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Abstract  

In reservoir modeling and characterization, different seismic inversion techniques are 
conditioned by the available data provided by seismic surveys and the subsurface Petro-elastic 
properties obtained by wells. The inversion solution tries to provide a subsurface model that fits 
all the current observed information equally. A geostatistical framework is a natural solution to 
integrate both data within the same framework while assessing the spatial uncertainty. This thesis 
aims to develop and implement a machine learning (Functional Data Analysis) method to reduce 
subsurface models' computational time (acoustic impedance). The proposed method uses 
Principal component analysis to reduce the dimension of the data (Dimensionality Reduction). 
The time taken to obtain the result by the proposed methodology is compared with the time taken 
by a conventional approach. 
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                                                   CHAPTER 1 
 

1.0 INTRODUCTION 

The thesis was carried out at Institute Superior Técnico, CERENA - the Center for Natural 
Resources and Environment, with a real dataset provided by Petrobras Oil & Gas.  

 

1.1 SCOPE OF STUDY 
 
In the multimillion-dollar Oil and Gas industry, reservoir modeling and characterization are 
crucial during the Exploration and Production phases. An inaccurate description of the study area 
can result in a loss of large amounts of money by the company and its associates. 

Before making any choices, it is essential to be aware of the risks. A lot of uncertainties are 
associated with different stages of an exploration project: from instrumentation or 
methodological errors, scarcity of experimental data to the vague (but sometimes helpful) 
assumptions. These uncertainties cannot be removed but they can be assessed, enabling them to 
make better decisions.  

To achieve more reliable models, the companies use geophysical exploration and seismic 
reflection data to evaluate the underground geology properties and fluid distribution, instead of 
the conventional seismic interpretation approach where seismic reflection data is solely used as 
reservoir geometry (Bosch et al. 2010).  

Transforming this seismic reflection data into quantitative rock properties that are descriptive to 
the reservoir is called seismic inversion. 

Inversion methods estimate the subsurface petro-elastic properties, such as density, P-, and S-
wave velocities. The inverted models for these properties are used to characterize the location, 
spatial extent, quality of hydrocarbon-bearing lithofacies and access uncertainty in production 
prediction therefore improving resource management and decision making. 

In petroleum applications, random modeling reservoir's internal properties, such as lithofacies 
and sand bodies, are usually done using core and log data that locally provide comprehensive 
reservoir information but lack spatial data. As a result, these models have a high level of 
uncertainty for a well's locations. Due to this, the combination of seismic reflection data 
considers the properties directly measured at the wells, allowing deducing more reliable 
subsurface models with less uncertainty, i.e., better spatially constrained. 
Geostatistical seismic inversion is the introduction of statistical techniques in the simulation of 
multiple prior reservoir models. It assesses uncertainties and retrieves the best fitting model 
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based on probability density and is sub-divided into Bayesian (linearized) and iterative 
geostatistical seismic inversion. 
 
Iterative geostatistical seismic inversion is becoming a critical instrument in seismic reservoir 
characterization and allows the simultaneous integration information directly and indirectly 
about the subsurface properties of interest obtained from seismic reflection and well data, 
respectively. It explores the model parameter space more comprehensively by random sequential 
simulation as the model perturbation technique. Still, it is expensive due to computational 
requirements and the time taken to get results compared with the Bayesian approach. 

The spatial continuity pattern and a sole probability distribution function as deduced from the 
existing experimental data discretely. This problem can be stopped using multi-local distribution 
functions, taking into account various regionalization by zones (Azevedo, 2013).  

The work presented in this thesis's chapters uses FUNCTIONAL DATA ANALYSIS 
(Unsupervised statistical technique that uses the PRINCIPAL COMPONENT ANALYSIS) to 
examine the relationships between features in the dataset, thereby identifying the critical 
elements and compressing the variations to reduce the computation time. 
 

1.2 MOTIVATION  
 
Given the relevance of time in the oil and gas industry, there have always been various research 
on reducing time on operations and saving cost, especially during oil exploration, which is an 
expensive process. This work attempts to use the FDA method to reduce the computational time 
compared to the GSI Ip method. 
 

1.3 OBJECTIVES  
 
This thesis's objective is to apply the FDA method on Ip well log data. The results gotten is 
compared against those retrieved from Geostatistical Seismic (Acoustic Impedance) method. The 
proposed workflows allow a time saving reservoir model. The objectives of this work are 
summarized by the following: 

1) Running an example of geostatistical seismic inversion (acoustic inversion) on a 
synthetic dataset, Analyzing and discussion of the results.  

2) Running geostatistical seismic inversion (acoustic inversion) with FDA. 
3) Comparing results from 1) and 2). 

These algorithms' development was performed recurring to geostatistical toolboxes from 
CERENA/CMRP research group and MATLAB and SGEMS was used for visualization of the 
results.  
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1.4 OVERVIEW OF METHODOLOGIES 
 

Recently, inverted acoustic model gotten from existing seismic reflection data and integrated 
information from existing wells have been used to obtain reservoir models that are as realistic as 
possible. However, to obtain petro-elastic properties from seismic reflection data, we need to 
solve an inverse problem. Seismic inversion problem is identified for being nonlinear, with non-
unique solution and it is ill-conditioned. Thus, the inverted acoustic models are one of several 
models that uniformly make certain the observed seismic reflection data. Notwithstanding the 
method chosen to solve the seismic inverse problem, there is always the uncertainty associated 
with the acoustic model. It is essential to ensure that the uncertainty is continuously evaluated 
and spread throughout the investment process. 

Seismic inversion solutions are divided into two main methods: deterministic and probabilistic 
(Bosch, Mukerji, and González 2010). 

- Deterministic methods are based on the reduction of differences between synthetic and 
observed seismic reflection data based on the convolutional model and it only permit inferring a 
single best-fit inverse model (Francis, 2006). 

- In the probabilistic setting, there are two methods of solving the seismic inversion problem: the 
Bayesian linearized framework and stochastic sequential simulation as the model perturbation 
technique. 

(Grana et al. 2012) stated that the Bayesian approaches determines the propagation of 
uncertainties from previous distributions and experimental data (e.g., well-log data) with the 
probability distributions of the model parameters space. This framework assumes a linearized 
forward model and Gaussian, or multi-Gaussian, for the property's prior distribution function to 
be inverted. In this setting, the posterior distribution can be analytically expressed as multi-
Gaussian. 

On the other hand, stochastic inversion techniques permit a more detailed investigation of the 
model parameter space since the suspicion around any earlier parametric likelihood conveyance 
may be loose depending on the stochastic sequential algorithm utilized inside the inversion 
method. However, it is expensive due to computational requirements and the time taken to get 
results compared with the Bayesian approach due to the simultaneous random generation. 

In this thesis, we applied the functional data analysis method on Ip well log data to reduce the 
time taken by the GSI Ip method, resulting from the random generation of the 3D Ip models 
process. 
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1.5 THESIS ORGANIZATION  

Chapter one (1) investigates the background of Geostatistical seismic inversion and the 
background of the study. In this chapter, the reason for carrying out seismic inversion is 
discussed and the importance of carring out geostatistical seismic inversion in the assessment of 
uncertainties to mitigate risk during exploration and also on the need to reduce computational 
time.  

Chapter two (2) deals with a Literature review on past works on some methodology involved in 
Geostatistical seismic inversion and FDA.  

- Section 2.1 discussed spatial continuity analysis,  
- section 2.2 covered the various types of variograms,  
- section 2.3 discussed extensively the types of simulation used and their limitations.  
- Section 2.4 seismic inversion: where seismic inversion is reviewed along with various 

approaches used to carry out seismic inversion. 
- Section 2.5 Rock Physics and its importance in seismic inversion is discussed. 
- Section 2.6 Discussed Geostatistical Seismic Inversion; this is where we analyzed the 

various approaches for integrating seismic reflection and well-log data reservoir 
modelling.  

- Section 2.7 Discusses the FPCA and its goal  

Chapter three (3) discusses the Methodology used to carry out the iterative GSI and FDA 
experiments. 

