
POLITECNICO DI TORINO

Master of Science in Mechatronic Engineering

Master Degree Thesis

A robust control approach to the
problem of the sea wave energy

conversion

Supervisors

prof. Regruto Tomalino Diego

prof. Canale Massimo

prof. Cerone Vito

Candidate

Cosimo Schifone

Academic Year 2019-20





Acknowledgements

The last moments of the academic years are ending, the university life is reaching
the terminal stop. The past years have represented probably the most formative in
my life, not only to an academic point of view, but especially to life one. It is now
my duty to pass to the important step of the acknowledgements.
Firstly I want to thanks my professor Diego Regruto and all the SIC group for the
big opportunity given to me, for aid and instruction allowed in each moment.
The most important thanks and all my gratitude goes to my parents, which have
constituted my strong rock in every moment and in each decision. It is due to their
teaching and sacri�ces that I am here, in this point.
Thanks to Marianna, that has given to me the right charge in some moments where
no adults and no friends words were correct and encouraging but only a sister words
could be right, and thanks to Claudio and Alessandro which cover an important
part in my life.
It is a duty to thanks my grandparents, my uncles and all the big family that always
supported me.
I would like to thanks also my friends, my real friends, which have shared with me
errors, quarrels, fun and growing up.
Finally, I want to thanks Roberta, which has been present in every moment of the
master degree years, which has spent her e�ort also for me and has given smiles,
force and courage in most di�cult moments.
Thanks to all of you, this important goal is not only mine, it wouldn't have been
possible without you.

3



Summary

The thesis project is oriented to the Inertial Sea Wave Energy Converter (ISWEC).
The ISWEC is an electrical system that converts the incident wave power into
electrical energy, developed by the DIMEAS Department at Politecnico di Torino
(G.Bracco, E.Giorcelli, G.Mattiazzo). The basic work principle is to use the gyro-
scopic e�ect in order to take in motion a shaft connected to a PTO unit(Power Take
O�), so damping such rotation with a proper torque the electrical energy is obtained.
The main goal is to �nd a controller through the Robust Control approach with H-
inf techniques, based on reference tracking error, such that the produced power is
comparable to the previous MPC controller, that presents optimal conversion energy
but high computational requirements. In order to �nd a plant that can approximate
the real one, the Set-Membership approach is used, with a set of input-output data
available from a Simulink scheme of MPC case study. In the work di�erent cases
are proposed to show the main results and the limits of this approach.
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Motivation

From the 1997, through the White Paper on renewable energy sources(RES), the
Europe started radically to introduce the concept of RES, marking an international
and global need of new consumption roads ([2]). In December 2018, the next impor-
tant step was taken under the Paris Agreement, in order to make Europe a global
leader in renewables. The usage of biofuel and biogas for transport sector, the de-
carbonisation in industries, are only few of the required, and necessary, requisites
of this new approach. The ocean energy guarantees an optimal resource, in terms
of security of supply and reduction of CO2 emissions, and is becoming an impor-
tant interested target in many countries, in terms of tidal energy, ocean thermal
energy, and especially wave energy ([1]). The system taken in analysis in the thesis
work is the Inertial Sea Wave Energy Converter system (ISWEC), developed by the
DIMEAS Department at Politecnico di Torino (G.Bracco, E.Giorcelli, G.Mattiazzo),
that using the gyroscopic e�ect is able to drive a Power Take O� system (PTO) con-
verting mechanical power into electrical power. This new project allows to avoid
the corrosion by the sea of the system components, using a monolithic �oat that
contains inside it the gyroscopic system and all the important parts ([3]). In or-
der to produce power, a reaction force to damp the PTO motion, and a respective
control strategy are needed. Di�erent control strategies are considered to aim that
problem, as PD ([5]) and MPC ([6]). The new scope of �nding solution through
Robust Control approach is my interested object, in order to reach a new solution
that can provide a useful instrument in the ISWEC system, and thinking big, to the
RES engineering studies.

Thesis organization

The main software used in thesis work is Matlab/Simulink. The tools used for the
Set Membership Identi�cation are SparsePOP and SeDuMi, while the research of
the controller is done with lmi optimization package.
The thesis is organized in 5 chapters: the �rst chapter analyze in detail the main
ISWEC system concepts, the second and the third chapters show the Set Mem-
bership and the H∞ controller theory and simulations, the fourth analyzes the non
linear validation developed and the new better results, �nally the chapter 5 with the
conclusion of the entire work.
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Chapter 1

Iswec system

Introduction

The ISWEC system (Inertial Sea Wave Energy Converter) is born in the DIMEAS
Department at Politecnico di Torino to produce electrical power through the gyro-
scopic e�ect of a �ywheel, as can be seen in more accurate way in the article [3]. The
project is studied for Mediterranean environment, that with respect to oceans, is
characterized by lower average wave power and higher frequency. The layout (1.1)is
composed by a monolithic �oating hull, with an inner room sealed from the outer
environment.

Figure 1.1: ISWEC layout.

In the internal room are present the two gyroscopes, the PTO unit (Power Take
O�) and the power conditioning system. Thanks to the slack mooring con�guration
of the �oater mooring system, the hull is self aligning with respect to the incoming
wave, such that the wave contribution can be induced on the �oat pitch angle, as
shown in �gure 1.1.
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Iswec system

In order to produce energy, the gyroscopic e�ect and the precession motion con-
cepts are used. The gyroscopic system includes a �ywheel connected to the shaft.
Considering the axis con�guration shown in �gure 1.1, a motor takes in rotation the
�ywheel around Z-axis (with an angular velocity of ϕ̇) that combined with the wave
induced pitch velocity δ̇, allows the �ywheel to rotate around X-axis through the
gyroscopic e�ect, generating a torque along ε. Damping the precession motion with
a torque Tε around coordinate ε, the energy is produced. The dynamical equations
are the following:

1.

Tε(t) = Igε̈(t)− (J − Ig) δ2(t) sin(ε(t)) cos(ε(t)) + Jϕ̇(t)δ̇(t) cos(ε(t)) (1.1)

↓
Tε(t) ≈ Igε̈(t) + Jϕ̇(t)δ̇(t) cos(ε(t)) (1.2)

Dynamic behavior on axis ε:

� Tε: PTO torque;

� Ig: total moment of inertia with respect to PTO ε-axis;

� J : gyroscope axis-symmetric moment of inertia;

� ϕ̇: �ywheel angular speed.

2.

Tδ(t) =
(
Ig cos2(ε(t)) + J sin2(ε(t))

)
+ δ̈(t) + 2 (J − Ig) δ̇(t)ε̇(t) sin(ε(t)) cos(ε(t))+

− Jϕ̇(t)ε̇(t) cos(ε(t))− Jϕ̈(t) sin(ε(t)) (1.3)

↓
Tδ(t) ≈ −Jϕ̇(t)ε̇(t) cos(ε(t)) (1.4)

� Tδ: applied torque to the gyroscopic system

The equations 1.1 and1.3 represents the extended version of dynamical behavior,
while the equations 1.2 and 1.4 represent the approximated relations considering
the working conditions of ISWEC system in Mediterranean Sea. Furthermore, con-
sidering the self orientating property of the system described before, the �oater
dynamical equation can be described by the Cummins' equation:

τw(t) = (Ieq + µ∞) δ̈(t) + β|δ̇(t)|δ̇(t) +Kwδ(t) + Tδ(t) +

∫ t

0

δ̇(τ)h(t− τ)dτ (1.5)

� τw: wave induced torque on the �oater;

� Ieq: system moment of inertia around δ;

� µ∞: instantaneous added mass;
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Linear model

� Kw: linear hydrostatic sti�ness;

� β: Morison viscous quadratic coe�cient.

The hydrodynamics radiation force memory e�ects are described by the following
convolution integral:

µ(t) =

∫ t

0

δ̇(τ)h(t− τ)dτ (1.6)

Linear model

In order to take the necessary dataset for Set-Membership Identi�cation, the MPC
control model is considered, so are shown the linearized equations necessary for the
MPC design.
The �rst consideration is to assume the �ywheel speed set to a constant value, so
ε = δ = 0 and the eq.1.2 can be schematized as follow:

Tε(t) = Igε̈(t) + J ¯̇ϕδ̇(t) (1.7)

Introducing the radiation force dynamical state as:

ρrv(t) = [ρrv,1(t) . . . ρrv,v(t)]
> ∈ <ν (1.8)

and the matricesAρ, Bρ and Cρ as:

Aρ =


a1 a2 · · · av
1 0 · · · 0
...

