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Abstract 
 

Over the past years, the engine emission regulation has become of crucial importance and the 
development of Hybrid Electric Vehicles (HEV) is one of the best solutions in the market. 
Besides the emissions reduction, this class of vehicles has to satisfy important performances 
constraints. 
For this reason, the aim of this project is to develop a new algorithm capable of classifying the 
admissibility of hybrid electric vehicle layouts, which means to check if the performance index 
of each layout is lower than a predefined threshold. This algorithm exploits Deep Neural 
Network (DNNs), an artificial neural network (ANN) with multiple layers between the input 
and output layers. There are different types of neural networks, but they always consist of the 
same elements: neurons, synapses, weights, biases, and functions, used to replicate the human 
brains’ behaviour. This structure enables the algorithm to train and learn by itself. 
This admissibility classifier has been inserted into an existing pipeline, creating a new one 
composed of three different consecutive nets: a feasibility classifier, an admissibility classifier 
and a regressor of CO2. Each layout passes through this pipeline to verify if it satisfies the 
constraints of emissions (feasibility) and performance (admissibility) and, then, to predict its 
CO2 emissions. 
For this project, Spyder Anaconda has been used: it is an open-source cross-platform integrated 
development environment (IDE) for scientific programming in the Python language and 
libraries as Keras and Tensorflow.  
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1  Introduction 
 

1.1  State-of-the-art of hybrid electric vehicle 
Over the last years, the environmental problem grows more and more, and transport sector is 
considered one of the most responsible of this. The increasing need to make the road greener 
than before leads companies and market to search for new types of powertrain. Between those 
studied, the most developed are for sure the electric ones. Electric vehicles can be classified as 
follows: Battery Electric Vehicles (BEV), Hybrid Electric Vehicles (HEV) and Full Cell 
Electric Vehicles (FCEV) [1].  
Starting from BEV, they are composed of a battery, that is the only energy source, an inverted 
that transforms DC current in AC current for the AC electric motor, and, then, a mechanical 
transmission. This solution can be very convenient for what concern the well-to-wheel 
emissions (WTW), but only if the production of electricity to recharge the battery is totally 
renewable. In fact, the emissions produced by the vehicle during its life (Tank-to-Wheel, TTW) 
are closed to zero. This kind of vehicles can be used only for urban cars since the driving range 
is small, even with batteries with great dimension.  
Another category is FCEV; it is a device able to directly convert chemical energy into electricity 
without combustion neither moving parts, through the electrochemical combination between 
hydrogen and oxygen, producing water, electricity and heat. The fundamental difference 
between the Fuel Cell and the battery is that the battery has the reactants always inside (i.e. the 
weight of a fully charged battery is the same of a fully discharged one), while the FC use 
reactants coming from the external (not inside the stack): that means that they continue to run 
as far as they are fueled with hydrogen and oxygen (from ambient air). This technology has a 
good potential, but is not yet mature.  
The last category presented is HEV, a powertrain composed of an internal combustion engine 
and one or more electric machines. This technology is the most valuable nowadays because 
unites the advantages of both BEV and ICE vehicles. In fact, the TTW emissions are lower than 
a normal ICE due to the presence of the electric machine and, moreover, the driving range is 
higher than a pure BEV because of the presence of fuel tank as additional power supplier. There 
is a classification inside HEV following the number of traction systems. Series HEV has only 
one powertrain with an electric machine as torque actuator. The hybridization is realized at the 
energy source level with an electric link (realized or directly or through a power converter) 
connecting one electric source (typically, but not necessarily, a battery pack) to an electric 
generation system based on an ICE mechanically coupled to an e-machine mainly or solely 
used as generator.  

 
Figure 1.1 - Electric transmission of series HEV - principal scheme 
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On the other hand, parallel HEV has two traction systems: the one of ICE and the one of e-
machine. In particular, depending on the position of e-machine, the parallel architecture is 
divided in: P1, e-machine connected to the ICE; P2, e-machine positioned between ICE and 
transmission; P3, e-machine positioned between transmission and differential unit; P4, e-
machine position on secondary axle, with ICE one primary one. These architectures are the 
most widespread in the market and the ones analysed in this project, with special attention for 
what concern P2 and P4. 
 
 

 
Figure 1.2 - Classification based on e-machine position 

 
It also deserves a quote the HEV complex architectures that unite parallel and series HEV. 
The main advantage of parallel architecture is the large amount of different power flows that 
can be utilize considering the vehicle’s working conditions, as Figure 1.3 shows. 
 

 
Figure 1.3 - Working modes and power flows of parallel HEV 

 
In order to choose the correct power demand of each component to ensure the best performance, 
both in efficiency and in emissions, different types of control strategies exist. In literature they 
are divided in: Global optimization methods, Instantaneous optimization methods and Heuristic 
methods. This topic has already been developed by the project from which this work is born, 
so there is no need to repeat the deepen. Anyway, is important to briefly describe the main 
features of Global optimization methods since it is a starting point also for this project. The aim 
of this category of methods is to find the optimal strategy by minimizing an objective function 
over a given vehicle mission, guaranteeing, at the same time, the constraints on the vehicle state 
variables (e.g. final level of the state of change of the battery). The most widespread technique 
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in this category, especially in hybrid vehicles, is Dynamic Programming, described as a 
deterministic multi-stage decision-making process, which involves a dynamic system, an 
objective function and control/state grids [2]. The connection between the techniques described 
and this project will be clearer in the following chapters. 
 

1.2 Thesis overview 
This project was born as a continuation of previous works. The broader idea, as mentioned 
above, is to create a tool capable of calculating the CO2 emissions of hybrid vehicles, in order 
to integrate and help a pre-existing tool based on Dynamic Programming techniques. The first 
network created previously was the regression one, capable of calculating CO2 starting from a 
dataset composed of only feasible layouts. Subsequently, the need to filter the layouts contained 
in the datasets, deleting those not capable of completing the considered cycle, led to the design 
of a new classification network upstream of the previous one, a feasibility classifier. Now, a 
further filtering of the datasets is important, the one related to the performance of the layouts. 
Even in a historical moment in which the quantity of emissions is the main parameter monitored 
for a vehicle, the performance of the engines remains crucial for the achievement of some tasks. 
For this reason, the study of the performance index of the layouts contained in the datasets, and 
a consequent classification of it, is fundamental. The purpose of this project is therefore to 
create a new classifier, an admissibility classifier, which will be inserted between the feasibility 
classifier and the regressor. In this way, the dataset that is given in input to the regressor contains 
only layouts feasible and admissible. 
This project is divided into several sections. The first concerns the description of the datasets 
used, the second and third explain the theory and method of the tools used. Finally, the results 
and reflections are presented. 
Obviously, some results presented will also concern the first classifier and the regressor, and 
not only the admissibility classifier, as the study was carried out by also checking the stability 
of the entire pipeline. 
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2  Dataset analysis 
 

2.1  Dataset description 
As explain in the introduction, the aim of this project is to produce a tool able to simulate what 
a pre-existing Dynamic programming algorithm predicts, that is CO2 emissions of different 
architectures of hybrid electric vehicles. This tool works with deep learning neural network 
based on dynamic programming features. To perform this task, the model has to be trained on 
data contained in a dataset directly generated by the same DP algorithm.  
These datasets are simulated for different hybrid vehicle architectures, those presented 
previously, P2, P3 and P4. They are divided in two main areas, the first includes the features of 
the layouts considered, the second the aspects that the tool has to predict, so the CO2 emissions 
and the performance indexes.  
 

Table 2.1 - Extract of P2 dataset 

 
 
Table 2.1 shows a part of the dataset of P2. It is important to notice that some values of CO2 
emissions are equal to ‘10000’, meaning that the layout considered is not feasible, so it can’t 

complete the cycle. In the same way, the values of performance index equal to ‘-1000’ mean 

that the layout is not admissible, so it can’t reach the threshold. Considering the Dynamic 
Programming algorithm from which the dataset is born, a layout is considered admissible if it 
satisfies some constraints: 
• Maintain a pure thermal mode until the end of available fuel, with a maximum speed of 85 km/h 

with no slope of the road. 
• It must sustain for 5 minutes the max speed (85 km/h). 
• It must maintain the power split mode for 2 minutes with both a slope of 7.2% and a speed 

of 60 km/h, and a slope of 14% and a speed of 30 km/h. 
• It must maintain the pure thermal mode for 2 minutes with a slope of 14% and a speed of 

30 km/h. 
•  It must take 12.5 seconds to accelerate from 0 km/h to 50 and 28.5 to accelerate from 0 

km/h to 80 km/h. 
Now it is important to understand the meanings of the features presented in the dataset: 

• EngDispl: it represents the engine map to be used. 
• PEratio: ratio between electric machine power and the maximum power that can be store in 

the battery. 
• EM1Power: specify the power of electric machine. 

EngDispl [l] PEratio EM1Power [kW] EM1SpRatio [-] FDpSpRatio [-] CrateDis_max [-] CrateChar_max [-] Co2ttw Performance Index [-]

3,0472 8,447266 75,26367 4,294921875 3,158203125 8,63671875 8,49609375 348,1211 -1000

2,794 8,417969 76,66016 4,13671875 3,11328125 8,4609375 10,4296875 348,236 -1000

2,5869 8,31543 82,2998 4,938476563 3,213867188 7,681640625 8,021484375 350,6695 -1000

2,5407 7,802734 75,04883 4,095703125 3,896484375 11,47265625 9,17578125 338,9066 24,91666667

2,4724 7,324219 78,37891 4,66796875 3,95703125 6,3984375 7,9921875 10000 25,16666667

2,6613 5,634766 71,82617 4,232421875 3,970703125 9,01171875 7,37109375 337,6185 26,91666667

2,7799 7,22168 70,26855 4,469726563 3,870117188 7,494140625 10,45898438 10000 27,83333333

2,5608 6,171875 84,60938 4,984375 3,984375 11,90625 10,78125 339,0809 27,83333333

2,5387 9,057617 86,16699 4,243164063 3,002929688 9,603515625 7,130859375 337,3678 28,66666667
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• EM1SpRatio: speed ratio between ICE and e-machine. 
• FDfSpRatio: speed ratio of the final drive. 
• CrateDis_max: maximum discharge of the battery. 
• CrateChar_max: maximum charge of the battery. 
On the other hand, considering a part of the dataset of P4 (Table 2.2), it is possible to underline 
the presence of a different feature, FDsSpRatio (speed ratio of the final drive, that is the 
secondary axle) instead of EM1SpRatio. This is because the architectures P2 and P3 have the 
electric machine coupled with the ICE that act only on the primary shaft, that is also the final 
drive, while P4 architecture has the e-machine couple with the ICE only through the road, 
meaning that there is a mechanical decoupled between them. For this reason, the e-machine 
acts on the secondary shaft. 
 

