
 

 

 

 

Multibody dynamic simulation with 
Simscape: methods and examples 

 

 

 

 

 

LI KENAN 

255250 

Tutor: Prof. TRIVELLA ANDREA 
 

 



1 

 

 

Contents 

1. Introduction ...................................................................................................................................................2 

2. Method and examples .................................................................................................................................7 

2.1 Mass-Spring-Damper model .......................................................................................................7 

2.2 Pendulum model .......................................................................................................................... 16 

2.3 Simplified suspension ................................................................................................................ 27 

3. Conclusion .................................................................................................................................................. 51 

4. Reference .................................................................................................................................................... 52 

 

  



2 

 

 

1. Introduction  

With the increasing complicity of control systems and the rapid development of 
robotics technology, various complex mechanical systems have emerged, such as 
vehicles, spacecraft, robotic arms, robots, and human science. Due to the continuous 
improvement of the degree of freedom of the system, more and more complex system 
cannot be modeled by a single model. Therefore, it has a great significance to carry 
out research on modeling and simulation of multibody systems. On the other hand, 
due to the increasing complexity of modern precise control systems and more and 
more components inside the system, the probability of failure of the controlled system 
is increasing. In a large-scale complex system, once an accident occurs in a certain 
subsystem, it may cause significant property losses. 

In 1977, the MultiBody Dynamics Symposium was first held in Munich, 
Germany. Since then, international conferences on multi-body dynamics have 
emerged in endlessly. In recent years, researchers have done deeply research on the 
modeling and simulation of multibody systems. 

Multibody dynamics simulation (MBDS) software decomposes the actual system 
into rigid bodies, joints, constraints, coordinate systems, drives, sensors, inputs and 
other components. A complex system can be modelled with graphical components. 
Also, the entire simulation process contains two stages: modeling and solving. 
Modeling includes two processes: 

First, physically modelling, form a physical model from a geometric model. 
Second, mathematically modelling, form a mathematical model from a physical 
model. 

The solver is a set of computation algorithms that solve equations of motion. The 
choose of solver depends on the type of problem, kinematics/dynamics, static balance, 
eigenvalue analysis, etc. The corresponding solver should be well selected for 
numerical calculation and solution. 

It is suited to study the dynamic behavior of interconnected rigid and/or flexible 
bodies undergoing large translational or rotational displacements. The motion of those 
bodies is calculated based on applied loads and boundary conditions defined. 

Multibody dynamics simulation (MBDS) can not only be used to predict 
mechanical system performance, trajectory of motion, collision detection, peak load 
and so on but also used in several aspects, such as safety, and comfort, can be 
evaluated and optimized. Users can not only use general modules to simulate simple 
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mechanical systems, but also use specific modules to quickly and effectively model 
and simulate problems in related industrial applications. 

The potential of MBDS in product development mainly according to following 
reasons:  

1. Reduction of development lead time and life cycle cost. 

Manufacturers often struggle to understand real system performance until 
extremely late in the design process. Mechanical, electrical, and other 
subsystems are validated against their specific requirements within the 
systems engineering process, but full system test and validation comes late, 
leading to rework and design changes that are riskier and more costly than 
those made early on. 

MBS improves engineering efficiency and reduces product development costs 
by enabling early system-level design validation. Engineers can evaluate and 
manage the complex interactions between disciplines including motion, 
structures, actuation, and controls to better optimize product designs for 
performance, safety, and comfort. Along with extensive analysis capabilities, 
MBS is optimized for large-scale problems, taking advantage of high-
performance computing environments. 

MBS offer comparably short calculation times. This makes them a very 
efficient simulation tool and an excellent choice for parameter studies and 
optimization of complex assemblies having many degrees of freedom. 

Due to their short calculation times, MBS enable early insights in the effect of 
design parameters on the overall performance of a system. This allows to 
make well-founded design choices in an early state of the development 
process, saving costs by lowering lead times and reducing the number of 
extended hardware tests significantly. 

Figure 1 Simulation of anti-roll bar under roll motion 
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To give an example, with Adams Car, engineers can quickly build and test 
functional virtual prototypes of complete vehicles and vehicle subsystems. 
Working in the Adams vehicle vertical environment, automotive engineering 
teams can exercise their vehicle designs under various road conditions, 
performing the same tests they normally run in a test lab or on a test track, but 
in a fraction of time. Following requests can be satisfied： 

⚫ Analysis of suspension, steering and full-vehicle maneuvers 
⚫ Easy integration of control systems into vehicle models 
⚫ Creation or import of component geometry in wireframe or 3D solids 
⚫ Extensive library of joints and constraints to define part connectivity 
⚫ Model refinement with part flexibility, automatic control systems, joint 

friction and slip, hydraulic and pneumatic actuators, and parametric 
design relationships 

⚫ Comprehensive linear and nonlinear results for complex, large-motion 
designs 

⚫ Comprehensive and easy to use contact capabilities supporting 2D and 3D 
contact between any combination of modal flexible bodies and rigid body 
geometry 

2. Easy to use. 

The complexity of the procedure for using the MBS is reduced compared with 
the past decade. As the MBS are well developed, it is now, not any more 
designed for specialist in simulation or expert in dynamic analysis, but also 
designed for normal design engineer. 

In MATLAB® Simscape Multibody program a complex multibody system 
can be built by blocks representing bodies, joints, constraints, force elements, 
and sensors. It formulates and solves the equations of motion for the complete 

Figure 2 Force act at tire ground contact 
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mechanical system and automatically generated 3D animation lets you 
visualize the system dynamics. 

Simscape Multibody contains a library of blocks and simulation and control 
interfaces to interconnect Simscape plans with the Simulink environment, also 
hydraulic, electrical, pneumatic, and other physical systems can be integrated 
into model using components from the Simscape family of products. 

RecurDyn has an immensely powerful GUI with an intuitive design. It 
contains a completely integrated environment for model development, 
simulation, and analysis of results. Pre-processing for model creation and 
parameter definition and post-processing for analyzing the results is integrated 
directly into the GUI. A wide range of customization options also exist in the 
GUI to improve productivity by automating common tasks. 

3. Accurate, or in other world, MBDS software can simulate the “real world” 

physics.  

To simulate the dynamic behavior of a rigid multibody, it is necessary to solve 
a sequence of motion of equation which describe the motion of system. These 
equations are known as Differential Algebraic Equations (DAEs), a 
combination of differential equations that describe motion and algebraic 
equations that encapsulate joint constraints. For linear dynamic simulation, 
solver has high efficiency and accurate due to the multi-core processor 
nowadays. 

Utilizing multibody dynamics solution technology, MBDS such as ADAMS 
runs nonlinear dynamics in a fraction of the time required by FEA solutions. 
Loads and forces computed by simulations improve the accuracy of FEA by 

Figure 3 In Simscape Multibody, front suspension is modeled by blocks 
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providing better assessment of how they vary throughout a full range of 
motion and operating environments. 