Chapter four (4) outlines and analyzes and discussed the results from the GSI and FDA 
experiments.  

Chapter five (5) compares results from the FDA with the GSI  

Chapter six (6) lays conclusion on the work with some possible recommendations for future 
works and constraints.  
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                                                       CHAPTER 2 

2.0 LITERATURE REVIEW 

                                 GEOSTATISTICAL EARTH MODELS 

2.1 SPATIAL CONTINUITY ANALYSIS 
 

Spatial-continuity analysis can be described as the computation and modeling of Patterns of 
spatial dependence which characterize a regionalized variable and can be described as a study of 
the experimental variogram. It is the key step before the regionalized variable is modelled using 
kriging or conditional simulation techniques, which requires covariance information gotten from 
spatial continuity analysis (Anon, n.d.). 
In geostatistical methodologies, modelling the spatial behavior of a given attribute has a crucial 
role with two primary objectives:  

• Characterizing and quantifying a reservoir property's spatial pattern, commonly 
designated as spatial continuity analysis in geostatistics, i.e., quantifying the spatial 
continuity of the important attribute and how it differs in various spatial directions.  

• Provides the ground for the spatial inference/estimation, simulation, and geostatistical 
inversion methodologies (Azevedo & Soares, 2017). 

The two primary steps to performing spatial continuity analysis are: 

• Computing the experimental measures of continuity (variogram), that’s accounts for 
anisotropy and azimuth and 

• With a continuous function, model the experimental variograms (Anon, n.d.). 
 

2.2 VARIOGRAMS 
 
In geostatistics, the variogram (or semi-variogram) is used to expresses the spatial relationship 
between points of a given attribute Z (x). It is a spatial continuity instrument used to measure the 
regionalized phenomenon in space, i.e., presents the variable of interest quantitatively (Soares, 
2006). It is an intrinsic function that shows the circumstance understudy, its spatial structure and 
measures the statistical relationships such as the covariance that exist between samples of 
successive values consecutive distance values (h) between each experimental pair of data. The 
variogram is an increasing function in which the abscissa's values can vary up to a given value of 
h, which is known as the variogram range (Soares, 2006). Variograms with a sill are associated 
with static regionalized variables; otherwise, they are considered non-stationary. 
  
The estimator of the variogram (Equation 1) gives information about the spatial continuity of the 
property at various distances (Z(x + h)), for various h values, for the calculation of this estimator. 
The centered covariance estimator (Equation 2) gives information about the spatial average of 
the product between different attributes at different distances (Z(x) Z(x + h)). The geostatistical 
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measures are often used and represent the correlation between samples (Zα and Zα + h) are the 
estimators, and can be calculated by the following expressions (Soares, 2006):  
 
 

γ(h) = 	
1

2N(h)
*[Z(x!) 	− Z(x! + h)]"
#(%)

!'(

																																																																																																											(1) 

 
By assuming h, the mean of the least-squares and the mean of the products are estimates of the 
variograms equation two and the centered covariance equation 3: 
 

γ(h) = 	
1
2
E{[Z(x) − Z(x + h)]"}																																																																																																																											(2) 

 
c(h) = E{Z(x)Z(x + h)} − E{Z(x)}E{Z(x + h)}																																																																																																(3) 

 
The connection between a variogram and covariance is expressed with equation 4: 
 
γ(h) = C(0) − C(h)																																																																																																																																																	(4) 

 
Variograms are isotropic or anisotropic, representing various spatial correlations in various 
directions or various distances h and the difference in behavior is shown (in most cases) when 
variograms of horizontal directions is connected with variograms with vertical directions. The 
anisotropy depends on the variable or natural system under study. As an instance, the spatial 
continuity of a geological layer should be higher in the horizontal direction when compared with 
the vertical direction (Soares, 2006). The reverse situation happens when computing 
experimental variogram from existing well data which in this case, the vertical direction is more 
spatially sampled than in the horizontal direction. Therefore, as the difference between samples 
(|h|) increases, the average variation between pairs of samples tends to increase. 

According to (Soares, 2006), If the variogram is an increasing function, for example, as the 
module |h| increases, the average variation between pairs of samples is prone to increase until it 
reaches the range and distance from which it no longer increases then it begins to stabilize. When 
the variogram is used in the main directions, the average dimensions of the body along respective 
paths can be calculated. 

(Soares, 2006) stated the need to modify the data to a theoretical model when the experimental 
variogram from the set of samples in the region of interest is created by modeling the data 
through a mathematical function representing the continuity of the spatial variable and this 
summarizes the spatial phenomenon's structural characteristics under study, including anisotropy 
and degree of continuity of the variable under review.  

The use of geostatistical modeling is limited to a confined set of functions that cover most 
natural phenomena' spatial continuity pattern. It is required to select the best suited to each case 
but only those that meet certain conditions by using positive-definite models that can give stable 
solutions. The option of possible functions for interpolating the experimental variogram samples 
is restricted from the start by the positive condition.  
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The most used variograms for theoretical models are the Spherical model, Exponential, and 
Gaussian. They have two parameters:  

• Sill, which is the only limit that the variogram values tend to have as the distance 
between sampling pares grows.  

• The amplitude (h = a) of the variogram is the distance from which the importance of the 
variogram (γ(h)) stops growing and equal to the sill and it usually coincides with the 
variance of the attribute in the study. It measures the distance from which the values of 
that attribute start to show no sign of the correlation between them.  

The spherical model (Equation 5) is one of the frequently used models in modeling experimental 
variograms and is characterized by rapid growth at the origin and is expressed by the 
mathematical equation:  

γ(h) = 91.5
h
a
− 0.5 =

h
a>

)

? 	for	h	 ≤ a																																																																																																																	(5) 

c							for	h		 > a	 

 

              

                          FIGURE 1:  Graphical Representation of a Spherical Model (martins, 2014)  

Comparing the exponential model (Equation 6) with the previous model, there is a growth near 
the origin and a higher spatial continuity for larger distances of h in the exponential model. This 
model asymptotically gets to the sill, and the distance over which the model value reaches the 
95% sill is defined as the amplitude (Soares, 2006), namely (a) = 0.95C. The exponential model 
is expressed by the following equation:  

γ(h) = C E1 − e*)% +, G																																																																																																																																													(6) 
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                          FIGURE 2: Graphical Representation of an Exponential Model (martins, 2014) 

The Gaussian model (Equation 7) has a parabolic behavior close to the origin, with a slow 
growth favorable to the adjustment of regular phenomena, in variation to the rapid growth of the 
previous two models who have a more irregular behavior of the phenomena. The Gaussian 
model shows a great continuity of the variable under study, with the general expression:  

 

            γ(h) = CI1 − e-
!"#$

%$ .J																																																																																																																													(7) 

                       

                              FIGURE 3: Graphical Representation of a Gaussian Model (martins, 2014) 
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2.3 DIRECT SEQUENTIAL SIMULATION AND CO-SIMULATION 
 

2.3.1 DIRECT SEQUENTIAL SIMULATION 
 
When trying to replicate very compound systems, like those with strongly distorted or multi-
modal distributions, Sequential Gaussian simulation has some limitations. After the inverse 
Gaussian transformation, getting back the original probability distribution function will result in 
a variogram that is very unstructured and similar variogram reproduction problems is 
encountered when the joint statistics of a multivariate data set need to be replicated. (Azevedo & 
Soares, 2017). 
 
According to (Journel, 1994), The direct simulation of a continuous variable was shown to 
replicate the covariance model if simulated values are derived from local distributions and based 
on simple kriging estimates with a variance corresponding to the simple kriging variance 
estimate.  
 
One of the limitations regarding the practical application of the direct sequential simulation 
approach is that it does not guarantee the production of the histogram, which is a requirement 
from any simulation algorithm. This limitation is corrected by resampling with the global 
distribution conditioned by the local conditional mean and variance which is able reproduce the 
variogram and histogram of a continuous variable without calling for any transformation of the 
original variables. 
 