Table 2.2 - Extract of P4 dataset 

 
 
The two complete datasets are composed of 1500 layouts and are simulated on the same cycle, 
World Harmonized Vehicle Cycle (WHVC). During the project, a new wider P2 dataset was 
presented and used to perform some analysis. It is composed of 7500 layouts, a combination of 
five different datasets performed on different cycles. A deeper explanation of typology of cycles 
considered is presented in the next chapter. 
 

2.2 Cycles 
At the beginning of the project, as previously mentioned, datasets utilized are simulated only 
on WHVC. Figure 2.1 shows the vehicle speed profile. 
 

 
Figure 2.1 - WHVC vehicle speed profile 

 

EngDispl [l] PEratio EMsPower [kW] FDpSpRatio [-] FDsSpRatio [-] CrateDis_max [-] CrateChar_max [-] Co2ttw Performance Index [-]

2,6158 5,073242 106,0303 4,142578125 14,79882813 8,759765625 9,287109375 377,1168 32,33333333

3,9209 5,063477 113,208 4,576171875 10,47460938 7,998046875 8,033203125 389,4292 41,83333333

2,9027 5,927734 122,5098 4,94140625 11,62890625 10,72265625 11,42578125 388,5565 34,08333333

2,4762 5,498047 112,5488 4,05078125 15,33203125 6,92578125 9,41015625 378,1617 -1000

4,7029 5,200195 123,4619 4,787109375 12,98242188 6,802734375 10,82226563 405,8382 45,25

3,7813 5,15625 117,9688 4,4375 15,8125 10,6875 8,8125 385,3703 44,08333333

3,3826 5,629883 124,0479 3,052734375 10,12304688 9,380859375 9,556640625 368,7308 41,25

2,9611 5,19043 113,6475 3,126953125 13,53320313 8,431640625 7,271484375 368,6318 -1000

2,5016 5,664063 119,7266 3,703125 13,046875 8,859375 6,796875 373,4135 -1000
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This cycle is a chassis dynamometer test. It lasts 1800 seconds and is divided into three 
segments: 

• The first 900 seconds represent an urban driving with a low average speed (21.3 km/h) and 
a maximum speed of 66.2 km/h. 

• The second segments, 481 seconds long, represents a rural driving and, for this reason, both 
average and maximum speed increases. 

• The last 419 seconds are defined as highway driving. In this section speeds are high, with 
an average of 76.7 km/h and a maximum of 87.8 km/h, and starts, stops and idling are 
absent. 

As widely explained during the introduction, it is clear from literature that deep learning neural 
network increases its performance with the increase of dataset dimension. Obviously, some 
project can have access to huge group of data, composed of hundreds of thousands or more of 
them, but this is not the case.  

 
Figure 2.2 - Neural network performance with respect to the amount of data 

 
One of the aims of this project is to increase dimension of the pre-existing dataset in order to 
improve the performance of the model. Even if the order of magnitude is not comparable with 
the example mentioned before, a new P2 dataset is been created joining different datasets 
simulated in different cycles.  
A new cycle considered is European Transient Cycle (ETC). It has been introduced for emission 
certification of heavy-duty diesel engines in Europe starting in the year 2000. As in WHVC, 
this cycle lasts 1800 seconds and is divided in three segments. The duration of each part is 600s.  

• Part one represents city driving with a maximum speed of 50 km/h, frequent starts, stops, 
and idling.  

• Part two is rural driving starting with a steep acceleration segment. The average speed is 
about 72 km/h  

• Part three is motorway driving with average speed of about 88 km/h.  

 
Figure 2.3 - ETC vehicle speed profile 
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The next cycle presented is Heavy-Duty Urban Dynamometer Driving Schedule (HDUDDS). 
It is developed for chassis dynamometer testing too. As it can be seen in Figure 2.4 from the 
vehicle speed profile, its duration is lower than the previous cycles, 1040 seconds. 
 

 
Figure 2.4 - HDUDDS vehicle speed profile 

 
The last two cycles the datasets are simulated on are both chassis dynamometer tests. They are 
Heavy Heavy-Duty Diesel Truck Schedule (HHDDTS) and City Suburban Heavy Vehicle 
Cycle & Route (CSC). The first is divided in four speed time modes: idle, creep, transient and 
cruise (high speed). Figure 2.5 shows them, except for the first. 
 

 

 
Figure 2.5 - Creep, transient and cruise HHDDTS vehicle speed profile 

 
CSC is also available in route, where the vehicle speed is a function of travelled distance, rather 
than time. 
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Figure 2.6 - CSC vehicle speed profile 

 
For each of these cycles, a dataset is created and, then, they are joined. The aim of this operation, 
a part from the increment of the amount of data available, is to add a new feature to the other 
explained in the previous chapter, a feature that can describe on which cycle the considered 
layout is performed. An arbitrary value from 1 to 5 is assign to each cycle in the following way: 

• WHVC – 1 
• ETC – 2 
• HDUDDS – 3 
• CSC – 4 
• HHDDT – 5 

 
Table 2.3 - Extract of new P2 dataset 

 
 

This can lead to an improve of performances of the model, with particular attention to those of 
the feasibility classifier since there is a connection between features of layouts and cycles.  
 

2.3 Dataset manipulation 
After the analysis of the structure of the available datasets and their features, now it is the 
moment to talk about the procedure that the tool created in this project perform in order to reach 
the best result in the shortest time. As previously presented, the tool is a deep neural network 
pipeline composed of two classifiers and a regressor. The dataset is given to the first classifier, 
the feasibility one, and after a first filtration, passes through the new classifier of admissibility 
and the regressor. The model created has to be trained, validated and, then, tested in order to 
act as a neural network, i.e. like a human brain, able to learn on its own the pattern present 
between features. Even if these concepts have been widely presented in the next chapter about 
the neural network theory, it is important to make a reference here because the dataset is divided 
in three parts: training set, validation set and test set. The first action made by the algorithm is 
to create test set and training-validation set. Thanks to the analysis carried out by the project 

EngDispl [l] PEratio EM1Power [kW] EM1SpRatio [-] FDpSpRatio [-] CrateDis_max [-] CrateChar_max [-] Cycles Co2ttw Performance Index [-]

2,402 8,764648438 108,7256 4,989257813 3,741210938 10,89257813 11,56054688 1 337,294 -1000

2,4031 20,0390625 95,4102 5,21484375 3,037109375 9,76171875 8,12109375 1 10000 -1000

2,404 7,509765625 119,9512 4,857421875 3,345703125 9,76171875 8,12109375 1 337,4958 -1000

2,4063 29,921875 65,4297 4,6484375 3,65234375 8,0859375 10,0546875 1 10000 -1000

2,406 6,254882813 89,92676 4,151367188 3,895507813 8,630859375 10,30664063 1 335,5179 -1000

2,408 9,98046875 86,97266 4,57421875 3,55078125 8,0859375 10,0546875 1 10000 -1000

2,4094 19,9609375 82,7148 4,06640625 4,501953125 11,84765625 11,80078125 1 10000 -1000

2,4101 6,245117188 123,9795 4,430664063 3,190429688 9,228515625 7,505859375 1 335,8821 -1000
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from which this arises, it is possible to know that the best split is 90% for training-validation 
set (first datasets: 1350 layouts, second dataset: 6750 layouts) and 10% for test set (first 
datasets:150 layouts, second dataset: 750 layouts). Downstream of this split, the following is 
between validation and training set. It depends on the number of folds considered in k-fold 
cross-validation. Leaving aside the description of cross-validation for a moment, which will be 
addressed later, thanks again to the previous project the author wants to keep the same number 
of folds, i.e. 8. This second split leads to a training set composed of 7/8 of training-validation 
set and a validation set of 1/8 of it.  
After the creation of these smaller datasets, it is important to perform another manipulation of 
them, normalization of data. This action is fundamental for two main reasons: 

• First of all, observing the extracts of the datasets in the previous chapter, it is clear how the 
features original values are different one with respect to the other. One aim of normalization 
is to ensure that the magnitude of these values is more or less the same. This leads to a 
quicker optimization of the parameter of the model and therefore to higher speed of 
learning. As it is possible to understand from the sequel chapter, gradient descend depend 
on:  
 

𝜕𝐿

𝜕𝑤𝑖
= 𝑥𝑖 ∗ (𝑎 − 𝑦) 

 
Where xi is value of the ith features. From this is possible to underline the dependency of 
the learning speed on the magnitude of features values. 

 

 
Figure 2.7 - Gradient descent path without (left) and with (right) data normalization 

 
In Figure 2.7 is represented a very simple model with only two features. In this project case, 
the number of features is eight, but the visual concept is the same. Thanks to the 
normalization, each feature gradient has the same emphasis [3]. 

• The second goal of normalization is to ensure that the values are approximately in the range 
of “-1” and “+1” to makes learning more flexible having both positive and negative values 

ready for the next layer of the net [4]. 
This normalization can be performed in two ways. The first is: 
 

𝑣𝑎𝑙𝑢𝑒𝑛𝑜𝑟𝑚 =
𝑣𝑎𝑙𝑢𝑒 − min

𝑚𝑎𝑥 −𝑚𝑖𝑛
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Where min and max are the minimum and maximum values, respectively, of the considerer 
feature; the second is: 
 

𝑣𝑎𝑙𝑢𝑒𝑛𝑜𝑟𝑚 =
𝑣𝑎𝑙𝑢𝑒 − mean

𝑠𝑡𝑑
 

 
Where mean and std are the mean and the standard deviation of the considered feature. 
In this project, in which the admissible classifier is developed, the second normalization method 
is performed to ensure a continuity with the feasibility classifier created in the previous project. 
For what concern the regressor, done before classifier, the normalization applied is of the first 
type.  
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3  Deep Neural Network Theory 
 

3.1  State-of-the-art 
In recent years, one of the new technologies that are spreading more in companies is deep 
learning. As mentioned earlier, deep learning is a sub-category of machine learning, part of the 
broader branch of artificial intelligence. The goal of deep learning models is to get as close as 
possible to what is the functionality and structure of the human brain by mimicking the 
functioning of a neuron and creating functions that operate in the same way. 
 