4. Repeatable. In real life, failure test costs time and money while using MBDS 
software, it is possible to simulate and validate repeatably under fault 
condition. We have certain benefits: 

Create Robust Designs. Specify failure criteria for components, including 
time, load, or temperature-based conditions. Model degraded component 
behavior, such as worn gear teeth or increased bearing friction. Automatically 
configure models to efficiently validate designs under fault conditions. 

 

Perform Predictive Maintenance. Generate data to train predictive maintenance 
algorithms. Validate algorithms using virtual testing under common and rare 
scenarios. Reduce downtime and equipment costs by ensuring maintenance is 
performed at just the right intervals. 

Minimize Losses. Calculate the power dissipated by mechanical components. 
Verify components are operating within their safe operating area. Simulate 
specific events and sets of test scenarios, and then post-process results in 
MATLAB. 

Multibody dynamic simulation software makes change in design stage much faster 
and at a lower cost than physical prototype testing would require. Provide more secure 
environment without the fear of losing data from instrument failure. Without physical 
testing, simulation or the analysis can be performed in all scenarios without the 
dangers. 

Figure 4 

A connection between two parts breaks as the force exceeds the 

upper limit for the joint. 
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2. Method and examples 

In this chapter, serval examples that modeled and simulated based on Simscape 

Multibody are going to be shown. Examples are in the field of automotive engineering. 

2.1 Mass-Spring-Damper model 

Fist, we start with a classic model constructed with Matlab Simscape. 
Mass-Spring-Damper system is a quite common oscillatory model. By studying the 

model, we can have a better understanding of the object with complex mechanical 

properties such as nonlinearity. In this model, mass is considered as node which is 

connected with ideal weightless damper and spring representing the different 

mechanical properties. Also, by changing the characteristic of damper and spring to 

achieve desired effects. After building the model, applying the Newton’s Law to the 

mass considering not only the force applied by damper and spring but also the external 

force gives differential equations for the motion of the mass. The differential equations 

are solved by standard numerical schemes for solving ODEs, in Simscape we have 

servals ODEs can be use, the ODE used in the examples are ode45. 
The workflow of constructing a Mass-Spring-Damper is shown as below: 
 
1. To build a Simscape model with default setting, use the command ssc_new. 

When command in used, following object will automatically be created: data 

logging, recommended solver and tolerance settings. 
 
 
 
 
 
 

2. Assemble Physical Network 
To model the system, blocks can be added from the Simscape Libraries, then 

connect the block through lines, into a physical network. The physical network 

built in the Simscape represent the real system, in the other words, Simscape mimic 

the physical system. When constructing the network, it is necessary to include the 

domain-specific reference blocks, such as Mechanical Translation Reference in this 

example.  

Figure 2.1.1 Create a Simscape model 



8 

 

The detailed instruction is described as following: 

2.1 Click Simscape - Foundation Library - Mechanical - Translational 

Elements library. 
2.2 Drag Mass, Translational Spring, Translational Damper, and Mechanical 

Translational Reference blocks into the window. Then connect them 

through lines. 
To adjust or shorten the name of blocks, right click the block, select Format 

- Show Block Name - on  

Figure 2.1.3 Add blocks 

Figure 2.1.2Model represents the real system 

Figure 2.1.4 Show block name 
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3. Adjust Block Parameter 

Each block represents a generic component that has initial values. In this 
model, mass, spring and damper block can be adjusted by double click the block. 
As an example, spring rate, damping coefficient and mass are adjust to 400N/m, 
100N/(m/s) and 3.6kg. To specify the desired initial value for mass velocity, click 
Variables. 

Notice that override means that the velocity has overridden the default 
variable initialization value. The variable with high priority, therefore, the solver 
will try to satisfy this initial value when it computes the initial conditions during 
the simulation. 

4. Add Sources 

Simscape source blocks represent physical effect, such as forces, voltages, or 
pressures, that act on the system. Also, quantities that flow through the system 
such as current, mass flow rate, and heat flux can be specified. To add 
representation of the force acting on the mass, use the Ideal Force Source block. 
The block represents an ideal source of force that generates force proportional to 
the input physical signal. The source is ideal in a sense that it is assumed to be 
powerful enough to maintain specified force regardless of the velocity at source 
terminals. 

The detailed instruction is described as following: 

4.1 Simscape -- Foundation Library -- Mechanical -- Mechanical Sources 
library. Add the Ideal Force Source block to the diagram 

4.2 To reflect the correct direction of the force shown in the original 
schematic, flip the block orientation. Select the Force Source block, on 
the Format tab, under Arrange, click Flip up-down 

Figure 2.1.5 Adjust Block Parameter 
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4.3 The system must have 2 constraints, so add another Mechanical 
Translational Reference block by right click it and drag it to a new 
location. 

4.4 Connect port C of the Force Source block to this second Mechanical 
Translational Reference block and port R to the Mass block. The input 
signal stands for the force profile will be supplied through port S, after 
the system is connected to a Simulink source. A positive signal at port S 
will specify a force that acts from port C to R. 

 

5. Add sensors 

Quantities from physical network can be measured by adding sensors block, it 
can be in series or parallel depends on the measured value. To measure a quantity 
defined by a Through variable (such as current, flow rate, force), connect the 
sensor in series. To measure a quantity defined by an Across variable (such as 
voltage, pressure, velocity), connect the sensor in parallel. In this example, spring 
deformation is an important parameter. To measure spring deformation, connect 
an Ideal Translational Motion Sensor block in parallel with the spring.  

It is a device that converts an across variable measured between two 
mechanical translational nodes into a control signal proportional to velocity and 
position. The sensor is ideal since it does not account for inertia, friction, delays, 
energy consumption, and so on. 

Also, some common uses of those quantities include feedback for a control 
algorithm, modeling physical components whose behavior depends on other 

Figure 2.1.6 Add Source 
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physical quantities (such as temperature-dependent resistor), or simply viewing 
the results during simulation. 

The detailed instruction is described as following: 

5.1 Simscape -- Foundation Library -- Mechanical -- Mechanical Sensors 
library. Add the Ideal Translational Motion Sensor block to the diagram, 
for a better reading experience, shorten the block name as Motion Sensor. 

5.2 For Ideal Motion Sensor, connect the R port and port as the figure shown 
below. Connections R and C are mechanical translational conserving 
ports and connections V and P are physical signal output ports for 
velocity and position, respectively. The block positive direction is from 
port R to port C. 

 

6. Connect to Simulink with Interface Blocks 

Interface blocks, such as Simulink-PS Converter and PS-Simulink Converter, 
takes in charge the signal conventions between these two modeling. Interface 
blocks are needed when Simulink signals specify quantities in a Simscape 
network, or when passing Simscape quantities to Simulink for control design. 
Every time when connect a Simulink block to a Simscape physical network, an 
appropriate converter block is needed.  