Practically, intervals z is chosen from global Fz(z), obtaining a new Flz(z). the intervals are 
centered by simple kriging estimate z(xu) with a range dependent on kriging variance σ2sk(xu). 
Sampling the global distribution Fz(z) by intervals is defined by the local mean and variance of 
the Gaussian CDF z(xu), and the value of y(xu)* is equal to the local estimate z(xu)*. The 
simulated value zs(xu)* gotten from the interval of Fz(z) is defined by G(y(xu)*, σ2sk(xu)) (Soares, 
2001). 
    	
1
n
*z(x/) = [z(x0)]∗																																																																																																																																														(8)
2

/'(

 

  
1
n
*[z(x/) − [z(x0)∗]]" =	σ34" (x0)																																																																																																																				(9)
2

/'(

	

 
  y(x) = 	φSz(x)T, with	GSy(x)T = F5Sz(x)T																																																																																																					(10) 
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FIGURE 4: Sampling of Global Distribution Fz (z) by intervals defined by the local mean and variance 
of z(xu): the value y(xu)* corresponds to the local estimate z(xu)*. the simulated value z(xu)* drawn from 
the interval of fz (z) is defined by g(y(xu)*, σ2

sk(xu)) (Soares 2001). 
 
The DSS can be described in the following steps (Soares, 2001; Azevedo et al., 2015):  

1. A random path over the entire grid of nodes xu, u = 1, Ns, to be simulated by generating a 
random seed is Defined. Ns is the total number of nodes that comprise the simulation 
grid. 

2.  Estimate the local mean z(xu) and variance σ2sk(xu) identified, respectively, with the 
simple kriging estimate conditioned to the experimental data z(xi) and the simulated 
values zs(xi). 

3. Define Fz(z) interval to be sampled by using the Gaussian CDF as explained in the figure 
above. 

4. Generation of a value zs(xu) from the CDF of Fz (z). 
a. Generate a value between 0 and 1 from the uniform distribution 
b. From G(y(xu)*, σ2sk(xu)) Generate a value ys. 
c. Return the simulated value zs(xu) = φ-1(ys). 

5. Loop till all N nodes have been simulated within the grid. 
 

2.3.2 DIRECT SEQUENTIAL CO-SIMULATION 

Often, by reproducing the underlying association that may inevitably occur between two or more 
properties, there is a need to produce the spatial realizations (e.g., porosity, acoustic impedance, 
permeability). It is done by joint simulations or co-simulation models (Soares, 2001; Horta & 
Soares, 2010), and an advantage of the proposed algorithm over conventional SIS and SGS is 
that it makes a joint simulation by dealing directly with the original variables, i.e., instead of 
simulating Nv variables simultaneously, each variable is simulated, in turn, and conditioned to 
the previous variables. 

Two variables are co-simulated when they express dependencies and correlation through 
simulation between the individual distributions and variograms. According to (Gomez-
Hernandez & Journel, 1993, Goovaerts, 1997a), there are basically two different approaches for 
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co-simulation, the one used in this thesis applies Bayes rule, where the simulation of each 
variable it is handled in a sequence of simulation of conditional distributions 

The Bayes principle is applied in the co-simulation procedure to calculate the local conditional 
probability distribution at a given location. Assuming that two dependent variables: Z1(x), as the 
first to be simulated individually by DSS is more significant due to its more excellent spatial 
continuity, and the second variable, Z2(x), that is simulated conditioned by the previously 
simulated values of Z1(x). In location x0 the values of Z2(x0) are generated from the law of 
conditional distribution:  

F!(Z"(x#)|Z"(x$) = z"(x$), Z%(x&) = z%'(x&), i = 1, N)																																																																				(11)  

Where z1s(x1) are the values previously simulated of Z1(x) and z2(xa) are the experimental and 
the values already simulated of Z2(x) within a likelihood adjacent to the location x0. After the 
simulation of Z1(x), the same DSS algorithm is now applied to Z1(x), using the images 
previously simulated of Z1(x) as secondary and with a spatial correlation between both variables. 
The values of Z2(x) are generated in any spatial location of x0, from the laws of conditional 
distribution to the values previously simulated.  

In the Direct sequential co-simulation, it is important to estimate the local mean and variance of 
Z2(x) sample and the datum at X0 of Z1(X) to sample from the prior global probability 
distribution FZ (Z). This is done using the collocated sample co-Kriging estimate (Soares, 2001). 
 

[z"(x6)∗]789 =*λ![Z"(x!) − m"] + λ:[z(3(x6) − m(] + m"

#

+'(

																																																																(12) 

     	
σ789" (x6) = Var{Z"(x0)∗ − Z"(x0)}																																																																																																																			(13) 

 
λ𝛼 and λβ are the weights and m1, and m2 is the mean for each variable z1(x) and z2(x), 
respectively. 
 
The following sequence of steps can be defined as Co-DSS (Soares, 2001; Azevedo 2013): 

1. Simulating first variable z1(x) for the grid with DSS. 
2. Generating a path over the entire simulation grid x0, u=1,…, N, randomly. Where N is the 

total number of nodes that compose the simulation grid. 
3. Estimation of the local mean and variance at x0 with a collocated simple co-Kriging 

estimate ([z2(x0)*]csk) and the corresponding co-Kriging variance (𝜎2csk(x0)) constrained 
to data( z2(x𝛼)) within the neighborhood, composed by the experimental, Data simulated 
previously, and the collocated datum z1(x0). 

4. Definition of the interval Fz2 (z) to be sampled as previously explained in the figure 
above. 

5. Calculation of a value z2(x0)s from the CDF  of Fz2(z): 
a. Generation of a value p from the uniform distribution between [0, 1]. 
b. Generation of a value ys from G(y(xo)*, 𝜎2CSK(xo)). 
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c. The simulated value zs2(x0) = 𝜑-1(ys) is returned. 
 

6. Add the simulated value to the set of conditioning data. 
7. Loop until all the N nodes of the simulated grid have been simulated. 

 
 
2.3.3 DIRECT SEQUENTIAL CO-SIMULATION WITH JOINT PROBABILITY DISTRIBUTIONS 

 
The limitation of the traditional direct sequential co-simulation methodology, i.e.,  the ability to 
produce only linear correlations between primary and secondary variables, was corrected by 
direct sequential co-simulation with joint probability distributions(Horta & Soares, 2010). Like 
other stochastic simulations, the co-DSS procedure with joint probability distribution applies 
Bayes principle in a sequence of steps: 

• A previously simulated model is assumed by the simulation technique and the secondary 
variable (Z1(x)), is first determined for the whole DSS simulation grid 

• The primary variable (Z2(x)) is co-simulated.  
 
The following conditional cumulative distribution function is estimated from the global bi 
distribution for a given Z1

s(x0) simulated at a node x0 of a random path (Azevedo & Soares, 
2017). 
     F(Z2(x0) | Z1(x0) = zs

1(x0))                                                                                                                     (14) 
The value of z2(x0) instead of using the traditional co-DSS method is calculated using the 
equation below (Horta & Soares, 2010). 
F[Z2(x0) |Z1(x0) = z1(x0)] = prob{Z2(x0) < z | Z1(x0) = z1 (x0)} K                                                              (15) 

The co-DSS and joint probability distribution replicate the marginal probability distribution 
functions of the main variable, and the value of the experimental data is revered at its spatial 
locations and the spatial continuity model is replicated. The main objective of this simulation 
algorithm is to replicate, as calculated from the experiments, the joint probability 
distributions.(Horta & Soares, 2010): 

Calculate the conditional cumulative distribution function F(Z2(x0) | Z1(x0) = zs1(x0)) from the 
global joint-probability distribution F(Z2(x), Z1(x)) on the basis of the simulated values for the 
secondary variable, zs1(x0). 