 

 
Figure 3.1 - Structure of artificial intelligence 

 
The development of deep learning has had several stages since its inception. These deep 
learning structures, with clear reference to deep neural networks, being the central topic of this 
project, require very high computation times and this has slowed their diffusion for a long time. 
The modern development of ever more powerful computers has partially solved this problem, 
allowing it to spread. 
The strong point of these algorithms is their ability to learn the patterns present within the 
dataset on their own, in order to subsequently make predictions. It goes without saying, 
therefore, that the more data there are, the larger the datasets are and the more these neural 
networks are strengthened, increasing their performances. 
 

 
Figure 3.2 - Performance of machine learning models depends on the amount of data 
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Figure 3.2 proves what one of the leading deep learning experts, Geoffrey Hinton, said: 

“Deep Learning is an algorithm which has no theoretical limitations of what it can learn; 
the more data you give and the more computational time you provide, the better it is” 

The first example of this technology is found in 1958 with Perceptron, an algorithm created to 
classify a group of people into men and women. After making the model learn the main 
characteristics of the two classes considered, it was able to correctly classify figures that he had 
never seen. A few years later, Perceptron was questioned, pointing out its limitations, and deep 
learning research was stopped. Thanks to the writing of the backpropagation algorithm by 
Jeoffrey Hinton in 1985, he attracted interest in this field again, leading to the creation in 1998 
of a convolution neural network by Yan LeCun. From now on, development is rapid. In 2006, 
Jeoffrey Hinton himself coined the term ‘Deep’ Learning for the first time to explain the new 
algorithms that allow the computer to "see" and distinguish objects and text in images and 
videos. In 2012 another step forward is made by the AlexNet architecture, which wins the 
ImageNet contest, with an error of about 10% less than the runner-up. Since this transition, 
these technologies are improving exponentially, also supported by the ever-increasing power 
of modern computers [5]. 
A deep learning algorithm can be of two types: supervised and unsupervised learning. In the 
first case, a dataset is provided to the algorithm, which, having the results available, learns the 
patterns present and then replicates them at the end of the training. Two categories belong to 
this class of deep learning: classification, where the algorithm provides as output a discrete 
value capable of categorizing, recognizing and distinguishing a set of data, and regression, in 
which the algorithm provides a value of continuous output. It is these two types of deep learning 
that characterize this project. 
Also briefly describing unsupervised learning, in this case a dataset of results is not provided 
to the model, which must therefore discover the relationships and patterns that exist between 
the data. Clustering and anomaly detection belong to this category. 
 

 
Figure 3.3 - Different types of deep learning 
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3.2 Model representation 
As explained above, the goal of deep learning, and especially of deep neural networks, is to 
mimic the behaviour of the human brain as much as possible. This is formed by neurons, 
consisting of three parts: the nucleus, the dendrites, which are used to pick up the input signals, 
and the axon, the part that stores the output signal of the neuron itself. 
 

 
Figure 3.4 - Brain neuron structure 

 
If now a structure of an artificial neuron is considered, Figure 3.5, similarities are clear. In the 
place of the dendrites there are nodes, in the place of the nucleus there is what is called the 
activation unit/function, while in the place of the axon there is an output. 
 

 
Figure 3.5 - Artificial neuron structure 

 
Where x are the input nodes, w are the weights of the model, i.e. the parameters that characterize 
the model. Then there the activation function that gives the output. For what concern x0, it is 
called bias unit and is always equal to 1. 
What represents Figure 3.5 is a simply scheme of one single neuron, but deep neural networks 
are composed of different layers with a lot of nodes each,  Figure 3.6 shows. The first layer is 
called input layer, the last one is the output layer. In between these two layers there are one or 
more hidden layers, it depends on the complexity of the model. The number of nodes for each 
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layer is also not fixed. These are two of what are called hyperparameters, which will be 
explained in more detail in the next sections. 
 

 
Figure 3.6 - Simplify deep neural network structure 

 
The activation function is used to provide the output for each node, starting from the input data. 
This function, also called transfer function, maps the output values of the network between -1 
and +1 or between 0 and +1 depending on the type of function considered. It is divided into two 
main categories: linear and non-linear. In deep learning models, such as the one used in this 
project, nonlinear functions are used. There are several types of these, but the description of 
these is not the purpose of this work. Only two types were used in the model definition: the 
Sigmoid function and the REctified Linear Unit (Relu) function. 
 

 
Figure 3.7 - Sigmoid (left) and Relu (right) function 

 
Where: 

𝑧 = 𝑥 ∗ 𝑤 
 
is the product between inputs and weights. 
The Sigmoid function (Figure 3.7 on the left) exists between 0 and 1. It is particularly used for 
problem of binary classification, like the one of the admissible classifier designed in this 
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project, because values of z lower than 0 are classified as 0 and values greater than 0 as 1. 
However, this outputs technique can lead neural network to stuck.  
For this reason, Relu function is the most used. F(z) is 0 for z lower than 0 and is equal to z for 
z higher than 0. The advantage of this function compared with Sigmoid is that is more 
computationally efficient because has to just pick up max(0,z) and not does all the calculation 
that Sigmoid does.  
In this project, in the admissibility classifier, a Relu activation function is used for the input and 
hidden layers, while a Sigmoid function for the output layer. This procedure is the same used 
by the feasibility classifier present upstream, in order to ensure continuity in the pipeline [6]. 
 

3.3 Forward propagation 
The first step to train a model is represented by forward propagation. In fact, it is the process 
responsible of the first calculation of the output. For each node, the input data enter, pass 
through the activation function, and exit as output, ready to become input for the next layer. 
This process is divided in two steps: preactivation step, that gives an output called a, and 
activation step, that gives n output h as output. 
 

 
Figure 3.8 - Forward propagation scheme 

 
As it is possible to see in Figure 3.8, the preactivation step is represented by a11 and a12. This 
step is characterized by the sum of the products between inputs x and weights w: 

𝑎11 = 𝑥1 ∗ 𝑤1 + 𝑥2 ∗ 𝑤2 

𝑎12 = 𝑥1 ∗ 𝑤3 + 𝑥2 ∗ 𝑤4 
 
After these computations, the values of a are passed to the activation functions of the layer 
considered, in the activation step: 
 

ℎ11 = 𝑔(𝑎11) 

ℎ12 = 𝑔(𝑎12) 
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Where g represents the activation function. These values of h are now ready to become the input 
values for the next layer, as x values for this, until the end of the network structure, when the 
final output is obtained [7]. 
Writing the passages above in a more general way: 

𝑎𝑗
𝑙 = 𝑔(∑𝑤𝑗𝑘

𝑙 ∗ 𝑎𝑘
𝑙−1)

𝑘

 

Where j refers to input neuron, k to output neuron and l is the layer considered. 
 

3.4 Backward propagation 
The heart of training process is represented by backward propagation, or backpropagation. 
Demonstrated for the first time by Jeoffrey Hinton in 1985, its goal is to find a combination of 
weights and biases to minimize the cost function, as in gradient descent principal. 

A cost function J is a measure of difference between what is predicted by the model �̂� and the 
true value y owned in dataset. 

𝐽 =
1

2𝑛
∑(𝑦�̂�−𝑦𝑖)

2

𝑛

𝑖=1

 

 
Where m is the number of values considered. This is only a general example of cost function; 
in the next chapter the ones used in this project are presented. 
The direction to take in order to minimize the cost function, that is what kind of parameter 
combination consider, is given calculating the gradient of it: 
 

𝜕

𝜕𝑊𝑖,𝑗
𝑙 𝐽(𝑊) 

 
Where W represents the parameter combination. This partial derivative measures the sensitivity 
of J to changes in weights. Considering that the derivative corresponds to the slope of the 
tangent of cost function, the bigger the derivative, the steeper the tangent, the higher the distance 
to the minimum of the function. 
 

 
Figure 3.9 - Cost function minima 
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Figure 3.10 - Forward and backward propagation 

 
Thank to Figure 3.10 it is possible to resume what the training process is. It starts with a forward 
propagation, in which a prediction, and therefore an output, is found. Then the backpropagation 
starts, in which, calculating gradient of cost function for each layer, a weight updated is 
performed to minimize the cost function and to reach the best approximation of the model to 
data utilized. 
 

3.5 Loss function 
As mentioned above, the loss function measures the difference between the predicted output 
value and the true value. This means that it provides a measure of how well the model fits the 
data, and the smaller the result, the better the model. There are many loss functions that you 
can use, but describing them all is not the purpose of this project. Designing the admissibility 
classifier, the loss function used is the Binary Cross Entropy, the same in the feasibility 
classifier, while the one used in the regressor is Root Mean Squared Error (RMSE). 
Binary Cross Entropy is one of the most used loss functions for what concern binary 
classification. It is calculated as: 
 

𝐽 = −
1

𝑁
∗∑𝑦𝑖 ∗ 𝑙𝑜𝑔𝑦�̂� + (1 + 𝑦𝑖) ∗ log⁡(1 − 𝑦�̂�)

𝑁

𝑖=1
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Figure 3.11 - Example of Binary Cross Entropy 

 
Talking about the one of regressor, it is defined as: 
 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦�̂�−𝑦𝑖)2
𝑁
𝑖=1

𝑁
 

 
Where symbols have the meaning explained previously. This function is the most utilized for 
what concern regression and measures how concentrated the data is around the best fit line [8]. 
 

