2 NUMERICAL SCHEMES 

Equation (2.1-10) derived in the previous section is the matrix form of a coupled not linear 

system of PDEs which is first order in time and second order in space. Having acknowledged 

the impossibility of analytically solving the system in question, the solution of the problem is 

approached numerically. As far as the spatial discretization is concerned, the choice falls on 

the Finite Elements Methods, already adopted in the 4C and Supermagnet Code (for Gandalf). 

The time discretization is performed with an implicit method (such as Backward Euler or 

Crank-Nicolson) due to the stiffness of the problem; indeed, implicit methods in general 

benefit of a better stability properties compared to the explicit ones. 

The adopted procedure is known as the Galerkin method (actually it is a class of methods) 

to solve the initial boundary value problem (IBVP) and it consist of a first discretization in 

space, that reduces the complexity of the problem converting it from a system of PDEs to a 

system of ordinary differential equations, and a subsequently integration in time. 

The remainder of this section shed the light on the topic providing guidelines of the 

selected methods for the solution. 

FEM to solve PDEs is described in [97], a short description of the Galerkin methods can be 

found in [98] while [99] has a chapter devoted to the solution of ODEs. 

2.2.1 SPATIAL DISCRETIZATION WITH FINITE ELEMENTS METHOD (FEM) 

The cable length (computational domain [0, 𝐿]) is discretized with 𝑁 + 2 nodal points 0 =

 𝑥0 < 𝑥1… < 𝑥𝑁 < 𝑥𝑁+1 = 𝐿 . This partition results into 𝑁 + 1 subintervals 𝐼𝑗 = (𝑥𝑗−1, 𝑥𝑗) of 

length Δ𝑥𝑗 = 𝑥𝑗 − 𝑥𝑗−1 ∀ 𝑗 = 1,…𝑁 + 1.  

The finite-dimensional subspace 𝑉ℎ is defined as the set of functions 𝜔 = 𝜔(𝑥) such that 

𝜔 ∈ Vh: 𝜔 ∈ C
1 ∀ 𝐼𝑗 and 𝜔(0) = 𝜔(L) = 0. To construct these functions, the values at the 
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nodal points can be exploited �̅�𝑖 = 𝜔(𝑥j), together with the basis functions of Vh, the so-

called hat functions, that are defined in this way: 

𝜓𝑗 ∈ Vh, 𝑗 = 1, … ,𝑁: 
(2.2-1) 

𝜓𝑗(𝑥𝑖) = {
1 𝑖𝑓 𝑖 = 𝑗
0 𝑖𝑓 𝑖 ≠ 𝑗 𝑖, 𝑗 = 1,… ,𝑁

 (2.2-2) 

The generic function 𝜔 ∈ Vh can be expressed in a unique way as a linear combination of 

the above defined basis functions, i.e.: 

𝜔(𝑥) =  ∑�̅�𝑖𝜓 𝑖(𝑥), ∀𝑥 ∈ [0, 𝐿]

𝑁

𝑖=1

 (2.2-3) 

Going back to the equation (2.1-10), the next step in the spatial discretization with FEM is 

its reformulations in the weak form according to a suitable matrix 𝛺 of test functions 𝜔 ∈ Vh: 

∫𝛺𝑀
𝜕𝒖

𝜕𝑡
𝑑𝑥

𝐿

0

+∫𝛺𝐴
𝜕𝒖

𝜕𝑥
𝑑𝑥 + ∫𝛺

𝜕

𝜕𝑥
(𝐾

𝜕𝒖

𝜕𝑥
)

𝐿

0

𝑑𝑥

𝐿

0

+∫𝛺𝑆𝒖𝑑𝑥 =  ∫𝛺𝒔 𝑑𝑥

𝐿

0

𝐿

0

 (2.2-4) 

that can be rewritten in a more manageable way applying the Green theorem to the 

conduction integral and remembering that 𝜔(0) = 𝜔(L) = 0:  

∫𝛺
𝜕

𝜕𝑥
(𝐾

𝜕𝒖

𝜕𝑥
)

𝐿

0

𝑑𝑥 =  −∫
𝑑𝛺

𝑑𝑥
∗ 𝐾

𝜕𝒖

𝜕𝑥

𝐿

0

𝑑𝑥 (2.2-5) 

This will allow to construct an approximation of 𝒖  as a linear combination of the hat 

functions 𝜓𝑗 ∈ 𝑉ℎ that are only piecewise 𝐶1: 

∫𝛺𝑀
𝜕𝒖

𝜕𝑡
𝑑𝑥

𝐿

0

+∫𝛺𝐴
𝜕𝒖

𝜕𝑥
𝑑𝑥 − ∫

𝑑𝛺

𝑑𝑥
∗ 𝐾

𝜕𝒖

𝜕𝑥

𝐿

0

𝑑𝑥

𝐿

0

+∫𝛺𝑆𝒖𝑑𝑥 =  ∫𝛺𝒔 𝑑𝑥

𝐿

0

𝐿

0

 (2.2-6) 

It must be premised that, to deal with numerical oscillations when the dominant terms are 

the advective rather than the conductive ones, some elements on the 𝐾 matrix are modified 

adding an artificial diffusion as prescribed by the upwind method. 

The approximation �̃� of the exact solution (𝒖) takes the following form: 

�̃�(𝑥, 𝑡) =  ∑𝛹𝑗  �̅�𝑗(𝑡), ∀𝑥 ∈ [0, 𝐿]

𝑁

𝑗=1

 (2.2-7) 

if  �̅�𝑗is the vector of the values of the nodal approximation of 𝒖.  

Choosing 𝜔 = 𝜓𝑖, or in other words 𝛺 = 𝛹𝑖, and introducing the above decomposition in 

equation (2.2-6) the following system is obtained: 
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∫𝛹𝑖𝑀

𝐿

0

∑𝛹𝑗
𝑑 �̅�𝑗

𝑑𝑡

𝑁

𝑗=1

𝑑𝑥 + ∫𝛹𝑖𝐴

𝐿

0

∑
𝑑𝛹𝑗

𝑑𝑥
 �̅�𝑗

𝑁

𝑗=1

𝑑𝑥 − ∫
𝑑𝛹𝑖
𝑑𝑥

∗ 𝐾∑
𝑑𝛹𝑗

𝑑𝑥
 �̅�𝑗

𝑁

𝑗=1

𝐿

0

𝑑𝑥

+ ∫𝛹𝑖𝑆∑𝛹𝑗  �̅�𝑗

𝑵

𝑗=1

𝑑𝑥 =  ∫𝛹𝑖𝒔 𝑑𝑥

𝐿

0

𝐿

0

 ∀𝑖 = 1, … , 𝑁 

(2.2-8) 

As can be seen in appendix B.1 the matrices 𝑀 , 𝐴 , 𝐾  and 𝑆  are square matrices of 

dimension 𝑁𝑡𝑜𝑡,𝑒𝑞x𝑁𝑡𝑜𝑡,𝑒𝑞 while the above equation is a system of 𝑁 equations. Each equation 

of the system is itself a small system of 𝑁𝑡𝑜𝑡,𝑒𝑞 equations, so to each nodal point are associated 

𝑁𝑡𝑜𝑡,𝑒𝑞 unknowns; in other words the whole dimension of the above system is given by: 

𝑁𝑡𝑜𝑡 = 𝑁𝑒𝑞(𝑁 + 2) 
(2.2-9) 

since to the nodes corresponding to 𝑖 = 0 and 𝑖 = 𝑁 + 1 are related 𝑁𝑒𝑞 closure equations 

(boundary conditions). 

Equation (2.2-8) can be written in a new matrix form:  

𝑀𝑠𝑑

𝑑𝒖𝒔𝒅
𝑑𝑡

+ (𝐴𝑠𝑑 + 𝐾𝑠𝑑 + 𝑆𝑠𝑑)𝒖𝒔𝒅 = 𝒔𝒔𝒅 
(2.2-10) 

That is a system of 𝑁𝑡𝑜𝑡  ordinary differential equations in time to which suitable initial 

conditions must be applied. 

2.2.1.1 MESH CONSTRUCTION 

The above dissertation is general because it does not refer to a specific kind of mesh 

generation. Indeed, there are several possibilities and this section is devoted to illustrate the 

ones implemented in the SC2 code, that is equipped with both uniform and not uniform 

meshes. Recall that the computational domain [0, 𝐿] is partitioned in 𝑁 + 1 sub-intervals 𝐼𝑗 =

(𝑥𝑗−1, 𝑥𝑗)  of length 𝛥𝑥𝑗 = 𝑥𝑗 − 𝑥𝑗−1 ∀ 𝑗 = 1, … , 𝑁 + 1 ; by definition 𝛥𝑥 = max(𝛥𝑥𝑗)  is a 

measure of how fine is the partition. 

The uniform mesh is obtained imposing that the partition is uniform in the computational 

domain, in other words, it means that the spatial discretization parameter is constant and its 

value is given by: 

𝛥𝑥𝑗 =
𝐿

𝑁 + 1
 ∀ 𝑗 = 1,…𝑁 + 1  

(2.2-11) 

In this case the above defined measure coincides with the generic Δ𝑥𝑗 so for simplicity the 

spatial discretization parameter is called Δ𝑥. The uniform mesh is the easiest alternative and 

it has the virtue of being inexpensive from a computational point of view, but it is convenient 

only for those problems where the drivers are smooth or does not change sharply in space. 

To deal with these other situations more sophisticated meshes should be adopted. 

The non-uniform mesh is a class of meshes that are characterized by one or more regions 

with a finer discretization parameter and others with coarser ones. They are suitable to 
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discretize the space when the location of the gradients of the drivers are well known. The 

extension of the refined regions is tuned to cover these steep variations while the smoother 

ones are discretized with a larger discretization parameter. This larger flexibility with respect 

to the uniform mesh is balanced by a not negligible computational cost for its generation. SC2 

code is equipped with the single region non-uniform mesh characterized by only one refined 

zone; it is generated guaranteeing that the number of nodal points is kept constant and equal 

to 𝑁 + 2.  

The refined region [𝑥𝑟𝑒𝑓,𝑎 , 𝑥𝑟𝑒𝑓,𝑏 ] with 𝑥𝑟𝑒𝑓,𝑎 ∈ [0, 𝐿) and 𝑥𝑟𝑒𝑓,𝑏 ∈ (0, 𝐿] of length: 

𝐿𝑟𝑒𝑓 = 𝑥𝑟𝑒𝑓,𝑏 − 𝑥𝑟𝑒𝑓,𝑎  
(2.2-12) 

is uniformly discretized with 𝑁𝑟𝑒𝑓 < 𝑁 + 2 nodal points, so the refined spatial discretization 

paranmeter is given by: 

𝛥𝑥𝑟𝑒𝑓 =
𝐿𝑟𝑒𝑓

𝑁𝑟𝑒𝑓 − 1
 (2.2-13) 

The remaining 𝑁𝑐𝑜𝑎𝑟𝑠𝑒 = 𝑁 + 2 − 𝑁𝑟𝑒𝑓 nodes are used to build the two coarse regions on 

the left and on the right of the refined one, and they are distributed according to their length 

by means of a weighted average: 

𝑁𝑐𝑜𝑎𝑟𝑠𝑒,𝑙 = 
𝑥𝑟𝑒𝑓,𝑎 − 0

𝐿 − 𝐿𝑟𝑒𝑓
 𝑁𝑐𝑜𝑎𝑟𝑠𝑒 (2.2-14) 

𝑁𝑐𝑜𝑎𝑟𝑠𝑒,𝑟 = 
𝐿 − 𝑥𝑟𝑒𝑓,𝑏 

𝐿 − 𝐿𝑟𝑒𝑓
 𝑁𝑐𝑜𝑎𝑟𝑠𝑒 (2.2-15) 

The transition from the left coarse region to the refined one and from the refined region 

to the right coarse region should not be too sharp to avoid numerical instability, therefore to 

gradually decreasing/increasing the discretization parameter respectively a smoothing 

coefficient 𝛿 is introduced and exploited into two distinct while loops, both defined with the 

following condition: 

𝛥𝑥𝑡𝑟𝑦

𝛥𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑛𝑒𝑤
> 𝛿 (2.2-16) 

The numerator of the inequality (2.2-16) is the value of the uniform discretization 

parameter obtained if the remaining length of the coarse region is uniformly discretized with 

the nodes still available. If after 𝑖𝑙 iterations the left coarse region is the interval [0, 𝑥𝑙] with 

𝑥𝑙 ≤ 𝑥𝑟𝑒𝑓,𝑎 and the remaining nodes are 𝑁𝑐𝑜𝑎𝑟𝑠𝑒,𝑙 − 𝑖𝑙, results: 

𝛥𝑥𝑡𝑟𝑦,𝑙 = 
𝑥𝑙 − 0

𝑁𝑐𝑜𝑎𝑟𝑠𝑒,𝑙 − 𝑖𝑙 − 1
 (2.2-17) 

while the denominator is defined as: 
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𝛥𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑛𝑒𝑤,𝑙 = 𝛥𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑜𝑙𝑑,𝑙𝛿 =  𝛥𝑥𝑟𝑒𝑓𝛿
𝑖𝑙 (2.2-18) 

If equation (2.2-16) is verified Δ𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑛𝑒𝑤,𝑙  is used as discretization parameter and a new 

iteration takes place setting: 

𝑥𝑙 = 𝑥𝑙 − 𝛥𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑛𝑒𝑤,𝑙 
(2.2-19) 

Analogously if the right coarse region corresponds to the interval [𝑥𝑟 , 𝐿] with 𝑥𝑟 ≥ 𝑥𝑟𝑒𝑓,𝑏 

after 𝑖𝑟 iterations the remaining nodes are 𝑁𝑐𝑜𝑎𝑟𝑠𝑒,𝑟 − 𝑖𝑟, thus: 

𝛥𝑥𝑡𝑟𝑦,𝑟 = 
𝐿 − 𝑥𝑟

𝑁𝑐𝑜𝑎𝑟𝑠𝑒,𝑟 − 𝑖𝑟 − 1
 (2.2-20) 

𝛥𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑛𝑒𝑤,𝑟 = 𝛥𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑜𝑙𝑑,𝑟𝛿 =  𝛥𝑥𝑟𝑒𝑓𝛿
𝑖𝑟 (2.2-21) 

 

Figure 2.2-1 Not uniform, asymmetric mesh in a computational domain of 10 𝑚 with one refined region in [3,5] 𝑚 and 
two coarse regions. The total number of elements is 200, the refined region is discretized using 120 elements, while 𝛿 =
1.2. (a) zoom of the smooth transition from coarse left to refined region; (b) zoom of the smooth transition from refined to 
the right coarse region; (c) whole mesh. Y axes is meaningless. 

 



2 MESOSCALE MODELLING OF SUPERCONDUCTORS 

27 

A new iteration is needed if the ratio is larger than the smoothing coefficient and the new 

value of the coordinates is computed exploit 𝛥𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑛𝑒𝑤,𝑟 as discretization parameter: 

𝑥𝑟 = 𝑥𝑟 + 𝛥𝑥𝑠𝑚𝑜𝑜𝑡ℎ,𝑛𝑒𝑤,𝑟 (2.2-22) 

When the above inequality is not verified anymore, the remaining fractions of the coarse 

regions are uniformly discretized with the residual nodes. In general, the refined zone is not 

centered in the domain resulting with different lengths of the coarse regions leading to 𝑖𝑙 ≠

𝑖𝑟 and, finally, 𝛥𝑥𝑙 ≠ 𝛥𝑥𝑟.  

The borderline cases of a refined region that starts form one of the edge of the domain 

are kept into account by the algorithm; in these cases either 𝑥𝑟𝑒𝑓,𝑎 = 0 or 𝑥𝑟𝑒𝑓,𝑏 = 𝐿 and only 

one coarse region should be discretized with all the 𝑁𝑐𝑜𝑎𝑟𝑠𝑒 nodes. 

An example of single refined region non-uniform mesh is shown in Figure 2.2-1. 

2.2.2 TIME DISCRETIZATION 

The set of equations (2.2-10) results from the application of the FEM and therefore it is 

coupled, moreover the total number of equations is proportional to both the number of basic 

components adopted to model the conductor and to the number of nodes used to discretize 

the conductor length. The only reasonable strategy to solve this problem is to apply a 

numerical method to integrate the ODEs, that is the second step of the Galerkin procedure. 

Since the matrix (𝐴𝑠𝑑 + 𝐾𝑠𝑑 + 𝑆𝑠𝑑)  may be bad conditioned the problem should be 

treated as stiff and explicit methods (as Forward Euler) are not suitable in this case because 

they may require an excessively small time-step to solve it accurately. Based on the previous 

considerations, implicit methods are the only alternative: Backward Euler and Crank-Nicolson 

are considered, which can be seen as special cases of the more general 𝜃-method, introduced 

below, with 𝜃 ∈ [0,1]. 

Let denote with the superscript 𝜁 the variables at time 𝑡 and with 𝜁 + 1 the variables at 

time 𝑡 + Δ𝑡; specifically, 𝒖𝒔𝒅
𝜁

 and 𝒖𝒔𝒅
𝜁+1

 are respectively an approximation of 𝒖𝒔𝒅 at time 𝑡 and 

𝑡 + Δ𝑡. The 𝜃-method yields: 

𝑀𝑠𝑑
𝜁+1 𝒖𝒔𝒅

𝜁+1
− 𝒖𝒔𝒅

𝜁

Δ𝑡
+ (1 − 𝜃)(𝐴𝑠𝑑

𝜁
+ 𝐾𝑠𝑑

𝜁
+ 𝑆𝑠𝑑

𝜁
)𝒖𝒔𝒅

𝜁
+ 𝜃(𝐴𝑠𝑑

𝜁+1
+ 𝐾𝑠𝑑

𝜁+1
+ 𝑆𝑠𝑑

𝜁+1
)𝒖𝒔𝒅

𝜁+1

= (1 − 𝜃)𝒔𝒔𝒅
𝜁
+ 𝜃𝒔𝒔𝒅

𝜁+1
  

(2.2-23) 

Reshaping the above equation returns: 

[
𝑀𝑠𝑑
𝜁+1

Δ𝑡
+ 𝜃(𝐴𝑠𝑑

𝜁+1
+ 𝐾𝑠𝑑

𝜁+1
+ 𝑆𝑠𝑑

𝜁+1
)] 𝒖𝒔𝒅

𝜁+1

= [
𝑀𝑠𝑑
𝜁+1

Δ𝑡
− (1 − 𝜃)(𝐴𝑠𝑑

𝜁
+ 𝐾𝑠𝑑

𝜁
+ 𝑆𝑠𝑑

𝜁
)] 𝒖𝒔𝒅

𝜁
+ (1 − 𝜃)𝒔𝒔𝒅

𝜁
+ 𝜃𝒔𝒔𝒅

𝜁+1
 

(2.2-24) 
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For 𝜃 = 1 it is the Backward Euler method while to 𝜃 =
1

2
 corresponds the Crank-Nicolson 

numerical scheme. 

In the equation (2.2-24) information at both time steps 𝜁 and 𝜁 + 1 are required. As far as 

the external sources vector approximation 𝒔𝒔𝒅 is considered, there is no problem since they 

are well known and can be explicitly evaluated at each new time step. The same cannot be 

said for the matrices since their elements depend on the solution at the new time step 

because the problem is not linear. In order to avoid iterations at each time step to get the 

solution, that are not avoidable if bisection or Newton methods are applied to solve the not 

linear system of equations, a linearization of the system is necessary exploiting the frozen 

coefficients concept. This means that the solution obtained at the previous time step is used 

to evaluate the coefficients of the matrices, at the new time step; consequently, the solution 

of the system is more accurate the smaller the adopted time step. In practice it is assumed 

that: 

[
𝑀𝑠𝑑
𝜁+1

Δ𝑡
+ 𝜃(𝐴𝑠𝑑

𝜁+1
+𝐾𝑠𝑑

𝜁+1
+ 𝑆𝑠𝑑

𝜁+1
)] 𝒖𝒔𝒅

𝜁+1
≈ [

𝑀𝑠𝑑
𝜁

Δ𝑡
+ 𝜃(𝐴𝑠𝑑

𝜁
+𝐾𝑠𝑑

𝜁
+ 𝑆𝑠𝑑

𝜁
)] 𝒖𝒔𝒅

𝜁+1
 (2.2-25) 

[
𝑀𝑠𝑑
𝜁+1

Δ𝑡
− (1 − 𝜃)(𝐴𝑠𝑑

𝜁
+ 𝐾𝑠𝑑

𝜁
+ 𝑆𝑠𝑑

𝜁
)] 𝒖𝒔𝒅

𝜁

≈ [
𝑀𝑠𝑑
𝜁

Δ𝑡
− (1 − 𝜃)(𝐴𝑠𝑑

𝜁
+ 𝐾𝑠𝑑

𝜁
+ 𝑆𝑠𝑑

𝜁
)] 𝒖𝒔𝒅

𝜁
 

(2.2-26) 

The linearized system to be solved is: 

[
𝑀𝑠𝑑
𝜁

Δ𝑡
+ 𝜃(𝐴𝑠𝑑

𝜁
+ 𝐾𝑠𝑑

𝜁
+ 𝑆𝑠𝑑

𝜁
)] 𝒖𝒔𝒅

𝜁+1

= [
𝑀𝑠𝑑
𝜁

Δ𝑡
− (1 − 𝜃)(𝐴𝑠𝑑

𝜁
+ 𝐾𝑠𝑑

𝜁
+ 𝑆𝑠𝑑

𝜁
)] 𝒖𝒔𝒅

𝜁
+ (1 − 𝜃)𝒔𝒔𝒅

𝜁
+ 𝜃𝒔𝒔𝒅

𝜁+1
 

(2.2-27) 

and it can be rewritten in the compact form: 

𝐴𝑠𝑦𝑠𝒖𝒔𝒅
𝜁+1

= 𝒃 (2.2-28) 

Being: 

𝐴𝑠𝑦𝑠 = [
𝑀𝑠𝑑
𝜁

Δ𝑡
+ 𝜃(𝐴𝑠𝑑

𝜁
+ 𝐾𝑠𝑑

𝜁
+ 𝑆𝑠𝑑

𝜁
)] (2.2-29) 

𝒃 = [
𝑀𝑠𝑑
𝜁

Δ𝑡
− (1 − 𝜃)(𝐴𝑠𝑑

𝜁
+ 𝐾𝑠𝑑

𝜁
+ 𝑆𝑠𝑑

𝜁
)] 𝒖𝒔𝒅

𝜁
+ (1 − 𝜃)𝒔𝒔𝒅

𝜁
+ 𝜃𝒔𝒔𝒅

𝜁+1
 (2.2-30) 

The 𝜃-method is a class of single step methods, in the sense that to compute the numerical 

solution at the time step 𝜁 + 1 only the information at the previous time step (𝜁) is required. 

Its order of convergence is at most 2 for Crank-Nicolson (1 for Backward Euler).  
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Regardless the numerical scheme adopted to numerically integrate the system of ODEs 

(2.2-28), the outcome is a linear system of algebraic equations characterized by a banded 

matrix 𝐴𝑠𝑦𝑠 . It is solved by applying a band solver that is computationally cheaper than 

method of elimination of Gauss, being the number of operations lower or equal to 𝑐 𝑁𝑡𝑜𝑡 with 

𝑐 an integer number evaluated as a function of the bandwidth of matrix 𝐴𝑠𝑦𝑠. 

2.2.3 SUMMARY 

The mesoscale mathematical modelling of the cable yields a not linear coupled system of 

parabolic partial differential equations that, that is solved numerically. The Galerkin method 

is applied to the IBVP that prescribed first a discretization in space leading to a system of ODEs 

that are subsequently numerically integrated. 

The spatial discretization is performed according to the FEM recipe that would lead to a 

global convergence in space between the first and the order, due to the upwind terms. Mesh 

construction can be done with both uniform and not uniform with single refined region 

strategies, that are suitable for different kinds of drivers: the former is generally cheap and 

performs well if there are smooth or slowly changing drivers, the latter is developed to deal 

with a priori known spatial gradients and its computational cost may be not negligible. 

Two possibilities are foreseen to the numerical integration providing solutions that have 

different order of convergence in time, namely the single step BE and CN methods are 

implemented resulting in first and second order numerical schemes respectively, both 

particular cases of the 𝜃-method. 

To deal with the not linearities the frozen coefficients concept is applied whose accuracy 

increases as the time step decreases. 

The banded system of linear algebraic equations that is obtained from the application of 

the Galerkin procedure is solved with an algorithm for generic band matrix without pivoting. 
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CHAPTER 3 

3 CODE DESCRIPTION 

As mentioned in the introductory chapter 1, this work is to be considered as the 

preliminary step for the development of a new software for mesoscale modelling of 

superconducting cables. The previous chapter 2 focused on the numerical methods adopted 

for the spatial and temporal discretizations used to solve the problem. In this chapter the focus 

is on the structure and organization of the software with the aim of highlighting the main 

features and potential, which include: 

• an object-oriented design exploiting class; 

• a flexible topology since the object-oriented design allows to build the conductor as a 

combination of an arbitrary number of current-carrying (strands) and non-current-

carrying (jackets) solid components, that can be characterized by different materials, 

and fluid channels; 

• a Graphical User Interface to run the simulation and that implements the Run-AND-

check philosophy; 

• an automatic basic post processing of the simulation results; 

• an external tool for the advanced post processing of the outcomes. 

Section 3.1 provides an overview of the code architecture and the input files and the 

management of the output ones, specifically an in-depth look at class design that build up the 

conductor is offered in section 3.2. The chapter proceeds whit section 0 by analyzing the 

classes used to manage the different phases of the simulation, with emphasis on initialization 

and the application of boundary conditions. Section 3.4 discusses the main features of the 

graphical interface and the implementation of the real-time check of the simulation results. 

Finally, the intrinsic processing of the results is shown, as well as the possibilities offered by 

the external tool for more refined analyzes (0). 

3.1 THE SC2 CODE ORGANIZATION IN NUTSHELL 

The content of this section is twofold, the first subsection provides general description of 

the code architecture while the second focuses on the input and output organization. 

3.1.1 SC2 ARCHITECTURE 

The SC2 code is designed to model forced flow superconducting cables, alternatively called 

conductors, which in turn are composed by several basic components, in an object-oriented 

fashion. Although in the current code state only one conductor is addressed by the model, the 

code architecture allows easily to extend the modeling to several conductors simultaneously. 

It is completely written in Python 3 [100] and it relies on few libraries: 

• os that allows to interact with the operating system; 
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• warning to prompt warning messages to the user; 

• numpy [101] and scipy [102] that are heavily used to deal with numerical schemes; 

• pandas [103] is exploited to manage the output files as data frames and to manipulate 

them easily; 

• openpyxl [104] that allows to deal with the input files that are provided in the form of 

Excel spreadsheets; 

• matplotlib [105] is a powerful library to make plots; 

• tkinter is chosen to build the graphical user interface. 

Usually, extended and complex Python codes are organized into several modules, each 

one accomplishing a specific task; the SC2 code makes no exception. 

All SC2 modules are collected into the root directory SCMagnetCode and can be 

distinguished among primary and secondary (or ancillary) modules. Being an Object-Oriented 

Program, ten of the eleven primary modules deal with class, used to construct objects. 

Before going on, it is worthily to define what are class and object in Python. Define a class 

is a way to bound data and functionality together to create data-structure; in other words, it 

is the blueprint for how something should be defined according to the user. When a class is 

defined, it is important to keep in mind that it does not contain any kind of data, moreover it 

creates a new type of object so that new instances of that type can be made, that is objects 

are constructed from class. Each class instance can have attributes attached to it for 

maintaining its state and can also have methods (the functions defined inside the class) that 

allow to modify its state. As a final remark, it should be reminded that Python class supports 

inheritance, a feature that is exploited in the code. 

Once the differences among class and object are clarified, a short description of the 

primary modules used in SC2 code is provided, highlighting the relationship between classes. 

They are listed in Table 3.1-1 that summarizes the nomenclature adopted in this thesis for the 

classes and their objects. To avoid ambiguity, in the remainder of this work a color scheme is 

introduced to distinguish classes from objects, attributes from methods and methods 

functions: 

• class names are written in purple; 

• object names in green; 

• class methods in blue; 

• class attributes in dark blue; 

• functions are marked in dark red; 

• finally, dictionaries kesy as in bold. 

To further improve the clarity of the exposition, a font code is also introduced to distinguish 

between files such as the modules or the input files and folders. The formers are written in 

Arial, the latter are in Cambria. 
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Table 3.1-1 List of the main modules that build up the SC2 code, together with the adopted nomenclature for 
the classes and objects. Modules and classes chare the same name. Notice that the Simulation_starter module is 
not associated to a class, and therefore to any objects. 

Module name Class name Object name 

Simulation_starter   
SC2_GUI SC2_GUI gui 

Simulations Simulations simulation (rarely sim) 
Conductors Conductors CONDUCTOR 

FluidComponents FluidComponents CHAN (rarely fluidcomponent) 
SolidComponents SolidComponents solidcomponent 

Jacket Jacket Z_JACKET 
Strands Strands strand 

MixSCStabilizer MixSCStabilizer STR_MIX 
SuperConductor SuperConductor STR_SC 

Stabilizer Stabilizer STR_STAB 

The Simulations_starter.py module makes an instance of the class SC2_GUI that 

generates both the root and the main windows of the GUI; in particular, the mainloop of the 

main window rules the whole code. While choosing the directories that groups the input files, 

user also makes an instance of the class Simulations, defined in module Simulations.py. This 

class will be further investigated in a next section, for the time being it is enough to know that 

it allows to make instances of class Conductors and that its methods allow to execute all the 

simulation steps; its objects store global information about the simulation. The class 

Simulations has the same name of the module in which it is defined. This is not by chance 

since this naming schemes avoids ambiguity and simplify the code architecture. 

Going forward with the top-down approach, the next module to be discussed is 

Conductors.py that defines the homonym class Conductors. This class is a container of the 

five classes that are used to build the cable. One of the most important method of a class is 

the inner __init__ method that is automatically called when a class is instanced to create an 

object. When this is done for the class Conductors, the conductor object type is build invoking 

its inner constructor method __init__. Among the numerous actions performed by this 

method, probably the most important is the instantiation of the classes that correspond to 

cable basic components like FluidComponents, Jacket, MixSCStabilizer, SuperConductor and 

Stabilizer. These objects are stored in suitable Python dictionaries as lists that are attributes 

of the conductor object, so they are always available, together with both their attributes and 

methods, when the conductor object is instantiated. Indeed, since magnets can be composed 

of several cables, class Simulations allows to instantiate more than one conductor object at 

time and they are stored in a Python list as well; therefore it is not necessary to instantiate it 

whenever a conductor object is required: it will be selected from the list_of_Conductors 

attribute of class Simulations and it will bring all the instantiated basic components object that 

actually build the cable. Furthermore, Conductors methods allow to initialize the cables, get 

its topology and the kind of interfaces between each component and evaluate both 

thermophysical and electromagnetic properties of materials, together with the transport 
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properties such as friction factor for fluid components and heat transfer coefficients between 

fluid components, fluid and solid components and between solid components. 

The above discussion concerns three of the ten classes used in the code. It was said that 

of the remaining seven, five are devoted to the cable basic components, thus two remain 

undefined, namely classes SolidComponents and Strands. At this point, it is worthily that the 

reader is aware of how these seven classes interacts and are organized; to this purpose, class 

hierarchy is represented in Figure 3.1-1: it is based on the different typology of materials and 

their role in the actual cable. The first main subdivision is among FluidComponents and 

SolidComponents; the former class is dedicated to model the coolant and its instances define 

the fluidcomponent python objects (more often called CHAN as it will be clear later on); the 

latter class deals with the solid components that constitutes the cable.  

 

Figure 3.1-1 UML diagram of the relationships between the classes. 

Since solid materials in a cable can be roughly distinguished into jacket and strand, 

exploiting the powerful concept of Python class inheritance, the classes Jacket and Strands are 

both build as child class of the class SolidComponents. This is useful since all the attributes 

and methods that are defined in the parent class (SolidComponents in this case) are inherited 

by the child classes (Jacket and Strands) so that in the child classes are defined only attributes 
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and methods that are not in common. As far as Jacket class is concerned, its Z_JACKET objects 

correspond to a basic conductor component, as well as fluidcomponent objects. To extend 

the SC2 flexibility, three (instead of only one) kinds of strand objects can be instantiated, each 

descending from a specific child class of the parent class Strands and constituting the third 

and last kind of basic component of the cable. Again, all the common features will be defined 

in the parent class Strands, while specific attributes and methods are detailed in the child 

class. The kinds of basic strands that can be defined are: 

1. STR_MIX object that allows to model a strand that is made of both superconductor 

and stabilizer materials; 

2. STR_SC object to introduce pure superconducting strand; 

3. STR_STAB object to which correspond a stabilizing strand. 

There are no restrictions on the use of this basic components, i.e. the user can adopt a 

single kind of basic strand or implement and combine the three of them to better discretize 

the cable topology, according to the level of detail required by the analysis. 

Secondary modules are grouped into two subfolders called respectively 

Properties_of_materials and UtilityFunctions. The former, as its name says, is the subfolder 

that includes all the materials properties. On the one hand, for each fluid material both a 

module with functions to evaluate thermophysical properties and a subfolder with tables from 

which these functions interpolate can be found; on the other hand, for each solid material all 

the function that describes the thermophysical and electromagnetic (if any) properties are 

collected in a module. The self-explanatory name of the module identifies the material to 

which it refers. For instance, module named Nb3Sn_properties.py contain all the functions 

related to the properties of Nb3Sn.  

In subfolder UtilityFunctions there are functional modules that achieves specific and 

quite different purposes such as read the input files or load the fluid tables, initialize both fluid 

and solid components, perform the march in time on the algorithm, write the output files and 

make plots. A short description of these modules can be found in the following Table 3.1-2, 

they are explained in detail in subsequent sections.  
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Table 3.1-2 List and description of the functional modules in subfolder UtilityFunctions. 

Module name Description 

Auxiliary_functions.py 

Stores functions that allow to read the 
auxiliary input files, load the fluid tables 
and perform the binary search in 
pressure and temperature to compute, 
by interpolation, fluid thermophysical 
properties. 

Gen_Flow.py 

Functions that allow to evaluate the 
initialization of fluid components 
variables (velocity, pressure and 
temperature) according to the value of 
flag INTIAL, the conductor topology and 
the kind of interface between fluid 
components objects. 

InitializationFunctions.py 

The function that reads and loads the 
main input files and the one that builds 
the spatial discretization of the cable are 
both in this module. 

Output.py 

Collects several functions that writes the 
output files of both solution spatial 
distribution and time evolution in Tab 
Separated Values (TSV) format using the 
pandas library. 

Plots.py 

Groups all the functions that allow to 
make the default plot of both variables’ 
spatial distribution and time evolution, 
together with their initialization. 

SolidComponents_temperature_initialization.py 

Functions that allow to evaluate the 
initialization of solid components 
temperature according to the value of 
flag INTIAL, the conductor topology and 
the kind of interface between fluid and 
solid components and between solids. 

Transient_solution_functions.py 

This is the most important and complex 
of all these modules. It manages the 
adaptive time step evaluation, the 
coefficient matrix and known term 
vector assembly according to the Finite 
Element method and the solution of the 
resulting linear system of equation at 
each time step, together with the 
application of BCs according to flag 
INTIAL. 

  



3 CODE DESCRIPTION 

37 

3.1.2 SC2 INPUT AND OUTPUT ORGANIZATION 

Before starting the simulation, user must provide input data to set the simulation features, 

build the conductor and its basic components, construct the grid, impose the drivers, define 

cable topology and interfaces and, last but not least, compile the diagnostic to save the 

output.  

This procedure is carried out with the aid of suitable input files in the form of Excel 

spreadsheets (extension .xlsx) that must be compiled before each run. User can find them in 

the subfolder called Description_of_Components and they can be further organized into 

subfolders, each containing a complete set of input files. The set is composed by main input 

files that are necessary for the simulation and must be filled-in at each simulation and auxiliary 

input files. The latter are thought to increase driver input flexibility as external heat, operation 

current and magnetic field, to assign time dependent boundary conditions or to assign strands 

strain according to a complicated function of both time and space. Typically, they are read if 

the value of some flags is negative. Since their peculiarity, they will not be further detailed in 

this section that concentrates on the main input files. Generally speaking, the information 

provided with them refers to three well defined levels which are, from top to bottom, 

simulation level, cable level and basic components level, according to the fact that the input 

files are loaded into the code as attributes of objects simulation, CONDUCTOR or each one of 

the required basic components. Typically, Python built-in dictionary data type is exploited to 

store the information carried by this input files. For a simulation with a single cable there 

seven main input files are required, specifically one input file at simulation level, four at 

conductor level and two at basic components level. Auxiliary input files always belong to the 

last level and their number is variable. Since the modelling of more cables is foreseen by SC2, 

if more than one cable is to be modeled, user should provide as many input files of the third 

level as the number of the defined cables, therefore the total number of input file is 

proportional to that number and can be written in this way: 

𝑁𝑖𝑛𝑝𝑢𝑡 = 1 + 3 + (2 + 1)𝑁𝑐𝑜𝑛𝑑 (3.1-1) 

The reason why the number of cables in the above formula is multiplied by (2 + 1) and 

not by 2 is that file conductor_couplig.xlsx, even though belongs to the second level, has a 

completely different structure with respect to all the other input files, so a new file of this type 

must be compiled for each cable. Indeed, while the others are organized by columns, each 

one identifying a different cable or, within the same cable, different fluid and solid 

components, each sheet of conductor_couplig.xlsx workbook holds matrix. Main input file 

compilation is illustrated in appendix E.1, here all of them are listed and concisely depicted: 

1. Transitory_Input.xlsx: it is at simulation level, so its input values are saved in a 

simulation attribute, dictionary transient_input, and it allows to set global information 

about the simulation. Being the master of all the input files, it is the first file read when 

the code is launched. Table 3.1-3 lists the input data that user can set compiling it.  
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Table 3.1-3 List of the input data to be provided in the input file Transitory_Input.xlsx: details about units, 
the type and its meaning are given for each input data. 

Variable name Unit SI Variable type Meaning 

SIMULATION − string simulation name 
MAGNET − string Input file name that defines conductors 

TEND s float Simulation end time 
IADAPTIME − integer Flag for the time adaptivity 

STPMIN s float Minimum time step 
STPMAX s float Maximum time step 
TIMEREF s float Time when the most refined step is adopted 
TAUREF s float Time duration of the most refined grid 

2. conductor_definition.xlsx: it is the file that contains all the information about the 

cable(s) to be simulated, so it is at conductor level. It can be divided into two parts, the 

first with the name to all the other input files (both main and auxiliary) to be read; the 

second with the input data for the cable(s). This file split is put in evidence by the 

following Table 3.1-4 and Table 3.1-5; two dictionaries, attributes of CONDUCTOR 

object, stores these inputs namely file_input and dict_input.  

Table 3.1-4 List of the input data to be provided in the input file conductor_definition.xlsx. Details about 
units, the type and its meaning are given for each input data: variables related to the name of all the other input 
files to be loaded in order to perform the simulation. 