Now, to connect the physical network to a controller built out of regular 
Simulink blocks. First, prepare the physical network to be connected to Simulink 
signals then, build and connect the controller: 

The detailed instruction is described as following: 

Figure 2.1.7 Add Sensors 
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6.1 Connect the physical signal output port of the Simulink-PS Converter 
block to port S of the Force Source block. This signal is the input signal 
of the force source. 

6.2 Connect the output port P of the Motion Sensor block to the physical 
signal input port of the PS-Simulink Converter block. As motioned 
before, the port P stands for the position. 

6.3 Connect the Solver Configuration block to the circuit. 

6.4 Open Simulink -- Sources library and drag the Pulse Generator block into 
the model. Set the parameter to the desired value. 

Figure 2.1.8 Physical Signal side 

Figure 2.1.9 Position command 
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6.5 Open Simulink -- Math Operations library and drag the Add block as 
feedback into the model. Set the correct signs 

6.6 Open the Simulink -- Continuous library and drag the PID Controller 
block into the model. Set the Proportional (P), Integral (I), and Derivative 
(D) parameter with desired value 

6.7 Connect the block as following figure. 

The control Simulink signal goes to the input port of the Simulink-PS 
Converter block, where it is converted into a physical signal driving the 
force profile of the Ideal Force Source block. The output port P of the 
Ideal Translational Motion Sensor block, which measures the spring 
deformation, connects to the PS-Simulink Converter block. This block 

Figure 2.1.10 Feedback 

Figure 2.1.11 PID controller 
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converts the physical signal into a feedback Simulink signal for the 
controller. 

 

7. Simulate Model 

To compare the input and feedback signals, connect them to a signal viewer: 

7.1 Right-click the Simulink signal that goes from the Pulse Generator block 
to the Sum block. From the menu, select Create & Connect Viewer – 
Simulink -- Scope. 

7.2  Then, right-click the Simulink signal that goes from the PS-Simulink 
Converter block to the Sum block. From the context menu, select Connect to 
Viewer -- Scope. 

7.3 Click the run button in Simulink Toolstrip or in Scope. The Simscape 
solver evaluates the model and runs the simulation. Figure 2.1.13 shows the 
comparison of input and feedback signals, the yellow square wave is the input 
signal while the blue line with a little overshot is the feedback signal. 

8. View Simulation Results 

The other way to view the results is to use Simscape Results Explorer. It 
analyzes simulation data by using data logging functionality. Right click the 
block (component) select Simscape -- View simulation – simlog.  

The Simscape Results Explorer window opens, with the node corresponding 
to the Spring block highlighted in the left pane. The right pane displays the 

Figure 2.1.12 Connect to Simulink with Interface Blocks 
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simulation data plots for the variables associated with the block shown as Figure 
2.1.14. 

  

Figure 2.1.13 Compare the input and the feedback signals 

Figure 2.1.14 Simulation Results of Spring 
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2.2 Pendulum model 

In this section, a simple pendulum is modeled and analyzed using Matlab Simscape 

Multibody. The pendulum is a simple mechanical system. For this example, the system 

contains two bodies, a link and a fixed pivot, connected by a revolute joint. 
 
1. Model a simple link 
Mechanical links are common building blocks in linkages, mechanisms, and 

machines. To model a pendulum, a simple link should be modeled first. For simplicity, 

the model assumes the link has a brick shape and two end frames. 
 

1.1 Create a model template 
 

To open a Simscape Multibody model template with default setting use 

command smnew 

 

1.2 Duplicate the Rigid Transform block to add a second end frame to the link. 
 

Rigid Transform block defines a fixed 3-D rigid transformation between 

two frames. Two components independently specify the translational and 

rotational parts of the transformation. Different translations and rotations can 

be freely combined. 
In the expandable nodes under Properties, choose the type and parameters 

of the two transformation components. We can use the Cartesian, standard axis 

and cylindrical as translation axis, each parameter can be modified under 

Figure 2.2.1 Model template 
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properties tab. We can specify the following methods of translation: 
Standard axis and elementary translation along one base axis 
Cartesian, three-dimensional translation, as a vector XYZ. 
Cylindrical, three-dimensional translation, as a vector r theta and Z 
For rotation, we have different choice such as standard axis, aligned axes, 

arbitrary axis, rotation sequence and rotation matrix. Rotate around standard 

axis is defined with the right-hand rule, the axis of rotation is defined positive 

in the direction of the thumb. 
Standard axis: where the elementary rotation is along one base axis. 
Arbitrary axis: where the elementary rotation is along one custom axis.  
Aligned Axe: where we have 2 axis mappings between base and follower 

coordinate frames. 
Rotation matrix: where we define a 3x3 rotation matrix from a base to 

follower frame. 
Rotation sequence: where we specify frame rotation as a sequence of three 

elementary rotation angles and axis. 
Ports B and F are frame ports that represent the base and follower frames, 

respectively. The transformation represents the follower frame origin and axis 

orientation in the base frame. 
These parameters specify the locations of two end frames on the simple 

link.  

 
Table 2.2.1 Parameters in Rigid Transform blocks 

  

Parameter Rigid 

Transform1 
Rigid Transform Units 

Translation -- 

Method 
Standard Axis Standard Axis Not applicable 

Translation -- Axis -X +X Not applicable 

Translation -- Offset L/2 L/2 cm 
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1.3 Flip the Rigid Transform1 block so that you can connect the B ports of 

two Rigid Transform blocks to each other and the Brick Solid block. And 

connect the remaining blocks. 

 
 
1.4 Define link’s physical properties, such as shape, mass and appearance in 

Brick Solid block.  
 

Brick Solid box represents a solid combining a geometry, an inertia and 

mass, a graphics component, and rigidly attached frames into a single unit. A 

solid is the common building block of rigid bodies. The Solid block obtains 

the inertia from the geometry and density, from the geometry and mass, or 

from an inertia tensor that you specify. 
In the expandable nodes under Properties, select the types of geometry, 

inertia, graphic features, and frames that you want and their parameterizations. 
Port R is a frame port that represents a reference frame associated with the 

geometry. Each additional created frame generates another frame port. 
After changing the parameters, the Brick Solid and Rigid Transform 

blocks will be highlighted in red because variables have not defined yet. This 

issue will be solved after imputing all the numerical values for the parameters, 

which will be described in the following section. Instead inserting the 

numerical numbers, we insert variables which is much more convenient if we 

have to modify some parameters. 
 

Figure 2.2.2 Connect blocks 
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Table 2.2.2 Parameters in Brick Solid Box 
 

1.5 Generate Subsystem 
    

A complex multibody system can be build using several simple models, 

such as a simple link model. The physical parameters of these simple models 

usually need to be adjusted to fit different design requirements. To simplify 

the parameter adjusting process, Subsystem blocks is used for these simple 

models. A Subsystem block enables the updates for many parameters in a 

single place — the Subsystem block dialog box. In this section, it is 

exampled how to create a Subsystem block for the simple link model. 
 