1. From the experimental results, estimate the global bi-distribution F(Z2(x), Z1(x)).  
2. Simulation with DSS of the secondary variable Z1(x) for the entire simulation grid.  
3. Estimate the local mean and variance at x0 following a random path with a collocated 

simple co-Kriging estimate ([Z2(x0)*]CSK) and the corresponding co-Kriging variance 
(𝜎2CSK(xo)) that is conditioned on the initial experimental data, the previously simulated 
data (z2(x𝛼)) and the second variable collocated date (zs1(x0)). 

4. Calculate the conditional cumulative distribution function F(Z2(x0) | Z1(x0) = zs1(x0)) from 
the global joint-probability distribution F(Z2(x), Z1(x)) on the basis of the simulated 
values for the secondary variable, zs1(x0). 

5. To simulate a value for zs2(x0) from the conditional CDF F(Z2(x0) | Z1(x0) = zs1(x0)), 
adopt the conventional DSS method. 
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2.4 SEISMIC INVERSION 
 
Over the last few years, seismic inversion techniques have played major roles in the subsurface 
geology's characterization, aiding professionals to make better and more efficient decisions on 
the oil industry. It is very crucial in reservoir modeling and description due to its potential to 
assess the sub-surface petro-elastic properties (Azevedo et al., 2018). Seismic-reflection data are 
used in reservoir characterization to get a geometrical description of the main structures of the 
subsurface and estimate characteristics such as lithologies and fluids. Even when it comes to data 
that are noise free as a result of the small frequency of registered seismic waves, the 
transformation of seismic data to reservoir properties is an inverse problem with a non-unique 
solution.  
In action, the reversal of seismic data for reservoir properties complicated as a result of noise 
which is always present in the data, the simplification of forward modelling needed to obtain 
solutions within an appropriate period, and the uncertainties in well-to-seismic relations (depth-
to-time conversion), the estimation of the representative wavelet, and the connection between the 
reservoir and the elastic properties (Bosch, Mukerji & Gonzalez, 2010).  
 
The issue of seismic inversion includes understanding the response of the Earth to a limited 
collection of measurements indirectly and attempting to infer data from the modelling parameters 
that give rise to the solution (Azevedo & Soares, 201,7), so, it is stated as a Bayesian inference 
problem (Bosch, Mukerji & Gonzalez, 2010).  
 
The main objective of the analysis related to seismic inversion methods is to derive seismic 
elastic properties from assessable seismic reflection data polluted by mistakes from various 
sources. For a specific physical system. For a specific physical system, the process of predicting 
response is called forward modelling, and a forward model represented in equation 16 expresses 
the relationship between the data observed and subsurface properties. (Tarantola, 2005; Azevedo 
& Soares, 2017). 
 
        dobs = F(m) + e.                                                                                  (16) 
 
dobs: represent the recorded seismic reflection data with the well log data present.  
F: is the convolutional model. 
m: is the model parameter space for the properties to invert, which depends on the goal of the 
inversion and they are acoustic and elastic impedances or density, P-wave and S-wave velocity 
model.  
 
Equation 17 can describes the forward model (F) of the previous equation: 

A = r * w                                                                                          (17) 
A is the recorded seismic amplitude obtained by the convolution of r, the subsurface reflection 
coefficients, which depend on the elastic properties (P-wave and S-wave velocities and density) 
of the subsurface geology, with an estimated wavelet w (Azevedo & Soares, 2017). 
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2.4.1 LIMITATIONS OF INVERSION METHODS 
 
There are limitations with seismic methods due to the limited band nature, noise, forward 
modeling, uncertainties in-depth to time conversions simplifications, which make inversion a 
nonlinear problem with multiple solutions (Tompkins et al., 2011; Bosch, Mukerji & Gonzalez, 
2010; Tarantola, 2005). Therefore, the solution to an inverse problem will be a set of earth-
modeled configurations that match the real data within some tolerance when forward modeled 
into the synthetic data (Bosch, Mukerji & Gonzalez, 2010).  
 
The different seismic inverse methodologies need to be understood because reservoir 
characterization includes the elastic property calculated from seismic inversion and rock physics 
used in estimating the reservoir properties. 
 
The solution to the problem of seismic inversion can be split into two parts:  

• Optimization or error minimization is also called deterministic. It is gradient-based and 
searches for the maximum of the posterior probability and  

• The stochastic also called Monte Carlo or sampling approach (Bosch, Mukerji & 
Gonzalez, 2010).  

 
According to (Bosch, Mukerji & Gonzalez, 2010), Various workflows combine seismic 
inversion and rock mechanics to model the properties of reservoirs. These workflows can be 
divided into two groups: sequential, joint or simultaneous workflow. 
 

  
FIGURE 5: Seismic Inversion Diagram of Alternative Workflows for Reservoir Properties giving rise to 
Several Realizations of Seismic Data Conditioned Reservoir Properties, The Rock-Physics Model, And 
the Geology Imposed Spatial Continuity Model. (A, B) Two Sequential (Or Cascaded) Workflow 
combinations. (c) Bayesian Inversion Workflow Simultaneous. Data comes in different phases, in 
addition to seismic reversal data, well log data, cores, thin sections if present, and geological data gotten 
from outcrops (Tarantola, 2005; Russell). 
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2.4.2 DETERMINISTIC APPROACH 

Deterministic methods, through an imperfect assessment and uncertainty, gives a single, local 
smooth estimation of elastic properties at subsurface and therefore lead to a skewed estimate of 
volumes and connectivity (Bosch, Mukerji & Gonzalez, 2010).  

Regression models are based on deterministic methods and optimization algorithms are used to 
achieve a single best-fit solution, but an accurate evaluation of uncertainties resulting from the 
recovered subsurface model is missing.  

Considering this, the uncertainty is strictly expressed by a local multivariate Gaussian and can be 
evaluated as a linearization around the best-fit inverse solution, usually recovered by least 
squares (Tarantola, 2005; Russell).  

There are two common methods of deterministic or optimization-based methods of seismic 
inversion for elastic properties, according to (Bosch, Mukerji & Gonzalez, 2010), and they are 
the sparse-spike and model based (Russell & Hampson, 1991). 

• Under sparse assumptions of the reflectivity array, Sparse-spike deconvolves the seismic 
trace where the obtained reflectivity is determined by their impedances, including low 
frequencies that were missing typically from well data, seismic-velocity analysis or the 
low-frequency trend kriging estimate (Bosch, Mukerji & Gonzalez, 2010). 

• The inversion algorithm disrupts the initial model in the model-based until certain 
minimization conditions are met with the objective function or function to be reduced as 
a distinction between the data observed and the data modelled (Bosch, Mukerji & 
Gonzalez, 2010). 

Deterministic inversion methods are cheaper and faster in terms of computational work. They 
provide a smooth representation of the subsurface of Earth with far less spatial variability than 
the geology of the actual subsurface. If the aim is to understand more global and less detailed 
information, they can be used. 

 

2.4.3 Stochastic Approach  

According to (Russell, n.d.), Stochastic inversion is an extension of deterministic inversion. It 
provides additional information such as lithology, probability, facies distribution, volumetric and 
petrophysical parameters, therefore quantifying uncertainties by casting a problem from the 
posterior distribution in terms of variables selected through processes and statistical numerical 
moments of the resulting group solutions (Tompkins et al., 2011) and also eliminating the need 
to explicitly find solution to the wide-ranging inverse problem, accounting for the nonlinearity 
problem, and creating uncertainty estimates. However, they do not preclude the correspondingly 
vast multivariate posterior space from being sampled (Haario, Saksman & Tamminen, 2001).  
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They avoid any parametric prior distribution of the model and errors in the data and linearization 
of the forward model from being assumed (Nunes, Azevedo & Soares, 2019). The probabilistic 
methods evaluate the spread of uncertainty from previous probability distributions, calculated 
from experimental data (e.g. well-log data) to model parameter space distributions (Azevedo et 
al., 2013).  

Within the stochastic methods, Bayesian approaches makes sure that the uncertainty is 
propagated from the previous estimated probability distributions from the experimental data 
(e.g., well-log data) to the probability distributions of the space model parameters (Azevedo & 
Soares, 2017),. Inversion problems can therefore be described as a problem of Bayesian 
inference (Bosch, Mukerji & Gonzalez, 2010).   

