

Multibody dynamic simulation with
Simscape: methods and examples

LI KENAN

255250

Tutor: Prof. TRIVELLA ANDREA

1

Contents

1. Introduction ...2

2. Method and examples ...7

2.1 Mass-Spring-Damper model ...7

2.2 Pendulum model .. 16

2.3 Simplified suspension .. 27

3. Conclusion .. 51

4. Reference .. 52

2

1. Introduction

With the increasing complicity of control systems and the rapid development of
robotics technology, various complex mechanical systems have emerged, such as
vehicles, spacecraft, robotic arms, robots, and human science. Due to the continuous
improvement of the degree of freedom of the system, more and more complex system
cannot be modeled by a single model. Therefore, it has a great significance to carry
out research on modeling and simulation of multibody systems. On the other hand,
due to the increasing complexity of modern precise control systems and more and
more components inside the system, the probability of failure of the controlled system
is increasing. In a large-scale complex system, once an accident occurs in a certain
subsystem, it may cause significant property losses.

In 1977, the MultiBody Dynamics Symposium was first held in Munich,
Germany. Since then, international conferences on multi-body dynamics have
emerged in endlessly. In recent years, researchers have done deeply research on the
modeling and simulation of multibody systems.

Multibody dynamics simulation (MBDS) software decomposes the actual system
into rigid bodies, joints, constraints, coordinate systems, drives, sensors, inputs and
other components. A complex system can be modelled with graphical components.
Also, the entire simulation process contains two stages: modeling and solving.
Modeling includes two processes:

First, physically modelling, form a physical model from a geometric model.
Second, mathematically modelling, form a mathematical model from a physical
model.

The solver is a set of computation algorithms that solve equations of motion. The
choose of solver depends on the type of problem, kinematics/dynamics, static balance,
eigenvalue analysis, etc. The corresponding solver should be well selected for
numerical calculation and solution.

It is suited to study the dynamic behavior of interconnected rigid and/or flexible
bodies undergoing large translational or rotational displacements. The motion of those
bodies is calculated based on applied loads and boundary conditions defined.

Multibody dynamics simulation (MBDS) can not only be used to predict
mechanical system performance, trajectory of motion, collision detection, peak load
and so on but also used in several aspects, such as safety, and comfort, can be
evaluated and optimized. Users can not only use general modules to simulate simple

3

mechanical systems, but also use specific modules to quickly and effectively model
and simulate problems in related industrial applications.

The potential of MBDS in product development mainly according to following
reasons:

1. Reduction of development lead time and life cycle cost.

Manufacturers often struggle to understand real system performance until
extremely late in the design process. Mechanical, electrical, and other
subsystems are validated against their specific requirements within the
systems engineering process, but full system test and validation comes late,
leading to rework and design changes that are riskier and more costly than
those made early on.

MBS improves engineering efficiency and reduces product development costs
by enabling early system-level design validation. Engineers can evaluate and
manage the complex interactions between disciplines including motion,
structures, actuation, and controls to better optimize product designs for
performance, safety, and comfort. Along with extensive analysis capabilities,
MBS is optimized for large-scale problems, taking advantage of high-
performance computing environments.

MBS offer comparably short calculation times. This makes them a very
efficient simulation tool and an excellent choice for parameter studies and
optimization of complex assemblies having many degrees of freedom.

Due to their short calculation times, MBS enable early insights in the effect of
design parameters on the overall performance of a system. This allows to
make well-founded design choices in an early state of the development
process, saving costs by lowering lead times and reducing the number of
extended hardware tests significantly.

Figure 1 Simulation of anti-roll bar under roll motion

4

To give an example, with Adams Car, engineers can quickly build and test
functional virtual prototypes of complete vehicles and vehicle subsystems.
Working in the Adams vehicle vertical environment, automotive engineering
teams can exercise their vehicle designs under various road conditions,
performing the same tests they normally run in a test lab or on a test track, but
in a fraction of time. Following requests can be satisfied：

⚫ Analysis of suspension, steering and full-vehicle maneuvers
⚫ Easy integration of control systems into vehicle models
⚫ Creation or import of component geometry in wireframe or 3D solids
⚫ Extensive library of joints and constraints to define part connectivity
⚫ Model refinement with part flexibility, automatic control systems, joint

friction and slip, hydraulic and pneumatic actuators, and parametric
design relationships

⚫ Comprehensive linear and nonlinear results for complex, large-motion
designs

⚫ Comprehensive and easy to use contact capabilities supporting 2D and 3D
contact between any combination of modal flexible bodies and rigid body
geometry

2. Easy to use.

The complexity of the procedure for using the MBS is reduced compared with
the past decade. As the MBS are well developed, it is now, not any more
designed for specialist in simulation or expert in dynamic analysis, but also
designed for normal design engineer.

In MATLAB® Simscape Multibody program a complex multibody system
can be built by blocks representing bodies, joints, constraints, force elements,
and sensors. It formulates and solves the equations of motion for the complete

Figure 2 Force act at tire ground contact

5

mechanical system and automatically generated 3D animation lets you
visualize the system dynamics.

Simscape Multibody contains a library of blocks and simulation and control
interfaces to interconnect Simscape plans with the Simulink environment, also
hydraulic, electrical, pneumatic, and other physical systems can be integrated
into model using components from the Simscape family of products.

RecurDyn has an immensely powerful GUI with an intuitive design. It
contains a completely integrated environment for model development,
simulation, and analysis of results. Pre-processing for model creation and
parameter definition and post-processing for analyzing the results is integrated
directly into the GUI. A wide range of customization options also exist in the
GUI to improve productivity by automating common tasks.

3. Accurate, or in other world, MBDS software can simulate the “real world”

physics.

To simulate the dynamic behavior of a rigid multibody, it is necessary to solve
a sequence of motion of equation which describe the motion of system. These
equations are known as Differential Algebraic Equations (DAEs), a
combination of differential equations that describe motion and algebraic
equations that encapsulate joint constraints. For linear dynamic simulation,
solver has high efficiency and accurate due to the multi-core processor
nowadays.

Utilizing multibody dynamics solution technology, MBDS such as ADAMS
runs nonlinear dynamics in a fraction of the time required by FEA solutions.
Loads and forces computed by simulations improve the accuracy of FEA by

Figure 3 In Simscape Multibody, front suspension is modeled by blocks

6

providing better assessment of how they vary throughout a full range of
motion and operating environments.

4. Repeatable. In real life, failure test costs time and money while using MBDS
software, it is possible to simulate and validate repeatably under fault
condition. We have certain benefits:

Create Robust Designs. Specify failure criteria for components, including
time, load, or temperature-based conditions. Model degraded component
behavior, such as worn gear teeth or increased bearing friction. Automatically
configure models to efficiently validate designs under fault conditions.