Variable name 
Unit 

SI 
Variable 

type 
Meaning 

EXTERNAL_ALPTHAB − string 
auxiliary file name to get magnetic field 

gradient 
EXTERNAL_BFIELD − string auxiliary file name to get magnetic field 

EXTERAL_CURRENT − string auxiliary file name to get operating current 
EXTERNAL_FLOW − string auxiliary file name to get flow input variables 
EXTERNAL_HEAT − string auxiliary file name to get external heating 

EXTERNAL_STRAIN − string auxiliary file name to get strand strain 

GRID_DEFINITION − string 
main file name to define conductor grid 

features 

OPERATION − string 
main file name to set conductor components 

operation properties 

OUTPUT − string 
main file name to define times to save 
solution spatial distribution and spatial 

coordinates to save solution time evolution 

STRUCTURE_COUPLING − string 
main file name to define conductor topology 

and evaluate heat transfer coefficient 

STRUCTURE_ELEMENTS − string 
main file name to set conductor components 

input data 
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Table 3.1-5 List of the input data to be provided in the input file conductor_definition.xlsx. Details about units, 
the type and its meaning are given for each input data:  input data that characterizes the conductor. 

Variable 
name 

Unit 
SI 

Variable 
type 

Meaning 

XLENGTH m float conductor length 
IOPFUN − integer flag that defines current space and time dependence 

IOP0_TOT A float total initial operating current transported by the cable 
ISJOINT − integer flag to define the presence of the joints 

XJBEG m float 
beginning of the heated zone by joule effect in the inlet 

joint, if any 

XJBEIN m float 
end of the heated zone by joule effect in the inlet joint, 

if any 

XJBEOUT m float 
beginning of the heated zone by joule effect in the 

outlet joint, if any 

XJENOUT m float 
end of the heated zone by joule effect in the outlet 

joint, if any 

MAXNOD − integer 
maximum number of nodes for conductor spatial 

discretization 

METHOD − integer 
flag to define the numerical solution method for the 

system of ODE in time 

UPWIND − integer 
flag that switches on the upwind discretization in all 

the fluid equations according to the chosen METHOD 

3. conductor_grid.xlsx: whit this file user specifies the kind of grid (uniform, refined, 

adaptive) and parameters to be adopted for the spatial discretization, listed in Table 

3.1-6 below. This input file is also at cable level and the CONDUCTOR dictionary 

attribute created to store its information is called dict_discretization. 

Table 3.1-6 List of the input data to be provided in the input file conductor_grid.xlsx. Details about units, the 
type and its meaning are given for each input data. 

Variable 
name 

Unit 
SI 

Variable 
type 

Meaning 

NELEMS − integer number of elements of the mesh 
ITYMSH − integer flag to define the mesh property 
NELREF − integer number of spatial elements in the refined zone 
XBREFI m float starting point of the refined zone 
XEREFI m float end point of the refined zone 
SIZMIN m float minimum spatial mesh size, if refined 
SIZMAX m float maximum spatial mesh size, if refined 

DXINCRE − float 
size increase ratio for the spatial mesh, from initially 

refined zone outwards 

4. conductor_input.xlsx: this file is at components level, therefore the workbook is 

composed by five sheets, one for each kind of basic components that can be used to 
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build the cable. User must compile only the sheets that needs to initialize the cable 

basic components used in the simulation. It is devoted to the definition of the main 

features of the different conductor components, e.g. geometry, fluids and solid 

materials. Each basic component object has a dictionary attribute called dict_input to 

store these parameters. 

5. conductor_operation.xlsx: this workbook inherits the same structure of file 

conductor_input.xlsx and it is the second main input file that belongs to the lowest 

level. With this file, user can define flow initial conditions and operating parameters 

(drivers) for the cable solid components such as magnetic field, current and external 

heating. Attribute dict_operation is a dictionary that holds these values defined for 

each of the five basic component objects. 

6. After the assignment of the input data for the conductor components, the conductor 

topology and the interface parameters like the heat transfer coefficients between 

different components are fully characterized in the eight sheets of file 

conductor_coupling.xlsx. Its information is saved in dedicated CONDUCTOR 

dictionaries attributes in form of matrices, that share the same name with the sheets. 

7. conductor_diagnostic.xlsx: is the last of the main input files and belongs to the cable 

level. It is used for the output analysis, since in its two sheets, called Space and Time 
respectively, user can specify the times at which the solution spatial distribution should 

be saved and set the spatial location of sensors to get variables time evolution for each 

cable. The times and spatial coordinates are stored in two different arrays that are 

attributes of CONDUCTOR object, namely Space_save and Time_save. 

The last part of this subsection explains shortly how the output of the simulation is 

organized, since this problem is also managed by the code. The output of the simulation is 

both in the form of data files with the extension .tsv and of vector figures in the .eps format 

saved in Simulations_results subfolder. Thanks to the GUI, user can group together several 

simulations with similar (but not exactly the same) input data in subfolders inside 

Simulations_results, therefore this subfolder will contain an arbitrary number of sub-

subfolders, which are further divided according to the solution method, each of them related 

to a specific simulation. The structure of this last folder is the object of this concluding part. A 

first distinction is among the data files and the figures: the formers are grouped in Output 

folder while the latter in the Figures folder. The inner structure of this folders is the same: 

there are four folders to distinguish between initialization, spatial distributions, time 

evolutions and final solution, respectively called Initialization, Space, Time and Solution. 

Inside each of these folders there are as many folders as the number of the initialized 

conductors in the simulation whose name correspond to the conductor identifier. As far as 

Output path is concerned, each conductor output data files are stored within the 

corresponding folder, while figures are grouped according to the conductor components in 

the homonym folder of the Figures path. 
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3.1.3 SUMMARY 

To sum up, the SC2 code is a Python 3 object-oriented program thought to model thermal 

behavior of the superconducting cables, tested to model a single cable (for the time being). 

Its core is organized into eleven primary modules; of them only the launcher one, 

Simulation_Starter.py, does not define a class, while the others ten define likewise classes. 

Being a code equipped with a graphical user interface, one of them is dedicated to this feature 

and it is called SC2_GUI.py. Class Simulation manages both the conductor objects definition 

and the steps of the algorithm, while the others build up the cable, which is constructed 

combining only five kinds of basic conductor components objects, namely CHAN, Z_JACKET 

and one or an arbitrary combination of the three strands kinds (STR_MIX, STR_SC and 

STR_STAB). This simple structure is achieved exploiting python class inheritance on the classes 

that defines the solid components objects. 

The secondary modules are grouped into two subfolders. Properties_of_materials 
collects all the fluid and solid material thermophysical and electromagnetic properties, while 

UtilityFunctions is where modules with different goals can be found.  

The input files, in the form of excel worksheets, are stored in the subfolder 

Description_of_Components and can be divided into two groups: main input files to be 

compiled by the user for each new simulation, and other auxiliary ones available to extend 

input flexibility. 

This section ends with a short but exhaustive description of the output organization into 

subfolders within the Simulations_results directory, as allowed by the GUI. 

3.2 CODE KERNEL: CONDUCTORS, FLUIDCOMPONENTS AND 

SOLIDCOMPONENTS CLASSES 

Having described the entire architecture of the code in the previous section, attention is 

paid to the classes that contribute to building the cable, proposing a description of the main 

attributes and methods which characterize them. 

FluidComponents and SolidComponents classes have most of their attributes in common: 

the same kind of information is stored in a variable that has the same name regardless of the 

class. What distinguishes the two classes are their methods and the inheritance that is only a 

feature of SolidComponents class. Class Conductors has many attributes, but the same 

rationale is used also for this case: the same kind of information is stored in attributes with 

the same name. In this way it is easy to access the required variables and this is not error 

prone since each attribute belongs to a different object, even if they share the same name. 

The common attributes of these classes are listed and shortly described in Table 3.2-1. 

It is a good practice to define all the attributes of a class in its __init__ method, so all the 

above-mentioned attributes (and the not mentioned ones) are at least declared in the 

constructor method of the class to which they belong. 
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For each class the attribute NAME is already defined in Table 3.1-1, while the ID 

construction is explained in section 5E.1. 

The class Conductors does not have the dict_operation attribute, which is replaced by 

file_input, that keeps track of the input files to be red and loaded. 

Table 3.2-1 List of the attributes in common between the Conductors, FluidComponents and SolidComponents 
classes. The class to which they belong and a brief description are given. 

Attribute Conductors 
Fluid-

Components 
Solid-

Components 
Description 

NAME X X X 

Name of the object, it is 
always the same for 

objects belonging to the 
same class. 

ID X X X 

Object identifier, it 
changes for each object of 
the same class and allows 

to uniquely identify the 
object. It came from the 

input files. 

dict_input X X X 
Dictionary to load the 

input data. 

dict_operation  X X 
Dictionary to load the 
operation parameters. 

dict_node_pt X X X 

Dictionary to save 
thermophysical and/or 

electromagnetic 
properties values in the 

nodal points. 

dict_Gauss_pt X X X 

Dictionary to save 
thermophysical and/or 

electromagnetic 
properties values in the 

Gauss points. 

The last two attributes of Table 3.2-1 not only store different quantities but are also 

differently organized according that they belong to Conductors or FluidComponents and 

SolidComponents. Generally speaking, dict_node_pt and dict_Gauss_pt contain the same 

properties that are evaluated in two different locations and in two different ways. In the 

former dictionary the properties are evaluated in the node of the spatial discretization; the 

latter stores the same quantities evaluated in the Gauss point which is the mid-point of each 

interval of the partition of the domain. The evaluation of the properties in the Gauss points 

requires a minimum amount of information in the nodal points. 

The initialization or the solution of the linear system of equations, provides at each time 

step this minimum data set that is the spatial distribution of the unknown variables in the 
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nodal points, namely velocity, pressure and temperature for each fluid component and 

temperature for each solid component. 

This are the arguments of the functions used to evaluate all the other properties in the 

nodal points.  

𝝌𝑛𝑜𝑑𝑎𝑙 = 𝑓(𝝃𝑛𝑜𝑑𝑎𝑙, … ) 
(3.2-1) 

To evaluate the properties in the Gauss points, two paths can be followed. The simplified 

one is to take the average value in each interval of the partition of the domain: 

𝜒𝑖,𝐺𝑎𝑢𝑠𝑠 =
𝜒𝑖,𝑛𝑜𝑑𝑎𝑙 + 𝜒𝑖+1,𝑛𝑜𝑑𝑎𝑙 

2
 𝑖 = 0,… ,𝑁 (3.2-2) 

The second implies to evaluate only the solution in the Gauss points: 

𝜉𝑖,𝐺𝑎𝑢𝑠𝑠 =
𝜉𝑖,𝑛𝑜𝑑𝑎𝑙 + 𝜉𝑖+1,𝑛𝑜𝑑𝑎𝑙

2
 𝑖 = 0,… ,𝑁 

(3.2-3) 

and then use this information as arguments of the functions to evaluate the other properties 

in the Gauss points:  

𝝌𝐺𝑎𝑢𝑠𝑠 = 𝑓(𝝃𝐺𝑎𝑢𝑠𝑠, … ) 
(3.2-4) 

The first strategy is currently adopted in the 4C; if dealt with the array smart notation it 

will allow to reduce the computational cost of the algorithm, however it is less accurate with 

respect to the last one implemented in SC2 code. 

In any case, the 𝝌𝐺𝑎𝑢𝑠𝑠 and 𝝃𝐺𝑎𝑢𝑠𝑠 vectors have one less element than the nodal ones. 

In the following three subsections, some details on the last two attributes of Table 3.2-1 

are supplied, then the methods of the class are explained. Whenever it is possible, the 

methods are developed using the array-smart notation; this applies to the whole code in 

general.  

3.2.1 FLUIDCOMPONENTS CLASS 

As the name prefix suggest, dict_node_pt and dict_Gauss_pt are two dictionaries. 

Inasmuch attributes of CHAN objects, their keys store several fluid properties, as well as the 

transport properties like the friction factor and the steady state heat transfer coefficients. To 

each dictionary key corresponds a numpy array of length 𝑁 + 2. The list of dictionary keys and 

their meaning is given in Table 3.2-2. 

After that the main attributes of the class are described, it is worthily that the reader is 

aware of the method that it makes available to the user.  

As mentioned, the most important method of a class is its inner __init__ method that is 

the constructor of the object when the class is instantiated. Fluid components class provides 

several other methods. Eval_fluid_comp_properties and Eval_properties allow to evaluate the 

CHAN properties both in nodal or Gauss points according to the value of the keyword (or 
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named) argument “Where” while the kind of fluid can be specified with the keyword argument 

“Fluid”, a flag that selects the correct tables. 

Compute_denisty_and_mass_flow_rate is a method introduced to easily evaluate, at each 

time step, the density and the mass flow rate (both at the inlet and at the outlet) in the nodal 

points to be saved together with the solution at the user required time step. As before, the 

kind of fluid is specified by the named argument “Fluid”. 

Friction factor is computed with different correlations as function of Reynolds and of the 

channel geometry in Friction method that calls the Newton_f and User_Friction methods; the 

latter allows to employ a user defined correlation for the friction factor. This is one of the 

methods that contains the constitutive relations introduced in section 2.1.1. 

Finally, Compute_velocity and Compute_mass_flow are invoked in Gen_Flow.py module 

to compute the flow initialization, if inlet and outlet pressure are provided together with inlet 

temperature. 

Table 3.2-2 List of dictionaries dict_node_pt and dict_Gauss_pt keys and their description. 

Key Description 

velocity Coolant velocity spatial distribution 
pressure Coolant pressure spatial distribution 
temperature Coolant temperature spatial distribution 
density Coolant density spatial distribution 
enthalpy Coolant enthalpy spatial distribution 
Gruneisen Coolant Gruneisen spatial distribution 
sound_speed Coolant speed of sound spatial distribution 
spec_heat_p Coolant specific heat at constant pressure spatial distribution 
spec_heat_v Coolant specific heat at constant volume spatial distribution 
ther_cond Coolant thermal conductivity spatial distribution 
viscosity Coolant dynamic viscosity spatial distribution 
Reynolds Coolant Reynolds dimensionless number spatial distribution 
Prandtl Coolant Prandtl dimensionless number spatial distribution 
mass_flow_rate Coolant mass flow rate spatial distribution 
htc_steady Coolant steady state heat transfer coefficient spatial distribution 
friction Coolant friction factor spatial distribution 

3.2.2 SOLIDCOMPONENTS CLASS 

In this section not only the parent class SolidComponents but also all their child and 

grandchild classes are considered, to detail what arguments and methods are in common 

thanks to the inheritance properties and what are specific of the class. The top-down approach 

is followed; the class hierarchy is shown in Figure 3.1-1.  

All the attributes reported in Table 3.2-2 are listed in class SolidComponents but they are 

declared in the __init__ method of the basic solid components classes: Jacket, MixSCStabilizer, 

SuperConductor and Stabilizer. Since there is no need to build a solidcomponent object, this 
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parent class does not have the __init__ method, nevertheless there are several other methods 

used to evaluate properties and set the drivers.  

Eval_sol_comp_properties and Eval_properties are a couple of methods that allow to 

evaluate some thermophysical properties like density, specific heat, thermal conductivity and 

electrical resistivity. The kind of object and its composition are taken into account with 

suitable flags and if-else branches; the average properties for the composite objects are 

computed as explained in appendix C. These methods can be used to evaluate the properties 

both in nodal and Gauss points thanks to the keyword argument “Where”. The functions for 

the material are imported from modules stored in Properties_of_material subfolder. 

Method Get_I initializes the electrical current in each solid component object. Even though 

the electrical module is not developed yet, this method is already foreseen in this class. The 

same can be said for Get_B_field that computes the magnetic field in each solid component 

both in nodal and Gauss points exploiting the “Where” argument.  

Get_Q is thought to compute the external heating according to the value of the flag IQFUN, 

the named argument “Method” keeps into account the method chosen to integrate the 

system of ODEs. If IQFUN is larger than zero, this method calls Q0_where that determines the 

square wave in time and space for the external heating according to the input parameters in 

conductor_operation.xlsx workbook. 

The last two methods JHTFLX_new_0 and Set_energy_counters allow to initialize to zero 

the vectors that represents the Joule heating and the external and Joule heating energies, 

respectively. These initializations are performed according to the selected solution method 

with the keyword “Method”. 

Child class Strands does not add other attributes to the ones already established in class 

SolidComponents and, as the previous, it does not have the __init__ method since there is no 

need to build strand objects. Its methods are inherited by the three strand kinds and are briefly 

described below. 

Get_alphaB is the one devoted to the evaluation of the magnetic field gradient in the 

strands and at the time being it is not used since there is no current, however it is already 

integrated in the SC2 code; as usual the properties can be evaluated in nodal or in Gauss points 

by specifying the keyword “Where”. 

Methods Get_superconductor_critical_prop and Eval_critical_properties evaluate the 

superconductor critical properties. They can distinguish both the location, nodal or mid-point 

thanks to the named argument “Where”, and the kind of superconductor: available choices 

are NbTi, Nb3Sn and RE123. The correct functions are imported from modules 

NbTi_properties.py, Nb3Sn_properties.py and RE123_properties.py collected in 

subfolder Properties_of_materials. Since Nb3Sn critical properties are function of the strain 

in the strand, the method Get_EPS allows to determine it according to the value of the flag 

IEPS in the input file conductor_operations.xlsx. Again, both the evaluation in nodal and in 

Gauss points are allowed exploiting the “Where” keyword. 



3.2 CODE KERNEL: CONDUCTORS, FLUIDCOMPONENTS AND SOLIDCOMPONENTS CLASSES 

46 

Classes Jacket, MixSCStabilizer, SuperConductor and Stabilizer only have the __init__ 

method where the inherited attributes from the parent class SolidComponents are (at least) 

declared when the class is instantiated. Although the attributes dict_nodal_pt and 

dict_Gauss_pt are the same in these classes, as a consequence of the different methods that 

are used to construct them, their keys can be very different according to the object to which 

they belong; this is clarified in the following Table 3.2-3. 

Table 3.2-3 List of dictionaries dict_node_pt and dict_Gauss_pt keys together with their description. Note 
that not all the keys are available for the dictionaries, according to the class these attributes belong. 

Key Jacket 
MixSC-

Stabilizer 
Super-

Conductor 
Stabilizer Description 

alpha_B  X X X 
Solid component gradient 
of the magnetic field spatial 
distribution 

B_field X X X X 
Solid component magnetic 
field spatial distribution 

density X X X X 
Solid component density 
spatial distribution 

el_resist X X X X 
Solid component electrical 
resistivity spatial 
distribution 

Epsilon  X X  
Solid component strain 
spatial distribution 

J_critical  X X  
Solid component critical 
current density spatial 
distribution 

spec_heat_p X X X X 
Solid component specific 
heat at constant pressure 
spatial distribution 

T_critical  X X  
Solid component critical 
temperature spatial 
distribution 

T_cur_sharing  X X  
Solid component current 
sharing temperature 
spatial distribution 

T_cur_sharing_min  X X  

Solid component minimum 
current sharing 
temperature spatial 
distribution 

temperature X X X X 
Solid component 
temperature spatial 
distribution 

ther_cond X X X X 
Solid component thermal 
conductivity spatial 
distribution 

Only two of the four classes, MixSCStabilizer and SuperConductor, have the full set of keys 

since they need both thermophysical and electromagnetic properties to be described, while 
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the Z_JACKET objects are completely described with only the former ones plus the magnetic 

field. STR_STAB, in addition to the thermophysical properties, also requires the magnetic field 

and its gradient but not the set of critical properties since it is not a superconductor. To be 

picky, the STR_MIX and STR_SC actually have the whole set of keys only if the critical 

properties of the superconductor material are function of the strain, as in the case of Nb3Sn, 

otherwise also in this case the last key is missing from the dictionaries. 

Dictionary dict_nodal_pt has also the keys for the drivers that are not shared with 

dict_Gauss_pt, these are EXTFLX, JHTFLX, EEXT and EJHT. The first two are summed together 

as follows to build the key Q1 and Q2 in the dict_Gauss_pt that are used to construct the load 

contribution to the known term vector: 

𝑄1𝑖 = 𝐸𝑋𝑇𝐹𝐿𝑋𝑖 + 𝐽𝐻𝑇𝐹𝐿𝑋𝑖 𝑖 = 0, … , 𝑁 (3.2-5) 

𝑄2𝑖 = 𝐸𝑋𝑇𝐹𝐿𝑋𝑖+1 + 𝐽𝐻𝑇𝐹𝐿𝑋𝑖+1 𝑖 = 0,… ,𝑁 (3.2-6) 

3.2.3 CONDUCTORS CLASS 

This class is quite complicated since it manages all the other classes discussed above. Many 

other attributes are associated to its objects and in this section only the most important are 

considered. Two of them are the already introduced dictionaries dict_node_pt and 

dict_Gauss_pt, the others are dict_discretization, dict_Step, dict_obj_inventory and 

dict_topology. The reader should have noticed that all the above attributes are Python 

dictionaries: actually, this Python built-in data type is extremely powerful and useful to 

organize data and information that belongs to the same kind, and easily access them calling 

the corresponding key. In this way the code is more readable, especially if the keys are self-

explanatory. 

If dict_node_pt and dict_Gauss_pt belong to CONDUCTOR objects, they are used to store 

the heat transfer coefficients between fluid components, fluid and solid components and 

between solid components. They are nested dictionaries organized as shown below: 

# htc dummy dictionary and its sub-dictionary declaration 

dict_dummy[“HTC”] = dict() 

dict_dummy[“HTC”][“ch_ch”] = dict() 

dict_dummy[“HTC”][“ch_ch”][“Open”] = dict() 

dict_dummy[“HTC”][“ch_ch”][“Close”] = dict() 

dict_dummy[“HTC”][“ch_sol”] = dict() 

dict_dummy[“HTC”][“sol_sol”] = dict() 

where dict_dummy is the generic dictionary dict_node_pt or dict_Gauss_pt. The main key HTC 

is associated with a dictionary that stores all the values of the heat transfer coefficients. This 

dictionary has three keys (ch_ch, ch_sol and sol_sol) to keep into account the three possible 

kinds of interfaces, to which are associated other dictionaries. The last two, ch_sol and sol_sol, 
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have keys that identifies the objects that constitute the interface. The convention is that the 

keys are constructed joining the objects ID alphabetically with an underscore, for example if 

CHAN_1 and STR_MIX_1 constitute an interface the key name is CHAN_1_STR_MIX_1 and this 

key will belong to dictionary ch_sol since it is between a fluid and a solid component. The 

value of this key is an array of heat transfer coefficients evaluated calling Get_transp_coeff 

and Eval_transp_coeff methods of the class according to the information stored in input file 

conductor_couplign.xlsx; they can distinguish if the evaluation should be done in the nodal 

rather than in the Gauss points thanks to the keyword “Where”. These methods and 

specifically Eval_transp_coeff implements the second kind of constitutive relations discussed 

in section 2.1.1. 

Dictionary ch_ch is different from the previous two since it keeps into account that 

channels can have both open or close contact perimeter that lead to different values of the 

heat transfer coefficients, therefore another dictionary level is added with the keys Open and 

Close. Both dictionaries have the same structure described for ch_sol and sol_sol. 

Attribute dict_Gauss_pt stores also the transport coefficients, 𝐾’ , 𝐾’’  and 𝐾’’’  that are 

deeply depicted in appendix A, so together with the HTC key three other keys (K1, K2 and K3) 

are added, to which are associated likewise dictionaries to store these values. Each of these 

dictionaries has a set of interface keys of the kind CHAN_i_CHAN_j with 𝑖 >  𝑗 with values the 

transport coefficient array. These coefficients can be evaluated only for fluid components with 

a not null value of the open perimeter fraction and their evaluation is performed with the 

properties in the Gauss points. 

Dictionary dict_discretization has three keys Grid_input, N_nod and xcoord. The first is a 

dictionary itself that stores the input data loaded from file conductor_grid.xlsx for the i-th 

CONDUCTOR, the second has the number of nodes of the spatial discretization, since the 

number of elements, that is the number of intervals, is provided in input, while the third is the 

numpy array of the spatial discretization. This single array is used for all the cable components 

whenever it is necessary. 

Another dictionary, dict_Step, is devoted to store two arrays essentials for the solution of 

the linear system of equations. The first is associated to the key SYSVAR and it is the array of 

the initialization at the initial time step and the array of the solution at each subsequent time 

steps; the second key is called SYSLOD and it considers the contribution of the external source 

of heating in the solid components. Both are used to build the known term vector, but they 

can be thought as matrices with fixed number of rows (equal to 𝑁𝑡𝑜𝑡) and a variable number 

of columns that is function of the method used to numerically integrate the linear system of 

equations.  

The last two mentioned attributes dict_obj_inventory and dict_topology have a well-

organized and articulated structure that will be addressed in the following subsection. It is 

time to take a closer look to the methods of the class. The conductor constructor is discussed 

in the next section since it is quite complicated; as a matter of fact, it invokes other methods 

that in turn rely on other methods and all of them will be somehow explained in that section. 

For the time being the focus is on the methods that are not called by __init__.  
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The method Initialization accomplishes several tasks: it builds the conductor mesh, 

initializes the fluid and solid components variables, initializes current, magnetic field and 

drivers for each solid component, constructs and initializes dict_Step attribute and saves the 

computed thermophysical and electromagnetic properties in suitable files. Last but not least, 

it starts the real time plot of selected variables, that will be discussed lather on. Several of 

these operations are performed invoking functions from modules in subfolder 

Utility_Function or other class methods like Operating_conditions, that evaluate at each time 

steps solid components current, magnetic field and its gradient together with the external 

drivers calling the methods discussed in section 3.2.2. This method also invokes CONDUCTOR 

Eval_Gauss_point that on the one hand evaluate both fluid and solid components 

thermophysical and electromagnetic properties (if any) in the Gauss points, taking advantage 

of the components methods presented above; on the other hand invokes Get_transp_coeff 

with the “Where” keyword set to Gauss to compute the heat transfer coefficients in the mid-

points. 

The Post_processing method is similar to the Operating_conditions one but it allows to 

evaluate the quantities in the nodal points, moreover it invokes functions 

Save_space_convergence and Save_time_converence to store data useful if space and/or 

time convergence analysis should be performed. 

3.2.3.1 __INIT__ METHOD  

This method can be roughly subdivided into four main actions: 

1) read and load the content of the primary input files; 

2) instantiate the cable components according to the information obtained with the 

previous step; 

3) get the conductor topology; 

4) define all the other attributes. 

Here the second and third points of the list are detailed.  

In order to have an exhaustive picture of the conductor components, the attribute 

dict_obj_inventory is introduced that, as its name suggests, is a Python dictionary that keeps 

track of the inventory of the defined objects, grouping them in several categories (see Figure 

3.2-1). Each of these categories are the keys of this dictionary to which a nested dictionary is 

associated; key names are FluidComponents, MixSCStabilizer, Stabilizer, SuperConductor, 

Jacket, Strands, SolidComponents and Conductor_components. Please notice that, apart 

from the last one, all the keys coincide with the name of the classes that defines the cable 

components objects. The first five dictionaries have three keys: 

1. Name: string value that corresponds to the kind of the object, it will be assigned to the 

NAME attribute of the class and used as the root of the object identifier; 

2. Number: integer value that represents the total number of instantiated objects of the 

kind specified in Name; 

3. Objects: Python list that stores all the instantiated objects of the corresponding class. 
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Figure 3.2-1 Nested structure of the attribute dict_obj_inventory of class Conductors. 

If no objects of a basic kind are instantiated Number is equal to zero, the Objects list is 

empty while the Name key shows the object name in any case.  

The dict_obj_inventory is declared as a dictionary in the __init__ method and its structure 

is built within the method Conductor_components_instance that instantiates all the 

conductor components defined by the user in primary input files conductor_input.xlsx and 

conductor_operation.xlsx. For each sheet in these files, after the check that the number of 

defined objects and their identifiers are the same, the corresponding class is instantiated to 

create the objects, that are stored in the dictionaries above described. An error is raised if the 

sheet name is not equal to one of the foreseen five possibilities. Outside the loop, the lists of 

the dictionaries Strands, SolidComponents and Conductor_components are sorted 

alphabetically and the total number of objects that belongs to each key is computed. The flow 

chart of the method is proposed in Figure 3.2-2. 
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Figure 3.2-2 Flow chart of method Conductor_component_instance of class Conductors, invoked during the 

conductor definition by the __init__ method. 
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The topology of the conductor is fully described in the attribute dict_topology that is 

another example of structured nested dictionaries. Analogously to dict_obj_inventory, it is 

declared as a dictionary in __init__ method while its structure is developed in method 

Get_conductor_topology. To understand the architecture of this dictionary, it is crucial to 

explain the different kinds of interface foreseen in the SC2 code between conductor 

components. As already discussed about the dict_node_pt or the dict_Gauss_pt attributes of 

CONDUCTOR objects, there are three physically meaningful interfaces, namely interface 

between fluid components, interface between fluid and solid components and interfaces 

between solid components. From the design point of view, the last two possibilities can only 

be due to thermal contact between two or more components. From the fluid components side 

there are two physical relevant alternatives, and namely the hydraulic parallel and the thermal 

contact; the former means that the fluid components do not only exchange energy through 

the close fraction of the contact perimeter, but they also exchange mass, momentum and 

energy through the open fraction. These two possibilities modify significantly the coupling 

between the fluid equations as described in section 2.1.3, and have an impact on flow 

initialization and boundary conditions application that will be discussed in section 0. The main 

issue related to the hydraulic parallel configuration is that the properties of the fluid in one 

channel, especially the pressure, cannot be considered independently from the properties in 

the other linked channels; moreover, the transitive property must be guaranteed in order to 

not make serious mistakes. According to this property, if there are three channels with 

identifiers CHAN_1, CHAN_2 and CHAN_3 and if CHAN_1 is in hydraulic parallel with CHAN_2 

and CHAN_2 is in hydraulic parallel with CHAN_3, then CHAN_1 and CHAN_3 are also in 

hydraulic parallel and they constitute a group of channels in hydraulic parallel. This is currently 

kept into account in dict_topology. The possible interfaces for fluid components are clarified 

in Figure 3.2-3.  

There is another possibility left that is not achievable in practice and not physically relevant 

but can be useful form the computational point of view when debugging, that is the absence 

of interfaces between components. When this condition is applied to the fluid components 

the resulting channels that are not in contact are called standalone channels; analogously for 

the solid components. It is also allowed to remove the interfaces between fluid and solid 

components. A standalone channel that is not in thermal nor in hydraulic parallel with other 

channels is a condition that may occur so only the standalone channels are modeled in SC2 

code. 

Figure 3.2-3 Graphic representation of the three kind of interfaces between fluid components. 
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Taking into account these observations, it is easier to introduce and describe the structure 

of attribute dict_topology declared as follows: 

# nested dictionaries declaration 

self.dict_topology[“ch_ch”] = dict() 

self.dict_topology[“ch_ch”][“Hydraulic_parallel”] = dict() 

self.dict_topology[“ch_ch”][“Thermal_contact”] = dict() 

self.dict_topology[“Stand_alone”] = dict() 

self.dict_topology[“ch_sol”] = dict() 

self.dict_topology[“sol_sol”] = dict() 

The four possibilities are the main keys of the dictionary to which other dictionaries are 

associated as values, except for the Standalone_channels that is a list of the CHAN objects that 

are isolated from other channels. 

The first key is split into two dictionaries: Hydraulic_parallel for fluid components in 

hydraulic parallel, including the ones that are in parallel due to the transient properties; 

Thermal_contact that groups the channels that are only in thermal contact. The third level is 

a set of dictionaries that are identified by the reference component, i.e. the first component 

in alphabetical order that constitutes the interfaces. This is the last dictionary level; its keys 

are: 

• ID of the components that contributes to the interface: the corresponding value is the 

interface identifier, a list of strings that are obtained joining alphabetically with an 

underscore the components identifiers; 

• Actual_number: integer value that represent the current number of components that 

constitute the interface; it is used in the dictionary construction. 

• Number: integer, the total number of the components belonging to the interface; 

• Group: list of all the objects that build the interfaces, its length must be equal to the 

value in key Number. In the case of fluid components in hydraulic parallel, the list 

keeps into account also the channels that are not directly in contact but indeed they 

are thanks to the transitive properties. 

A set of methods of class Conductors are devoted to gather cable topology exploiting only 

the information in contact_perimeter_flag and in open_perimeter_fraction sheets of file 

conductor_coupling.xlsx, the latter is used to determine if two channels are directly in 

hydraulic parallel or only in thermal contact. The content of this input file is described in 

appendix E.2. 

When the object is instantiated, __init__ method invokes the Get_conductor_topology 

method. Interfaces between solid components and interfaces between fluid and solid 

components are quite straightforward to obtain since they are provided as input in sheet 

contact_perimetre_flag. The complicated part is the one relative to the interfaces between 

fluid components, since basing only on the value of the flag does not allow to get all the 

channels in hydraulic parallel, because the ones for which the transitive properties should be 
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applied are not explicitly specified. This problem can be overcome looking at the rows and 

columns index of the channels submatrix. To explain the idea, recall the previous example of 

the three channels above. The configuration and the corresponding submatrix are shown in 

Figure 3.2-4.  

If Get_conductor_topology treats this configuration as does for the interfaces between 

the solid components, the transitive properties would not be applied since the results is that 

CHAN_1 and CHAN_2 are in hydraulic parallel as well as CHAN_2 and CHAN_3 but not CHAN_1 

and CHAN_3 because the value of the flag is 0; however, they are in hydraulic parallel. To get 

this, the method does not limit to read the values of the flags, but it interprets the hidden 

information looking at the rows and columns index. The flag associated to the interface 

CHAN_1_CHAN_2 is in (1,2) while the one associated to the interface CHAN_2_CHAN_3 is in 

(2,3). The column index (2) of the first is equal to the row index (2) of the second; subordinate 

methods to Get_conductor_topology catch this equality and establish that also CHAN_1 and 

CHAN_3 even if they do not constitute an interface, are in hydraulic parallel. This applies only 

if both the open perimeter fractions are larger than zero. 

In general, this search is applied to all the pair of channels that are in direct hydraulic 

parallel to find all the others that are indirectly related to them, constituting a group of fluid 

components in hydraulic parallel. Practically this is done with method Get_hydraulic_parallel 

that in turn calls Search_on_ind_col and Search_on_ind_row. After that all the channels in 

hydraulic parallel are found, Get_conductor_topology identifies the ones in thermal contact 

invoking Get_thermal_contact_channels. It can occur that a channel is both in hydraulic 

parallel with some channels and in thermal contact with others; in this case, the method 

knows that the hydraulic parallel condition is stronger than the thermal contact one, so in the 

flow initialization it is treated like a channel that belong to a group of fluid components in 

hydraulic parallel. Finally, the Find_Standalone_channels method is used to collect all the 

 

CHAN_1 CHAN_2 CHAN_3

CHAN_1 0 1 0

CHAN_2 0 1

CHAN_3 0  

CHAN_1 CHAN_2 CHAN_3

CHAN_1 0 0.2 0

CHAN_2 0 0.3

CHAN_3 0  

(a) (b) 

Figure 3.2-4 (a) fluid components configuration with CHAN_1 and CHAN_2 and CHAN_2 and CHAN_3 in 
direct hydraulic parallel, therefore by the transitive property also CHAN_1 and CHAN_3 are in hydraulic 
parallel;(b) top right matrix is the fluid components submatrix in sheet contact_perimeter_flag while the 
bottom right is the corresponding submatrix in sheet open_perimeter_fraction. Notice the conditional 
formatting in the cell, green cells should be filled, yellow cells should not, finally red cells are protected and 
cannot be edited. 
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channels that are not in hydraulic parallel nor in thermal contact with other fluid components 

(if any).  

The other interfaces are dealt directly by method Get_conductor_topology. 

3.2.4 SUMMARY  

This section describes with some level of detail the main attributes and methods of the 

classes that, altogether, participate in the mesoscale modeling of the cable. One of the basic 

philosophies adopted is that the same kind of information is stored in attributes that have the 

same name, and the same basic structure, while belonging to different objects. Unlike 

FluidComponents and SolidComponents classes that have a small amount of attributes, class 

Conductors has several attributes, many of them are well structured nested dictionaries. 

Among them the most important are dict_object_inventory and dict_topology. The section 

also describes the methods of the classes; emphasis is given to the __init__ method of the 

Conductors class that allows to initialize all the other objects and get their topology. 

3.3 SIMULATION CLASS: THE STEPS THROUGH THE SOLUTION 

The Simulation class handles all the steps of the simulation at the higher level and it is 

integrated with the graphical user interface that will be described in the next section. The 

essential flow chart of the code is shown in Figure 3.3-1 and ultimately it coincides with the 

method of this class.  

The constructor method __init__ takes care of reading the first of the main input file, 

Transitory_Input.xlsx calling the external function Read_input_file. The carried information 

are saved in the attribute transient_input,a python dictionary data type. Two other important 

tasks of this method are: 

-  build the base path, necessary to read all the input files including 

Transitory_Input.xlsx. 

- declare the list of conductors in the corresponding attributes list_of_Conducutors , set 

equal to python list. 

Simulation has two distinct methods that perform, respectively, the instance of class 

Conductor and the CONDUCTOR object initialization; the reason behind is that when more 

than one cable has to be modeled their initialization is subordinated to their interface. Method 

Conductor_instance, as its name suggests, is devoted creating the objects. The input file 

conductor_definition.xlsx is read at this point and a loop on the total number of conductors 

in cell B1 is performed to make an instance of the class Conductor that calls the __init__ 

method of the class deeply discussed in section 3.2.3.1; then the objects are appended to the 

list_of_Conductors attribute. After the loop, auxiliary function Load_fluid_tables from module 

Auxiliary_functions.py is invoked to load the proper fluid properties according to the fluids 

used in the simulation. In this way the tables are loaded only once and stored in the dictionary 

dict_fluid_tables, an attribute of the class Simulation. Finally, the sheet 

CONDUCTOR_COUPLING of workbook conductor_definition.xlsx is red and saved. This sheet 

was not discussed until now: it contains a matrix that describes the interfaces between the  
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Figure 3.3-1 Essential flow chart of the SC2 code. 

conductors in the same way of file conductor_coupling.xlsx; however, since in this thesis a 

single cable is considered, it has no effects. 

For each instantiated object method, Conductor_initialization invokes the 

CONDUCTOR.Initialization method that, in turn, initializes its basic components. This method 

was shortly discussed in section 3.2, at this point it is worthily that the reader is aware of how 

the fluid and solid components initialization is evaluated, because it is one of the most 

important steps of the whole procedure. The former is managed by the module 

Gen_Flow.py, the latter by the module SolidComponents_initialization.py. Further details 

are give in following sections 3.3.1 and 3.3.2, while the problem solution is addressed in 

section 3.3.3. 
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3.3.1 FLUID COMPONENTS INITIALIZATION 

There are several possibilities for the fluid components initialization that are ruled by the 

flag INTIAL, as an example the algorithms used to perform the initialization when the flag value 

is |1|, |2|, |5|, are explained below. The first important consideration is that for positive value 

of the flag, data came from the main input files, while if is negative they are loaded from 

ancillary input files. Table 3.3-1 below summarizes the initialized properties for the different 

value of INTIAL. 