Select the Brick Solid block and the two Rigid Transform blocks by 

holding shift and clicking the blocks.  

 

Right-click one of the selected blocks and select Create Subsystem from 

Selection. Simulink adds a new Subsystem block that contains the Brick 

Solid and Rigid Transform blocks.  

Parameter Value Units 
Geometry > Dimensions [L W H] cm 
Inertia > Density rho kg/cm^3 
Graphic--Visual Properties-- Color rgb Not applicable 

Figure 2.2.3 Create Subsystem 
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Double-click the Subsystem box. A new tab displays the children blocks 

of the Subsystem block. Double-click the PMC_port on the left named Rigid 

Transform2, which is the Physical Modelling Connection Port block for 

subsystem, set Port location on parent subsystem to left. Click OK to apply 

the change and navigate back to the parent model by clicking the up arrow 

button next to the Subsystem tab. 

  
1.6 Specify the parameters 

  
Right-click the Subsystem block and select Mask -- Create Mask. The 

Mask Editor window opens, where we can define the variables that entered in 

the Brick Solid and Rigid Transform block dialog boxes. 
Click the Parameters & Dialog tab and click Edit. The Prompt property 

specifies the names of the parameters that you can enter in the Subsystem 

block parameter window. The Name property specifies their corresponding 

Figure 2.2.4 Subsystem 

Figure 2.2.5 Specify the parameter 
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MATLAB variables, shown as Figure 2.2.5. 
Double-click the Subsystem block. The mask of subsystem opens. Enter 

the numerical values shown in Figure 2.2.6 the Subsystem Block Parameters. 

These values specify the shape of Brick Solid and the location of Rigid 

Transform blocks. 

 
1.7 Visualize Model 

Run the model. The Mechanics Explorer opens with a front view of the 

simple link model. So far, the link has been fully constructed shown as 

Figure 2.2.7 

 
2. Model pendulum 

 As a simple link is modeled, we can now add joint and define initial 

condition. 
 

Figure 2.2.6 Insert the numerical values 

Figure 2.2.7 Visualize model 
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2.1 Add joint 
 

In Simscape -- Multibody -- Joints library, add a revolute joint. This 

block provides one rotational degree of freedom between its port frames. 

Revolute joint block represents a revolute joint acting between two frames. 

This joint has one rotational degree of freedom represented by one revolute 

primitive. The joint constrains the origins of the two frames to be coincident 

and the z-axes of the base and follower frames to be coincident, while the 

follower x-axis and y-axis can rotate around the z-axis. 
For properties, we can specify the state, actuation method, sensing 

capabilities, and internal mechanics of the primitives of this joint. 
Ports B and F are frame ports that represent the base and follower 

frames, respectively. The joint direction is defined by motion of the follower 

frame relative to the base frame. 
Add a Solid Block, the block connects rigidly to the World frame and 

therefore has no effect on model dynamics, specify the following parameters 

as Table 
   

Parameter  Value  Units  
Geometry -- Dimensions [4 4 4] Change to cm 
Graphic – Visual Properties -- Color [0.80 0.45 0] Not applicable 

Table 2.2.3 Parameter of solid box 
 
Connect the blocks as shown in the Figure 2.2.8. The port orientation of 

the Revolute Joint block becomes important when you specify joint state 

targets, prescribe joint actuation inputs, or sense joint dynamic variables. The 

Revolute Joint block interprets each quantity as that applied to the follower 

frame with respect to the base frame, so switching the port connections can 

affect model assembly and simulation. 
The Revolute Joint block uses the common Z axis of the base and follower 

frames as the joint rotation axis. To ensure the pendulum oscillates under the 

effect of gravity, change the gravity vector so it no longer aligns with the Z 

axis. To do this, in the Mechanism Configuration block dialog box, set the 

Uniform Gravity -- Gravity parameter to [0 -9.81 0].  
Mechanism Configuration block Sets mechanical and simulation 

parameters that apply to an entire machine, the target machine to which the 

block is connected. In the Properties section below, you can specify uniform 

gravity for the entire mechanism also set the linearization delta. The 

linearization delta specifies the perturbation value that is used to compute 

numerical partial derivatives for linearization. Port C is frame node that you 

connect to the target machine by a connection line at any frame node of the 
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machine. 

 
2.2 Set initial position and Configure Solver 
 

In the Revolute Joint block dialog box, using the State Targets menu, we 

can specify the desired joint angle. In this example, we set the angle in 

default which corresponds to a horizontal pendulum starting position. 
To Configure Solver open the Configuration Parameters. In the 

Modeling tab, click Model Settings. In the Solver tab, set the Solver 

parameter to ode15s (stiff/NDF). This solver is the recommended choice for 

physical models. Set Max step size to 0.01, the small step size increases the 

simulation accuracy and produces a smoother animation in Mechanics 

Explorer. Small step sizes can have a detrimental effect on simulation speed 

but, in such a simple model, a value of 0.01 provides a good balance between 

simulation speed and accuracy. 
Update the block diagram. In the Modeling tab, click Update Model. In 

the Mechanics Explorer toolstrip, check that the View convention parameter 

is set to Y up (XY Front). This view convention ensures that gravity is 

vertically aligned on your screen. Select a standard view button to refresh the 

Mechanics Explorer display.  
 

3 Simulation  
The Figure 2.2.9 shows the simulation of the model. 

  

Figure 2.2.8 Assembly Model 
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4 Analyze Pendulum 
 

In this section, various forces and torques is added to a model, using 

blocks with motion sensing capability, you analyze the resulting dynamic 

response of the model. The result is a set of time-domain and phase plots, one 

for each combination of forces and torques.  
By adding forces and torques to this model, you incrementally change 

the pendulum from undamped and free to damped and driven. The forces and 

torques that you apply include: 
Gravitational force (𝐹𝑔) — Global force, acting on every component in 

direct proportion to its mass, that you specify in terms of the acceleration 

vector g. You specify this vector using the Mechanism Configuration block. 
Joint damping (𝐹𝑏) — Internal torque, between the pendulum and the 

joint fixture, that you parameterize in terms of a linear damping coefficient. 

You specify this parameter using the Revolute Joint block that connects the 

pendulum to the joint fixture. 
Actuation torque (𝐹𝐴) — Driving torque, between the pendulum and the 

joint fixture, that you prescribe directly as a Simscape physical signal. You 

prescribe this signal using the Revolute Joint block that connects the 

pendulum to the joint fixture. 
 
To sense the position and velocity, in the Sensing menu of the Revolute 

Joint block dialog box, select the 2 variables. The block exposes two 

additional physical signal ports, labeled q and w, that output the angular 

position and velocity of the pendulum with respect to the world frame. 
Add the following blocks to the model, shown as Table2.2.4. You use 

them here to output the joint position and velocity to the MATLAB base 

workspace. 
  