Perform Predictive Maintenance. Generate data to train predictive maintenance
algorithms. Validate algorithms using virtual testing under common and rare
scenarios. Reduce downtime and equipment costs by ensuring maintenance is
performed at just the right intervals.

Minimize Losses. Calculate the power dissipated by mechanical components.
Verify components are operating within their safe operating area. Simulate
specific events and sets of test scenarios, and then post-process results in
MATLAB.

Multibody dynamic simulation software makes change in design stage much faster
and at a lower cost than physical prototype testing would require. Provide more secure
environment without the fear of losing data from instrument failure. Without physical
testing, simulation or the analysis can be performed in all scenarios without the
dangers.

Figure 4

A connection between two parts breaks as the force exceeds the

upper limit for the joint.

7

2. Method and examples

In this chapter, serval examples that modeled and simulated based on Simscape

Multibody are going to be shown. Examples are in the field of automotive engineering.

2.1 Mass-Spring-Damper model

Fist, we start with a classic model constructed with Matlab Simscape.
Mass-Spring-Damper system is a quite common oscillatory model. By studying the

model, we can have a better understanding of the object with complex mechanical

properties such as nonlinearity. In this model, mass is considered as node which is

connected with ideal weightless damper and spring representing the different

mechanical properties. Also, by changing the characteristic of damper and spring to

achieve desired effects. After building the model, applying the Newton’s Law to the

mass considering not only the force applied by damper and spring but also the external

force gives differential equations for the motion of the mass. The differential equations

are solved by standard numerical schemes for solving ODEs, in Simscape we have

servals ODEs can be use, the ODE used in the examples are ode45.
The workflow of constructing a Mass-Spring-Damper is shown as below:

1. To build a Simscape model with default setting, use the command ssc_new.

When command in used, following object will automatically be created: data

logging, recommended solver and tolerance settings.

2. Assemble Physical Network
To model the system, blocks can be added from the Simscape Libraries, then

connect the block through lines, into a physical network. The physical network

built in the Simscape represent the real system, in the other words, Simscape mimic

the physical system. When constructing the network, it is necessary to include the

domain-specific reference blocks, such as Mechanical Translation Reference in this

example.

Figure 2.1.1 Create a Simscape model

8

The detailed instruction is described as following:

2.1 Click Simscape - Foundation Library - Mechanical - Translational

Elements library.
2.2 Drag Mass, Translational Spring, Translational Damper, and Mechanical

Translational Reference blocks into the window. Then connect them

through lines.
To adjust or shorten the name of blocks, right click the block, select Format

- Show Block Name - on

Figure 2.1.3 Add blocks

Figure 2.1.2Model represents the real system

Figure 2.1.4 Show block name

9

3. Adjust Block Parameter

Each block represents a generic component that has initial values. In this
model, mass, spring and damper block can be adjusted by double click the block.
As an example, spring rate, damping coefficient and mass are adjust to 400N/m,
100N/(m/s) and 3.6kg. To specify the desired initial value for mass velocity, click
Variables.

Notice that override means that the velocity has overridden the default
variable initialization value. The variable with high priority, therefore, the solver
will try to satisfy this initial value when it computes the initial conditions during
the simulation.

4. Add Sources

Simscape source blocks represent physical effect, such as forces, voltages, or
pressures, that act on the system. Also, quantities that flow through the system
such as current, mass flow rate, and heat flux can be specified. To add
representation of the force acting on the mass, use the Ideal Force Source block.
The block represents an ideal source of force that generates force proportional to
the input physical signal. The source is ideal in a sense that it is assumed to be
powerful enough to maintain specified force regardless of the velocity at source
terminals.

The detailed instruction is described as following:

4.1 Simscape -- Foundation Library -- Mechanical -- Mechanical Sources
library. Add the Ideal Force Source block to the diagram

4.2 To reflect the correct direction of the force shown in the original
schematic, flip the block orientation. Select the Force Source block, on
the Format tab, under Arrange, click Flip up-down

Figure 2.1.5 Adjust Block Parameter

10

4.3 The system must have 2 constraints, so add another Mechanical
Translational Reference block by right click it and drag it to a new
location.

4.4 Connect port C of the Force Source block to this second Mechanical
Translational Reference block and port R to the Mass block. The input
signal stands for the force profile will be supplied through port S, after
the system is connected to a Simulink source. A positive signal at port S
will specify a force that acts from port C to R.

5. Add sensors

Quantities from physical network can be measured by adding sensors block, it
can be in series or parallel depends on the measured value. To measure a quantity
defined by a Through variable (such as current, flow rate, force), connect the
sensor in series. To measure a quantity defined by an Across variable (such as
voltage, pressure, velocity), connect the sensor in parallel. In this example, spring
deformation is an important parameter. To measure spring deformation, connect
an Ideal Translational Motion Sensor block in parallel with the spring.

It is a device that converts an across variable measured between two
mechanical translational nodes into a control signal proportional to velocity and
position. The sensor is ideal since it does not account for inertia, friction, delays,
energy consumption, and so on.

Also, some common uses of those quantities include feedback for a control
algorithm, modeling physical components whose behavior depends on other

Figure 2.1.6 Add Source

11

physical quantities (such as temperature-dependent resistor), or simply viewing
the results during simulation.

The detailed instruction is described as following:

5.1 Simscape -- Foundation Library -- Mechanical -- Mechanical Sensors
library. Add the Ideal Translational Motion Sensor block to the diagram,
for a better reading experience, shorten the block name as Motion Sensor.

5.2 For Ideal Motion Sensor, connect the R port and port as the figure shown
below. Connections R and C are mechanical translational conserving
ports and connections V and P are physical signal output ports for
velocity and position, respectively. The block positive direction is from
port R to port C.

6. Connect to Simulink with Interface Blocks

Interface blocks, such as Simulink-PS Converter and PS-Simulink Converter,
takes in charge the signal conventions between these two modeling. Interface
blocks are needed when Simulink signals specify quantities in a Simscape
network, or when passing Simscape quantities to Simulink for control design.
Every time when connect a Simulink block to a Simscape physical network, an
appropriate converter block is needed.

Now, to connect the physical network to a controller built out of regular
Simulink blocks. First, prepare the physical network to be connected to Simulink
signals then, build and connect the controller:

The detailed instruction is described as following:

Figure 2.1.7 Add Sensors

12

6.1 Connect the physical signal output port of the Simulink-PS Converter
block to port S of the Force Source block. This signal is the input signal
of the force source.

6.2 Connect the output port P of the Motion Sensor block to the physical
signal input port of the PS-Simulink Converter block. As motioned
before, the port P stands for the position.