. . . 0 0
0 0 1 0

 (1.9)

Bρ =


1
0
...
0

 (1.10)

Cρ =
[
c1 c2 · · · cv

]
(1.11)

the convolution integral de�ned before in 1.6 can be de�ned as follows:

µ(t) =

∫ t

0

δ̇(τ)h(t− τ)dτ ≈
{
ρ̇rv(t) = Aρρrv(t) +Bρδ̇(t)
µ(t) = Cρρrv(t)

(1.12)

The Cummins' equation 1.5 becomes:

τw(t) = (Ieq + µ∞) δ̈(t) +Kwδ(t)− J ¯̇ϕε̇(t) + Cρρrv(t) (1.13)

Considering the state variable

x(t) =
[
ε̇(t) ε(t) δ̇(t) δ(t) ρrv,1(t) . . . ρrv,ν(t)

]>
∈ <4+ν

(1.14)
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Iswec system

the total linearized model of the ISWEC system can be described by the state
equation1.15:

ẋ(t) = Ax(t) +BTε(t) +Bττw(t) (1.15)

The matrix A, B and Bτ are:

A =



0 0 −J ¯̇ϕ
Ig

0 0 0 · · · 0

1 0 0 0 0 0 · · · 0
J ¯̇ϕ
I∗eq

0 0 −Kw

I∗eq

−c1
I∗eq

−c2
I∗eq

· · · −cv
I∗eq

0 0 1 0 0 0 · · · 0
1 0 0 0 a1 a2 · · · av
0 0 0 0 1 0 · · · 0
...

...
...

...
...

. . . 0 0
0 0 0 0 0 0 1 0


(1.16)

B =
[

1
Ig

0 0 0 0 0 . . . 0
]′

(1.17)

Bτ =
[

0 0 1
I∗eq

0 0 0 . . . 0
]′

(1.18)

with I∗eq = Ieq + µ∞.
The power extracted by the system is:

PPTO(t) = ε̇(t) · Tε(t)

The convention used considers as released power a positive quantity, so the the
power absorbed is −PPTO.
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Chapter 2

Set membership identi�cation

In this chapter a brief review of main fundamental results on Set-membership identi-
�cation theory is reported for self-consistency. The interested reader can �nd details
in the following papers [7], [8] and [9].

2.1 Basic notions

The identi�cation object is to evaluate a model through a set of given information.
The identi�ed system can be:

� static: output at time t0 depends only on input at time t0

� dynamic: output at time t0 depends on input at time t0 and by past input
values

Using the regression form, the obtained model is the following:

w(t) = f(w(t− 1), w(t− 2), ..., w(t− n), u(t), u(t− 1), ..., u(t− n))

where w(t) is the output at time t and u(t) is the input at time t.
The model can be classi�ed in:

� parametric: de�ned by a �nite number of parameters

� non parametric: de�ned by an in�nite number of parameters

The objective is to �nd a linear system, in order to obtain an output as linear
combination of the other variables:

w(t) = α1w(t− 1) + ...+ αnw(t− n) + β0u(t) + ...+ βmu(t−m)

The goal followed in the thesis work is to �nd a discrete, parametric, linear time-
invariant model (LTI).

2.1.1 Error representation

There are di�erent ways in order to take into account the noise a�ecting the system.

13



Set membership identi�cation

The main topologies are:

1. Equation error : the noise e�ect is taken into account by means of an eq.error

Figure 2.1: Eq.error structure.

2. Error-in-variable: the error noise a�ects both input and output( u(t) and w(t)
are real input and output, η(t) and ε(t) are the noise contribution, ũ(t) and
y(t) the collected data)

Figure 2.2: Errors in variables structure.

3. Output error : the input signal is assumed to be known, while the output se-
quence is corrupted by error η(t)

Figure 2.3: Output error structure.
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2.1 � Basic notions

Concerning the errors ε(t) and η(t), the two methodologies to be considered are:

� Statistical : ε(t) and η(t) are random variable statistically distributed with a
probability density function totally or partially known;

� Set-membership bounded error : ε(t) and η(t) have unknown behaviour but are
limited and belong to a given bounded set.

|η(t)| ≤ ∆η,∀t = 1, ..., N

|ε(t)| ≤ ∆ε,∀t = 1, ..., N

∆η,∆ε are known

2.1.2 Feasible Parameter Set and Polynomial optimization

problem

In the set-membership identi�cation, the feasible solution set(FSS) is the set of all
the models which are feasible solutions of the estimated problem. If the class of
system F is parametrized by a parameter vector Θ, the FSS can be replaced by the
feasible parameter set.
The feasible parameter set Dθ(FPS) is the set of all the parameter values that satis�es
the model equations, given for all the collected input/ouput data and corrupted by
bounded noise.
Considering as error structure the output error representation, the FPS describing
the model is:

Dθ =
{
θ = [α1, . . . , αn, β0, . . . , βn] ∈ <2n+1 :

w(t) = −α1w(t− 1)− . . .− αnw(t− n) + β0u(t) + . . .+ βnu(t− n) (2.1)

y(t) = w(t) + η(t) (2.2)

|η(t)| ≤ ∆η, ∀t = 1, . . . , N}

Substituting the 2.2 in 2.1, it is possible to obtain the extended feasible parameter
set(EFPS), de�ned by a set of bilinear equality constraints and by a set of linear
inequality constraint:

Dθ,η =
{
θ = [α1, . . . , αn, β0, . . . , βn] ∈ <2n+1, η ∈ <N :

y(t)− η(t) = −α1(y(t− 1)− η(t− 1))− . . .− αn(y(t− n)− η(t− n)) + β0u(t)+

+ . . .+ βnu(t− n) (2.3)

|η(t)| ≤ ∆η, ∀t = 1, . . . , N} (2.4)

The previous equations allow to �nd the interval of each parameter value, deter-
mining the parameter uncertainty interval(PUI).
The PUI of a parameter value is the interval of its values, limited by minimum and
maximum.

PUIθi = [
¯
θi, θ̄i]

15



Set membership identi�cation

¯
θi = minθi

subject to

y(t)− η(t) = −α1y(t− 1) + α1η(t− 1) + . . .+ β0u(t) + . . .+ βnu(t− n) ∀t = n+ 1, . . . , N
(2.5)

−∆η ≤ η(t) ≤ ∆η ∀t = 1, . . . , N (2.6)

Figure 2.4: Parameter uncertainty interval.

Due to the presence of bilinear equality constraints in the equation 2.5, it is
possible to de�ne the problem as "bilinear optimization problem", a subclass of
polynomial optimization problem.
A polynomial optimization problem(POP) is an optimization problem in the follow-
ing general form:

min f(x)

subject to
yi(x) ≥ 0 ∀i = 1, . . . ,Γ

where x=decision/optimization variables of the problem, f(x) is a multivariant poly-
nomial function of the decision variable x.
The main features of POPs are the following:

� Non linear optimization problems

� Non convex optimization problems

Due to the non-convexity, the problem could have more local minimum solutions,
so in order to care of these constraints, a good method is to compute an "outer
approximation" of the PUI. In this way, the computed PUI is not numerically exact,
due to the added conservativeness, but it is possible to guarantee that the true plant
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2.1 � Basic notions

is inside the considered set.
The POP problem can be rewritten as follows:

minγ

subject to

f(x) ≤ γ → γ − f(x) ≥ 0 (2.7)

gi(x) ≥ 0 ∀i = 1, . . . ,Γ

gj(x) ≥ 0 ∀j = 1, . . . ,M

The problem 2.7 can be seen as the minimization of a linear function of the opti-
mization variable, subject to a set of polynomial constraints. In order to solve this
problem, the idea is to use convex relaxation methods.
The convex relaxation methods are based on the idea of approximating the non-
convex set, described by the polynomial constraints in 2.7 , with a convex set which
includes the non convex original one.

Figure 2.5: Convex relaxation scheme.