Alongside the flag value, another factor affecting fluid initialization is cable topology; 

indeed, for the same value of INTIAL, different algorithms are implemented according that the 

fluid components are in hydraulic parallel or not. It is worthy to mention that if the channels 

are not in hydraulic parallel, they can be initialized with different values of INTIAL, however if 

they belong to the same group of channels in hydraulic parallel, the same initial data must be 

provided for all of them, that means the same absolute value of the flag must be provided in 

the CHAN sheet of workbook conductor_input.xlsx. Function Check_INTIAL_values 

guarantees that this initialization is correctly done by the user. 

Table 3.3-1 Effects on the fluid components initialization and on the application of the boundary conditions 
according to three possible values of the flag INTIAL, as far as fluid components are considered. 

INTIAL Initialization Boundary condtions Notes 

±1 

𝑝𝑖𝑛𝑙 𝑝𝑖𝑛𝑙 
 

𝑇𝑖𝑛𝑙 𝑇𝑖𝑛𝑙 Used as BC if 𝑣𝑖𝑛𝑙 > 0 
𝑝𝑜𝑢𝑡 𝑝𝑜𝑢𝑡 

 

𝑇𝑜𝑢𝑡 𝑇𝑜𝑢𝑡 Used as BC if 𝑣𝑜𝑢𝑡 < 0 

±2 

�̇�𝑖𝑛𝑙 𝑣𝑖𝑛𝑙  𝑣𝑖𝑛𝑙  from �̇�𝑖𝑛𝑙 
𝑝𝑖𝑛𝑙 𝑇𝑖𝑛𝑙 Used as BC if 𝑣𝑖𝑛𝑙 > 0 

𝑇𝑖𝑛𝑙 𝑝𝑜𝑢𝑡 
𝑝𝑜𝑢𝑡 evaluated in flow 

initialization  
𝑇𝑜𝑢𝑡 𝑇𝑜𝑢𝑡 Used as BC if 𝑣𝑜𝑢𝑡 < 0 

±5 

�̇�𝑖𝑛𝑙 𝑣𝑖𝑛𝑙  𝑣𝑖𝑛𝑙  from �̇�𝑖𝑛𝑙 
𝑇𝑖𝑛𝑙 𝑇𝑖𝑛𝑙 Used as BC if 𝑣𝑖𝑛𝑙 > 0 
𝑝𝑜𝑢𝑡 𝑝𝑜𝑢𝑡 

 

𝑇𝑜𝑢𝑡 𝑇𝑜𝑢𝑡 Used as BC if 𝑣𝑜𝑢𝑡 < 0 

The easiest initialization occurs when INTIAL is equal to ±1 and the CHAN objects are not 

in hydraulic parallel. In this case all the objects can be initialized independently from the 

others. Since both the inlet and outlet pressure are known, the average pressure of the 

channel can be evaluated and used to compute the properties, density and dynamic viscosity, 

at the average pressure and inlet temperature. They are passed to the FluidComponents class 

method Comupute_velocity that computes the velocity reversing the equation of the 

hydraulic characteristic: 

Δ𝑝 =
2𝑓𝜌𝐿𝑣2

𝐷ℎ
 (3.3-1) 
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Moreover, this method returns the friction factor evaluated as function of Reynolds and 

geometry with the method Friction. The initial mass flow rate is determined with sign 

according to the relation of order among the inlet and outlet pressure. 

If the objects are in hydraulic parallel it must be taken into account that both inlet and 

outlet pressure instantly equalize to the average value. Therefore, the average inlet and outlet 

pressure are evaluated and with these the average pressure of the channels: 

𝑝𝑖𝑛𝑙,𝑎𝑣𝑒 = 
∑ 𝑝𝑖𝑛𝑙,𝑖
𝑁𝑐ℎ,∥
𝑖

𝑁𝑐ℎ,∥
 

(3.3-2) 

𝑝𝑜𝑢𝑡,𝑎𝑣𝑒 = 
∑ 𝑝𝑜𝑢𝑡,𝑖
𝑁𝑐ℎ,∥
𝑖

𝑁𝑐ℎ,∥
  

(3.3-3) 

𝑝𝑎𝑣𝑒 =
𝑝𝑖𝑛𝑙,𝑎𝑣𝑒 + 𝑝𝑜𝑢𝑡,𝑎𝑣𝑒

2
 (3.3-4) 

Density and dynamic viscosities are evaluated at 𝑝𝑎𝑣𝑒 and 𝑇𝑖𝑛𝑙,𝑖 and with these parameters 

method Comupute_velocity is invoked to get the velocity and the friction factor of each 

channel; then the inlet mass flow rate is evaluated with the correct sign. Another important 

difference is that if 𝑝𝑖𝑛𝑙,𝑎𝑣𝑒 and 𝑝𝑜𝑢𝑡,𝑎𝑣𝑒 differs from the values in input, the average values are 

used when BCs are applied. 

Initialization performed with INITIAL ±2  or ±5  is not that much different when the 

channel is only in thermal contact or it is isolated. Since in both cases the inlet mass flow rate 

is given, the goal here is to find the value of the missing pressure, respectively the outlet 

pressure in the first case and the inlet pressure in the second one. The algorithm described in 

detail is the one used if flag is |2|, then the changes to deal with the other values are discussed. 

An initial guess on the pressure drop is evaluated using the inlet properties exploiting the 

hydraulic characteristic equation (3.3-1) with the correct sign according to the inlet mass flow 

rate that can be positive or negative to simulate a back flow. At this point an iterative 

procedure starts, the outlet pressure is evaluated as: 

𝑝𝑜𝑢𝑡 = 𝑝𝑖𝑛𝑙 − Δ𝑝𝑜𝑙𝑑 (3.3-5) 

and it is exploited to evaluate the average pressure at which the properties (density, dynamic 

viscosity, Reynolds and friction factor) are recomputed to evaluate the new value of the 

pressure drop. The iterations end when the relative error is lower than the tolerance or the 

maximum number of iterations is reached. 

If INTIAL is equal to ±5 the initial guess on the pressure drop is evaluated at 𝑝𝑜𝑢𝑡 and 𝑇𝑖𝑛𝑙 

and in the iterative procedure the inlet pressure rather than the outlet one is computed at 

each iteration as: 

𝑝𝑖𝑛𝑙 = 𝑝𝑜𝑢𝑡 + Δ𝑝 (3.3-6) 

These evaluated values are also used as boundary conditions. 
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If the fluid components are in hydraulic parallel, the above iterative procedure can no 

longer be applied because the mass flow rate repartition according to the channel 

characteristic must be considered; as a matter of fact, it is not true in general, that the inlet 

mass flow rate provided by the user for the channels is the actual value. SC2 code computes 

them guaranteeing the respect of the physics and of the mass balance. 

To compute the pressure-drop, the hydraulic characteristic of each channel is determined 

and it is approximated with a parable having vertex in the origin of the Cartesian reference 

frame (Δ𝑝, �̇�): 

Δ𝑝𝑖 = Δ𝑝 = 𝛼𝑖�̇�𝑖𝑛𝑙,𝑖
2   𝑖 = 1,… ,𝑁𝑐ℎ,∥ 

(3.3-7) 

with: 

𝛼𝑖 =
2𝐿𝑓𝑖

𝐷ℎ,𝑖Σ𝑖
2𝜌𝑖

 𝑖 = 1,… ,𝑁𝑐ℎ,∥ 
(3.3-8) 

This approximation is based on the hypothesis that the friction factor is weakly dependent 

from the velocity, and it is the more accurate the more turbulent the motion is, as can be seen 

from a Moody diagram.  

If flag is equal to |2| the average inlet pressure is evaluated to keep into account that in 

this case the pressure instantly equalize and this is exploited to compute the properties of 

each channel at 𝑝𝑖𝑛𝑙,𝑎𝑣𝑒 and 𝑇𝑖𝑛𝑙,𝑖 ; else if INTIAL is |5|  the average outlet pressure is 

determined to get the fluid components properties at 𝑝𝑜𝑢𝑡,𝑎𝑣𝑒and 𝑇𝑖𝑛𝑙,𝑖. 

At this point, the algorithm is the same in both cases and the 𝛼𝑖 can be evaluated. The 

total inlet mass flow rate is given by: 

�̇�𝑖𝑛𝑙,∥ = ∑ �̇�𝑖𝑛𝑙,𝑖

𝑁𝑐ℎ,∥

𝑖=1

 
(3.3-9) 

Since the pressure drop is the same for all the channels of the group, results that: 

�̇�𝑖𝑛𝑙,𝑖 = √
Δ𝑝

𝛼𝑖
 

(3.3-10) 

Substituting in the equation of the total mass flow rate and isolating the Δ𝑝 yields: 

Δ𝑝 =  (
�̇�𝑖𝑛𝑙,∥

∑ 𝛼
𝑖

−
1
2𝑁𝑐ℎ,∥

𝑖=1

)

2

 
(3.3-11) 

Known the pressure drop of the channels, the real mass flow rate distribution can be 

evaluated exploiting equation (3.3-1) keeping into account the actual flow direction, then the 

check on the mass conservation is performed. 
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Finally, the missing pressure value is evaluated: 

𝑝𝑜𝑢𝑡 = 𝑝𝑖𝑛𝑙,𝑎𝑣𝑒 − Δ𝑝 𝑖𝑓 𝐼𝑁𝑇𝐼𝐴𝐿 =  ±2 (3.3-12) 

𝑝𝑖𝑛𝑙 = 𝑝𝑜𝑢𝑡,𝑎𝑣𝑒 + Δ𝑝 𝑖𝑓 𝐼𝑁𝑇𝐼𝐴𝐿 =  ±5 (3.3-13) 

As usual this value is used also when the boundary conditions must be applied. 

3.3.2 SOLID COMPONENTS INITIALIZATION 

Flag INTIAL applies also to solid components, the allowed values are 0 and ±1. In the first 

case solid components temperature spatial distribution is initialized basing on the initial fluid 

components temperature distribution. Two possibilities are contemplated: 

1) solid components are in thermal contact with fluid components. 

2) solid components are not in thermal contact with fluid components.  

In the former case, the initial temperature spatial distribution is evaluated as the average 

weighted on the contact perimeters of the channels in contact with the solid components: 

𝑇𝑠𝑐𝑜𝑚𝑝,𝑖𝑛𝑖 = 
∑ 𝑃𝑐ℎ,𝑠𝑐𝑜𝑚𝑝𝑇𝑐ℎ,𝑖𝑛𝑖
𝑁𝑐ℎ,𝑡𝑐
𝑐ℎ

∑ 𝑃𝑐ℎ,𝑠𝑐𝑜𝑚𝑝
𝑁𝑐ℎ,𝑡𝑐
𝑐ℎ

 (3.3-14) 

while in the latter it is assumed to be equal to the minimum temperature spatial distribution 

among the ones of the fluid components. 

User can impose the initial temperature spatial distribution of the solid components 

setting the value of the flag equal to |1|: as usual positive value means that the values came 

from the main input file, negative value implies that the temperature initialization is loaded 

from a secondary input file. This last possibility allows more flexibility on the initialization; 

indeed, for INTIAL +1  the temperature is a linear distribution between inlet and outlet 

temperature given in input. This initialization can be done for all the solid components 

independently from the conductor topology, the thermal imbalance is reinstated during the 

transient evolution since the energy balance (3.3-15) must be guaranteed. The thermal energy 

deposited in the solid components at the initial time is disposed by the coolant flow, as a result 

the solid components temperature decrease while the outlet temperature of the coolant 

increase and their value is halfway from the initial temperature and the coolant inlet 

temperature.  

∑ ∫𝑑𝑥 Σ𝑠𝑐𝑜𝑚𝑝 [(𝜌𝑠𝑐𝑜𝑚𝑝𝑐𝑝,𝑠𝑐𝑜𝑚𝑝𝑇𝑠𝑐𝑜𝑚𝑝)𝑡𝑏𝑒𝑔
− (𝜌𝑠𝑐𝑜𝑚𝑝𝑐𝑝,𝑠𝑐𝑜𝑚𝑝𝑇𝑠𝑐𝑜𝑚𝑝)𝑡𝑒𝑛𝑑

]

𝐿

0

𝑁𝑠𝑐𝑜𝑚𝑝

𝑠𝑐𝑜𝑚𝑝=1

= ∑ ∫ 𝑑𝑡 [(�̇�𝑐ℎ 𝑤𝑐ℎ)0 − (�̇�𝑐ℎ 𝑤𝑐ℎ)𝐿]

𝑡𝑒𝑛𝑑

𝑡𝑏𝑒𝑔

𝑁𝑐ℎ

𝑐ℎ=1 

 

(3.3-15) 
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The final task of function initialization is to call function Plot_properties with the keyword 

What set to “Initialization”, that plots the fluid and solid components properties spatial 

distributions. 

3.3.3 BCS APPLICATION AND PROBLEM SOLUTION 

The problem solution is addressed at global level by the method Conductor_solution, 

where is placed the while loop in time. All the functions needed to achieve this goal are 

collected in module Transient_solution_functions.py. Until the end time of the simulation 

is reached a new time step for each conductor is evaluated with function Get_time_step, that 

will allow to use an adaptive time step. Then, for each conductor, the properties and external 

drivers are evaluated at the Gauss points calling the method Operation_conditions of class 

Conductor; these quantities are necessary to build the matrix elements and the known term 

vector of the system of equations. This is done in function Step, that keeps into account the 

selected method to integrate the ODE system with the named key “Method”. As stated in the 

end of section 2.2.2, the final coefficient matrix of the system 𝐴𝑠𝑦𝑠 is a banded matrix and only 

the band, i.e. the not null diagonals, are evaluated and stored to decrease the computational 

time and save memory. Function Step non only limits to the matrix and known term vector 

construction, it also applies the BCs and solves the linear system of equations.  

As far as the application of the boundary condition is concern, solid components are 

considered adiabatic, while for fluid components it is again ruled by flag INTIAL; it allows 

different sets of boundary conditions, provided the inlet temperature is assigned, together 

with one inlet and one outlet condition either on pressure or velocity. In case of a back flow, 

negative outlet velocity, the outlet temperature is also imposed. Table 3.3-1 also shows the 

values imposed on the known term vector for different flag values; on the coefficient matrix 

the column corresponding to the parameter is zeroed out apart from the row index that 

identifies the main diagonal, that is set equal to one. 

The resulting linear system of equation is solved exploiting a method for banded matrices 

without pivoting. First, 𝐴𝑠𝑦𝑠 is reduced to a non-singular system of equations, then the 

backward substitution method is applied to get the solution. The solution array is subdivided 

into smaller arrays that collect the spatial distribution at the current time step of the 

unknowns, namely velocity, pressure and temperature for the fluid components and the 

temperature for the solid components that are used as initialization for a new computation. 

During the loop, some spatial distributions and time evolutions are saved in suitable files. 

At the end of the transient, method Conductor_post_processing further elaborates these data 

making plots of the solution, spatial distributions at user required time steps and time 

evolutions at given spatial locations, as is deeply discussed in section 0.  

3.3.4 SUMMARY 

Class Simulation direct from the higher possible level all the steps of the simulation. Its 

constructor method reads the first of the main input files and saves its content in an attribute. 

Among this information the name of the next main input file to be red is found and thanks to 

it the instantiation of class Conductors can be done within method Conductor_instantiation. 
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After that, all the user defined cables are instantiated, they are initialized invoking method 

Conductor_initialization. In this section attention was paid in describing the effects of the 

conductor topology and the given input values, according to INTIAL flag value, on the fluid 

components initialization, as well as the possibility foreseen for the solid component 

initializations. 

The while loop to solve the transient can be found in method Conductor_solution and at 

each new time step it calls the Step function, one of the most important functions of all the 

code that builds the coefficient matrix of the system and the known term vector exploiting as 

much as possible the array smart notation, considering the numerical scheme chosen to march 

in time, applies the BC and solves the resulting linear system of equations.  

Finally, a rough post processing of the data is performed calling 

Conductor_post_processing method.  

3.4 A USER-FRIENDLY GUI  

SC2 graphical user interface is developed in module SC2_GUI. It is written exploiting the 

python standard library tkinter and it is based on the python class concept. Even if it is still in an 

embryonic phase of the realization, it allows user to easily manage the essentials actions to run 

a simulation. It consists of two parts, on the one hand the main window to deal with the 

simulation, on the other hand the real time plots of selected variables. 

The GUI main window consists of a menu bar with five so called cascades as shown in Figure 

3.4-1, whose options are briefly explained in Table 3.4-1. 

Figure 3.4-1 SC2 Graphical User Interface main window; menu bar composed by five cascades. 

To each option of the cascade correspond one or more class methods that actually make the 

selected actions. As an example, Load_input_file opens the window that allows to select the 

folder where are stored the input file for the simulation; Create_directories and 

Open_existing_directories respectively open the window to create a new file or an existing folder 

in which save the simulation results; finally Run_simulation is the method that collects the cited 

Simulation class methods that manages all the steps of the simulation.  
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Table 3.4-1 List of all the available options in the GUI distinguishing from the already and not yet 
implemented. The table also provides a succinct description of the options. 

Cascade Option Implemented Description 

Simulation 
input 

Load input 
data 

yes 
Allows user to select the directory where the 
input flies for the simulation are saved. 

Save 
Simulation 

results 

Create 
main 

directory 
yes 

Allows user to create a new main folder 
within directory Simulation_results in which 
to save the results of a simulation set. 

Open main 
directory 

yes 
Allows user to save the result of a simulation 
in an already existent main folder within 
directory Simulation_results. 

Simulation 
control panel 

Run yes When clicked the simulation begins. 

Pause no If clicked the simulation pauses. 

Continue no 
Allows to continue the simulation once it 
was paused. 

Stop no 
Arrest the simulation but does not close the 
main window 

Close yes 
Closes the simulation main window killing 
the simulation if in progress. 

Simulation 
drivers 

Change 
drivers 

no 
Allows to change the drivers of the 
simulation while in progress to correct some 
unexpected behavior. 

Help? 
User guide: 
input files 

yes 
Link to a pdf file that collects detailed 
information on the input file compilation. 

3.4.1 RUN… 

To give a sample of the ease of interaction with the interface, this section consists of a 

short tutorial on how to run a simulation, provided the input files are correctly filled by the 

user. 

The first step is to open the code with a text editor and run the Simulation_starter.py 

module or execute it from a terminal. As mentioned in section 3.1 this module makes an 

instance of class SC2_GUI that results in the pop up of the GUI main window (see Figure 3.4-1). 
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At this point there are only two available options, the “Load simulation input data” in 

cascade “Simulation input” and the help guide for the input files compilation. To load the input 

files, click on the cascade “Simulation input” and select the only available options as shown in 

Figure 3.4-2. 

A window will pop up and it lists the folders within directory Description_of_components; 

users should select the folder where the compiled input files for the current simulation will be 

saved, for example test_ITER_TF_heating as in the following Figure 3.4-3. 

Figure 3.4-3 Dialog windows that pop ups when the command “Load input data” is selected by the user. It 

allows to select from the folder that collects the different sets of input files (Description_of_Components) the 

one edited for the current simulation. 

 
 

Figure 3.4-2 GUI menu bar cascades options available at the beginning of the simulation: (left) command 
“Load input data” allows to read and load all the user defined input files; (right) “User guide: input files” gives 
support in the input file compilation. 
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Once the folder is selected the option Load simulation input data in cascade “Simulation 

input” is no longer available (Figure 3.4-4), however both the options of the second cascade 

are now clickable.  

The user could decide to save the simulation results in a new main folder of the 

Simulation_results directory or to store them in an already existing main folder. In the former 

case, the option “Create simulation main directory” can be selected, in the latter the 

command “Open simulation main directory” should be considered.  and Figure 3.4-6 shows 

the windows that will be opened whether either alternative is selected.  

 
 

Figure 3.4-4 After the selection of the input folder: (left) command “Load input data” is no longer available; 
(right) possible choices for saving the output, new main directory or already existing main directory. 

 

 

Figure 3.4-5 Dialog windows that pop ups when the command “Create main directory” is selected by the user. It 

allows to create a new main directory where to save the outcome of the simulations (both .tsv files and .eps figures) 

directly in the folder that gathers all the outcomes (Simulation_results). 
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The first choice allows to create a new folder inside directory Simulation_results as shown 
in ; the second choice opens a window that shows the list of already created folders in the 
directory. 

In this tutorial the first approach is selected, the new folder where the outcome of the 

simulation will be saved is called GUI_tutorial. Now, since the code knows where to store the 

simulation results, commands “Create simulation main directory” and “Open simulation main 

directory” are no longer available in the cascade “Save Simulation results”. User should 

consider the third cascade and press the only clickable option (“Run”) to launch the simulation 

as shown in Figure 3.4-8. 

An information box, that inform the user that the simulation is launched, will open; click 

“Ok” to close the box (Figure 3.4-7). At the end of the simulation and of the default post 

processing another window similar to the previous one informs that the whole procedure has 

been completed successfully; again, click the “Ok” button to close the window.  

To close the GUI, select the command “Close” in the “Simulation control panel” cascade 

as shown in Figure 3.4-9, the only one still available except the help guide at this point. Whit this 

last action the simulation session ends. 

 

Figure 3.4-6 Dialog windows that pop ups when the command “Open main directory” is selected by the user. It 
allows to open an already existent main directory where to save the outcome of the simulations (both .tsv files and 
.eps figures) directly in the folder that gathers all the outcomes (Simulation_results). 
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Figure 3.4-9 To close the simulation session, select the command “Close” form the “Simulation control panel” 

cascade. 

  

Figure 3.4-8 After deciding where to save the simulation results: (left) both commands in “Save 
Simulation results” cascade are no longer available; (right) command “Run” in the “Simulation control panel” 
to start the simulation. 

 

  

Figure 3.4-7 Information box: (left) after launching the simulation, a window informs of the start of the 
simulation showing its name, clicking the Ok button the simulation begins; (right) at the end of the simulation 
a windows shows up confirming the correct execution of the simulation and the default post-processing of 
the data.  
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3.4.2 …AND CHECK (REAL-TIME VISUALIZATION OF THE RESULTS) 

One of the innovative features of the code is the Run-AND-check paradigm compared to 

the Run-THEN-check used in other code [48]–[50]. This new concept is achieved with the 

combination of two options in the GUI: the possibility of change the driver as the simulation 

progresses and the real time visualization of the results. As cited at the beginning of section 

3.4, the former is not yet available, however the latter is already reality. After that, the 

command “Run” is clicked to start the simulation and the information window is closed, a 

group of figure appears that shows the time evolution of the maximum temperatures of fluid 

components as well as their inlet and outlet mass flow rate, and solid components maximum 

temperature. All these plots update at each new time step, so they allow to have an idea on 

what is going on during the simulation, for instance if there are some unexpected oscillations 

or if odd values of temperatures are obtained during the transient. Exploiting the information 

provided by these figures, the user should be able to evaluate if change the drivers to correct 

the simulation outcome.  

3.4.3 SUMMARY 

The graphical interface of the code, although in an embryonic state, allows the user to 

execute the basic instructions for launching the simulation and to keep its progress under 

control, thanks to the real-time graphs of some relevant parameters such as maximum 

temperatures and inlet and outlet mass flow rates.  

It assumes the form of an interactive menu bar composed of five cascades for a total of 

ten commands, not all yet available. The path to launch a simulation is straightforward and it 

is described in section 3.4.1 

3.5 EASE OF POST PROCESSING 

The outcome of a generic simulation is a bunch of data that must be stored, organized and 

eventually further elaborated to get the desired results. This digression extends and 

completes what was introduced in section 0 about the folder organization. Specifically, the 

first section clarifies how the output of a single simulation and of a set of simulations is 

grouped and exhibited to user; the second and the last sections deal with the data 

postprocessing, respectively describing the default and the advanced post processing main 

features. 

3.5.1 HOW THE DATA ARE MANAGED 

The processing of the output of the simulation is twofold according that it is used to 

produce basic plots or to perform further analyzes. In this thesis, the first is referred as default 

post processing while the latter as advanced post processing and they will be addressed in the 

following two sections respectively; the current one explains how the data are organized and 

stored by the SC2 code. 
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The above cited classification is not the only possible one; the program is able to 

distinguish if a data is saved by default or because it is asked by the user, as well as the kind 

of data saved (if it is a spatial distribution or a time evolution of the considered properties).  

Before diving deeper into these details, the main input file conductor_diagnostic.xlsx is 

further explained. As mentioned in section 0, the workbook is composed by sheets Space and 

Time that respectively allow user to set, for each defined cable, times (sheet Space) and 

coordinates (sheet Times) at which spatial distributions and time evolutions are saved. An 

arbitrary number of independent values can be provided by user for both the sheets; 

moreover, it is not mandatory although recommended, that the values are sorted. Initial and 

final spatial distributions together with inlet and outlet time evolutions are automatically 

saved by the code, so user cannot enter these sensors. The limit case of empty sheets is 

foreseen and, in this case, only the initialization and the spatial distribution at the end of the 

simulation are saved; analogously the inlet and outlet time evolutions are stored by default. 

Figure 3.5-1 Tree of the folder Simulation_result. 
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Figure 3.5-2 Tree of the Output subfolder. Notice the recurrent inner structure of the tree. 

The general structure of the directory Simulations_results is shown in Figure 3.5-1. For 

the time being, let’s focus on a folder that collects the outcome of a single simulation, such as 

TEND_100_STPMIN_0.1_NELEMS_100 in Figure 3.5-2. The Output sub-directory groups four 

folders: Initialization, Solution, Space and Time. Two of them are devoted to store the data 

required with conductor_diagnostic.xlsx, respectively Space for the spatial distributions and 

Time for the time evolutions. Both these folders share the same organization, as shown in 

Figure 3.5-2: they collect a subfolder for each defined cable, named with the conductor ID, 
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and the Benchmark subfolder that will be discussed later. The Tab-Separated Value (TSV, 

extension .tsv) format is chosen to save the data since it is supported by Pandas and uses a 

not ambiguous separator as opposed to the Comma Separated Value (CSV) extension, 

however it is not the smarter solution as will be discussed in the final chapter 5. In general, all 

files are equipped with a header that uniquely identify their content; they are created only if 

the basic conductor component object of a specific kind is defined to model the cable. 

As far as spatial distribution is considered, the saving procedure consists of two steps: 

1. for each time in input, SC2 code calls the function Save_simulation_space that 

writes files that collects the conductor spatial discretization and the relevant 

properties; Table 3.5-1 reports for each basic component the adopted naming 

scheme and the properties stored. These data are saved during the transient 

solution. 

2. At the end of the transient a single file for each relevant property is generated in 

which the spatial distribution at all the given times is saved. This reshape is 

automatically performed by the code thanks to function 

Reorganize_spatial_distribution, exploiting pandas DataFrame features and allows 

a more manageable data processing. Further details can be obtained from Table 

3.5-1.  

A single file called xcoord.tsv collects the conductor spatial discretization at all the 

required times since, if the mesh is adaptive, it may change from one time step to another. 

Time evolutions are saved in files that are organized similarly to the reorganized file of the 

spatial distribution described above. For each component and for its relevant property, a file 

that collects the time evolutions at the given spatial coordinates together with the time steps 

is created by function Save_simulation_time that writes and updates files as shown in Table 

3.5-2. 
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Table 3.5-1 Naming scheme and content of the files saved to store the spatial distributions of variables at the 
user defined time steps. Both formats are detailed. 

Object Name scheme Example Content 

CHAN 

CHAN.ID_([t]s)_sd.t
sv 

CHAN_1_(5.0s)_sd.
tsv 

Spatial discretization, channel 
velocity, pressure, temperature and 
density spatial distributions at user 

required time = t (ex 5.0 s). 

CHAN.ID_density_s
d.tsv 

CHAN_1_density_s
d.tsv 

Channel density spatial distributions 
at all the user required time steps. 

CHAN.ID_pressure
_sd.tsv 

CHAN_1_pressure_
sd.tsv 

Channel pressure spatial distributions 
at all the user required time steps. 

CHAN.ID_temperat
ure_sd.tsv 

CHAN_1_temperatu
re_sd.tsv 

Channel temperature spatial 
distributions at all the user required 

time steps. 

CHAN.ID_velocity_s
d.tsv 

CHAN_1_velocity_s
d.tsv 

Channel velocity spatial distributions 
at all the user required time steps. 

STR_MIX 

STR_MIX.ID_([t]s)_
sd.tsv 

STR_MIX_1_(5.0s)
_sd.tsv 

Spatial discretization and mix strand 
temperature spatial distribution at 

user required time = t (ex 5.0 s). 

STR_MIX.ID_tempe
rature_sd.tsv 

STR_MIX_1_tempe
rature_sd.tsv 

Mix strand temperature spatial 
distributions at all the user required 

time steps. 

STR_SC 

STR_SC.ID_([t]s)_s
d.tsv 

STR_SC_1_(5.0s)_
sd.tsv 

Spatial discretization and 
superconductor strand temperature 
spatial distribution at user required 

time = t (ex 5.0 s). 

STR_SC.ID_temper
ature_sd.tsv 

STR_SC_1_temper
ature_sd.tsv 

Superconductor strand temperature 
spatial distributions at all the user 

required time steps. 

STR_STAB 

STR_STAB.ID_([t]s)
_sd.tsv 

STR_STAB 
_1_(5.0s)_sd.tsv 

Spatial discretization and stabilizer 
strand temperature spatial 

distribution at user required time = t 
(ex 5.0 s). 

STR_STAB.ID_tem
perature_sd.tsv 

STR_STAB_1_temp
erature_sd.tsv 

Stabilizer strand temperature spatial 
distributions at all the user required 

time steps. 

Z_JACKET 

Z_JACKET.ID_([t]s)
_sd.tsv 

Z_JACKET_1_(5.0s
)_sd.tsv 

Spatial discretization and jacket 
temperature spatial distribution at 

user required time = t (ex 5.0 s). 

Z_JACKET.ID_temp
erature_sd.tsv 

Z_JACKET_1_temp
erature_sd.tsv 

Jacket temperature spatial 
distributions at all the user required 

time steps. 
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Table 3.5-2 Naming scheme and content of the files saved to store the time evolutions of variables at user 
defined spatial coordinates.  

Object Name scheme Example Content 

CHAN 

CHAN.ID_density_t
e.tsv 

CHAN_1_density_te
.tsv 

Time steps and channel density 
time evolutions at all user 
required spatial locations. 

CHAN.ID_inlet_outl
et_te.tsv 

CHAN_1_inlet_outle
t_te.tsv 

Time steps and channel inlet and 
outlet velocity, pressure, 

temperature density and mass 
flow rate time evolutions. 

CHAN.ID_pressure
_te.tsv 

CHAN_1_pressure_
te.tsv 

Time steps and channel pressure 
time evolutions at all user 
required spatial locations. 

CHAN.ID_temperat
ure_te.tsv 

CHAN._1_temperat
ure_te.tsv 

Time steps and channel 
temperature time evolutions at all 

user required spatial locations. 

CHAN.ID_velocity_t
e.tsv 

CHAN_1_velocity_t
e.tsv 

Time steps and channel velocity 
time evolutions at all user 
required spatial locations. 

STR_MIX 

STR_MIX.ID_B_fiel
d_te.tsv 

STR_MIX_1_B_field
_te.tsv 

Time steps and mix strand 
magnetic field time evolutions at 
all user required spatial locations. 

STR_MIX.ID_T_cur
_sharing_te.tsv 

STR_MIX_1_T_cur
_sharing_te.tsv 

Time steps and mix strand current 
sharing temperature time 

evolutions at all user required 
spatial locations. 

STR_MIX.ID_tempe
rature_te.tsv 

STR_MIX_1_tempe
rature_te.tsv 

Time steps and mix strand 
temperature time evolutions at all 

user required spatial locations. 

STR_SC 

STR_SC.ID_B_field
_te.tsv 

STR_SC_1_B_field
_te.tsv 

Time steps and superconductor 
strand magnetic field time 

evolutions at all user required 
spatial locations. 

STR_SC.ID_T_cur_
sharing_te.tsv 

STR_SC_1_T_cur_
sharing_te.tsv 

Time steps and superconductor 
strand current sharing 

temperature time evolutions at all 
user required spatial locations. 

STR_SC.ID_temper
ature_te.tsv 

STR_SC_1_temper
ature_te.tsv 

Time steps and superconductor 
strand temperature time 

evolutions at all user required 
spatial locations. 

STR_STAB 
STR_STAB.ID_B_fi

eld_te.tsv 
STR_STAB_1_B_fi

eld_te.tsv 

Time steps and stabilizer strand 
magnetic field time evolutions at 
all user required spatial locations. 
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Object Name scheme Example Content 

STR_STAB.ID_tem
perature_te.tsv 

STR_STAB_1_temp
erature_te.tsv 

Time steps and stabilizer strand 
temperature time evolutions at all 

user required spatial locations. 

Z_JACKET 
Z_JACKET.ID_temp

erature_te.tsv 
Z_JACKET_1_temp

erature_te.tsv 

Time steps and jacket temperature 
time evolutions at all user 
required spatial locations. 

From Table 3.5-2 results that files named CHAN.ID_inlet_outlet_te.tsv collect channels 

inlet and outlet velocity, pressure, temperature, density and mass flow rate. This is another 

example of default data saving and it is contemplated to better handle channels inlet and 

outlet properties. 

Both the Space and Time folders contain the subfolder Benchmark. In this directory the 

user should save the files of the spatial distributions and the time evolutions he/she gets from 

other codes in order to perform the outer benchmark. Typically, there is only one more level 

that coincides with the folders named with the CONDUCTOR.ID where all the useful files 

should be saved, as can be seen from Figure 3.5-2. 

The other two Output sub-directories, Initialization and Solution, are the locations where 

the code saves the simulation initialization and the final solution respectively. These two 

folders have the same organization: they collect the same number of folders as the number 

of defined cables, named with the CONDUCTOR.ID, in which files with the first and last 

obtained spatial distributions are stored respectively: indeed, the properties stored in these 

files are the same, the difference being the time at which they are evaluated, namely 𝑡 =

𝑡𝑏𝑒𝑔 = 0 𝑠  in folder Initialization and 𝑡 = 𝑡𝑒𝑛𝑑 𝑠  in folder Solution. The file content is 

detailed in Table 3.5-3 while an example of tree is again in Figure 3.5-2. The function in charge 

of this is Save_properties. 

To certify the accuracy of the solution obtained with a simulation, typically space and time 

convergence analyzes should be accomplished, and in this case, several simulations are run 

that only differs for a single input value apart from all the others. Specifically, the space 

convergence is performed changing the number of elements of the spatial discretization while 

for the time convergence some orders of magnitude of the time step are explored. For these 

reasons, both analyzes define a set of simulations. Inside the folder that represents the chosen 

method for the ODE system solution (Figure 3.5-1), there are collected all the simulations 

performed with that method together with the folders Space_convergence and 

Time_convergence. These are created by default by SC2 code and they are devoted to save 

and organize the data useful for space and time convergence analyzes, respectively. They 

share a similar structure that will be described here; while reading, refer to  that expand the 

tree of these folders. 
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Table 3.5-3 Naming scheme and content of the files that stores the initial and the final spatial distributions 
of the variables. 

Object Name scheme Example Content 

CHAN CHAN.ID.tsv CHAN_1.tsv 

Conductor spatial discretization and 
channel initial/final spatial distributions 

of velocity, pressure, temperature, 
density, enthalpy, entropy, thermal 

conductivity, Grunaisen, speed of sound, 
specific heat at both constant pressure 

and volume, Reynolds and Prandtl 
dimensionless number together with 

mass flow rate. 

STR_MIX STR_MIX.ID.tsv STR_MIX_1.tsv 

Conductor spatial discretization and mix 
strand initial/final magnetic field, 
temperature and current sharing 
temperature spatial distributions. 

STR_SC STR_SC.ID.tsv STR_SC_1.tsv 

Conductor spatial discretization and 
superconductor strand initial/final 

magnetic field, temperature and current 
sharing temperature spatial distributions. 

STR_STAB STR_STAB.ID.tsv STR_STAB_1.tsv 

Conductor spatial discretization and 
stabilizer strand initial/final magnetic 

field and temperature spatial 
distributions. 

Z_JACKET Z_JACKET.ID.tsv Z_JACKET_1.tsv 
Conductor spatial discretization and 

jacket initial/final temperature spatial 
distribution. 
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Figure 3.5-3 Tree of the convergence analyzes subfolders: (a) Space_convergence; (b) Time_convergece. The 
structure of the trees is symmetric. 
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The folder Space_convergence groups folders that are related to the set of simulations 

used to perform the space convergence study. Each folder name is built combining the end 

time of the simulation and the minimum value of the time step, as shown in . Within this folder 

there are the well-known Output and Figures sub-folders that are used to save the outputs 

of the simulations and the plots. Beyond the usual folders, the tree shows three files with the 

extension tsv. The first file, CONDUCTOR.ID_delta_x.tsv, stores both the number of 

elements and the discretization parameters used to make the space convergence analysis; the 

second is called CONDUCTOR.ID_mass_energy_sc.tsv and here are saved the values of 

the global mass and energy balances on the conductor, together with the number of elements 

and the discretization parameters. These balances are performed at the end of the simulation 

invoking the method Mass_energy_balance of class Conductors: 

Δ𝑚 = Δ𝑡 (∑�̇�𝑖,𝑖𝑛𝑙

𝑁𝑐ℎ

𝑖

− ∑�̇�𝑖,𝑜𝑢𝑡

𝑁𝑐ℎ

𝑖

) (3.5-1) 

Δ𝐸 = Δ𝑡 [∑�̇�𝑖,𝑖𝑛𝑙  (𝑤𝑖,𝑖𝑛𝑙 +
𝑣𝑖,𝑖𝑛𝑙
2

2
)

𝑁𝑐ℎ

𝑖

− ∑�̇�𝑖,𝑜𝑢𝑡 (𝑤𝑖,𝑜𝑢𝑡 +
𝑣𝑖,𝑜𝑢𝑡
2

2
)

𝑁𝑐ℎ

𝑖

] (3.5-2) 

In the last equation the contribution of the potential energy (𝑔𝑧) is neglected. 

Inside the other folders the spatial distribution of the solution at the end of the simulation 

is saved. The naming scheme and the content of the files is shown in Table 3.5-4. 

Table 3.5-4 Naming scheme and content of the files saved to store the solution spatial distribution at the end 
of the simulation to perform the space convergence analysis. 

Object Name scheme Example Content 

CHAN CHAN.ID_(N+1).tsv CHAN_1_(100).tsv 
Channel velocity, pressure 
and temperature spatial 

distributions at TEND. 

STR_MIX STR_MIX.ID_(N+1).tsv STR_MIX_1_(100).tsv 
Mix strand temperature 

spatial distribution at TEND 

STR_SC STR_SC.ID_(N+1).tsv STR_SC_1_(100).tsv 
Superconductor strand 

temperature spatial 
distribution at TEND 

STR_STAB STR_STAB.ID_(N+1).tsv STR_STAB_1_(100).tsv 
Stabilizer strand 

temperature spatial 
distribution at TEND 

Z-JACKET Z_JACKET.ID_(N+1).tsv Z_JACKET_1_(100).tsv 
Jacket temperature spatial 

distribution at TEND 

The architecture of folder Time_convergence is dual with respect to folder 

Space_convergence. The first difference is that the subfolder names are obtained joining the 

end time of the simulation and the number of elements used to perform the spatial 

discretization. The inner structure is very similar, starting from the presence of Output and 
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Figures folders. In the former, each cable has its own folder that is organized as described 

above, furthermore there are the three files analogous to the previous case. File 

CONDUCTOR.ID_mass_energy_tc.tsv stores the time steps used for the analysis and the 

values of mass and energy balance evaluated with the different time steps according to 

equations (3.5-1) and (3.5-2) at the end of the simulations. The time steps used to perform 

the analysis are stored in file CONDUCTOR.ID_delta_t.tsv while for each conductor basic 

components the values are organized as explained in the following Table 3.5-5. 