6.3 Connect the Solver Configuration block to the circuit.

6.4 Open Simulink -- Sources library and drag the Pulse Generator block into
the model. Set the parameter to the desired value.

Figure 2.1.8 Physical Signal side

Figure 2.1.9 Position command

13

6.5 Open Simulink -- Math Operations library and drag the Add block as
feedback into the model. Set the correct signs

6.6 Open the Simulink -- Continuous library and drag the PID Controller
block into the model. Set the Proportional (P), Integral (I), and Derivative
(D) parameter with desired value

6.7 Connect the block as following figure.

The control Simulink signal goes to the input port of the Simulink-PS
Converter block, where it is converted into a physical signal driving the
force profile of the Ideal Force Source block. The output port P of the
Ideal Translational Motion Sensor block, which measures the spring
deformation, connects to the PS-Simulink Converter block. This block

Figure 2.1.10 Feedback

Figure 2.1.11 PID controller

14

converts the physical signal into a feedback Simulink signal for the
controller.

7. Simulate Model

To compare the input and feedback signals, connect them to a signal viewer:

7.1 Right-click the Simulink signal that goes from the Pulse Generator block
to the Sum block. From the menu, select Create & Connect Viewer –
Simulink -- Scope.

7.2 Then, right-click the Simulink signal that goes from the PS-Simulink
Converter block to the Sum block. From the context menu, select Connect to
Viewer -- Scope.

7.3 Click the run button in Simulink Toolstrip or in Scope. The Simscape
solver evaluates the model and runs the simulation. Figure 2.1.13 shows the
comparison of input and feedback signals, the yellow square wave is the input
signal while the blue line with a little overshot is the feedback signal.

8. View Simulation Results

The other way to view the results is to use Simscape Results Explorer. It
analyzes simulation data by using data logging functionality. Right click the
block (component) select Simscape -- View simulation – simlog.

The Simscape Results Explorer window opens, with the node corresponding
to the Spring block highlighted in the left pane. The right pane displays the

Figure 2.1.12 Connect to Simulink with Interface Blocks

15

simulation data plots for the variables associated with the block shown as Figure
2.1.14.

Figure 2.1.13 Compare the input and the feedback signals

Figure 2.1.14 Simulation Results of Spring

16

2.2 Pendulum model

In this section, a simple pendulum is modeled and analyzed using Matlab Simscape

Multibody. The pendulum is a simple mechanical system. For this example, the system

contains two bodies, a link and a fixed pivot, connected by a revolute joint.

1. Model a simple link
Mechanical links are common building blocks in linkages, mechanisms, and

machines. To model a pendulum, a simple link should be modeled first. For simplicity,

the model assumes the link has a brick shape and two end frames.

1.1 Create a model template

To open a Simscape Multibody model template with default setting use

command smnew

1.2 Duplicate the Rigid Transform block to add a second end frame to the link.

Rigid Transform block defines a fixed 3-D rigid transformation between

two frames. Two components independently specify the translational and

rotational parts of the transformation. Different translations and rotations can

be freely combined.
In the expandable nodes under Properties, choose the type and parameters

of the two transformation components. We can use the Cartesian, standard axis

and cylindrical as translation axis, each parameter can be modified under

Figure 2.2.1 Model template

17

properties tab. We can specify the following methods of translation:
Standard axis and elementary translation along one base axis
Cartesian, three-dimensional translation, as a vector XYZ.
Cylindrical, three-dimensional translation, as a vector r theta and Z
For rotation, we have different choice such as standard axis, aligned axes,

arbitrary axis, rotation sequence and rotation matrix. Rotate around standard

axis is defined with the right-hand rule, the axis of rotation is defined positive

in the direction of the thumb.
Standard axis: where the elementary rotation is along one base axis.
Arbitrary axis: where the elementary rotation is along one custom axis.
Aligned Axe: where we have 2 axis mappings between base and follower

coordinate frames.
Rotation matrix: where we define a 3x3 rotation matrix from a base to

follower frame.
Rotation sequence: where we specify frame rotation as a sequence of three

elementary rotation angles and axis.
Ports B and F are frame ports that represent the base and follower frames,

respectively. The transformation represents the follower frame origin and axis

orientation in the base frame.
These parameters specify the locations of two end frames on the simple

link.

Table 2.2.1 Parameters in Rigid Transform blocks

Parameter Rigid

Transform1
Rigid Transform Units

Translation --

Method
Standard Axis Standard Axis Not applicable

Translation -- Axis -X +X Not applicable

Translation -- Offset L/2 L/2 cm

18

1.3 Flip the Rigid Transform1 block so that you can connect the B ports of

two Rigid Transform blocks to each other and the Brick Solid block. And

connect the remaining blocks.

1.4 Define link’s physical properties, such as shape, mass and appearance in

Brick Solid block.

Brick Solid box represents a solid combining a geometry, an inertia and

mass, a graphics component, and rigidly attached frames into a single unit. A

solid is the common building block of rigid bodies. The Solid block obtains

the inertia from the geometry and density, from the geometry and mass, or

from an inertia tensor that you specify.
In the expandable nodes under Properties, select the types of geometry,

inertia, graphic features, and frames that you want and their parameterizations.
Port R is a frame port that represents a reference frame associated with the

geometry. Each additional created frame generates another frame port.
After changing the parameters, the Brick Solid and Rigid Transform

blocks will be highlighted in red because variables have not defined yet. This

issue will be solved after imputing all the numerical values for the parameters,

which will be described in the following section. Instead inserting the

numerical numbers, we insert variables which is much more convenient if we

have to modify some parameters.

Figure 2.2.2 Connect blocks

19

Table 2.2.2 Parameters in Brick Solid Box

1.5 Generate Subsystem

A complex multibody system can be build using several simple models,

such as a simple link model. The physical parameters of these simple models

usually need to be adjusted to fit different design requirements. To simplify

the parameter adjusting process, Subsystem blocks is used for these simple

models. A Subsystem block enables the updates for many parameters in a

single place — the Subsystem block dialog box. In this section, it is

exampled how to create a Subsystem block for the simple link model.

Select the Brick Solid block and the two Rigid Transform blocks by

holding shift and clicking the blocks.

Right-click one of the selected blocks and select Create Subsystem from

Selection. Simulink adds a new Subsystem block that contains the Brick

Solid and Rigid Transform blocks.

Parameter Value Units
Geometry > Dimensions [L W H] cm
Inertia > Density rho kg/cm^3
Graphic--Visual Properties-- Color rgb Not applicable

Figure 2.2.3 Create Subsystem

20

Double-click the Subsystem box. A new tab displays the children blocks

of the Subsystem block. Double-click the PMC_port on the left named Rigid

Transform2, which is the Physical Modelling Connection Port block for

subsystem, set Port location on parent subsystem to left. Click OK to apply

the change and navigate back to the parent model by clicking the up arrow

button next to the Subsystem tab.