The approach is to consider the non-convex set depending on a parameter called
order of relazation δ:

1. As δ → ∞ the convex approximation tends to the convex hall of the original
non convex set

2. As δ increases, the computational cost grows exponentially

17



Set membership identi�cation

Figure 2.6: Convex hall.

The convex hall of a set S is the smallest outer approximation of the original set S.
The minimum possible value of δ (δmin), is given by:

δmin = [
max degree

2
]

where max degree is the maximum degree of the polynomial describing the objective
function and the constraints.

2.1.3 SparsePOP tool

The instrument used to solve POPs is SparsePOP, exploited in this article [10].
SparsePOP is a Matlab package, used in order to �nd global optimal solutions of
POPs. The POP is written in the following form:

minimize f0(x)

subject to

fk(x) ≥ 0 (k = 1,2, . . . , l),

fk(x) = 0 (k = l + 1, . . . ,m),

lbdi ≤ xi ≤ ubdi (i = 1,2, . . . , n)

where −∞ ≤ lbdi < ∞ and −∞ < ubdi ≤ ∞ (i=1,2,. . . ,n). The package input
is a polynomial optimization problem, so constructing a sparse semide�nite pro-
gramming(SDP) relaxation of the POP, gives as output solution information and
statistics. The solver used by Matlab to solve the SDP can be SDPA or SeDuMi,
providing an approximate global optimal solution.
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2.2 � Set-membership in ISWEC model

In SparsePOP, a polynomial class is de�ned as follows:

poly.typeCone = 1 if f(x) ∈ <[x] is used as an objective function

= 1 if f(x) ∈ <[x] is used as f(x) ≥ 0

= −1 if f(x) ∈ <[x] is used as an f(x) = 0

poly.degree = the degree of f(x)

poly.dimVar = the dimension of variable vector x

poly.noTerms = the number of terms of f(x)

poly.supports = support set of f(x), a poly.noTerms · poly.dimV ar matrix

poly.coef = coefficients, a column vector of poly.noTerms dimension

The name objPoly is for the objective polynomial function f0(x) and ineqPolySysj
(j=1,2,. . . ,m) for the polynomials f1(x)(j = 1,2, . . . ,m) of the constraints.
The package allows also to �nd an approximation to an optimal solution, setting the
param.POPsolver to "active-set" (this function is possible only if an Optimization
Toolbox is available in Matlab).

2.2 Set-membership in ISWEC model

2.2.1 Model requirements

The main goal is to identify a good model that can represent the ISWEC plant.
As described in previous section, the necessary information in order to apply the
set-membership identi�cation, are:

� a set of a-priori information of the system

� a set of input-output data of the plant

� the noise structure

In the thesis work, the system to be identi�ed is assumed to be a linear time-invariant
system.
The idea is to identify a model that takes care of both the internal dynamic con-
tribution and the external contribution given by the incoming wave. In order to
satisfy these requirements, the �rst input is the torque delivered by the PTO unit
Tε, while the second input is the incoming wave force contribution to the rotation
on pitch axis Fry. The chosen output is the angular speed of the PTO shaft ε̇.
In order to collect the set of input-output data, an old project with MPC controller
is considered.
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Figure 2.7: Iswec MPC.

As can be seen in the �gure 2.7, the torque Tε is the output of controller block,
the angular speed ε̇ is the output of gyroscope block, while the wave force contribu-
tion is taken from the waves block. The data are taken considering 4 di�erent wave
pro�les, which give a linear pro�le of ε̇ as output in the MPC model. The MPC
system is constructed considering the 8 states (1.14).
Concerning the number of states in the two transfer functions, it must be considered
that higher is the number of states and better should be the represented system be-
haviour, but the problem complexity increases exponentially.
In the thesis work are shown two di�erent approaches, the �rst considering a trans-
fer function with nine states, while the second considering the transfer function of
second degree.
The error structure considered is the output error, in order to consider the error
between the real and simulated output.
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Knowing the previous information, the model structure is the following:

Figure 2.8: Model structure.

The plant model is:

G1(q−1) =
ε̇1(z)

Tε
=

β10 + . . .+ β1nq
−n

1 + α11q−1 + . . .+ α1nq−n
(2.8)

The disturbance model, that takes into account the wave contribution, is:

G2(q−1) =
ε̇2(z)

Fry
=

β20 + . . .+ β2nq
−n

1 + α21q−1 + . . .+ α2nq−n
(2.9)

Considering the model structure shown in �gure 2.8, it is possible to see that the
angular speed of PTO shaft is given by the contribution of the two transfer functions:

ε̇(t) = ε̇1(t) + ε̇2(t) (2.10)

The output y(t) is simulated output, given from the sum of real output ε̇ and of
error η(t).

y(t) = ε̇(t) + η(t) → y(t) = ε̇1(t) + ε̇2(t) + η(t) (2.11)

where η(t) is bounded

|η(t)| ≤ ∆η (2.12)

From the previous equations, it is possible to proceed to the SparsePOP problem.
Due to the �nal goal of the work, the SparsePOP minimization will be done in or-
der to minimize the error η(t), so the parameters will be referred to the minimum
calculated error.
In the next sections will be shown a second degree and a nine degree system iden-
ti�cation, which have very similar results in SM identi�cation, but very di�erent in
H-inf approach.
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2.2.2 Low order model identi�cation

2.2.2.1 Identi�cation

Considering two states, the plant transfer function and the disturbance transfer
function are :

G1(q−1) =
ε̇1(t)

Tε(t)
=
β10 + β11q

−1 + β12q
−2

1 + α11q−1 + α12q−2
(2.13)

G2(q−1) =
ε̇2(t)

Fry(t)
=
β20 + β21q

−1 + β22q
−2

1 + α21q−1 + α22q−2
(2.14)

From the 2.13 and 2.14 it is possible to de�ne the equality constraints of the problem:

ε̇1(t)(1 + α11q
−1 + α12q

−2) = Tε(t)(β10 + β11q
−1 + β12q

−2)

ε̇1(t) + α11ε̇1(t− 1) + α12ε̇1(t− 2) = β10Tε(t) + β11Tε(t− 1) + β12Tε(t− 2)

ε̇1(t) + α11ε̇1(t− 1) + α12ε̇1(t− 2)− β10Tε(t)− β11Tε(t− 1)− β12Tε(t− 2) = 0
(2.15)

The equation 2.15 is the �rst system equation.
Following the same procedure for the disturbance transfer function, the result is:

ε̇2(t)(1 + α21q
−1 + α22q

−2) = Fry(β20 + β21q
−1 + β22q

−2)

ε̇2(t) + α21ε̇2(t− 1) + α22ε̇2(t− 2) = β20Fry(t) + β21Fry(t− 1) + β22Fry(t− 2)

ε̇2(t) + α21ε̇2(t− 1) + α22ε̇2(t− 2)− β20Fry(t)− β21Fry(t− 1)− β22Fry(t− 2) = 0
(2.16)

The equation 2.16 is the second system equation.
The relation that links 2.15 and 2.16 to the real output(angular speed) is the fol-
lowing:

ε̇(t) = ε̇1(t) + ε̇2(t) (2.17)

The parameters ε̇1(t) and ε̇2(t) are the partial outputs of the two transfer functions,
unknown, from which the sum gives the real output(PTO shaft angular speed).
Considering the equations 2.15, 2.16, 2.17 and 2.12,it is possible to proceed to the
extended feasible parameter set(EFPS):

Dθ,ε̇1,ε̇2,∆η = {θ = [α11, α12, α21, α22, β10, β11, β12, β20, β21, β22] ∈ <10,

ε̇1 ∈ <N , ε̇2 ∈ <N ,∆η ∈ <1 :

ε̇1(t) + α11ε̇1(t− 1) + α12ε̇1(t− 2)− β10Tε(t)− β11Tε(t− 1)− β12Tε(t− 2) = 0

ε̇2(t) + α21ε̇2(t− 1) + α22ε̇2(t− 2)− β20Fry(t)− β21Fry(t− 1)− β22Fry(t− 2) = 0

y(t) = ε̇1(t) + ε̇2(t) + η(t) → η(t) = y(t)− ε̇1(t)− ε̇2(t) (2.18)

|η(t)| ≤ ∆η} (2.19)
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Substituting the equation 2.18 into equation 2.19 and evolving the inequality, it is
possible to obtain:

Dθ,ε̇1,ε̇2,∆η = {θ = [α11, α12, α21, α22, β10, β11, β12, β20, β21, β22] ∈ <10,

ε̇1 ∈ <N , ε̇2 ∈ <N ,∆η ∈ <1 :

ε̇1(t) + α11ε̇1(t− 1) + α12ε̇1(t− 2)− β10Tε(t)− β11Tε(t− 1)− β12Tε(t− 2) = 0
(2.20)

ε̇2(t) + α21ε̇2(t− 1) + α22ε̇2(t− 2)− β20Fry(t)− β21Fry(t− 1)− β22Fry(t− 2) = 0
(2.21)

y(t)− ε̇1(t)− ε̇2(t) ≤ ∆η → ∆η − y(t) + ε̇1(t) + ε̇2(t) ≥ 0, ∀t = 1, . . . , N
(2.22)

−y(t) + ε̇1(t) + ε̇2(t) ≤ ∆η → ∆η + y(t)− ε̇1(t)− ε̇2(t) ≥ 0, ∀t = 1, . . . , N}
(2.23)

The previous table shows the two equality constraints (2.20, 2.21) and the two in-
equality constraints 2.22,2.23, so it is possible now to proceed to the the SparsePOP
execution in order to solve the problem.
The objective function, in that case, is to minimize the error ∆η and to �nd the
respective parameter values.
The �rst step is to de�ne the objPoly:

objPoly.typeCone = 1, because it is an objective function
objPoly.degree= 1, degree of ∆η
objPoly.dimVar= 11+2N, 10 variables + ∆η + N variables ε̇1 + N

variables ε̇2

objPoly.noTerms = 1, the objective function is formed by only one
term

objPoly.supports= zeros(1,11+2N)
objPoly.supports(1,11)= 1
objPoly.coef= 1, the objective is to �nd only the minimum error pa-

rameter

The highest equation degree is 2, so the parameter tmin is 3. The number of samples
considered in the �nal simulation is 100, upon the total 3001 samples of each data.
The �rst equality constraint is analyzed as follow:

ε̇1(t) + α11ε̇1(t− 1) + α12ε̇1(t− 2)− β10Tε(t)− β11Tε(t− 1)− β12Tε(t− 2) = 0

ineqPolySys{t-tmin+1}.typeCone=-1;
ineqPolySys{t-tmin+1}.degree= 2;
ineqPolySys{t-tmin+1}.dimVar=11+2N;
ineqPolySys{t-tmin+1}.noTerms=6;
ineqPolySys{t-tmin+1}.supports=A;
A=zeros(6, 11+2N); A(1,11+t)=1; A(2,1)=1; A(2,11+t-1)=1; A(3,2)=1;

A(3,11+t-2)=1; A(4,3)=1; A(5,4)=1; A(6,5)=1;
ineqPolySys{t-tmin+1}.coef=[ones(1,3)− T (t)− T (t− 1)− T (t− 2)]′ ;

23



Set membership identi�cation

The second equality constraint is analyzed as follows:

ε̇2(t) + α21ε̇2(t− 1) + α22ε̇2(t− 2)− β20Fry(t)− β21Fry(t− 1)− β22Fry(t− 2) = 0

ineqPolySys{t-2tmin+N+2}.typeCone=-1;
ineqPolySys{t-2tmin+N+2}.degree= 2;
ineqPolySys{t-2tmin+N+2}.dimVar=11+2N;
ineqPolySys{t-2tmin+N+2}.noTerms=6;
ineqPolySys{t-2tmin+N+2}.supports=B;
B=zeros(6, 11+2N); B(1,11+N+t)=1; B(2,6)=1; B(2,11+N+t-1)=1; B(3,7)=1;

B(3,11+N+t-2)=1; B(4,8)=1; B(5,9)=1; B(6,10)=1;
ineqPolySys{t-tmin+1}.coef=[ones(1,3)− F (t)− F (t− 1)− F (t− 2)]′ ;

The �rst inequality constraint is analyzed as follows:

∆η − y(t) + ε̇1(t) + ε̇2(t) ≥ 0

ineqPolySys{t-3*tmin+2*N+3}.typeCone=1;
ineqPolySys{t-3*tmin+2*N+3}.degree= 1;
ineqPolySys{t-3*tmin+2*N+3}.dimVar=11+2N;
ineqPolySys{t-3*tmin+2*N+3}.noTerms=4;
ineqPolySys{t-3*tmin+2*N+3}.supports=C;
C=zeros(4, 11+2N); C(1,11+t)=1; C(2,11+N+t)=1; C(4,11)=1;
ineqPolySys{t-3*tmin+2*N+3}.coef=[11− y(t)1]′ ;

The second inequality constraint is analyzed as follows:

∆η + y(t)− ε̇1(t)− ε̇2(t) ≥ 0

ineqPolySys{t-4*tmin+3*N+4}.typeCone=1;
ineqPolySys{t-4*tmin+3*N+4}.degree= 1;
ineqPolySys{t-4*tmin+3*N+4}.dimVar=11+2N;
ineqPolySys{t-4*tmin+3*N+4}.noTerms=4;
ineqPolySys{t-4*tmin+3*N+4}.supports=D;
D=zeros(4, 11+2N); D(1,11+t)=1; D(2,11+N+t)=1; D(4,11)=1;
ineqPolySys{t-4*tmin+3*N+4}.coef=[−1− 1y(t)1]′ ;

The support matrix is the same of �rst inequality constraint.
The lower bound and upper bound are considered as following:

lbd = [−1e10ones(1,11 + 2N)];

ubd = [1e10ones(1,11 + 2N)];

Considering the highest degree as 2, the param.relaxOrder is 1. In order to �nd the
optimal solution, the param.POPsolver is set to "active-set".

24



2.2 � Set-membership in ISWEC model

In order to �nd the minimum error ∆η(objective function) and the associated
parameter values, the following code is used:

[∼ ,∼ , POP ]=sparsePOP(objPoly,ineqPolySys,lbd,ubd,param);
delta_eta = POP.xV ect(11);
for j=1:10
th(j)=POP.xVect(j);

end
delta_etaL = POP.xV ectL(11);
for j=1:10
thL(j)=POP.xVectL(j);

end

where "L" indicates the parameters found as optimal solution.
The plant and disturbance transfer functions, corresponding to the non-optimal
solution and optimal solution, are found considering the Z-domain transfer functions:

Gp_z =
th(3)z2 + th(4)z + th(5)

z2 + th(1)z + th(2)

Gd_z =
th(8)z2 + th(9)z + th(10)

z2 + th(6)z + th(7)

Gp_z_L =
thL(3)z2 + thL(4)z + thL(5)

z2 + thL(1)z + thL(2)

Gd_z_L =
thL(8)z2 + thL(9)z + thL(10)

z2 + thL(6)z + thL(7)

(2.24)

In order to work with the two transfer functions in the the next chapter, a continuous
transfer function has to be found. The Matlab command d2c is used to obtain the
corresponding transfer functions in the Laplace domain.
The SparsePOP solution is found for each wave dataset, obtaining four couple of
transfer functions.

2.2.2.2 Identi�cation results

In this part are shown the better solutions of the SparsePOP identi�cation. The �rst
identi�ed transfer functions are corresponding to the wave pro�le 3. It is possible
to compare the di�erent outputs obtained, with respect to the real output obtained
by the MPC model.
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Figure 2.9: Wave 3 tracking result.

Figure 2.10: Wave 3 optimal tracking result.

In the �gure2.9 a huge di�erence can be seen between the simulated output and
the optimal one, due to the irregularity that the �rst one shows. More accurate
is the optimal solution, that follows the reference in each point, as can be seen in
detail in the �gure 2.10.
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The identi�cation results for the 4th wave are shown in the following �gure:

Figure 2.11: Wave 4 tracking result.

Figure 2.12: Wave 4 optimal tracking result.

As can be seen in the �gures 2.11 and 2.12, the optimal solution is more e�cient
than the non-optimal. The same consideration can be done for each identi�cation
result.
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The tracking result for wave 7 are the following:

Figure 2.13: Wave 7 tracking result.