Figure 2.2.9 Simulation 
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Library Block Quantity 
Simscape > Utilities PS-SimulinkConverter 2 
Simulink > Sinks To Workspace 2 

Table 2.2.4 Output variable to workspace 
Connect the blocks as shown in the Figure 2.2.10. Ensure that the To 

Workspace block with variable name out.q connects, through the PS-

Simulink Converter block, to the Revolute Joint block port q, and that the To 

Workspace block with variable name out.w connects to the Revolute Joint 

block port w. 

Run the simulation, plot pendulum angular velocity and pendulum angle 

by using code at MATLAB command prompt, the result shows as 

Figure2.2.11 

Figure 2.2.10 

Figure 2.2.11 Pendulum angle and velocity as a function of time 

https://ww2.mathworks.cn/help/physmod/simscape/ref/pssimulinkconverter.html
https://ww2.mathworks.cn/help/simulink/slref/toworkspace.html
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5 Analyze Damped Pendulum 
 

The damping coefficient causes energy dissipation during motion, 

resulting in a gradual decay of the pendulum oscillation amplitude. To have a 

better understanding, we set Internal Mechanics -- Damping to 8𝑒−5(𝑁 ∗

𝑚)/(𝑑𝑒𝑔/𝑠) in the Revolute Joint block dialog box.  
Then the joint position and velocity with respect to time can be plotted as 

Figure 2.2.12 

 
6 Analyze Damped and Driven Pendulum 

 
In the Revolute Joint block dialog box, set Actuation -- Torque to 

Provided by Input. The block exposes a physical signal input port that you 

can use to prescribe the joint actuation torque. In order to input a Sine wave 

physical signal, we need a Simulink-PS Converter block to convert Simulink 

signal to a Simscape physical signal.   

Figure 2.2.12 Damped pendulum 

Figure 2.2.13 Damped and driven pendulum 
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Figure2.2.14 is the result of joint position and velocity with respect to time 

 

2.3 Simplified suspension 

In this chapter, a simplified suspension model is shown and simulated. The system 

will undergo different types of force tests, we can observe the left and right wheel, the 

suspension arms, shock absorber. Also, we have some visualization for the 

instantaneous and the roll centers. Some part of the suspension is simplified, the 

advantage is that we can easily parameterize the model and optimize design iterations 

automatically using optimization tools 
 
1. Build the components 

The components of a suspension system that consists of a simplified chassis, 

suspension arms and attire with trim to form the wheel system. 
 
1.1 Simplified chassis  

The simplified chassis is modeled by a solid block. Notice that, the 

reference frame is by default at the center of the geometry. For convenience, 

the dimension is not specified with numerical numbers, but with variable names. 

All the variables should be well defined in advance using a Matlab script file. 

Shown as Figure 2.3.1. 
 

Figure 2.2.14 Pendulum angle and velocity of a damped and driven pendulum 
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1.2 Suspension arms 
The suspension arm is a more complex part. To specify the complex 

geometry, set the shape parameter of solid body to a general extrusion. By this 

we can specify the cross section for the extrusion as an array of coordinate pairs. 

The cross section can be considered as a sweep along an axis (Z-axis at default) 

of the reference frame. We can extrude shapes that represent the suspension 

arm. Shown as the Figure 2.3.2. 

To specify the cross section, modify the cross-section. This will extend the 

custom cross-section through the z axis and centroid located at the block 

reference frame. Each row of array represents a different coordinates pair, 

adjacent coordinates pair are connected with a straight line to form a closed 

polygon. The dimension and the shape of our suspension arm is specified by a 

function. We could write our own function similarly for a shape of our choice. 

Figure 2.3.1 Simplified Chassis 

Figure 2.3.2 Suspension arm 
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To visualize the cross-section,  shown as the Figure 2.3.3, in the figure, we 

can see the structure of arm. 
 

Note that for the cross-section parameter to be valid, the array of 

coordinates must follow the rule:  
1. Coordinates must define a closed polygon that does not self-intersect.  
2. Counterclockwise loop encloses the solid section, clockwise loop 

encloses hollow section. 
 

1.3 Rim 
To model a rim, insert a Revolved Solid block, specify an array of 

coordinate pairs as the cross-section parameter in the dialog box similar to 

extrusion example. The visualization of the cross section is shown as Figure 

2.3.4. 

Figure 2.3.3 Visualization of the cross section 

Figure 2.3.4 Cross section of revolved solid body 
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Here, in Figure 2.3.4 the cross section is shown in the XZ plane, the cross 

section is rotated around the Z axis to create the revolved solid body. Notice 

that, in our example, we select the extent of revolution is full, but we can create 

partially revolved solids by setting this parameter to custom and setting a 

revolution angle. Shown as Figure 2.3.5. 

 
 

1.4 Tire 
For modeling the tire, the approach is the same with the rim, just modify 

the cross-section parameter. 

 
 

Figure 2.3.5 Rim 

Figure 2.3.5 Tire 
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2. Proper connection 
 
In Mechanics Explorer shown as Figure 2.3.6, we can notice that all the 

components are aligned along the center of mass, which means we have to 

position these components appropriately. We use rigid transform blocks to do 

this job.  

 
2.1 Position the suspension arm  

To position the arm to the right place we need to implement coordinate 

transforms represent degrees of freedom and specify body interfaces. 
As mentioned before, the transform block defines fixed relationship 

between Base B and Follower F coordinate frames. This relationship is 

defined by translational and rotation transformation. 
First, specify the translation with respect to chassis. We need to move 

the arm along the Y axis by half of the chassis width, we also move it to the 

appropriate position in the vertical Z axis, the distance is the variable 

arm1_chassis_dist which is the specified in the Matlab script. We use the 

Cartesian method to specify the translation in two axes. Then connect the 

rigid transform between the chassis and the arm. This transform block is 

Figure 2.3.6 Need proper connection 

Figure 5 2.3.7 Translation of suspension arm with respect to chassis 
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named as chassis to suspension arm.  
Then we need to rotate the arm about its z axis by 90 degrees and the 

x axis by 90 degrees as well as with respect to its own axis. After rotation, 

Base Z axis becomes the Follower X axis, and the Base X axis becomes the 

Follower Y axis. In transform block, select method as Aligned Axes, then 

modify the coordinate pairs. After that we still need to do another 

translation by half the length of the arm to position the link on the chassis. 

This transform block is named suspension arm to chassis. 

 
2.2 Connection between arm and rim 

First, we need to translate the rim to the end of the arm. Next, we need 

to rotate the rim to position it perpendicular to the arm this rotation is going 

to be with respect to the rim about its Y axis 90 degrees. This is going to be 

the translation with respect to the arm. As the rotation is around its own 

local Y axis, the transformation is going to be from the rim to the arm. So, 

we have to flip this block. The rim connection is at the center of the rim, 

instead it needs to be translated about the vertical axis by the parameter 

wheel_bias_1. 
 