1.6 Specify the parameters

Right-click the Subsystem block and select Mask -- Create Mask. The

Mask Editor window opens, where we can define the variables that entered in

the Brick Solid and Rigid Transform block dialog boxes.
Click the Parameters & Dialog tab and click Edit. The Prompt property

specifies the names of the parameters that you can enter in the Subsystem

block parameter window. The Name property specifies their corresponding

Figure 2.2.4 Subsystem

Figure 2.2.5 Specify the parameter

21

MATLAB variables, shown as Figure 2.2.5.
Double-click the Subsystem block. The mask of subsystem opens. Enter

the numerical values shown in Figure 2.2.6 the Subsystem Block Parameters.

These values specify the shape of Brick Solid and the location of Rigid

Transform blocks.

1.7 Visualize Model

Run the model. The Mechanics Explorer opens with a front view of the

simple link model. So far, the link has been fully constructed shown as

Figure 2.2.7

2. Model pendulum

 As a simple link is modeled, we can now add joint and define initial

condition.

Figure 2.2.6 Insert the numerical values

Figure 2.2.7 Visualize model

22

2.1 Add joint

In Simscape -- Multibody -- Joints library, add a revolute joint. This

block provides one rotational degree of freedom between its port frames.

Revolute joint block represents a revolute joint acting between two frames.

This joint has one rotational degree of freedom represented by one revolute

primitive. The joint constrains the origins of the two frames to be coincident

and the z-axes of the base and follower frames to be coincident, while the

follower x-axis and y-axis can rotate around the z-axis.
For properties, we can specify the state, actuation method, sensing

capabilities, and internal mechanics of the primitives of this joint.
Ports B and F are frame ports that represent the base and follower

frames, respectively. The joint direction is defined by motion of the follower

frame relative to the base frame.
Add a Solid Block, the block connects rigidly to the World frame and

therefore has no effect on model dynamics, specify the following parameters

as Table

Parameter Value Units
Geometry -- Dimensions [4 4 4] Change to cm
Graphic – Visual Properties -- Color [0.80 0.45 0] Not applicable

Table 2.2.3 Parameter of solid box

Connect the blocks as shown in the Figure 2.2.8. The port orientation of

the Revolute Joint block becomes important when you specify joint state

targets, prescribe joint actuation inputs, or sense joint dynamic variables. The

Revolute Joint block interprets each quantity as that applied to the follower

frame with respect to the base frame, so switching the port connections can

affect model assembly and simulation.
The Revolute Joint block uses the common Z axis of the base and follower

frames as the joint rotation axis. To ensure the pendulum oscillates under the

effect of gravity, change the gravity vector so it no longer aligns with the Z

axis. To do this, in the Mechanism Configuration block dialog box, set the

Uniform Gravity -- Gravity parameter to [0 -9.81 0].
Mechanism Configuration block Sets mechanical and simulation

parameters that apply to an entire machine, the target machine to which the

block is connected. In the Properties section below, you can specify uniform

gravity for the entire mechanism also set the linearization delta. The

linearization delta specifies the perturbation value that is used to compute

numerical partial derivatives for linearization. Port C is frame node that you

connect to the target machine by a connection line at any frame node of the

23

machine.

2.2 Set initial position and Configure Solver

In the Revolute Joint block dialog box, using the State Targets menu, we

can specify the desired joint angle. In this example, we set the angle in

default which corresponds to a horizontal pendulum starting position.
To Configure Solver open the Configuration Parameters. In the

Modeling tab, click Model Settings. In the Solver tab, set the Solver

parameter to ode15s (stiff/NDF). This solver is the recommended choice for

physical models. Set Max step size to 0.01, the small step size increases the

simulation accuracy and produces a smoother animation in Mechanics

Explorer. Small step sizes can have a detrimental effect on simulation speed

but, in such a simple model, a value of 0.01 provides a good balance between

simulation speed and accuracy.
Update the block diagram. In the Modeling tab, click Update Model. In

the Mechanics Explorer toolstrip, check that the View convention parameter

is set to Y up (XY Front). This view convention ensures that gravity is

vertically aligned on your screen. Select a standard view button to refresh the

Mechanics Explorer display.

3 Simulation
The Figure 2.2.9 shows the simulation of the model.

Figure 2.2.8 Assembly Model

24

4 Analyze Pendulum

In this section, various forces and torques is added to a model, using

blocks with motion sensing capability, you analyze the resulting dynamic

response of the model. The result is a set of time-domain and phase plots, one

for each combination of forces and torques.
By adding forces and torques to this model, you incrementally change

the pendulum from undamped and free to damped and driven. The forces and

torques that you apply include:
Gravitational force (𝐹𝑔) — Global force, acting on every component in

direct proportion to its mass, that you specify in terms of the acceleration

vector g. You specify this vector using the Mechanism Configuration block.
Joint damping (𝐹𝑏) — Internal torque, between the pendulum and the

joint fixture, that you parameterize in terms of a linear damping coefficient.

You specify this parameter using the Revolute Joint block that connects the

pendulum to the joint fixture.
Actuation torque (𝐹𝐴) — Driving torque, between the pendulum and the

joint fixture, that you prescribe directly as a Simscape physical signal. You

prescribe this signal using the Revolute Joint block that connects the

pendulum to the joint fixture.

To sense the position and velocity, in the Sensing menu of the Revolute

Joint block dialog box, select the 2 variables. The block exposes two

additional physical signal ports, labeled q and w, that output the angular

position and velocity of the pendulum with respect to the world frame.
Add the following blocks to the model, shown as Table2.2.4. You use

them here to output the joint position and velocity to the MATLAB base

workspace.

Figure 2.2.9 Simulation

25

Library Block Quantity
Simscape > Utilities PS-SimulinkConverter 2
Simulink > Sinks To Workspace 2

Table 2.2.4 Output variable to workspace
Connect the blocks as shown in the Figure 2.2.10. Ensure that the To

Workspace block with variable name out.q connects, through the PS-

Simulink Converter block, to the Revolute Joint block port q, and that the To

Workspace block with variable name out.w connects to the Revolute Joint

block port w.