Figure 2.14: Wave 7 optimal tracking result.
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The last identi�cation result is for wave pro�le 9:

Figure 2.15: Wave 9 tracking result.

Figure 2.16: Wave 9 optimal tracking result.

The results used to �nd a controller through the H-inf approach are the optimal
ones, in order to better represent the plant and the disturbance transfer functions.
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The corresponding transfer functions,in the Laplace domain, are the following:

Gp3 =
−2.053 · 10−5s3 − 0.0007286s2 + 0.08548s− 0.148

s3 + 78.35s2 + 3027s+ 4.062 · 104
;

Gd3 =
8.286 · 10−8s3 + 1.162 · 10−6s2 + 1.447 · 10−5s+ 7.987 · 10−7

s3 + 23.08s2 + 1148s+ 3307
;

Gp4 =
−5.709 · 10−6s3 − 0.0003014s2 + 0.003925s− 0.1276

s3 + 75.32s2 + 2870s+ 3.707 · 104
;

Gd4 =
2.442 · 10−8s3 + 6.777 · 10−7s2 + 1.766 · 10−5s+ 4.786 · 10−5

s3 + 38.54s2 + 1481s+ 1.338 · 104
;

Gp7 =
−7.984 · 10−6s2 + 0.0007383s− 0.003009

s2 + 45.26s+ 875.3
;

Gd7 =
3.105 · 10−8s3 + 5.047 · 10−7s2 + 2.456 · 10−6s− 4.69 · 10−6

s3 + 26.16s2 + 1211s+ 7053
;

Gp9 =
−9.037 · 10−6s2 + 0.0001723s− 0.001413

s2 + 26.96s+ 413.4
;

Gd9 =
3.903 · 10−8s3 + 7.264 · 10−7s2 + 1.426 · 10−5s− 6.663 · 10−5

s3 + 30.22s2 + 1291s+ 1.184 · 104

(2.25)

2.2.3 High order model identi�cation

As in the previous section, the steps necessary in the identi�cation are the same,
but with an higher computational complexity due to the higher system degree.

2.2.3.1 Identi�cation

Considering nine states, the plant transfer function and the disturbance transfer
function are :

G1(q−1) =
ε̇1(t)

Tε(t)
=
β10 + β11q

−1 + β12q
−2 + β13q

−3 + . . .+ β19q
−9

1 + α11q−1 + α12q−2 + α13q−3 + . . .+ α19q−9
(2.26)

G2(q−1) =
ε̇2(t)

Fry(t)
=
β20 + β21q

−1 + β22q
−2 + β23q

−3 + . . .+ β29q
−9

1 + α21q−1 + α22q−2 + α23q−3 + . . .+ α29q−9
(2.27)

From the 2.26 and 2.27 it is possible to de�ne the equality constraints of the prob-
lem:

ε̇1(t)(1 + α11q
−1 + α12q

−2 + . . .+ α19q
−9) = Tε(t)(β10 + β11q

−1 + β12q
−2 + . . .+ β19q

−9)

ε̇1(t) + α11ε̇1(t− 1) + . . .+ α19ε̇1(t− 9) = β10Tε(t) + β11Tε(t− 1) + . . .+ β19Tε(t− 9)

ε̇1(t) + α11ε̇1(t− 1) + . . .+ α19ε̇1(t− 9)− β10Tε(t)− β11Tε(t− 1)− . . .− β19Tε(t− 9) = 0
(2.28)
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The equation 2.28 is the �rst system equation. Following the same procedure for
the disturbance transfer function, the result is:

ε̇2(t)(1 + α21q
−1 + α22q

−2 + . . .+ α29q
−9) = Fry(β20 + β21q

−1 + β22q
−2 + . . .+ β29q

−9)

ε̇2(t) + α21ε̇2(t− 1) + . . .+ α29ε̇2(t− 9) = β20Fry(t) + β21Fry(t− 1) + . . .+ β29Fry(t− 9)

ε̇2(t) + α21ε̇2(t− 1) + . . .+ α29ε̇2(t− 9)− β20Fry(t)− . . .− β29Fry(t− 9) = 0 (2.29)

The equation 2.29 is the second system equation.
Considering the equations 2.28, 2.29, 2.17 and 2.12,it is possible to proceed to the
extended feasible parameter set(EFPS):

Dθ,ε̇1,ε̇2,∆η = {θ = [α11, α12, . . . , α19, α21, α22, . . . , α29,

β10, β11, β12, . . . , β19, β20, β21, β22, . . . , β29] ∈ <38,

ε̇1 ∈ <N , ε̇2 ∈ <N ,∆η ∈ <1 :

ε̇1(t) + α11ε̇1(t− 1) + . . .+ α19ε̇1(t− 9)− β10Tε(t)− β11Tε(t− 1)− . . .− β19Tε(t− 9) = 0

ε̇2(t) + α21ε̇2(t− 1) + . . .+ α29ε̇2(t− 9)− β20Fry(t)− . . .− β29Fry(t− 9) = 0

y(t) = ε̇1(t) + ε̇2(t) + η(t) → η(t) = y(t)− ε̇1(t)− ε̇2(t) (2.30)

|η(t)| ≤ ∆η} (2.31)

Substituting the equation 2.30 into equation 2.31 and evolving the inequality, it is
possible to obtain:

Dθ,ε̇1,ε̇2,∆η = {θ = [α11, α12, . . . , α19, α21, α22, . . . , α29,

β10, β11, β12, . . . , β19, β20, β21, β22 . . . , β29] ∈ <38,

ε̇1 ∈ <N , ε̇2 ∈ <N ,∆η ∈ <1 :

ε̇1(t) + α11ε̇1(t− 1) + . . .+ α19ε̇1(t− 9)− β10Tε(t)− . . .− β19Tε(t− 9) = 0 (2.32)

ε̇2(t) + α21ε̇2(t− 1) + . . .+ α29ε̇2(t− 9)− β20Fry(t)− . . .− β29Fry(t− 9) = 0
(2.33)

y(t)− ε̇1(t)− ε̇2(t) ≤ ∆η → ∆η − y(t) + ε̇1(t) + ε̇2(t) ≥ 0, ∀t = 1, . . . , N
(2.34)

−y(t) + ε̇1(t) + ε̇2(t) ≤ ∆η → ∆η + y(t)− ε̇1(t)− ε̇2(t) ≥ 0, ∀t = 1, . . . , N}
(2.35)

The previous table shows the two equality constraints (2.32, 2.33) and the two in-
equality constraints 2.34,2.35, so it is possible now to proceed to the the SparsePOP
execution in order to solve the problem.
The objective function, in that case, is to minimize the error ∆η and to �nd the
respective parameter values.
The �rst step is to de�ne the objPoly:

objPoly.typeCone = 1;
poly.degree= 1;
objPoly.dimVar= 39+2N;
objPoly.noTerms = 1;
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objPoly.supports= zeros(1,39+2N)
objPoly.supports(1,39)= 1
objPoly.coef= 1;

The highest equation degree is 2, so the parameter tmin is 10. As for lower identi�-
cation in previous section, the number of samples considered in the �nal simulation
is 100, upon the total 3001 samples of each data. The �rst equality constraint is
analyzed as follows:

ε̇1(t) + α11ε̇1(t− 1) + . . .+ α19ε̇1(t− 9)− β10Tε(t)− β11Tε(t− 1)− . . .− β19Tε(t− 9) = 0

ineqPolySys{t-tmin+1}.typeCone=-1;
ineqPolySys{t-tmin+1}.degree= 2;
ineqPolySys{t-tmin+1}.dimVar=39+2N;
ineqPolySys{t-tmin+1}.noTerms=20;
ineqPolySys{t-tmin+1}.supports=A;
A=zeros(20, 39+2N); A(1,39+t)=1; A(2,1)=1; A(2,39+t-1)=1; A(3,2)=1;

A(3,39+t-2)=1; A(4,3)=1; A(4,39+t-3)=1; A(5,4)=1; A(5,39+t-4)=1;
A(6,5)=1; A(6,39+t-5)=1;