Both folders Space_convergence and Time_convergence are supervised by function 

Save_convergence_data, that is able to deal with the similarities and the differences that 

characterize space and time convergence analyzes. This function does not create files called 

CONDUCTOR.ID_sc_outcome_mass_energy.tsv and 

CONDUCTOR.ID_tc_outcome_mass_energy.tsv that will be addressed in section 3.5.3. 

Table 3.5-5 Naming scheme and content of the files saved to store the spatial distribution of the solution at 
the end of the simulation to perform the time convergence analysis. 

Object Name scheme Example Content 

CHAN CHAN.ID_(STPMINs).tsv CHAN_1_(0.1s).tsv 

Channel velocity, 
pressure and 

temperature spatial 
distributions at TEND. 

STR_MIX STR_MIX.ID_(STPMINs).tsv STR_MIX_1_(0.1s).tsv 
Mix strand 

temperature spatial 
distribution at TEND. 

STR_SC STR_SC.ID_(STPMINs).tsv STR_SC_1_(0.1s).tsv 
Superconductor strand 

temperature spatial 
distribution at TEND. 

STR_STAB STR_STAB.ID_(STPMINs).tsv STR_STAB_1_(0.1s).tsv 
Stabilizer strand 

temperature spatial 
distribution at TEND. 

Z-JACKET Z_JACKET.ID_(STPMINs).tsv Z_JACKET_1_(0.1s).tsv 
Jacket temperature 

spatial distribution at 
TEND. 

3.5.2 DEFAULT POST PROCESSING 

The default post processing consists of creating plots of the properties stored for the single 

simulation, organized as described above. These are stored in the Figures subfolder that has 

the same structure of the Output one. Indeed, also in this directory there are the four folders 

Initialization, Solution, Space and Time that respectively collects the figures of the 

initialization, the solution, the spatial distribution and the time evolution. The basic structure 

of all these folders coincides with the group of folders named with the basic components ID 

collected within the CONDUCTOR.ID folder, as shown in Figure 3.5-4. The outer benchmark 

outcomes are saved in sub-folder Benchmark of Space and Time. The figure name 
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corresponds to the plotted properties and the selected format is the vectorial Encapsulated 

PostScript (EPS).  

Figure 3.5-4 Tree of the subfolder Figures. Notice the recurrent inner structure of the tree. 
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The figures in Initialization and Solution folders are standard since in each figure a single 

curve is plotted, corresponding to the initial or final spatial distribution of the properties listed 

in. These figures are automatically realized by the code thanks to function Plot_properties, 

regardless of user input and can be useful to check if the simulation input data are correct and 

if the corresponding solution is reasonable. 

The management of the spatial distributions and time evolutions is less straightforward 

because, as mentioned, user in conductor_diagnostic.xlsx can prescribe an arbitrary 

number of times and spatial locations; therefore, making a single figure for each value not is 

not practical to understand and compare the outcomes. Basing on these considerations, the 

spatial distributions and time evolutions plots are automatically grouped together into multi-

axes figures exploiting the tools of matplotlib python library. Each figure can show at most 

twenty curves subdivided into no more than four horizontal subplots, that means that a 

maximum of five curves can be shown for each subplot. Subplots are filled with curves in such 

a way that their distribution is as uniform as possible to improve the readability of the figure. 

The data are tidied up according to the times and spatial locations respectively, sorted in 

ascending way. Each subplot is equipped with its own legend while the title and the horizontal 

axis are shared to enhance the readability. If user asks for more than twenty values, the curves 

are subdivided into several figures with just the same structure; they can be distinguished 

thanks to a numerical suffix in the name, for instance velocity_1.eps and velocity_2.eps and 

the legend labels are always sorted in ascending way. The function that performs this task is 

called Make_plots that works for both space distributions and time evolutions plots.  

3.5.3 ADVANCED POST PROCESSING 

Advanced post processing means analyzing data from convergence studies and 

benchmarking against other codes. These analyzes can be done with an ancillary tool of the 

program based on the GUI shown in Figure 3.5-5 that is a menu bar that allows to select 

between several options, briefly explained in Table 3.5-6. 

 

Figure 3.5-5 Graphical User Interface main window on the auxiliary tool for the advanced post processing of 
the data; menu bar composed by six cascades. 
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Table 3.5-6 List and description of all the available cascades in the GUI auxiliary tool for the advanced post 
processing. 

Cascade Description 

Space 
convergence 

performs the space convergence analysis using the data collected in 
folder Space_convergence. 

Time convergence 
performs the time convergence analysis with the data found in folder 

Time_convergence. 
 

Compare space 
convergence 

allows user to compare the results of the space convergence 
analyzes according to the time steps. 

Compare time 
convergence 

allows user to compare the results of time convergence analyzes 
according to the number of elements. 

Outer benchmark 
is the cascade devoted to make the benchmark of the solution 

obtained with the SC2 code against the solution obtained with other 
validated codes for the same simulation, in this work it is the 4C. 

Innerbenhmark 
can be used to check the inner consistency of the code once the 
benchmark against other validated codes is thoroughly verified. 

The space convergence analysis is performed by changing the number of elements that 

are used to make the spatial discretization of the computational domain, keeping all the rest 

of the input frozen. On the other hand, the time convergence is performed changing the time 

step used to march in time. The former requires that a new steady state is reached while the 

latter must be done at a time for which the transient is not yet exhausted. In any case, the 

solution spatial distributions at the last time step (the end of the simulation) are used to make 

the analysis, together with the values of the mass and energy balances. These data are stored 

in folders Space_convergence and Time_convergence as described in section 3.5.1 and are 

used to evaluate the overall error of each simulation.  

The outcome is stored in files in the Space_convergence or Time_convergence Output 

subfolder according to the same criteria described above (refers to For all of these inner 

benchmark kinds, user can chose three possible outcomes namely the full benchmark that 

make the comparison in both space and time, the space only and the time only that 

respectively performs the comparisons only on the spatial distributions and on the time 

evolutions. 

Regardless of the selected benchmark (outer or inner), the figures obtained after the 

analysis are characterized by two horizontal subplots that share the abscissa axis. The top one 

compares no more than 2 pairs of curves to verify if they overlap; the bottom one is a 

semilogarithmic plot of the relative error that shows up to two curves. Each subplot has its 

legend and its title to better identify what they represent. If it is an outer benchmark, these 

figures are saved in the Benchmark subfolders of Space and Time folders within the Figures 

directory, while if it is an inner benchmark the figures are saved inside the directory 

Inner_Benchmark_results where the same nested structure discussed above is replied. In any 

case, their organization follows the schemes extensively discussed in the previous sections.  
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Examples of space and time convergence analyzes as well as benchmarks with respect to 

4C and inner ones can be found in the next chapter.  

Table 3.5-7); moreover, figures in logarithmic scale are automatically realized to easily 

control if the expected orders of convergence are achieved. 

The outer benchmark against 4C code is executed comparing available data for spatial 

distributions and time evolutions not only of the solution, but also of the channel inlet and 

outlet mass flow rates, after that they are preprocessed in a format that is coherent to the 

one adopted by the SC2 code. The outer benchmark procedure consists of two steps: the 

check of the coherence of the data for both the codes and then the comparison of the spatial 

distributions and time evolutions, the strictly speaking benchmark. 

The last available advanced post processing is the one that allows to perform the inner 

benchmark of the code. In this case, since the structure of the data files is always the same, 

the data preprocessing is not necessary. Exploiting the GUI, user can select the pair of 

simulations to be compared, how the results should be saved inside 

Inner_Benchmark_results, a directory at the same level of Simulation_results, the kind of 

benchmark to be done and the outcomes to get. At the time being three kind of inner 

benchmark are allowed: 

1. Standard compares two simulations without acting on the data of the simulations; 

2. Backflow compares the two simulations keeping into account that the flow directions 

are different in the two simulations; 

3. Refined mesh compares the simulations knowing that they differ in the number of 

elements of the spatial discretizations, that impact on the error evaluation since the 

arrays of the spatial distributions do not have the same length. 

For all of these inner benchmark kinds, user can chose three possible outcomes namely 

the full benchmark that make the comparison in both space and time, the space only and the 

time only that respectively performs the comparisons only on the spatial distributions and on 

the time evolutions. 

Regardless of the selected benchmark (outer or inner), the figures obtained after the 

analysis are characterized by two horizontal subplots that share the abscissa axis. The top one 

compares no more than 2 pairs of curves to verify if they overlap; the bottom one is a 

semilogarithmic plot of the relative error that shows up to two curves. Each subplot has its 

legend and its title to better identify what they represent. If it is an outer benchmark, these 

figures are saved in the Benchmark subfolders of Space and Time folders within the Figures 

directory, while if it is an inner benchmark the figures are saved inside the directory 

Inner_Benchmark_results where the same nested structure discussed above is replied. In any 

case, their organization follows the schemes extensively discussed in the previous sections.  

Examples of space and time convergence analyzes as well as benchmarks with respect to 

4C and inner ones can be found in the next chapter.  
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Table 3.5-7 Naming scheme and content of the files saved to store the outcomes of the space and time 
convergence analyzes. 

Object 
Convergence 

analysis 
Name scheme Example Content 

CHAN 

Space 
CHAN.ID_sc_
outcome.tsv 

CHAN_1_sc_o
utcome.tsv 

Number of elements, 
spatial discretization 

pitches and relative errors 
on velocity, pressure and 

temperature spatial 
distributions. 

Time 
CHAN.ID_tc_o

utcome.tsv 
CHAN_1_tc_o

utcome.tsv 

Time steps and relative 
errors on velocity, 

pressure and temperature 
spatial distributions. 

STR_MIX 

Space 
STR_MIX.ID_s
c_outcome.tsv 

STR_MIX_1_s
c_outcome.tsv 

Number of elements, 
spatial discretization 

pitches and relative errors 
on temperature spatial 

distribution. 

Time 
STR_MIX.ID_t
c_outcome.tsv 

STR_MIX_1_t
c_outcome.tsv 

Time steps and relative 
errors on temperature 

spatial distribution. 

STR_SC 

Space 
STR_SC.ID_s
c_outcome.tsv 

STR_SC_1_sc
_outcome.tsv 

Number of elements, 
spatial discretization 

pitches and relative errors 
on temperature spatial 

distribution. 

Time 
STR_SC.ID_tc
_outcome.tsv 

STR_SC_1_tc
_outcome.tsv 

Time steps and relative 
errors on temperature 

spatial distribution. 

STR_STAB 

Space 
STR_STAB.ID
_sc_outcome.t

sv 

STR_STAB_1
_sc_outcome.t

sv 

Number of elements, 
spatial discretization 

pitches and relative errors 
on temperature spatial 

distribution. 

Time 
STR_STAB.ID
_tc_outcome.t

sv 

STR_STAB_1
_tc_outcome.t

sv 

Time steps and relative 
errors on temperature 

spatial distribution. 

Z_JACKET Space 
Z_JACKET.ID
_sc_outcome.t

sv 

Z_JACKET_1_
sc_outcome.ts

v 

Number of elements, 
spatial discretization 

pitches and relative errors 
on temperature spatial 

distribution. 
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Object 
Convergence 

analysis 
Name scheme Example Content 

Time 
Z_JACKET.ID
_tc_outcome.t

sv 

Z_JACKET_1_
tc_outcome.tsv 

Time steps and relative 
errors on temperature 

spatial distribution. 

CONDUCTOR 

Space 

CONDUCTOR
.ID_sc_outcom
e_mass_energ

y.tsv 

CONDUCTOR
_1_sc_outcom
e_mass_energ

y.tsv 

Number of elements, 
spatial discretization 

pitches and relative errors 
on mass and energy 

balance 

Time 

CONDUCTOR
.ID_tc_outcom
e_mass_energ

y.tsv 

CONDUCTOR
_1_tc_outcom
e_mass_energ

y.tsv 

Time steps and relative 
errors on mass and energy 

balance 

3.5.4 SUMMARY 

The well-structured and nested organization of the output of the simulation and the post 

processing of the data are the main topics of this section. SC2 code automatically saves a large 

amount of data, from the initialization to the solution spatial distributions, as well as the inlet 

and outlet time evolutions of channels main properties as velocity, pressure, temperature, 

density and mass flow rate. User can ask to save other data at specific times and spatial 

coordinates compiling the main input file conductor_diagnostic.xlsx. Currently, the selected 

extension of the files is the Tab Separated Value format, but other possibilities will be 

considered. Both the default and user required data are then converted into suitable vectorial 

figures (.eps) that constitutes the outcome of the default post processing.  

In order to perform the space and time convergence analyzes, the code saves for each 

simulation the final solution spatial distributions and the mass and energy balances computed 

at the last time step in “ad hoc” created folders. These files can be analyzed with a tool whose 

GUI allows several kinds of analyzes: alongside the convergence studies, the inner and outer 

benchmarks are also managed by this application, provided the required data are stored in 

the dedicated Benchmark folders if the latter is considered. These further elaborations are 

referred to as advanced postprocessing. 
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CHAPTER 4 

4 SC2 VERIFICATION AND VALIDATION 

The Verification and Validation phase of data is certainly required developing a new 

software. This can be carried out with respect to experiments conducted in the laboratory or 

by using other validated software. In this work, the second option was adopted, the reference 

code is 4C code [54], [55], [88]. 

A first fundamental step in code V&V is the check that the properties of materials are 

correctly evaluated from the corresponding functions. For the time being, these functions are 

an optimized python version of the 4C subroutine written in Fortran 90; whenever it is possible 

the numpy array smart notation is introduced to reduce the computational time and numpy 

available functions substitute the home-made ones. As mentioned in section 3.1.1, functions 

for material properties are grouped in modules by material; except the solid material density, 

that is assumed constant, all other properties are functions of variables which are passed as 

arguments to the function.  

Generally, the benchmark is performed exploiting a parametric scan by fixing all the 

parameters that can vary except one, which is varied in order to evaluate the behavior of the 

function with respect to that parameter. For the sake of brevity, the results of this step are 

not discussed here, nonetheless the outcome of the comparisons is positive. An indirect proof 

of this statement are the results presented below. 

The chapter is divided into three sections. The first describes the results of the space and 

time convergence analyses, followed by validation considerations with respect to 4C code in 

section 4.2, while internal verifications are left to the last section. 

As a final remark, in order to limit the number of figures shown, only the most relevant 

ones are brought to the reader's attention, some of them being constructed to condense a 

considerable amount of information. Furthermore, the time evolutions and spatial 

distributions of the jacket are omitted because they do not bring further information; this 

helps to increase the clearness of the plots. 

4.1 CONVERGENCE ANALYSES 

The convergence analysis of the SC2 code is presented in this section. It is necessary to 

inspect if the theoretical order of convergence discussed in sections 2.2.1 and 2.2.2 are 

actually achieved.  

The study is performed at low temperature considering the transient heating of an ITER-

TF cable, whose general description, topology, and modeling are described in sections 

2.1.4.1.1 and 0. The topology, material and geometrical data of the cable are reported in 

appendix D.2 while the other inputs of the simulation are summarized in the following Table 

4.1-1. 



4.1 CONVERGENCE ANALYSES 

86 

Table 4.1-1 Input data for the low temperature ITER-TF simulation launched to perform the space and the 
time convergence analysis. 

Variable Value Unit 

ITYMSH 0 (uniform) − 
TEND 15.0 s 
INTIAL 1 − 
TINL 4.5 K 
PINL 6 bar 

POUT 5.9 bar 
Q0 250 W/m 

XQBEG 4.0 m 
XQEND 6.0 m 
TQBEG 10.0 s 
TQEND 20.0 s 

The overall expected space convergence order of the code is between one and two since 

the finite element method applied here to discretize the space would lead to a second order 

which is preserved by the applied boundary conditions (homogeneous Neumann for the solid 

components and Dirichlet for the fluid components) but it is contaminated and downgraded 

by the extra upwind terms. The order of convergence in time of the 𝜃-method is a function of 

𝜃. It is expected that the global order of convergence in time is exactly one if 𝜃 = 1 (i.e., the 

Backward Euler numerical scheme), while the second order is foreseen for 𝜃 =
1

2
, as this case 

corresponds to the Crank-Nicolson method.  

The convergence analyses are carried out exploiting the post processing external tool 

mentioned in 3.5.3, the focus here are the global errors evaluated.  

Firstly, the relative error for each variable is evaluated from the solution spatial 

distribution array: 

𝜀 =
||𝝃𝑛𝑜𝑑𝑎𝑙 − 𝝃𝑛𝑜𝑑𝑎𝑙,𝑟𝑒𝑓||

‖𝝃𝑛𝑜𝑑𝑎𝑙,𝑟𝑒𝑓 − 𝜉0‖
 (4.1-1) 

according to the classical definition of the Euclidean norm: 

‖𝒚‖ = √(𝒚, 𝒚) = √∑𝑦𝑖
2

𝑖

 (4.1-2) 

𝜉0 is an arbitrary reference value introduced to avoid that the denominator is always not null 

or too close to zero, especially with temperature arrays; it is chosen to be equal to the inlet 

value of the spatial distribution obtained with the most refined grid or time step, i.e.: 

𝜉0 = 𝜉𝑛𝑜𝑑𝑎𝑙,𝑟𝑒𝑓,1 (4.1-3) 

To obtain the global error, these errors should be reshaped as follows. 
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Arrays 𝜺𝑖 are constructed collecting the values of the error at a given spatial discretization 

pitch (or time step), then the average value of the elements for each of these arrays is 

computed that, in turn, constitutes the elements of the global error array 𝜺𝒈𝒍𝒐𝒃𝒂𝒍. Practically, 

if 𝑁𝑐𝑜𝑛𝑣 is the total number of chosen spatial discretization pitches (or time steps) used to 

perform the space convergence (or the time convergence) analysis, 

𝜺𝑖 = 

[
 
 
 
 
𝜺𝒗,𝒄𝒉,𝒊
𝜺𝒑,𝒄𝒉,𝒊
𝜺𝑻,𝒄𝒉,𝒊
𝜺𝑻,𝒔𝒕,𝒊
𝜺𝑻,𝒋𝒌,𝒊]

 
 
 
 

 𝑓𝑜𝑟 𝑖 = 1,… ,𝑁𝑐𝑜𝑛𝑣 (4.1-4) 

being 𝜺𝒗,𝒄𝒉,𝒊 the array of the velocity errors for each channel evaluated with the 𝑖𝑡ℎ spatial 

discretization pitch (or time step) as described above, and so on. Finally, the elements of the 

global error array are defined as: 

𝜀𝑔𝑙𝑜𝑏𝑎𝑙,𝑖 = 
∑ 𝜀𝑗
𝑁𝑒𝑞
𝑗=1

𝑁𝑒𝑞
 𝑓𝑜𝑟 𝑖 = 1,… ,𝑁𝑐𝑜𝑛𝑣 

(4.1-5) 

The space convergence is addressed first, followed by the time convergence of both BE 

and CN numerical schemes. The figures shown in this section are obtained with the “Compare 

space convergence” or “Compare time convergence” cascades of the post processing tool. 

4.1.1 SPACE CONVERGENCE 

The simulations for the space convergence are performed with inputs of Table 4.1-1 at 

fixed time step reducing the spatial discretization pitch of spatial discretization; the selected 

solution method is BE. Since it is not mandatory to perform a space convergence at the steady 

state, although recommended whenever is possible, in this case the end time of the simulation 

is in the middle of the heating phase where there are still transient conditions. The chosen 

time steps and spatial discretization pitches to perform the analysis are shown in Table 4.1-2 

while the outcomes are plotted in Figure 4.1-1.  

As can be seen from the logarithmic scale Figure 4.1-1, the slope of both the curves is such 

that to one order of magnitude on the abscissa axes the global error decreases of more than 

one order of magnitude but less than two resulting in a convergence order of about 1.2, that 

is in agreement with the previsions.  

Table 4.1-2 Simulation performed with the ITER-TF configuration at low temperature. Number of elements 
for the spatial discretizations (discretization parameter in round brackets) used to perform the space convergence 
analysis and the two considered time steps.  

𝚫𝒕 𝒔 
𝐍𝐄𝐋𝐄𝐌𝐒𝟏  
(𝚫𝒙𝟏 𝒎) 

𝐍𝐄𝐋𝐄𝐌𝐒𝟐  
(𝚫𝒙𝟐 𝒎) 

𝐍𝐄𝐋𝐄𝐌𝐒𝟑  
(𝚫𝒙𝟑 𝒎) 

𝐍𝐄𝐋𝐄𝐌𝐒𝟒  
(𝚫𝒙𝟒 𝒎) 

𝐍𝐄𝐋𝐄𝐌𝐒𝟓  
(𝚫𝒙𝟓 𝒎) 

0.5 
2000 (0.005) 1000 (0.01) 200 (0.05) 100 (0.1) 50 (0.2) 

0.1 
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Figure 4.1-1 Simulation performed with the ITER-TF configuration at low temperature. Space convergence 

analysis in logarithmic scale at 15 s for two time-steps. Solid circles represent actual values, solid or dashed lines 

give an idea of the trend.  

4.1.2 TIME CONVERGENCE 

The time convergence analysis is the outcome of a set of simulations that share the same 

input data of Table 4.1-1, the same number of elements but characterized by different time 

steps to march in time. Both the time convergences are fulfilled with two spatial discretization 

parameters, the chosen values are collected in Table 4.1-3 and Table 4.1-4. 

Table 4.1-3 Simulation performed with the ITER-TF configuration at low temperature. Time steps for the time 
convergence analysis with Backward Euler numerical schemes and the number of elements for the two set of 
simulations (discretization parameter in round brackets), about two orders of magnitude are explored.  

𝑵𝑬𝑳𝑬𝑴𝑺  
(𝚫𝒙 𝒎) 

𝚫𝒕𝟏 𝒔 𝚫𝒕𝟐 𝒔  𝚫𝒕𝟑 𝒔 𝚫𝒕𝟒 𝒔 𝚫𝒕𝟓 𝒔 𝚫𝒕𝟔 𝒔 

2000 (0.005) 
0.02 0.05 0.1 0.2 0.5 1.0 

200 (0.05) 
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Table 4.1-4 Simulation performed with the ITER-TF configuration at low temperature. Time steps for the time 
convergence analysis with Crank-Nicolson numerical schemes and the number of elements for the two set of 
simulations (discretization parameter in round brackets), more than two orders of magnitude are explored.  

𝑵𝑬𝑳𝑬𝑴𝑺  
(𝚫𝒙 𝒎) 

𝚫𝒕𝟏 𝒔 𝚫𝒕𝟐 𝒔 𝚫𝒕𝟑 𝒔 𝚫𝒕𝟒 𝒔 𝚫𝒕𝟓 𝒔 𝚫𝒕𝟔 𝒔 𝚫𝒕𝟕 𝒔 𝚫𝒕𝟖 𝒔 𝚫𝒕𝟗 𝒔 𝚫𝒕𝟏𝟎 𝒔 

2000 (0.005) 
0.005 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 

200 (0.05) 

Figure 4.1-2 collects the results of the time convergence analysis in two logarithmic 

subplots. The top one refers to Backward Euler numerical scheme while the bottom shows the 

Crank-Nicolson convergence. The errors shown are computed differently for the two 

methods. As far as BE is concerned, the points in the Figure 4.1-2 (a) correspond to the global 

error of the simulation, equation (4.1-5); the subplot shows that the order of convergence 

meets the expectations being exactly one in the range [0.1,1.0] 𝑠 for both the considered 

number of elements.  

Figure 4.1-2 Simulation performed with the ITER-TF configuration at low temperature. Time convergence 

analysis results in logarithmic scale at 15 s for two different number of elements for the spatial discretization 

(listed in the legend). (a) Backward Euler the global error is shown; (b) Crank-Nicolson, only the error on the 

temperature of the strand is shown. 
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The algorithm implementing the CN method is more sensitive to errors introduced by the 

coupling of the conductor components. For this reason, the convergence performed by 

calculating the global error of a set of simulations in which the components are thermally 

coupled (i.e., non-zero heat transfer coefficients), is altered by the errors introduced by the 

coupling, returning a convergence order of one at most. Hence, the sets of simulations to 

study the convergence of this numerical scheme contemplate the fully decoupled 

configurations of the cable, obtained imposing that the heat transfer coefficients of appendix 

D.2 are all equal to 0. In this case the global error definition is no longer meaningful since only 

the temperature of STR_MIX object is changing; therefore, the time convergence considers 

only the errors on this variable computed according to equation (4.1-1), shown in Figure 4.1-2 
(b). The second order convergence is verified for both the considered number of elements in 

the range [0.01,0.1], which can be extended up to 1 s for 200 elements. 

4.1.3 SUMMARY 

The outcome of the convergence analyses both in space and time for the ITER-TF design is 

the topic of this section. The common input data to all the simulations can be found in 

appendix D, while the specific ones are collected in the tables of the current section. Having 

agreed on the definition of the error, the results are presented in Figure 4.1-1 and Figure 4.1-2 

with an appropriate logarithmic scale on both axes. Globally, both the analyses reproduced 

the expected results: the space convergence order is between one and two due to the 

combination of the FEM for the spatial discretization and the upwind (boundary conditions do 

not affect the order of convergence); BE and CN returns the expected order of convergence 

as well, the difference being that for the former the overall error can be exploited, while for 

the latter the STR_MIX temperature error is considered since, in this case, the conductor 

components should be decoupled to obtain the foreseen results.  

4.2 VALIDATION AGAINST THE 4C CODE 

Once that the expected order of convergence of the algorithms implemented in the SC2 

code are confirmed, the V&V proceeds with the comparison of the simulations with the results 

obtained from another widely validated and verified code, such as 4C code. The benchmark, 

involving both cable types described in sections 2.1.4.1.1 and 0, is the topic of the following 

two sections. Actually, in the two configurations considered only the geometry and the 

topology of the cable are different: both the same coolant and the same superconducting 

material are used for simulations. In order to test the different initializations allowed by the 

code, the INTIAL 1 and INTIAL 5 options are considered for both configurations. These options, 

as discussed in the section 4.3.1, imply two different sets of boundary conditions; besides, it 

shows that the INTIAL 2 option from the point of view of boundary conditions does not differ 

from INTIAL 5, so it is not considered here. Input data concerning the geometry, materials, 

topology, friction factors and heat transfer coefficients are reported in appendix D; here, the 

focus is on the main hypotheses made in order to limit the number of degrees of freedom in 

the simulation, effectively simplifying the comparison: namely, imposing both the values of 

the heat transfer coefficients (between fluid components, fluid and solid components and 
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between solid components) and the friction factors of the fluid components to a constant 

value, chosen to be representative of the typical order of magnitude of the parameters. 

The simulation to achieve both benchmarks is a transient heating and cooling of the cable 

until the initial steady state is reached. The external heat source has the shape of a square 

wave in space and time and the heat is deposited directly on the strands. 

This introductive section ends shortly describing what is behind the outer benchmark GUI 

commands of the post processing tool. It is a two steps procedure, the first being the check 

for the coherence of the data and the second the actual benchmark.  

The coherence check is a preliminary condition to be verified aiming to guarantee that the 

saved data of the spatial distributions at given times and the time evolutions at given 

coordinates are coherent. In fact, the values corresponding to the space-time intersection 

must be the same irrespective of the array to which they belong, whether a spatial distribution 

or a time evolution. If this trivial but fundamental condition is verified for both the codes, the 

data can be trusted and the tool moves forward to the benchmark, that is the comparison of 

the saved spatial distributions and time evolutions of the solution variables. The generic 

relative error array is defined as: 

𝜺𝒐𝒖𝒕𝒆𝒓 𝒃𝒆𝒏𝒄𝒉 = 
|𝝃 − 𝝃𝟒𝑪|

|𝝃𝟒𝑪 − 𝜉0|
 (4.2-1) 

where: 

𝜉0 = 1.5max(|𝝃𝟒𝑪|) 
(4.2-2) 

With this definition of 𝜉0, the denominator never tends towards 0 and therefore the error 

never diverges, leading to a misunderstanding of the comparison. 

The following sections share the same structure. They begin completing the picture of the 

input data needed to run the simulation, continue with a short physical description of the 

simulation outcomes and end discussing the comparison with the 4C code.  

4.2.1 BENCHMARK WITH THE 4C CODE: AN HTS POWER CABLE 

This section deals with the benchmark of the 3P-HTS configuration against the 4C code. 

Table 4.2-1 gathers the input data of the executed simulations. 

When INTIAL 1 is considered, the inlet and outlet pressure are chosen such that the inlet 

mass flow rate is 0.1 kg/s. The small pressure drop associated to this flow is related to the 

tiny value of the channel friction factor, see appendix D.1. Conversely when the flag is INTIAL 

5, the outlet pressure is chosen such that the inlet pressure, given the inlet flow rate, is equal 

to the inlet pressure of the previous case. In this way the initialization is the same for the two 

simulations and the outcome is determined by the imposition of the boundary conditions. 

The results of the benchmark with INTIAL 1 are summarized in Figure 4.2-1 and Figure 

4.2-2, which show, respectively, the time evolution and the spatial distribution of the variables 

constituting the solution, which are the velocity, pressure and temperature of the fluid and 
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the temperature of the strand. To achieve better legibility, the temperature of the jacket is 

not shown as it does not add significant information to the graph. 

To complete the picture, the global errors at three selected spatial locations and times are 

also shown in Figure 4.2-3. 

Table 4.2-1 Input data for the simulation performed at high temperature with the 3P-HTS configuration; the 
second column refers to the simulation with INTIAL set equal to 1, the third column shows the data for the 
simulation with INTIAL set equal to 5. 

 INTIAL 1 INTIAL 5  
Variable Value Value Unit 

METHOD 0 (BE) 0 (BE) − 
ITMESH 0 (uniform) 0 (uniform) − 
NELEMS 200 200 − 

TEND 300.0 300.0 𝑠 
INTIAL 1 5 − 
TINL 60 60 K 
PINL 6 - bar 

POUT 5.99 5.99 bar 
MDTIN − 0.1 kg/s 

Q0 3000 3000 W/m 
XQBEG 4.0 4.0 m 
XQEND 6.0 6.0 m 
TQBEG 10.0 10.0 s 
TQEND 25.0 25.0 s 

As can be seen from the figures, the two codes calculate essentially the same solution 

(error of the order of 10−5), except at initialization where there is the maximum global error 

(3.2 10−5) for each of the coordinates considered. The reason for this is to be found in the 

different initialization algorithms of the two codes. As mentioned in section 0, the SC2 

manipulates the equation of the hydraulic characteristic to carry out the initialization of the 

fluid variables; on the other hand, the 4C adopts an iterative process starting from an assumed 

velocity value and providing, at each iteration, the calculation of an equivalent hydraulic 

diameter weighted on the friction factor. 
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Figure 4.2-1 High temperature 3P-HTS simulation with INTIAL 1: time evolution variables at 5 m. Solid 

lines refer to SC2 values, dot-dashed and dotted lines refer to 4C values: (a) fluid velocity, (b) fluid pressure, 

(c) fluid and strand temperatures. 

In any case, both codes give a good approximation of the real thermo-hydraulic behavior 

of the conductor. As a result of heating, the temperature of the strand increases, and the 

spatial shape of the source is clearly visible in Figure 4.2-2 (c). Another consequence of the 

heating is the pressurization of the channel, which, however, is inhibited by the low density of 

He at that high temperature. In fact, the channel pressure does not deviate significantly from 

the initial value during the entire duration of the transient (see Figure 4.2-1 (b)). However, the 

increase in fluid temperature due to convective heat exchange further reduces the density. 

Given the negligible change in pressure, the flow rate is practically constant and, 

consequently, a reduction in density corresponds to an increase in velocity as can be seen in 

Figure 4.2-1 (a) and Figure 4.2-2 (a). The marked difference between strand and coolant 

temperatures is due to the different volumetric heat capacity of the materials, being that of 

solid components two orders of magnitude larger than that of the fluid. This large 

temperature difference, together with the coolant flow rate, favors the removal of the heat 
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energy introduced by the source and justifies the need to use a linear power of 3000 W/m to 

obtain a peak temperature difference of about 10 K. 

Figure 4.2-2 High temperature 3P-HTS simulation with INTIAL 1: spatial distribution variables at 18 s. Solid 

lines refer to SC2 values, dot-dashed and dotted lines refer to 4C values: (a) fluid velocity, (b) fluid pressure, (c) 

fluid and strand temperatures.  
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Figure 4.2-3 High temperature 3P-HTS simulation with INTIAL 1. Relative errors in semi logarithmic: (a) time 
evolution errors at 4.0 𝑚, 5.0 𝑚 and 6.0 𝑚; (b) spatial distribution errors at 5.0 𝑠, 16.0 𝑠 and 40.0 𝑠. 
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Attention is now shifted to the INTIAL 5 case, for which the benchmark results are shown 

in Figure 4.2-4 regarding the temporal evolution, in Figure 4.2-5 representing the spatial 

distribution, while the global error at three different spatial coordinates and times is shown in 

Figure 4.2-6. The physics of the simulation is now determined by the fact that the inlet velocity 

is fixed while the pressure can vary. However, since even in this case the pressure variation is 

not relevant, the time evolution and the spatial distribution are not very different from those 

shown for the previous case. 

Figure 4.2-4 High temperature 3P-HTS simulation with INTIAL 5: time evolution variables at 5 𝑚. Solid lines 
refer to SC2 values, dot-dashed and dotted lines refer to 4C values: (a) fluid velocity, (b) fluid pressure, (c) fluid 
and strand temperatures.  

Observing the global error, this is about an order of magnitude greater than that calculated 

for the INTIAL 1 case, but its value is still such as to conclude that the two codes are equivalent.  

As can be seen from Figure 4.2-3 and Figure 4.2-6, the average global error for the case 

where INTIAL is equal to 1 is of the order of magnitude 10−5, while in the case where the flag 

is set equal to 5 it is of the order of magnitude 10−4. The small value of these relative errors 
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ratifies the success of the benchmark; however, the result should not be taken for granted 

given the differences between the two codes, in particular the one concerning the calculation 

of properties in Gauss nodes. The comparison of the global errors of the helium, strand and 

jacket properties is proposed in Figure 4.2-7 for two spatial discretizations performed with 

200 and 2000 elements, respectively. The properties are evaluated according to the strategies 

of the two codes using the spatial distributions of temperature and pressure at 18 s. 

Figure 4.2-5 High temperature 3P-HTS simulation with INTIAL 5: spatial distribution variables at 18 𝑠. Solid 
lines refer to SC2 values, dot-dashed and dotted lines refer to 4C values: (a) fluid velocity, (b) fluid pressure, (c) 
fluid and strand temperatures.  

For consistency, the error on the generic property is defined as: 

𝜺𝒈𝒂𝒖𝒔𝒔 =
|𝛘𝑔𝑎𝑢𝑠𝑠,𝑆𝐶2 − 𝛘𝑔𝑎𝑢𝑠𝑠,4𝐶 |

|𝛘𝑔𝑎𝑢𝑠𝑠,4𝐶 |
 (4.2-3) 

The global error is computed as the average error of the properties. 



4.2 VALIDATION AGAINST THE 4C CODE 

98 

The maximum errors are located in correspondence of the temperature gradients close to 

the heated region and they are reported for clarity in Table 4.2-2. In fact, it is precisely at steep 

variations in temperature (and pressure when required) that the two strategies differ most: 

the overall error increases by many orders of magnitude, up to 10 for strand properties. The 

relevant contribution is due to the strand properties, however the errors are already small to 

give relevant effects. 

The figure also shows that by increasing the number of elements by an order of magnitude, 

the difference between the values calculated by the two methods is reduced by almost two 

orders of magnitudes. 

Figure 4.2-6 High temperature benchmark 3P-HTS with INTIAL 5. Relative errors in semi logarithmic scale: (a) 
time evolution errors at 4.0 𝑚, 5.0 𝑚 and 6.0 𝑚; (b) spatial distribution errors at 5.0 𝑠, 16.0 𝑠 and 40.0 𝑠. 

Table 4.2-2 3P-HTS configuration with INTIAL 1: maximum global error from the comparison on the properties 
evaluated in Gauss points according to SC2 and 4C implementation at 18 𝑠. 

NELEMS fluid strand Jacket 

200 4.7e-10 4.4e-4 2.3e-8 
2000 3.8e-12 7.1e-6 2.3e-10 



4 SC2 VERIFICATION AND VALIDATION 

99 

Figure 4.2-7 High temperature 3P-HTS INTIAL 1: spatial distribution of the global errors at 18 𝑠 from the 
comparison of the properties evaluated in the Gauss points according to the SC2 and 4C implementations, in semi 
logarithmic scale at high temperature. Two number of elements for the spatial discretizations are considered: (a) 
fluid properties, (b) strand properties, (c) jacket properties. 

In conclusion, for the considered temperature range, the solution at each time step is not 

strongly affected by the recipe used to evaluate the properties in the Gauss node, so the 

benchmark is successfully completed. 

4.2.2 BENCHMARK WITH THE 4C CODE: AN ITER LTS TOROIDAL FIELD COIL CABLE 

The benchmark results for the ITER-TF configuration are analyzed in this section. The input 

data that identify the simulations are collected in Table 4.2-3. 

As mentioned in the introduction to the section, also for the ITER-TF geometry the 

comparison of the results obtained is carried out for two characteristic values of the INTIAL 
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flag. As there are two fluid components in hydraulic parallel, the value of the flag must be the 

same for both.  

Table 4.2-3 Input data for the simulation performed at low temperature with the ITER-TF configuration; the 
second column refers to the simulation with INTIAL set equal to 1, the third column shows the data for the 
simulation with INTIAL set equal to 5. 

 INTIAL 1 INTIAL 5  
Variable Value Value Unit 

METHOD 0 (BE) 0 (BE) − 
ITMESH 0 (uniform) 0 (uniform) − 
NELEMS 200 200 − 

TEND 100.0 100.0 s 
INTIAL 1 5 − 
TINL 4.5 4.5 K 
PINL 6 - bar 

POUT 5.9 5.9 bar 
MDTIN_1 − 8.4 10−3 kg/s 
MDTIN_2 − 1.24510−2 kg/s 

Q0 250 250 W/m 
XQBEG 4.0 4.0 m 
XQEND 6.0 6.0 m 
TQBEG 10.0 10.0 s 
TQEND 20.0 20.0 s 

For the sake of simplicity, the first set of input data applies the same initial values to both 

the conductor channels, but this is no longer true for the second set since for the two channels 

a different value of the inlet mass flow rate is assigned. These guess values approximate the 

initial inlet mass flow rates computed with the first simulation, used as input parameters in 

the second run. As discussed in section 4.3.1, these two simulations give different results and 

constitute a test case to check the capability of the SC2 code to manage different fluid dynamic 

operating conditions. For the time being they are considered separately, and the focus is on 

the benchmark with the 4C. In the following, first the results obtained are commented by 

comparing the simulations with INTIAL 1, and then those corresponding to INTIAL 5. 