 Posterior = constant * prior * likelihood                                                                                                  (18) 

spost(m) = crprior(m)rdata (dobs – g(m))                                                                                                         (19) 

Where the posterior probability density is spost(m), and rprior(m) is the priori probability. 

The value rdata (dobs – g(m)) is the data probability function and relies on the dobs and their 
uncertainties of observation, the forward-modeling operator g that depicts the model space into 
the data space, and the uncertainties of modelling.  

In equation 19, m defines the parameter configuration of the earth model, and c is a constant for 
normalizing the density of the posterior likelihood. The forward operator can be a simple 
function without a simple analytical expression, a matrix operator, or, more generally, an 
operator or a computational algorithm.  

 

2.5 ROCK PHYSICS 

Rock physics is one of the measures that succeeds seismic inversion or within a joint 
seismic/petrophysical formulation for quantitative seismic analysis, connecting elastic 
parameters and reservoir properties (Bosch, Mukerji & Gonzalez, 2010). It makes a link between 
parameters of the geological reservoir (porosity, clay content, sorting, lithology, saturation) and 
seismic properties (acoustic impedance, Vp/Vs (P-wave/S-wave velocity) ratio, bulk density, and 
elastic modules). In order to analyze such supposed possibilities, such as possible fluid or 
lithology changes, Rock-physics models are used to view observed sound and seismic velocities 
in terms of reservoir parameters or to forecast outside the available data range. They are also 
used to predict seismic reaction to the assumed reservoir and properties and conditions of 
overload (Avseth et al., 2010).  

Several models of rock physics are available, each having its advantages and limitations, such as 
empirical and theoretical models, which describes elastic moduli's behavior as a function of 
mineral contents and porosity, type of pores and fluids present, clay content, sorting, 
cementation, and stress.  
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The application of rock-physics models gotten on the log or core scale to band-limited seismic 
inversion outcomes can be difficult (Doyen, 2007) because the inversion outcomes reflect 
aggregate seismic-scale lithologies. With suitable scale transformations for the reservoir and 
elastic parameters, this problem can be viewed. Rock physics validates this conversion to 
reservoir properties and makes it possible to improve geological process-based well-log or 
training data (Avseth, Mukerji & Mavko, n.d.). In order to infer reservoir properties, 
geostatistical algorithms can be combined with rock physics models (Doyen, 1992).  

Statistical rock physics, as described by (Doyen, 1992), integrates theoretical and empirical rock 
physics models with statistical pattern recognition to interpret elastic properties derived from 
seismic inversion and use the four steps to measure interpretation uncertainty.: 

• To obtain the concept of facies, study of well log data. 
• Simulation using the Monte Carlo system of seismic rock properties (Vp, Vs, and 

density). 
• Computation of statistical probability density (PDF) facies-dependent functions for the 

seismic attributes of interest. 
• Classify the voxels inside the seismic attributes or elastic properties obtained from 

seismic inversion using a statistical classification technique that uses the Bayes theorem 
to obtain the subsequent probability of facies given the attributes and impose spatial 
correlation using geostatistical stochastic simulation that updates the probabilities of 
seismic derivation taking geological probabilities into account with reasonable spatial 
correlation by conditioning to the facies and fluids observed at the well locations (Bosch, 
Mukerji & Gonzalez, 2010).  

 

2.6 GEOSTATISTICAL SEISMIC INVERSION 
 
Exploration is becoming complicated in the oil industry, and targets are located very far 
offshore. The unavailability of well data and the improvement in the quality of geophysical 
data, checked in recent decades, render the use of such data inevitable for the modelling and 
characterization of oil reservoir activities. In the characterization of subsurface petrophysical 
variables the incorporation of geophysical data has become a priority aim for geoscientists, 
making geostatistics a big way to provide the theoretical context and necessary practical tools 
to combine as many different forms of reservoir modelling and characterization data as 
possible (in particular the integration of well-log and seismic reflection data). Geostatistical 
seismic inversion techniques are valuable and powerful methods used to simultaneously 
combine seismic reflection and well-log data to predict and classify the petro-elastic properties 
of subsurface lithofacies in hydrocarbon reservoirs (Daya, Cheng & Agterberg, 2018). 
Geostatistical seismic inversion is a technique used to simulate potential models of rock property 
and has many benefits that are helpful in reservoir modelling and analysis of uncertainty because 
it reduces tuning effects, models uncertainty and can be measured on a fine scale, but it is costly 
and needs large amounts of data (Cristea, 2018). It combines data from many sources and 
produces models that, by matching known geological trends, have better resolution than the 
original seismic and can be used for risk assessment and reduction. Seismic, well logs and other 
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input data are individually described as a function of probability density (PDF), which provides a 
geostatistical definition in histograms and variograms that describe the chances of a specific 
value at a specific location and the expected geological scale and composition throughout the 
modelled region (Cristea, 2018). 
 
According to (Pereira et al., 2020), stochastic sequential simulation is used as the model 
generation and perturbation technique in geostatistical seismic inversion. Which uses a global 
variogram model to express the expected spatial continuity pattern of the subsurface elastic 
properties of interest. It is unsuitable for complex and nonstationary geological environments to 
be conditioned to a single variogram model because it results in poor inverted models which are 
unable to reproduce non-stationary features such as channels, folds, and faults 
 
(Deutsch & Journel, 1996) claimed that a geostatistical seismic inversion system consists of 
iterative processes whereby a set of parameter realizations are generated using methods of 
stochastic sequential simulation and produced until a given user-specified value or the given 
number of fixed iterations is reached by the match of the objective function. Geostatistical 
inversion techniques are therefore based on the use of stochastic sequential simulation as the 
technique of model disruption, which ensures that the primary spatial continuity patterns are 
generated and that the acoustic and elastic properties of interest are jointly distributed as obtained 
from the current well-log data in all the models obtained during the iterative process. While 
enabling entry to the uncertainty related to the retrieved inverse models at the same time. There 
are two traditional approaches to seismic reflection integration and well-log data for modelling 
hydrocarbon reservoirs (Daya, Cheng & Agterberg, 2018) which are trace by trace and Global 
geostatistical seismic inversion. 
 
 

2.6.1 TRACE BY TRACE GEOSTATISTICAL SEISMIC INVERSION 
 
Seismic trace within the inversion grid is individually visited according (Bortoli et al., 1993) 
after a predefined random path within the seismic volume. In some reported seismic reflection 
data, there is a low signal to noise ratio which is a major downside (Daya, Cheng & Agterberg, 
2018). 
 

 
2.6.2 GLOBAL GEOSTATISTICAL SEISMIC INVERSION 

 
The Global Geostatistical Seismic Inversion (Soares, A., Diet, J. D., Guerreiro, 2007) was 
implemented to resolve the trace by trace method limitation by using a global approach during 
the stochastic sequential simulation process of the inversion procedure (Daya, Cheng & 
Agterberg, 2018).  
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                      FIGURE 6: General Outline for Global Iterative Geostatistical Seismic Inversion 
 
 
Low signal-to-noise ratio areas persists to be poorly balanced in the throughout the iterative 
inversion method in global iterative geostatistical seismic inversion processes (a group of 
inverted models that are best-fitted will definitely give high variability, or high uncertainty, for 
noisy areas that have low signal-to-noise ratio). This method was generalized for the inversion of 
acoustic and elastic impedance seismic reflection data, direct inversion of petrophysical 
properties, and inversion of seismic AVA (Amplitude Variation vs. Offset) (Daya, Cheng & 
Agterberg, 2018). This thesis research focuses on Geostatistical Acoustic Inversion. 
 

2.7 FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS 
 
Functional Data Analysis is a branch of statistics that analyses data by supplying information 
about surfaces varying over a continuum, i.e., a series of p-direction vectors where the ith vector 
is the direction of a line that best matches the data while being orthogonal to the first i-1 vectors. 
Here, the best-fit line is called the line that minimizes the average square distance from the 
points to the line. These directions form an orthonormal basis where different individual data 
dimensions are not linearly associated with each other.  
 