2.3 The connection between tire and rim 
As the tire is rigidly connected with rim. Any transformation that the 

rim undergoes the tire also undergoes.   
So now we have positioned the arm with respect to the chassis and 

the rim with respect to the arm. Shown as Figure 2.3.9. 
  

Figure 2.3.8 Position the suspension arm 
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2.4 Joints  

For now, our model does not have any dynamics behavior even all the 

components are positioned correctly. That is because all the components 

are rigidly connected, we need to define the degrees of freedom for the 

components with respect to each other by adding joints. In our model, the 

links between the chassis and the arm, arm and the rim, represented by the 

revolute joints.  

 
As mentioned in the pendulum model in previous, a revolute joint has 

a single degree of freedom which lets the bodies rotate about the Z-axis. 

Figure 2.3.9 Proper connection between chassis, suspension arm and 

rim 

Figure 2.3.10 Link between components 
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So, it is important that the base coordinate and the follower coordinate Z-

axis are aligned. In this example we would like to connect the joint 

between two Rigid Transforms blocks. In this case the Base of the joint 

will be the follower of the Chassis to Arm transform block. We can notice 

that the Z axis is pointing upwards, however for the revolute joint to make 

sense it needs to be pointing out of the screen (along the X-axis). Also, the 

Follower in Arm to Chassis block, the Z axis is pointing upwards. The 

situation is shown as Figure2.3.11. 

 
We have to rotate the 2 Z-axis. In this case even if our base and the 

follower frames are co-located in other words the origins are at the same 

position they are not oriented correctly. We need an addition rotation 

transform. For both Rigid Transform block. 
First, in Chassis to Arm block, a rotation about Y-axis with 90 degrees 

is added. Then inside the Arm to Chassis block, the Base coordinate is 

shown as Figure 2.3.12. Mention that the Follower in Arm to Chassis 

block has to be aligned with the Follower inside Chassis to Arm block, so 

another rotation is added shown as Figure 2.3.13. 

Figure 2.3.11 Wrong orientation of Z-Axis 

Figure 2.3.12 Base coordinate 
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Now 2 frames are aligned for the revolution, Z-axis is also in the 

correct orientation for the joints.  
While for the revolute joint add between rim and wheel, after 

observing Rim to Arm transform block and Arm to Rim transform block , 

the Followers are located at the same position which means 2 frames are 

aligned. Also, the Z-axis is in the right orientation, no additional operation 

is needed.  
   

2.5 Create the second arm 
To create and assembly the second arm, is just the same with the first 

suspension arm, the only different is the specification and variable names 

which is already defined in the Matlab script. After grouping related 

components to make subsystems, shown as Figure 2.3.14 can be obtained.  

 
2.6 Create Shock Absorber   

The system still behaves like a pendulum now, with only forces under 

gravity, because the system is not fully constrained since the two arms are 

not bounded by a shock absorber component. The shock absorber can be 

simplified as the combination of a cylinder and a piston. We use Revolved 

Solid block to create piston and cylinder. 

Figure 2.3.13 

Figure 2.3.14 Mechanical Assemblies 
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Create the other port and connect the cylinder to the system. Once, 

the closed loop is created, which means the 2 arms are forced connect to 

the same point, center of mass of the cylinder and the piston, which is not 

physically possible in mechanical configuration. In order to avoid this 

error, we better not to close the loop at first. Instead, it is better to build 

the assemblies increment from one end to the other. Shown as Figure 

2.3.16 

 
To move the shock absorber to the right position and orientation.  
First, we have to rotate the cylinder about its Y-axis by negative 90 

degrees. Notice that the rotation is going to be form cylinder to the arm, 

which means the Base of the Rigid Transform block is connect to the 

cylinder.  
Then to move the link between the chassis and shock shocker to the 

end of the cylinder instead of at the center of mass, we have to translate 

this component along its own Z-axis.  
After that, add a revolute joint between the cylinder and the chassis 

Figure 2.3.15 Shock Absorber 

Figure 2.3.16 Open loop 
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connection point and check the rotation axis Z-axis is in the right 

orientation or not.  
For our example, the piston needs to be able to move up and down, 

but the cylinder and the piston are rigidly fixed to each other, we need to 

add a single translation degree of freedom. To do this, we can use a 

Prismatic Joint added between cylinder and piston. Prismatic joints 

represent a prismatic joint between two frames. This joint has one 

translational degree of freedom represented by one prismatic primitive. 

The joint constrains the follower origin to translate along the base z-axis, 

while the base and follower axes remain aligned. In the expandable nodes 

under Properties, specify the state, actuation method, sensing capabilities, 

and internal mechanics of the primitives of this joint. After you apply these 

settings, the block displays the corresponding physical signal ports. 
Next connect the piston to the lower arm at a given distance. Again, 

add a revolute joint. In this case we can see that the Z-axis is pointing 

down for the Base frame. While is the Follower of the Chassis to Arm the 

Z-axis is pointing out, which means we need to align these 2 axes by 

rotating the frame about Y-axis by 90 degrees. After that using the 

translation dialog block to move the piston to proper position shown as 

Figure 2.3.17 

 
From Figure 2.3.17 we can notice that the wheel position seems 

misguided suppose we would like the wheel to be positioned lower for an 

initial state initial configuration. For mechanical assemblies can be guided 

by providing initial conditions to necessary joints in this case it could be 

useful to specify an initial condition for the shock absorber piston’s 

displacement. By doing that we can control the wheel’s vertical position. 

To do this, adjust the State Targets in Prismatic Joint, specify the position 

target. This operation is the same with the Mass-Spring-Damper model, in 

that model we also set the state initial conditions. 
Finally, connect the piston to the lower arm to close the loop. 
For now the system is still act like a pendulum, the reason is that the 

Figure 2.3.17 
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shock absorber is not limiting the motion of the suspension arms. In the 

dialog box of Prismatic Joint, inside the Sensing section, we can config 

the joint to output various quantity, such as position shown as Figure 

2.3.18.  

The system seems to be undamped because the joint does not have 

any stiffness or damping effect. To add real world mechanic effect, we can 

specify the equilibrium position, spring stiffness and damping to model 

through Internal Mechanics dialog.  
 

2.7 Add external force 
We will use a test platform and exert force on our tire.  

 
We can move the test platform by using joint blocks. In our example, 

suppose platform is restricted to only a translational motion in one axis 

that is the vertical z axis of the world frame we can implement this using 

a prismatic joint. The joint is added between the world and the platform. 
Under the Joint block, inside the actuation section, we specify the 

Figure 2.3.18 Undamped displacement 

Figure 2.3.19 Test platform 
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Automatically Computed for motion and set force to be Provided by Input. 