Run the simulation, plot pendulum angular velocity and pendulum angle

by using code at MATLAB command prompt, the result shows as

Figure2.2.11

Figure 2.2.10

Figure 2.2.11 Pendulum angle and velocity as a function of time

https://ww2.mathworks.cn/help/physmod/simscape/ref/pssimulinkconverter.html
https://ww2.mathworks.cn/help/simulink/slref/toworkspace.html

26

5 Analyze Damped Pendulum

The damping coefficient causes energy dissipation during motion,

resulting in a gradual decay of the pendulum oscillation amplitude. To have a

better understanding, we set Internal Mechanics -- Damping to 8𝑒−5(𝑁 ∗

𝑚)/(𝑑𝑒𝑔/𝑠) in the Revolute Joint block dialog box.
Then the joint position and velocity with respect to time can be plotted as

Figure 2.2.12

6 Analyze Damped and Driven Pendulum

In the Revolute Joint block dialog box, set Actuation -- Torque to

Provided by Input. The block exposes a physical signal input port that you

can use to prescribe the joint actuation torque. In order to input a Sine wave

physical signal, we need a Simulink-PS Converter block to convert Simulink

signal to a Simscape physical signal.

Figure 2.2.12 Damped pendulum

Figure 2.2.13 Damped and driven pendulum

27

Figure2.2.14 is the result of joint position and velocity with respect to time

2.3 Simplified suspension

In this chapter, a simplified suspension model is shown and simulated. The system

will undergo different types of force tests, we can observe the left and right wheel, the

suspension arms, shock absorber. Also, we have some visualization for the

instantaneous and the roll centers. Some part of the suspension is simplified, the

advantage is that we can easily parameterize the model and optimize design iterations

automatically using optimization tools

1. Build the components

The components of a suspension system that consists of a simplified chassis,

suspension arms and attire with trim to form the wheel system.

1.1 Simplified chassis

The simplified chassis is modeled by a solid block. Notice that, the

reference frame is by default at the center of the geometry. For convenience,

the dimension is not specified with numerical numbers, but with variable names.

All the variables should be well defined in advance using a Matlab script file.

Shown as Figure 2.3.1.

Figure 2.2.14 Pendulum angle and velocity of a damped and driven pendulum

28

1.2 Suspension arms
The suspension arm is a more complex part. To specify the complex

geometry, set the shape parameter of solid body to a general extrusion. By this

we can specify the cross section for the extrusion as an array of coordinate pairs.

The cross section can be considered as a sweep along an axis (Z-axis at default)

of the reference frame. We can extrude shapes that represent the suspension

arm. Shown as the Figure 2.3.2.

To specify the cross section, modify the cross-section. This will extend the

custom cross-section through the z axis and centroid located at the block

reference frame. Each row of array represents a different coordinates pair,

adjacent coordinates pair are connected with a straight line to form a closed

polygon. The dimension and the shape of our suspension arm is specified by a

function. We could write our own function similarly for a shape of our choice.

Figure 2.3.1 Simplified Chassis

Figure 2.3.2 Suspension arm

29

To visualize the cross-section, shown as the Figure 2.3.3, in the figure, we

can see the structure of arm.

Note that for the cross-section parameter to be valid, the array of

coordinates must follow the rule:
1. Coordinates must define a closed polygon that does not self-intersect.
2. Counterclockwise loop encloses the solid section, clockwise loop

encloses hollow section.

1.3 Rim
To model a rim, insert a Revolved Solid block, specify an array of

coordinate pairs as the cross-section parameter in the dialog box similar to

extrusion example. The visualization of the cross section is shown as Figure

2.3.4.

Figure 2.3.3 Visualization of the cross section

Figure 2.3.4 Cross section of revolved solid body

30

Here, in Figure 2.3.4 the cross section is shown in the XZ plane, the cross

section is rotated around the Z axis to create the revolved solid body. Notice

that, in our example, we select the extent of revolution is full, but we can create

partially revolved solids by setting this parameter to custom and setting a

revolution angle. Shown as Figure 2.3.5.

1.4 Tire
For modeling the tire, the approach is the same with the rim, just modify

the cross-section parameter.

Figure 2.3.5 Rim

Figure 2.3.5 Tire

31

2. Proper connection

In Mechanics Explorer shown as Figure 2.3.6, we can notice that all the

components are aligned along the center of mass, which means we have to

position these components appropriately. We use rigid transform blocks to do

this job.

2.1 Position the suspension arm

To position the arm to the right place we need to implement coordinate

transforms represent degrees of freedom and specify body interfaces.
As mentioned before, the transform block defines fixed relationship

between Base B and Follower F coordinate frames. This relationship is

defined by translational and rotation transformation.
First, specify the translation with respect to chassis. We need to move

the arm along the Y axis by half of the chassis width, we also move it to the

appropriate position in the vertical Z axis, the distance is the variable

arm1_chassis_dist which is the specified in the Matlab script. We use the

Cartesian method to specify the translation in two axes. Then connect the

rigid transform between the chassis and the arm. This transform block is

Figure 2.3.6 Need proper connection

Figure 5 2.3.7 Translation of suspension arm with respect to chassis

32

named as chassis to suspension arm.
Then we need to rotate the arm about its z axis by 90 degrees and the

x axis by 90 degrees as well as with respect to its own axis. After rotation,

Base Z axis becomes the Follower X axis, and the Base X axis becomes the

Follower Y axis. In transform block, select method as Aligned Axes, then

modify the coordinate pairs. After that we still need to do another

translation by half the length of the arm to position the link on the chassis.

This transform block is named suspension arm to chassis.

2.2 Connection between arm and rim

First, we need to translate the rim to the end of the arm. Next, we need

to rotate the rim to position it perpendicular to the arm this rotation is going

to be with respect to the rim about its Y axis 90 degrees. This is going to be

the translation with respect to the arm. As the rotation is around its own

local Y axis, the transformation is going to be from the rim to the arm. So,

we have to flip this block. The rim connection is at the center of the rim,

instead it needs to be translated about the vertical axis by the parameter

wheel_bias_1.

2.3 The connection between tire and rim
As the tire is rigidly connected with rim. Any transformation that the

rim undergoes the tire also undergoes.
So now we have positioned the arm with respect to the chassis and

the rim with respect to the arm. Shown as Figure 2.3.9.

Figure 2.3.8 Position the suspension arm

33

2.4 Joints

For now, our model does not have any dynamics behavior even all the

components are positioned correctly. That is because all the components

are rigidly connected, we need to define the degrees of freedom for the

components with respect to each other by adding joints. In our model, the

links between the chassis and the arm, arm and the rim, represented by the

revolute joints.

As mentioned in the pendulum model in previous, a revolute joint has

a single degree of freedom which lets the bodies rotate about the Z-axis.

Figure 2.3.9 Proper connection between chassis, suspension arm and

rim

Figure 2.3.10 Link between components

34

So, it is important that the base coordinate and the follower coordinate Z-

axis are aligned. In this example we would like to connect the joint

between two Rigid Transforms blocks. In this case the Base of the joint

will be the follower of the Chassis to Arm transform block. We can notice

that the Z axis is pointing upwards, however for the revolute joint to make

sense it needs to be pointing out of the screen (along the X-axis). Also, the

Follower in Arm to Chassis block, the Z axis is pointing upwards. The

situation is shown as Figure2.3.11.