Principal Component Analysis (PCA) is the method of computing the main components by 
modifying the data, sometimes using only the first few main components and disregarding the 
remaining components.  
 
Functional Principal Component Analysis (FPCA) is a well-known mathematical model and 
order reduction technique (Ramsay, J. and Silverman, n.d.). In FPCA, time series are 
summarized into a relatively small number of unknowns by combining principal component 
analysis (PCA) with functional data analysis (FDA). This makes FPCA is a broad dimension 
reduction method even when the presence of non-periodic data such as well-log data or petro-
elastic traces are retrieved by seismic inversion. 
 
Recently there has been interest in this method in geosciences. (Menafoglio, Alessandra.,Grujic, 
O., & Caers, 2016) used FPCA to predict the oil production curves of shale reservoirs. (Bottazzi 
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& Della Rossa, 2017) use FDA in geomechanical modeling of hydrocarbon reservoirs. However, 
its use as part of seismic inversion has been limited. (Nunes, Azevedo & Soares, 2019) proposed 
a method combining machine learning and Fourier decomposition to speed-up iterative methods 
of geostatistical seismic inversion. A particular case of functional data analysis can be considered 
to be their tool. 
 
This study builds upon previous works on FPCA and model reduction in geosciences 
(Menafoglio, Della Rossa). 
 
 

2.7.1 GOAL OF FPCA 
 
The purpose of evaluating main components (Ramsay, 2009) is: 
• When we want to find the dominant modes of variation in the results, PCA is generally used, 
typically after subtracting the mean from each observation.  
• We want to understand how many of these types of variation are required to achieve a 
sufficient approximation of the original data. 
• Holding only dominant modes can be believed to maximize the signal-to-noise ratio of what we 
hold. 
• In terms that we can explain to non-statisticians, we generally want to know what these modes 
represent. At this stage, rotation of the principal components will help. 
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                                                       CHAPTER 3 

3. METHODOLOGY 

3.1 GLOBAL GEOSTATISTICAL ACOUSTIC INVERSION 
 
Geostatistical seismic inversion methods have also been used to integrate seismic knowledge into 
stochastic fine grid models, according to (Caetano, 2012), and geostatistical inversion methods 
does the sequential approach in two stages: 

• First, in each trace (a column of a 3D grid), acoustic impedance values are simulated on 
the basis of well data and spatial continuity pattern, as shown by the variograms. 

• Then, the acoustic impedance values are converted into amplitudes by a convolution with 
a known approximate wavelet, resulting in a simulated seismogram that can be contrasted 
by the correlation coefficient with the actual seismic. 

Based on an objective function's match, the "best" simulated trace is preserved, and another trace 
is visited, simulated and transformed, based on the same objective function (a function of the 
similarity between actual seismic trace and seismogram). The sequential approach continues 
until all acoustic impedance traces are simulated.  
 
According to (Caetano, 2012), the traces of simulated acoustic impedances are imputed as "real" 
data for the next sequential simulation stage as long as the "best" transformed trace is adopted in 
each step. 
 
The benefits of working with Ip instead of the seismic data that has been recorded are:  

• This makes the layer property more geological rather than an interface property and 
therefore has a more physical sense. 

• Secondly, all the well data is connected to the seismic data during the inversion process, 
providing a better understanding of the quality of both datasets. 

 
One of the existing methods for inverting full-stack seismic reflection data for acoustic 
impedance (Ip) models is global stochastic inversion (Caetano, 2012; Soares, Diet, Guerreiro, 
2007). The following sequence of measures, outlined in the figure below, will define the general 
outline of this iterative geostatistical methodology process: 
 
 

1. Using direct sequential simulation (Soares, 2001), a set of  Ns acoustic impedance 
models are simulated for the entire seismic grid, conditioned on the available acoustic 
impedance well-log data assuming a spatial continuity pattern as shown by a variogram 
model. 

2. Derive a set of synthetic seismic volumes of Ns from the impedance models simulated in 
the previous step by calculating the corresponding normal coefficients of incidence 
reflection (RC). 
             RC = ()"*()%

()"	,()%
 

3. For that specific seismic dataset, an approximate wavelet convolves resulting RC in order 
to compute synthetic seismic volumes using               
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  A = r * w. 
4. With respect to the correlation coefficient in opposition to the actual seismic trace from 

the corresponding location, each seismic trace from the Ns synthetic seismic volumes is 
compared. The synthetic seismic with the highest correlation coefficient generated from 
the traces of acoustic impedance are stored in a second volume along with the value of 
the correlation coefficient from the ensemble simulated Ip models. 
These secondary volumes are used as secondary variables and local regionalized models 
to produce new sets of acoustic impedance models for the next iteration, one having the 
best acoustic impedance traces and the other that has the corresponding local correlation 
coefficients. Using direct sequential co-simulation (Soares, 2001) the new set of Ns 
acoustic impedance models was constructed and conditioned to the available acoustic 
impedance well-log data using secondary variable and local correlation coefficients of the 
best Ip volumes. 

5. When the global correlation coefficient between the fully synthetic and actual stacked 
seismic volumes is above a certain threshold, end the iterative process. 
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FIGURE 7: Schematic Representation of Geostatistical Acoustic Inversion (Azevedo & Soares, 
2017) 
 
The GSI methodology makes it possible to retrieve high-resolution Ip models that honor the 
distribution feature as estimated from the well-log data available and the spatial continuity model 
as obtained from a variogram model and has been successfully tested on seismic datasets from 
very different geological contexts with varying quality (Soares, A., Diet, J. D., Guerreiro, 2007). 
 

3.2 FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS 
 
Iterative geostatistical acoustic inversion (Azevedo and Soares 2017) relies on two main ideas. 
First, model perturbation and update are performed using stochastic sequential simulation and 
co-simulation (Deustch and Journel 1994). The existing well-log data of Ip are used as 
conditioning data for the stochastic sequential simulation and co-simulation of the entire 
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inversion grid. Then, the trace-by-trace mismatch (M) between observed and synthetic seismic 
data (Eq.  20) drives the inversion procedure from iteration-to-iteration: 
 

M<,> =
"∑ (@&'(	@&'(

),+ ),
(-!,

∑ (@&'()$,
(-!, B∑ (@&'(

),+ )$,
(-!,

                                                                                                                (20) 

 
where j is the iteration number, r the realization number, n is the size of the moving window 
used to compute the local trace-by-trace similarity, d- and d-

.,0 are the measured and predicted 
seismic traces at sample t, by construction, −1 ≤ M-

.,0 ≤ 1. Negative values of M are truncated at 
zero. 
 
In the proposed method, we use stochastic sequential simulation and co-simulation to generate 2-
D fields of FPCs as a proxy of model generation for the entire inversion grid. The generated 
fields are then reconstructed into the original 3-D domain. This step allows retrieving 3-D 
models of Ip. The proposed inversion method may be summarized in the following sequence of 
steps, summarized in the figure below: 
 

1. Apply FPCA to the existing Ip well logs. Each log is summarized in a set of l FPCs, with 
l < n, n is the sample number of the original logs.  

2. The l FPCs, resulting from i), are used as conditioning data to generate 2-D fields with 
the same spatial extent of the inversion grid. Ns independent realization is generated for 
each FPC. 

