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Abstract

We consider a spin chain coupled to a bath of independent harmonic oscillators.
We will use the bosonization for the spins and treat the bath in the Caldeira-Leggett
framework. Our goal is to compute transport properties and determine if the bath
can induce localization in the spin chain.
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Chapter 1

Introduction

The study of the localization in open dissipative quantum systems is indeed a
promising and innovative one.
In general, the phenomenon of localization is related to the question of how a
many-body system thermalizes and whether it maintains the memory of the initial
state. For this sake, we distinguish between two different types of behaviour: the
ergodic phase, well described by the eigenstate thermalization hypothesis, and the
many-body localized phase (MBL)(FIG.1.1).

Figure 1.1: Ergodic vs. Localized behaviour with unitary quantum dynamics
Starting from a definite initial quantum state of preparation, the system evolves
according to an unitary evolution governed by the Hamiltonian Ĥ. At large times,
it can lose all the memory of the initial state (ergodic phase, above) or retain its

memory (MBL phase, below)(from [1]).

In the ergodic phase, the system cancels all the memory of the initial state. At
large times, it reaches thermal equilibrium and can be characterized using few
macroscopic quantities. This case is indeed well described by equilibrium quantum
statistical mechanics.
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Introduction

Let us now consider an isolated quantum system with an Hamiltonian Ĥ. The
system is in the initial state |ψ(0)〉, which can be expanded in the eigenstates of
the Hamiltonian as:

|ψ(0)〉 =
∑
α

Aα|α〉 (1.1)

After the temporal evolution, the quantum state becomes:

|ψ(t)〉 = e−iHt|ψ(0)〉 =
∑
α

Aαe
−iEαt|α〉 (1.2)

However, the temporal evolution does not modify the probabilities associated to
the eigenstates.
The concept of thermalization implies that the time average of the observables
corresponds to the ensemble average :

〈O〉∞ = lim
T→∞

1
T

∫ T

0
〈ψ(t)|Ô|ψ(t)〉 =

∑
α

pα〈α|Ô|α〉 (1.3)

The value of the observable at infinite time is determined by the probabilities
pα = |Aα|2 and the expectation values of the operator over the eigenstates. The
off-diagonal elements at infinite time are washed away, as they oscillate at different
frequencies depending on the difference between the energy eigenstates. The ETH
states that this diagonal elements agree with the microcanonical value of the
observable O at fixed energy Eα, 〈α|Ô|α〉 ≈ Omc(Eα).
The ETH has implications for the entanglement entropy. For any eigenstate |α〉 that
obeys ETH, this implies that the reduced density matrix is thermal in the associated
small subsystem A: ρA = TrĀ|α〉〈α|. Then, the von Neumann entanglement entropy

Sent(A) = −TrρA log ρA (1.4)
is equal to the thermal one and therefore scales as the volume

Sent(A) ∝ vol(A) (1.5)

There are many ways in which a system fails to thermalize. The first example of
localization has been studied in 1958 by Anderson [2]. He introduced the concept
to describe a class of materials in which the insulating behaviour is driven by the
presence of strong disorder. The Hamiltonian of the model he studied is:

(H,ψ)(i) = Eiψi +
∑
i

∑
i /=k

V (|i− k|)ψk (1.6)

where the energies Ei are stochastic variables distributed according to a probability
distribution defined in the interval [−W,W ], and associated to the lattice sites i, W
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being the disorder strength and V (|i− k|) a potential falling off as 1/r2 as r →∞.
The spectrum of this model has been shown to be localized in 1 and 2 dimensions.
In higher dimensions there may be a localized-delocalized phase transition as a
function of the disorder strength, with the appearance of a mobility edge in the
energy spectrum which separates the low-energy localized states from the extended
ones at higher energies [3]. In the localized phase, the single-particle eigenstates
are no more plane waves, but they are confined in some regions of the space. The
ergodicity breaking determines a radical change of the transport properties of the
system and the probability for a particle to make a transition between two spatially
separated sites becomes vanishing. The system in the localized phase behaves as
an insulator with zero DC conductivity, while in the delocalized one it has finite
conductivity.
Subsequently, the localization has been demonstrated to be robust even to the
presence of electron-electron interaction. The interactions tend to induce the
hopping of the particles between the lattice sites and to counterbalance the effect
of the disorder. However, it has been shown that the localized phase survives in
presence of weak interactions. For example, it has been studied the subsequent
model:

HXXZ = Jxy
∑
i

[σxi σxi+1 + σyi σ
y
i+1] + Jz

∑
i

σzi σ
z
i+1 +

∑
i

hiσ
z
i (1.7)

with hi randomly distributed in the interval [−W,W ], where W is the disorder
strength. It can be mapped using the Jordan-Wigner transformations into a
fermionic model, the term with Jxy becomes a hopping term, Jz into a nearest-
neighbour interaction and the field term into stochastic on-site energies. The
recent studies has shown the presence of localization even in the context of non-zero
temperature, as a dynamical phase of matter. Therefore, in this case the localization
constitutes a robust phase of matter, called Many Body Localized phase, which is
much different from the single-particle localization.
The entanglement entropy is an important signal of the presence of a MBL phase,
as it is characterized by a logarithmic growth of entanglement entropy, in contrast
to the linear growth associated to the ergodic phase.
In the MBL phase the system maintains the memory of the initial state (FIG. 1.1).
In this phase, at T=0 the DC conductivity is zero while in the ergodic phase is
finite and this is another important signal of localization. At finite temperature
the behaviour is less clear.
Recently, the MBL phase has been shown to be integrable. It is, in fact, possible
to construct a set of quasi-local integral of motion, which commute with the
Hamiltonian. For example, in the above disordered Hamiltonian (1.7) with Jxy = 0
it has been demonstrated that the operators τ zi constitute a set of integral of motion.
They are constructed as

τ̂ zi = Û †σ̂zÛ (1.8)

3
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with the unitary operator, which can be factorized over k-sites unitary operators:

Û =
∏
i

...Û
(k)
i,i+1,...,i+k...Û

(2)
i,i+1 (1.9)

with decreasing angles satisfying the property regarding the Frobenius norm:

||1− Û (n)
i,i+1,...,i+n||F ≤ e−n/ξ (1.10)

The integrability of the system implies an effective ergodicity breaking, as it
constrains the dynamics of the systems. [1]
Our study is motivated by the results of the Leggett paper [4], which regard a
two-state "spin-boson" interacting system. The model he studied was:

H = −1
2~∆σx + 1

2εσz + 1
2q0σz

∑
α

Cαxα +
∑
α

[1
2mαω

2
αx

2
α + p2

α

2mα

]
(1.11)

where xα, pα, mα, ωα are respectively the coordinates, momentum, mass and
frequency of the α-th harmonic oscillator of the set. Cα is the strength of the
coupling constant between the α-th harmonic oscillator and the spin variable. An
important quantity considered in the paper is the spectral function J(ω) defined
as:

J(ω) = π

2
∑
α

(
C2
α/mαωα

)
δ(ω − ωα) (1.12)

The author makes the assumption that J(ω) is of the form ωs up to a frequency
ωc, which is much higher than ∆. So J(ω) must have the form J(ω) = Aωse−ω/ωc

with the conditions ∆ << ωc and kBT << ~ωc. At zero temperature, for example,
the system is localized for s < 1 while for s > 1 is delocalized. As in the case
of the disordered model, even in the spin-boson model, starting from the initial
condition of spin up, the system may or may not maintain the memory of the
initial state. The order parameter associated to this phase transition is P (t→∞),
where P (t) = 〈σz(t)〉, which is non-zero only in the localized phase.
The objective of our study is to investigate the possibility of localization induced
on an interacting spin chain by the interaction with a bath model modelled in the
Leggett framework as a collection of independent harmonic oscillators. For this
end, we use the variational approximation to characterize the phase diagram of
the system. This enables us to investigate the transport properties of the system,
which are a major indicator of the presence of a localized phase. In particular, we
distinguish between a "gapless" phase, where the DC conductivity is metallic, and
a "gapped" one, in which the DC conductivity is zero and which corresponds to
the MBL phase. The properties of the bath which are important are contained in
the equal-position time correlation function of the harmonic oscillators C(t− t′).
We examine only two extreme cases, in which the correlation function is a delta
function and a constant.
The structure of the thesis is the following:
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• In Chapter 2 we examine the bosonization procedure and we apply it to our
model;

• In Chapter 3 we derive an effective theory from our model;

• In Chapter 4 we derive the Kubo formula and we use it to examine the
contribution of the forward scattering term to the conductivity;

• In Chapter 5 we explain both the variational and the RG procedure and
we apply them to study the conductivity in the case of a delta correlation
function;

• in Chapter 6 we use the same variational procedure to study the constant
correlation function case.

5



Chapter 2

The Bosonization of the
model

We consider a 1/2 spin chain with a gapless spectrum, i.e. with no gap between the
ground state and the excited ones, in contact with a bath of harmonic oscillators.
The Hamiltonian writes:

H =
∑
n

[
Jxy

(
SxnS

x
n+1 + SynS

y
n+1

)
+ JzS

z
nS

z
n+1

]
+ g

∑
n

Szn
∑
α

λα(a†αn+

aαn) +
∑
α

ωα
∑
n

a†αnaαn (2.1)

with −Jxy < Jz < Jxy also with ~ = 1. Each spin is coupled to a collection
of harmonic oscillators which are independent and with a position independent
statistics. The spin operators have the usual commutation relations [Si, Sj ] = iεijkSk
introducing the usual structure costants εijk, which are anti-symmetric for any
permutation of the indices starting from ε123 = 1 and 0 when there are any equal
indices.
The operators aαn of the bath are a bosonic in character and they have the following
commutation relations: [aαn, aα′n′ ] = [a†αn, a

†
α′n′ ] = 0 and [a†αn, aα′n′ ] = iδnn′δαα′ .

The index n runs on the N spins in the spin chain, with periodic boundary conditions,
while the index α runs on the different modes associated to the harmonic oscillators.
The constant g is the coupling constant between the bath and the spin chain and
regulates the strength of their interaction. λα represents the number of harmonic
oscillators associated to every frequency. Finally, ωα is the frequency of each mode
of the harmonic oscillator.
The final result for the Hamiltonian, after applying the bosonization procedure, is:

H = 1
2π

∫
dx

[
u

K
(∂xφ)2 +Ku (∂xθ)2

]
− g

π

∫
dx[(∂xφ)−

6



The Bosonization of the model

a−1 (−1)x cos 2φ]
∑
α

λα(a†αx + aαx) +
∑
α

ωα

∫
dxa†αxaαx (2.2)

In this chapter firstly we discuss the phase diagram of the XXZ Heisenberg Spin
Chain, then we introduce the transformations into a fermionic model and finally
we apply to it the bosonization procedure.