We have to rotate the 2 Z-axis. In this case even if our base and the

follower frames are co-located in other words the origins are at the same

position they are not oriented correctly. We need an addition rotation

transform. For both Rigid Transform block.
First, in Chassis to Arm block, a rotation about Y-axis with 90 degrees

is added. Then inside the Arm to Chassis block, the Base coordinate is

shown as Figure 2.3.12. Mention that the Follower in Arm to Chassis

block has to be aligned with the Follower inside Chassis to Arm block, so

another rotation is added shown as Figure 2.3.13.

Figure 2.3.11 Wrong orientation of Z-Axis

Figure 2.3.12 Base coordinate

35

Now 2 frames are aligned for the revolution, Z-axis is also in the

correct orientation for the joints.
While for the revolute joint add between rim and wheel, after

observing Rim to Arm transform block and Arm to Rim transform block ,

the Followers are located at the same position which means 2 frames are

aligned. Also, the Z-axis is in the right orientation, no additional operation

is needed.

2.5 Create the second arm
To create and assembly the second arm, is just the same with the first

suspension arm, the only different is the specification and variable names

which is already defined in the Matlab script. After grouping related

components to make subsystems, shown as Figure 2.3.14 can be obtained.

2.6 Create Shock Absorber

The system still behaves like a pendulum now, with only forces under

gravity, because the system is not fully constrained since the two arms are

not bounded by a shock absorber component. The shock absorber can be

simplified as the combination of a cylinder and a piston. We use Revolved

Solid block to create piston and cylinder.

Figure 2.3.13

Figure 2.3.14 Mechanical Assemblies

36

Create the other port and connect the cylinder to the system. Once,

the closed loop is created, which means the 2 arms are forced connect to

the same point, center of mass of the cylinder and the piston, which is not

physically possible in mechanical configuration. In order to avoid this

error, we better not to close the loop at first. Instead, it is better to build

the assemblies increment from one end to the other. Shown as Figure

2.3.16

To move the shock absorber to the right position and orientation.
First, we have to rotate the cylinder about its Y-axis by negative 90

degrees. Notice that the rotation is going to be form cylinder to the arm,

which means the Base of the Rigid Transform block is connect to the

cylinder.
Then to move the link between the chassis and shock shocker to the

end of the cylinder instead of at the center of mass, we have to translate

this component along its own Z-axis.
After that, add a revolute joint between the cylinder and the chassis

Figure 2.3.15 Shock Absorber

Figure 2.3.16 Open loop

37

connection point and check the rotation axis Z-axis is in the right

orientation or not.
For our example, the piston needs to be able to move up and down,

but the cylinder and the piston are rigidly fixed to each other, we need to

add a single translation degree of freedom. To do this, we can use a

Prismatic Joint added between cylinder and piston. Prismatic joints

represent a prismatic joint between two frames. This joint has one

translational degree of freedom represented by one prismatic primitive.

The joint constrains the follower origin to translate along the base z-axis,

while the base and follower axes remain aligned. In the expandable nodes

under Properties, specify the state, actuation method, sensing capabilities,

and internal mechanics of the primitives of this joint. After you apply these

settings, the block displays the corresponding physical signal ports.
Next connect the piston to the lower arm at a given distance. Again,

add a revolute joint. In this case we can see that the Z-axis is pointing

down for the Base frame. While is the Follower of the Chassis to Arm the

Z-axis is pointing out, which means we need to align these 2 axes by

rotating the frame about Y-axis by 90 degrees. After that using the

translation dialog block to move the piston to proper position shown as

Figure 2.3.17

From Figure 2.3.17 we can notice that the wheel position seems

misguided suppose we would like the wheel to be positioned lower for an

initial state initial configuration. For mechanical assemblies can be guided

by providing initial conditions to necessary joints in this case it could be

useful to specify an initial condition for the shock absorber piston’s

displacement. By doing that we can control the wheel’s vertical position.

To do this, adjust the State Targets in Prismatic Joint, specify the position

target. This operation is the same with the Mass-Spring-Damper model, in

that model we also set the state initial conditions.
Finally, connect the piston to the lower arm to close the loop.
For now the system is still act like a pendulum, the reason is that the

Figure 2.3.17

38

shock absorber is not limiting the motion of the suspension arms. In the

dialog box of Prismatic Joint, inside the Sensing section, we can config

the joint to output various quantity, such as position shown as Figure

2.3.18.

The system seems to be undamped because the joint does not have

any stiffness or damping effect. To add real world mechanic effect, we can

specify the equilibrium position, spring stiffness and damping to model

through Internal Mechanics dialog.

2.7 Add external force
We will use a test platform and exert force on our tire.

We can move the test platform by using joint blocks. In our example,

suppose platform is restricted to only a translational motion in one axis

that is the vertical z axis of the world frame we can implement this using

a prismatic joint. The joint is added between the world and the platform.
Under the Joint block, inside the actuation section, we specify the

Figure 2.3.18 Undamped displacement

Figure 2.3.19 Test platform

39

Automatically Computed for motion and set force to be Provided by Input.

This actuation mode is called forward dynamics. Alternatively, we can

select the motion profile to be Provided by Input and the force to be

Automatically Computed, this is called inverse dynamics. In our scenario

we are not interested in the forces required to move the plate rather we

would just like to move the platform with a provided motion profile. So,

we set the motion to be Provided by Input and automatically compute the

force required to get that motion profile. Shown as Figure 2.3.20

After that we can input a physical signal to the prismatic joint. We can

input any user-defined signal through the Input Port. This port is a root

level input port and can accept data from the MATLAB scripts. Additional

information for Simulink-PS Converter is there is a Input Handling tab, to

avoid solver errors it is recommended that we provide the first and second

derivatives that is velocity and acceleration of a motion profile. Input

filtering makes the input signal smoother and generally improves model

performance.
The first way is to use the Filter Input method to take filter derivatives

of the position signal.
The second way is to provide our own input derivatives these could

be by generated using custom transfer function blocks.
In our example, we use the Filter Input method and use second-order

filtering with the default Input Filtering time. Shown as Figure 2.3.21

Then we have to model the force interaction between the platform and

Figure 2.3.20 Inverse dynamics

Figure 2.3.21

40

the tire. We can use the prismatic joint to establish the degree of freedom

between the tire and the platform and restrict the motion to only the

vertical axis. We can also use a planar joint to give it three degrees of

freedom which is displacement across the y and z of the world frame and

the rotation about the x axis. To exert forces on the wheel from the

platform we can activate this planar joint using force in the forward

dynamic mode. By obverse, we can notice that the force from the platform

is always applied vertically regardless of the rotation of the tire which

means the force relationship between the platform and the tire is not easy

to model.
To exert force on any frame regardless of joint blocks we use the

External Force and Torque block. This block applies an external force and

torque at the attached frame. The force and torque are specified by the

physical signal inputs. This block can be configured to apply force to any

coordinate frame whether a joint is attached or not. In our case, we need a

force that along the Z-axis of the world frame. Then we can see an input

force Fz which needs to be computed based on the motion of the platform

and the port F is going to be the attached frame which the force will be

applied. Show as Figure 2.3.22. To compute the force FZ based on the

motion of the platform we need to measure the displacement and velocity

between the platform and the wheel. We can do this using a Transform

Sensor Block.