 
Figure 3.12 - RMSE representation 

 

3.6 Starting parameters and Hyperparameter 
In the previous chapters the algorithms used for network training was explained. The main goal 
was to minimize the cost function in such a way that it fit in the best possible way the data set 
owned. To do this, the fundamental step is to recalibrate the weights, i.e. to find the best 
combination of weights, or parameters, that would allow the cost function to reach its minimum. 
These parameters, or Hyperparameters, are selected within a previously chosen space of 
hyperparameters through an optimization strategy. Later, in this chapter, we will introduce the 
hyperparameters used by the network in its training and the optimization strategy. In addition, 
in addition to the combination of selected hyperparameters, the algorithm uses fixed 
parameters, set by the author, such as the number of training epochs, the iterations or the number 
of folds using k-fold cross validation. 
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3.6.1 Number of epochs 
This parameter is usually used as hyperparameter to optimize. In this project is fixed 
since the beginning. In the last chapter, the results of the pipeline with two different 
number of epochs have been analysed.  
The number of epochs represents how many times learning algorithm passes through 
the training dataset. The higher this number, the better the model fits data. For this 
reason, it usually assumes high values, hundreds or thousands; a possible way to set it 
is monitor when the error is close to zero and, before the increase of it, stop the rise of 
epochs. In this way it is avoid the problem of overfitting.  
Other concepts connected to epoch are the batch size and iterations. When a dataset is 
very large, it can be a problem to feed a model with all the sample together; for this 
reason, they are divided in batches and the algorithm passes through them before the 
update of the other parameters. A batch can be composed of one, more than one or all 
the samples contained in the dataset. Under these conditions, the learning algorithm is 
called stochastic gradient descent, mini-batch or batch, respectively. 
 

3.6.2 Learning rate 
This hyperparameter is one of the most important. It regularizes the rate of learning of 
the model helping gradient descent in backpropagation. As it is explained before, during 
backpropagation an updating of weights is performed in order to reach the minimum of 
loss function; learning rate gives the importance of this updating. The formula of this 
process is presented below: 
 

𝑤𝑖
′ = 𝑤𝑖 − 𝛼

𝛿𝐿

𝛿𝑤𝑖
 

 
Where α is learning rate that gives to the algorithm the dimension of the step toward 
the minimization, 𝑤𝑖

′ is the updated weight.  

 

 
Figure 3.13 - Steps of gradient descent 

 
Figure 3.13 demonstrates two important aspects of the previous equation. Looking at 
the graph on the right, if the considered point has a negative slope, thanks to ‘-‘, 𝑤𝑖

′ will 
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increase while if it has a positive slope, its value will decrease, converging in any case 
to the minimum. 
The second aspect concerns the size of the steps depending on the learning rate. The 
smaller the alpha, the more steps the model takes to get to the minimum, risking to run 
into problems like 'Vanishing Gradient'. Conversely, if the learning rate is too large, it 
converges quickly but can risk to skip the minimum. 
 

3.6.3 Number of input nodes and hidden layers 
These hyperparameters are closely related to the architecture of the neural network. 
Their value depends on the complexity of the model you want to design. If the model is 
complex, the number of neurons per layer and hidden layers must be increased, 
however, to the detriment of the calculation speed, which obviously increases [9]. 
Thanks to the number of the nodes of the input layer, decided by the algorithm as 
hyperparameter, the quantity of nodes of each layer can be found halving the number of 
the previous one.  
 

3.6.4 Dropout 
In this project, a new hyperparameter is inserted in the two classifiers, the dropout.  
As explained above, the higher the number of hidden layers and neurons, the more the 
model is able to learn the patterns that are present between the samples. However, if the 
dataset considered is limited, as happens in this project, an architecture of the model 
that is too complex can lead to overfitting problems.  
A model can run into two types of problems, overfitting or underfitting. The most 
common is undoubtedly the first. When a model fits the training data too well it is called 
overfitting. This can lead to generalization problems and difficulties in predicting data 
unknown to the model. 
On the other hand, underfitting is the opposite problem, that is when the model does not 
even fit the training data in the right way. This phenomenon is less common and can be 
solved simply by upgrading the model or by increasing the training time. 
The ideal situation, in which the data is modelled in an optimal way, is called good fit. 
 

 
Figure 3.14 - Fitting problem in classification 
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Figure 3.15 - Fittting problem in regression 

 
To solve this issue, dropout is a very important technique. It is based on the deactivation 
of some neurons within the layers during the training phase, and their subsequent 
reactivations during the testing phase.  
 

 
Figure 3.16 - Dropout strategy 

 
This deactivation occurs in a probabilistic way. The value the author applies as a dropout 
means the probability that each neuron will be deactivated. This operation weakens the 
model, so as to eliminate rigid patterns linked only to the data used, increasing its ability 
to generalize other unknown datasets and its robustness of predictions [10]. Obviously, 
the probability of temporarily deactivating a neuron must not be too high in order not to 
risk weakening the model too much during the training phase and having strange 
behaviours in the network, such as a better performance, in the early epochs, of the 
testing set compared to the training set. A more detailed analysis of this situation has 
been provided in the chapter on results. A fairly substantial part of the work of this 
thesis, in fact, is related to the optimization of the right dropout value applied to the 
admissibility classifier. 
 



Deep Neural Network Theory 
 

30 
 

3.6.5 L2 regularization 
Another importance regularization to solve and prevent overfitting problem is L2 
Regularization, also considering in the admissibility classifier as an hyperparameter. 
This regularization works adding a corrective term to the cost function, that becomes: 
 

𝐶𝑜𝑠𝑡⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐸𝑟𝑟𝑜𝑟(𝑦, �̂�) + 𝜆∑𝜔𝑖
2

𝑁

𝑖=1

 

 
Where λ is the regulation factor, the hyperparameter. This technique prevents overfitting 
because introduces a parameter that is independent of the model and data of the training, 
increasing the generalize ability of the model [11].  
 

3.7 Search of Hyperparameter 
After a brief explanation of the hyperparameters used in this project, it is essential to introduce 
what is called hyperparameter tuning. The type of hyperparameter search affects not only the 
performance of the model, but also the computational time of the entire algorithm process. 
There are several research techniques, but their presentation is beyond the scope of this work. 
In the previous project, the two techniques perhaps most used, the grid search and the random 
search, were tested and compared, arriving at the conclusion of the greater effectiveness of the 
second one. For this reason, the author starts from these results to go on to design the 
admissibility classification network. 
To perform hyperparameters tuning, the definition of a search space is needed, where it is 
possible to select each of them. This space is multi-dimensional, where each hyperparameter 
defines its own space of values.  
As mentioned, the technique used for the admissible classifier designed in this project is random 
search. It is shown in literature that random search, in addition to having all the advantages of 
grid search, such as ease of implementation or conceptual simplicity, is much more efficient in 
the case of large search spaces [12]. In these conditions, in fact, the grid search has a too high 
implementation time due to all the trials that are carried out with the hyperparameter 
combinations that form the grid. In random search, the search space is divided in subspaces, 
and within these, the random combinations of hyperparameters are distributed more evenly, 
facilitating the search for the optimal one.  
 

 
Figure 3.17 - Hyperparameters tuning schemes 
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In this project, thanks to the research of the previous thesis, the technique is composed of a first 
random search in the complete search space to find the most promising combinations. Then a 
new, finer, random search into the search space sectors to find the best between the best.  
 

3.8 K-Fold Cross Validation 
Cross-validation is a procedure that, dividing and resampling the training-validation dataset, 
evaluates the model. The dataset is divided in k equal group, or folds, in order to find the best 
split between training set and validation set. 
This procedure works as follow: 

• The dataset is sampled randomly and divided in k-folds. 
• The model is fitted with a dataset composed of k-1 folds, the new training dataset, and 

then validate on the remaining fold. 
• The performances of the model with this configuration are computed. 
• The following step is to change the composition of datasets, as Figure 3.18 shows, and 

repeat the procedure computing the other performances. The mechanism is to take as 
validation set the second fold, then the third until the last one, in order to try all the 
possible configuration. 

• When all the combinations of different datasets are tested, performance results are 
compared and the best one is taken, obtaining the final division between training set and 
validation set. 

 

 
Figure 3.18 - k-fold Cross Validation scheme 

 
An important value to decide is the one concerning the number of k folds in which the 
considered dataset is divided. In fact, a wrong k can lead to an high variance of the performance 
computing at the end of each step, making the measure unreliable and not comparable, or to an 
high bias, meaning that the model is overestimate. Each fold has to be composed of a good 
number of samples, high enough to be statistically representative [13]. 
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3.9 Explainable Artificial Intelligence 
In recent years, artificial intelligence, and in particular deep learning, have been gaining more 
and more importance in companies. This continuous development is due to higher performance 
of these techniques which, however, are accompanied by ever greater complexity. Precisely 
this topic turns out to be the most delicate. If the decisions made by an algorithm strongly affect 
people’s lives, the reason why it makes certain decisions must be clear and understandable. The 
emergence of increasingly complex systems, including DNN, has led to an increase in what is 
called the opacity of algorithms, making them block-boxes. The increase in model 
performances, which now exceed even those of human, is spreading them more and more. 
However, this diffusion is hampered precisely by this distrust, on the part of users, of algorithms 
that they are unable to understand and explain. In fact, interpretability has several advantages, 
including that of ensuring the impartiality and causality of the choices, as well as the robustness 
of the model itself.  
From this first introduction, it is easy to understand what is the compromise to be met: the 
increase in the performance of a model corresponds to the increase in its complexity. 
Consequently, performance and transparency are inversely proportional. 
Now it is important to clarify the meaning of some keywords of this topic, so as not to confuse 
the terminology. The main concept in XAI is that of understandability, which also gives rise to 
transparency and interpretability. This represents the level a man can reach in understanding a 
decision made by a model without needs of explaining its structure with explainable techniques. 
On the other hand, transparency represent the feature of a model has to be understandable by 
itself. 
In the literature, XAI is defined as: 

“Given an audience, an explainable Artificial Intelligence is one that produces details or 
reasons to make its functioning clear or easy to understand.” [14] 

The main reasons that are causing the overbearing development of this technique are essentially 
two: the first is to apply these models also in the company, and not just in research. They must 
be explainable and understandable in the best way to ensure that people can trust them. 
Secondly, understanding the mechanisms behind the reasoning of an artificial intelligence 
makes possible their improvements in the future. 
In the literature a distinction is made between models that can be interpreted already from their 
design and models that, on the other hand, are explained by means of external techniques. This 
classification is then made between transparent models and post-hoc explainability: 
❖ Transparent models are divided into three levels depending on interpretability degree: 

➢ Simulatability: the ability of a model to be simulated. A model is interpretable if it can 
be easily presented through text and graphics. 

➢ Decomposability: the ability to explain each part of the model (parameters, inputs, 
outputs). Each part of the model must be understood by a person without the use of 
external means. 