2.1 Phase diagram of the XXZ Spin Chain
The XXZ spin chain is a generalization of the Heisenberg spin chain to account
for an uni-axial anisotropy in the z direction. It is defined in general by the
Hamiltonian:

H =
N∑
n=1

[
Jxy

(
SxnS

x
n+1 + SynS

y
n+1

)
+ JzS

z
nS

z
n+1

]
(2.3)

in which if we set Jz = Jxy we recover the usual isotropic Heisenberg model. In the
plane xy, for Jxy < 0 we have a ferromagnetic ground state, while for Jxy > 0 an
anti-ferromagnetic order is preferred. The effect of the Jz parameter is to regulate
the strength of the z anisotropy.
Now we study the phase diagram for Jxy > 0, as the case Jxy < 0 can be simply
obtained with a π rotation of every spin and by transforming Jz into −Jz. So, in
this case we obtain three phases:

• For Jz < −Jxy and zero magnetic field we have a ferromagnetic behaviour
with a gap in the dispersion relation and in the limit Jz → ∞ the ground
state is ∏N

j=1 | ↑j〉 and the low-energy excitations are spin waves;

• For Jz > Jxy we have an anti-ferromagnetic gapped behaviour, as for Jz → −∞
the ground states are | ↑↓↑↓ ...〉 and | ↓↑↓↑ ...〉. The associated low-energy
excitations are domain walls, in which the chain is split in two regions con-
taining the two different ground states;

• In the interval |Jz| < Jxy, the phase is planar and paramagnetic. The ground
state is paramagnetic and the low-energy excitations are the spinons, the
excitations associated to this type of ground state;

7
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• At the boundaries between the phases, at Jz = −Jxy we have a gapless ferro-
magnet, while at Jz = Jxy a gapless anti-ferromagnet.

The complete phase diagram is sketched in (FIG. 2.1). The solution of this model

Figure 2.1: Phase Diagram of the XXZ spin chain as a function of Jz/Jxy
The XXZ Spin Chain has a rich phase diagram, with three different phases:

anti-ferromagnetic, ferromagnetic and paramagnetic (from [5]).

can be obtained via a Bethe Ansatz methodology [6]. From now on, we fix into the
zero magnetization phase of the spin chain and we consider no external magnetic
field.

2.2 Fermionization
From the spin chain part of model, which is H = ∑

n

[
Jxy

(
SxnS

x
n+1 + SynS

y
n+1

)
+

JzS
z
nS

z
n+1

]
, we can map the spin degrees of freedom into fermionic ones. For this

8
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purpose, we use the celebrated Jordan-Wigner transformations:

S+
n = ψ†n exp

(
iπ

n−1∑
m=1

ψ†mψm

)
and Szn = ψ†nψn −

1
2 (2.4)

with ψn and ψ†n are destruction/construction operators of a fermion on the site
n, with the usual anti-commutation relations {ψn, ψm} = {ψ†n, ψ†m} = 0 and
{ψ†n, ψm} = iδnm. The spin chain Hamiltonian becomes:

Hspin =
∑
n

{−Jxy2 (ψ†nψn+1 + ψnψ
†
n+1) + Jz(ψ†nψn −

1
2)(ψ†n+1ψn+1 −

1
2)} (2.5)

Then, we pass from discrete fermionic operators to the left/right operators. In
doing so, we linearize the spectrum because around the Fermi points, because we
are dealing with low energy excitations, as shown in (FIG. 2.2). In order to derive

Figure 2.2: Linearization around the Fermi point (from [6])
This figure shows pictorially the transformation to the left/right fermionic

operator through a linearization around the Fermi point.

the transformation, we expand the fermionic operator in Fourier space around
them:

ψn ' e−ikF x
∫ −kF+Λ

−kF−Λ
eikxψn(k)dk2π + e+ikF x

∫ +kF+Λ

+kF−Λ
eikxψn(k)dk2π

≡ e−ikF xψ+(x) + e+ikF xψ−(x) (2.6)

The position index x is defined as x = na, where a is the lattice spacing. As we are
in the zero magnetization phase, this means in the fermionic model that we are at
half filling. Therefore, kF being π

2a , the above relation reduces to:

ψn ⇐
√
a [(−i)xψ+(x) + ixψ−(x)]

9



The Bosonization of the model

ψn+1 ⇐
√
a
[
(−i)x+1ψ+(x+ a) + ix+1ψ−(x+ a)

]
(2.7)

The left/right fermionic operators have the fermionic anti-commutation relations:
{ψ†±(x), ψ±(y)} = iδ(x− y), {ψ±(x), ψ±(y)} = {ψ†±(x), ψ†±(y)} = 0 and they anti-
commute with each other {ψ†±(x), ψ∓(y)} = 0.
The passage to the continuum limit for ∑n is ∑n →

∫
dxa−1, where x becomes

now a continuous variable.
The spin chain Hamiltonian can be rewritten in terms of the left/right operators as
the sum of a kinetic part H0 and an interacting part Hint, so Hspin = H0 +Hint .
Dumping the terms which contain cross product of the left and the right fermions,
which trivially anti-commute, we have:

H0 = −iJxy2

∫
dx[ψ†+(x)ψ+(x+ a)− ψ†−(x)ψ−(x+ a)

+ψ+(x)ψ†+(x+ a)− ψ−(x)ψ†−(x+ a)] (2.8)

As the operators can be expanded as ψ±(x+ a) ' ψ±(x) + aδxψ±(x) in the a→ 0
limit, we can rewrite it as:

H0 = −iJxy2

∫
dx[ψ†+(x)(ψ+(x) + a

d

dx
ψ+(x))− ψ†−(x)(ψ−(x) + a

d

dx
ψ−(x))+

ψ+(x)(ψ†+(x) + a
d

dx
ψ†+(x))− ψ−(x)(ψ†−(x) + a

d

dx
ψ†−(x))] (2.9)

Using the anti-commutation relations, the terms not involving a derivative are
reduced to a constant. Furthermore, from:

H0 = −iJxya2

∫
dx
[
ψ†+

d

dx
ψ+ + ψ+

d

dx
ψ†+ − ψ†−

d

dx
ψ− − ψ−

d

dx
ψ†−

]
(2.10)

the last terms are integrated by part and the boundary term are neglected, finally
giving:

H0 = −iJxya
∫
dx
[
ψ†+

d

dx
ψ+ − ψ†−

d

dx
ψ−

]
(2.11)

The latter corresponds to the Hamiltonian of a massless Dirac fermion, where ψ±
are the upper and lower component of the Dirac spinor. It is necessary to subtract
the ground state expectation value of this operator as the vacuum of the Dirac
Hamiltonian contains an infinite number of particles and therefore it is divergent.
This procedure is called normal ordering and is indicated with the symbol :: applied
to any operator A, with the following definition : A := A− 〈0|A|0〉, |0〉 being the

10
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Dirac vacuum. [7].
In one dimension, we can write the Dirac equation in Schrödinger form as:

i
∂ψ

∂t
= Hψ (2.12)

where the Hamiltonian is
H = αP + βm (2.13)

with the momentum operator P and the mass m, α = σz and β = σy defined in
terms of Pauli matrices. If we focus on the massless case, the equation is then
easily diagonalized in the two components ψ±, obeying the commutation relations:

ψ†±(x), ψ±(y) = δ(x− y) (2.14)

The Hamiltonian in second quantization in terms of the two components is:

H =
∫
dxψ†(x)(αP )ψ(x)

=
∫
dx[ψ†+(x)(i∂x)ψ+(x) + ψ†−(x)(−i∂x)ψ−(x)] (2.15)

which corresponds exactly to our Hamiltonian H0
Replacing (2.6) in (2.3), we can write:

Sz(x) = a[: ψ†+(x)ψ+(x) : + : ψ†−(x)ψ−(x) : +

(−1)n(: ψ†+(x)ψ−(x) : + : ψ†−(x)ψ+(x) :)] (2.16)

We define the density operator and the staggered magnetization in terms of the
two fields ρ(x) =: ψ†+(x)ψ+(x) : + : ψ†−(x)ψ−(x) : andM(x) =: ψ†+(x)ψ−(x) : + :
ψ†−(x)ψ+(x) : .
Sz becomes Sz(x) = ρ(x) + (−1)nM(x)
In terms of this operators, neglecting the cross products between them, we get:

Hint = −Jxya2

∫
dx[ρ(x)ρ(x+ a)−M(x)M(x+ a)] (2.17)

11
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2.3 The Bosonization
Now that we have mapped the spin model into fermionic degrees of freedom, we
finally apply the bosonization procedure, which maps the model into a bosonic
scalar field theory.

We use the following mapping to the collective bosonic fields φ+ and φ− (see
Appendix A):

ψ±(x) = 1√
2πa

U±e
±i2φ±(x) (2.18)

The fermionic operators U±, called Klein factors, are necessary to ensure that
the fermionic anti-commutation relations between the fields of different species
are maintained, once we have made sure that the ones between the Hamiltonian
and the fields hold [8]. They are Majorana fermionic operator with a Clifford
algebra, so they have the property that the creation and annihilation operators
are equal to each other U †± = U±. Their effect is to change the total number of
fermions by one, and therefore they do not commute with the number operator,
while they commute with the bosonic fields φ+ and φ−. Furthermore they have
also the following properties: {U †r , U

†
r′} = {Ur, Ur′} = 0, {U †r , Ur′} = 2δrr′ and

U †rUr = UrU
†
r = 1.

In this case, the space of the Majorana operators has minimal dimension 2 (left
and right) and can be represented in terms of Pauli matrices. For example, we may
choose U+ = σx and U− = iσy. The products of the two Klein factors are diagonal
and, as Γ2 = 1, if Γ = iσxσy, we can choose between the two eigenvalues ±1 and
we choose +1. This fixes the value of U+U− = 1, all the other products follow from
the anti-commutation rules of the Clifford algebra. From now on, we don’t take
into account the action of the Klein factors when they don’t contribute apart from
an external constant factor which can be fixed to be equal to 1[9].
The fields φ+(x) and φ−(x), which we encounter above in the bosonization formula,
have the following commutation relations : [φ±(x), φ±(y)] = iπ

4 ε(x− y) , ε(x) being
the step function, [φ+(x), φ−(y)] = iπ

4 and the following expansion:

: ψ†±(x)ψ±(x+ ε) :=
∞∑
n=0

εn

n! : ψ†±(x)∂nxψ±(x) :=
∞∑
n=0

εn

n!j
±
n =

= ± 1
2πiε [: e

±i2
∑∞

n=0
εn

n! ∂
n
xφ±(x) : −1] (2.19)

whose r.h.s. is from:

: ψ†±(x)ψ±(x+ ε) := 1
2πa [: e±i2(φ±(x+ε)−φ±(x)) : −1]e4〈φ±(x+ε)φ±(x)−φ2

±(x)〉 =

± 1
2πiε [: e

∓i2(φ±(x+ε)−φ±(x)) : −1] (2.20)

12
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where we have applied : eAeB :=: eA+B : e〈AB−A
2+B2

2 〉 and the correlation function:

G+ = 〈φ±(x)φ±(0)− φ2
±(0)〉 = lim

a→0

1
4π ln a

a± ix
(2.21)

as G±(x) = 〈− (φ(x)−φ(0))2

2 〉 = 〈φ±(x)φ±(0)− φ2
±(0)〉, to which we apply the transla-

tional invariance property.
This follows from:

G+ =
∫ ∞

0

dp√
4π|p|

∫ ∞
0

dq√
4π|q|

〈(φ(p)φ†(q))〉(eipx − 1)e−ap = 1
4π ln a

a− ix
(2.22)

The boundary conditions used in this integral are G+(0) = 0.
Then, using the relations concerning the fermionic current j±n , we can infer that:

ρ(x) = j+
0 + j−0 = − 1

π
δxφ(x)

H0 '
∫
dx[j+

1 − j−1 ] = Ja

π

∫
dx[(∂xφ+)2 + (∂xφ−)2]

(2.23)
which are the density operator and the Hamiltonian H0. Introducing the dual fields
φ = φ+ + φ− and θ = φ+ − φ−, we can rewrite it as:

H0 = Jxya

2π

∫
dx[(∂xθ(x))2 + (∂xφ(x))2] (2.24)

What we obtain for H0 is a quadratic Hamiltonian associated to a bosonic scalar
field theory.
The derivative of the dual field is the canonically conjugate variable of φ(x), as we
can see from the commutation relations. In fact, we have that the conjugate variable
of φ(x) is Π(x) = 1