A Transform Sensor Block measures time-dependent relationship

between two frames. A Transform Sensor passively senses this 3-D time-

varying transformation, and its derivatives, between the two frames. In the

expandable nodes under Properties, select which rotational and

translational relationships, including velocities and accelerations, you

want to measure. After you apply these settings, the block displays the

corresponding output physical signal ports. Ports B and F are frame ports

that represent the base and follower frames, respectively. The sensor

measures the transformation and its derivatives as follower frame relative

to base frame. The transformation components can be projected into one

of several frames.
In our case we want to measure the translation and the velocity along

the world z axis. After that we have to compute the force by designing a

subsystem Shown as 2.3.23. Given the Z and Vz it computes the force. In

Figure 2.3.22 External Force and Torque block

41

the subsystem if the measured distance is greater than zero, we implement

the equation to calculate the force otherwise the force is zero. Kw and Dw

here are the proportional gain (spring) and derivative gain (damping).
Then we connect the Base and the Follower of the Transform Sensor

to the Base and the Follower of the planar joint block which describes the

relationship between the platform and the tire.
Last but not least, we connect our subsystem to the output of the

Transform Sensor block and connect the External Force block to the

output of the calculation block. shown as Figure 2.3.24

Figure 2.3.23 Calculate the force

Figure 2.3.24 Test plate

Figure 2.3.25

42

Back to the upper level of the model, after defining the contact point

of the wheel subsystem using the Rigid Transform block. Show as Figure

2.3.25.

2.8 Simulation
Now we can input the signal through the Input Port. The input signal is

defined through the Matlab script.

The suspension system going through different motion profiles. We can

observe the displacement of the shock absorber for the various force tests. We

can measure all sorts of parameters like constraint forces to further analyze the

dynamics of our system.

Figure 2.3.26 Input signal

Figure 2.3.27 Displacement of shock absorber

43

2.9 Designing tune and optimization
Now we have finished building the right part of the suspension, the right

part can be built with the same approach. In order to tune the model, it is better

to define the Instantaneous center and Roll center. These 2 points define the

property and behavior of the suspension. The definition of these 2 centers is

shown as Figure 2.3.28

To calculate the roll center and instantaneous center, we can use Matlab

function block. We solve the trigonometric equations based on the parameters

measured in the model. The function of calculating instantaneous center and

roll center is shown as Figure 2.3.29. Parameters a,b,c,d, wb are the component

positions of the suspension.

Figure 2.3.28 Roll center and instantaneous center

Figure 2.3.29 Formular

44

After defining the position of roll center and instantaneous center, using a

visualization subsystem to visualize the points. We simply feed in the center

position and actuate a solid sphere through a planar joint to move it in the Y Z

plane. The visualization subsystems are individual mechanical systems by

themselves that are used only for the visualization and do not have any effect n

the rest of the system. Then our model become as Figure 2.3.30

Then we have to optimize our model. First, we have to constrain the

camber angle of the wheels between −1° 𝑎𝑛𝑑 − 7°. Camber angle of a wheel

is measured with respect to the vertical. The orientation of camber angle is

shown as Figure 2.3.31. a negative camber gives the better grip when cornering.
So we have to sense the signal of camber angle using the Transform Sensor

ad calculate the camber angle. Shown as Figure 2.3.32

Second, constrain the Role Center height.
To do these, we have to know the position of the connection point between

the upper arm and the chassis which is controlled by a distance variable that

Figure 2.3.31 Camber angle

Figure 2.3.30

45

specifies how far the upper arm is positioned from the chassis center of gravity.

Also, we have to know the length of upper arm itself, changing this value we

change the geometry of the suspension system and have an effect on both

camber angle and the roll center height.
There are two types of optimization techniques:
1. Parameter Estimation

We use experimental data to fit model parameters. The goal is to

improve our design such that the simulation is more likely to match the

data provided. Used to tune plant model parameters to match data.
2. Response Optimization

We use performance matrix such as cost functions to tune algorithm

parameters include constraining signals, reducing settling time,

reducing overshoot. This method can be used to tune both plant and

algorithm models. For our example, we use this method to constrain

the roll center and camber angle.
The optimization flow shown as Figure 2.3.24 begins with simulating the

model with a set of initial values for our design parameters such as upper arm

length. The model outputs are evaluated with user specified requirements such

as camber angle and roll center height. This produces a cost function which

have to be minimized. As long as the requirements have not been achieved, the

model parameters are modified based on the optimization flow and simulation

runs with new values and the cost function is evaluated again

To use the Response optimization approach, we have to install

Optimization Toolbox addons in Matlab. Then we have to define which

Figure 2.3.32 Monitor camber angle

Figure 2.3.24 Optimization flow

46

variables will be used for the optimizations and what requirements to satisfy.

To define which parameters are tunable by the optimization algorithm select

New from the Design Variable Set and select the variable which is the distance

between suspension arm and chassis and the length of suspension arm. Due to

the symmetry of the model, 1 variable can control both sides.

It is recommended that we provide meaningful minimum and maximum

values for the parameters to restrict the search space. For example, the

connection point between arm and chassis does not have the full freedom to

placed on the chassis because it is constrained by the chassis design. Similarly,

the arm length itself needs to be constrained by track length or the width of the

vehicle.
Then we need to define the requirements for the optimization to achieve.

First, set the constraint for the camber angle. Inside the Requirement section,

for our application, select Signal Bound since we are constraining a time

domain signal under a particular value. Then we have to define the upper and

lower bound and choose the signal that can represents the camber angle. Since

our model is symmetric, we can choose the signal from either right wheel or

the left wheel. For setting up requirements for the roll center height, just do the

same process, then we simulate the model and obverse the result as

Figure.2.3.26.

From the plot, we can notice that, both signals exceed the threshold.

Which means the current parameter does not satisfy the requirement. So, the

Figure 2.3.25 Select tunable variables

Figure 2.3.26 Before optimization

Left: Camber angle Right: Roll center height

47

next step is to optimize these parameters. The optimization progress report will

give us information about the iteration. The optimization tool runs the model

evaluates cost function based on the design requirements, changes our selected

design parameters based on the default optimization algorithm and then runs

the model again until the requirements are met. Once we see from the progress

report that the optimization has converged and successful, we can observe the

plot, shown as Figure 2.3.27.