A(7,6)=1; A(7,39+t-6)=1; A(8,7)=1; A(8,39+t-7)=1; A(9,8)=1; A(9,39+t-
8)=1; A(10,9)=1; A(10,39+t-9)=1;A(11,10)=1; A(12,11)=1; A(13,12)=1;

A(14,13)=1; A(15,14)=1; A(16,15)=1; A(17,16)=1; A(18,17)=1; A(19,18)=1;
A(20,19)=1;

ineqPolySys{t-tmin+1}.coef=[ones(1,10)− T (t) . . .− T (t− 9)]′ ;

The second equality constraint is analyzed as follows:

ε̇2(t) +α21ε̇2(t−1) + . . .+α29ε̇2(t−9)−β20Fry(t)−β21Fry(t−1)− . . .−β29Fry(t−9) = 0

ineqPolySys{t-2tmin+N+2}.typeCone=-1;
ineqPolySys{t-2tmin+N+2}.degree= 2;
ineqPolySys{t-2tmin+N+2}.dimVar=39+2N;
ineqPolySys{t-2tmin+N+2}.noTerms=20;
ineqPolySys{t-2tmin+N+2}.supports=B;
B=zeros(20, 39+2*N); B(1,39+N+t)=1; B(2,20)=1; B(2,39+N+t-1)=1;

B(3,21)=1; B(3,39+N+t-2)=1; B(4,22)=1; B(4,39+N+t-3)=1; B(5,23)=1;
B(5,39+N+t-4)=1;

B(6,24)=1; B(6,39+N+t-5)=1; B(7,25)=1; B(7,39+N+t-6)=1; B(8,26)=1;
B(8,39+N+t-7)=1; B(9,27)=1; B(9,39+N+t-8)=1;

B(10,28)=1; B(10,39+N+t-9)=1; B(11,29)=1; B(12,30)=1; B(13,31)=1;
B(14,32)=1; B(15,33)=1; B(16,34)=1; B(17,35)=1; B(18,36)=1; B(19,37)=1;
B(20,38)=1;

ineqPolySys{t-2tmin+N+2}.coef=[ones(1,10)− F (t)− . . .− F (t− 9)]′ ;

The �rst inequality constraint is analyzed as follows:

∆η − y(t) + ε̇1(t) + ε̇2(t) ≥ 0
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ineqPolySys{t-3*tmin+2*N+3}.typeCone=1;
ineqPolySys{t-3*tmin+2*N+3}.degree= 1;
ineqPolySys{t-3*tmin+2*N+3}.dimVar=39+2N;
ineqPolySys{t-3*tmin+2*N+3}.noTerms=4;
ineqPolySys{t-3*tmin+2*N+3}.supports=C;
C=zeros(4, 39+2N); C(1,39+t)=1; C(2,39+N+t)=1; C(4,39)=1;
ineqPolySys{t-3*tmin+2*N+3}.coef=[1 1 − y(t) 1]′ ;

The second inequality constraint is analyzed as follow:

∆η + y(t)− ε̇1(t)− ε̇2(t) ≥ 0

ineqPolySys{t-4*tmin+3*N+4}.typeCone=1;
ineqPolySys{t-4*tmin+3*N+4}.degree= 1;
ineqPolySys{t-4*tmin+3*N+4}.dimVar=39+2N;
ineqPolySys{t-4*tmin+3*N+4}.noTerms=4;
ineqPolySys{t-4*tmin+3*N+4}.supports=D;
D=zeros(4, 39+2N); D(1,39+t)=1; D(2,39+N+t)=1; D(4,39)=1;
ineqPolySys{t-4*tmin+3*N+4}.coef=[−1 − 1 y(t) 1]′ ;

The support matrix is the same of �rst inequality constraint.
The lower bound and upper bound are considered as following:

lbd = [−1e10ones(1,39 + 2N)];

ubd = [1e10ones(1,39 + 2N)];

Also here the param.relaxOrder is 1 and the param.POPsolver is set to "active-
set". In order to �nd the minimum error ∆η(objective function) and the associated
parameter values,the following code is used:

[∼ ,∼ , POP ]=sparsePOP(objPoly,ineqPolySys,lbd,ubd,param);
delta_eta = POP.xV ect(39);
for j=1:38
th(j)=POP.xVect(j);

end
delta_etaL = POP.xV ectL(39);
for j=1:38
thL(j)=POP.xVectL(j);

end

where "L" indicates the parameters found as optimal solution. The plant and dis-
turbance transfer functions, corresponding to the non-optimal solution and optimal
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solution, are found considering the Z-domain transfer functions:

Gp_z =
th(10)z9 + th(11)z8 + th(12)z7 + . . .+ th(18)z + th(19)

z9 + th(1)z8 + th(2)z7 + . . .+ th(8)z + th(9)

Gd_z =
th(29)z9 + th(30)z8 + . . .+ th(37)z + th(38)

z9 + th(20)z8 + th(21)z7 + . . .+ th(27)z + th(28)

Gp_z_L =
thL(10)z9 + thL(11)z8 + thL(12)z7 + . . .+ thL(18)z + thL(19)

z9 + thL(1)z8 + thL(2)z7 + . . .+ thL(8)z + thL(9)

Gd_z_L =
thL(29)z9 + thL(30)z8 + thL(31)z7 + . . .+ thL(37)z + thL(38)

z9 + thL(20)z8 + thL(21)z7 + . . .+ thL(27)z + thL(28)

(2.36)

2.2.3.2 Identi�cation results

As the two degree identi�cation, the better results are found using the "active-set",
obtaining the optimal solution and the reference tracking result are very similar to
the two degree ones.
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Chapter 3

Robust Control

In this chapter are introduced the main theory knowledge of Robust Control and
the two cases analyzed (second degree and nineth degree). After that, the next step
is to simulate the non linear model (MPC Simulink scheme) with the two Robust
controllers, sobistuting the MPC proper one. The interested readers can �nd details
about Robust control in the following books [11] and [12].

3.1 Basic notions

Robustness of a control system is the capability of a feedback system to keep its
properties with respect to disturbances and uncertainties. The considering feedback
system in this approach, with the respective disturbance, is the following:

Figure 3.1: Feedback system.

with

� r: reference;

� e: error;
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� da: disturbance on actuator;

� dp: disturbance on plant;

� ds: disturbance on sensor;

The loop function L(s) is given by:

L(s) = Gc ·Ga ·Gp ·Gs ·Gf

In order to introduce some constraints with respect to the disturbances, the sensi-
tivity function S(s) and complementary sensitivity function T(s) are considered:

S(s) =
1

1 + L(s)
; T (s) =

L(s)

1 + L(s)
;

It is possible to �nd some correlations between these three functions.
The typical behavior of the three functions can be represented in the following Bode
diagram:

Figure 3.2: Bode diagram.

Assuming that the cutting frequency of the loop function on 0 dB axis is wc, it
is possible to subdivide the frequency behavior in 2 main classes:

� w << wc: |S(jw)| = | 1
1+L(jw)

| ≈ 1
|L(jw)| ;

� w >> wc: |T (jw)| = | L(jw)
1+L(jw)

| ≈ |L(jw)|;

In the performance study, it is possible to use the sensitivity function and the com-
plementary sensitivity function in order to avoid a the disturbance noise in L(s).
Let's consider the case of a disturbance on the sensor as a sinusoidal disturbance.

ds = assin(wst+ ϕs)
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The output error at steady-state, as request, has to be bounded by a constant.

|e∞ds | = |y
∞
ds | ≤ ρs ρs > 0

Considering the feedback system of �gure 3.1 , from the error equation it is possible
to approximate a mask on loop function:

|e∞ds | = |y
∞
ds | = |as|T (jws)|

1

Gs

sin(wst+ ϕs)| ≤ as|T (jws)|
1

Gs

≤ ρs →

→ |T (jws)| ≤
ρsGs

as
∀ws ≥ w−s (3.1)

Considering that at the high frequencies the loop function and complementary sen-
sitivity function are similar, it is possible to obtain the following constraint:

|e∞ds | ≤ ρs → L(jws) ≤
ρsGs

as
= MHF

T (3.2)

A similar procedure con be found at low frequencies, for disturbance on plant, on
the sensitivity function.
Taking in analysis a sinusoidal disturbance

dp = apsin(wpt+ ϕp)

bounded by a chosen constant

|e∞dp| = |y
∞
ds | ≤ ρp ρp > 0

As the previous case, considering that at very low frequencies the loop function
frequency behavior can be approximated as the inverse of sensitivity function one,
from the error equation is possible to obtain a low frequency mask:

|e∞dp | = |y
∞
dp | = |ap|S(jwp)|sin(wpt+ ϕp)| ≤ ap|S(jwp)| ≤ ρp →

→ |S(jwp)| ≤
ρp
ap

= MLF
S ∀wp ≤ w+

p →

→ L(jwp) ≥
ap
ρp

=
1

MLF
S

(3.3)

The two equations 3.2 and 3.3 allow to take care of the diturbance contribution in
the performance analysis phase.
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In the following �gure is shown an example of this analysis:

Figure 3.3: Disturbance constraints.