The curves shown in Figure 4.2-8 and Figure 4.2-9 represent, respectively, the time 

evolutions and spatial distributions in an appropriate spatial coordinate and at a defined time 

step. The absence of the pressure and temperature curves for the first channel, the hole, in 

Figure 4.2-8 is due to the fact that these time evolutions are not available in 4C for the case 

hand. 

Looking at the above Figure 4.2-8 and Figure 4.2-9, it could be concluded that, similarly to 

the previous section, the benchmark is positive. To quantify the accuracy of that agreement, 

Figure 4.2-10 shows the global error of the solution in three spatial coordinates and three time 

steps. As with the 3P-HTS configuration, before heating starts and once its effects ends, the 

two codes are in perfect agreement, except for the already discussed difference on 

initialization.  
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Figure 4.2-8 ITER-TF with INTIAL 1: time evolution variables at 5 m . Solid lines refer to SC2 values, dot-dashed 

lines refer to 4C values: (a) fluid velocities, (b) fluid pressure, (c) fluid temperature (d) strand temperature.  

Note, however, that in this specific case, arises during the heating and cooling transient 
where the errors increase by up to three orders of magnitude. The main reason for this 
difference in results is the non-linearity of material properties at low temperatures, which is 
captured differently by the two strategies implemented in the codes for calculating properties 
in the Gauss node. This is supported by the Figure 4.2-11 which compares, for two different 
spatial discretizations, the global error of the fluid, strand and jacket properties, calculated 
with the spatial distribution of temperature and pressure at 15 s, i.e., in the middle of the 
heating phase of the transient. The errors are defined by equation (4.2-3), the maximum 
values are given in Table 4.2-4 for ease of reading.  

The global fluid error shown in Figure 4.2-11 (a) refers to the second channel, i.e., the 

bundle, as it is affected by a greater temperature variation than the first one, as can be seen 

from Figure 4.2-11 (c). 
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Figure 4.2-9 ITER-TF with INTIAL 1: spatial distribution variables at 16 𝑠. Solid lines refer to SC2 values, dot-
dashed and dotted lines refer to 4C values: (a) fluid velocities, (b) fluid pressures, (c) fluid temperatures, (d) strand 
temperature.  

Table 4.2-4 ITER-TF configuration with INTIAL 1 and INTIAL 5: maximum global error from the comparison on 
the properties evaluated in Gauss points according to SC2 and 4C implementation at 15 𝑠. 

 INTIAL 1 INTIAL 5 

NELEMS fluid strand Jacket fluid strand Jacket 
200 7.4e-3 3.0e-3 7e-4 6.5e-4 7.5e-4 1.2e-4 

2000 2.5e-4 4.3e-5 9.7e-6 4.1e-5 1.1e-5 1.5e-6 

It is important to note that the errors are in general much greater than those shown in the 

analogous Figure 4.2-7, reflecting the fact that in the temperature range considered, the 

properties are strongly non-linear and the two recipes give different values. Errors increase 

significantly (up to six orders of magnitude) at temperature gradients. By refining the mesh, 

the error tends to reduce as expected, but the reduction in maximum error is only one order 

of magnitude compared to two at high temperature. 
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Figure 4.2-10 Benchmark ITER-TF with INTIAL 1. Relative global errors in semi logarithmic scale of the: (a) 
time evolution errors at 4.0 𝑚, 5.0 𝑚 and 6.0 𝑚; (b) spatial distribution errors at 5.0 𝑠, 16.0 𝑠 and 40.0 𝑠. 

The consequence of the superimposition of these non-negligible errors on the properties 

of each component of the conductor is the different prediction of the solution of the problem 

during the heating and cooling phases of the cable, which leads to the errors shown in the 

Figure 4.2-10. 
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Figure 4.2-11 ITER-TF INTIAL 1: spatial distribution of the global errors at 15 𝑠 from the comparison of the 
properties evaluated in the Gauss points according to the SC2 and 4C implementations, in semi logarithmic scale 
at low temperature. Two number of elements for the spatial discretizations are considered: (a) fluid properties, 
(b) strand properties, (c) jacket properties. 

Moving on to the comparison analysis of the INTIAL 5 case, for which refer to Figure 4.2-12, 

Figure 4.2-13 and Figure 4.2-14 which show the time evolutions, spatial distributions and global 

errors respectively. 

The comparison of these simulations has some peculiarities compared to the previous 

case. Specifically, observing Figure 4.2-14 it can be seen that the error remains low during the 

significant phases of the transient: although increasing by an order of magnitude within the 

heated region, they are a couple of orders of magnitude smaller than in the INTIAL 1 case and 

comparable with those obtained by the benchmarks with the 3P-HTS geometry. On the other 

hand, the error during the initialization phase is increased at the inlet throughout the duration 

of the transient. Both phenomena are directly attributable to the different initialization and 

application of boundary conditions compared to the case where the INTIAL flag is initialized 
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at 1, but for different reasons. More details on the different strategies used by SC2 to initialize 

fluid components and boundary conditions are discussed in section 0. 

The justification for the tendentially lower errors during the transient is twofold. Taking 

into account the figures concerning the time evolutions (Figure 4.2-12) and the spatial 

distributions (Figure 4.2-13), it is found that the temperature gradients are less steep and the 

temperature values lower than in the INTIAL 1 case and, consequently, the error resulting 

from the use of the two methods for the calculation of the properties in the Gauss node is 

reduced, with a consequent beneficial effect on the comparison of the results obtained with  

Figure 4.2-12 ITER-TF with INTIAL 5: time evolution variables at 5 𝑚. Solid lines refer to SC2 values, dot-
dashed lines refer to 4C values: (a) fluid velocities, (b) fluid pressure, (c) fluid temperature (d) strand temperature.  

the two codes, (see Figure 4.2-15). The maximum errors are listed in Figure 4.2-9 ITER-TF with 

INTIAL 1: spatial distribution variables at 16 𝑠. Solid lines refer to SC2 values, dot-dashed and dotted lines refer 
to 4C values: (a) fluid velocities, (b) fluid pressures, (c) fluid temperatures, (d) strand temperature.  

Table 4.2-4 and from a direct comparison with the one obtained with INTIAL 1 results that their 
value is almost one order of magnitude lower for both the considered spatial discretizations. 
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Figure 4.2-13 ITER-TF with INTIAL 5: spatial distribution variables at 16 𝑠. Solid lines refer to SC2 values, dot-
dashed and dotted lines refer to 4C values: (a) fluid velocities, (b) fluid pressures, (c) fluid temperatures, (d) strand 
temperature.  
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Figure 4.2-14 Benchmark ITER-TF with INTIAL 5. Relative global errors in semi logarithmic scale: (a) time 

evolution errors at 4.0 m, 5.0 m and 6.0 m; (b) spatial distribution errors at 5.0 s, 16.0 s and 40.0 s. 
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Figure 4.2-15 ITER-TF INTIAL 5: spatial distribution of the global errors at 15 s from the comparison of the 

properties evaluated in the Gauss points according to the SC2 and 4C implementations, in semi logarithmic scale 

at low temperature. Two number of elements for the spatial discretizations are considered: (a) fluid properties, 

(b) strand properties, (c) jacket properties. 

Regarding the problem at initialization, reference is made to the Figure 4.2-16 which 

represents an enlargement of the spatial distribution of the He velocity in the two channels. 

The velocity imposed as boundary conditions on the inlet in the two codes is different, with 

relative error close to 10%. Both these values are calculated during initialization and then 

imposed as a boundary condition in the time steps following the initial one. The value 

calculated by SC2 code is immediately consistent with the one calculated as the solution of 

the problem in the other nodes of the spatial discretization; on the contrary, 4C predicts a 

value that proves to be unreliable and the solution better approximates the correct value after 

a settling length. At 0.6 m distance from the inlet the relative error for the velocity of both 

fluid components is less than 10−4. It can therefore be concluded that the use of the hydraulic 

characteristic equation of the channel to compute the initialization of the fluid properties, 
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provides more accurate results over the whole spatial discretization than the iterative strategy 

proposed by 4C code. 

Figure 4.2-16 TER-TF configurations with INTIAL 5: enlargement of the fluid velocities spatial distributions at 
16 𝑠. (a) CHAN_1 velocities, (b) CHAN_2 velocities solid lines refer to SC2, dot-dashed lines refer to 4C; (c) relative 
error in semi logarithmic scale. 

In conclusion, excepted the differences highlighted and justified above, the benchmark 

with INTIAL 5 has a positive result, see Figure 4.2-14 . 

4.2.3 SUMMARY 

A series of mandatory benchmarks, with a widely validated and recognized code (such as 

4C code), have been carry out to validate the results obtained with the SC2 code. In this 

running-in phase of the new code, an attempt has been made to minimize the sources of 

possible differences between the results obtained with the two codes, so the values of the 

heat transfer coefficients and friction factors have been set at constant and representative 

values. Two geometries are considered, respectively that of a high-temperature 
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superconducting cable for power transport (3P-HTS), and the ITER-TF configuration used to 

build the set of toroidal magnets in the tokamaks, characterized by low-temperature 

superconducting. For both, two different modes of initialization and application of boundary 

conditions were compared.  

There are two main differences between the codes that lead to small differences in the 

results: the first is related to the different way in which the flow is initialized, the second is 

due to the calculation of the properties in the Gauss nodes, which are necessary to construct 

the elements of the matrix solving the set of equations relevant here.  

The effects are in general quite unappreciable for the 3P-HTS cable since, as it consists of 

only one cooling channel, the two initializations give similar results; moreover, the properties 

at high temperature are globally more linear, also reducing the differences in the calculation 

of the properties in Gauss points. 

On the other hand, the ITER-TF geometry is more complex due to the presence of two 

channels in hydraulic parallel for the coolant and consequently the number of degrees of 

freedom for initialization increases. In fact, the two strategies produce different results, with 

the one determined with SC2 proving to be more accurate: the benchmark shows a marked 

difference between the two alternatives, with errors of almost 10% at the inlet. In addition, 

the material properties are highly non-linear at low temperatures, so the calculation of the 

properties in Gauss points also has a negative effect on the comparison of the simulations. 

However, the method adopted in SC2 returns more accurate values as it evaluates the 

properties at these virtual nodes by re-invoking the functions, rather than assuming that they 

are the mean value of the properties at the nodes of the spatial discretization, as in 4C. 

4.3 SC2 VERSATILITY CHECKS 

A series of simulations have been accomplished to check the reliability and self-

consistency of the code, in a word its versatility. These checks regard the possibility of 

imposing different initialization and boundary conditions (section 4.3.1) or to select different 

numerical schemes for the solution 4.3.2, the ability of the code to handle backward flow 

(when the outlet pressure is set to a value greater than the inlet one) discussed in section 

4.3.3, together with the prospect of using a non-uniform mesh with a refined zone to optimize 

computational costs, which is the topic of section 4.3.4.  

The so-called inner benchmark bases its veracity on the consideration that the validation 

against 4C was positive in the cases considered. 

For the sake of conciseness, the simulations are carried out only for the ITER-TF design. As 

usual, the common input data can be found in appendix D.2 while in each subsection the 

specific data are reported to complete the picture. 

The data analysis is done exploiting the “Inner Benchmark” cascade of the external post 

processing tool. Coherently to what already done for the outer benchmark, the inner 

benchmark error definition is given by: 
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𝜺𝒊𝒏𝒏𝒆𝒓 𝒃𝒆𝒏𝒄𝒉 = 
|𝝃𝑺𝒊𝒎𝟏 − 𝝃𝑺𝒊𝒎𝟐 |

|𝝃𝑺𝒊𝒎𝟏 − 𝜉0|
 (4.3-1) 

where: 

𝜉0 = 1.5max(|𝝃𝑺𝒊𝒎𝟏|) 
(4.3-2) 

A suitable definition of 𝝃𝑺𝒊𝒎𝟏 and 𝝃𝑺𝒊𝒎𝟐 will be given the following sections 4.3.2, 4.3.3 

and 4.3.4. 

The global error is then defined as the average of the generic errors at a given spatial 

coordinate or time. 

4.3.1 INNER BENCHMARK: INTIAL 

The main ways of initializing the flow were presented in section 0 and previously used to 

benchmark with 4C (sections 4.2.1 and 4.2.2). A recap of the effects of the flag INTIAL on both 

initialization and boundary conditions according to its value is proposed in Table 4.3-1. Here 

the goal is twofold: to demonstrate that different outcomes of the simulation correspond to 

those options, and query them to check that they are in accordance with the physics of the 

problem being studied. 

Expressly, it is expected that from the comparison of two simulations, one with INTIAL 1 

the other with INTIAL 2 (or 5) the results will be quite different, while comparing INTIAL 2 with 

INTIAL 5 the code is expected to return almost the same solution since these options have 

more affinities than divergences. 

Table 4.3-1 Effects on the initialization and on the application of the boundary conditions according to three 
possible values of the flag INTIAL, as far as fluid components are considered.  

INTIAL Initialization Boundary condtions Notes 

±1 

𝑝𝑖𝑛𝑙 𝑝𝑖𝑛𝑙 
 

𝑇𝑖𝑛𝑙 𝑇𝑖𝑛𝑙 Used as BC if 𝑣𝑖𝑛𝑙 > 0 
𝑝𝑜𝑢𝑡 𝑝𝑜𝑢𝑡 

 

𝑇𝑜𝑢𝑡 𝑇𝑜𝑢𝑡 Used as BC if 𝑣𝑜𝑢𝑡 < 0 

±2 

�̇�𝑖𝑛𝑙 𝑣𝑖𝑛𝑙  𝑣𝑖𝑛𝑙  from �̇�𝑖𝑛𝑙 
𝑝𝑖𝑛𝑙 𝑇𝑖𝑛𝑙 Used as BC if 𝑣𝑖𝑛𝑙 > 0 

𝑇𝑖𝑛𝑙 𝑝𝑜𝑢𝑡 
𝑝𝑜𝑢𝑡 evaluated in flow 

initialization  
𝑇𝑜𝑢𝑡 𝑇𝑜𝑢𝑡 Used as BC if 𝑣𝑜𝑢𝑡 < 0 

±5 

�̇�𝑖𝑛𝑙 𝑣𝑖𝑛𝑙  𝑣𝑖𝑛𝑙  from �̇�𝑖𝑛𝑙 
𝑇𝑖𝑛𝑙 𝑇𝑖𝑛𝑙 Used as BC if 𝑣𝑖𝑛𝑙 > 0 
𝑝𝑜𝑢𝑡 𝑝𝑜𝑢𝑡 

 

𝑇𝑜𝑢𝑡 𝑇𝑜𝑢𝑡 Used as BC if 𝑣𝑜𝑢𝑡 < 0 
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The specific input data used to execute the simulations are summarized in Table 4.3-2. The 

inlet mass flow rate used for the simulation with INTIAL 2 and 5 approximates the ones 

evaluated with the case INTIAL 1, furthermore note that the imposed pressure value is the 

same. Having the same input data in common, although calculated from different initialization 

conditions, the behavior of the simulations is only influenced by the application of boundary 

conditions. 

Table 4.3-2 Input data for the simulation performed at low temperature with the ITER-TF configuration; the 
second column refers to the simulation with INTIAL 1, the third column shows the data for the simulation with 
INTIAL 2 while the fourth collects the values for the simulation performed with INTIAL 5 

Variable Value Unit 

METHOD 0 (BE) 0 (BE) 0 (BE) − 
ITMESH 0 (uniform) 0 (uniform) 0 (uniform) − 
NELEMS 200 200 200 − 

TEND 15.0 15.0 15.0 s 
STPMIN 0.1 0.1 0.1 s 
INTIAL 1 2 5 − 
TINL 4.5 4.5 4.5 K 
PINL 6. 6 − bar 

POUT 5.9 − 5.9 bar 
MDTIN_CH1 − 8.4 10−3 8.4 10−3 kg/s 
MDTIN_CH2 − 1.248 10−2 1.248 10−2 kg/s 

Q0 250 250 250 W/m 
XQBEG 4.0 4.0 4.0 m 
XQEND 6.0 6.0 6.0 m 
TQBEG 10.0 10.0 10.0 s 
TQEND 20.0 20.0 20.0 s 

For this specific kind of inner benchmark, it is not meaningful to define an error since the 

simulations are different. Firstly, the inner benchmark INTIAL 1 against INTIAL 5 is considered 

and then the one INTIAL 2 against INTIAL 5. 

On the basis of the above, the initial spatial distribution of the variables of both simulations 

must be the same as confirmed by Figure 4.3-1. The initialization of this simulation is 

characterized by a constant temperature spatial distribution at 4.5 K for all components (two 

fluids and solid ones) since the INTIAL 0 is considered for the lattes (see Table D.2-5 and   
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Table D.2-6), and a linear pressure spatial distribution from the inlet value to the outlet 

one. It is worth mention that the pressure behavior is the same in both the cooling channels, 

as expected since they are in hydraulic parallel, and thus the pressure is equalized. Also, the 

initial velocity spatial distribution is linear, it is not evident from the Figure 4.3-1 due to the very 

small slope. Notice that curves perfectly overlap, meaning that the initializations are 

equivalent. 

Figure 4.3-1 Comparison of the initial spatial distribution of the ITER-TF cable simulations with INTIAL 1 and 

INTIAL 5. Solid lines refer to INTIAL 1, dot-dashed and dotted lines refer to INTIAL 5. (a) fluid components velocities, 

(b) fluid components pressures, (c) fluid components temperatures, (d) strand temperature. 

The effects of the different boundary conditions application can be seen in Figure 4.3-2 

that compares the time evolutions of the solution variables at the inlet for INTIAL 1 and INTIAL 

5, as well as in Figure 4.3-3 and Figure 4.3-4 that respectively show the variable time evolutions in 

the center of the conductor and the spatial distribution at 15 s, in the middle of the heating 

phase. 
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Figure 4.3-2 Comparison of the inlet time evolution of the ITER-TF cable simulations with INTIAL 1 and INTIAL 
5. Solid lines refer to INTIAL 1, dot-dashed and dotted lines refer to INTIAL 5. (a) fluid components velocities, (b) 
fluid components pressures, (c) fluid components temperatures, (d) strand temperature. The simulations end at 
100.0 𝑠 but only the first 40.0 𝑠 are shown to improve the readability.  

It is noteworthy that the two initializations and set of boundary conditions are almost 

equivalent before the heating period starts and after that a new steady state is restored, 

confirming that the initializations are equivalent from the point of view of the calculated 

values. The differences raise during the heating and cooling phases of the transient because 

the physic is different for the two sets of boundary conditions. 

During the first 10 𝑠 of the transient the solution does not change that much as can be 

seen from both Figure 4.3-2 and Figure 4.3-3. The temperatures are flat and almost equal to the 

initial value (a small increase is due to the friction in the cable), both pressure and velocity 

distributions are still linear and very close to the initial ones.  
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Figure 4.3-3 Comparison of the time evolution variables for the ITER-TF cable simulations performed with 

INTIAL 1 and INTIAL 5 at 5 m. Solid lines refer to INTIAL 1, dot-dashed and dotted lines refer to INTIAL 5. (a) fluid 

components velocities, (b) fluid components pressures, (c) fluid components temperatures, (d) strand 

temperature. The simulations end at 100.0 s but only the first 40.0 s are shown to improve the readability.  

At 10 s the heating is switched on and the heating phase of the transient begins, the 

effects being the raise in temperature of the strand (and of the other cable components due 

to the heat transfer), and the coolant pressurization which manifests differently depending on 

the imposed boundary conditions. On the one hand, when the inlet and outlet pressure of the 

fluids are imposed, the inlet pressure is constant in time (as well as the outlet one) while the 

velocity changes according to the pressure drop, as visible in Figure 4.3-2 (a). On the other 

hand, when only the outlet pressure is imposed as boundary condition, its value at the inlet 

can vary such that the inlet velocity is constant, as can be inferred from Figure 4.3-2 (b). In 

both cases within the conductor, the pressure will change consistently with the physics 

described by the two cases, while the velocity is ruled by the local pressure drop, as shown in 

Figure 4.3-3 (a, b) and Figure 4.3-4. 
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Figure 4.3-4 Comparison of the spatial distribution variables for the ITER-TF cable simulations performed with 

INTIAL 1 and INTIAL 5 at 15 s. Solid lines refer to INTIAL 1, dot-dashed and dotted lines refer to INTIAL 5. (a) fluid 

components velocities, (b) fluid components pressures, (c) fluid components temperatures, (d) strand 

temperature.  

Focusing on the spatial distributions shown in Figure 4.3-4, at the considered time step both 

the heating effects are appreciable: the first is the pressurization on the channels, the second 

the global temperature raise of the conductor components. With INTIAL 1, the pressure is flat 

and almost equal to the inlet value up to the lower edge of the heated region, consequently 

the velocity is almost zero; beyond this spatial coordinate, the pressure starts to decrease, so 

the local pressure drop is not zero and the velocity raises. The different velocity distribution 

along the channels which, for part of its length, is characterized by a practically zero flow rate, 

justifies the spatial temperature distribution of the strand (and consequently those of the 

other components). As a matter of fact, along the first 4 m of the conductor, the main heat 

transfer mechanism is the conduction that has a limited effect in a region close to the 

beginning of the heated zone. Inside this region there is a sharp temperature gradient which 

decreases progressively as the velocity increases, since more heat is removed by convection. 
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Outside the heated region the velocity still increases leading to a sharp negative temperature 

spatial gradient.  

Generally, when both the inlet and the outlet pressure are imposed as boundary 

conditions it could happens that, at some spatial coordinates, the local pressure value is larger 

than the inlet value. If such condition verifies, a backflow occurs: upstream the velocity is 

negative since the coolant flow is reversed, downstream the velocity is positive and large since 

the pressure drop is larger than the initial one, with dramatic consequences on the 

temperature of the strand.  

When INTIAL 5 is taken into account, the physics is different from that described so far; 

the key is the different pressure distribution shown in Figure 4.3-4 (b). In this case the cable 

pressurization involves the inlet as well, so the velocity never goes below the inlet value, 

increasing where the effects of pressurization are most pronounced. This means that in this 

configuration a back flow cannot begin since the maximum pressure is always at the inlet; 

moreover, the imposed mass flow rate allows a more efficient heat removal with respect to 

the previous case, as can be seen from the less steep gradients in Figure 4.3-4 (c, d). 

The same physics can be seen from a different point of view in Figure 4.3-3. The different 

shape of the temperature evolution is remarkable, as shown in Figure 4.3-3: very pronounced 

gradients for INTIAL 1, compared to the smoother shape of INTIAL 5, again related to the 

different pressurization which lead to a different velocity behavior, which has a smaller 

variation in the case of INTIAL 5 than INTIAL 1. It should also be noted that, with the same 

INTIAL, there is a different value for the He temperatures in the two channels. The lower 

temperature in the hole compared to the bundle can be understood for two reasons. Firstly, 

this channel is not in direct contact with the strand, but the heat flows by conduction and 

convection through the spiral separating it from the bundle, therefore it is not directly affected 

by the heating effects. In addition, as the velocities in the two channels are different, the 

information about the temperature change propagates with different timing. Table 4.3-3 

collects the maximum values of the channel pressure and of the strand temperature at the 

considered time evolution and spatial distribution.  

Table 4.3-3 Maximum values of the fluid components pressure and of the strand temperature for the low 
temperature ITER-TF simulation with INTIAL 1 and INTIAL 5. The relative difference is also shown in the last row 
of the table. In the first and third columns are reported the maximum values of the time evolution at 5 𝑚, while 
in the second and in the fourth columns are reported the maximum values of the space distribution at 15 𝑠. 

 Pressure 𝑴𝑷𝒂 Temperature 𝑲 
 𝟓 𝒎 𝟏𝟓 𝒔 𝟓 𝒎 𝟏𝟓 𝒔 

INTIAL 1 0.5999 0.6 12.02 7.84 
INTIAL 5 0.6099 0.6134 7.17 6.67 

Relative difference % 1.68 2.24 40.32 14.92 

Figure 4.3-2 (c) shows that between 13.7 s  and 15 s  in the bundle (CH2) the inlet 

temperature is not equal to the imposed value. This may appear an odd event, but it can be 

explained remembering how the boundary conditions are applied. In Table 4.3-1 is remarked 

that the inlet temperature is imposed only if the inlet velocity is larger than 0; since between 
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13.7 s and 15 s the velocity is negative, this boundary condition is not imposed. Comparing 

the peak temperature of the strand and of the bundle, it turns out that the channel 

temperature is 0.1% larger than the strand one, but this is only related to numeric. 

Twenty seconds after the start of the transient, the heat source is switched off and from 

the time evolution, see Figure 4.3-3 (d), it can be seen that the temperature in the strand, and 

therefore in all the other conductor components decreases: the second phase of the transient, 

cooling down, begins. Fluid pressure drastically reduces, bringing velocities down to near pre-

heating values. At 30 s the temperature at 5 m has almost reached the initial value but the 

heat is not yet exhausted since it propagates along the conductor. 

At the end of the simulation (100 s) the steady state is restored. 

Figure 4.3-5 Comparison of the time evolution variables for the ITER-TF cable simulations performed with 
INTIAL 2 and INTIAL 5 at 5 𝑚. Solid lines refer to INTIAL 2, dot-dashed and dotted lines refer to INTIAL 5. (a) fluid 
components velocities, (b) fluid components pressures, (c) fluid components temperatures, (d) strand 
temperature. The simulations end at 100.0 𝑠 but only the first 40.0 𝑠 are shown to improve the readability.  
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Figure 4.3-6 Comparison of the spatial distribution variables for the low temperature ITER-TF simulations 

performed with INTIAL 2 and INTIAL 5 at 15 s. Solid lines refer to INTIAL 2, dot-dashed and dotted lines refer to 

INTIAL 5. (a) fluid components velocities, (b) fluid components pressures, (c) fluid components temperatures, (d) 

strand temperature.  

Ultimately, imposing both pressures at the inlet and outlet limits the pressurization of the 

cable but can lead to a partial absence of coolant flow, or worse a backflow, with negative 

effects on strand temperature. On the other hand, imposing the inlet velocity, while having 

the advantage of limiting the peak temperature, subjects the cable to non-negligible 

mechanical stress due to the inlet pressure increase. 

The section ends commenting the inner benchmark INTIAL 2 against INTIAL 5. The main 

difference between the two options is that in the former the outlet pressure is evaluated 

starting from the information at the inlet in the initialization phase (as discussed in section 0), 

while in the latter the outlet pressure is given as input data. Also in this case, the input data 

presented in Table 4.3-2 are such that the simulations outcome is expected to be the same. 

The time evolutions and the spatial evolution of the solution variables are shown in Figure 

4.3-5 and Figure 4.3-6. All the curves perfectly overlap largely confirming what was foreseen.  
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4.3.2 INNER BENCHMARK: BE VS CN 

The time convergence analysis was performed considering both the methods available in 

the SC2 code to integrate the ODE system of equations. This section shows that both methods 

tend to the same solution when the same input data are given. The specific data are the same 

of the second column of Table 4.3-2, i.e. INTIAL 1 is considered, but four simulations are 

compared that differs for the time steps and the solution method according to the following 

Table 4.3-4, grouped into two cases by the former input data. 

Table 4.3-4 Minimum time steps and methods to integrate the final ODE system use to compare the outcome 
obtained with Backward Euler and Crank-Nicolson numerical schemes for the ITER-TF configuration with INTIAL 
1. 

 S1 S2 S3 S4 Unit SI 

STPMIN 0.1 0.01 s 
METHOD  0 (BE) 1 (CN) 0 (BE) 1 (CN) − 

The global errors of the spatial distributions and the time evolutions are evaluated taking 

as reference simulation the one that implements the Backward Euler numerical scheme; 

therefore, for the first case: 

𝝃𝑺𝒊𝒎𝟏 = 𝝃𝑩𝑬,𝟎.𝟏𝒔 

𝝃𝑺𝒊𝒎𝟐 = 𝝃𝑪𝑵,𝟎.𝟏𝒔 

The trend of the overall error is plotted in Figure 4.3-7. The order of magnitude of both 

the time evolutions errors (see Figure 4.3-7 (a)) and the spatial distributions errors (see Figure 

4.3-7 (c)), when STPMIN is set to 0.1 s, is a sign that the two methods return a rather different 

solution regardless of the time considered for the spatial distribution and the spatial 

coordinates considered for the time evolutions. The only exception is the initialization 

(𝑡𝑖𝑚𝑒 =  0 s), when the properties have the same value by definition. Decreasing by one 

order of magnitude the time step the distance between the solutions is shortened, as 

evidenced by the fact that the overall error is reduced by several orders of magnitude in Figure 

4.3-7 (b, d).  

The larger reduction of the error is for times lower than TQBEG and much larger than 

TQEND when the cooling is almost completed. To give an idea, comparing the spatial 

distribution error at 5 s of Figure 4.3-7 (c, d) there are almost seven orders of magnitude of 

difference. Moreover, looking at the time evolutions Figure 4.3-7 (a, b), for the first case the 

error increases rapidly, irrespective of the spatial coordinate considered, and even after the 

end of heating, it does not decrease. On the contrary for the latter, at each spatial coordinate, 

the error stabilizes at a small value before the beginning of the heating and reduces as the 

heat introduced is dissipated. The error is still substantial during the heating up and cooling 

down of the strand, being related to the different numeric of the methods, and more visible 

when the heat source is switched on and off. To get reasonable results, a small time step 

should be considered when Crank-Nicolson scheme is selected. 
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Figure 4.3-7 Global errors in semi logarithmic scale for the comparison between Backward Euler and Crank-
Nicolson with INTIAL 1 for the ITER-TF cable configuration. (a) time evolutions with 𝑆𝑇𝑃𝑀𝐼𝑁 =  0.1 𝑠 at 4.0 𝑚, 
5.0 𝑚  and 6.0 𝑚 ; (b) time evolutions with 𝑆𝑇𝑃𝑀𝐼𝑁 =  0.01 𝑠  at 4.0 𝑚 , 5.0 𝑚  and 6.0 𝑚 ; (c) spatial 
distributions with 𝑆𝑇𝑃𝑀𝐼𝑁 =  0.1 𝑠  at 5.0 𝑠 , 15.0 𝑠  and 30.0 𝑠 ;(d) spatial distributions with 𝑆𝑇𝑃𝑀𝐼𝑁 =
 0.01 𝑠 at 5.0 𝑠, 15.0 𝑠 and 30.0 𝑠. 

4.3.3 INNER BENCHMARK: BACKFLOW 

So far, a considerable fraction of the simulations has been carried out with the initialization 

option set to 1, in comments to the results the inlet corresponds to the left end of the cable 

and the outlet to the right one. This is only a convention, from a strictly physical point of view, 

as the inlet corresponds to the coordinate at which the pressure is maximum and the outlet 

to that at minimum pressure. Therefore, if practically the coordinates where the pressures are 

maximum and minimum are exchanged, i.e., the maximum pressure is imposed at the right 

end of the conductor and the minimum at the left one as shown in Figure 4.3-8, the inlet and 

outlet are also exchanged and the result, all else being equal, physically does not change.  
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Figure 4.3-8 Relationship between the maximum and minimum pressure and inlet and outlet flow distribution 
for the forward and the backward configurations. 

The aim of this section is to proof that the SC2 code can abide by this basic law of fluid 

dynamics. In the light of the above, the use of INTIAL 1 is again justified: it is the only option 

among those considered that allows the pressures at the ends of the cable to be imposed. 

The analysis is carried out considering three sets of simulations each characterized by a 

given imposed pressure drop on the cable and composed by two simulations that differs from 

the values of the pressure at the ends of the conductor. The reference pressure drop, 0.1 bar, 

is the one adopted also in the previous sections; the other two are respectively one fifth and 

five times the reference value, namely 0.02 bar and 0.5 bar. Table 4.3-5 collects the input 

data shared by the six simulations, while Table 4.3-6 focuses on the initialization of the 

simulations; geometry, topology, heat transfer coefficients and the like are defined in 

appendix D.2. Please, note that to swap the inlet and the outlet in the simulation, the inlet 

and outlet pressure in the backward simulations are shifted: 

𝑝𝑖𝑛𝑙,𝑏𝑎𝑐𝑘 = 𝑝𝑜𝑢𝑡,𝑓𝑜𝑟𝑤 (4.3-3) 

𝑝𝑜𝑢𝑡,𝑏𝑎𝑐𝑘 = 𝑝𝑖𝑛𝑙,𝑓𝑜𝑟𝑤 (4.3-4) 

Moreover, all the simulations have the same maximum (inlet) pressure, while the 

minimum (outlet) changes to get the desired pressure drop. 
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As far as the error evaluation is of concern, conventionally the reference simulation is the 

one with the flow from left to right, called forward flow (shortly forw), while the test 

simulation has the flow from right to left and it is called backward flow (or back), thus: 

𝝃𝑺𝒊𝒎𝟏 = 𝝃𝒇𝒐𝒓𝒘 (4.3-5) 

𝝃𝑺𝒊𝒎𝟐 = 𝝃𝒃𝒂𝒄𝒌 (4.3-6) 

Table 4.3-5 Input data for all six simulations used to check the consistency of a forward and a backward flow 
for the ITER-TF configuration at low temperature with INTIAL 1. 

Variable Value Unit SI 

METHOD 0 (BE) − 
ITMESH 0 (uniform) − 
NELEMS 200 − 
INTIAL 1 − 
TEND 15.0 s 

STPMIN 0.1 s 
Q0 250 W/m 

XQBEG 4.0 m 
XQEND 6.0 m 
TQBEG 10.0 s 
TQEND 20.0 s 

Table 4.3-6 Initialization values for INTIAL1 according to the required pressure drop and the kind of 
simulation, namely forward or backward flow. Notice that the inlet and outlet pressure values exchanges moving 
from a forward to a backward simulation. Selected configuration is ITER-TF at low temperature. 

 𝚫𝒑 = 𝟎. 𝟏 𝐛𝐚𝐫 𝚫𝒑 = 𝟎. 𝟎𝟐 𝐛𝐚𝐫 𝚫𝒑 = 𝟎. 𝟓 𝐛𝐚𝐫 
Unit 

Variable forward backward forward backward forward backward 

TINL 4.5 4.5 4.5 4.5 4.5 4.5 K 
PINL 6 5.9 6 5.98 6 5.5 bar 

POUT 5.9 6 5.98 6 5.5 6 bar 

To practically compute the error the array 𝝃𝒃𝒂𝒄𝒌 should be tipped over; moreover, if it is a 

velocity, its sign should also be changed as its direction is opposite to the reference one. 

Spatial distributions of the solution exemplify the outcomes of the comparison and are 

summarized in the following Figure 4.3-9, Figure 4.3-10 and Figure 4.3-11. 
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Figure 4.3-9 Comparison of the spatial distributions obtained with the forward and backward flow 

simulations for the low temperature ITER-TF configuration with INTIAL 1 and 𝛥𝑝 = 0.1 bar at 15 s. Solid lines 

refer to the forward flow, dot-dashed lines refer to the backward flow. (a) fluid components velocities; (b) fluid 

components pressure; (c) fluid components temperatures; (d) strand temperature; (e) global error in semi 

logarithmic scale.  
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Figure 4.3-10 Comparison of the spatial distributions obtained with the forward and backward flow 

simulations for the low temperature ITER-TF configuration with INTIAL 1 and 𝛥𝑝 = 0.02 bar at 15 s. Solid lines 

refer to the forward flow, dot-dashed lines refer to the backward flow. (a) fluid components velocities; (b) fluid 

components pressure; (c) fluid components temperatures; (d) strand temperature; (e) global error in semi 

logarithmic scale.  

The pairs of curves represented in the first four subplots of Figure 4.3-9,Figure 4.3-10 and Figure 

4.3-11 are symmetrical with respect to the midpoint of the spatial coordinate, that is the center 

of gravity of the cable, which shows that the code distinguishes the position of the inlet and 

outlet in the two cases. The final proof can be found in subplots (e) of Figure 4.3-9, Figure 4.3-10 

and Figure 4.3-11, that show, for all the three sets of simulation considered, an almost negligible 

value of the global relative error. That means that the SC2 recognizes where the inlet and the 

outlet are located according to the imposed pressure values and that the fluid dynamics 

implemented in the code is the same, regardless of their location.  
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Figure 4.3-11 Compare spatial distributions results obtained with the forward and backward flow simulations 

for the low temperature ITER-TF configuration with INTIAL 1 and 𝛥𝑝 = 0.5 bar at 15 s. Solid lines refer to the 

forward flow, dot-dashed lines refer to the backward flow. (a) fluid components velocities; (b) fluid components 

pressure; (c) fluid components temperatures; (d) strand temperature; (e) global error in semi logarithmic scale.  

Figure 4.3-9, Figure 4.3-10 and Figure 4.3-11 may look very similar to each other, but on closer 

inspection they have differences worth mentioning, related to the different pressure drop 

imposed on the cable. Indeed, its behavior at the considered time is governed by the pressure, 

or better by the pressurization induced by the heat source. For the first set of simulations 

(Δ𝑝 = 0.1 bar) the maximum pressure is still the one imposed at the inlet that is constant up 

to the lower edge of the heated zone (4.0 m). This occurs in both the channels since they are 

in hydraulic parallel. As a consequence, the coolant velocity is zero up to this coordinate, 

because the local pressure drop is zero, and then starts to increase as the local pressure 

becomes lower than the inlet. This has an impact on the shape of the temperature spatial 
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distributions: as the velocity increases in the heated region the spatial gradient decreases, 

upstream the temperature is practically equal to the inlet value and downstream the heat is 

transported both by conduction and, mainly, by convection. 

Considering Figure 4.3-10 characterized by (Δ𝑝 = 0.02 bar), the pressurization is such that 

inside the heated region the pressure becomes larger than the inlet value so a backflow occurs 

almost in the center of the cable, as can be seen from Figure 4.3-10 (a). The shape of the 

temperature profiles is flat in the heated region and almost spatially symmetric thanks to the 

backflow that transport the heat in both the directions. 

Finally, looking at the last Figure 4.3-11 another different scenario appears. In this case the 

pressure drop is such that the flow pressurization is almost negligible and localized in the 

heated region as can be seen from the velocity increase in Figure 4.3-11 (a). This can be 

explained considering that the gain in pressure, due to the heat, is almost compensated by 

the local pressure drop related to a large velocity. The temperature distribution in Figure 4.3-11 

(c) is similar to the one shown in Figure 4.3-9, but the gradient in the heated region is less steep 

due to the larger coolant mass flow rate that allows to exhaust a larger amount of heat. The 

ultimate consequence is a lower hot spot value in the cable. 

4.3.4 INNER BENCHMARK: REFINED MESH 

The last section deals with the availability of a refined mesh that allows to reduce the 

computational time of the algorithm, reducing the density of spatial discretization nodes 

where they are least needed. A comparison of two simulations that differ in the type of mesh 

used is proposed aiming to demonstrate that the error on the solution does not diverge. The 

reference simulation employs a uniform mesh while the other make use of a refined mesh, 

hence:  

𝝃𝑺𝒊𝒎𝟏 = 𝝃𝒖𝒏𝒊 
(4.3-7) 

𝝃𝑺𝒊𝒎𝟐 = 𝝃𝒓𝒆𝒇 (4.3-8) 

As usual, the not modified data of the simulations can be found in appendix D.2, the 

specific input data are instead collected in Table 4.3-7; notice the different number of 

elements used in the two simulations and the needed of extra input data to set the simulation 

with the non-uniform mesh that do not appear in the set of input data for the uniform one. 