In the plot, we can see the signal values for different iterations, the blue

plot is the final optimized response we can notice that it is within the signal

threshold, so the optimization was successful. The optimized value is stored

and modified in the Matlab workspace.

Figure 2.3.27 After optimization

Left: Camber angle Right: Roll center height

Figure 2.3.28 Final configuration

48

Compared to initial configuration, the final configuration has a shorter

upper arm resulting in the wheels pointing towards the suspension which

means a negative camber angle. Also, the upper arm connection point is moved

upwards, the roll center is moved downwards.

2.10 Import CAD model
We have built a suspension using Simscape Multibody, it allows us to

create our own custom components. However, mechanical systems are

commonly designed using CAD software. We can use CAD models to

automatically generate Simscape Multibody block diagrams. This allows us to

do various operation with a CAD model such as data logging, analysis,

dynamic simulation, control design, parameter optimization, automatic C/C++

code generation etc.
 There are 2 import workflows:

1. Importing individual parts
Here we already have a Multibody model and would like to import an

individual CAD part to enhance the existing model.
2. Importing assemblies

In this case we import the entire assembly from the CAD software

including degrees of freedom, inertia properties etc.

Let us import the individual parts at first. Most CAD platforms allow us

to save each part of the model as a STEP or a STL file. This allows us to use

these files to define solid geometries. As the model is export from CAD, we

can use File Solid block to import the file. File Solid is a block that Represents

a solid whose geometry, material and visual properties are read from a file

which could be of CATIA, NX, SolidEdge and other formats. The File Solid

block obtains the inertia from the geometry and density, from the geometry

and mass, or from an inertia tensor that we specify. Then we can this solid as

any other components, create frames to integrate with the existing mechanics

system. Shown as Figure 2.3.29

Figure 2.3.29 Import individual part

Left: Wheel hub in SolidWorks Right: Wheel hub imported to Simscape

49

To export the assemblies, we have to use the Simscape Multibody link

add-on. Simscape Multibody Link can automatically convert a CAD assembly

into a sim mechanics block diagram. The CAD platforms supported in

Simscape Multibody link are Autodesk Inventor®, Creo™ Parametric and

SolidWorks®. After installed the add-on, software can export a CAD model

into XML and graphics files. Shown as Figure 2.3.30.

One STEP file per rigid part, XML file which contains information such

as units, coordinate transforms, constraints, inertial properties, colors etc.
In order to input the assemblies, we need to use command smimport.

Notice that the only a subset of CAD constraints can be translated. If the

command is unable to translate a CAD constraint, it will assume a rigid

connection. When this occurs, we will receive a warning.

Figure 2.3.30 Exported assemblies

Figure 2.3.31 Import assemblies

Top: Assembly model in SolidWorks

Bottom: Converted into Simscape Multibody model

50

From Figure 2.3.31we can see that 3 essential blocks used in every sim

model. Also, we can see the different subsystems, each component is well

defined. The constraints in our assembly have been translated into mechanical

joint block. There are some cylindrical joints in the model do not have any

effect on the original constraints of our system in the CAD model. These joints
are connected for all practical purposes, they are just fundamental revolute.

And in the case of the connection between the cylinder and piston it is

prismatic.
 In order to let the model, work properly, we have to modify the gravity

vector orientation to negative Z-axis direction. Notice that, the internal

mechanical properties are not translated by Simscape Multibody Link, which

means we have to specify the stiffness or damping of the shock absorber joints.

The joints were modeled in an ideal way. The following Table 2.3.1 shows the

feature that can be captured by Simscape Multibody Link

Mechanical Element Translatable by Simscape

Multibody Link?
Geometric properties Yes

Inertial properties Yes
Coordinate transforms Yes

Joints Yes
Distance/Angle constraints Yes

Graphic properties Yes
Initial conditions Can translate position cannot

translate velocity
External mechanics No
Internal mechanics No

Sensing and actuation No
Table 2.3.1 Features of Simscape Multibody Link

After refining the model, we can add sensor, actuator, connect to other
models or the external force test subsystem.

51

3. Conclusion
Simscape extends Simulink with libraries for modelling and simulating multi-

domain physical systems. It is built on the top of Matlab and Simulink, contains models

of foundation elements for various physical domains. also, contains other capabilities

which is useful when modeling physical system (such as unit manager, data logging,

etc). MathWorks offers a suite of physical modeling products built on top of Simscape

for specialized modeling of multi-domain physical systems. For example, the Simscape

Multibody is used to model 3D systems.
With Simscape we can create the model using the physical network method where

deriving the system level equation is not required. This makes the model easier to create,

understand and maintain.

52

4. Reference

1. MathWorks Simscape Multibody Introduction from
https://www.mathworks.com/products/simmechanics.html?s_tid=srchtitle

2. MathWorks Student Competitions Team. (2017). Physical Modeling for Formula

Student: Simscape Introduction from
https://www.mathworks.com/matlabcentral

3. MathWorks Simscape Multibody Help Center from

https://www.mathworks.com/help/physmod/sm/

4. Curtis Dietzsch. (2014). Finding Your Center – Finding Your Front and Rear Roll

Center from
https://www.onedirt.com/tech/chassis-suspension/finding-your-center-

finding-your-front-and-rear-roll-center/

5. What is camber? from
https://help.summitracing.com/app/answers/detail/a_id/5256/~/what-is-

camber%3F

6. Multibody simulation from
https://en.wikipedia.org/wiki/Multibody_simulation

7. RecurDyn Overview from

https://support.functionbay.com/en/page/single/2/recurdyn-overview

8. Adams Introduction from
https://www.mscsoftware.com/product/adams

9. Dion Besselink. Multibody dynamics from

https://www.code-ps.com/services/multibody-dynamics.html

https://www.mathworks.com/products/simmechanics.html?s_tid=srchtitle
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/help/physmod/sm/
https://www.onedirt.com/tech/chassis-suspension/finding-your-center-finding-your-front-and-rear-roll-center/
https://www.onedirt.com/tech/chassis-suspension/finding-your-center-finding-your-front-and-rear-roll-center/
https://help.summitracing.com/app/answers/detail/a_id/5256/~/what-is-camber%3F
https://help.summitracing.com/app/answers/detail/a_id/5256/~/what-is-camber%3F
https://en.wikipedia.org/wiki/Multibody_simulation
https://support.functionbay.com/en/page/single/2/recurdyn-overview
https://www.mscsoftware.com/product/adams
https://www.code-ps.com/services/multibody-dynamics.html