This actuation mode is called forward dynamics. Alternatively, we can 

select the motion profile to be Provided by Input and the force to be 

Automatically Computed, this is called inverse dynamics. In our scenario 

we are not interested in the forces required to move the plate rather we 

would just like to move the platform with a provided motion profile. So, 

we set the motion to be Provided by Input and automatically compute the 

force required to get that motion profile. Shown as Figure 2.3.20 

 
After that we can input a physical signal to the prismatic joint. We can 

input any user-defined signal through the Input Port. This port is a root 

level input port and can accept data from the MATLAB scripts. Additional 

information for Simulink-PS Converter is there is a Input Handling tab, to 

avoid solver errors it is recommended that we provide the first and second 

derivatives that is velocity and acceleration of a motion profile. Input 

filtering makes the input signal smoother and generally improves model 

performance.  
The first way is to use the Filter Input method to take filter derivatives 

of the position signal.  
The second way is to provide our own input derivatives these could 

be by generated using custom transfer function blocks. 
In our example, we use the Filter Input method and use second-order 

filtering with the default Input Filtering time. Shown as Figure 2.3.21 

Then we have to model the force interaction between the platform and 

Figure 2.3.20 Inverse dynamics 

Figure 2.3.21 
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the tire. We can use the prismatic joint to establish the degree of freedom 

between the tire and the platform and restrict the motion to only the 

vertical axis. We can also use a planar joint to give it three degrees of 

freedom which is displacement across the y and z of the world frame and 

the rotation about the x axis. To exert forces on the wheel from the 

platform we can activate this planar joint using force in the forward 

dynamic mode. By obverse, we can notice that the force from the platform 

is always applied vertically regardless of the rotation of the tire which 

means the force relationship between the platform and the tire is not easy 

to model.  
To exert force on any frame regardless of joint blocks we use the 

External Force and Torque block. This block applies an external force and 

torque at the attached frame. The force and torque are specified by the 

physical signal inputs. This block can be configured to apply force to any 

coordinate frame whether a joint is attached or not. In our case, we need a 

force that along the Z-axis of the world frame. Then we can see an input 

force Fz which needs to be computed based on the motion of the platform 

and the port F is going to be the attached frame which the force will be 

applied. Show as Figure 2.3.22. To compute the force FZ based on the 

motion of the platform we need to measure the displacement and velocity 

between the platform and the wheel. We can do this using a Transform 

Sensor Block. 

 
A Transform Sensor Block measures time-dependent relationship 

between two frames. A Transform Sensor passively senses this 3-D time-

varying transformation, and its derivatives, between the two frames. In the 

expandable nodes under Properties, select which rotational and 

translational relationships, including velocities and accelerations, you 

want to measure. After you apply these settings, the block displays the 

corresponding output physical signal ports. Ports B and F are frame ports 

that represent the base and follower frames, respectively. The sensor 

measures the transformation and its derivatives as follower frame relative 

to base frame. The transformation components can be projected into one 

of several frames. 
In our case we want to measure the translation and the velocity along 

the world z axis. After that we have to compute the force by designing a 

subsystem Shown as 2.3.23. Given the Z and Vz it computes the force. In 

Figure 2.3.22 External Force and Torque block 



41 

 

the subsystem if the measured distance is greater than zero, we implement 

the equation to calculate the force otherwise the force is zero. Kw and Dw 

here are the proportional gain (spring) and derivative gain (damping). 
Then we connect the Base and the Follower of the Transform Sensor 

to the Base and the Follower of the planar joint block which describes the 

relationship between the platform and the tire.  
Last but not least, we connect our subsystem to the output of the 

Transform Sensor block and connect the External Force block to the 

output of the calculation block. shown as Figure 2.3.24 

Figure 2.3.23 Calculate the force 

Figure 2.3.24 Test plate 

Figure 2.3.25 
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Back to the upper level of the model, after defining the contact point 

of the wheel subsystem using the Rigid Transform block. Show as Figure 

2.3.25. 
 

2.8 Simulation 
Now we can input the signal through the Input Port. The input signal is 

defined through the Matlab script. 

The suspension system going through different motion profiles. We can 

observe the displacement of the shock absorber for the various force tests. We 

can measure all sorts of parameters like constraint forces to further analyze the 

dynamics of our system. 

 

Figure 2.3.26 Input signal 

Figure 2.3.27 Displacement of shock absorber 
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2.9 Designing tune and optimization 
Now we have finished building the right part of the suspension, the right 

part can be built with the same approach. In order to tune the model, it is better 

to define the Instantaneous center and Roll center. These 2 points define the 

property and behavior of the suspension. The definition of these 2 centers is 

shown as Figure 2.3.28 

 
To calculate the roll center and instantaneous center, we can use Matlab 

function block. We solve the trigonometric equations based on the parameters 

measured in the model. The function of calculating instantaneous center and 

roll center is shown as Figure 2.3.29. Parameters a,b,c,d, wb are the component 

positions of the suspension.  

 

Figure 2.3.28 Roll center and instantaneous center 

Figure 2.3.29 Formular 
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After defining the position of roll center and instantaneous center, using a 

visualization subsystem to visualize the points. We simply feed in the center 

position and actuate a solid sphere through a planar joint to move it in the Y Z 

plane. The visualization subsystems are individual mechanical systems by 

themselves that are used only for the visualization and do not have any effect n 

the rest of the system. Then our model become as Figure 2.3.30 

Then we have to optimize our model. First, we have to constrain the 

camber angle of the wheels between −1° 𝑎𝑛𝑑 − 7°. Camber angle of a wheel 

is measured with respect to the vertical. The orientation of camber angle is 

shown as Figure 2.3.31. a negative camber gives the better grip when cornering. 
So we have to sense the signal of camber angle using the Transform Sensor 

ad calculate the camber angle. Shown as Figure 2.3.32 

 
Second, constrain the Role Center height.  
To do these, we have to know the position of the connection point between 

the upper arm and the chassis which is controlled by a distance variable that 

Figure 2.3.31 Camber angle 

Figure 2.3.30 
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specifies how far the upper arm is positioned from the chassis center of gravity. 

Also, we have to know the length of upper arm itself, changing this value we 

change the geometry of the suspension system and have an effect on both 

camber angle and the roll center height. 
There are two types of optimization techniques: 
1. Parameter Estimation 

We use experimental data to fit model parameters. The goal is to 

improve our design such that the simulation is more likely to match the 

data provided. Used to tune plant model parameters to match data. 
2. Response Optimization 

We use performance matrix such as cost functions to tune algorithm 

parameters include constraining signals, reducing settling time, 

reducing overshoot. This method can be used to tune both plant and 

algorithm models. For our example, we use this method to constrain 

the roll center and camber angle. 
The optimization flow shown as Figure 2.3.24 begins with simulating the 

model with a set of initial values for our design parameters such as upper arm 

length. The model outputs are evaluated with user specified requirements such 

as camber angle and roll center height. This produces a cost function which 

have to be minimized. As long as the requirements have not been achieved, the 

model parameters are modified based on the optimization flow and simulation 

runs with new values and the cost function is evaluated again 

To use the Response optimization approach, we have to install 

Optimization Toolbox addons in Matlab. Then we have to define which 

Figure 2.3.32 Monitor camber angle 

Figure 2.3.24 Optimization flow 
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variables will be used for the optimizations and what requirements to satisfy. 