As can be seen form Table 4.3-7, the heating interval is only 0.5 s, quite short compared 

to the other used in the previous simulations while the linear heat power is one order of 

magnitude larger, to simulate an impulse of heat that then propagates along the conductor, 

the so-called heat slug. The linear power source is chosen to achieve a temperature rise of at 

least two degrees in the bundle. Also, the time at which the heating starts is changed and it is 

such that the average coolant flow is already in the refined zone but not yet in the heated 

region. The He average inlet velocity value is 0.356 m/s, obtained from: 
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𝑣𝑎𝑣𝑒,𝑖𝑛𝑙 =
𝑣𝑐ℎ1,𝑖𝑛𝑙 Σ𝑐ℎ1 + 𝑣𝑐ℎ2,𝑖𝑛𝑙 Σ𝑐ℎ2

Σ𝑐ℎ1 + Σ𝑐ℎ2
 (4.3-9) 

Table 4.3-7 Input data for the simulations with the uniform and not uniform (refined) meshes for the ITER-TF 
configuration with INTIAL 1. 

Variable Value Unit 

METHOD 0 (BE) 0 (BE) − 
ITMESH 0 (uniform) 1 (refined) − 
NELEMS 2000 500 − 
NELREF − 400 − 
XBREFI − 4.0 m 
XEREFI − 6.0 m 

DXINCRE − 1.2 − 
TEND 14.0 14.0 𝑠 

STPMIN 0.1 0.1 s 
INTIAL 1 1 − 
TINL 4.5 4.5 K 
PINL 6 6 bar 

POUT 5.9 5.9 bar 
Q0 3000 3000 W/m 

XQBEG 4.2 4.2 m 
XQEND 5.8 5.8 m 
TQBEG 11.5 11.5 s 
TQEND 12.0 12.0 s 

Some characteristic times are collected in Table 4.3-8, evaluated at the average inlet 

velocity; it also justifies the end time of the simulation. 

Table 4.3-8 Times at which the average initial flow reaches some relevant coordinates. 

Coordinates 𝐦 XBREFI XQBEG XQMID XQEND XEREFI XLENGTH 

Time s 11.2 11.8 14.0 16.3 16.9 20.1 

Note that the heated region is included in the refined zoned, because here the largest 

temperature spatial gradients are expected during the heating times, therefore the need of a 

larger number of elements to catch these gradients. The coordinates of the refined zone that 

do not belong to the heated region allow to resolve the steepest part of the gradient. 

The simulation with the refined mesh is carried out with one fourth of the elements of 

uniform one. The refined region is discretized using 400 elements, the same number of 

elements dedicated to the same interval in the uniform mesh; the remaining 100 elements 

are distributed outside the refined region. Thanks to the symmetry of the refined region with 

respect to the center of gravity of the cable, 50 elements are used to discretize the interval 

[0,4) and the other 50 are used to discretize the interval (6,10]. The algorithm to build the 

refined mesh is described in section 2.2.1.1. 
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Figure 4.3-12 Comparison of the spatial distributions obtained with the uniform and refined meshes for the 

low temperature ITER-TF configuration with INTIAL 1 and at 11.8 s. Solid lines refer to the uniform mesh, dot-

dashed lines refer to the not uniform mesh. (a) fluid components velocities; (b) fluid components pressure; (c) fluid 

components temperatures; (d) strand temperature; (e) global error in semi logarithmic scale. 

When calculating the error, the code has to deal with vectors of different lengths, and the 

values must be compared at the same coordinates. The problem is outside the refined region 

since inside, by construction, the coordinates belonging to the range of the refined region 

coincide in both discretizations. Outside the refined region values in correspondence of the 

coordinates of the non-uniform mesh are evaluated interpolating the values obtained with 

the uniform one. In this way two arrays of the same length, equal to the number of nodes 

used in the non-uniform mesh, are built and they can be compared since their values are 

evaluated at the same spatial coordinates.  

The results of the data processing are shown in Figure 4.3-12. The first four subplots (a-d) of 

Figure 4.3-12 show the behavior of the solution spatial distribution for both considered meshes, 

demonstrating that the phenomena discussed several times are correctly captured even if 

fewer elements are used outside the heated region. The final proof is contained in the last 

subplot (Figure 4.3-12 (e)) which shows the spatial distribution of the global error of the solution 
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at 11.8 s . The error is ruled mainly by the temperature gradients. As the temperature 

increases, the error increases outside the refined region, as the spatial gradient gets steeper 

the error tends to increase, until it enters the refined region where there is a reduction of a 

couple of orders of magnitude. A final remark concerns the unexpected behavior of the error 

at the boundary of the domain, which is related to the imposition of the fluid components 

temperature as boundary conditions. At the considered time step, the inlet velocity is negative 

and the outlet velocity is positive in both the channels, see Figure 4.3-12 (a); so, recalling what 

summarized in Table 4.3-1, neither the inlet nor the outlet temperatures are imposed in both 

simulations. The evaluated temperatures are influenced by the different number of elements 

used for the spatial discretizations and, therefore, their value will be different giving a larger 

error. 

4.3.5 SUMMARY 

This section summarizes the results of the analysis of internal benchmarks, i.e., 

comparisons between different simulations launched with the same code. The possibility of 

performing this comparison is based on the assumption that, since the benchmarks with 4C 

are positive, the results of the simulations performed with SC2 are reliable. 

The internal comparisons involve testing different initialization possibilities, such as using 

different methods for integrating the ODE system over time, making the results independent 

of the position of the inlet and outlet and, finally, defining a non-uniform mesh to reduce 

computational costs. The salient features of the results obtained are highlighted. 

As regards the comparison of the different initializations, the three main possibilities were 

compared, namely INTIAL 1 INTIAL 2 and INTIAL 5. The results confirmed expectations, namely 

that setting the different flag leads to different results, depending on the initialization values, 

since the physics of the problem changes. In practice, the imposed boundary conditions 

change. Comparing instead INTIAL 2 with INTIAL 5 leads to the same results because the only 

difference is in how the initial values are obtained, while the boundary conditions are the 

same. It was also pointed out that the physics implemented by the code is plausible. 

The comparison of the results obtained with BE and CN confirms, once again, that to obtain 

accurate results with the latter, small values of the time step must be adopted. In fact, the 

agreement between the two methods is better with STPMIN equal to 0.01 s than with 0.1 s, 

but the errors are still high during the heating and cooling phases. 

The three sets of simulations defined to test the fluid dynamics implemented in SC2, 

imposing three different pressure drops using INTIAL 1, gave consistent results that 

conformed to expectations: the code recognizes the location of the inlet and outlet according 

to the order relationship between the pressures assigned and consequently calculates the 

solution by attributing the correct sign to the velocity. 

Finally, it has been shown that the use of the non-uniform mesh produces globally 

acceptable results; within the refined zone the error compared to the solution obtained with 

a uniform mesh decreases by approximately two orders of magnitude.
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CHAPTER 5 

5 CONCLUSIONS AND FUTURE PERSPECTIVES 

The purpose of this thesis work can be declined in two key points of equal importance and 

interconnected: the first is the conceptual design and first implementation of a new tool for 

modeling LTS and HTS superconducting cables, the second consists in the rigorous procedure 

of verification and validation of the developed tool with respect to the existing and validated 

4C code.  

The novelty of the tool with respect to the ones already available in the scientific 

community relies in its object-oriented nature. Exploiting the potentialities of the classes and 

of the objects they instantiate, it has been shown the simplicity with which it is possible to 

study different topologies of conductors, supplying exclusively inputs on the number and the 

typology of the components that build the conductor, the geometry and the materials of 

which they are composed, as well as the operating conditions and the strategies to be applied 

for the solution of the problem. 

In order to achieve the second objective, the verification of the algorithms is based on the 

control of the expected convergence orders in both space and time, together with the correct 

representation of the physics of the considered problem. On the other hand, validation is 

based on benchmarking against 4C code for two configurations that differ in topology, 

operating temperature, and application: 

• the three-phase coaxial high critical temperature superconducting cables (3P-HTS); 

• the ITER toroidal field coil low critical temperature superconductive cables (ITER-TF). 

Both configurations have been studied with two different initializations and related 

boundary conditions: INTIAL 1 corresponds to an initialization that imposes the pressures at 

the ends of the cable and the initial temperature and applies the same values as boundary 

conditions; with INTIAL 5 the flow is initialized starting from the inlet mass flow rate and 

temperature together with the outlet pressure, so the boundary conditions imposed are the 

inlet velocity and temperature and the outlet pressure. 

By means of a series of inner benchmarks and stability checks, the verification of the other 

characteristics of the code was then completed.  

The correct representation of the physics of the problem, as well as being implicitly verified 

through the benchmark with 4C code, has been further investigated and confirmed with the 

benchmarks performed by adopting three values of the INTIAL flag, specifically 1, 2 and 5. It 

was found that adopting different flags (INTIAL 1 and INTIAL 5) leads to different results, 

consistent with the operating conditions of the cable, while comparing INTIAL 2 with INTIAL 5 

confirms that the two initializations are equivalent, the only difference being the way in which 

the outlet pressure is obtained. 
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Comparison of the solution obtained with BE and with CN confirms that a smaller time 

step is required to obtain accurate solutions with the latter. 

Further verification of the correct representation of physics was achieved by verifying that 

the position of the inlet and outlet of the conductor was related to the pressure values at the 

inlet and outlet, i.e., that the inlet is located where the pressure is maximum and the outlet 

where it is minimum. This study was carried out with INTIAL 1 for different values of the 

pressure drop (0.1 bar, 0.02 bar and 0.5 bar) with the inlet pressure set at 6 bar. Not only it 

was found that by exchanging the inlet pressure with the outlet one the direction of flow is 

correctly reversed, but it was also seen that different pressure drops correspond to different 

thermal-fluid dynamics behaviors of the cable, again confirming the ability of the tool to 

correctly simulate physics. 

Finally, the consistency of the solution obtained with a non-uniform, refined mesh around 

the heated region was verified, compared to that obtained with a uniform mesh. Again, the 

benchmark was successful. 

The validation with 4C code is influenced by the differences between the algorithms 

implemented in the two codes, in particular the different initialization procedure and the 

calculation of the properties in the Gauss nodes, essential for the construction of the matrix 

of the coefficients of the system. The effects of the former are particularly evident in the 

determination of the initial velocity distribution for the ITER-TF configuration with INTIAL 5, 

being the errors of the order of 10−1. The recipe adopted for the calculation of the properties 

in the Gauss node has a non-negligible impact on the accuracy of the solution, a fortiori when 

considering the LTS due to the marked nonlinearity of the material properties in this 

temperature window 4.5 K - 20 K. 

Based on the above analysis, it can be concluded that the SC2 algorithms are successfully 

verified and validated, the results are consistent and accurate. The two configurations 

considered sanction the versatility of the code and its ability to handle different topologies. 

On this front, further simulation campaigns aimed at deepening the verification and 

validation of the SC2 code must necessarily be carried out. It is appropriate to perform tests 

with configurations that involve the use of more materials, a greater number of components 

and different topologies from those examined in this work, also allow to test more 

sophisticated computational strategies, and not yet implemented in SC2.  

In fact, from this point of view, it still offers a limited number of options. Computational 

improvements can be obtained by implementing time step and grid adaptivity, as well as 

introducing new possibilities for numerical integration of the ODE system such as the fourth-

order Adams-Moulton method (AM4). As far as the spatial discretization, higher order FEM 

should be considered to enhance the convergence of the solution. An interesting alternative 

to the FEM to consider is the VEM, already widely used in the literature for this type of analysis 

as highlighted in section 1.3. A further increase in performance would be achieved by replacing 

the methods currently used for solving the linear system of equations with python's built-in 

solvers. 
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SC2 code also needs to be extended as it is not yet able to handle the radiative heat 

transfer or to model cables electromagnetically. The modeling of different conductors, already 

possible in the developed tool, should be complemented by a suitable coupling between the 

conductors. 

The graphical interface can and must be further developed. In particular, the “Simulation 

control panel” cascade must be completed to allow the user to interact with the simulation 

and “Simulation drivers” must be developed to definitively introduce the Run-AND-check 

philosophy (see Table 3.4-1). Moreover, new functionalities can be added, such as input data 

compilation and thus the construction of the conductor topology, the choice of the extension 

of the default figures and their structure (number of subplots and number of curves depicted 

in each of them). 

As a final remark, the code also needs to be improved in terms of style and data 

organization. A good support for the first aspect can be found by following the suggestions 

and indications in PEP8 [106]. On the other hand, saving data in an orderly fashion [107] 

simplifies the routines dedicated to post processing and plotting. Finally, the use of binary and 

columnar format such as hdf5 or parquet would allow an easier management of the data, 

making the most of the potential of pandas for advanced post processing. 
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APPENDIX A 
A EXTENDED FORM OF EQUATIONS 

This appendix shows the extended form of the general equations that constitute the 

system of PDEs to be solved. Specifically, the source terms of the fluid components set of 

equations are written explicitly, then the general expression of velocity, pressure and 

temperature equations are proposed.  

The Euler like set of equations in non-conservative variables is: 

{
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 (A-1) 

There are three source terms, the mass 𝛬𝜌, the momentum 𝛬𝑣 and the energy one 𝛬𝑒. 

The derivation of the above equations can be found in [94]. The generic source terms for 

fluid component 𝑐𝑎 that interacts with 𝑁𝑐ℎ − 1 fluid components are shown below. 

𝛬𝜌
𝑐𝑎 =

∑ 𝐾𝑐𝑎,𝑐ℎ
′𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎 (𝑝𝑐ℎ − 𝑝𝑐𝑎)

𝐿Σ𝑐𝑎
  

(A-2) 

𝛬𝑣
𝑐𝑎 =

∑ 𝐾𝑐𝑎,𝑐ℎ
′′𝑁𝑐ℎ
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𝐿Σ𝑐𝑎
− 𝜌𝑐𝑎𝐹𝑐𝑎 

(A-3) 

𝛬𝑒
𝑐𝑎 =

∑ 𝐾𝑐𝑎,𝑐ℎ
′′′𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎 (𝑝𝑐ℎ − 𝑝𝑐𝑎)

𝐿Σ𝑐𝑎

+
∑ (𝑃𝑐𝑎,𝑐ℎ
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+
∑ 𝑃𝑐𝑎,𝑠𝑡ℎ𝑐𝑎,𝑠𝑡
𝑁𝑠𝑡
𝑠𝑡=1 (𝑇𝑠𝑡 − 𝑇𝑐𝑎)

Σ𝑐𝑎
+
∑ 𝑃𝑐𝑎,𝑗𝑘ℎ𝑐𝑎,𝑗𝑘
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(A-4) 

𝐹𝑐𝑎 =
2𝑓𝑐𝑎𝑣𝑐𝑎

2

𝐷ℎ.𝑐𝑎 
= 𝑣𝑐𝑎�̃�𝑐𝑎 

(A-5) 

�̃�𝑐𝑎 =
2𝑓𝑐𝑎|𝑣𝑐𝑎|

𝐷ℎ.𝑐𝑎 
 (A-6) 

To see what is hidden behind the transport coefficients 𝐾𝑐𝑎,𝑐ℎ
′ , 𝐾𝑐𝑎,𝑐ℎ

′′  and 𝐾𝑐𝑎,𝑐ℎ
′′′ , the 

transversal velocity between two channels in hydraulic parallel should be introduced. It can 

be modeled as: 
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𝑣⊥,𝑐𝑎,𝑐ℎ =

{
 
 

 
 
√
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, 𝑝𝑐ℎ − 𝑝𝑐𝑎 < 0

 (A-7) 

The transport coefficients are defined as follows:  

𝐾𝑐𝑎,𝑐ℎ
′ =

{
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𝑘𝑓,𝑙𝑜𝑐|𝑝𝑐ℎ − 𝑝𝑐𝑎|
, 𝑣⊥,𝑐𝑎,𝑐ℎ < 0

 (A-8) 

𝐾𝑐𝑎,𝑐ℎ
′′ = {

𝐾𝑐𝑎,𝑐ℎ
′ 𝜆𝑣𝑣𝑐ℎ, 𝑣⊥,𝑐𝑎,𝑐ℎ ≥ 0

𝐾𝑐𝑎,𝑐ℎ
′ 𝜆𝑣𝑣𝑐𝑎, 𝑣⊥,𝑐𝑎,𝑐ℎ < 0

 (A-9) 

𝐾𝑐𝑎,𝑐ℎ
′′′ =
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(𝜆𝑣𝑣𝑐ℎ)
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2
] , 𝑣⊥,𝑐𝑎,𝑐ℎ ≥ 0

𝐾𝑐𝑎,𝑐ℎ
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(𝜆𝑣𝑣𝑐𝑎)
2

2
] , 𝑣⊥,𝑐𝑎,𝑐ℎ < 0

 (A-10) 

The parameter 𝜆𝑣  allows to keep into account if the interface is able or not to absorb 

momentum, according to its structure. For an helicoidal interface 𝜆𝑣 ≅ 1, while if the channels 

coupling is realized with small holes it can be assumed that 𝜆𝑣 ≅ 0. 

The unit of measure of the transport coefficients and of the source terms are reported in 

Table B.1-1. 

Table B.1-1 Transport coefficient and source terms units of measure. 

Quantity 𝑲′ 𝑲′′ 𝑲′′′ 𝚲𝝆 𝚲𝒗 𝚲𝒆 

Unit SI ms m2 m3/s kg/(m3 s) J/m4   ≡ kg/(m2 s2 ) W/m3  ≡ kg/(ms3 ) 

From the above definitions results that:  

𝐾𝑐ℎ,𝑐𝑎
′ = 𝐾𝑐𝑎,𝑐ℎ

′  𝑐𝑎, 𝑐ℎ = 1, … , 𝑁𝑐ℎ (A-11) 

𝐾𝑐ℎ,𝑐𝑎
′′ = 𝐾𝑐𝑎,𝑐ℎ

′′  𝑐𝑎, 𝑐ℎ = 1, … , 𝑁𝑐ℎ (A-12) 

𝐾𝑐ℎ,𝑐𝑎
′′′ = 𝐾𝑐𝑎,𝑐ℎ

′′′  𝑐𝑎, 𝑐ℎ = 1, … , 𝑁𝑐ℎ (A-13) 

Substituting the full expression of the source terms in equation (A-1) the extended version 

of the equations can be obtained. Their final forms are proposed here. 
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Velocity equation for the 𝑐𝑎-th channel that interacts with 𝑁𝑐ℎ − 1 fluid components, 𝑁𝑠𝑡 

strands components and 𝑁𝑗𝑘  jacket components: 

𝜕𝑣𝑐𝑎
𝜕𝑡

+ 𝑣𝑐𝑎
𝜕𝑣𝑐𝑎
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𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

+
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𝐿𝜌𝑐𝑎Σ𝑐𝑎
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′ − 𝐾𝑐𝑎,𝑐ℎ
′′ )𝑝𝑐ℎ

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

= 0 

(A-14) 

Pressure equation for the 𝑐𝑎-th channel that interacts with 𝑁𝑐ℎ − 1 fluid components, 𝑁𝑠𝑡 

strands components and 𝑁𝑗𝑘  jacket components: 
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]

−
𝛷𝑐𝑎
Σ𝑐𝑎

[ ∑ (𝑃𝑐𝑎,𝑐ℎ 
𝑂 ℎ𝑐𝑎,𝑐ℎ 

𝑂 + 𝑃𝑐𝑎,𝑐ℎ 
𝐶 ℎ𝑐𝑎,𝑐ℎ 

𝐶 )

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

𝑇𝑐ℎ

+ ∑ 𝑃𝑐𝑎,𝑠𝑡 ℎ𝑐𝑎,𝑠𝑡 

𝑁𝑠𝑡

𝑠𝑡=1

𝑇𝑠𝑡 + ∑ 𝑃𝑐𝑎,𝑗𝑘 ℎ𝑐𝑎,𝑗𝑘 

𝑁𝑗𝑘

𝑗𝑘=1

𝑇𝑗𝑘] = 0 

(A-15) 

Temperature equation for the 𝑐𝑎 -th channel that interacts with 𝑁𝑐ℎ − 1  fluid 

components, 𝑁𝑠𝑡 strands components and 𝑁𝑗𝑘  jackets components: 
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𝜕𝑇𝑐𝑎
𝜕𝑡

+ 𝛷𝑐𝑎𝑇𝑐𝑎
 𝜕𝑣𝑐𝑎
𝜕𝑥

+ 𝑣𝑐𝑎  
𝜕𝑇𝑐𝑎
𝜕𝑥

−
�̃�𝑐𝑎𝑣𝑐𝑎

2

𝑐𝑣,𝑐𝑎

+
𝑝𝑐𝑎

𝐿𝜌𝑐𝑎Σ𝑐𝑎𝑐𝑣,𝑐𝑎 
∑ [𝐾𝑐𝑎,𝑐ℎ

′′′ − 𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ
′′

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

− (𝑤𝑐𝑎 −
𝑣𝑐𝑎
2

2
− 𝛷𝑐𝑎𝑐𝑣,𝑐𝑎 𝑇𝑐𝑎)𝐾𝑐𝑎,𝑐ℎ

′ ]

−
1

𝐿𝜌𝑐𝑎Σ𝑐𝑎𝑐𝑣,𝑐𝑎 
∑ [𝐾𝑐𝑎,𝑐ℎ

′′′ − 𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ
′′

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

− (𝑤𝑐𝑎 −
𝑣𝑐𝑎
2

2
− 𝛷𝑐𝑎𝑐𝑣,𝑐𝑎 𝑇𝑐𝑎)𝐾𝑐𝑎,𝑐ℎ

′ ] 𝑝𝑐ℎ

+
𝑇𝑐𝑎

𝜌𝑐𝑎Σ𝑐𝑎𝑐𝑣,𝑐𝑎 
[ ∑ (𝑃𝑐𝑎,𝑐ℎ 

𝑂 ℎ𝑐𝑎,𝑐ℎ 
𝑂 + 𝑃𝑐𝑎,𝑐ℎ 

𝐶 ℎ𝑐𝑎,𝑐ℎ 
𝐶 )

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

+ ∑ 𝑃𝑐𝑎,𝑠𝑡 ℎ𝑐𝑎,𝑠𝑡 

𝑁𝑠𝑡

𝑠𝑡=1

+ ∑ 𝑃𝑐𝑎,𝑗𝑘 ℎ𝑐𝑎,𝑗𝑘 

𝑁𝑗𝑘

𝑗𝑘=1

]

−
1

𝜌𝑐𝑎Σ𝑐𝑎𝑐𝑣,𝑐𝑎 
[ ∑ (𝑃𝑐𝑎,𝑐ℎ 

𝑂 ℎ𝑐𝑎,𝑐ℎ 
𝑂 + 𝑃𝑐𝑎,𝑐ℎ 

𝐶 ℎ𝑐𝑎,𝑐ℎ 
𝐶 )

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

𝑇𝑐ℎ

+ ∑ 𝑃𝑐𝑎,𝑠𝑡 ℎ𝑐𝑎,𝑠𝑡 

𝑁𝑠𝑡

𝑠𝑡=1

𝑇𝑠𝑡 + ∑ 𝑃𝑐𝑎,𝑗𝑘 ℎ𝑐𝑎,𝑗𝑘 

𝑁𝑗𝑘

𝑗𝑘=1

𝑇𝑗𝑘] = 0 

(A-16) 

For the sake of completeness, the extended version of the 1D transient heat transfer 

equations for the genetic strand and jacket objects are also shown in this appendix. 

Full extension of the transient one-dimensional heat transfer equation for the 𝑓𝑖-th strand 

that interacts with 𝑁𝑐ℎ fluid components, 𝑁𝑠𝑡 − 1  strands component and 𝑁𝑗𝑘  jackets 

components: 

Σ𝑓𝑖𝜌𝑓𝑖𝑐𝑓𝑖
𝜕𝑇𝑓𝑖

𝜕𝑡
− Σ𝑓𝑖

𝜕

𝜕𝑥
(𝑘𝑓𝑖

𝜕𝑇𝑓𝑖

𝜕𝑥
)

+ 𝑇𝑓𝑖 (∑ 𝑃𝑓𝑖,𝑐ℎℎ𝑓𝑖,𝑐ℎ +

𝑁𝑐ℎ

𝑐ℎ=1

∑ 𝑃𝑓𝑖,𝑠𝑡ℎ𝑓𝑖,𝑠𝑡 +

𝑁𝑠𝑡

𝑠𝑡≠𝑓𝑖

∑ 𝑃𝑓𝑖,𝑗𝑘ℎ𝑓𝑖,𝑗𝑘

𝑁𝑗𝑘

𝑗𝑘=1

)

− ∑ 𝑃𝑓𝑖,𝑐ℎℎ𝑓𝑖,𝑐ℎ𝑇𝑐ℎ −

𝑁𝑐ℎ

𝑐ℎ=1

∑ 𝑃𝑓𝑖,𝑠𝑡ℎ𝑓𝑖,𝑠𝑡𝑇𝑠𝑡 −

𝑁𝑠𝑡

𝑠𝑡=𝑓𝑖

∑ 𝑃𝑓𝑖,𝑗𝑘ℎ𝑓𝑖,𝑗𝑘

𝑁𝑗𝑘

𝑗𝑘=1

𝑇𝑗𝑘

= 𝑄𝑓𝑖,𝐽𝑜𝑢𝑙𝑒 + 𝑄𝑓𝑖,𝑒𝑥𝑡 

(A-17) 

Full extension of the transient one-dimensional heat transfer equation for the 𝑖𝑛-th jacket 

that interacts with 𝑁𝑐ℎ fluid components, 𝑁𝑠𝑡  strands component and 𝑁𝑗𝑘 − 1  jackets 

components: 
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Σ𝑖𝑛𝜌𝑖𝑛𝑐𝑖𝑛
𝜕𝑇𝑖𝑛
𝜕𝑡

− Σ𝑖𝑛
𝜕

𝜕𝑥
(𝑘𝑖𝑛

𝜕𝑇𝑖𝑛
𝜕𝑥

)

+ 𝑇𝑖𝑛 (∑ 𝑃𝑖𝑛,𝑐ℎℎ𝑖𝑛,𝑐ℎ +

𝑁𝑐ℎ

𝑐ℎ=1

∑ 𝑃𝑖𝑛,𝑠𝑡ℎ𝑖𝑛,𝑠𝑡 +

𝑁𝑠𝑡

𝑠𝑡=1

∑ 𝑃𝑖𝑛,𝑗𝑘ℎ𝑖𝑛,𝑗𝑘

𝑁𝑗𝑘

𝑗𝑘≠𝑖𝑛

)

− ∑ 𝑃𝑖𝑛,𝑐ℎℎ𝑖𝑛,𝑐ℎ𝑇𝑐ℎ −

𝑁𝑐ℎ

𝑐ℎ=1

∑ 𝑃𝑖𝑛,𝑠𝑡ℎ𝑖𝑛,𝑠𝑡𝑇𝑠𝑡 −

𝑁𝑠𝑡

𝑠𝑡=1

∑ 𝑃𝑖𝑛,𝑗𝑘ℎ𝑖𝑛,𝑗𝑘

𝑁𝑗𝑘

𝑗𝑘≠𝑖𝑛

𝑇𝑗𝑘

= 𝑄𝑖𝑛,𝐽𝑜𝑢𝑙𝑒 + 𝑄𝑖𝑛,𝑒𝑥𝑡 

(A-18) 

From this form of the equations it is possible to get the elements of the matrices and the 

known term vector that appears in equation (2.1-10). These are proposed in appendix B.1. 
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APPENDIX B 
B MATRIX ELEMENTS 

This appendix is divided into three sections. First the general form of the elements of the 

matrices and vectors that appear in the matrix equation of the system are shown, then the 

real shape of these matrices are proposed for the two study cases. 

B.1 GENERAL FORM OF MATRICES AND VECTORS 

The matrix form of the PDEs system is:  

𝑀
𝜕𝒖

𝜕𝑡
+ 𝐴

𝜕𝒖

𝜕𝑥
+
𝜕

𝜕𝑥
(𝐾

𝜕𝒖

𝜕𝑥
) + 𝑆𝒖 = 𝒔 

(B-1) 

This section describes the general shape of both vectors and matrices that appears in the 

above equation. 

Recall that the number of degrees of freedom, the number of unknowns, is given by:  

𝑁𝑒𝑞 = 3𝑁𝑐ℎ + 𝑁𝑠𝑡 + 𝑁𝑗𝑘  (B-2) 

This implies that 𝒖 and 𝒔 are columns vectors ∈ ℝ𝑁𝑒𝑞,1; their general structure is: 

𝒖 =  

[
 
 
 
 
𝒗𝒄𝒉
𝒑𝒄𝒉
𝑻𝒄𝒉
𝑻𝒔𝒕
𝑻𝒋𝒌]

 
 
 
 

 (B-3) 

𝒔 =  [

𝟎
𝑸𝒔𝒕
𝑸𝒋𝒌

] (B-4) 

with 𝒗𝒄𝒉 , 𝒑𝒄𝒉  and 𝑻𝒄𝒉  ∈ ℝ𝑁𝑐ℎ,1 , 𝑻𝒔𝒕 ∈ ℝ
𝑁𝑠𝑡,1  and 𝑻𝒋𝒌 ∈ ℝ

𝑁𝑗𝑘,1 ; 𝟎  is the null vector in 

ℝ3𝑁𝑐ℎ,1, finally 𝑸𝒔𝒕𝒓𝒂𝒏𝒅 and 𝑸𝒋𝒂𝒄𝒌𝒆𝒕 are respectively vectors of ℝ𝑁𝑠𝑡,1 and ℝ𝑁𝑗𝑘,1. 

𝒗𝒄𝒉 = [𝑣𝑐ℎ] 𝑐ℎ = 1,… ,𝑁𝑐ℎ (B-5) 

𝒑𝒄𝒉 = [𝑝𝑐ℎ] 𝑐ℎ = 1,… ,𝑁𝑐ℎ (B-6) 

𝑻𝒄𝒉 = [𝑇𝑐ℎ] 𝑐ℎ = 1,… ,𝑁𝑐ℎ (B-7) 

𝑻𝒔𝒕 = [𝑇𝑠𝑡] 𝑠𝑡 = 1,… ,𝑁𝑠𝑡 
(B-8) 

𝑻𝒋𝒌 = [𝑇𝑗𝑘] 𝑗𝑘 = 1,… ,𝑁𝑗𝑘  (B-9) 

𝑸𝒔𝒕 = [𝑄𝑠𝑡,𝐽𝑜𝑢𝑙𝑒 + 𝑄𝑠𝑡,𝑒𝑥𝑡] 𝑠𝑡 = 1,… ,𝑁𝑠𝑡 
(B-10) 
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𝑸𝒋𝒌 = [𝑄𝑗𝑘,𝐽𝑜𝑢𝑙𝑒 + 𝑄𝑗𝑘,𝑒𝑥𝑡] 𝑗𝑘 = 1,… ,𝑁𝑗𝑘  (B-11) 

The matrices of equation (2.1-10) are sparse square matrices of ℝ𝑁𝑒𝑞,𝑁𝑒𝑞. Looking at the 

extended general form of the equations listed in appendix A, their elements can be deduced.  

The 𝑀 matrix is diagonal: 

𝑀 = 𝑑𝑖𝑎𝑔(𝟏,𝑴𝒔𝒕,𝑴𝒋𝒌) 
(B-12) 

where 𝟏 is the vector of ones in ℝ3𝑁𝑐ℎ,1, 𝑴𝒔𝒕 ∈ ℝ
𝑁𝑠𝑡,1 and 𝑴𝒋𝒌 ∈ ℝ

𝑁𝑗𝑘,1 with:  

𝑴𝒔𝒕 = [Σ𝑠𝑡𝜌𝑠𝑡𝑐𝑝,𝑠𝑡]  𝑠𝑡 = 1,… ,𝑁𝑠𝑡 
(B-13) 

𝑴𝒋𝒌 = [Σ𝑗𝑘𝜌𝑗𝑘𝑐𝑝,𝑗𝑘]  𝑗𝑘 = 1,… ,𝑁𝑗𝑘  (B-14) 

The 𝐴 matrix is banded with four not null diagonals including the main one: specifically, 

the upper 𝑁𝑐ℎ-th super diagonal (𝑨𝒔𝒖𝒑,𝒗nd the lowers 𝑁𝑐ℎ-th (𝑨𝒔𝒖𝒃,𝒑) and 2𝑁𝑐ℎ-th (𝑨𝒔𝒖𝒃,𝑻) 

diagonals are not null together with the main diagonal (𝑨𝒎𝒂𝒊𝒏 ). The elements of these 

diagonals are shown in their vectorial form. 

𝑨𝒎𝒂𝒊𝒏 = [

𝒗𝒄𝒉
𝒗𝒄𝒉
𝒗𝒄𝒉
𝟎𝒎𝒂𝒊𝒏

] ∈ ℝ𝑁𝑒𝑞,1 (B-15) 

𝑨𝒔𝒖𝒑,𝒗 = [
𝑨𝒗
𝟎𝒔𝒖𝒑,𝒗

] ∈ ℝ2𝑁𝑐ℎ+𝑁𝑠𝑡+𝑁𝑗𝑘,1 (B-16) 

𝑨𝒔𝒖𝒃,𝒑 = [
𝑨𝒑
𝟎𝒔𝒖𝒃,𝒑

] ∈ ℝ2𝑁𝑐ℎ+𝑁𝑠𝑡+𝑁𝑗𝑘,1 (B-17) 

𝑨𝒔𝒖𝒃,𝑻 = [
𝑨𝑻
𝟎𝒔𝒖𝒃,𝑻

] ∈ ℝ𝑁𝑐ℎ+𝑁𝑠𝑡+𝑁𝑗𝑘,1 (B-18) 

𝑨𝒎𝒂𝒊𝒏 is the vector corresponding to the main diagonal of 𝐴: its elements are the channels 

velocities and 𝑁𝑠𝑡 + 𝑁𝑗𝑘 zeros collected into the vector 𝟎𝒎𝒂𝒊𝒏 ∈ ℝ
𝑁𝑠𝑡+𝑁𝑗𝑘,1. 

The values of the not null super diagonal are collected in vector 𝑨𝒔𝒖𝒑,𝒗at is composed in 

turn by a not null vector 𝑨𝒗 ∈ ℝ
𝑁𝑐ℎ,1 and a null vector 𝟎𝒔𝒖𝒑,𝒗 ∈ ℝ

𝑁𝑐ℎ+𝑁𝑠𝑡+𝑁𝑗𝑘,1he subscript 𝑣 

refers to the fact that these terms came from the coefficient of partial derivative 
𝜕𝑝

𝜕 𝑥
 in the 

velocity equations: 

𝑨𝒗 = [
1

𝜌𝑐ℎ
]  𝑐ℎ = 1,… ,𝑁𝑐ℎ (B-19) 

The two not null sub-diagonals are also composed by a combination of a not null and a 

null vectors. The former comes from partial derivative 
𝜕𝑣

𝜕 𝑥
 in the pressure equations, so it is 

called 𝑨𝒔𝒖𝒃,𝒑; its not null elements are the coefficients that multiply this derivative, that is:  
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𝑨𝒑 = [𝜌𝑐ℎ𝑐𝑐ℎ
2 ] 𝑐ℎ = 1,… ,𝑁𝑐ℎ  (B-20) 

so it has the same dimension of 𝑨𝒗, 𝑨𝒑 ∈ ℝ
𝑁𝑐ℎ,1, and this implies that 𝟎𝒔𝒖𝒃,𝒑 is identical to 

𝟎𝒔𝒖𝒑,𝒗inally, 𝑨𝑻 groups the not null elements of the second sub-diagonal that correspond to 

the coefficients that multiply the derivative 
𝜕𝑣

𝜕 𝑥
 in the temperature equation, therefore also 

𝑨𝑻 ∈ ℝ
𝑁𝑐ℎ,1; since the global dimension of the diagonal is 𝑁𝑐ℎ + 𝑁𝑠𝑡 + 𝑁𝑗𝑘, the null vector 

𝟎𝒔𝒖𝒃,𝑻 ∈ ℝ
𝑁𝑠𝑡+𝑁𝑗𝑘,1 as 𝟎𝒎𝒂𝒊𝒏.  

𝑨𝑻 = [𝛷𝑐ℎ𝑇𝑐ℎ] 𝑐ℎ = 1,… ,𝑁𝑐ℎ (B-21) 

The 𝐾 matrix is diagonal and collects the coefficients of the second derivative in space: 

𝐾 = 𝑑𝑖𝑎𝑔(𝟎,𝑲𝒔𝒕, 𝑲𝒋𝒌) 
(B-22) 

where 𝟎 is the already mentioned vector of zeros in ℝ3𝑁𝑐ℎ,1, 𝑲𝒔𝒕 ∈ ℝ
𝑁𝑠𝑡,1 and 𝑲𝒋𝒌 ∈ ℝ

𝑁𝑗𝑘,1 

with:  

𝑲𝒔𝒕 = [−Σ𝑠𝑡𝑘𝑠𝑡]  𝑠𝑡 = 1, … ,𝑁𝑠𝑡 
(B-23) 

𝑲𝒋𝒌 = [−Σ𝑗𝑘𝑘𝑗𝑘]  𝑗𝑘 = 1,… ,𝑁𝑗𝑘  (B-24) 

The last matrix is 𝑆 that collects all the remaining addendums on the left-hand side of the 

equations. Its construction is not trivial as the previous matrices and its sparsity pattern is 

function of the cable topology.  It is composed by twenty fife sub-matrices whose elements 

will be discussed in the last part of this section. 