π
∂xθ(x), for which [φ(x),Π(x′)] = [φ(x), 1

π
∂xθ(x′)] = iδ(x− x′),

given [φ(x), θ(y)] = iπε(x− y), where ε(x− y) is the step function (Appendix A).
For the M(x), we use that M(x) = 1

2πa [U+U− : e−i2φ+(x)e−i2φ−(x) : −U−U+

h.c.] = U+U−
1

2πa [: e−i2φ(x) : e 1
2 4π i4 − h.c.] = i

πa
cos(2φ(x))

because of the commutation relations between φ+ and φ− and the anti-commutation
relations between the fermionic U± operators. From this, applying Werner formulas
and expanding in series, we can infer that:

lim
a→0

M(x)M(x+ a) = −1
(πa)2 cos(2φ(x+ a)) cos(2φ(x))

= −1
2(πa)2 [cos(2(φ(x+ a)− φ(x))) + cos(2(φ(x+ a) + φ(x)))]

' 1
2π2a2 [+2a2(∂xφ)2 − cos(4φ(x))] (2.25)
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The Bosonization of the model

The total spin Hamiltonian thus becomes:

Hspin =
∫
dx
Jxya

2π [(∂xθ(x))2 +
(

1 + 4Jz
πJxy

)
(∂xφ(x))2]− Jz

2π2a2 cos(4φ(x))

(2.26)

We can neglect cosine terms in the paramagnetic phase. For the interaction term
with the bath, we can recall that Sz(x) = ρ(x) + (−1)nM(x) and substitute the
above expressions. Then, (2.1) can be written in the bosonization language in the
final form (2.2), in which the first term represents the spin Hamiltonian with

uK = Jxya

u/K = Jxya(1 + 4Jz
πJxy

) (2.27)

a being the lattice spacing [6].
The second term represents the interaction with the bath, while the third is the
Hamiltonian of the harmonic oscillators.
Obviously, (−1)x in the continuum limit represents cos(2φ− 2kFx). For the last
term, the continuum limit is trivial.
These expressions for uK and u/K are valid only in the XY limit for the spin
chain, i.e. for Jz small. The exact solution can be obtained using the Bethe-Ansatz
technique and is:

Jz/Jxy = − cos (πβ2)

1/K = 2β2

u = 1
1− β2 sin (π(1− β2))Jxy2 (2.28)

As a consequence, from the phase diagram of the XXZ spin chain (FIG. 2.1) we
can infer that the Heisenberg point corresponds to K = 1/2, marking the phase
transition between the gapped and the gapless phase for the spin chain XXZ.
Furthermore, in the limit Jz → Jxy, K diverges and u tends to 0, meaning that
the ferromagnetic phase is indeed not Luttinger-like [5].
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Chapter 3

Derivation of the effective
action

Now that we have written the bosonized version of the model, our next goal is to
write the partition function and to derive the effective action, which can adequately
describe the physical phenomenon. The partition function of the model at inverse
temperature β can be written using the path integral techniques in the imaginary
time 0 < τ < β (with ~ = 1 from now on). From the Hamiltonian H(φ,Π, a), we
can compute the partition function Z = Tr[e−βH ].

The partition function of the spin part only can be expressed as the functional
integral:
ZS =

∫
Dφ(x, τ)DΠ(x, τ) e

∫ β
0 dτ

∫
dx[iΠ(x,τ)∂xφ(x,τ)−H(φ(x,τ),Π(x,τ))].The path integral is

on periodic paths in the configuration space, in which φ(x, τ) = φ(x, τ + β).
We may write it in terms of φ(x) and θ(x).
It reads:

−SS =
∫ β

0
dt
∫
dx[ i

π
∂xθ(x, τ)∂τφ(x, τ)− 1

2π (uK(∂xθ)2 + u

K
(∂xφ)2)] (3.1)

.
It can be Fourier transformed, obtaining:

−SS = 1
βΩ

∑
q

[
− ikωn

π
φ(q)θ(−q)− uK2π k

2θ(q)θ(−q)− u

2πKk2φ(q)φ(−q)
]
(3.2)

From now on, we use the notation q = (k, ωn/u) for the Matsubara discrete
frequencies, which are ωn = 2πn

β
for bosons and ωn = (2n+1)π

β
for the fermions. Then

we complete the square in the integral:

−SS = 1
βΩ

∑
q

[
− ikωn

π
φ(q)θ(−q)− uK

2π k
2[θ(q) + iωnφ(q)

uKk
][θ(−q) + iωnφ(−q)

uKk
]

15



Derivation of the effective action

-
− u

2πKk2φ(q)φ(−q)
]

(3.3)

After a gaussian integration on the variable θ̃(q) = θ(q) + iωnφ(q)
uKk

there is left only
an average on φ on the action:

SS = 1
2πK

[1
u

(∂τφ)2 + u (∂xφ)2
]

(3.4)

The action of the interaction between the bath and the system is obvious:

SSB = − g
π

∫ β

0
dτ
∫

dx
[
∂xφ− a−1 (−1)x cos 2φ

]∑
α

λα(a∗α(τ, x) + aα(τ, x)) (3.5)

The action of the bath SB is the bosonic action of the Harmonic Oscillator. It can
be derived from the action of a bosonic field ψ̂(x, t) with an Harmonic oscillator
potential, which is

A(ψ̂, ψ̂†) =
∫
dx
∫ tb

ta
dt
[
iψ†∂tψ −

~2

2mψ†∂2
xψ
]

(3.6)

The field ψ̂(x, t) describes an arbitrary number of particles, which is measured by the
number operator, and satisfies the following commutation relations: [ψ̂(x, t), ψ̂(x′, t)]
= [ψ̂†(x, t), ψ̂†(x′, t)] = 0 and [ψ̂(x, t), ψ̂(x′, t)] = δ(x − x′). By extremizing this
action, we can obtain the Schrodinger equation. We can Fourier decompose the
fields as:

ψ̂(x, t) =
∑
p

eipxâp(t) (3.7)

The action becomes:

A(a, a†) =
∑
p

∫ tb

ta
dt
[
a†pi∂tap − ω(p)a†pap

]
(3.8)

The bosonic fields have the commutation relations: [ap(t), a′p(t)] = [a†p(t), a†p′(t)] = 0
and [a†p(t), a′p(t)] = δp,p′
Then we can substitute the sum on the momenta with a sum on the modes α and
introduce the position dependent fields aα(t, x):

A(a, a†) =
∫ tb

ta
dt
∑
α

[ ∫
dxa†α(t, x)(i∂t − ωα)aα(t, x)

]
(3.9)

If we want to describe the quantum statistics of harmonic oscillators, we have to
use the action with the Euclidean metric replacing t → −iτ and integrating the
time variable from 0 to β , as we identify tb − ta = −iβ. We get [10]:

SB =
∫ β

0
dτ
∑
α

[∫
dx a∗α(τ, x)(∂τ + ωα)aα(τ, x)

]
16



Derivation of the effective action

(3.10)

In total, for the partition function we obtain:

Z =
∫

Dφ(τ, x)Da(τ, x) e−(SS+SSB+SB) (3.11)

with

SS =
∫ β

0
dτ
∫

dx 1
2πK

[1
u

(∂τφ)2 + u (∂xφ)2
]

SSB = − g
π

∫ β

0
dτ
∫

dx
[
∂xφ− a−1 (−1)x cos 2φ

]∑
α

λα(a∗α(τ, x) + aα(τ, x))

SB =
∫ β

0
dτ
∑
α

[∫
dx a∗α(τ, x)(∂τ + ωα)aα(τ, x)

]
(3.12)

If we are interested in observables of the the system only, we can integrate over
the degrees of freedom of the bath.
It is useful to specify the unperturbed correlation function of the bath:

C(τ − τ ′, x− y) =
∑
α

λ2
α 〈(a∗α(y, τ) + aα(y, τ))(a∗α(x, τ ′) + aα(x, τ ′))〉B =

δ(x− y)C(τ − τ ′) (3.13)

where C(τ − τ ′) = ∑
α λ

2
α 〈(a∗α(x, τ ′) + aα(x, τ ′))(a∗α(x, τ) + aα(x, τ))〉B

The function C(τ) is periodic of period β and is at the equilibrium of the unper-
turbed bath. It is an input parameter we can fix to describe the characteristics of
the bath (slow frequency bath or high frequency).
If we expand the partition function (normalized by the partition function of the
bath) in power of the interaction term we obtain at the second order (the first
averages to zero):

Z

ZB
= 1
ZB

∫
Dφ(τ, x)Da(τ, x) e−(SS+SSB+SB)

' 1
ZB

∫
Dφ(τ, x)Da(τ, x) e−(SS+SB)

(
1− SSB + S2

SB

2

)
(3.14)
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Derivation of the effective action

The second order term amounts to (up to constants):

∝ 1
ZB

∫
Dφ(τ, x)Da(τ, x)S2

SB e−SS+SB =
∫

Dφ(τ, x)e−SS g
2

π2

∫
dx
∫
dy

∫ β

0
dτ
∫ β

0
dτ ′[∂xφ(x, τ)−a−1 (−1)x cos 2φ(x, τ)][∂yφ(y, τ ′)−a−1 (−1)y cos 2φ(y, τ ′)]

C(τ − τ ′, x− y) =
∫

Dφ(τ, x)e−SS g
2

π2

∫
dx
∫ β

0
dτ
∫ β

0
dτ ′[∂xφ(x, τ)− a−1(−1)x

cos 2φ(x, τ)][∂xφ(x, τ ′)− a−1 (−1)x cos 2φ(x, τ ′)]C(τ − τ ′) =
∫

Dφ(τ, x)e−SS

g2

π2

∫
dx
∫ β

0
dτ
∫ β

0
dτ ′[∂xφ(x, τ)∂xφ(x, τ ′) + a−2 cos 2φ(x, τ) cos 2φ(x, τ ′)]C(τ − τ ′)

(3.15)
We can re-exponentiate the second order term 〈S2

SB〉B /2 and obtain an exact
effective action for the system degrees of freedom only:

Z ∝
∫

Dφ(τ, x)e−Seff (3.16)

with:

Seff = 1
2πK

∫ β

0
dτ
∫

dx
[1
u

(∂τφ)2 + u (∂xφ)2
]
− g2

2π2

∫
dx
∫ β

0
dτ
∫ β

0
dτ ′

[
∂xφ(x, τ)∂xφ(x, τ ′) + a−2 cos 2φ(x, τ) cos 2φ(x, τ ′)]C(τ − τ ′)

(3.17)
Where the oscillating terms has been neglected. The first term which multiplies g2

represents the forward scattering in the language of fermionic left/right movers, as
we may represent it as the bosonized version of the product of two of operators
likeρ(x) =: ψ†+(x)ψ+(x) : + : ψ†−(x)ψ−(x) :, which do not change the type of the
operators (left movers remain left movers and right movers the same). Instead,
the latter represents the backward one, as the cosine terms are produced by
: ψ†+(x)ψ−(x) : + : ψ†−(x)ψ+(x) :, which changes the left into right movers and vice
versa.
To distinguish their contributions, we may write two different coupling costants for
the forward and the backward scattering, g1 and g2.

18



Chapter 4

The Effect of the Forward
Scattering

In this chapter we demonstrate that the effect of the forward scattering alone for
the calculation of the conductivity is negligible, as it leaves unchanged the type of
fermion (left or right). Therefore we set g2 = 0 from now on.
In the first section we investigate how to calculate it using the Kubo formula. Then,
we discuss the conductivity in 3 cases: the delta correlation function, the constant
correlation function and the generic case.