➢ Algorithmic transparency: the ability of the model’s user to understand the used process 
to produce each output from the input data. The model must be fully walkable and 
analysable to enter this level of transparency. 

A model is considered transparent if it is understandable in itself. The models that fall into 
this category are different, some are presented below: 
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➢ Linear/Logistic regression  
This model has a direct dependence between real and predicted variables, making the 
model rigid, and therefore transparent. However, to fall within the degree of 
decomposability and simulatability, the model must be limited in magnitude. 

➢ Decision tree 
Also this model can fit into all levels of transparency, depending on its size, having a 
hierarchical decision-making structure. As the size of the model grows, it moves from 
simulatability to algorithmic transparency level. 

➢ k-nearest neighbour 
This model deals with classification by predicting the class of a test sample according 
to the similarity and proximity between the various K examples taken into 
consideration. This process is similar to that used by people, and for this reason it also 
falls within the levels of transparency. 

➢ Ruled-based learning 
This category includes all the models that generate rules to characterize the input data. 
Clearly, the rules generated must be understandable and interpretable. By increasing 
the number of these and their specificity, the performance of the model increases, but at 
the same time also its complexity. We are again faced with the compromise presented 
earlier. 

➢ Bayesian models 
This model can be seen as a probabilistic directed acyclic graphical model in which 
connections represent dependencies between sets of variables. Also this model falls 
under all levels of transparency only in certain circumstances. 

❖ Post-hoc explainability: when the models are not transparent by design, post processing 
techniques are used that make the models interpretable. These techniques are classified 
according to the user’s intention, the method used and the type of dataset owned: 
➢ Model-agnostic techniques: these techniques can be applied in a similar way to all 

models. The main ones are: explanation by simplification, visual explanation techniques 
and feature relevance explanation.  

➢  Post-hoc explainability: on the contrary these techniques can be applied only to some 
models: shallow ML models and deep learning models. Referring to these latest models, 
the continuous development of DNN in search of ever greater performances, has led this 
type of models to be among the least transparent used. To study them, numerous 
techniques are used; among these, features relevance methods are among the most used 
to help the explanation and simplification of networks. This last technique has been 
presented in more detail in the next chapter and in one related to the results. 

It is important to underline the various relevant results that must be taken into account every 
time an XAI model is created: 

• The explanations must be limited (constrictive) meaning that they must explain why one 
decision is made rather than another. 

• Causal connections are more important than probabilistic ones. 
• The explanations are selective, meaning that it is sufficient to focus only on the main 

causes of decision [14]. 
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4 Deep Neural Network Model 
 
After a brief description and theoretical introduction of deep neural networks made in the 
previous chapter, the model of which the design was made is now presented in more detail, with 
some algorithms and functions used. 
 

4.1  Technical tools 
All the pipeline, composed of three different networks, is written using Python language. 

“Python is an interpreted, object-oriented, high-level programming language with 
dynamic semantics.” [15] 

To write neural network using this language, an editing environment is needed. There are a lot 
of these to be used; in this project Spyder is used: 

“Spyder, the Scientific Python Development Environment, is a free 
integrated development environment (IDE) that is included with 
Anaconda. It includes editing, interactive testing, debugging, and 
introspection features.” [16]  

In python it is important to use what are called libraries, packages 
containing functions already written, very useful to speed up algorithm 
writing time and to optimize it. These functions are divided into 
libraries according to their field of use. Those used in writing the 
pipeline, and in particular the admissibility classifier, that is the topic 
of this project, are the following: 

 
❖ NumPy: it is one of the most utilized packages. This library provides mathematical, 

logical and other functions using multidimensional array objects, called ndarray, focal 
point of this package. 

❖ Pandas: another very important and used library is Pandas. It is written for data 
manipulation and analysis. It works with dataframe objects, providing all the functions 
needed to do operations between them. In this project, considering the continuous 
manipulation of datasets, it is fundamental and widely used. 

❖ Matplotlib: considering the need to plot and graphically represent the results of the 
pipeline, this library is needed. It is a graphical extension of Numpy package. 

❖ SciPy: this library is used in particular at the beginning of each net, when the search 
space for hyperparameter is created. In this package is used to solve the most common 
issue related to scientific computation, like for example a logarithmic distribution 
between to constraint values. 

❖ Scikit-Learn: this library contains all the algorithms to process the data, make 
predictions on them, split dataset in train-test datasets and to compute performance 
index of networks like accuracy, cross-entropy or Matthews Correlation Coefficient. 

Figure 4.1 - Spyder logo 
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❖ Tensorflow: it is a python low-level library for fast numerical computing. It was created 
by Google and it is used to create Deep Neural Network models. The version used is 
compatible only with the version 3 of Spyder, therefore this is the version used, even if 
the most recent one is the 4th.  

❖ Keras: this is the last library presented. It is an high-level package that works as a 
wrapper of low-level libraries, like tensorflow. 
 

 
Figure 4.2 - Main Python libraries logo 

 

4.2 Pipeline description 
This chapter shows all the main steps that take place throughout the entire pipeline. As 
previously mentioned, this project starts from a pipeline composed of a feasibility classifier 
positioned in the first place with the task of filtering the layouts of the dataset to supply them 
successively to the CO2 regressor positioned downstream of it. This is the starting point of this 
work, which is developed with the first objective of introducing a new filter between the two 
pre-existing networks, an admissibility classifier. 
 

 
 
The code has been developed so that there is an ON / OFF button on the admissibility classifier, 
in order to allow the user to decide whether to have a pipeline with or without it every time the 
program is launched 
The first step in the complete pipeline is the acquisition of the datasets by the feasibility 
classifier. The reworking and manipulation of data is also connected to this action, with the 
normalization and division of the dataset into training, validation and test set. This favors the 
training and validation of the model, which is subsequently tested on the testing set. At this 

Feasibility 
Classifier 

Admissibility 
Classifier 

Regressor 
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point the dataset is prepared for the next step of the second classifier, filtering the 37nfeasible 
layouts. The new dataset is then composed of: 

• Layouts of the training-validation set that have a true value of CO2 different from 
10000, the number that shows the unfeasibility of a layout. 

• Layouts of test set predicted feasible by the model, without what are called false positive 
(they are explained more widely in the next chapters). 

Layouts that do not meet these conditions are discarded, while the two layout groups are merged 
to form the new dataset supplied as input to the admissibility classifier. 
Moving on to the next network, the admissibility classifier, the actions performed are repeated 
in the same way as the previous one. The dataset layouts are again mixed and divided into 
training, validation and test set. After training, validation and testing of the model, the second 
filtering is carried out, considering as admissible the layouts that satisfy the following 
conditions: 

• Layouts of the training-validation set that have a true value of performance index 
different from ‘-1000’, the number that shows the not admissibility of a layout. 

• Layouts of test set predicted admissible by the model, without false positive. 
Then, the two filtered datasets, the training-validation set and the test set, are passed to the 
regressor without any further shuffle or division. 
Finally, from the training and testing of the regression model, the real value CO2 predictions 
are calculated.  
 

4.2.1 Performance evaluation 
After explaining how the entire pipeline works, it is necessary to present how the results 
of each network are calculated. In fact, to define the ability of a network to accurately 
predict data and learn existing patterns in the right way, performance and error indices 
are calculated. The former must be as high as possible, while the latter, of course, as 
low as possible. 
Furthermore, depending on the type of network, these change. In the classifiers, the 
MCC and accuracy performance indices are calculated, while the cross entropy is the 
loss function. The former will be presented later, while cross entropy has already been 
explained in the previous chapter. 
Speaking instead of the regressor, the performance index considered is the coefficient 
of Determination R2, while the loss function, as already analysed, is the RMSE. 
R2 is defined as the difference between a model defined by the simple average of the 
values of the dataset labels that have to be predicted and the model implemented with 
the neural network. The higher this difference, the more accurate the model. In 
mathematical terms, this difference is: 
 

𝑅2 =
𝑆𝑆𝐸𝑀 − 𝑆𝑆𝐸𝑅

𝑆𝑆𝐸𝑀
= 1 −

𝑆𝑆𝐸𝑅

𝑆𝑆𝐸𝑀
 

 
Where SSEM is the Sum of Squared Errors by Mean line and SSER is the Sum of 
Squared Errors by Regression. 
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Figure 4.3 - R2 graphical representation 

 

4.3 Hyperparameter search space 
As explained previously, the search for the hyperparameters in each of the networks is carried 
out starting from a multidimensional search space, in which each hyperparameter corresponds 
to a dimension. In particular, considering six hyperparameter, the search space has 6 
dimensions.   
In the previous project, the values assumed on average by each hyperparameter were defined 
after a literature search. Furthermore, this research has shown that some of these have a greater 
sensitivity to non-linear logarithmic distributions, such as the learning rate or the L2 
regularization coefficient. For what concern the possible batch size values, these have been 
defined with a discrete power distribution of 2. The same principles have been used to initially 
define the hyperparameter space of the admissibility classifier.  
The admissible classifier search space considered for the first analysis is shown below in Table 
4.1. 
 

Table 4.1 - Hyperparameter search space of admissibility and feasibility classifier 

Hyperparameter  

Hidden layers 1 - 6 
Neuron first 30 - 200 

Batch size 16 - 512 
Learning rate 0.0001 – 0.9 

L2 regularization 0.0001 – 0.1 
Dropout 0 – 0.3 

 
Dropout is considered as hyperparameter only in a second moment during this project, but is 
already shown in search space. 
Search spaces of feasibility classifier and regressor classifier are considered the same of 
previous projects. The first one is the same of the one in Table 4.1, while the second is the 
following: 
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Table 4.2 - Hyperparameter search space of regressor 

Hyperparameter  

Hidden layers 1 - 6 
Neuron first 10 - 80 

Batch size 8 - 64 
Learning rate 0.0005 – 0.5 

Weight initialization Glorot uniform, 
Glorot normale, 

Random uniform, 
Random normal, 
Truncated normal 

Dropout 0 – 0.5 
 

4.4 Optimization tools for model 
The model used in this project for the design of the admissibility classifier makes use of several 
optimization techniques, aimed at preventing future problems. In particular, there is the 
application of technique to each layer, such as dropout or batch normalization. Furthermore, 
another technique to prevent overfitting, in addition to that of dropout, is that of inserting what 
is called Early Stopping. 
 