𝑆 =  

[
 
 
 
 
 
𝑆𝑣𝑐ℎ,𝑣𝑐ℎ 𝑆𝑣𝑐ℎ,𝑝𝑐ℎ 𝑆𝑣𝑐ℎ,𝑇𝑐ℎ 𝑆𝑣𝑐ℎ,𝑇𝑠𝑡 𝑆𝑣𝑐ℎ,𝑇𝑗𝑘
𝑆𝑝𝑐ℎ,𝑣𝑐ℎ 𝑆𝑝𝑐ℎ,𝑝𝑐ℎ 𝑆𝑝𝑐ℎ,𝑇𝑐ℎ 𝑆𝑝𝑐ℎ,𝑇𝑠𝑡 𝑆𝑝𝑐ℎ,𝑇𝑗𝑘
𝑆𝑇𝑐ℎ,𝑣𝑐ℎ 𝑆𝑇𝑐ℎ,𝑝𝑐ℎ 𝑆𝑇𝑐ℎ,𝑇𝑐ℎ 𝑆𝑇𝑐ℎ,𝑇𝑠𝑡 𝑆𝑇𝑐ℎ,𝑇𝑗𝑘
𝑆𝑇𝑠𝑡,𝑣𝑐ℎ 𝑆𝑇𝑠𝑡,𝑝𝑐ℎ 𝑆𝑇𝑠𝑡,𝑇𝑐ℎ 𝑆𝑇𝑠𝑡,𝑇𝑠𝑡 𝑆𝑇𝑠𝑡,𝑇𝑗𝑘
𝑆𝑇𝑗𝑘,𝑣𝑐ℎ 𝑆𝑇𝑗𝑘,𝑝𝑐ℎ 𝑆𝑇𝑗𝑘,𝑇𝑐ℎ 𝑆𝑇𝑗𝑘,𝑇𝑠𝑡 𝑆𝑇𝑗𝑘,𝑇𝑗𝑘]

 
 
 
 
 

 (B-25) 

The first important point to clarify is the dimensions of the sub-matrices: nine groups can 

be identified as shown in equation (B-25) The upper left three by three block of matrices 

(upper side) is characterized by square matrices ∈ ℝ𝑁𝑐ℎ,𝑁𝑐ℎ. The first three matrices of the 

fourth and fifth columns are rectangular matrices ∈ ℝ𝑁𝑐ℎ,𝑁𝑠𝑡  and ∈ ℝ𝑁𝑐ℎ,𝑁𝑗𝑘  respectively; 

while the first three matrices on the fourth and fifth rows belongs respectively to ℝ𝑁𝑠𝑡,𝑁𝑐ℎ and 

ℝ𝑁𝑗𝑘,𝑁𝑐ℎ. The last four matrices belong each to a specific group. The two on the main diagonal 

are squared ∈ ℝ𝑁𝑠𝑡,𝑁𝑠𝑡  and ∈ ℝ𝑁𝑗𝑘,𝑁𝑗𝑘  respectively, finally the last two are rectangular 

𝑆𝑇𝑗𝑘,𝑇𝑠𝑡 ∈ ℝ
𝑁𝑗𝑘,𝑁𝑠𝑡 and 𝑆𝑇𝑠𝑡,𝑇𝑗𝑘 ∈ ℝ

𝑁𝑠𝑡,𝑁𝑗𝑘 . 

In the following, the matrices are described proceeding by column. 
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 𝑆𝑣𝑐ℎ,𝑣𝑐ℎ , 𝑆𝑝𝑐ℎ,𝑣𝑐ℎ  and 𝑆𝑇𝑐ℎ,𝑣𝑐ℎ are diagonal matrices. Their elements correspond to the 

coefficients that multiply the channel velocity of the fourth addendum in velocity, pressure 

and temperature equations.  

𝑆𝑣𝑐ℎ,𝑣𝑐ℎ = 𝑑𝑖𝑎𝑔(�̃�) 
(B-26) 

𝑆𝑝𝑐ℎ,𝑣𝑐ℎ = 𝑑𝑖𝑎𝑔(𝑺𝒑𝒄𝒉,𝒗𝒄𝒉) 
(B-27) 

𝑆𝑇𝑐ℎ,𝑣𝑐ℎ = 𝑑𝑖𝑎𝑔(𝑺𝑻𝒄𝒉,𝒗𝒄𝒉) 
(B-28) 

Being  

�̃� = [�̃�𝑐ℎ] 𝑐ℎ = 1,… ,𝑁𝑐ℎ 
(B-29) 

𝑺𝒑𝒄𝒉,𝒗𝒄𝒉 = [−�̃�𝑐ℎ𝜌𝑐ℎ𝛷𝑐ℎ𝑣𝑐ℎ] 𝑐ℎ = 1,… ,𝑁𝑐ℎ (B-30) 

𝑺𝑻𝒄𝒉,𝒗𝒄𝒉 = [−
�̃�𝑐ℎ𝑣𝑐ℎ
𝑐𝑣,𝑐ℎ

]  𝑐ℎ = 1,… ,𝑁𝑐ℎ 
(B-31) 

Matrices 𝑆𝑇𝑠𝑡,𝑣𝑐ℎ  and 𝑆𝑇𝑗𝑘,𝑣𝑐ℎ  are identically null since there are no terms multiplied by 

channel velocity in the solid equations. 

Next the terms multiplied by pressure are considered that contribute to build-up the five 

matrices of the second column. Analogously to the previous case, the heat equation does not 

have such addendums so matrices 𝑆𝑇𝑠𝑡,𝑝𝑐ℎ and 𝑆𝑇𝑗𝑘,𝑝𝑐ℎ  are full of zeros.  

𝑆𝑣𝑐ℎ,𝑝𝑐ℎ, 𝑆𝑝𝑐ℎ,𝑝𝑐ℎ  and 𝑆𝑇𝑐ℎ,𝑝𝑐ℎare square matrices ∈ ℝ𝑁𝑐ℎ,𝑁𝑐ℎ.  

𝑆𝑣𝑐ℎ,𝑝𝑐ℎ = [

𝑆1,1
𝑣,𝑝 ⋯ 𝑆1,𝑁𝑐ℎ

𝑣,𝑝

⋮ ⋱ ⋮
𝑆𝑁𝑐ℎ,1
𝑣,𝑝 ⋯ 𝑆𝑁𝑐ℎ,𝑁𝑐ℎ

𝑣,𝑝
] (B-32) 

𝑆𝑐𝑎,𝑐𝑎 
𝑣,𝑝 = −

∑ (𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ
′ − 𝐾𝑐𝑎,𝑐ℎ

′′ )
𝑁𝑐ℎ
𝑐ℎ≠𝑐𝑎

𝐿𝜌𝑐𝑎Σ𝑐𝑎
 𝑐𝑎 = 1,… ,𝑁𝑐ℎ 

(B-33) 

𝑆𝑐𝑎,𝑐ℎ 
𝑣,𝑝 = 

𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ
′ − 𝐾𝑐𝑎,𝑐ℎ

′′

𝐿𝜌𝑐𝑎Σ𝑐𝑎
 𝑐𝑎, 𝑠𝑡 = 1,… ,𝑁𝑐ℎ 

(B-34) 

𝑆𝑝𝑐ℎ,𝑝𝑐ℎ = [

𝑆1,1
𝑝 ⋯ 𝑆1,𝑁𝑐ℎ

𝑝

⋮ ⋱ ⋮
𝑆𝑁𝑐ℎ,1
𝑝 ⋯ 𝑆𝑁𝑐ℎ,𝑁𝑐ℎ

𝑝
] (B-35) 

𝑆𝑐𝑎,𝑐𝑎 
𝑝 =

𝛷𝑐𝑎
𝐿Σ𝑐𝑎

∑ [𝐾𝑐𝑎,𝑐ℎ
′′′ − 𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ

′′ − (𝑤𝑐𝑎 −
𝑣𝑐𝑎
2

2
−
𝑐𝑐𝑎
2

𝛷𝑐𝑎
)𝐾𝑐𝑎,𝑐ℎ

′ ]

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

 𝑐𝑎

= 1, … ,𝑁𝑐ℎ 

(B-36) 
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𝑆𝑐𝑎,𝑐ℎ 
𝑝 = −

𝛷𝑐𝑎
𝐿Σ𝑐𝑎

[𝐾𝑐𝑎,𝑐ℎ
′′′ − 𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ

′′ − (𝑤𝑐𝑎 −
𝑣𝑐𝑎
2

2
−
𝑐𝑐𝑎
2

𝛷𝑐𝑎
)𝐾𝑐𝑎,𝑐ℎ

′ ]  𝑐𝑎, 𝑠𝑡 

= 1,… ,𝑁𝑐ℎ 

(B-37) 

𝑆𝑇𝑐ℎ,𝑝𝑐ℎ = [

𝑆1,1
𝑇𝑐ℎ,𝑝 ⋯ 𝑆1,𝑁𝑐ℎ

𝑇𝑐ℎ,𝑝

⋮ ⋱ ⋮

𝑆𝑁𝑐ℎ,1
𝑇𝑐ℎ,𝑝 ⋯ 𝑆𝑁𝑐ℎ,𝑁𝑐ℎ

𝑇𝑐ℎ,𝑝
] (B-38) 

𝑆𝑐𝑎,𝑐𝑎
𝑇𝑐ℎ,𝑝 =

∑ [𝐾𝑐𝑎,𝑐ℎ
′′′ − 𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ

′′ − (𝑤𝑐𝑎 −
𝑣𝑐𝑎
2

2 − 𝛷𝑐𝑎𝑐𝑣,𝑐𝑎 𝑇𝑐𝑎)𝐾𝑐𝑎,𝑐ℎ
′ ]

𝑁𝑐ℎ
𝑐ℎ≠𝑐𝑎

𝐿𝜌𝑐𝑎Σ𝑐𝑎𝑐𝑣,𝑐𝑎 
𝑐𝑎

= 1,… ,𝑁𝑐ℎ 

(B-39) 

𝑆𝑐𝑎,𝑐ℎ
𝑇𝑐ℎ,𝑝 = −

𝐾𝑐𝑎,𝑐ℎ
′′′ − 𝑣𝑐𝑎𝐾𝑐𝑎,𝑐ℎ

′′ − (𝑤𝑐𝑎 −
𝑣𝑐𝑎
2

2 − 𝛷𝑐𝑎𝑐𝑣,𝑐𝑎 𝑇𝑐𝑎)𝐾𝑐𝑎,𝑐ℎ
′

𝐿𝜌𝑐𝑎Σ𝑐𝑎𝑐𝑣,𝑐𝑎 
𝑐𝑎, 𝑠𝑡

= 1,… ,𝑁𝑐ℎ 

(B-40) 

The attention is now moved towards the set of matrices grouped in the third column of 

equation (B-25) whose elements are the coefficients that multiply the channel temperature. 

It is possible to notice from equation (A-14) that there is no reference to 𝑇𝑐ℎ, so the elements 

of 𝑆𝑣𝑐ℎ,𝑇𝑐ℎ are 0 every where. On the contrary, both pressure and temperature show these 

addendums thus 𝑆𝑝𝑐ℎ,𝑇𝑐ℎ and 𝑆𝑇𝑐ℎ,𝑇𝑐ℎ are not identically null. 

𝑆𝑝𝑐ℎ,𝑇𝑐ℎ = [

𝑆1,1
𝑝,𝑇𝑐ℎ ⋯ 𝑆1,𝑁𝑐ℎ

𝑝,𝑇𝑐ℎ

⋮ ⋱ ⋮

𝑆𝑁𝑐ℎ,1
𝑝,𝑇𝑐ℎ ⋯ 𝑆𝑁𝑐ℎ,𝑁𝑐ℎ

𝑝,𝑇𝑐ℎ

] (B-41) 

𝑆𝑐𝑎,𝑐𝑎
𝑝,𝑇𝑐ℎ =

𝛷𝑐𝑎
Σ𝑐𝑎

[ ∑ (𝑃𝑐𝑎,𝑐ℎ 
𝑂 ℎ𝑐𝑎,𝑐ℎ 

𝑂 + 𝑃𝑐𝑎,𝑐ℎ 
𝐶 ℎ𝑐𝑎,𝑐ℎ 

𝐶 )

𝑁𝑐ℎ

𝑐ℎ≠𝑐𝑎

+ ∑ 𝑃𝑐𝑎,𝑠𝑡 ℎ𝑐𝑎,𝑠𝑡 

𝑁𝑠𝑡

𝑠𝑡=1

+ ∑ 𝑃𝑐𝑎,𝑗𝑘 ℎ𝑐𝑎,𝑗𝑘 

𝑁𝑗𝑘

𝑗𝑘=1

] 𝑐𝑎 = 1,… ,𝑁𝑐ℎ 

 

(B-42) 

𝑆𝑐𝑎,𝑐ℎ 
𝑝,𝑇𝑐ℎ = −

𝛷𝑐𝑎
Σ𝑐𝑎

(𝑃𝑐𝑎,𝑐ℎ 
𝑂 ℎ𝑐𝑎,𝑐ℎ 

𝑂 + 𝑃𝑐𝑎,𝑐ℎ 
𝐶 ℎ𝑐𝑎,𝑐ℎ 

𝐶 )𝑐𝑎, 𝑠𝑡 = 1,… , 𝑁𝑐ℎ (B-43) 

𝑆𝑇𝑐ℎ,𝑇𝑐ℎ = [

𝑆1,1
𝑇𝑐ℎ ⋯ 𝑆1,𝑁𝑐ℎ

𝑇𝑐ℎ

⋮ ⋱ ⋮

𝑆𝑁𝑐ℎ,1
𝑇𝑐ℎ ⋯ 𝑆𝑁𝑐ℎ,𝑁𝑐ℎ

𝑇𝑐ℎ

] (B-44) 
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𝑆𝑐𝑎,𝑐𝑎
𝑇𝑐ℎ

=
∑ (𝑃𝑐𝑎,𝑐ℎ 

𝑂 ℎ𝑐𝑎,𝑐ℎ 
𝑂 + 𝑃𝑐𝑎,𝑐ℎ 

𝐶 ℎ𝑐𝑎,𝑐ℎ 
𝐶 )

𝑁𝑐ℎ
𝑐ℎ≠𝑐𝑎 + ∑ 𝑃𝑐𝑎,𝑠𝑡 ℎ𝑐𝑎,𝑠𝑡 

𝑁𝑠𝑡
𝑠𝑡=1 + ∑ 𝑃𝑐𝑎,𝑗𝑘 ℎ𝑐𝑎,𝑗𝑘 

𝑁𝑗𝑘
𝑗𝑘=1

𝜌𝑐𝑎Σ𝑐𝑎𝑐𝑣,𝑐𝑎 
𝑐𝑎

= 1,… ,𝑁𝑐ℎ 

(B-45) 

𝑆𝑐𝑎,𝑐ℎ 
𝑇𝑐ℎ = −

(𝑃𝑐𝑎,𝑐ℎ 
𝑂 ℎ𝑐𝑎,𝑐ℎ 

𝑂 + 𝑃𝑐𝑎,𝑐ℎ 
𝐶 ℎ𝑐𝑎,𝑐ℎ 

𝐶 )

𝜌𝑐𝑎Σ𝑐𝑎𝑐𝑣,𝑐𝑎 
𝑐𝑎, 𝑠𝑡 = 1,… ,𝑁𝑐ℎ 

(B-46) 

Due to the coupling between fluid and solid components, also the last two matrices show 

elements that differ from 0. 

𝑆𝑇𝑠𝑡,𝑇𝑐ℎ = [𝑆𝑠𝑡,𝑐ℎ
𝑇𝑠𝑡,𝑇𝑐ℎ] = [−𝑃𝑠𝑡,𝑐ℎℎ𝑠𝑡,𝑐ℎ ] 𝑠𝑡 = 1,… ,𝑁𝑠𝑡; 𝑐ℎ = 1,… ,𝑁𝑐ℎ (B-47) 

𝑆𝑇𝑗𝑘,𝑇𝑐ℎ = [𝑆
𝑗𝑘,𝑐ℎ

𝑇𝑗𝑘,𝑇𝑐ℎ] = [−𝑃𝑗𝑘,𝑐ℎℎ𝑗𝑘,𝑐ℎ ] 𝑗𝑘 = 1,… ,𝑁𝑗𝑘; 𝑐ℎ = 1,… , 𝑁𝑐ℎ (B-48) 

The last two columns refer to the temperature of the solid components, respectively 

strands and jackets temperatures and they are analyzed in parallel since they are quite similar. 

One more time, in the velocity equation there are no terms that refers to the temperature so 

both matrices 𝑆𝑣𝑐ℎ,𝑇𝑠𝑡and 𝑆𝑣𝑐ℎ,𝑇𝑗𝑘are filled with 0. 

From the pressure equations (A-15) the contributions are of the form: 

𝑆𝑝𝑐ℎ,𝑇𝑠𝑡 = [𝑆𝑐ℎ,𝑠𝑡
𝑝,𝑇𝑠𝑡] = [−

𝛷𝑐ℎ𝑃𝑐ℎ,𝑠𝑡 ℎ𝑐ℎ,𝑠𝑡 
Σ𝑐ℎ

] 𝑐ℎ = 1,… ,𝑁𝑐ℎ; 𝑠𝑡 = 1, … ,𝑁𝑠𝑡 
(B-49) 

𝑆𝑝𝑐ℎ,𝑇𝑗𝑘 = [𝑆
𝑐ℎ,𝑗𝑘

𝑝,𝑇𝑗𝑘] = [−
𝛷𝑐ℎ𝑃𝑐ℎ,𝑗𝑘 ℎ𝑐ℎ,𝑗𝑘 

Σ𝑐ℎ
] 𝑐ℎ = 1,… ,𝑁𝑐ℎ; 𝑗𝑘 = 1,… ,𝑁𝑗𝑘  (B-50) 

respectively for coefficients that multiply strands and jacket temperatures. 

The analogous matrices that came from the terms of the temperature equation (A-16) are: 

𝑆𝑇𝑐ℎ,𝑇𝑠𝑡 = [𝑆𝑐ℎ,𝑠𝑡
𝑇𝑐ℎ,𝑇𝑠𝑡] = [−

𝑃𝑐ℎ,𝑠𝑡 ℎ𝑐ℎ,𝑠𝑡 
𝜌𝑐ℎΣ𝑐ℎ𝑐𝑣,𝑐ℎ 

] 𝑐ℎ = 1,… ,𝑁𝑐ℎ; 𝑠𝑡 = 1,… ,𝑁𝑠𝑡 
(B-51) 

𝑆𝑇𝑐ℎ,𝑇𝑗𝑘 = [𝑆
𝑐ℎ,𝑗𝑘

𝑇𝑐ℎ,𝑇𝑗𝑘] = [−
𝑃𝑐ℎ,𝑗𝑘 ℎ𝑐ℎ,𝑗𝑘 

𝜌𝑐ℎΣ𝑐ℎ𝑐𝑣,𝑐ℎ 
] 𝑐ℎ = 1,… ,𝑁𝑐ℎ; 𝑗𝑘 = 1,… ,𝑁𝑗𝑘  (B-52) 

These are the last matrices that have elements coming from the fluid components 

equations. The remaining four matrices are built considering only the 1-D transient heat 

transfer equations. Let focus on the matrices on the main diagonal 𝑆𝑇𝑠𝑡,𝑇𝑠𝑡 and 𝑆𝑇𝑗𝑘,𝑇𝑗𝑘; their 

elements are the coefficients that multiply the strand (jacket) temperature. 

𝑆𝑇𝑠𝑡,𝑇𝑠𝑡 = [

𝑆1,1
𝑇𝑠𝑡 ⋯ 𝑆1,𝑁𝑠𝑡

𝑇𝑠𝑡

⋮ ⋱ ⋮

𝑆𝑁𝑠𝑡,1
𝑇𝑠𝑡 ⋯ 𝑆𝑁𝑠𝑡,𝑁𝑠𝑡

𝑇𝑠𝑡

] (B-53) 
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𝑆𝑓𝑖,𝑓𝑖
𝑇𝑠𝑡 = ∑ 𝑃𝑓𝑖,𝑐ℎℎ𝑓𝑖,𝑐ℎ +

𝑁𝑐ℎ

𝑐ℎ=1

∑ 𝑃𝑓𝑖,𝑠𝑡ℎ𝑓𝑖,𝑠𝑡 +

𝑁𝑠𝑡

𝑠𝑡≠𝑓𝑖

∑ 𝑃𝑓𝑖,𝑗𝑘ℎ𝑓𝑖,𝑗𝑘

𝑁𝑗𝑘

𝑗𝑘=1

 𝑓𝑖 = 1, … , 𝑁𝑠𝑡 
(B-54) 

𝑆𝑓𝑖,𝑠𝑡
𝑇𝑠𝑡 = −𝑃𝑓𝑖,𝑠𝑡ℎ𝑓𝑖,𝑠𝑡 𝑓𝑖, 𝑠𝑡 = 1,… ,𝑁𝑠𝑡 

(B-55) 

𝑆𝑇𝑗𝑘,𝑇𝑗𝑘 = 

[
 
 
 𝑆1,1

𝑇𝑗𝑘 ⋯ 𝑆1,𝑁𝑗𝑘
𝑇𝑗𝑘

⋮ ⋱ ⋮

𝑆𝑁𝑗𝑘,1
𝑇𝑗𝑘 ⋯ 𝑆𝑁𝑗𝑘,𝑁𝑗𝑘

𝑇𝑗𝑘

]
 
 
 
 (B-56) 

𝑆
𝑖𝑛,𝑖𝑛

𝑇𝑗𝑘 = ∑ 𝑃𝑖𝑛,𝑐ℎℎ𝑖𝑛,𝑐ℎ +

𝑁𝑐ℎ

𝑐ℎ=1

∑ 𝑃𝑖𝑛,𝑠𝑡ℎ𝑖𝑛,𝑠𝑡 +

𝑁𝑠𝑡

𝑠𝑡=1

∑ 𝑃𝑖𝑛,𝑗𝑘ℎ𝑖𝑛,𝑗𝑘

𝑁𝑗𝑘

𝑗𝑘≠𝑖𝑛

 𝑖𝑛 = 1,… ,𝑁𝑗𝑘 
(B-57) 

𝑆
𝑖𝑛,𝑗𝑘

𝑇𝑗𝑘 = −𝑃𝑖𝑛,𝑗𝑘ℎ𝑖𝑛,𝑗𝑘 𝑖𝑛, 𝑗𝑘 = 1,… ,𝑁𝑗𝑘 (B-58) 

Finally, matrices 𝑆𝑇𝑗𝑘,𝑇𝑠𝑡 and 𝑆𝑇𝑠𝑡,𝑇𝑗𝑘 keep into account the coupling between strands and 

jackets, their elements are the coefficients that multiply the strand (jacket) temperature in 

the jacket (strand) equations, respectively. 

𝑆𝑇𝑗𝑘,𝑇𝑠𝑡 = [𝑆𝑗𝑘,𝑠𝑡
𝑇𝑗𝑘,𝑇𝑠𝑡] = [−𝑃𝑗𝑘,𝑠𝑡ℎ𝑗𝑘,𝑠𝑡] 𝑗𝑘 = 1,… , 𝑁𝑗𝑘; 𝑠𝑡 = 1,… ,𝑁𝑠𝑡 

(B-59) 

𝑆𝑇𝑠𝑡,𝑇𝑗𝑘 = [𝑆
𝑠𝑡,𝑗𝑘

𝑇𝑠𝑡,𝑇𝑗𝑘] = [−𝑃𝑠𝑡,𝑗𝑘ℎ𝑠𝑡,𝑗𝑘] 𝑠𝑡 = 1,… ,𝑁𝑠𝑡; 𝑗𝑘 = 1, … , 𝑁𝑗𝑘  (B-60) 

It is worthy to notice that matrix 𝑆 is not symmetric. 
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B.2 3P-HTS CASE STUDY: MATRICES AND VECTORS 

In this section the explicit form of the matrices and of the vectors for the case study 3P-

HTS are proposed. Here, the cable is discretized using one channel, one strand and one jacket; 

therefore, there are three fluid equations and two solid components equations to be solved 

for a total of five unknowns, i.e. 𝑁𝑒𝑞 = 5. The vectors belong to the vectorial space ℝ5,1 while 

the matrices ℝ5,5. The channel is in contact with both the strand and the jacket, but the solid 

components are not in mutual contact. The only driver is the external heating in the strand.  

𝒖 =

[
 
 
 
 
𝑣𝐶𝐻1
𝑝𝐶𝐻1
𝑇𝐶𝐻1
𝑇𝑆𝑇1
𝑇𝐽𝐾1 ]

 
 
 
 

 (B-61) 

𝒔 =

[
 
 
 
 

0
0
0

𝑄𝑆𝑇1,𝑒𝑥𝑡
0 ]

 
 
 
 

 (B-62) 

𝑀 =

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 Σ𝑆𝑇1𝜌𝑆𝑇1𝑐𝑝,𝑆𝑇1 0

0 0 0 0 Σ𝐽𝐾1𝜌𝐽𝐾1𝑐𝑝,𝐽𝐾1]
 
 
 
 

 (B-63) 

𝐴 =

[
 
 
 
 
 𝑣𝐶𝐻1

1

𝜌𝐶𝐻1
0 0 0

𝜌𝐶𝐻1𝑐𝐶𝐻1
2 𝑣𝐶𝐻1 0 0 0

𝛷𝐶𝐻1𝑇𝐶𝐻1 0 𝑣𝐶𝐻1 0 0
0 0 0 0 0
0 0 0 0 0]

 
 
 
 
 

 (B-64) 

𝐾 =

[
 
 
 
 
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −Σ𝑆𝑇1𝑘𝑆𝑇1 0
0 0 0 0 −Σ𝐽𝐾1𝑘𝐽𝐾1]

 
 
 
 

 

 

(B-65) 

𝑆 =

[
 
 
 
 
 
 
 
�̃�𝐶𝐻1 0 0 0 0

𝑆𝐶𝐻1,𝐶𝐻1
𝑝,𝑣 0 𝑆𝐶𝐻1,𝐶𝐻1

𝑝,𝑇𝑐ℎ 𝑆𝐶𝐻1,𝑆𝑇1
𝑝,𝑇𝑠𝑡 𝑆𝐶𝐻1,𝐽𝐾1

𝑝,𝑇𝑗𝑘

𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ,𝑣 0 𝑆𝐶𝐻1,𝐶𝐻1

𝑇𝑐ℎ 𝑆𝐶𝐻1,𝑆𝑇1
𝑇𝑐ℎ,𝑇𝑠𝑡 𝑆𝐶𝐻1,𝐽𝐾1

𝑇𝑐ℎ,𝑇𝑗𝑘

0 0 𝑆𝐶𝐻1,𝑆𝑇1
𝑇𝑠𝑡,𝑇𝑐ℎ −𝑆𝐶𝐻1,𝑆𝑇1

𝑇𝑠𝑡,𝑇𝑐ℎ 0

0 0 𝑆𝐶𝐻1,𝐽𝐾1
𝑇𝑗𝑘,𝑇𝑐ℎ 0 −𝑆𝐶𝐻1,𝐽𝐾1

𝑇𝑗𝑘,𝑇𝑐ℎ
]
 
 
 
 
 
 
 

 (B-66) 
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𝑆𝐶𝐻1,𝐶𝐻1
𝑝,𝑣 = −�̃�𝐶𝐻1𝜌𝐶𝐻1𝛷𝐶𝐻1𝑣𝐶𝐻1 (B-67) 

𝑆𝐶𝐻1,𝐶𝐻1
𝑝,𝑇𝑐ℎ =

𝛷𝐶𝐻1(𝑃𝐶𝐻1,𝑆𝑇1 ℎ𝐶𝐻1,𝑆𝑇1 + 𝑃𝐶𝐻1,𝐽𝐾1 ℎ𝐶𝐻1,𝐽𝐾1 )

Σ𝐶𝐻1
 

(B-68) 

𝑆𝐶𝐻1,𝑆𝑇1
𝑝,𝑇𝑠𝑡 = −

𝛷𝐶𝐻1𝑃𝐶𝐻1,𝑆𝑇1 ℎ𝐶𝐻1,𝑆𝑇1 
Σ𝐶𝐻1

 (B-69) 

𝑆𝐶𝐻1,𝐽𝐾1
𝑝,𝑇𝑗𝑘 = −

𝛷𝐶𝐻1𝑃𝐶𝐻1,𝐽𝐾1 ℎ𝐶𝐻1,𝐽𝐾1 
Σ𝐶𝐻1

 (B-70) 

𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ,𝑣 = −

�̃�𝐶𝐻1𝑣𝐶𝐻1
𝑐𝑣,𝐶𝐻1

 

 

(B-71) 

𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ =

𝑃𝐶𝐻1,𝑆𝑇1 ℎ𝐶𝐻1,𝑆𝑇1 + 𝑃𝐶𝐻1,𝐽𝐾1 ℎ𝐶𝐻1,𝐽𝐾1 
𝜌𝐶𝐻1Σ𝐶𝐻1𝑐𝑣,𝐶𝐻1 

 (B-72) 

𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ =

𝑃𝐶𝐻1,𝑆𝑇1 ℎ𝐶𝐻1,𝑆𝑇1 + 𝑃𝐶𝐻1,𝐽𝐾1 ℎ𝐶𝐻1,𝐽𝐾1 
𝜌𝐶𝐻1Σ𝐶𝐻1𝑐𝑣,𝐶𝐻1 

 (B-73) 

𝑆𝐶𝐻1,𝑆𝑇1
𝑇𝑐ℎ,𝑇𝑠𝑡 = −

𝑃𝐶𝐻1,𝑆𝑇1 ℎ𝐶𝐻1,𝑆𝑇1 
𝜌𝐶𝐻1Σ𝐶𝐻1𝑐𝑣,𝐶𝐻1 

 (B-74) 

𝑆𝐶𝐻1,𝐽𝐾1
𝑇𝑐ℎ,𝑇𝑗𝑘 = −

𝑃𝐶𝐻1,𝐽𝐾1 ℎ𝐶𝐻1,𝐽𝐾1 
𝜌𝐶𝐻1Σ𝐶𝐻1𝑐𝑣,𝐶𝐻1 

 (B-75) 

𝑆𝐶𝐻1,𝑆𝑇1
𝑇𝑠𝑡,𝑇𝑐ℎ = −𝑃𝐶𝐻1,𝑆𝑇1ℎ𝐶𝐻1,𝑆𝑇1  

(B-76) 

𝑆𝑆𝑇1,𝑆𝑇1
𝑇𝑠𝑡 = 𝑃𝐶𝐻2,𝑆𝑇1ℎ𝐶𝐻2,𝑆𝑇1 = −𝑆𝐶𝐻1,𝑆𝑇1

𝑇𝑠𝑡,𝑇𝑐ℎ  (B-77) 

𝑆𝐶𝐻1,𝐽𝐾1
𝑇𝑗𝑘,𝑇𝑐ℎ = −𝑃𝐶𝐻1,𝐽𝐾1ℎ𝐶𝐻1,𝐽𝐾1  

(B-78) 

𝑆𝐽𝐾1,𝐽𝐾1
𝑇𝑗𝑘 = 𝑃𝐶𝐻2,𝐽𝐾1ℎ𝐶𝐻2,𝐽𝐾1 = −𝑆𝐶𝐻1,𝐽𝐾1

𝑇𝑗𝑘,𝑇𝑐ℎ  
(B-79) 
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B.3 ITER-TF CASE STUDY: MATRICES AND VECTORS 

In this section the explicit form of the matrices and of the vector for the case study ITER-

TF are proposed. In the present case, the cable is discretized with two channels, one strand 

and one jacket; therefore, there are six fluid equations and two solid components equations 

to be solved for a total of eight unknowns, i.e. 𝑁𝑒𝑞 = 8. The vectors belong to the vectorial 

space ℝ8,1 while the matrices ℝ8,8. The two channels are in hydraulic parallel, the two solid 

components are in thermal contact while only the second channel is in contact with both the 

strand and the jacket. The only driver is the external heating in the strand. 

𝒖 = [𝑣𝐶𝐻1 𝑝𝐶𝐻1 𝑇𝐶𝐻1 𝑣𝐶𝐻2 𝑝𝐶𝐻2 𝑇𝐶𝐻2 𝑇𝑆𝑇1 𝑇𝐽𝐾1]𝑇 (B-80) 

𝒔 = [0 0 0 0 0 0 𝑄𝑆𝑇1,𝑒𝑥𝑡 0]𝑇 (B-81) 

𝑀 =

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 Σ𝑆𝑇1𝜌𝑆𝑇1𝑐𝑝,𝑆𝑇1 0

0 0 0 0 0 0 0 Σ𝐽𝐾1𝜌𝐽𝐾1𝑐𝑝,𝐽𝐾1]
 
 
 
 
 
 
 

 (B-82) 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 𝑣𝐶𝐻1 0

1

𝜌𝐶𝐻1
0 0 0 0 0

0 𝑣𝐶𝐻2 0
1

𝜌𝐶𝐻2
0 0 0 0

𝜌𝐶𝐻1𝑐𝐶𝐻1
2 0 𝑣𝐶𝐻1 0 0 0 0 0

0 𝜌𝐶𝐻2𝑐𝐶𝐻2
2 0 𝑣𝐶𝐻2 0 0 0 0

𝛷𝐶𝐻1𝑇𝐶𝐻1 0 0 0 𝑣𝐶𝐻1 0 0 0
0 𝛷𝐶𝐻2𝑇𝐶𝐻2 0 0 0 𝑣𝐶𝐻2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 

 (B-83) 

𝐾 =

[
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −Σ𝑆𝑇1𝑘𝑆𝑇1 0
0 0 0 0 0 0 0 −Σ𝐽𝐾1𝑘𝐽𝐾1]

 
 
 
 
 
 
 

 (B-84) 
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𝑆

=  

[
 
 
 
 
 
 
 
 
 
 
 
�̃�𝐶𝐻1 0 𝑆𝐶𝐻1,𝐶𝐻1 

𝑣,𝑝
−𝑆𝐶𝐻1,𝐶𝐻1 

𝑣,𝑝
0 0 0 0

0 �̃�𝐶𝐻2 −𝑆𝐶𝐻2,𝐶𝐻2 
𝑣,𝑝

𝑆𝐶𝐻2,𝐶𝐻2 
𝑣,𝑝

0 0 0 0

𝑆𝐶𝐻1,𝐶𝐻1
𝑝,𝑣

0 𝑆𝐶𝐻1,𝐶𝐻1 
𝑝

−𝑆𝐶𝐻1,𝐶𝐻1 
𝑝

𝑆𝐶𝐻1,𝐶𝐻1
𝑝,𝑇𝑐ℎ −𝑆𝐶𝐻1,𝐶𝐻1

𝑝,𝑇𝑐ℎ 0 0

0 𝑆𝐶𝐻2,𝐶𝐻2
𝑝,𝑣

−𝑆𝐶𝐻2,𝐶𝐻2 
𝑝

𝑆𝐶𝐻2,𝐶𝐻2 
𝑝

𝑆𝐶𝐻2,𝐶𝐻1
𝑝,𝑇𝑐ℎ 𝑆𝐶𝐻2,𝐶𝐻2

𝑝,𝑇𝑐ℎ 𝑆𝐶𝐻2,𝑆𝑇1
𝑝,𝑇𝑠𝑡 𝑆𝐶𝐻2,𝐽𝐾1

𝑝,𝑇𝑗𝑘

𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ,𝑣 0 𝑆𝐶𝐻1,𝐶𝐻1

𝑇𝑐ℎ,𝑝 −𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ,𝑝 𝑆𝐶𝐻1,𝐶𝐻1

𝑇𝑐ℎ −𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ 0 0

0 𝑆𝐶𝐻2,𝐶𝐻2
𝑇𝑐ℎ,𝑣 −𝑆𝐶𝐻2,𝐶𝐻2

𝑇𝑐ℎ,𝑝 𝑆𝐶𝐻2,𝐶𝐻2
𝑇𝑐ℎ,𝑝 𝑆𝐶𝐻2,𝐶𝐻1

𝑇𝑐ℎ 𝑆𝐶𝐻2,𝐶𝐻2
𝑇𝑐ℎ 𝑆𝐶𝐻2,𝑆𝑇1

𝑇𝑐ℎ,𝑇𝑠𝑡 𝑆𝐶𝐻2,𝐽𝐾1
𝑇𝑐ℎ,𝑇𝑗𝑘

0 0 0 0 0 𝑆𝐶𝐻2,𝑆𝑇1
𝑇𝑠𝑡,𝑇𝑐ℎ 𝑆𝑆𝑇1,𝑆𝑇1

𝑇𝑠𝑡 𝑆𝑆𝑇1,𝐽𝐾1
𝑇𝑠𝑡,𝑇𝑗𝑘

0 0 0 0 0 𝑆𝐶𝐻2,𝐽𝐾1
𝑇𝑗𝑘,𝑇𝑐ℎ 𝑆𝐽𝐾1,𝑆𝑇1

𝑇𝑗𝑘,𝑇𝑠𝑡 𝑆𝐽𝐾1,𝐽𝐾1
𝑇𝑗𝑘

]
 
 
 
 
 
 
 
 
 
 
 

 
(B-85) 

𝑆𝐶𝐻1,𝐶𝐻1 
𝑣,𝑝 = −

𝑣𝐶𝐻1𝐾𝐶𝐻1,𝐶𝐻2
′ − 𝐾𝐶𝐻1,𝐶𝐻2

′′

𝐿𝜌𝐶𝐻1Σ𝐶𝐻1
 

(B-86) 

𝑆𝐶𝐻1,𝐶𝐻2 
𝑣,𝑝 = 

𝑣𝐶𝐻1𝐾𝐶𝐻1,𝐶𝐻2
′ − 𝐾𝐶𝐻1,𝐶𝐻2

′′

𝐿𝜌𝐶𝐻1Σ𝐶𝐻1
= −𝑆𝐶𝐻1,𝐶𝐻1 

𝑣,𝑝  
(B-87) 

𝑆𝐶𝐻2,𝐶𝐻2 
𝑣,𝑝 = −

𝑣𝐶𝐻2𝐾𝐶𝐻1,𝐶𝐻2
′ − 𝐾𝐶𝐻1,𝐶𝐻2

′′

𝐿𝜌𝐶𝐻2Σ𝐶𝐻2
  

(B-88) 

𝑆𝐶𝐻2,𝐶𝐻1 
𝑣,𝑝 = 

𝑣𝐶𝐻2𝐾𝐶𝐻1,𝐶𝐻2
′ − 𝐾𝐶𝐻1,𝐶𝐻2

′′

𝐿𝜌𝐶𝐻2Σ𝐶𝐻2
= −𝑆𝐶𝐻2,𝐶𝐻2 

𝑣,𝑝  
(B-89) 

𝑆𝐶𝐻1,𝐶𝐻1
𝑝,𝑣 = −�̃�𝐶𝐻1𝜌𝐶𝐻1𝛷𝐶𝐻1𝑣𝐶𝐻1 (B-90) 

𝑆𝐶𝐻1,𝐶𝐻1 
𝑝 =

𝛷𝐶𝐻1
𝐿Σ𝐶𝐻1

[𝐾𝐶𝐻1,𝐶𝐻2
′′′ − 𝑣𝐶𝐻1𝐾𝐶𝐻1,𝐶𝐻2

′′ − (𝑤𝐶𝐻1 −
𝑣𝐶𝐻1
2

2
−
𝑐𝐶𝐻1
2

𝛷𝐶𝐻1
)𝐾𝐶𝐻1,𝐶𝐻2

′ ] (B-91) 

𝑆𝐶𝐻1,𝐶𝐻2 
𝑝 = −

𝛷𝐶𝐻1
𝐿Σ𝐶𝐻1

[𝐾𝐶𝐻1,𝐶𝐻2
′′′ − 𝑣𝐶𝐻1𝐾𝐶𝐻1,𝐶𝐻2

′′ − (𝑤𝐶𝐻1 −
𝑣𝐶𝐻1
2

2
−
𝑐𝐶𝐻1
2

𝛷𝐶𝐻1
)𝐾𝐶𝐻1,𝐶𝐻2

′ ]

= −𝑆𝐶𝐻1,𝐶𝐻1 
𝑝  

(B-92) 

𝑆𝐶𝐻1,𝐶𝐻1
𝑝,𝑇𝑐ℎ =

𝛷𝐶𝐻1(𝑃𝐶𝐻1,𝐶𝐻2 
𝑂 ℎ𝐶𝐻1,𝐶𝐻2 

𝑂 + 𝑃𝐶𝐻1,𝐶𝐻2 
𝐶 ℎ𝐶𝐻1,𝐶𝐻2 

𝐶 )