4.1 Derivation of the Kubo formula
The Kubo formula (1959) is related to the calculation of DC electrical conductivity
in the framework of the linear response theory. The meaning of linear response
in general is that the signal measured is directly proportional to the external
perturbation which is applied. Usually, this assumption is valid when the applied
external perturbation is not too strong.
Applying an external field E(ext)

α (r, t) = Ξ(ext)
α ei(q·r−ωt), where the Greek letters

α and β represent the spatial coordinates and i is the particle index, the linear
response implies that the current in the solid is:

Jα(r, t) =
∑
β

σ′αβΞ(ext)
β ei(q·r−ωt) (4.1)

However, the σ′αβ is not the real conductivity, as the real conductivity is related to
the electric field in the solid:

Jα(r, t) =
∑
β

σαβΞβe
i(q·r−ωt) (4.2)
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The Effect of the Forward Scattering

where we have defined the time-dependent electric field as:

Eβ(r, t) = Ξβe
i(q·r−ωt) (4.3)

The conductivity is complex, containing both a real and an imaginary part:

σαβ = <(σαβ) + i=(σαβ) (4.4)

The Hamiltonian of the system is of the form:

H +H ′ (4.5)

Where H’ is the interaction between the system and the external perturbation. It
can be written as:

H ′ = −1
c

∫
d3rjα(r)Aα(r, t) (4.6)

Where we have used the vector potential:

Aα(r, t) = −ic
ω
Eα(r, t) (4.7)

Here we are in the Coulomb gauge, i.e. the one in which ∇ ·A = 0. The current
operator is the summation over the velocities and the charges of all the particles:

jα = 1
2m

∑
i

ei[piδ(r− ri) + δ(r− ri)pi]α (4.8)

The measured current, in terms of the particle velocities and the volume V is:

Jα(r, t) = e

V

∑
i

〈viα〉 (4.9)

the velocity is:
vi = 1

m

[
pi −

e

c
A(ri)

]
(4.10)

Then, the resulting current is:

Jα(r, t) = e

mV

∑
i

〈pi〉 −
e2

mcV

∑
i

Aα(ri, t) (4.11)

Knowing the proportionality between the momentum and the current operator, we
may rewrite the current as:

Jα(r, t) = 〈jα(r, t)〉+ i
n0e

2

mω
Eα(ri, t) (4.12)
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The Effect of the Forward Scattering

replacing ∑i /V with the density n0 and inserting the electric field. The current
is thus separated in two terms: one proportional to the expectation value of the
current operator, the other to the electric field. We call these two terms J (1)

α and
J (2)
α and the current is the sum of the two:

Jα = J (1)
α + J (2)

α (4.13)

J (1)
α = i

n0e
2

mω
Eα(ri, t) (4.14)

J (2)
α = 〈jα(r, t)〉 (4.15)

Our job, then is to determine the expectation value of current operator. Now, it
is necessary to obtain the expression for J (2)

α in order to derive the Kubo formula.
There are numerous possible derivations, but we will present a general one at finite
temperature.
We start from the previously introduced time-dependent perturbation H’. Then we
introduce the equilibrium density matrix in absence of H’ ρ0 = eβ(Ω−H+µN) in the
gran-canonical ensemble, with Ω the gran-canonical potential and µ the chemical
potential. We call the density matrix of the system with H’ as ρ(t). We assume
that the system is described by ρ0 at t = −∞, then the perturbation is switched
on. ρ(t) obeys the following equation of motion :

dρ(t)
dt

= −i[H +H ′(t), ρ(t)] (4.16)

Solving this, we can compute the current J (2)
α as:

J (2)
α = Tr [ρ(t)jα] (4.17)

Then, we assume that ρ(t) = ρ0 + f(t) and we can write a differential equation for
f(t), as ρ0 is time-independent:

i
df

dt
= [H, ρ0] + [H, f ] + [H ′, ρ0] + [H ′, f ] (4.18)

The first commutator is zero, as ρ0 is at equilibrium with respect to H. Since f
assumed to be proportional to H’, if we treat the perturbation H’ to be small, we
can neglect terms that are O(H ′2). We are thus left with:

i
df

dt
= [H, f ] + [H ′, ρ0] +O(H ′2) (4.19)

We can rewrite this equation as:

i
df

dt
− [H, f ] = [H ′, ρ0] (4.20)
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The Effect of the Forward Scattering

The left-hand side can be expressed as:

e−iHt i
d

dt
(eiHtf(t)e−iHt) eiHt (4.21)

In this way, we can integrate the equation:

i
d

dt
(eiHtf(t)e−iHt) = eiHt[H ′, ρ0]e−iHt = [H ′(t), ρ0] (4.22)

f(t) = f(−∞)− ie−iHt
[∫ t

−∞
dt′[H ′(t′), ρ0]

]
eiHt (4.23)

f(−∞) = 0 as the interaction H’ is not present at t = −∞. We can note that f is
appropriately proportional to H’. Now, we insert this results in the expression of
the current:

J (2)
α = Tr[ρ0jα(r)] + Tr[f(t)jα(r)] (4.24)

The first term is 0 as there is no current without any applied external electric field.
Substituting the previous result for f(t) :

J (2)
α = −iT r

[
e−iHt

∫ t

−∞
dt′[H ′(t′), ρ0]eiHtjα(r)

]
(4.25)

We can now use the property of the cyclicity of the trace:

J (2)
α = −iT r

[∫ t

−∞
dt′[H ′(t′), ρ0]eiHtjα(r)e−iHt

]
(4.26)

Recognizing the time evolution of the current operator:

J (2)
α = −iT r

[∫ t

−∞
dt′[H ′(t′), ρ0]jα(r, t)

]
(4.27)

Using again its cyclical properties, we can rewrite the trace as:

Tr
[∫ t

−∞
dt′ρ0[jα(r, t), H ′(t′)]

]
(4.28)

This is the thermodynamical average of the commutator:

J (2)
α = −i

∫ t

−∞
dt′〈[jα(r, t), H ′(t′)]〉 (4.29)

If we write the interaction H’ in terms of the Fourier transform of the current
operator as:

H ′ = i

ω
jα(q)Ξαe

−iωt (4.30)
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the commutator results:

[jα(r, t), H ′(t′)] = i

ω
Ξβe

−iωt′ [jα(r, t), jβ(q, t′)]

= i

ω
Eβ(r, t)e−iq·reiω(t−t′)[jα(r, t), jβ(q, t′)] (4.31)

Inserting it in the current yields:

J (2)
α = 1

ω
Eβ(r, t)e−iq·r

∫ t

−∞
dt′eiω(t−t′)〈[jα(r, t), jβ(q, t′)]〉 (4.32)

Now, we may write the total conductivity, which we recall to be the proportionality
constant to the electric field, as:

σαβ(q, ω) = 1
ω
e−iq·r

∫ t

−∞
dt′eiω(t−t′)〈[jα(r, t), jβ(q, t′)]〉+ n0e

2

mω
iδαβ (4.33)

Averaging on the spatial coordinates, we get the real Kubo formula:

σαβ(q, ω) = 1
ωV

∫ t

−∞
dt′eiω(t−t′)〈[jα(q, t), jβ(q, t′)]〉+ n0e

2

mω
iδαβ (4.34)

We may also express it shifting the time variable t− t′ → t′:

σαβ(q, ω) = 1
ωV

∫ ∞
0

dt′eiωt
′〈[jα(q, t′), jβ(q,0)]〉+ n0e

2

mω
iδαβ (4.35)

The 〈[jα(q, t′), jβ(q,0)]〉 is a retarded Green function, called current-current corre-
lation function [11].
This quite in general, but let us focus now on the case of our interest: the bosonized
scalar free field theory, with Hamiltonian:

H = 1
2π

∫
dx[uK(πΠ(x))2 + u

K
(∇φ(x))2] (4.36)

Let us assume that we have a 1d wire of length L, which is submitted to an electric
field E(t) = E0e

−i(ω+iδ)t, which is small and uniform, in the limit δ → 0. Using
the Kubo formula in this case for the expectation value of the current operator we
have:

〈j(x, t)〉 = E0e
−i(ω+iδ)t

i(ω + iδ)

[
−D −

∫ L/2

−L/2
dx′dt′ei(ω+iδ)(t−t′)〈j(x, t); j(x′, t′)〉

]
(4.37)

where D corresponds to the diamagnetic term and 〈; 〉 to the retarded correla-
tion function. Once we have done the minimal substitution in the Hamiltonian
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Π(x)→ Π(x)− eA
π

with the vector potential corresponding to the electric field, the
diamagnetic term corresponds to:

D = − ∂2H

∂A∂A
= e2uK

π
(4.38)

The diamagnetic term corresponds to J (1), while the other one to J (2). For the
electrical current, we can use the conservation law:

∂ρ

∂t
= −∇ · j (4.39)

Then, using the bosonized form of the density:

j(x, t) = e

π
∂tφ(x, t) (4.40)

Using the Heisenberg equation of motion for φ:

j(x, t) = euKΠ(x, τ) (4.41)

As a consequence, the current-current retarded correlation function can be calculated
as:

χ(τ − τ ′) = −〈j(x, τ)j(x′, τ ′)〉 = − (euK)2 〈Π(x, τ)Π(x′, τ ′)〉 (4.42)

The functional integral over Π can be computed, using 1
Z

(∂Z
∂β

)2, as:

〈Π(x, τ)Π(x′, τ ′)〉 = − 1
(euK)2 〈∂τφ(x, τ)∂′τφ(x′, τ ′)〉+ 1

euK
δ(x−x′)δ(τ−τ ′) (4.43)

If we Fourier transform this, we obtain:

〈Π(q, ωn)∗Π(q, ωn)〉 = − 1
(euK)2ω

2
n〈φ(q, ωn)∗φ(q, ωn)〉+ 1

euK
(4.44)

The last term perfectly cancels the diamagnetic term. Now, all we have to do is to
insert this into the the (4.34) and we finally have the expression of the conductivity:

σ(ω) = − e
2

π2 i(ω + iδ)〈φ(q, ωn)∗φ(q, ωn)〉iωn→ω+iδ (4.45)

in the limit L→∞. [5]
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4.2 Conductivity in the case C(t− t′) = Cδ(t− t′)
Following the results of the previous sections, we can see that in this case the action
reduces to the free case:

Seff = 1
2πK

∫ β

0
dτ
∫

dx
[

1
u

(∂τφ)2 + (u− g2
1KC

π
) (∂xφ)2

]
(4.46)

Now, we can calculate the conductivity. But first we need to compute the φφ
correlation function.
For a quadratic field theory, the most common technique is the diagonalization
with the Fourier transform. In general we have:

〈φ(q1)∗φ(q2)〉 =
∫

Dφ[q]φ∗(q1)φ(q2)e−
1
2
∑

q
A(q)φ∗(q)φ(q)∫

Dφ[q]e−
1
2
∑

q
A(q)φ∗(q)φ(q)

= 1
A(q1)δq1q2 (4.47)

where A(q) is a generic N*N matrix.
Applying this result we obtain for the correlation:

〈φ(q1)∗φ(q2)〉 = πKδq1q2Ωβ
ω2
n

u
+ (u− g2

1KC

π
)k2

1

(4.48)

Then we can use the Kubo formula:

σ(ω) = − e
2

π2 (ω + iδ)〈φ(k = 0, ωn)∗φ(k = 0, ωn)〉iωn→ω+iδ

= − e
2

π2 (ω + iδ)πuK
ω2
n

|iωn→ω+iδ (4.49)

Now we can apply the theorem of Sokhotski-Plemelj to calculate the conductivity.
Here we offer a simple proof of it ∀ f(x) (analyticity not required) :

lim
ε→0+

∫ b

a

f(x)
x± iε

dx = ∓iπ lim
ε→0+

∫ b

a

ε

π(x2 + ε2)f(x)dx+ lim
ε→0+

∫ b

a

x2

x2 + ε2
f(x)
x

dx

(4.50)
The first term is a delta function in the limit, the second into a Cauchy principal
part:

lim
ε→0+

∫ b

a

f(x)
x± iε

dx = ∓iπf(0) + P
∫ b

a

f(x)
x

dx (4.51)

The resulting conductivity is:

σ(ω) = e2

π2
iuK

ω + iδ
= e2uK

[
δ(ω) + iP

1
πω

]
(4.52)

which is absolutely equal to the conductivity of the initial quadratic action, whose
real part corresponds only to the Drude peak. [5][11].