To define which parameters are tunable by the optimization algorithm select 

New from the Design Variable Set and select the variable which is the distance 

between suspension arm and chassis and the length of suspension arm. Due to 

the symmetry of the model, 1 variable can control both sides.  

It is recommended that we provide meaningful minimum and maximum 

values for the parameters to restrict the search space. For example, the 

connection point between arm and chassis does not have the full freedom to 

placed on the chassis because it is constrained by the chassis design. Similarly, 

the arm length itself needs to be constrained by track length or the width of the 

vehicle. 
Then we need to define the requirements for the optimization to achieve. 

First, set the constraint for the camber angle. Inside the Requirement section, 

for our application, select Signal Bound since we are constraining a time 

domain signal under a particular value. Then we have to define the upper and 

lower bound and choose the signal that can represents the camber angle. Since 

our model is symmetric, we can choose the signal from either right wheel or 

the left wheel. For setting up requirements for the roll center height, just do the 

same process, then we simulate the model and obverse the result as 

Figure.2.3.26.  

 
From the plot, we can notice that, both signals exceed the threshold. 

Which means the current parameter does not satisfy the requirement. So, the 

Figure 2.3.25 Select tunable variables 

Figure 2.3.26 Before optimization  

Left: Camber angle  Right: Roll center height 
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next step is to optimize these parameters. The optimization progress report will 

give us information about the iteration. The optimization tool runs the model 

evaluates cost function based on the design requirements, changes our selected 

design parameters based on the default optimization algorithm and then runs 

the model again until the requirements are met. Once we see from the progress 

report that the optimization has converged and successful, we can observe the 

plot, shown as Figure 2.3.27.  

 
In the plot, we can see the signal values for different iterations, the blue 

plot is the final optimized response we can notice that it is within the signal 

threshold, so the optimization was successful. The optimized value is stored 

and modified in the Matlab workspace.  

Figure 2.3.27 After optimization 

Left: Camber angle  Right: Roll center height 

Figure 2.3.28 Final configuration 
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Compared to initial configuration, the final configuration has a shorter 

upper arm resulting in the wheels pointing towards the suspension which 

means a negative camber angle. Also, the upper arm connection point is moved 

upwards, the roll center is moved downwards.  
  

2.10 Import CAD model  
We have built a suspension using Simscape Multibody, it allows us to 

create our own custom components. However, mechanical systems are 

commonly designed using CAD software. We can use CAD models to 

automatically generate Simscape Multibody block diagrams. This allows us to 

do various operation with a CAD model such as data logging, analysis, 

dynamic simulation, control design, parameter optimization, automatic C/C++ 

code generation etc. 
   There are 2 import workflows: 

1. Importing individual parts 
Here we already have a Multibody model and would like to import an 

individual CAD part to enhance the existing model. 
2. Importing assemblies 

In this case we import the entire assembly from the CAD software 

including degrees of freedom, inertia properties etc. 
 

Let us import the individual parts at first. Most CAD platforms allow us 

to save each part of the model as a STEP or a STL file. This allows us to use 

these files to define solid geometries. As the model is export from CAD, we 

can use File Solid block to import the file. File Solid is a block that Represents 

a solid whose geometry, material and visual properties are read from a file 

which could be of CATIA, NX, SolidEdge and other formats. The File Solid 

block obtains the inertia from the geometry and density, from the geometry 

and mass, or from an inertia tensor that we specify. Then we can this solid as 

any other components, create frames to integrate with the existing mechanics 

system. Shown as Figure 2.3.29  

Figure 2.3.29 Import individual part 

Left: Wheel hub in SolidWorks  Right: Wheel hub imported to Simscape 
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To export the assemblies, we have to use the Simscape Multibody link 

add-on. Simscape Multibody Link can automatically convert a CAD assembly 

into a sim mechanics block diagram. The CAD platforms supported in 

Simscape Multibody link are Autodesk Inventor®, Creo™ Parametric and 

SolidWorks®. After installed the add-on, software can export a CAD model 

into XML and graphics files. Shown as Figure 2.3.30.  

 
One STEP file per rigid part, XML file which contains information such 

as units, coordinate transforms, constraints, inertial properties, colors etc. 
In order to input the assemblies, we need to use command smimport. 

Notice that the only a subset of CAD constraints can be translated. If the 

command is unable to translate a CAD constraint, it will assume a rigid 

connection. When this occurs, we will receive a warning. 

Figure 2.3.30 Exported assemblies 

Figure 2.3.31 Import assemblies 

Top: Assembly model in SolidWorks 

Bottom: Converted into Simscape Multibody model 
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From Figure 2.3.31we can see that 3 essential blocks used in every sim 

model. Also, we can see the different subsystems, each component is well 

defined. The constraints in our assembly have been translated into mechanical 

joint block. There are some cylindrical joints in the model do not have any 

effect on the original constraints of our system in the CAD model. These joints 
are connected for all practical purposes, they are just fundamental revolute. 

And in the case of the connection between the cylinder and piston it is 

prismatic.  
 In order to let the model, work properly, we have to modify the gravity 

vector orientation to negative Z-axis direction. Notice that, the internal 

mechanical properties are not translated by Simscape Multibody Link, which 

means we have to specify the stiffness or damping of the shock absorber joints. 

The joints were modeled in an ideal way. The following Table 2.3.1 shows the 

feature that can be captured by Simscape Multibody Link  
  

Mechanical Element Translatable by Simscape 

Multibody Link? 
Geometric properties Yes 

Inertial properties Yes 
Coordinate transforms Yes 

Joints Yes 
Distance/Angle constraints Yes 

Graphic properties Yes 
Initial conditions Can translate position cannot 

translate velocity 
External mechanics No 
Internal mechanics No 

Sensing and actuation No 
Table 2.3.1 Features of Simscape Multibody Link 

After refining the model, we can add sensor, actuator, connect to other  
models or the external force test subsystem.   
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3. Conclusion 
Simscape extends Simulink with libraries for modelling and simulating multi-

domain physical systems. It is built on the top of Matlab and Simulink, contains models 

of foundation elements for various physical domains. also, contains other capabilities 

which is useful when modeling physical system (such as unit manager, data logging, 

etc). MathWorks offers a suite of physical modeling products built on top of Simscape 

for specialized modeling of multi-domain physical systems. For example, the Simscape 

Multibody is used to model 3D systems. 
With Simscape we can create the model using the physical network method where 

deriving the system level equation is not required. This makes the model easier to create, 

understand and maintain.  
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