4.4.1 Dropout 
This topic has been extensively explained in the previous chapter and has been analysed 
again when the results of comparisons between models with different percentage of 
dropout are presented. However, in this section we want to show where these dropout 
are applied within the model. 
In the previous project, dropout was present only in the regressor, as it was not necessary 
to add it in the classifier as it was not subject to overfitting. With the introduction of a 
new classifier in the pipeline, however, the trend of model overfitting has grown, 
necessitating the introduction of dropouts. To ensure a continuity of technique between 
networks, the dropout is applied to all the layers, both input and hidden, with the 
exception of the output one.  
 

 
Figure 4.4 - Dropout technique application to all layers 
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4.4.2 Early Stopping 
When the topic of the number of epochs is presented, a possible problem analysed has 
been the one relating to the choice of the right number of them, to avoid overfitting (too 
many training epochs) or underfit (too few training epochs). This problem can be solved 
introducing early stopping. 
This function monitors a performance indicator, chosen by the author, to check if it 
improves. When it stops, the early stopping stops the training, avoiding the overfitting 
and stopping the model in the epoch in which the best performance is reached.  

 
Figure 4.5 - Early stopping technique 

 
However, the loss function can have a plateau, or increase slightly and then decrease 
again, causing a problem in the model, which is stopped when it is still learning. To 
avoid this, a kind of delay is inserted, a number of epochs in which it is allowed to 
accept not to see improvements, called patience. 
This method is only applied to regressor, even if could be a good improvement for 
classifiers point of view in the next developments, to avoid overfitting and to speed up 
the computational time of the model. 
 

4.4.3 Batch Normalization 
Batch normalization technique was introduced by the author of the previous project, 
who performed an accurate study on this topic. This is not the aim of this work, but, 
since the model used for the new admissible classifier utilizes this optimization function, 
a brief explanation is needed. 
Bath normalization is a technique used mainly for very complex deep neural networks. 
During the learning process, especially during backpropagation, the weights of one layer 
are updated based on the assumption that in the meantime the weights of the other layers 
do not change. However, this does not happen, because they are continuously updated 
as those of the previous layers change, leading to a slowdown in the process due to the 
attempt to coordinate all these changes. The main effect of this function is precisely to 
help this coordination, with the final result of speeding up and stabilizing the learning 
of the network. 
This optimization is applied to hidden layers and output layer in both the two classifiers, 
while in the regressor is also applied to input layer. 
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4.5 Representation methods 
One of the fundamental aspects of a neural network algorithm is to represent the results 
obtained, both to present them and to analyse its functioning, being, as mentioned above, mostly 
black box. The most used representations are those concerning the learning curves, in addition 
to the confusion matrices, which are also used to calculate different results. Then there are 
graphs related to explainable machine learning, with the aim of making the reasoning of the 
network more transparent. These have been presented in the next chapter. 
 

4.5.1 Confusion matrix 
After data acquisition, pre-processing, training and testing, it is important to find the 
results that certificate the accuracy and the effectiveness of the model. The better they 
are, the better the performance of the model, that this the aim of each neural network 
work. To compute some of the most important performance values a confusion matrix 
is needed.  
It is only used for classification performance measurements and is a table composed of 
all the possible combinations of predicted and actual values of the classes considered 
in the classifier. In the case of this project, a binary classification is used in both the two 
classifiers, therefore the table is composed of four different combination: two for 
predicted values (positive 1 and negative 0) and two for actual values ( positive 1 and 
negative 0), as it is shown in Figure 4.6. 
 

 
Figure 4.6 - Confusion matrix scheme 

 
Figure 4.6 shows four different terms: True Positive (TP), False Positive (FP), False 
Negative (FN) and True Negative (TN). The term True Positive means that the model 
has predicted positive and the actual value is positive. In the False Positive, on the other 
hand, the model predicts a positive sample that is actual negative; this is defined as a 
type 1 error. There is an error, this time of type 2, also in the False Negative, in which 
the model predicts a negative sample, but the actual value is positive. The last 
combination is that of True Negative, that is, the model correctly predicts that the sample 
is negative. 
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Thanks to this table performance indexes are calculated, like accuracy, recall, 
F1_score, precision and Matthews Correlation Coefficient (MCC). Although the 
computation of all these results, the author takes into account especially two of them: 
accuracy and MCC, that have been analysed in results chapter. For this reason, below 
only these two are explained. 
 

• Accuracy 
Accuracy is defined as: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
 

 
That means how many samples are predicted correctly out of all the four classes. 

• Matthews Correlation Coefficient 
MCC is defined as: 
 

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)
 

 
This coefficient can be used only in binary classification problem. 
 

Although accuracy is used more than MCC, the latter has some advantages in certain 
situations. For example, in the situation in which the dataset is unbalanced, i.e. the 
number of samples contained in one class is much greater than those contained in 
another, accuracy can no longer be considered a reliable measure as it overestimates the 
abilities of the classifier. On the contrary, MCC is not affected by the number of samples 
contained in the classes. [17] 

 

4.5.2 Learning curves 
These curves usually represent the improvement of the model along the epochs of 
training, therefore on the x-axis the number of epochs is shown, while on y-axis the 
learning improvements. These improvements can show by loss function, and so the 
smaller the better, like the cross-entropy or by performance index, like MCC or 
accuracy, in which the higher the better. 
The improvement of the model in this plot can be evaluated on two different curves: the 
one found from training set or the one from validation set. The first gives the idea of 
how well the model is learning, while the second how well it generalizes the data. In 
this project these two curves have been represented together in the same plot. 
Another important reason why learning curves are studied is to diagnose the behaviour 
of the model, in order to understand if this is subject to problems such as overfitting or 
underfitting. During the elaboration of the results of the pipeline, this aspect helped a 
lot the author of the project to understand which path was the right one, how to act to 
optimize the model. 



Deep Neural Network Model 
 

43 
 

If, for example, the training loss, at the end of the epochs of training, shows a continuous 
decrease of the value, this means that the model can still improve and that that number 
of epochs is too low. From this it can be understood that there is an underfit problem. 
 

 
Figure 4.7 - Underfiting in learning curves 

 
On the contrary, if the two curves of validation and training loss diverge with increasing 
epochs, with that of validation which, after reaching the minimum, starts to grow again, 
while that of training continues to decrease, a problem of overfitting is present.  
 

 
Figure 4.8 - Overfitting in learning curves 

 
The trend of the curves that must be sought, i.e. a good fit the model on the data, is 
therefore represented by Figure 4.9 
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Figure 4.9 - Good fit in learning curves 

 
Thanks to learning curves it is possible to understand also if the split of the training and 
validation set is correct. In fact, if training set has too few samples compared to 
validation set, the learning of the model can be insufficient. On the other hand, if 
validation set has too few samples, the model can’t generalize in the desired way. These 

two problems are shown in Figure 4.10. [18] 
 

  
Figure 4.10 - Learning problem (left) and generalization problem (right) in learning curves  
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4.6 Permutation Feature Importance 
In the previous chapter, a brief introduction to the topic concerning Explainable Artificial 
Intelligence has been presented, with an analysis of the various techniques that are used to make 
deep learning algorithms more transparent and understandable. Making an algorithm like the 
one used in this project completely explainable is almost impossible due to the huge number of 
variables, neurons, layers and functions used to write the algorithm and the model. 
There are some techniques, however, that can provide some very useful information to increase 
understanding of the model, such as feature importance, which falls into the post-hoc 
explainability category. In particular, permutation feature importance has been analysed. 
It is an inspection technique, applied to a trained model, which calculates the decrease in 
performance of the model when a feature is shuffled randomly a number k of times. it can be 
used both the training and testing datasets, depending on what kind of information it is needed: 
how much the model predictions depend on each feature or how much the model performance 
with unknown datasets depends on each feature, respectively. In this case the training set is 
used.  
The algorithm that is used to compute the importance is the following: 

• A reference score s is computed. In this case Matthews Correlation Coefficient is 
considered. 

• Then, for each feature j: 

o For each iteration k in K total iterations: 

▪ The j feature column in dataset is permutated. 

▪ The new score sk,j is computed. 

o Finally, permutation feature importance ij is found: 

 

𝑖𝑗 = 𝑠 − 1/𝐾∑𝑠𝑘,𝑗

𝐾

𝑘=1

 

There are several reasons why the author decided to implement a permutation feature 
importance algorithm instead of the classic feature importance. The first, more practical, is due 
to a greater compatibility between the pre-existing code and this algorithm. The model of the 
feasibility classifier developed in the previous project, and therefore also of the admissibility 
classifier, uses functions from the Python Scikit Learn library, the same used by the permutation 
feature importance. Therefore, the adoption of this technique has been inevitable. 
The second reason is, instead, conceptual. The permutation feature importance uses, as 
mentioned above, a model trained once. Contrarily to what happens in the classic feature 
importance technique, where the model is trained every time a feature importance is calculated. 
This difference obviously leads to a higher computation time.  
Furthermore, the feature importance procedure performs the calculation of the score by 
completely eliminating one feature at a time, not just permutating their values. This mechanism 
causes the model to be trained on a different reduced dataset each time, altering the results [19]. 
If a graphical representation of the results is needed, a possible solution is the one represented 
in Figure 4.11. 
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Figure 4.11 - Permutation feature importances of admissibility classifier 

 
The plot shows an example of permutation feature importance of the admissibility classifier. It 
is clear that the taller is the blue column, the more important is the correspondent feature. This 
is explained by the formula above; in fact, shuffling the column of a feature, if it is very 
important for the predictions of the model, the score will decrease consistently. Otherwise, if 
the score remains more or less the same, the difference between the two term of the formula 
will be small, as will the importance of the feature. 
From the chapter concerning the description of the datasets characteristics it is known how the 
number of features is eight, since the feature linked to the type of cycle on which the considered 
layout is simulated has been added to the seven already present. However, if the number of 
features represented in the Figure 4.11 is counted, it is possible to see that the number is 7, the 
'cycle' feature is missing. This is because only the features that meet the following condition 
are plotted: 
 

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑠⁡ − ⁡2⁡ ∗ ⁡𝑠𝑡𝑑⁡ > ⁡0 
 
Where std is the standard deviation of the measure, since the multiple scores computed have a 
variation. Standard deviation is represented by the vertical black segment on th top of the blue 
column of the plot. 
Furthermore, if the sum of the value of these importances is calculated and analyzed, it could 
be seen that this is not equal to one. This is because the ordinate axis does not represent a 
percentage, but the absolute decrement of the reference score due to the permutation of the 
considered feature. 
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5 Results 
 
This chapter, relating to the presentation of the results and the procedure that led to them, is 
divided into three main parts. 
Initially the project developed with the design of the admissibility classifier and its subsequent 
integration into the pre-existing pipeline, using the P2 and P4 datasets of the old project. The 
first part therefore is about the analysis of the new classifier and the changes that this insertion 
has caused within the entire pipeline. 
In the second part, however, the focus is shifted to the introduction of a new P2 dataset expanded 
compared to before, analysing the changes made to the network. 
The third and last section is an in-depth analysis of the permutation feature importance, in which 
the most important features for the two classifiers will be evaluated. 
 