In order to have some masks on S(jw) and T (jw) which cover them from fre-
quency domain constraints, WS(jw) and WT (jw) are considered. The constraints
can be written in the following form:

|T (jw)| ≤ |W−1
T (jw)| |S(jw)| ≤ |W−1

S (jw)| ∀w (3.4)

Translating those requirements in H∞ norm, it is obtained:

||WT (s)T (s)||∞ ≤ 1 , ||WS(s)S(s)||∞ ≤ 1

In order to construct the two masks WT and WS, the di�erent constraints are ob-
tained by the steady state requirements. From the equation 3.4, for a matter of
simplicity the two masks are projected in the inverse way.
Taking in analysis a two degree form, the mask mathematical models are the fol-
lowing:

W−1
T =

Tpo
(1 + s

p
)2

; W−1
S =

as(1 + s
w1

)

1 + 1.414 s
w2

+ ( s
w2

)2
(3.5)

� Tpo ans Spo are the peaks, obtained by the choice of damping factor ζ:

Tp ≤
1

2ζ
√

1− ζ2
= Tpo ; Sp ≤

2ζ
√

2 + 4ζ2 + 2
√

1 + 8ζ2√
1 + 8ζ2 + 4ζ2 − 1

= Spo (3.6)

� MHF
T and MLF

S as described in equations 3.2 and 3.3;
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3.1 � Basic notions

� ν + p =number of zeros in origin of S(jw), where ν is the number of zeros in
origin of the controller and p is the number of zeros in the origin of the plant;

� low frequency constraint for S:

lim
s→0

1

sν+p
W−1
S = a; (3.7)

� high frequency constraint for S:

lim
s→∞

W−1
S = Spo =

a
w1

1
w2

2

→ w2 =

√
Spow1

a
(3.8)

3.1.1 Model uncertainty

The model uncertainty characterizes the mathematical models, caused by physical
approximated parameters know partially (parametric uncertainty) or by unmodeled
dynamic (dynamic uncertainty). Concerning this, the model set is the set of system
from which the chosen plant is taken.
It is possible to classify the model set in two main uncertainty model set:

� structured model set : set parametrized by a �nite number of parameters;

� unstructured model set : the phase behavior and the order of the system are
unknown;

Taking into consideration the unstructured uncertainty model set and considering
the following notations

� Gp(s): transfer function of the generic member of the uncertainty model set;

� Gpn(s): transfer function of nominal model ;

� ∆(s): any transfer function with an H∞norm less than 1;

� Wu: weighting function that takes into account the uncertainty;

can be highlighted four approaches:

1. Additive uncertainty :Ma = {Gp(s) : Gp(s) = Gpn(s) +Wu(s)∆(s), ‖∆(s)‖∞ ≤ 1}

2. Multiplicative uncertainty : Mm = {Gp(s) : Gp(s) = Gpn(s) [1 +Wu(s)∆(s)] , ‖∆(s)‖∞ ≤ 1}

3. Inverse additive uncertainty : Mia =
{
Gp(s) : Gp(s) = Gpn(s)

1+Wu(s)∆(s)Gpn(s)
, ‖∆(s)‖∞ ≤ 1

}
4. Inverse multiplicative uncertainty : Mim =

{
Gp(s) : Gp(s) = Gpn(s)

1+Wu(s)∆(s)
, ‖∆(s)‖∞ ≤ 1

}
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In the thesis work the used approaches are the additive uncertainty and the multi-
plicative uncertainty. The previous equations give some kind of constraints, based
on the weighted function Wu.
Considering the additive uncertainty case, the model set is:

Ma = {Gp(s) : Gp(s) = Gpn(s) +Wu(s)∆(s), ‖∆(s)‖∞ ≤ 1} →

→
∥∥∥∥Gp(s)−Gpn(s)

Wu(s)

∥∥∥∥
∞

= ‖∆(s)‖∞ ≤ 1→ |Gp(jw)−Gpn(jw)| ≤ |Wu(jw)| ∀w

(3.9)

In a similar way, examining the multiplicative uncertainty model set:

Mm = {Gp(s) : Gp(s) = Gpn(s) [1 +Wu(s)∆(s)] , ‖∆(s)‖∞ ≤ 1} →

→
∥∥∥∥( Gp(s)

Gpn(s)
− 1

)
1

Wu(s)

∥∥∥∥
∞

= ||∆(s)||∞ ≤ 1→
∣∣∣∣ Gp(jw)

Gpn(jw)
− 1

∣∣∣∣ ≤ |Wu(jw)| ∀w

(3.10)

The equations 3.9 and 3.10 can be interpreted as the presence of a mask that covers
the general relation between the set of plant and the nominal one. For example,
considering the multiplicative set case, the Bode result is the following:

Figure 3.4: Multiplicative uncertainty model.

From now on, due to the thesis purpose, the attention is focused to the multi-
plicative uncertainty model.
The eq.3.10 gives a not exactly description of parametric uncertainties, but a con-
servative one. In purticular, being the complex function ∆(s) a real number, the
uncertainty is represented as a disk of radius |Wu(jw)Ln(jw)| at each frequency w,
as shown in �gure 3.5:
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3.1 � Basic notions

Figure 3.5: Conservative uncertainty model.

The condition of Robust Stability is achieved if:

||WuTn||∞ < 1 (3.11)

only if the following assumptions are satis�ed:

� Gp belongs to the multiplicative uncertainty model set Mm;

� considering Gpn as nominal model of the plant, the feedback system is stable;

The condition of Nominal Performance for sensitivity function and complementary
sensitivity function is achieved if:

||WSSn||∞ < 1 , ||WTTn||∞ < 1 (3.12)

The Robust Performance condition for a feedback system is:

‖|WSSn|+ |WTTn|‖∞ < 1 (3.13)

3.1.2 Robust control through H∞

The H∞ norm of a SISO LTI system H(s) is de�ned as:

‖H(s)‖∞ = max
ω
|H(jω)| (3.14)
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The H∞control (H∞ norm minimization approach),considers as feedback system
the following diagram:

Figure 3.6: Generalized plant model.

� M : generalized plant;

� Gc: controller;

� w : external inputs;

� u: control inputs;

� z : external outputs;

� v : controller inputs;

Considering Gstab
c as the set of controllers that guarantees internal stability to nom-

inal feedback system, and Twz as the closed loop transfer function between w and
z, the controller is obtained optimizing the following equation:

Gc(s) = arg min
Gc∈Gstab

c

‖Twz‖∞ (3.15)

In order to �nd a controller that guarantees both conditions of Nominal Performance
and Robust Stability, the H∞ norm conditions to be satis�ed are:

‖WSSn‖∞ < 1 , ‖WTTn‖∞ < 1 , ‖WuTn‖∞ < 1

The function Twz has to take into account the previous conditions, so it is considered
as:

Twz(s) =

[
W1Sn
W2Tn

]
(3.16)
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with

W1(s) = WS(s) , |W2(jw)| = max(|Wu(jw)|, |WT (jw)|)

Considering the equation 3.16 , the generalized plant model is:

Figure 3.7: Total generalized plant model.