25



The Effect of the Forward Scattering

4.3 Conductivity in the constant case: C(t− t′) =
C

In this case, the action is:

Seff = 1
2πK

∫ β

0
dτ
∫

dx
[1
u

(∂τφ)2 + u (∂xφ)2
]
− g2C

2π2

∫
dx
∫ β

0
dτ
∫ β

0
dτ ′

[∂xφ(x, τ)∂xφ(x, τ ′)](4.53)

Now, we can Fourier transform the action, in order to diagonalize it. As before, we
use the notation q = (k, ωn/u) and r = (x, uτ), r′ = (x, uτ ′).
We already know how to diagonalize the gaussian term, so let’s concentrate on∫
dx
∫ β

0 dτ
∫ β

0 dτ
′[∂xφ(x, τ)∂xφ(x, τ ′)]. We can Fourier transform it and obtain:

∫
dx
∫ β

0
dτ
∫ β

0
dτ ′[∂xφ(x, τ)∂xφ(x, τ ′)] =

1
(2π)2

∫
dx
∫ β

0
dτ
∫ β

0
dτ ′

(∑
q1

ik1e
iq1r

)(∑
q2

ik2e
iq2r′

)
=

1
2π

∫ β

0
dτ
∫ β

0
dτ ′

∑
k

∑
ωn

∑
ω′n

k2eiωnτeiω
′
nτ
′
φ(−k, ωn)φ(k, ω′n) =

∑
k

∑
ωn

∑
ω′n

k2δωn,0δω′n,0φ(−k, ωn)φ(k, ω′n) =
∑
k

k2φ(−k,0)φ(k,0) (4.54)

Then the correlation becomes:

〈φ(q1)φ(q2)〉 = πKδq1q2Ωβ
ω2
n

u
+ uk2

1 −
g2
1KC

π
k2

1δωn,0
(4.55)

As we can see the conductivity is

σ(ω) = e2

π2
iuK

ω + iδ
= e2uK[δ(ω) + iP

1
πω

] (4.56)

and does not differ from the free case.
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4.4 Conductivity in the general case g2 = 0
The form of the action with the generic correlation function is:

Seff = 1
2πK

∫ β

0
dτ
∫

dx
[1
u

(∂τφ)2 + u (∂xφ)2
]
− g2

2π2

∫
dx
∫ β

0
dτ
∫ β

0
dτ ′

[∂xφ(x, τ)∂xφ(x, τ ′)]C(τ − τ ′)(4.57)

Once again, we concentrate on the second term of the action:∫
dx
∫ β

0
dτ
∫ β

0
dτ ′C(τ − τ ′)[∂xφ(x, τ)∂xφ(x, τ ′)] =

1
(2π)5/2

∫
dx
∫ β

0
dτ
∫ β

0
dτ ′[

∑
ω

C(ω)eiω(τ−τ ′)∑
q1

ik1φ(q1)eiq1r∑
q2

ik2φ(q2)eiq2r′ ] =

1
(2π)3/2

∫ β

0
dτ
∫ β

0
dτ ′[

∑
ω

C(ω)eiω(τ−τ ′)∑
k

∑
ωn

∑
ω′n

k2ei(ωnτ+ω′nτ ′)φ(−k, ωn)φ(k, ω′n)] =

1
(2π)3/2

∑
ω

∑
k

∑
ωn

∑
ω′n

C(ω)k2φ(−k, ωn)φ(k, ω′n)
∫ β

0
dτei(ωn+ω)τ

∫ β

0
dτ ′e−i(−ω

′
n+ω)τ ′ =

∑
ω

∑
k

C(ω)k2φ(−k,−ω)φ(k, ω) (4.58)

All together, the correlation function is:

〈φ(q1)∗φ(q2)〉 = πKδq1q2Ωβ
ω2
n

u
+ (u− g2

1KC(ωn)
π

)k2
1

(4.59)

which means that in the general case the conductivity is unchanged.

27



Chapter 5

The case of delta correlation
function

Now we analyze the phase diagram of the system in one of the extreme cases, in
which the correlation function is a delta function, now setting g2 /= 0 to consider
also the effect of the backward scattering. In the first section we use the variational
approximation, which is less powerful then the Renormalization Group technique in
investigating the critical properties of the model, but is very effective in exploring
the phase diagram of it. In the second section we calculate the transport properties
using the Kubo formula. In the third and last section we make a comparison
between this technique and the R.G., in order to make sure that the two methods
are in agreement between each other.

5.1 Variational Approximation
Setting C(t− t′) = Cδ(t− t′) we can easily infer that the effective action becomes:

Seff = 1
2πK

∫
dx
∫ β

0
dτ

[
1
u

(∂τφ)2 +
(
u− g2

1KC

π

)
(∂xφ)2

]

− g2
2C

2π2a2

∫
dx
∫ β

0
dτ [cos 2φ cos 2φ] (5.1)

This action corresponds clearly to the action of the Sine-Gordon model:

SSG = 1
2πK ′

∫
dx
∫ β

0
dτ

[ 1
u′

(∂τφ)2 + u′ (∂xφ)2
]
− g2

2C

4π2a2

∫
dx
∫ β

0
dτ [cos 4φ]

(5.2)
with the new costants u′2 = u

[
u− g2

1KC

π

]
and K ′2 = uK2

u−
g21KC
π

.

In this model, we can expect the presence of a phase transition, driven by the
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The case of delta correlation function

competition between the quadratic part, which tends to favour smooth functions,
and the cosine, which tends to lock the system at φ = 0.
Now we can introduce the variational principle that we are going to use to investigate
the phase diagram of the model.
Choosing an appropriate variational ansatz S0, in general we can write:

Z =
∫

Dφe−S =
∫

Dφe−S0e−(S−S0) = Z0〈e−(S−S0)〉0 (5.3)

where 〈〉0 indicates the average with respect to S0. The resulting free energy is:

F = F0 − T log[〈e−(S−S0)〉0] (5.4)

The exponential, being a convex function, satisfies the Jensen’s inequality:

〈e−(S−S0)〉0 ≥ e−〈(S−S0)〉 (5.5)

Thus, the variational free energy satisfies:

F ≤ Fvar = F0 + T 〈S − S0〉 (5.6)

The best estimator is the action with the variational parameters that minimize
the variational free energy. Given the effect of the cosine term, we choose as
a variational action S0 = 1

2βΩ
∑

q G
−1(q)φ∗(q)φ(q) and optimize on the Green

function imposing ∂Fvar
∂G(q) = 0. The variational free energy reads:

Fvar = −T
∑

q
log(G(q)) + T

2πK ′
∑

q

[
ω2
n

u′
+ u′k2

]
G(q)− T g

2
2CβΩ
4π2a2 e

− 8
βΩ
∑

q G(q)

(5.7)
where we have used the identity: 〈cos(φ)〉 = e−

1
2 〈φ

2〉.
Optimizing on the Green function leads to:

G−1(q) = 1
πK ′

[
ω2
n

u′
+ u′k2 + ∆2

u′

]
(5.8)

The gap ∆ satisfies:

∆2

πK ′u′
= 4g2

2C

π2a2 e
− 8
βΩ
∑

q
πK′u′

ω2
n+u′2k2+∆2 (5.9)

In the thermodynamic limit and zero temperature limit we have in the exponential:

8
(2π)2

∫
dq

πK ′u′

ω2
n + u′2k2 + ∆2 = 4K ′

∫ Λ

0
qdq

1
q2 + ( ∆

u′
)2
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The case of delta correlation function

' 4K ′
∫ Λ

∆
u′

dq

q
= 4K ′ log

(
u′Λ
∆

)
(5.10)

With the assumption that the gap is much smaller than the cutoff frequency, which
must be intended in the limit to ∞, u′Λ� ∆, the self-consistent equation is :

∆2 = 4K ′u′3y2πC

a2

(
∆
u′Λ

)4K′

(5.11)

where we introduced the new variable y = g2
πu′

. Solving this for the gap we obtain:

∆ = u′Λ
(

4K ′y2u′3Cπ

a2Λ2

) 1
2−4K′

(5.12)

This solution is acceptable only if K ′ < 1
2 , which implies g2

1 <
π

2C [uK − u/K],
putting back the original quantities. That’s because otherwise it does not respect
the aforementioned condition u′Λ� ∆. We can see this clearly from this plot of
how ∆ varies with K’ (u′Λ = 6 and y2u′3Cπ

2a2Λ2 = 0.5) (FIG. 5.1).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
K

¢

2

4

6

8

10

12

DeltaHK'L
Delta

Figure 5.1: Plot of ∆(K ′)
This plot shows the existence of two separate phases. Below K ′ = 1

2 the solution is
acceptable, while above that critical value it is not .

Solving for K we get the condition for the existence of the non-zero solution:

K <
−g2

1C

π
+
√

g4
1C

2

π2 + 16u2

8u (5.13)
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The case of delta correlation function

The plot of the critical value of K, KC = −
g21C
π

+
√

g41C
2

π2 +16u2

8u , as a function of g1
shows this graphically (FIG. 5.4).

5.2 The conductivity calculations
In order to investigate the effect of the interaction with the bath in this regime, we
can use the variational approximation we have developed before with the following
relation for the Green function:

G−1(q) = 1
πK ′

[ω
2
n

u′
+ u′k2 + ∆2

u′
] (5.14)

Then the two-point correlation function reads:

〈φ(q1)φ(q2)〉 = πK ′δq1q2Ωβ
ω2
n

u′
+ u′k2 + ∆2

u′

(5.15)

For the conductivity, according to the Kubo formula, we have:

σ(ω) = − e
2

π2 (ω + iδ)〈φ(k = 0, ωn)∗φ(k = 0, ωn)〉iωn→ω+iδ =

[
− e

2

π2 (ω + iδ) πK ′u′

ω2
n + ∆2

]
iωn→ω+iδ

= − e
2

π2 (ω + iδ) πK ′u′

−(ω + iδ)2 + ∆2 (5.16)

Rationalizing this expression, we obtain:

− e
2

π2 (ω + iδ)πK
′u′[∆2 − ω2 + δ2 + 2iωδ]

(∆2 − ω2 + δ2)2 + (2ωδ)2 (5.17)

The real part of the conductivity is:

Re(σ(ω)) = −e
2K ′u′

π

ω(∆2 − ω2 − δ2)
(∆2 − ω2 + δ2)2 + (2ωδ)2 (5.18)

From this we can see that the interaction opens a gap ∆, which shifts the real
part of the conductivity. Therefore, as we can see from the graphic, in the gapped
phase, where we have a non-zero solution for ∆, the conductivity is zero below ∆.
Then the conductivity at ω = 0 is zero in the gapped phase, while it is different
from zero in the gapless one, where ∆ = 0. Therefore, in the first case we have
an insulating behaviour, while in the second a metallic one. In both cases we can
observe a power law decay at infinity. (FIG. 5.2 and 5.3)
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Figure 5.2: Plot of Re[σ(ω)] without any gap and with e2K′u′

π
= 6

This figure shows the real part of the conductivity in the metallic phase. As we
can see, it is finite in the origin.
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Figure 5.3: Plot of Re[σ(ω)] with a gap ∆ = 2 and with e2K′u′

π
= 6

This figure shows the real part of the conductivity in the non-metallic phase. As we
can see, it is zero in the origin and it is shifted of ∆ with respect to the free case.