5.1 New admissibility classifier in the pipeline 
5.1.1 Analysis on P4 

Starting from the feasibility classifier, the admissibility classifier was created. As 
already explained, it has been inserted into the pipeline with the possibility of 
considering it or not through an ON / OFF button. 
Furthermore, for all the analyses in this section, the P2 and P4 datasets already used in 
the previous project were used, therefore containing 1500 layouts simulated on the 
WHVC cycle. 
The first study presented is the one concerning the P4 architecture. The Figure 5.1 
compares the performance of the two classifiers, namely the Accuracy and the Matthews 
Correlation Coefficient. 

 

 
Figure 5.1 - Feasibility and admissibility classifier performances (P4) 
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As can be seen from a very first analysis, the performance of the admissibility classifier 
is good, even better than that of the first classifier. This may be due precisely to the 
action of the latter, which by carrying out a first filter on unfeasible layouts, makes 
easier the second classification. 
However, it must be borne in mind that most of the results shown are the result of an 
average of results deriving from some simulations, usually between four and seven. 
Such a low number, essentially due to a fairly high simulation time, means that that the 
measurements are subject to sometimes high standard deviations, thus not leading to 
relevant behaviours and trends. 
After verifying the stability of the new network, the attention is extended to the entire 
pipeline, and a comparison is made between the performance of the regressor with and 
without the insertion of the second classifier. On the left of Figure 5.2 is shown the 
percentage value of the R2 index, while on the right the value of the considered loss 
function, RMSE. 
 

 
Figure 5.2 - Regressor with & without admissibility classifier (P4) 

 
The graphs show how the regressor positioned at the end of the pipeline has 
improvements with the addition of the admissibility filter. In fact, R2, the less 
significant value between the two for the reasons seen in the previous chapters, increases 
by 3%, while the RMSE has a decrease, therefore an improvement of 25%. 
However, looking at the results of each simulation and their standard deviation in Table 
5.1, it can be seen that there is no clear improvement in the network.  

 
Table 5.1 - Regressor with and without admissibility classifier 

 With admissibility Without admissibility 

 Loss Testing R Testing Loss Testing R Testing 

Simulazione I 1,46 0,98 2,57 0,93 

Simulazione II 2,30 0,94 2,18 0,94 

Simulazione III 1,10 0,99 2,37 0,92 

Simulazione IV 2,32 0,95 1,86 0,95 

Average 1,80 0,97 2,25 0,94 

Std 0,61 0,02 0,30 0,01 
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This uncertainty is essentially due to two main reasons. The first is the limited number 
of simulations; the second, on the other hand, has a high percentage of network 
randomness. This in fact depends on the choice of hyperparameters that occurs from a 
random search. Also, the seed is not locked. The meaning of seed is the following: any 
random number using a random number generator. A seed is used to generate the 
sequence of numbers, usually linked to the current time in milliseconds, so that each 
time this generator is different, always making the sequence of numbers created 
different. If you want, on the contrary, to make these sequences more similar, you can 
set a specific number to the generator, seed [20]. To solve as much as possible the 
problem of randomness, in the analysis done on P2 architecture the seed has been fixed 
and a fixed set of hyperparameter has been chosen, as it has been explained below. 
Analysing also the learning curves of the three networks, it can be seen that the cross-
entropy graph of the feasibility classifier, Figure 5.3 , presents a tendency to overfitting, 
since the mean validation and training curves diverge as the epochs increase.  
 

 
Figure 5.3 - Cross-entropy vs Epochs - Feasibility classifier – without Dropout (Sim I) 

 
As seen above, a possible solution to this problem may be to add a dropout layer to the 
classifier model, since it is absent until now, obtaining an improvement, as shown in 
Figure 5.4. 
 

 
Figure 5.4 - Cross-entropy vs Epochs - Feasibility classifier – with Dropout 
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5.1.2 Analysis on P2 
The same analysis previously carried out for the P4 hybrid vehicle architectures is now 
carried out for the P2 architectures. Also in this case, in the first simulations the 
unlocked seed was kept, with not very convincing results and, above all, not very 
comparable, especially in terms of standard deviation value. For this reason, it was 
decided to carry out a series of simulations with seeds locked at 7 and with a fixed 
combination of hyperparameters of the three networks, defined by evaluating those 
chosen in the best simulations. The Table 5.2 shows the values.  
 

Table 5.2 - Fixed hyperparameters 

FEASIBILITY CLASSIFIER  

Hidden layers 1 
Neuron first 76 

Batch size 40 
Learning rate 0.00147 

L2 regularization 0.0213 
ADMISSIBILITY CLASSIFIER  

Hidden layers 3 
Neuron first 134 

Batch size 21 
Learning rate 0.00215 

L2 regularization 0.00206 
REGRESSOR  

Hidden layers 4 
Neuron first 44 

Batch size 52 
Learning rate 0.008324326 

Weight initialization Glorot uniform 
Dropout 0  

 
 
The first results shown in Figure 5.5 concern the performance of the two classifiers. In 
this case the standard deviations are small, as the black vertical segment show, and this 
demonstrates the greater stability of the results under these conditions. Furthermore, it 
can be noted that the average values of the seven simulations carried out are higher now, 
considering P2 architectures, compared to before in which P4 architectures were 
considered. 
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Figure 5.5 - Feasibility and admissibility classifier performances – Fixed parameters (P2) 

 
Turning, instead, to the regressor (Figure 5.6), the important result is that the 
improvement of RMSE with the introduction of the new classifier is of the same order 
of magnitude found previously, about 28%. This underlines again and more strongly the 
positivity of introducing an admissibility filter in the pipeline. 
 

 
Figure 5.6 - Regressor with & without admissibility classifier – Fixed parameters (P2) 

 
Blocking the seed helped the author to obtain more comparable results and to confirm 
the improvement of the pipeline. This process is usually used to isolate the causes 
resulting from a single change. However, the high randomness of the network is a 
fundamental aspect in the generalization capacity of the model. For this reason, the seed 
and hyperparameter search has been unlocked from now on. 
Studying the learning curves again, it can be seen from Figure 5.7, in which the cross-
entropy of one of the simulations is represented, how there is a tendency towards 
overfitting also with regard to this P2 architecture. 
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Figure 5.7 - Cross-entropy vs Epochs - Overfitting (P2) 

 
To solve this problem, a different strategy with respect to P4 architecture is adopted. A 
study on the number of iterations adopted by the model is made, taking into 
consideration three values: 10, 20, 35 iterations. As explained above, the number of 
iterations corresponds to how many batches needed to complete an epoch. By increasing 
this number, model training should be more accurate. 
However, evaluating the Figure 5.8, it is clear that there is no real tendency of 
improvement 
 

 
Figure 5.8 - Comparison between different iterations 

 
On the other hand, overfitting improves slightly when simulations with 35 iterations are 
considered, but if the zoom present in Figure 5.9 is evaluated, there is still divergence.  
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Figure 5.9 - Cross-entropy vs Epochs - 35 iterations 

 
Furthermore, the significant increase in simulation time with iterations means that this 
parameter change is not entirely beneficial.  
For these reasons the author has decided to set the iterations to 10, keeping a good 
simulation time, and insert dropout layers to improve overfitting. A simulation example 
is shown in  
 

 
Figure 5.10 - Cross-entropy vs Epochs - with Dropout (P2) 

 

5.1.3 Comparison between P2 and P4 
This comparison was already faced in the previous project regarding the feasbility 
classifier. In this section we will study the performance differences of the admissibility 
classifier between the P2 and P4 architectures. 
As can be seen in Figure 5.11, the performances of P2, with the same model, are better, 
especially for what concern the Matthews Correlation Coefficient. Obviously, there are 
some different parameters, being random, but the structure of the model and the fixed 
parameters are the same. 
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Figure 5.11 - Comparison between P2 and P4 admissibility classifier performance 

 
This difference may be the result of a structural difference between the two 
architectures. If the design features of the layouts of P2, and also P3, is analysed, a 
parameter called “EM1SpRatio” (the speed-coupling device transmission ratio) is 
found. In this case, the electric motor is connected to the transmission system which 
exerts power only on the front axle. If, on the other hand, we consider P4, we find 
"FDsSpRatio" (transmission ratio at the secondary axle differential), which describes 
the connection of the electric motor on the rear axle. This decoupling of the two motors 
means that there are two transmission ratios and, therefore, more losses, compared to a 
single one, as happens in P2 and P3. This is a more physical explanation. 
Studying the dataset, and in particular the connection between performance index value 
and the two features presented above, the graphs in Figure 5.12 and are created. 
 

 
Figure 5.12 - EM1SpRatio feature in P3 dataset (left) and P4 dataset (right) 
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Figure 5.13 - FDsSpRatio feature in P4 dataset 

 
As also for feasibility, also in admissibility there is a greater characterization of the 
dataset by "EM1SpRatio", which therefore helps the model in the classification. This 
can be the reason that causes higher performance of P2 classifier compare to P4 one. 
 

5.2 Pipeline analysis with the new P2 dataset 
This new section analyses the performance of the new classifier and the complete pipeline with 
the introduction of a new dataset. This, as fully explained, is a dataset expanded by five times 
compared to the previous one, in fact it contains 7500 layouts. To create it, five datasets 
containing 1500 layouts each similar each on a different cycle were merged. This made it 
possible to insert a new feature, the one of the cycle types. 
Initially a pipeline that takes into consideration only the feasibility classifier is presented, and 
subsequently, the admissibility is inserted. 
 