3. Reconstruct Ns 3-D Ip fields by applying the inverse FPCA. 
4. Forward model each Ns Ip model and compute Ns synthetic seismic volumes. 
5. Compare, on a trace-by-trace basis, the Ns synthetic, and real seismic volumes following 

Equation 2.  
6. For each location within the inversion grid, select the simulated FPC that ensures the 

maximum M. Store both the FPC and M values in two auxiliary volumes. 
7. Use the stored auxiliary volumes as secondary variables to co-simulate a new set of Ns 

FPC models. 
8. Return to step 3) and iterate until the global M between real and synthetic volumes is 

above a pre-defined threshold. 
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                               FIGURE 8: Schematic Representation of Functional Data Analysis  
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                                                      CHAPTER 4 
 

4.0 RESULTS AND DISCUSSION 

4.1 DATA DESCRIPTION 
 
The field of research is a turbidite region located deep-offshore and the reservoirs have sand-
prone bank deposits. As a result of their amplitude anomalies with the offset, the known 
reservoirs on a partial angle stack are easily identified. The seismic volumes of 321 in lines of 
338 crosslines and 756ms of length with a sampling rate of 4ms were included in the available 
data collection, while we established an inversion grid of 101 cells in i- and j- directions and 90 
vertical direction samples (k). The inversion region was delimited by a half-wavelet plus or 
minus the top and base reservoir ensuring better convolution within the area of the reservoir.  
There was a set of 13 wells accessible with Vp and bulk density logs (fig. 9). The wells are 
positioned preferentially drilling the geological pay formations along the study field, which 
imposes a bias on the recognized elastic properties (fig. 10).  
 
 

4.1.1 DATA PROCESSING 
 
The data processing was done by Professor Leonardo Azevedo. The steps he used in the 
processing of the well log data are as follows: 
Given the available well log data,  

• The high-resolution well-log data was upscaled into the reservoir grid (fig. 11), to make 
sure that the extreme mean values were retained, and the variance was recovered from the 
initial well-log after the upscaled.  

• Then Acoustic impedance calculated by multiplying the upscaled density logs by the 
upscaled p-wave velocity logs (fig. 11). 

The spatial continuity pattern of each property was inferred through the modelling of an 
experimental variogram computed from the upscaled well-log data in the vertical direction and 
from the actual partial angle stacks in the horizontal direction. Due to the great distances between 
wells, the horizontal spatial continuity pattern was calculated from the seismic reflection data.  
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                               FIGURE 9: 5 of 13 Well Logs Located Along the Study Area. 
 

                  
                 FIGURE 10: The Available Set of Wells and Its Location Within the Seismic Grid 
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                                         FIGURE 11: 5 of 13 Upscaled Well Logs and Ip Logs 
 
 
The upscaled Ip well log in fig. 11 will be used to generate the synthetic seismic through direct 
sequential simulation and co-simulation through MATLAB which will be compared with the real 
seismic through the correlation coefficient. 
 
 

4.1.2 THESIS TASKS  
 

1. Developed MATLAB codes for GSI and FDA model.  
2. Run the GSI Ip on the input data (seismic data and Ip log data processed by Professor 

Leonardo Azevedo using petrel) and interpret results (Best Global Correlation 
Coefficient, Best Ip and DSS Ip).  

3. Run the FDA on the input data and interpret results. 
4. Compare final image from the FDA with GSI image.  

Given the unavailability of petrel software the images of the real and synthetic seismic can’t be 
viewed, hence, the analysis of results from this work will be solely on the correlation coefficient 
between traces from the real and synthetic seismic. 
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4.2 GEOSTATISTICAL SEISMIC INVERSION USING ACOUSTIC IMPEDANCE  
 

4.2.1 DEFINING INVERSION GRID AND IP MODELING 
 
The seismic grid defined was 101*101*90 in i, j, and k direction in MATLAB.  
 
The variogram experiment was done by  

• Trying different variogram parameters in MATLAB Appendix 1 
• Comparing the global correlation coefficient output   
• Choosing the experiment with the highest Global correlation coefficient (Appendix 1, fig 

3). 
 
These variogram experiment was done in MATLAB by changing the values of the variogram 
range and then selecting the experiment with the highest Global Correlation Coefficient at the 
last iteration for analysis. 
 
 

4.2.2 RESULTS FROM THE ITERATIVE GSI EXPERIMENT 
 
The results gotten as output which are used for the analysis and interpretation are: 

• Best Correlation Coefficient – shows the maximum values of traces between synthetic 
and real seismic  

• Best Acoustic Impedance – which sums all traces with the highest correlation coefficient 
from all simulations in each iteration. 

• DSS Ip- which gives us the image of the model. 
• Global Correlation Coefficient – shows the trend of the correlation coefficient with 

respect to number of simulations. 
 
 

4.2.3 CONVERGENCE OF THE MODELS MATLAB 
  
The following steps describes the steps in convergence of the models: 
 

• Using direct sequential simulation and co-simulation, a set of experiments was performed 
(appendix 1, fig. 3) using 40 simulations and 10 iterations on a set of Ip models on the 
seismic grid while conditioned to the available Ip well-log data (fig. 12).  

• Through direct sequential simulation on the Ip well logs, a set of synthetic seismic 
volume is generated. 

• This set of synthetic seismic volumes generated from the Ip model was Calculated by 
convolution with an estimated wavelet and compared with the real seismic automatically 
by the forward model. 

• The Ip traces that generates the synthetic seismic with the highest correlation coefficient 
is stored as best Ip (fig. 17) along with the corresponding correlation coefficient (best cc) 
(fig. 14) in a secondary volume. 
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• These secondary volumes are used as secondary variables and local regionalized models 
to produce a new set of Ip model (fig. 20) for the next iteration. 

• The steps are repeated till the 10th iteration. 
 
Per iteration, 40 sets of Acoustic Impedance were simulated and co-simulated. After 5 iterations, 
the global correlation coefficient between the real and synthetic seismic trace is approximately 
0.80 (fig. 13). From the graph, it is evident that the correlation between the real and synthetic 
seismic trace increases as the iteration proceeds. The iterative procedure stopped due to the small 
improvement in terms of correlation coefficient from iteration 5th to 10th. 
 
The best simulated trace is retained for each simulation for every iteration and are interpreted 
from the image of best correlation coefficients between the traces from each iteration. 
 
The image of the Best correlation coefficient (fig. 14, 15, 16) shows the maximum values of 
similarity of traces between the synthetic and real seismic. (fig.16 has more values with a higher 
correlation to the real seismic than fig. 15 and 14) for every iteration. 
 
The image (fig. 17, 18) of the best Ip model is a combination of all best global correlation 
coefficient from each simulation of each iteration and shows the iteration with the highest 
number of correlations in each simulation considering the first and last iteration; the last iteration 
has a greater number of simulations with the highest number of correlation coefficients between 
the synthetic and real seismic trace when compared to results gotten from other iterations. 
 

 
                          FIGURE 12: Image of Ip Well Log Data 
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         FIGURE 13: Global Correlation Coefficient between synthetic and real seismic traces  
 
 
 
                               
 

 
                        FIGURE 14: Image of Best cc from First Iteration 
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                      FIGURE 15: Image of Best cc from The Third Iteration 
 
 

 
                              FIGURE 16: Image of Best cc of the Last Iteration 
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(Fig 14, 15, 16) shows the Best cc from the first, third, and tenth iteration, respectively.  
 
The Best cc image shows the trace-by-trace matrix correlation between the real and synthetic 
traces. It is evident that the correlation coefficient becomes better as the iteration proceeds as the 
image of best cc from the last iteration has more traces with higher correlation coefficient when 
compared to images from the first and third iteration.  
 
 

 
                        FIGURE 17: Image of Best Ip Model from First Iteration 
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               FIGURE 18: Image of Best Ip Model from the Last Iteration 
 
 
Fig (17, 18) shows the best Ip model, which is obtained by the summation of all traces with the 
highest correlation coefficient from each simulation of each iteration. 
It is obvious that the best Ip model gotten from the last iteration has more values with higher 
correlation hence the best Ip model gives a better image when compared with the image gotten 
from the first iteration this is due to the fact that the last iteration has more values with higher 
global correlation in each simulation. Results from the last iteration gives better image because 
the results get better as the iteration proceeds because best traces from previous iterations are 
used to generate the next synthetic images which is used as input data for the next iteration.  
 
 

4.2.4 GSI RESULT INTERPRETATION FROM DSS 
                                   
Comparing the real seismic image (fig. 19) with the image direct sequential simulation results 
from the first, third, and last iteration (figure 20, 21, 22), it is evident that the DSS Ip image 
struggles to reproduce the features clearly. Still, we can see the Acoustic impedance of (6200 - 
6500) occurring more frequently in the 10th, which signifies the solution is close to the real data. 
This can be visualized using a histogram to show the distribution (fig. 25, 26, 27). 
 