For the XXZ spin chain alone, when we have no interaction with the bath (FIG.
2.1), we have a phase transition between the gapless and the gapped phase at
Jz = Jxy, which mapped using the Bethe-Ansatz relations (2.24) yields K = 1/2.
Conversely, with the presence of the bath with a correlation function C(t− t′) =

Cδ(t− t′), we obtain that the critical point is at KC = −
g21C
π

+
√

g41C
2

π2 +16u2

8u . Above
that value we have a metallic gapless phase, while below we have an insulating
gapped phase (FIG. 5.4). Setting the coupling constants g1 and g2 to 0 in (5.13),
we recover the value K = 1/2.
It is easy to show that KC is always below the value associated to the XXZ spin
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Figure 5.4: Plot of KC as a function of g1 with u = 1 and C = π
This plot shows the dependence of KC from g1. The red area corresponds to the

non-metallic phase, while the white one to the metallic phase. The point
represents the limit of zero coupling between the spin chain and the bath. We can
see that the effect of the interaction with the bath is to lower the critical point.

chain alone. Therefore, we have demonstrated that the interaction with the bath
favours the metallic behaviour and reduces the insulating phase.

5.3 The renormalization group technique
Now, we apply the renormalization group techniques, in order to investigate the
critical properties of the system and to compare its results with the variational
method.
The renormalization procedure is based on the idea of decomposing the fields into
short-wavelength and large-wavelength components and integrating over the short
ones, to get a new effective model with a new set of renormalized coupling constants.
As this procedure is repeated many times, at each step we recover the form of the
original action with different coupling constants. This enables to write the R.G.
flow equations, which map the coupling constant to the ones corresponding to the
low-energy phase. We will adopt the Wilson-Kadanoff perturbative procedure in
the following.
We start from the partition function:

Z =
∫

Dφe−S (5.19)
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For our Sine-Gordon action we have:

SSG = 1
2πK ′

∫
dx
∫ β

0
dτ

[ 1
u′

(∂τφ)2 + u′ (∂xφ)2
]
− g2

2C

4π2a2

∫
dx
∫ β

0
dτ [cos 4φ(x, τ)]

(5.20)
We can write the field φ(x, τ) as:

φ(x, τ) = 1
βΩ

∑
k

∑
ωn

ei(kx−ωnτ)φ(k, ωn) (5.21)

As usual, the notation is r = (x, u′τ) and q = (k, ωn/u′). Then, we separate the
low and high-frequency modes, defining a new frequency cutoff Λ′, lower than the
original one, Λ. The Brillouin zone is then split into two regions: 0 < |q| < Λ′
and Λ′ < |q| < Λ. The field φ is divided into the sum of the slow and the fast
components:

φ(r) = φ<(r) + φ>(r) (5.22)
where:

φ<(r) = 1
βΩ

∑
|q|<Λ′

eiq·rφ(q)

φ>(r) = 1
βΩ

∑
Λ′<|q|<Λ

eiq·rφ(q) (5.23)

The same holds for the quadratic action

S0 = 1
2πK ′

1
βΩ

∑
q

[ω
2
n

u′
+ u′k2]φ(q)∗φ(q) (5.24)

which can be written as:
S0 = S<0 + S>0 (5.25)

separating the high frequency and low frequency components. However, this is
obviously not possible for the cosine term and we need a perturbative expansion to
treat it. The expansion yields:

Z

Z0
= 1
Z0

∫
Dφe−S<0 −S>0

[
1− g2

2C

4u′π2a2

∫
d2r cos(4(φ<(r) + φ>(r)))

+ g4
2C

2

2u′2(4π2a2)2

∫
d2r1

∫
d2r2 cos(4(φ<(r1) + φ>(r1))) cos(4(φ<(r2) + φ>(r2)))

]
(5.26)

Now, we can average over the fast modes and remain only with the slow ones, using
the identity demonstrated in the Appendix B 〈cos(φ)〉 = e−

1
2 〈φ

2〉

Z

Z0
= 1
Z<

0

∫
Dφe−S<0

[
1− g2

2C

4u′π2a2

∫
d2r cos(4(φ<(r)))e−8〈(φ>(r))2〉>
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+ g4
2C

2

2u′2(4π2a2)2

∑
ε=±

∫
d2r1

∫
d2r2 cos(4(φ<(r1) + εφ<(r2)))e−8〈(φ>(r1)+εφ>(r2))2〉

]
(5.27)

In order to obtain an effective action, we have to re-exponentiate the expression:

Z

Z0
= 1
Z<

0

∫
Dφe−S

<
0 −

g22C
4u′π2a2

∫
d2r cos(4(φ<(r)))e−8〈(φ>(r))2〉>

e
g42C

2

2u′2(4π2a2)2
∫
d2r1

∫
d2r2

∑
ε=±[cos(4(φ<(r1)+εφ<(r2)))e−8〈(φ>(r1)+εφ>(r2))2〉]

e
−

g42C
2

u′2(4π2a2)2
∫
d2r1

∫
d2r2 cos(4(φ<(r1)))e−8〈(φ>(r1))2〉> cos(4(φ<(r2)))e−8〈(φ>(r2))2〉> (5.28)

Now, we can re-scale the momentum with the new cutoff Λ′, ensuring that the
momenta k′ maintain the cutoff Λ, as:

k′ = Λ′
Λ k (5.29)

and the same for ω.
The time variable and the distance transforms according to the inverse transforma-
tion, as:

x′ = Λ
Λ′x and τ ′ = Λ

Λ′ τ (5.30)

After this rescaling we recover a theory which is equivalent to the original one, but
with new coupling constant:

g2
2(Λ′) =

( Λ
Λ′
)2
g2

2(Λ)e−8〈(φ>(r))2〉> =
( Λ

Λ′
)2
g2

2(Λ)e−
8
βΩ
∑

Λ′<|q|<Λ
πK′u′

ω2
n+u′2k2 (5.31)

If we now perform the limit L→∞ and β,→∞ we can transform the sum into
an integral :

g2
2(Λ′) =

( Λ
Λ′
)2
g2

2(Λ)e−4
∫

Λ′<|q|<Λ
K′
q

=
( Λ

Λ′
)2
g2

2(Λ)e−4K′
∫ Λ

Λ′ dq
1
q =

( Λ
Λ′
)2
g2

2(Λ)e−4K′ log( Λ
Λ′ ) (5.32)

To obtain the flow equation, we have to parametrize the cutoff according to the
relation:

Λ(l) = Λ0e
−l (5.33)

35



The case of delta correlation function

where Λ0 is the bare cutoff, and make an infinitesimal variation in order to obtain
the expression for Λ′:

Λ′(l) = Λ0e
−l−dl (5.34)

The resulting equation for g2(l) is:

g2
2(l + dl) = g2

2(l)e(2−4K′)dl (5.35)

Expanding the exponential we get the flow equation for g2
2(l):

d(g2
2(l))
dl

= g2
2(l)(2− 4K ′) (5.36)

This flow equation confirms the presence of a phase transition at K ′ = 1
2 . In fact,

g2
2 is irrelevant for K ′ > 1

2 , as it decreases and flows to 0. This corresponds to a
gapless phase. Instead, for K ′ < 1

2 g
2
2 is relevant, as it grows and flows towards

strong couplings, signalling the presence of a gapped phase.
[5]
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Chapter 6

The case of constant
correlation function

In this section, our aim is to study the other extreme and unphysical case, the one
in which the correlation function is constant. Once again, we use the variational
approximation, in order to study the phase diagram associated to this model. For
this end, we calculate the conductivity in the same way as in the previous chapters
to distinguish between a gapless phase and a gapped one.

6.1 Variational Approximation
We start from the following action:

Seff = 1
2πK

∫
dx
∫ β

0
dτ

[1
u

(∂τφ)2 + u (∂xφ)2
]
− g2

1C

2π2

∫
dx
∫ β

0
dτ
∫ β

0
dτ ′

∂xφ(x, τ)∂xφ(x, τ ′)− g2
2C

2π2a2

∫
dx
∫ β

0
dτ
∫ β

0
dτ ′ cos 2φ(x, τ) cos 2φ(x, τ ′) (6.1)

We may separate the two backward scattering terms relative to the cosine of the
sum and of the difference of the fields, which result from the Werner formulas, with
two different coupling constants, g2 and g′2:

Seff = 1
2πK

∫
dx
∫ β

0
dτ

[1
u

(∂τφ)2 + u (∂xφ)2
]
− g2

1C

4π2

∫
dx
∫ β

0
dτ
∫ β

0
dτ ′

∂xφ(x, τ)∂xφ(x, τ ′)−
∫

dx
∫ β

0
dτ
∫ β

0
dτ ′ g

2
2C

4π2a2 cos 2(φ(x, τ) + φ(x, τ ′))−
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The case of constant correlation function

∫
dx
∫ β

0
dτ
∫ β

0
dτ ′ g

′2
2 C

4π2a2 cos 2(φ(x, τ)− φ(x, τ ′))

(6.2)

Once again, we choose as variational action S0 = 1
2βΩ

∑
q G

−1(q)φ∗(q)φ(q) and
optimize on the Green function imposing ∂Fvar

∂G(q) = 0. The variational free energy
reads:

Fvar = −T
∑
q>0

log(G(q)) + T

2πK
∑

q

[
ω2
n

u
+ uk2

]
G(q)− g2

1C

2π2 T
∑

q
k2G(q)δωn,0−

−T g2
2C

4π2a2

∫
dx
∫ β

0
dτ
∫ β

0
dτ ′e−2〈(φ(x,τ)+φ(x,τ ′))2〉

−T g′22 C

4π2a2

∫
dx
∫ β

0
dτ
∫ β

0
dτ ′e−2〈(φ(x,τ)−φ(x,τ ′))2〉 (6.3)

With a Fourier transform of the last term:

Fvar = −T
∑

q
log(G(q)) + T

2πK
∑

q

[ω2
n

u
+ uk2 − g2

1CK

π
k2δωn,0

]
G(q)

−T g2
2C

4π2a2

∫
dx
∫ β

0
dτ
∫ β

0
dτ ′e−

2
βΩ
∑

q
(2−2 cosω(τ−τ ′))G(q)

−T g′22 C

4π2a2

∫
dx
∫ β

0
dτ
∫ β

0
dτ ′e−

2
βΩ
∑

q
(2+2 cosω(τ−τ ′))G(q) (6.4)

Optimising on G(q) one gets:

G−1(q) = 1
πK

[
uk2 + 1

u
ω2
n −

g2
1CK

π
k2δωn,0

]
+

g2
2C

2π2a2βΩ

∫
dx
∫ β

0
dτ
∫ β

0
dτ ′(2− 2 cosω(τ − τ ′))e−

2
βΩ
∑

q
(2−2 cosω(τ−τ ′))G(q)+

g′22 C

2π2a2βΩ

∫
dx
∫ β

0
dτ
∫ β

0
dτ ′(2 + 2 cosω(τ − τ ′))e−

2
βΩ
∑

q(2+2 cosω(τ−τ ′))G(q) (6.5)

Redefining a new more convenient variable τ ′′ = τ − τ ′:

G−1(q) = 1
πK

[
uk2 + 1

u
ω2
n −

g2
1CK

π
k2δωn,0

]
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The case of constant correlation function

+ g2
2C

2π2a2βΩ

∫ β

0
dτ
∫ τ+β

τ
dτ ′′(2− 2 cos(ωτ ′′))e−

2
βΩ
∑

q
(2−2 cos(ωτ ′′)) πKu

u2q2+∆2

+ g′22 C

2π2a2βΩ

∫ β

0
dτ
∫ τ+β

τ
dτ ′′(2 + 2 cos(ωτ ′′))e−

2
βΩ
∑

q
(2+2 cosω(τ ′′)) πKu

u2q2+∆2 (6.6)

Then, we can write the terms at the exponential in the continuum limit. We have:

G−1(q) = 1
πK

[
uk2 + 1

u
ω2
n −

g2
1CK

π
k2δωn,0

]

+ g2
2C

2π2a2βΩ

∫ β

0
dτ
∫ τ+β

τ
dτ ′′(2− 2 cosω(τ ′′))e−

∫
dk
∫
dω2(1−cos(ωτ ′′)) Ku2

u2k2+ω2+∆2

+ g′22 C

2π2a2βΩ

∫ β

0
dτ
∫ τ+β

τ
dτ ′′(2 + 2 cosω(τ ′′))e−

∫
dk
∫
dω2(1+cos(ωτ ′′)) u2K

u2k2+ω2+∆2 (6.7)

If we consider the limit T → 0, the linear dependence of C with respect to the
temperature (see Appendix C) implies that the last two terms are O(1) with respect
to T, as the time integral yields a factor β, while the term containing δωn,0 is O(T ),
so we can neglect it.
To proceed, we can cast aside the oscillating terms, as their contribution to the time
integral is small as β →∞. In order to justify this approximation, we can make a nu-
merical plot of the result of the integral I(τ ′′) =

∫
dk
∫
dω cos(ωτ ′′)e−αω2 u2

u2k2+ω2+∆2 .
In the context of this integral related to the massive theory we have introduced a
gaussian cutoff e−αω2 to cure the divergence. This integral can be solved analytically
in the k variable, then numerically in ω. We have made a plot of its estimation for
integer values of τ ′′ (FIG 6.1)
We can observe from this plot that it decays exponentially fast to 0 as τ ′′ goes
to infinity. The error made neglecting this term is discussed in Appendix D. In
addition to that, we no longer distinguish between the two contributions from the
cosine term (g2 = g′2), as the two terms play the same role. Thus, we are left with
the subsequent self-consistent equation for the gap ∆:

∆2

πKu
= g2

2C

π2a2 2βe−2
∫ Λ

0 dq qKu2

u2q2+∆2 (6.8)

As before, for the Green function, we have:

G−1(q) = 1
πK

[ω
2
n

u
+ uk2 + ∆2

u
] (6.9)
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Figure 6.1: Plot of I(τ ′′), with ∆ = 2, α = 0.5
This plot shows that the integral I(τ ′′) decays exponentially as τ ′′ →∞.

For the gap we can apply the results from the previous subsection in the approxi-
mation uΛ >> ∆ and we obtain (defining C = C̃kBT ):

∆2 = 2g2
2C̃Ku

πa2

(
∆
uΛ

)2K

(6.10)

The result for the gap is:

∆ = uΛ
(

2πKy2uC̃

a2Λ2

) 1
2−2K

(6.11)

and we can draw the same conclusions as in the previous chapter, but with a phase
transition at K = 1 between the metallic and the non-metallic phase. Below we
have a sketch of the phase diagram obtained in this case (FIG. 6.2). Unlike the
previous one, in this case the coupling constant g1 plays no role at all.
Using the results of the previous section concerning the variational approximation,
we can start from the expression for the real part of the conductivity:

Re(σ(ω)) = −e
2K ′u′

π

ω(∆2 − ω2 − δ2)
(∆2 − ω2 + δ2)2 + (2ωδ)2 (6.12)

As a consequence, we can observe the presence of the opening of the gap in the
conductivity at K = 1. The situation is the same as (FIG. 5.2 and 5.3) with
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The case of constant correlation function

a gapped phase below K = 1 and a gapless one above. Therefore, the effect of
the interaction with the bath is to induce an insulating behaviour in a region of
parameters that otherwise would be conductive, as in the zero coupling case we
have KC = 1

2 .

Figure 6.2: Plot of KC as a function of g1 with u = 1 and C = π
This plot shows the dependence of KC from g1, the coupling constant of the
forward scattering term. The red area corresponds to the non-metallic phase,

while the white one to the metallic phase. In this case, KC is constant and equal
to 1. The point at g1 = 0 represents XXZ spin chain alone, in which the critical
point is at KC = 1

2 . So, we can see that the effect of the interaction with the bath
is to raise the critical point.
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Chapter 7

Conclusion

We have demonstrated that the effect of the bath of harmonic oscillators for the
sake of the conductivity of the systems is relevant. In all the cases we have treated,
the relevant parameter to discuss the transport properties is K =

√
1

1+ 4Jz
πJxy

We

have discussed these different situations:

• In absence of the bath of harmonic oscillators, we have an insulating phase
for K < 1

2 and a metallic phase for K > 1
2 .

• If we consider the case of fast harmonic oscillators, in which the correlation
function is C(t− t′) = Cδ(t− t′), the metallic phase extends under the value
K = 1

2 and the critical point is shifted below (FIG. 5.4).

• In the case of slow harmonic oscillators and correlation function C(t− t′) = C,
KC(g2 /= 0) = 1 and the insulating phase extends over the value K = 1

2 ,
shifting above the critical point (FIG. 6.2).

This proves that, as in the Leggett paper, the bath can induce localization effects.
This is, however, only the beginning of the study of our model. There is room
to investigate what is the effect of the bath in the most general cases concerning
the effect of the bath with a generic time-dependent correlation function. The
study can be extended for non-equilibrium dynamical treatment and for non-zero
temperature.
Another important direction of investigation can be the differences between the
insulating phase and the localized phase typical of models with the presence of
quenched disorder.
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Appendix A

Derivation and Further
Details about the
Bosonization

The bosonization procedure is based on the bosonic nature of the low-energy
particle-hole excitations in 1d quantum liquids (FIG. A.1). First of all, to derive it
from the discrete fermionic operators we must start from the density fluctuation
operator :

ρη(q) =
∑
k

ψ†k+q,ηψk,η (A.1)

where η = +,−runs on the left/right type of operator. This operator creates a
particle-hole excitation of momentum q /= 0 around the Fermi momentum. It obeys
the following algebra:

[ρη(q), ρη′(q′)] = ∓qL2π δηη
′δq,−q′ (A.2)

So, we may define bosonic operators as

bqη =
√

2π
Lq
ρη(∓q) (A.3)

b†qη =
√

2π
Lq
ρη(±q) (A.4)

From this, one can infer the bosonization mapping of the fermionic fields. We have
the commutator:

[ρη(q), ψη(x)] = 1√
Ω
∑
k,k1

eik1x[ψ†η,k+qψη,k, ψη,k1 ] = −e−iqxψη(x) (A.5)
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Derivation and Further Details about the Bosonization

Figure A.1: Particle-Hole Spectrum of a 1D free Fermi gas theory
(a) Single particle spectrum (b) Particle-hole pair spectrum (c) Multiple

particle-hole excitation spectrum. The last figure shows that the low energy
excitations are located around the multiples of 2kF and are indeed bosonic in
character. In fact, they have a quadratic dispersion relation, which can be

approximated as a linear sound-wave one as we are in a low-energy regime. (from
[12])

Therefore, we could write an operator that yields the same commutator as:

ψη(x) = Uηe
∑

p
eipxρ†η(−p) 2πη

πL (A.6)

Including the Klein factor Uη this is a complete representation of the particle-hole
excitations. From this relation we can derive the bosonization in terms of the
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Derivation and Further Details about the Bosonization

bosonic operators, defining:

φ(x) = iπ

L

∑
p/=0

1
p
e−a|p|/2−ipx(ρ+(p) + ρ−(p)) (A.7)

θ(x) = iπ

L

∑
p/=0

1
p
e−a|p|/2−ipx(ρ+(p)− ρ−(p)) (A.8)

The factor e−aq/2 is to be intended as a convergence factor as we must take the
limit a→ 0 in the final results.
Inserting the bosonic operators we have:

φ(x) = iπ
∑
q /=0

e−a|q|/2−iqx

q

( |q|
2Lπ

)1/2
(b†q + b−q) (A.9)

where we have used that bq,− = b−q.
The dual field θ(x) is:

θ(x) = iπ
∑
q /=0

e−a|q|/2−iqx

|q|
( |q|

2Lπ
)1/2

(b†q − b−q) (A.10)

The field φ can be decomposed into the sum of two conjugate fields:

φ(x) = ϕ†(x) + ϕ(x) (A.11)

defined as:
ϕ(x) = iπ

∑
q /=0

e−a|q|/2−iqx

q

( |q|
2Lπ

)1/2
b−q (A.12)

ϕ†(x) = iπ
∑
q /=0

e−a|q|/2−iqx

q

( |q|
2Lπ

)1/2
b†q (A.13)

In all these expressions, the q = 0 contribution is negligible in the thermodynamic
limit. As we have stated in the Chapter 2, the relation between the fermionic fields
and the left/right fields is :

ψη(x) = 1√
2πa

Uηe
±i2φη(x) (A.14)

and the dual fields are defined as:

φ(x) = φ+(x) + φ−(x) (A.15)

θ(x) = φ+(x)− φ−(x) (A.16)
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Derivation and Further Details about the Bosonization

Consequently, we can construct the left/right fields from φ(x):

φ(x) = i
√
π
∑
q /=0

e−a|q|/2−iqx

q

( |q|
2L
)1/2

(b†q + b−q)

= i
√
π
[∑
q>0

e−a|q|/2−iqx

q

( |q|
2L
)1/2

(b†q + b−q) +
∑
q<0

e−a|q|/2−iqx

q

( |q|
2L
)1/2

(b†q + b−q)
]

= i
√
π
[∑
q>0

e−a|q|/2−iqx√
2|q|L

(b†q + b−q)−
∑
q<0

e−a|q|/2−iqx√
2|q|L

(b†q + b−q)
]

= i
√
π
∑
q>0

e−aq/2√
2qL

[
e−iqx(b†q + b−q)− eiqx(b†−q + bq)

]

= i
√
π√

2L
∑
q>0

e−aq/2
√
q

(e−iqxbq,− − eiqxbq,+ − eiqxb†q,− + e−iqxb†q,+)

As a consequence, for η = +,− we can define the left/right fields as:

φη(x) = ϕη(x) + ϕ†η(x) = ∓i
√
π√

2L
∑
q>0

e−aq/2
√
q

(e±iqxbqη − e∓iqxb†qη) (A.17)

Where we have bq,+ = bq and bq,− = b−q and the same for their hermitian conjugates.
It follows the definition of the creation/annihilation components of the fields in
terms of bosonic operators as:

ϕ+(x) = −i
√
π√

2L
∑
q>0

eiqx
√
q
e−aq/2bq,+ (A.18)

ϕ†+(x) = +i
√
π√

2L
∑
q>0

e−iqx
√
q
e−aq/2b†q,+ (A.19)

ϕ−(x) = +i
√
π√

2L
∑
q>0

e−iqx
√
q
e−aq/2bq,− (A.20)

ϕ†−(x) = −i
√
π√

2L
∑
q>0

eiqx
√
q
e−aq/2b†q,− (A.21)

Let us now compute the commutators between the bosonic fields:

[φ(x), φ(y)] = −π
∑
q,q′ /=0

e−a(|q|+|q′|)/2−i(qx+q′y)

q|q′|

√
|q||q′|
2L [b†q+b−q, b

†
q′+b−q′ ] = 0 (A.22)
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[θ(x), θ(y)] = −π
∑
q,q′ /=0

e−a(|q|+|q′|)/2−i(qx+q′y)

qq′

√
|q||q′|
2L [b†q−b−q, b

†
q′−b−q′ ] = 0 (A.23)

[φ(x), θ(y)] = −π
∑
q,q′ /=0

e−a(|q|+|q′|)/2−i(qx+q′y)

q|q′|

√
|q||q′|
2L [b†q + b−q, b

†
q′ − b−q′ ]

= −π
∑
q,q′ /=0

e−a(|q|+|q′|)/2−i(qx+q′y)

q|q′|

√
|q||q′|
2L 2δq′,−q

= −π
L

∑
q /=0

e−a(|q|)−iq(x−y)

q|q|
|q| = −π

L

∑
q /=0

e−a(|q|)+iqR

q|q|
|q|

= −2iπ
L

∑
q>0

e−aq sin(qR)
q

→ L→∞ → −2iπ
L∆q

∫ ∞
0

dq
e−aq sin(qR)

q

= −i
∫ ∞

0
dq
e−aq sin(qR)

q
→

a→ 0 → −i
∫ ∞

0
dq

sin(qR)
q

= −iπ2 ε(R) = iπ

2 ε(x− y)

where we have made use of the auxiliary variable R = y − x , ∆q = 2π
L

and the
representation of the step function:

ε(x) =
∫ ∞

0
dq

sin(qx)
2πq (A.24)

From these formulas, we can infer the commutation relations of the fields φη:

[φη(x), φη(y)] = 1
4[φ(x)± θ(x), φ(y)± θ(y)] = ±1

4 ([φ(x), θ(y)]− [φ(y), θ(x)])

= ±iπ4 ε(x− y) (A.25)

and
[φ+(x), φ−(x)] = 1

4([φ(x), θ(y)] + [φ(y), θ(x)]) = 0 (A.26)

Now, let us work out the expression of the derivatives of the fields:

∇φ(x) = π
∑
q /=0

e−a|q|/2−iqx
( |q|

2Lπ
)1/2

(b†q + b−q) (A.27)
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∇θ(x) = π
∑
q /=0

e−a|q|/2−iqx
q

|q|
( |q|

2Lπ
)1/2

(b†q − b−q) (A.28)

We can derive the correspondent commutation relations:

[∇φ(x),∇φ(y)] = [∇θ(x),∇θ(y)] = 0 (A.29)

[∇φ(x), φ(y)] = [∇θ(x), θ(y)] = 0 (A.30)

[∇φ(x), θ(y)] = ∇x[φ(x), θ(y)] = ∇x
iπ

2 ε(x− y) = iπδ(x− y) (A.31)

[φ(x),∇θ(y)] = ∇y[φ(x), θ(y)] = ∇y
iπ

2 ε(x− y) = −iπεδ(x− y) (A.32)

[∇φ(x),∇θ(y)] = ∇x∇y[φ(x), θ(y)] = ∇x∇y
iπ

2 ε(x− y) = −πi (A.33)

where we have used the distributional derivative of the delta function. These
commutation relations can also be derived directly from the expression of the fields
and its derivatives in terms of bosonic operators. For example,

[φ(x),∇θ(y)] = −iπ
∑
q,q′

e−a|q|−iq(x−y)

q

q

|q|
|q|
2L2 = −iπ

L

∑
q

e−a|q|+iqR → L→∞

→ −i2

∫ ∞
−∞

dqeiqR−a|q| → a→ 0 → − i2

∫ ∞
−∞

dqeiqR = −iπδ(R) (A.34)

where we have used the integral representation of the delta function. The same for
the commutator between the derivatives:

[∇φ(x),∇θ(y)] = −π
L

∑
q

e−a|q|+iqRq → L→∞ → −1
2

∫ ∞
−∞

dqqeiqR−a|q| →

a→ 0 → −1
2

∫ ∞
−∞

dqqeiqR = −1
2

∫ ∞
−∞

dq
∂

∂R

eiqR

i
= i

∂

∂R

∫ ∞
−∞

dqeiqR

= iπδ′(R) = −i (A.35)

where we have used the derivative of the delta function δ′(R). [8] [5] [13]

48



Appendix B

Demonstration of the
identity related to the
average of the cosine

In this section we derive the identity 〈cos(φ)〉 = e−
1
2 〈φ

2〉.
We start from the general correlation function of the type:

I = 〈
∏
j

ei(Ajφ(rj)+Bjθ(rj))〉 (B.1)

where A and B are some coefficients and rj = (xj, uτj). We can rewrite the term
in the exponential in the Fourier space as:

∑
j

[Ajφ(rj) +Bjθ(rj)] = 1
βΩ

∑
q

[A(q)φ(−q) +B(q)θ(−q)] (B.2)

where
A(q) =

∑
j

Aje
−i(kxj−ωnτj) (B.3)

and similarly for B. The correlation function becomes:

〈
∏
j

ei(Ajφ(rj)+Bjθ(rj))〉 = 1
Z

∫
DφDθ

e
− 1

2βΩ
∑

q

[(
θ−q φ−q

)
M−1

(
θq
φq

)
−i[
(
B(−q) A(−q)

)(θq
φq

)
+
(
θ−q φ−q

)(B(q)
A(q)

)
]
]

(B.4)
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Where M is:
M = π

k2(u2k2 + ω2
n)

(
k2 u

K
−ikωn

−ikωn k2uK

)
(B.5)

Completing the square:

〈
∏
j

ei(Ajφ(rj)+Bjθ(rj))〉 = e
− 1

2βΩ
∑

q

(
B(−q) A(−q)

)
M

(
B(q)
A(q)

)
(B.6)

Let us work out only the terms concerning A in the exponential only, which are
useful for our purpose:

− 1
2βΩ

∑
i,j

∑
q
AiAje

iq·(ri−rj) uKπ

ω2
n + u2k2

= − 1
2βΩ

∑
i,j

∑
q
AiAj cos(q(ri − rj))

uKπ

ω2
n + u2k2 (B.7)

If we substitute the expression of F1(r) = 1
βΩ
∑

q[1− cos q · r] 2πu′
ω2
n+u′2k2 in the above

formula:
− 1

2βΩ
∑
i,j

∑
q
AiAj cos(q · (ri − rj))

uKπ

ω2
n + u2k2

= − 1
2βΩ

∑
i,j

∑
q
AiAj[cos(q · (ri − rj))− 1] uKπ

ω2
n + u2k2 −

1
2βΩ

∑
i,j

∑
q
AiAj

uKπ

ω2
n + u2k2

= 1
4
∑
i,j

AiAjKF1(ri − rj)− (
∑
i

Ai)2 1
2βΩ

∑
q

uKπ

ω2
n + u2k2 (B.8)

Substituting A1 = 1 and Ai = 0 with i /= 1 and confronting with the correlation
function

〈φ(q1)∗φ(q2)〉 = πKδq1q2Ωβ
ω2
n

u
+ uk2

1
(B.9)

we obtain the desired result.
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Appendix C

Calculation of the
correlation function of the
quantum harmonic
oscillator

Here we calculate the position correlation function of the quantum harmonic
oscillator in order to justify the assumption of the linear dependence of C with
respect to the temperature.
First of all, the density matrix of a system in the basis of the energy eigenfunctions
with a temperature T described in the canonical ensemble is:

ρ = e−βEn|n〉〈n| (C.1)

The partition function is defined as:

Tr(e−βH) (C.2)

and can be computed as:

∑
n

e−βEn =
∑
n

e−β~ω(n+ 1
2) = e−

β~ω
2

1− e−β~ω = 1
2senh(β~ω2 )

(C.3)

Now the value of C can be calculated using the average value of x̂2, which is:

〈x̂2〉 = Tr[ρx̂2] = Tr[x̂2e−βH ]/Z =
∑
n

〈n|x̂2|n〉e−βEn/Z = 2~
mω

∑
n

(2n+ 1)e−βEn/Z

51



Calculation of the correlation function of the quantum harmonic oscillator

= 2~
mω

2
β~

1
Z

∂

∂ω
Z = ~

2mωcotgh
(

~ω
KBT

)
(C.4)

[14] Now we can compute the correlation function at different times, which should
be equal in the constant limit. We can express it as:

C(t− t′) =
∑
n

pn〈n|U †(t)xU(t)U †(t′)xU(t′)|n〉 =
∑
n

pn〈n|xU(t− t)x|n〉eiωn(t−t′)

(C.5)
Inserting an identity we can get∑

mn

pn〈n|x̂|m〉〈m|x̂|n〉e−iωnm(t−t′) =
∑
mn

pn|〈m|x̂|n〉|2e−iωnm(t−t′) (C.6)

where we have used the unitary temporal evolution operator U(t) = e−
iHt
~ , the

probabilities pn = exp(−βEn)/Z and ωnm = (En − Em)/~. Since

Anm = 〈m|x̂|n〉 =
√

~
2mω (

√
nδm,n−1 +

√
n+ 1δm,n+1) (C.7)

we have that:

C(τ − τ ′) = ~
2mω

∑
n

pn(ne−ω(τ−τ ′) + (n+ 1)e+ω(τ−τ ′)) (C.8)

where we have passed to the euclidean time τ = it. From this we can see that it
reduces to the constant case in the limit ω → 0. As a consequence, we can perform
a Taylor expansion of 〈x̂2〉 in this limit and we obtain:

〈x̂2〉 ' kBT

2mω2 (C.9)

which demonstrates that it depends linearly on the temperature in this regime.
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Appendix D

Estimation of the error
made neglecting the cosine
term in the momentum
space integral

We may estimate the relative error made in this approximation with the following
expression:

∫ β
0 dτ

∫ τ+β
τ dτ ′′2e−

∫
dω e−αω

2
π√

∆2+ω2
∫
dω cos(ωτ ′′) e−αω

2
π√

∆2+ω2∫ β
0 dτ

∫ τ+β
τ dτ ′′e−

∫
dω e−αω2

π√
∆2+ω2

(D.1)

In the expression of the numerator, starting from:
∫ β

0
dτ
∫ τ+β

τ
dτ ′′(2 + 2 cosω(τ ′′))e−

∫
dq(1+cos(ωτ ′′)) πKu

u2q2+∆2 (D.2)

and neglecting the oscillating term, one gets for the absolute error:
∫ β

0
dτ
∫ τ+β

τ
dτ ′′2e−

∫
dq(1+cos(ωτ ′′))e−αω2 πKu

u2q2+∆2 −
∫ β

0
dτ
∫ τ+β

τ
dτ ′′2e−

∫
dqe−αω

2 πKu
u2q2+∆2

(D.3)
Integrating analytically on the k variable one gets (u=K=1):

∫ β

0
dτ
∫ τ+β

τ
dτ ′′2e−

∫
dk(1+cos(ωτ ′′)) πe

−αω2
√
k2+∆2 −

∫ β

0
dτ
∫ τ+β

τ
dτ ′′2e−

∫
dk πe

−αω2
√
k2+∆2 (D.4)
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As we assume the cosine integral at the exponential to be small, we can expand
this term and we obtain for the absolute error:

∫ β

0
dτ
∫ τ+β

τ
dτ ′′2e−

∫
dω e−αω

2
π√

∆2+ω2
∫
dω cos(ωτ ′′) e−αω

2
π√

∆2 + ω2
(D.5)

The relative error tends to 0, because the denominator diverges as β →∞, while
the numerator is finite
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