5.2.1 Feasibility classifier + regressor pipeline 
As shown in the Figure 5.14, the performance of the feasibility classifier slightly 
increases, especially the MCC value. The interesting aspect to underline is the decrease 
in the standard deviation value, represented by the vertical segments. As for all graphs, 
in fact, the averages of several simulations are represented, in this case five. This 
demonstrates how expanding the dataset also increases the stability of the results, 
making them more reliable and comparable. 
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Figure 5.14 - Feasibility classifier performance - New P2 dataset 

 
Conversely, comparing the regressor results shows a fairly large difference between the 
old dataset and the new one. Accuracy, in fact, grows a lot, but so does error, RMSE. 
However, it must be emphasized that the error remains more than acceptable, being 3.8 
g/km on values of the order of magnitude of 300/400 g/km. 
In any case, it is important to analyse the reason for these marked changes. These are 
probably due to the technique of calculating the two variables R2 and RMSE. As 
explained above, in fact, R2 depends on the difference between the mean of the values 
and the function of the model. Obviously, the more values there are, the more accurate 
the average will be and will approach the model function, increasing the R2. 
Conversely, the RMSE depends on the distance of each value of the function curve. It 
is clear that increasing the number of values the number of distances considered 
increases, as well as the RMSE value. 
 

 
Figure 5.15 - Regressor performance - New P2 dataset 
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5.2.2 Feasibility classifier + admissible classifier + regressor pipeline 
 

By inserting the new classifier now, the following results are obtained. Regarding the 
performance of the classifiers, as seen in Figure 5.16, there are no particular differences 
between the results derived from the two dataset, considering the slight variability of 
each simulation. All the results show very high performance of the classifiers. 
 

 
Figure 5.16 - Classifiers performances - New P2 dataset 

 
Speaking instead of the regressor, Figure 5.17, the trends are the same as previously 
found in the case with only one classifier. 

 

 
Figure 5.17 - Regressor performance - with admissibility classifier - New P2 dataset 
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The model used to obtain all the results related to the new dataset contains the dropout 
layers deriving from the overfitting study carried out previously. Applied to the new 
dataset, however, it leads to behavioural problems of the learning curves, as can be seen 
in Figure 5.18 and Figure 5.19. 
 

 
Figure 5.18 - Feasibility classifier learning curves 

 

 
Figure 5.19 - Admissibility classifier learning curves 

 
It can be observed that the train set curve is lower than the validation one in the MCC 
graphs and higher in the cross-entropy ones. This behaviour denotes better learning of 
the validation set than the training set, which shouldn't happen since the training curves 
should be the best in terms of performances.  
This problem could be caused by too high a dropout rate. As previously explained, in 
fact, the dropout value indicates the probability that a node of the training set is turned 
off. If this probability is too high, there is a risk of weakening the training set too much, 
causing a problem like the one shown in the figure. 
To limit this effect, the strategy adopted is to insert the dropout as a hyperparameter also 
in the two classifiers, letting the model choose the best value among the following ones 
directly through hyperparameter tuning: [0, 0.1, 0.2, 0.3]. 
In addition, to help the model in the classification, a deepening on the range of 
hyperparameters chosen by the algorithm in the best simulations is performed, obtaining 
a narrowing of the search space as follows in Table 5.3. 
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Table 5.3 - Restricted hyperparameter search space 

FEASIBILITY CLASSIFIER  

Hidden layers 2 – 4 
Neuron first 30 – 140 

Batch size 32 – 256 
Learning rate 0.0001 – 0.005 

L2 regularization 0.0001 – 0.1 
Dropout 0 – 0.3 

ADMISSIBILITY CLASSIFIER  
Hidden layers 1 – 3 

Neuron first 100 – 200 
Batch size 32 – 128 

Learning rate 0.0001 – 0.01 
L2 regularization 0.0001 – 0.001 

Dropout 0 – 0.3 
 
Table 5.4 shows the results of the simulations carried out with the dropout inserted as a 
hyperparameter and the search space restricted; the column of the dropout values is also 
inserted, to monitor it. There are some important considerations to make. 
 

Table 5.4 - Pipeline simulations - Dropout as hyperparameter & restricted search space 

 
 

For the first, it is necessary to observe the learning curves of the next figures, in which 
simulation 2 and 5 are taken as reference. 
 

 
Figure 5.20 - Cross-entropy vs Epochs - Feasibility classifier - sim 2 (left) & 5 (right) 

Accuracy MCC Dropout Accuracy MCC Dropout Loss Testing R Testing

Simulation 1 96,27% 91,45% 0,0 99,60% 98,72% 0,2 2,06 99,70%

Simulation 2 97,07% 93,40% 0,2 99,80% 99,35% 0,1 5,22 97,60%

Simulation 3 97,07% 93,33% 0,1 99,80% 99,35% 0,1 2,92 99,36%

Simulation 4 95,33% 89,36% 0,0 99,40% 98,06% 0,2 1,75 99,77%

Simulation 5 96,40% 91,85% 0,0 99,40% 98,06% 0,1 1,96 99,60%

Average 96,43% 91,88% 0,06 99,60% 98,71% 0,14 2,78 99,21%

Std 0,01 0,02 0,09 0,00 0,01 0,05 1,43 0,01

FEASIBILITY CLASSIFIER ADMISSIBILITY CLASSIFIER REGRESSOR
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Figure 5.21 - MCC vs Epochs - Feasibility classifier - sim 2 (left) & 5 (right) 

 

 
Figure 5.22 - Cross-entropy vs Epochs - Admissibility classifier - sim 2 (left) & 5 (right) 

 

 
Figure 5.23 - MCC vs Epochs - Admissibility classifier - sim 2 (left) & 5 (right) 

 
The previous graphs represent simulation 2 (on the left) and 5 (on the right) of Table 
5.4. In the first the code has chosen a higher feasibility classifier dropout, that is 0.2, 
while in the second it is equal to 0.1. In the model with higher dropout, we can observe 
the problem of having the training set with worse performances compared to the 
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validation set, already found previously with higher dropout. However, this model has 
no tendency to overfitting. 
Moving on to the simulation with a lower dropout, however, we see a more suitable 
behaviour of the train and validation curves, closer to the desired and expected ones. 
Unlike the previous model, however, looking at both Figure 5.20 on the left and Figure 
5.21 on the left, there is a slight tendency to overfitting. This behaviour had already 
been found in previous studies, when the dropout layer was introduced to eliminate it. 
Both Figure 5.21 and Figure 5.23, where MCC are represented, show a consistent 
improvement with respect to those with greater dropout. 
Observing the graphs of the other simulations, it can be seen that there is a very positive 
trend regarding the behaviour of the train and validation curves as the dropout 
percentage decreases, while there is not a well-defined trend if overfitting is considered. 
For this reason, according to the author, a good solution could be to use a low dropout 
value as the hyperparameter chosen by the code, as has already been set, and insert an 
early stopping in the classifiers, as also happens in the regressor, so that model training 
is stopped in case of overfitting. Furthermore, this element could speed up the 
simulations since the model takes, most of the time, a few epochs to reach the minimum. 
The second consideration regarding this analysis is that, observing the average values 
of the five simulations, there is a significant decrease in the RMSE of the regressor, 
"Loss Testing", compared to the previous values (Figure 5.24), despite having a non-
negligible standard deviation. 
 

 
Figure 5.24 - Regressor performance with different parameter combinations 
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5.3 Permutation Feature Importance results 
Permutation feature importance is, as explained above, a technique for increasing the 
transparency of the neural network model. In this case it was implemented for the two 
classifiers. 
 

 
Figure 5.25 - Permutation Feature Importance for feasibility classifier 

 
As can be seen in the Figure 5.25, this technique is used for the model that refers to the new P2 
dataset, as there is the "Cycle" feature in the list, which indicates on which cycle the considered 
layout is simulated. It is noted how the most important features regarding the feasibility 
classification are the "PEratio", the "EM1Power" and the "EngDispl", with a good importance 
also of "Cycle" and "CrateDis_max". This last good dependence of the classifier performance 
on the new "Cycle" feature certifies the effectiveness of this method. The type of cycle, in fact, 
certainly affects the amount of CO2 that a layout can emit. 
 

 
Figure 5.26 - Permutation Feature Importance for admissibility classifier 
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On the contrary, if Figure 5.26 is taken into consideration, it can be seen that this feature is not 
even represented, due to the presence of a constraint that ‘filters’ the less important features. 

This result is totally reliable, as the type of simulation cycle does not affect the performance of 
a vehicle. This depends on the characteristics of the engine, and, in fact, the displacement of 
the engine is considered of extraordinary importance, as well as the final drive speed ratio. 
Observing both graphs, it can be seen that the two classifiers depend on different features, as 
expected, as they refer to different objectives. This is important to consider if a future task is to 
explore this topic further. One of its developments could be to introduce what is called relative 
feature importance, in which the features that are not considered important are eliminated in 
the continuation of the pipeline. From this brief explanation it is clear how the dependence of 
the two classifiers on different features is a delicate situation. If, in fact, a feature not important 
for the first classifier, were to be important for the second network, its elimination could lead 
to a serious deterioration of the performance of the second network.  
Particular attention must therefore be paid to this aspect.   
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Conclusions 
 
 
To sum up, this project started from a pre-existing pipeline, created to support and integrate a 
Dynamic Programming algorithm aimed at calculating CO2 emissions of hybrid vehicles of 
different architectures, P2, P3 and P4. 
In particular, the task of this project was to add another classification network, an admissibility 
classifier, within a pipeline already composed of a feasibility classifier and a CO2 regressor. 
The project focused especially on P2 architecture layouts, with the introduction of a new, 
expanded dataset of this type. 
The focus of the work was to verify if the introduction of this new classifier was good for the 
entire pipeline, and if the model improved, as is widely explained in the literature, with a higher 
number of layouts. 
As shown in the results chapter, all of these analyses led to very positive results, with high 
performances of all the nets. 
In parallel, an in-depth research was also performed on XAI, with a particular focus on a post-
hoc explainability technique, the permutation feature importance. 
Possible future developments could concern various aspects. Firstly, further analysis on the 
influence of the dropout percentage adopted by classifiers could be indispensable for its correct 
use. 
Furthermore, as mentioned previously, more thorough studies on the XAI, and on relative 
feature importance, could improve and optimize the model, eliminating superfluous features 
and strengthening the most important ones. 
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