The inversion results can be assessed by interpreting the image of the mean Ip model (fig. 23, 
24) from the ensemble of elastic models generated during the last iteration since it has the 
highest global correlation coefficient between the real and synthetic seismic. 
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                         FIGURE 19: Image of True Seismic from SGEMS 
 
 

    
             FIGURE 20: Image of Last DSS Ip model of the First Iteration 
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          FIGURE 21: Image of Last DSS Ip model from the third Iteration 
 
 
 

 
            FIGURE 22: Image of Last DSS Ip model from The Last Iteration 
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FIGURE 23: Image of Mean Acoustic Impedance Model from the Last Iteration from 
MATLAB 
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FIGURE 24: Image of Mean Acoustic Impedance Model from the Last Iteration from SGEMS 
 
Looking at the image gotten from the mean Ip model (fig. 23, 24), it is evident that it gives a 
clear representation of the features from the seismic image (fig. 19). We can clearly see areas of 
low acoustic-impedance which are potentially hydrocarbon bearing regions.  

 
                         FIGURE 25: Ip Distribution Last Simulation of the First Iteration 
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                            FIGURE 26: Ip Distribution Last Simulation of the third Iteration 

 
                         FIGURE 27: Ip Distribution Last Simulation of the Last Iteration     
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The rise in the peak (fig. 25, 26, 27) signifies an increase in the trace-by-trace correlation 
coefficient as the iteration proceeds. 
 

4.3 FUNCTIONAL DATA ANALYSIS USING FPCS 
 
The aim of this proposed method is to reduce the computational time of the traditional GSI Ip 
model. The same analysis was carried out as we did with the DSS, so only the final results and 
comparison as with the GSI will be carried out.  
 
Choosing the experiment with the highest Global correlation coefficient (Appendix 1, fig 2). 
 
 

4.3.1 FDA RESULT INTERPRETATION  
 
The inversion grid was defined using 101, 101, 90 in the i, j, k direction.  
Using the same data set, a set of variogram experiments was run, changing the variogram range 
(appendix2). Using 50 simulations and 30 iterations with a simulation time of 0.31 secs per 
simulation (appendix 4, fig. 32) to get a suitable variogram model, which will describe the 
expected spatial continuity pattern of the Functional Principal Component model.  
 
From (fig. 28), Per iteration, 40 sets of Acoustic Impedance were simulated and co-simulated. 
After the 3rd iterations, the global correlation coefficient between the real seismic trace and 
synthetic trace is approximately 0.75. 
 
The iterative procedure stopped due to the small improvement in terms of correlation coefficient 
from iteration 3rd to 10th iteration.  
 
The result (fig. 29, 30) is obtained by plotting the 3 simulated outputs of the last iteration and the 
mean Principal Components; the realized model was able to produce the marked similarities with 
the GSI Ip model (fig. 23, 24), which shows the ability to use functional data analysis to explore 
the posterior distribution of the inverse solution without compromising the exploration of model 
parameter space. 
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FIGURE 28: Global Correlation Coefficient between synthetic and real seismic traces from the 
FDA Experiment. 
 

 
                         FIGURE 29: Image of Ip FDA Model from MATLAB 
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                         FIGURE 30: Image of Ip FDA Model from SGEMS 
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                                                       CHAPTER 5 
            

5.0 COMPARISON  
 
The goal of the proposed approach is to create a subsurface elastic properties model in order to 
quickly test alternative scenarios (e.g., testing various spatial continuity patterns and distributions 
of conditioning). 
 
Compared to the GSI Ip process (Appendix 4, fig. 31), simulation time consumption improved 
significantly using the proposed FDA approach (Appendix 4, fig. 32). In addition, this method 
simplifies the search phase of the simulation, increasing the speed of simulation per node and 
reducing memory usage.  
 
The proposed method ran in 0.47 seconds per simulation with 30 iterations and 50 simulations on 
a workstation with an Intel i5-8257U CPU with five cores at 1.40 GHz and 8 Gb of RAM. The 
conventional geostatistical acoustic inversion took 1.38 seconds to complete each simulation on 
the same workstation and used 10 iterations and 40 simulations.  
 
The proposed method of inversion translates into a reduction of 66 percent of the original 
computational time by reducing the size of the dimension of the simulation grid.  
 
The realized model was able to produce the marked similarities with the GSI Ip model (fig. 23, 
24), which shows the ability to use functional data analysis to explore the posterior distribution 
of the inverse solution without compromising the exploration of model parameter space. 
 
Difficulties with the proposed FDA method (fig. 29, 30), compared with the GSI Ip method (fig. 
23, 24), include the inability to detect horizontal and directional well logs. Hence, it omits them 
because it looks for common patterns in well logs so horizontal wells appeared as vertical traces. 
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                                                       CHAPTER 6 
 

6.0 CONCLUSION 

Functional data analysis is a well-established statistical method recently extended to problems 
related to geosciences. FDA method allows summarizing series belonging to both space and time 
in a set of analytical functions. However, the application of this technique in geophysics is 
limited. We use functional data analysis as a proxy for model perturbation technique in 
geostatistical seismic inversion and to sample from the posterior distribution achieved with 
Bayesian linearized inversion.                             

The results retrieved from the FDA are reliable and shows the ability to use functional data 
analysis to explore the posterior distribution of the inverse solution without compromising the 
exploration of model parameter space at a reduced computational time.                                                        

The FDA gave a good approximation of the GSI method. However, the FDA showed vertical 
traces as a result of the skipping of the directional wells because it looks for common patterns in 
well logs as results demonstrated a considerable speedup over the traditional GSI Ip method 
while achieving similar performance and a good representation of the GSI impedance model.  

The proposed approach was successfully used to reduce the computational time of the Ip model 
of Geostatistical seismic inversion. The result showed that the FDA model is capable of 
reproducing the same GSI Ip model results; they are therefore reliable.           

Besides, the proposed FDA technique may also be used within other different seismic inversion 
algorithms such as AVO in order to speed up iterative geostatistical seismic inversion.  

 

6.1 FURTHER WORKS 
 
The FDA model can be improved by applying predictive analysis to predict the values 
directional well logs vertically before applying the FDA to prevent the vertical traces due to 
skipping of the directional well logs by the FDA.  The retrieved inverse models should be free 
from vertical traces since they will incorporate more knowledge of the subsurface geology. 
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CONSTRAINTS  
 
Due to the pandemic, I was unable to get access to Petrel software to visualize of the synthetic 
seismic and real seismic data, hence the work was done exclusively with MATLAB and SGEMS 
and the comparisons were done considering the correlations between the real and synthetic 
seismic traces and not with the real and synthetic seismic image. 
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APPENDIX 1 
Describes the different variogram experiments carried out for the GSI  
 
 

1.                                                                        2.  

    
Vertical = 80 Vertical = 70 
Horizontal major = 90 Horizontal major = 90 
Horizontal minor = 20 Horizontal minor = 23 

 
 

3.                                                                  4. 
 

 
 
Vertical = 25 Vertical = 20 
Horizontal major = 85 Horizontal major = 70 
Horizontal minor = 90 Horizontal minor = 65 
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APPENDIX 2 
Describes the different variogram experiments carried out for the FDA 
 

1.                                                                      2.  

 
Vertical = 10 Vertical = 10 
Horizontal major = 50 Horizontal major = 15 
Horizontal minor = 15 Horizontal minor = 15 

 
3.                                                                       4.  

 
 
 
Vertical = 15 Vertical = 15 
Horizontal major = 50 Horizontal major = 40 
Horizontal minor = 35 Horizontal minor = 30 
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APPENDIX 3 
Shows the nature of all wells  
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APPENDIX 4 
 

 
 
FIGURE 31: System Performance for GSI. 
 
 

 
 
FIGURE 32: System Performance for FDA. 