Σ𝐶𝐻1
 

 

(B-93) 

𝑆𝐶𝐻1,𝐶𝐻2 
𝑝,𝑇𝑐ℎ = −

𝛷𝐶𝐻1(𝑃𝐶𝐻1,𝐶𝐻2 
𝑂 ℎ𝐶𝐻1,𝐶𝐻2 

𝑂 + 𝑃𝐶𝐻1,𝐶𝐻2 
𝐶 ℎ𝐶𝐻1,𝐶𝐻2 

𝐶 )

Σ𝐶𝐻1
= −𝑆𝐶𝐻1,𝐶𝐻1

𝑝,𝑇𝑐ℎ  
(B-94) 

𝑆𝐶𝐻2,𝐶𝐻2
𝑝,𝑣 = −�̃�𝐶𝐻2𝜌𝐶𝐻2𝛷𝐶𝐻2𝑣𝐶𝐻2 (B-95) 

𝑆𝐶𝐻2,𝐶𝐻2 
𝑝 =

𝛷𝐶𝐻2
𝐿Σ𝐶𝐻2

[𝐾𝐶𝐻1,𝐶𝐻2
′′′ − 𝑣𝐶𝐻2𝐾𝐶𝐻1,𝐶𝐻2

′′ − (𝑤𝐶𝐻2 −
𝑣𝐶𝐻2
2

2
−
𝑐𝐶𝐻2
2

𝛷𝐶𝐻2
)𝐾𝐶𝐻1,𝐶𝐻2

′ ] (B-96) 

𝑆𝐶𝐻2,𝐶𝐻1 
𝑝 = −

𝛷𝐶𝐻2
𝐿Σ𝐶𝐻2

[𝐾𝐶𝐻1,𝐶𝐻2
′′′ − 𝑣𝐶𝐻2𝐾𝐶𝐻1,𝐶𝐻2

′′ − (𝑤𝐶𝐻2 −
𝑣𝐶𝐻2
2

2
−
𝑐𝐶𝐻2
2

𝛷𝐶𝐻2
)𝐾𝐶𝐻1,𝐶𝐻2

′ ]

= −𝑆𝐶𝐻2,𝐶𝐻2 
𝑝  

(B-97) 
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𝑆𝐶𝐻2,𝐶𝐻1 
𝑝,𝑇𝑐ℎ = −

𝛷𝐶𝐻2(𝑃𝐶𝐻1,𝐶𝐻2 
𝑂 ℎ𝐶𝐻1,𝐶𝐻2 

𝑂 + 𝑃𝐶𝐻1,𝐶𝐻2 
𝐶 ℎ𝐶𝐻1,𝐶𝐻2 

𝐶 )

Σ𝐶𝐻2
 

(B-98) 

𝑆𝐶𝐻2,𝐶𝐻2
𝑝,𝑇𝑐ℎ =

𝛷𝐶𝐻2
Σ𝐶𝐻2

(𝑃𝐶𝐻1,𝐶𝐻2 
𝑂 ℎ𝐶𝐻1,𝐶𝐻2 

𝑂 + 𝑃𝐶𝐻1,𝐶𝐻2 
𝐶 ℎ𝐶𝐻1,𝐶𝐻2 

𝐶 + 𝑃𝐶𝐻2,𝑆𝑇1 ℎ𝐶𝐻2,𝑆𝑇1 

+ 𝑃𝐶𝐻2,𝐽𝐾1 ℎ𝐶𝐻2,𝐽𝐾1 ) 

(B-99) 

𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ,𝑣 = −

�̃�𝐶𝐻1𝑣𝐶𝐻1
𝑐𝑣,𝐶𝐻1

 
(B-100) 

𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ,𝑝 =

𝐾𝐶𝐻1,𝐶𝐻2
′′′ − 𝑣𝐶𝐻1𝐾𝐶𝐻1,𝐶𝐻2

′′ − (𝑤𝐶𝐻1 −
𝑣𝐶𝐻1
2

2 − 𝛷𝐶𝐻1𝑐𝑣,𝐶𝐻1 𝑇𝐶𝐻1)𝐾𝐶𝐻1,𝐶𝐻2
′

𝐿𝜌𝐶𝐻1Σ𝐶𝐻1𝑐𝑣,𝐶𝐻1 
 

(B-101) 

𝑆𝐶𝐻1,𝐶𝐻2
𝑇𝑐ℎ,𝑝 = −

𝐾𝐶𝐻1,𝐶𝐻2
′′′ − 𝑣𝐶𝐻1𝐾𝐶𝐻1,𝐶𝐻2

′′ − (𝑤𝐶𝐻1 −
𝑣𝐶𝐻1
2

2 − 𝛷𝐶𝐻1𝑐𝑣,𝐶𝐻1 𝑇𝐶𝐻1)𝐾𝐶𝐻1,𝐶𝐻2
′

𝐿𝜌𝐶𝐻1Σ𝐶𝐻1𝑐𝑣,𝐶𝐻1 
= −𝑆𝐶𝐻1,𝐶𝐻1

𝑇𝑐ℎ,𝑝  

(B-102) 

𝑆𝐶𝐻1,𝐶𝐻1
𝑇𝑐ℎ =

𝑃𝐶𝐻1,𝐶𝐻2 
𝑂 ℎ𝐶𝐻1,𝐶𝐻2 

𝑂 + 𝑃𝐶𝐻1,𝐶𝐻2 
𝐶 ℎ𝐶𝐻1,𝐶𝐻2 

𝐶

𝜌𝐶𝐻1Σ𝐶𝐻1𝑐𝑣,𝐶𝐻1 
 

(B-103) 

𝑆𝐶𝐻1,𝐶𝐻2 
𝑇𝑐ℎ = −

𝑃𝐶𝐻1,𝐶𝐻2 
𝑂 ℎ𝐶𝐻1,𝐶𝐻2 

𝑂 + 𝑃𝐶𝐻1,𝐶𝐻2 
𝐶 ℎ𝐶𝐻1,𝐶𝐻2 

𝐶

𝜌𝐶𝐻1Σ𝐶𝐻1𝑐𝑣,𝐶𝐻1 
= −𝑆𝐶𝐻1,𝐶𝐻1

𝑇𝑐ℎ  
(B-104) 

𝑆𝐶𝐻2,𝐶𝐻2
𝑇𝑐ℎ,𝑣 = −(𝐹 ̃_𝐶𝐻2 𝑣_𝐶𝐻2)/𝑐_(𝑣, 𝐶𝐻2)    (B-105) 

𝑆𝐶𝐻2,𝐶𝐻2
𝑇𝑐ℎ,𝑝 =

𝐾𝐶𝐻1,𝐶𝐻2
′′′ − 𝑣𝐶𝐻2𝐾𝐶𝐻1,𝐶𝐻2

′′ − (𝑤𝐶𝐻2 −
𝑣𝐶𝐻2
2

2 − 𝛷𝐶𝐻2𝑐𝑣,𝐶𝐻2 𝑇𝐶𝐻2)𝐾𝐶𝐻1,𝐶𝐻2
′

𝐿𝜌𝐶𝐻2Σ𝐶𝐻2𝑐𝑣,𝐶𝐻2 
 

(B-106) 

𝑆𝐶𝐻2,𝐶𝐻1
𝑇𝑐ℎ,𝑝 = −

𝐾𝐶𝐻1,𝐶𝐻2
′′′ − 𝑣𝐶𝐻2𝐾𝐶𝐻1,𝐶𝐻2

′′ − (𝑤𝐶𝐻2 −
𝑣𝐶𝐻2
2

2 − 𝛷𝐶𝐻2𝑐𝑣,𝐶𝐻2 𝑇𝐶𝐻2)𝐾𝐶𝐻1,𝐶𝐻2
′

𝐿𝜌𝐶𝐻2Σ𝐶𝐻2𝑐𝑣,𝐶𝐻2 
= −𝑆𝐶𝐻2,𝐶𝐻2

𝑇𝑐ℎ,𝑝  

(B-107) 

𝑆𝐶𝐻2,𝐶𝐻1 
𝑇𝑐ℎ = −

𝑃𝐶𝐻1,𝐶𝐻2 
𝑂 ℎ𝐶𝐻1,𝐶𝐻2 

𝑂 + 𝑃𝐶𝐻1,𝐶𝐻2 
𝐶 ℎ𝐶𝐻1,𝐶𝐻2 

𝐶

𝜌𝐶𝐻2Σ𝐶𝐻2𝑐𝑣,𝐶𝐻2 
 

(B-108) 

𝑆𝐶𝐻2,𝐶𝐻2
𝑇𝑐ℎ

=
𝑃𝐶𝐻1,𝐶𝐻2 
𝑂 ℎ𝐶𝐻1,𝐶𝐻2 

𝑂 + 𝑃𝐶𝐻1,𝐶𝐻2 
𝐶 ℎ𝐶𝐻1,𝐶𝐻2 

𝐶 + 𝑃𝐶𝐻2,𝑆𝑇1 ℎ𝐶𝐻2,𝑆𝑇1 + 𝑃𝐶𝐻2,𝐽𝐾1 ℎ𝐶𝐻2,𝐽𝐾1 
𝜌𝐶𝐻2Σ𝐶𝐻2𝑐𝑣,𝐶𝐻2 

 

(B-109) 

𝑆𝐶𝐻2,𝑆𝑇1
𝑇𝑐ℎ,𝑇𝑠𝑡 = −

𝑃𝐶𝐻2,𝑆𝑇1 ℎ𝐶𝐻2,𝑆𝑇1 
𝜌𝐶𝐻2Σ𝐶𝐻2𝑐𝑣,𝐶𝐻2 

 (B-110) 

𝑆𝐶𝐻2,𝐽𝐾1
𝑇𝑐ℎ,𝑇𝑗𝑘 = −

𝑃𝐶𝐻2,𝐽𝐾1 ℎ𝐶𝐻2,𝐽𝐾1 
𝜌𝐶𝐻2Σ𝐶𝐻2𝑐𝑣,𝐶𝐻2 

 (B-111) 

𝑆𝐶𝐻2,𝑆𝑇1
𝑇𝑠𝑡,𝑇𝑐ℎ = −𝑃𝐶𝐻2,𝑆𝑇1ℎ𝐶𝐻2,𝑆𝑇1  

(B-112) 
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𝑆𝑆𝑇1,𝑆𝑇1
𝑇𝑠𝑡 = 𝑃𝐶𝐻2,𝑆𝑇1ℎ𝐶𝐻2,𝑆𝑇1 + 𝑃𝑆𝑇1,𝐽𝐾1ℎ𝑆𝑇1,𝐽𝐾1 (B-113) 

𝑆𝑆𝑇1,𝐽𝐾1
𝑇𝑠𝑡,𝑇𝑗𝑘 = −𝑃𝑆𝑇1,𝐽𝐾1ℎ𝑆𝑇1,𝐽𝐾1 

(B-114) 

𝑆𝐶𝐻2,𝐽𝐾1
𝑇𝑗𝑘,𝑇𝑐ℎ = −𝑃𝐶𝐻2,𝐽𝐾1ℎ𝐶𝐻2,𝐽𝐾1  

(B-115) 

𝑆𝐽𝐾1,𝑆𝑇1
𝑇𝑗𝑘,𝑇𝑠𝑡 = −𝑃𝑆𝑇1,𝐽𝐾1ℎ𝑆𝑇1,𝐽𝐾1 

(B-116) 

𝑆𝐽𝐾1,𝐽𝐾1
𝑇𝑗𝑘 = 𝑃𝐶𝐻2,𝐽𝐾1ℎ𝐶𝐻2,𝐽𝐾1 + 𝑃𝑆𝑇1,𝐽𝐾1ℎ𝑆𝑇1,𝐽𝐾1 

(B-117) 
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APPENDIX C 
C EVALUATION OF THE PROPERTIES OF THE SOLID COMPONENTS 

The correct formulation of the average properties for solid components are discussed in 

this appendix. The proposed formulation is validated since it allows the respect of the first 

principle of the Thermodynamic, the energy conservation. The appendix ends showing that a 

different formulation of the average specific heat leads to the violation of the energy 

conservation.  

First, let show that the currently used average formulas are correct. If the solid 

components object is constituted by 𝑁𝑚𝑎𝑡  materials the average density, specific heat, 

thermal conductivity and heat capacity are evaluated according to the following definitions: 

𝜌 =
Σ1𝜌1 +⋯+ Σ𝑖𝜌𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡𝜌𝑁𝑚𝑎𝑡

Σ1 +⋯+ Σ𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡
=
∑ Σ𝑖𝜌𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1

 (C-1) 

𝑐𝑝 =
Σ1𝜌1𝑐𝑝1 +⋯+ Σ𝑖𝜌𝑖𝑐𝑝𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡𝜌𝑁𝑚𝑎𝑡𝑐𝑝𝑁𝑚𝑎𝑡

Σ1𝜌1 +⋯+ Σ𝑖𝜌𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡𝜌𝑁𝑚𝑎𝑡
=
∑ Σ𝑖𝜌𝑖𝑐𝑝𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1 𝜌𝑖

 (C-2) 

𝑘 =
Σ1𝑘1 +⋯+ Σ𝑖𝑘𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡𝑘𝑁𝑚𝑎𝑡

Σ1 +⋯+ Σ𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡
=
∑ Σ𝑖𝑘𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1

 (C-3) 

𝐶 =
Σ1𝜌1𝑐𝑝1 +⋯+ Σ𝑖𝜌𝑖𝑐𝑝𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡𝜌𝑁𝑚𝑎𝑡𝑐𝑝𝑁𝑚𝑎𝑡

Σ1 +⋯+ Σ𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡
=
∑ Σ𝑖𝜌𝑖𝑐𝑝𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1 𝜌𝑖

 (C-4) 

The transient one-dimensional heat transfer equation for a multi material solid 

component, like mixed strands or jackets, with no energy source reads: 

∑ Σ𝑖𝜌𝑖𝑐𝑝𝑖
𝜕𝑇𝑖
𝜕𝑡

− ∑ Σ𝑖
𝜕

𝜕𝑥
(𝑘𝑖

𝜕𝑇𝑖
𝜕𝑥
) = 0 

 

𝑁𝑚𝑎𝑡

𝑖=1

𝑁𝑚𝑎𝑡

𝑖=1

 
(C-5) 

Assuming that cross sections are constant and that the temperature dependence in space 

and time is always the same for each component, this equation can be written in a different 

form. Since: 

𝑇1(𝑥, 𝑡) = 𝑇2(𝑥, 𝑡) = ⋯ =  𝑇𝑖(𝑥, 𝑡) = ⋯ =  𝑇𝑁𝑚𝑎𝑡(𝑥, 𝑡) = 𝑇(𝑥, 𝑡) 
(C-6) 

it is possible to collect both time and space temperature derivatives, moreover the cross 

section is constant, therefore: 

(Σ1𝜌1𝑐𝑝1 +⋯+ Σ𝑖𝜌𝑖𝑐𝑝𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡𝜌𝑁𝑚𝑎𝑡𝑐𝑝𝑁𝑚𝑎𝑡)
𝜕𝑇

𝜕𝑡

−
𝜕

𝜕𝑥
[(Σ1𝑘1 +⋯+ Σ𝑖𝑘𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡𝑘𝑁𝑚𝑎𝑡)

𝜕𝑇

𝜕𝑥
] = 0 

(C-7) 
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Let divide both left- and right-hand side by the total cross section 𝐴: 

Σ1𝜌1𝑐𝑝1 +⋯+ Σ𝑖𝜌𝑖𝑐𝑝𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡𝜌𝑁𝑚𝑎𝑡𝑐𝑝𝑁𝑚𝑎𝑡
Σ

𝜕𝑇

𝜕𝑡

−
𝜕

𝜕𝑥
(
Σ1𝑘1 +⋯+ Σ𝑖𝑘𝑖 +⋯+ Σ𝑁𝑚𝑎𝑡𝑘𝑁𝑚𝑎𝑡

Σ

𝜕𝑇

𝜕𝑥
) = 0 

(C-8) 

Exploiting the definitions (C-2)and (C-3), the above equation can be written as: 

𝐶
𝜕𝑇

𝜕𝑡
−
𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) = 0 

(C-9) 

that is the transient 1D heat equation for a homogeneous material, with no external source. 

In SC2 code, instead of the average heat capacity, the average density and the average 

specific heat at constant pressure are used. The two formulations are equivalent if the 

averages are defined as in (C-1)-(C-4). To proof this, the starting equation is: 

Σ𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
− 𝐴

𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) = 0 

(C-10) 

Introducing equation (C-1) and (C-2) inside equation (C-5) yields:  

Σ
∑ Σ𝑖𝜌𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖𝜌𝑖𝑐𝑝𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1 𝜌𝑖

𝜕𝑇

𝜕𝑡
− Σ

𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) = 0 (C-11) 

That simplifies to:  

Σ
∑ Σ𝑖𝜌𝑖𝑐𝑝𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1

𝜕𝑇

𝜕𝑡
− Σ

𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) = 0 (C-12) 

Dividing by Σ and remembering the definition (C-4) the above equation becomes equal to 

equation (C-9). 

To complete the proof, let show that from equation (C-9) it is possible to get (C-10). 

Substituting in (C-9) the definition (C-4) gives: 

∑ Σ𝑖𝜌𝑖𝑐𝑝𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1

𝜕𝑇

𝜕𝑡
−
𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) = 0 (C-13) 

Multiplying and dividing the first addendum on the left-hand side by ∑ Σ𝑖𝜌𝑖
𝑁𝑚𝑎𝑡
𝑖=1 , adjusting the 

terms results in: 

∑ Σ𝑖𝜌𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖𝜌𝑖𝑐𝑝𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖𝜌𝑖
𝑁𝑚𝑎𝑡
𝑖=1

𝜕𝑇

𝜕𝑡
−
𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) = 0 (C-14) 

Recognizing the definitions of the average density and average specific heat given in 

equations (C-1) and (C-2), this equation is the same of equation (C-10). Therefore, with the 
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definitions given in (C-1)-(C-4)equations (C-9) and (C-10)are equivalent, so the current choice 

does not violate the first principle of the thermodynamics.  

In the end, if the definition of the specific heat at constant pressure (C-2) is replaced by 

the following one (C-15), the energy conservation is no longer guaranteed since the resulting 

equation is not equivalent to (C-9). 

𝑐𝑝 =
∑ Σ𝑖𝑐𝑝𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖  
𝑁𝑚𝑎𝑡
𝑖=1

 (C-15) 

Substituting (C-1) and the above in equation (C-5) yields: 

Σ
∑ Σ𝑖𝜌𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖𝑐𝑝𝑖
𝑁𝑚𝑎𝑡
𝑖=1

∑ Σ𝑖 
𝑁𝑚𝑎𝑡
𝑖=1

𝜕𝑇

𝜕𝑡
− Σ

𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) = 0 (C-16) 

which simplifies to: 

(∑ Σ𝑖𝜌𝑖
𝑁𝑚𝑎𝑡
𝑖=1 )(∑ Σ𝑖𝑐𝑝𝑖

𝑁𝑚𝑎𝑡
𝑖=1 )

∑ Σ𝑖
𝑁𝑚𝑎𝑡
𝑖=1

𝜕𝑇

𝜕𝑡
− Σ

𝜕

𝜕𝑥
(𝑘
𝜕𝑇

𝜕𝑥
) = 0 (C-17) 

that, being not equivalent to equation (C-9), does not respect the conservation of energy. 
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APPENDIX D 
D INPUT DATA OF THE SIMULATIONS 

This appendix contains the data tables needed to perform the simulations used to carry 

out the convergence studies and the external and internal benchmarks which are common to 

all the simulations. The first section contains the data for the 3P-HTS geometry, the second 

one summarizes the data for the ITER-TF geometry.  

D.1 3P-HTS INPUT DATA 

Figure D.1-1 shows a sketch of the conductor geometry and topology. 

Table D.1-1 Input data to be set in the workbooks Transitory_Input.xlsx and conductor_definition.xlsx. 

Variable Value Unit SI Meaning 

IADAPTIME 0 - 
Flag for the time adaptivity: no adaptivity (constant 

time step) 
XLENGHT 10.0 m Conductor length 
IOPFUN 0 - Flag for the current function: constant 

IOP0_TOT 0 A Total current transported at time = 0 s 

UPWIND 1 - 
Flag to switch on/off the upwind discretization in all 

the fluid equations: on 

  

(a) (b) 

Figure D.1-1 Three phase coaxial HTS cable configuration: (a) radial view; (c) cross section. Note that 
in (b) the region HTS and PPLP are collapsed in a single one. Non-scale figure. 
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Table D.1-2 Input data to be set in the CHAN sheet of the workbook conductor_input.xlsx. Cross section and 
hydraulic diameter computed from data in [77]. 

Variable Value Unit SI Meaning 

CROSSECTION 1.81 10−3 m2 Channel cross section 
FLUID_TYPE 𝐻𝑒 - Type of coolant: helium 

HYDIAMETER 1.601 10−2 m Hydraulic diameter 

COSTETA 1 - 
Cosine of the angle between the cable and 

the x axis 
VOID_FRACTION 1 - Void fraction of the channel 

IFRICTION −99 - 
Flag to select the correlation for the 

friction factor: user defined 

FRICTION_MULTIPLIER 1.00 10−3 - 
Multiplier of the friction factor: the actual 

value in this case 

ISRECTANGULAR 0 - 
Flag to set the shape of the channel: 

circular 

SIDE1 0.00 m 
Side of the rectangle if ISRECTANGULAR 

equal 1 

SIDE2 0.00 m 
Side of the rectangle if ISRECTANGULAR 

equal 1 

Table D.1-3 Input data to be set in the STR_MIX sheet of the workbook conductor_input.xlsx. Cross section 
and stabilizer non-stabilizer ratio computed from data in [77], copper residual resistance ratio] and 
superconductor scaling properties from [87]. 

Variable Value Unit SI Meaning 

CROSSECTION 3.22 10−3 m2 Strand total cross section 

COSTETA 1.00 - 
Cosine of the angle between the 

cable and the x axis 
STAB_NON_STAB 2.047 - Stabilizer non stabilizer ratio 

NUM_MATERIAL_TYPES 2 - 
Number of materials making up the 

strand 

ISTABILIZER 1 - 
Flag for the stabilizer material: 

copper (Cu) 
RRR 100 - Copper residual resistance ratio 

ISUPERCONDUCTOR 2 - 
Flag for the superconductor material: 

Nb3Sn 
c0 1.21508 1011 AT/m2  Property of superconductor scaling 

Bc20m 32.35 T Property of superconductor scaling 
Tc0m 16.22 K Property of superconductor scaling 
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Table D.1-4 Input data to be set in the Z_JACKET sheet of the workbook conductor_input.xlsx. Cross section 
computed from data in [77]. 

Variable Value Unit SI Meaning 

CROSSECTION_JK 1.33 10−3 m2 Pure jacket cross section 
CROSSECTION_IN 0.00 m2 Insulation cross section 

NUM_MATERIAL_TYPES 1 - Number of materials making up the jacket 

IMATERIAL_JK 1 - 
Flag for pure jacket material: stainless 

steel 
IMATERIAL_IN 0 - Flag for insulation material: no insulation 

COSTETA 1.00 - 
Cosine of the angle between the cable 

and the x axis 

Table D.1-5 Input data to be set in the STR_MIX sheet of the workbook conductor_operation.xlsx. 

Variable Value Unit SI Meaning 

IEPS 0 - Flag to define the strain along the strand: no strain 
EPS 0 - Value of the strain along the strand 

IQFUN 1 - 
Flag for the heat source shape: square wave in space 

and time 

INTIAL 0 - 
Flag to define how to initialize the STR_MIX 

temperature spatial distribution: from channel initial 
temperature 

Table D.1-6 Input data to be set in the Z_JACKET sheet of the workbook conductor_operation.xlsx. 

Variable Value Unit SI Meaning 

IQFUN 0 - Flag for the heat source shape: no heat source 

INTIAL 0 - 
Flag to define how to initialize the Z_JACKET temperature 

spatial distribution: from channel initial temperature 

Table D.1-7 Contact perimeter flags, dimensionless. If 1 cable components are in contact, if 0 there is no 
contact between the components. Values to be inserted in sheet contact_perimeter_flag of workbook 
conductor_coupling.xlsx. 

 CHAN_1 STR_MIX_1 Z_JACKET_1 

CHAN_1 0 1 1 
STR_MIX_1 0 0 0 
Z_JACKET_1 0 0 0 

Table D.1-8 Contact perimeter in m; values to be inserted in sheet contact_perimeter of workbook 
conductor_coupling.xlsx. Values computed from data in [77]. 

 CHAN_1 STR_MIX_1 Z_JACKET_1 

CHAN_1 0 0.20096 0.25133 
STR_MIX_1 0 0 0 
Z_JACKET_1 0 0 0 
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Table D.1-9 Flags to select the correlation to compute the heat transfer coefficients, dimensionless. Flag on 
the channel main diagonal: correlation to evaluate the steady heat transfer coefficients for channel objects (not 
used in this case); other values: flag to select the correlation to evaluate interface heat transfer coefficients, if -1 
they are user defined. Values to be inserted in sheet HTC_choice of workbook conductor_coupling.xlsx. 

 CHAN_1 STR_MIX_1 Z_JACKET_1 

CHAN_1 0 −1 −1 
STR_MIX_1 0 0 0 
Z_JACKET_1 0 0 0 

Table D.1-10 Values of the heat transfer coefficient if user defined, in 𝑊/𝑚2/𝐾. Values to be inserted in sheet 
contact_HTC of workbook conductor_coupling.xlsx. 

 CHAN_1 STR_MIX_1 Z_JACKET_1 

CHAN_1 0 1000 1000 
STR_MIX_1 0 0 0 
Z_JACKET_1 0 0 0 

Table D.1-11 Values for the heat transfer coefficient dimensionless multipliers, when needed; to be inserted 
in sheet HTC_multiplier of workbook conductor_coupling.xlsx. 

 CHAN_1 STR_MIX_1 Z_JACKET_1 

CHAN_1 0 1 1 
STR_MIX_1 0 0 0 
Z_JACKET_1 0 0 0 

Table D.1-12 Fraction of the contact perimeter between fluid components which is actually open, 
dimensionless. Values to be inserted in sheet open_perimeter_fract of workbook conductor_coupling.xlsx. 

 CHAN_1 STR_MIX_1 Z_JACKET_1 

CHAN_1 0 0 0 
STR_MIX_1 0 0 0 
Z_JACKET_1 0 0 0 

Table D.1-13 Thickness of the interface between fluid elements, in m. Values to be inserted in sheet 
interf_thickness of workbook conductor_coupling.xlsx. 

 CHAN_1 STR_MIX_1 Z_JACKET_1 

CHAN_1 0 0 0 
STR_MIX_1 0 0 0 
Z_JACKET_1 0 0 0 
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Table D.1-14 Multiplier for the transport properties in the open fraction of the perimeter between fluid 
components, dimensionless. Values to be inserted in sheet trans_transp_multiplier of workbook 
conductor_coupling.xlsx. 

 CHAN_1 STR_MIX_1 Z_JACKET_1 

CHAN_1 0 0 0 
STR_MIX_1 0 0 0 
Z_JACKET_1 0 0 0 

D.2 ITER-TF INPUT DATA 

Figure D.2-1 shows a sketch of the conductor geometry. 

  

Figure D.2-1 Sketch of the cross section of the ITER-TF configuration. Coolant He in cyan, mixed 
strand of Cu and NB3Sn in black and jacket/insulation in grey. Not scaled figure. 
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Table D.2-1 Input data to be set in the workbooks Transitory_Input.xlsx and conductor_definition.xlsx. 

Variable Value Unit SI Meaning 

IADAPTIME 0 - 
Flag for the time adaptivity: no adaptivity (constant time 

step) 
XLENGHT 10.0 m Conductor length 
IOPFUN 0 - Flag for the current function: constant 

IOP0_TOT 0 A Total current transported at time = 0 s 

UPWIND 1 - 
Flag to switch on/off the upwind discretization in all the 

fluid equations: on 

Table D.2-2 Input data to be set in the CHAN sheet of the workbook conductor_input.xlsx. Cross sections 
and hydraulic diameters computed from data in [87]. 

Variables Value 
Unit 

SI 
Meaning 

 CHAN_1 CHAN_2 m2 Channel cross section 
CROSSECTION 5.0265 10−5 3.6965 10−4 - Type of coolant: helium 
FLUID_TYPE He He m Hydraulic diameter 

HYDIAMETER 8.0 10−3 3.2676 10−4 - 
Cosine of the angle 

between the cable and the 
x axis 

COSTETA 1 1 - Void fraction of the channel 

VOID_FRACTION 1 0.313 - 
Flag to select the 

correlation for the friction 
factor: user defined 

IFRICTION −99 −99 - 
Multiplier of the friction 

factor: the actual value in 
this case 

FRICTION_MULTIPLIER 0.02 0.02 - 
Flag to set the shape of the 

channel: circular 

ISRECTANGULAR 0 0 m 
Side of the rectangle if 

ISRECTANGULAR equal 1 

SIDE1 0.00 0.00𝐸 m 
Side of the rectangle if 

ISRECTANGULAR equal 1 
SIDE2 0.00 0.00 m2 Channel cross section 
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Table D.2-3 Input data to be set in the STR_MIX sheet of the workbook conductor_input.xlsx. Cross section 
and stabilizer non-stabilizer ratio computed from data in [87], copper residual resistance ratio and Nb3Sn scaling 
properties came from the same paper. 

Variable Value 
Unit 

SI 
Meaning 

CROSSECTION 7.54 10−4 m2 Strand total cross section 

COSTETA 0.9699 - 
Cosine of the angle between the cable 

and the x axis 
STAB_NON_STAB 2.0846 - Stabilizer non stabilizer ratio 

NUM_MATERIAL_TYPES 2 - 
Number of materials making up the 

strand 

ISTABILIZER 1 - 
Flag for the stabilizer material: copper 

(Cu) 
RRR 197.71 - Copper residual resistance ratio 

ISUPERCONDUCTOR 2 - 
Flag for the superconductor material: 

Nb3Sn 

c0 1.21508 1011 
AT

m2
 Property of superconductor scaling 

Bc20m 32.35 T Property of superconductor scaling 
Tc0m 16.22 K Property of superconductor scaling 

Table D.2-4 Input data to be set in the Z_JACKET sheet of the workbook conductor_input.xlsx. Cross sections 
computed from data in [87]. 

Variable Value Unit SI Meaning 

CROSSECTION_JK 3.0699 10−4 m2 Pure jacket cross section 
CROSSECTION_IN 2.7966 10−4 m2 Insulation cross section 

NUM_MATERIAL_TYPES 2 - 
Number of materials making up the 

jacket 

IMATERIAL_JK 1 - 
Flag for pure jacket material: stainless 

steel 
IMATERIAL_IN 1 - Flag for insulation material: glass-epoxy 

COSTETA 1.00𝐸 + 00 - 
Cosine of the angle between the cable 

and the x axis 

Table D.2-5 Input data to be set in the STR_MIX sheet of the workbook conductor_operation.xlsx. 

Variable Value Unit Meaning 

IEPS 0 - Flag to define the strain along the strand: no strain 
EPS 0 - Value of the strain along the strand 

IQFUN 1 - Flag for the heat source shape: square wave in space and time 

INTIAL 0 - 
Flag to define how to initialize the STR_MIX temperature spatial 

distribution: from channel initial temperature 
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Table D.2-6 Input data to be set in the Z_JACKET sheet of the workbook conductor_operation.xlsx. 

Variable Value Unit Meaning 

IQFUN 0 - Flag for the heat source shape: no heat source 

INTIAL 0 - 
Flag to define how to initialize the Z_JACKET temperature spatial 

distribution: from channel initial temperature 

Table D.2-7 Contact perimeter flags, dimensionless. If 1 cable components are in contact, if 0 there is no 
contact between the components. Values to be inserted in sheet contact_perimeter_flag of workbook 
conductor_coupling.xlsx. 

 CHAN_1 CHAN_2 STR_MIX_1 Z_JACKET_1 

CHAN_1 0 1 0 0 
CHAN_2 0 0 1 1 

STR_MIX_1 0 0 0 1 
Z_JACKET_1 0 0 0 0 

Table D.2-8 Contact perimeter in m; values to be inserted in sheet contact_perimeter of workbook 
conductor_coupling.xlsx. Values computed from data in [87]. 

 CHAN_1 CHAN_2 STR_MIX_1 Z_JACKET_1 

CHAN_1 0 0.009 𝜋 0 0 
CHAN_2 0 0 3.7275 0.094356 

STR_MIX_1 0 0 0 0.031452 
Z_JACKET_1 0 0 0 0 

Table D.2-9 Flags to select the correlation to compute the heat transfer coefficients, dimensionless. Flag on 
the channel main diagonal: correlation to evaluate the steady heat transfer coefficients for channel objects (not 
used in this case); other values: flag to select the correlation to evaluate interface heat transfer coefficients, if -1 
they are user defined. Values to be inserted in sheet HTC_choice of workbook conductor_coupling.xlsx. 

 CHAN_1 CHAN_2 STR_MIX_1 Z_JACKET_1 

CHAN_1 0 −1 0 0 
CHAN_2 0 0 −1 −1 

STR_MIX_1 0 0 0 −1 
Z_JACKET_1 0 0 0 0 

Table D.2-10 Values of the heat transfer coefficient if user defined, in 𝑊/𝑚2/𝐾. Values to be inserted in sheet 
contact_HTC of workbook conductor_coupling.xlsx. 

 CHAN_1 CHAN_2 STR_MIX_1 Z_JACKET_1 

CHAN_1 0 1000 0 0 
CHAN_2 0 0 1000 1000 

STR_MIX_1 0 0 0 500 
Z_JACKET_1 0 0 0 0 
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Table D.2-11 Values for the heat transfer coefficient dimensionless multipliers, when needed; to be inserted 
in sheet HTC_multiplier of workbook conductor_coupling.xlsx. 

 CHAN_1 CHAN_2 STR_MIX_1 Z_JACKET_1 

CHAN_1 0 1 0 0 
CHAN_2 0 0 1 1 

STR_MIX_1 0 0 0 1 
Z_JACKET_1 0 0 0 0 

Table D.2-12 Fraction of the contact perimeter between fluid components which is actually open, 
dimensionless. Values to be inserted in sheet open_perimeter_fract of workbook conductor_coupling.xlsx. 
Values from data in [87]. 

 CHAN_1 CHAN_2 STR_MIX_1 Z_JACKET_1 

CHAN_1 0 0.293 0 0 
CHAN_2 0 0 0 0 

STR_MIX_1 0 0 0 0 
Z_JACKET_1 0 0 0 0 

Table D.2-13 Thickness of the interface between fluid elements, in m. Values to be inserted in sheet 
interf_thickness of workbook conductor_coupling.xlsx from [87]. 

 CHAN_1 CHAN_2 STR_MIX_1 Z_JACKET_1 

CHAN_1 0 0.001 0 0 
CHAN_2 0 0 0 0 

STR_MIX_1 0 0 0 0 
Z_JACKET_1 0 0 0 0 

Table D.2-14 Multiplier for the transport properties in the open fraction of the perimeter between fluid 
components, dimensionless. Values to be inserted in sheet trans_transp_multiplier of workbook 
conductor_coupling.xlsx. 

 CHAN_1 CHAN_2 STR_MIX_1 Z_JACKET_1 

CHAN_1 0 1 0 0 
CHAN_2 0 0 0 0 

STR_MIX_1 0 0 0 0 
Z_JACKET_1 0 0 0 0 
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APPENDIX E 
E FURTHER DETAILS 

This appendix is devoted to describing aspects that are too detailed to be mentioned 

within the main body of the thesis and are not essential to the overall understanding of the 

work, although it does provide additional information about them. Section E.1 is a nod to the 

compilation of the input files, while section E.2 describes the contents of the input file. 

E.1 HOW TO COMPILE INPUT FILES 

All the main input files apart from conductor_coupling.xlsx, are organized by columns; 
since they share the same structure, the following illustrates how to compile file 
conductor_definition.xlsx.  

The workbook is composed of a single sheet called CONDUCTOR, that is also the root of 
the object identifier (ID) reported in cell A1. The first four columns of this sheet define the 
variable name, its unit including the specification “flag” for flags variables, the variable type 
(float, integer or string) and the variable description respectively; starting from the fifth 
column user can define cables. To do this, it is sufficient to write an integer number in the first 
row of the fifth column that must be larger or equal than one; automatically the sheet will 
compile the second and third rows of the same columns which hold respectively a counter 
and the cable identifier. Object ID is constructed starting from the root or object name 
(CONDUCTOR in this example) and the integer number provided by the user, joined by an 
underscore. The total value of the cable counter is reported in cell B1 and it is updated when 
a new column is initialized.  

Bear in mind that basic components objects with the same IDs are not allowed within the 
same cable as well as different cables with the same IDs, so for each new column a not already 
used integer number must be provided.  

The conductor_coupling.xlsx workbook is composed by a set of eight sheets, each of 
them characterized by a square matrix. The rows and columns of this matrices corresponds to 
the IDs of the cable basic components objects previously defined; since they are symmetric, 
only the upper triangular region must be filled by the user. In these sheets the conditional 
formatting is introduced to help user with the compilation of matrices. 

E.2 INTERFACES AND COUPLING BETWEEN COMPONENTS 

In the eight sheets of conductor_coupling.xlsx primary input file, user sets the interfaces 

between components, the heat transfer coefficients and the multiplier to determine the 

transported mass, momentum and energy coefficients through fluid components open 

contact perimeter.  

In sheet contact_perimeter_flag, matrix element meaning is the wetted or contact 

perimeter flags: if 1 there is at least thermal contact between fluid components, fluid and solid 

components and between solid components, if 0 there is no interfaces. The contact perimeter 
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length must be provided in the second sheet (contact_perimeter) and not 0 values must be 

inserted in the cells with a value of the contact perimeter flag equal to 1; this rule applies to 

all the sheets. Conditional formatting is thought and introduced to guide user in matrix filling 

phase of the input file compilation. To fully describe the interfaces between fluid components, 

user should compile the open_perimeter_fraction matrix whose elements represent the open 

fraction of the contact perimeters. It is a number in the range [0,1) and if larger than zero it 

means that the channels are in hydraulic parallel. 

Heat transfer coefficient (HTC) are evaluated starting from the flag values of the matrix in 

sheet HTC_choice. On the main diagonal the elements corresponding to channels are used to 

choose the correlation with which the channels steady heat transfer coefficient is to be 

computed; flag values on the upper triangular matrix allows to select the value of the interface 

heat transfer coefficient: if positive it is evaluated with a correlation, the final value is obtained 

correcting the computed heat transfer coefficient by the multiplier provided by the user in 

sheet HTC_multiplier; if negative it is directly imposed by user writing its value in sheet 

contact_HTC. The thickness of the interface between channels is exploited to evaluate the 

wall thermal resistance that appears in the formula to evaluate the heat transfer coefficient 

between channels. Heat transfer coefficients and channels friction factors are evaluated by 

method Get_transp_coeff of class Conductor. 

The last sheet trans_transp_multiplier holds the multiplier for the transport properties 

through the open fraction of the channels contact perimeter, but it is not used at the time 

being in SC2. 
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