In order to solve the eq. 3.16 , the LMI optimization approach (linear matrix
inequalities) is used. In order to have a generalized plant M that can be internally
stabilized, the weighted functions W1 and W2 must be stable transfer functions.
Due to the previous conditions, the transfer functionsW1 andW2 have to be modi�ed
before to introduce them in the generalized plant.As far as it concerns the transfer
functionW1 = WS, the pole in the origin is a source of instability, so it is substituted
by a very lower pole:

Wmod
1 (s) = W1

sv+p

(s+ λ∗)v+p (3.17)

where

λ∗ ≤ 0.01wc

After obtaining the controller, the pole in s = −λ∗ will be substituted by a pole
in the origin. Concerning the transfer function W2, it is not possible to introduce
in Simulink an improper fraction, so the two zeros are introduced with the Matlab
command "sderiv" and the Wmod

2 becomes:

Wmod
2 =

1

Tpo
(3.18)
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3.2 Robust Control in ISWEC model

3.2.1 Low order model H∞ approach

In order to compute the controller, the plant and the disturbance transfer function
of second degree found in the SM chapter are considered. The feedback system
considered in this step is the following:

Figure 3.8: H∞feedback system.

The �rst step is to start from steady state requirements. In this phase, the
di�erent bounds are imposed in a preliminary way.
It is possible to interpret the scheme of �gure 3.8 with the following block schemes:

Figure 3.9: H∞Feedback block schemes.

� Kd:desired steady state gain;

� yd::desired output;

� Gry:closed loop function;

� yr:real output;
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3.2 � Robust Control in ISWEC model

� er:error;

It is assumed that Gs = Gr = Ga = 1.
The desired steady-state gain of the feedback control system Kd is 1, so assuming
that ν + p ≥ 1:

H = GsGf =
1

Kd

→ Gf =
1

GsKd

= 1; (3.19)

The steady-state output error requirement is:

|e∞r | < 0.03; (3.20)

The reference r(t) and the plant disturbance dp(t) are approximated to sinusoidal
waves. The steady-state tracking error expression is:

e∞r (t) = ρR0sin(w0t+ ϕ) (3.21)

where ρ is the max error value, R0 is the max reference value.
The value of ρ is:

ρ = | 1

1 + L(jw0)
| = |S(jw0)| (3.22)

From equation 3.22 it is possible to understand that the bigger is w0, the bigger is
the error ρ. The desired transient time requirements are:

� Overshoot ŝ < 0.1;

� Settling time ts,5% < 25s;

� Rise time tr < 3s;

From these desired parameters it is possible to �nd some constraints for the project
design:

� Damping factor ζ ≥ | ln(ŝ)|√
π2+ln2(ŝ)

= 0.59;

� Complementary sensitivity function peak Tp = 1

2ζ
√

1−ζ2
= 1.05 = Tpo;

� Sensitivity function peak Sp =
2ζ

√
2+4ζ2+2

√
1+8ζ2√

1+8ζ2+4ζ2−1
= 1.3 = Spo;

� cutting frequency ωc ≥ 1
tr

1√
1−ζ2

(π − arccos(ζ)) ·
√√

1 + 4ζ4 − 2ζ2 = 0.23 rad
s
;

ωc ≥ ln(0.05)
ζ

√√
1 + 4ζ4 − 2ζ2 1

ts,5%
= 0.18 rad

s
;

The successive step is the de�nition of WT (s) and WS(s).
The sensitivity function is designed as:

W−1
S (s) =

as(1 + s
w1

)

1 + 1.414w2 + ( s
w2

2)
=

0.1s(1 + s
3
)

1 + 5.19 + ( s
3.67

2)
(3.23)
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where w2 =
√

w1Spo

a
.

The complementary sensitivity function is the following:

W−1
T (s) =

Tpo
1 + s

p

=
1.05

1 + s
500

(3.24)

The following step is to de�ne the uncertainty weighted function Wu.
The four plants of second order are considered. Considering multiplicative uncer-
tainty, the following Matlab code is used in order to �nd the desired weighted func-
tion:

Gp=[G1p;G2p;G3p;G4p];
for i=1:4

omega=logspace(-2,2,1000);
delta_m=Gp(i)/Gp(2) -1;
[m, f ]=bode(delta_m,omega);
mag=squeeze(m);
loglog(omega,mag),grid on,
hold on

end
mf=ginput(20);
magg=vpck(mf(:,2),mf(:,1));
Wu=�tmag(magg);
[A,B,C,D]=unpck(Wu);
[Z, P,K]=ss2zp(A,B,C,D);
Wu=minreal(zpk(Z,P,K),1e-3)

The �nal Wu considering as nominal plant the second plant(fourth wave pro�le) is:

Wu =
3.0854(s+ 0.2099)(s+ 64.64)

s2 + 15.08s+ 327.1
(3.25)

In order to proceed to the H∞ solution, the Twz must be de�ned.

Twz(s) =

[
W1Sn
W2Tn

]
W1(s) = WS(s) , |W2(jw)| = max(|Wu(jw)|, |WT (jw)|)
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To �nd W2, the two Bode diagrams of WT and Wu are analyzed:

Figure 3.10: Bode diagram of WT and Wu.

The two functions have a superposition, so as W2 is considered the mask WT ,
because the function Wu is major only for a little interval.
Substituting theW1 pole in origin with a pole in 0.01wc and doing some gain modi�-
cations also onW2, the obtained controller through lmi optimization is the following:

Gc =
−2.2439 · 106(s+ 21.75)(s+ 1.337)(s+ 0.1)(s+ 8.873 · 104)(s+ 1.187 · 105)(s2 + 53.57s+ 1704)

s(s+ 6.471 · 104)(s+ 3039)(s+ 173.3)(s+ 0.1066)(s+ 0.09258)(s2 + 75.26s+ 1.026 · 104)
(3.26)

The �rst analysis to do is the tracking of the reference, and the correct production
of power.

47



Robust Control

The tracking of reference is the following:

Figure 3.11: Tracking of the reference with low order controller.

The simulation output follows in a good way the reference, with an error margin
of about 0.02.

Figure 3.12: Tracking error of the reference with low order controller.
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The comparison between the MPC torque and the Robust one is the following:

Figure 3.13: Torque with low order controller.

The comparison between the MPC power and the Robust one is the following:

Figure 3.14: Power with low order controller.

The results show that the H∞ method with the two degree controller provide
good performance in terms of tracking and produced power.
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The analyses of the Robust stability, nominal performance and Robust perfor-
mance give, on the other hand, not perfect results:

Figure 3.15: Robust stability condition with low order controller.

Figure 3.16: Nominal performance condition with low order controller.
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Figure 3.17: Robust performance condition with low order controller.

Despite the not satis�ed conditions of Robust stability and Robust performance
considering unstructured uncertainty, the perfect tracking of the angular velocity ε̇
of all the four pro�les suggests that the model respects the desired conditions, also
in produced power terms, so the found model can be considered robustly stable and
respects robust performance conditions.

3.2.2 High order model H∞ approach

As the previous approach, the plant and the disturbance transfer function of nine
degree found in the SM chapter are taken in analysis. Also for nine degree design,
the same time requirements are considered. Considering multiplicative uncertainty

Time requirements Performance constraints
Kd = 1 Gf = 1
|e∞r | < 0.03 ρ = | 1

1+L(jw0)
| = |S(jw0)|

ŝ < 0.1 ζ ≥ 0.59, Tpo = 1.05, Spo = 1.3
ts,5% < 25s ωc ≥ 0.18 rad

s

tr < 3s ωc ≥ 0.23 rad
s

Table 3.1: Time requirements

and the second plant(4th wave pro�le) as nominal one, the uncertainty weighted
funtion Wu is:

Wu(s) =
1.1519(s+ 0.1961)(s2 + 35.04s+ 472.2)(s2 + 5.665s+ 1057)

(s+ 0.1216)(s2 + 20.59s+ 513.4)(s2 + 3.184s+ 948.7)
(3.27)
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The considered sensitivity function and complementary sensitivity function are the
same of two degree design:

W−1
S (s) =

0.1s(1 + s
3
)

1 + 5.19s+ ( s
3.67

)2
; W−1

T (s) =
1.05

1 + ( s
500

)2
(3.28)

In order to proceed to the H∞ solution, the Twz must be de�ned.

Twz(s) =

[
W1Sn
W2Tn

]
W1(s) = WS(s) , |W2(jw)| = max(|Wu(jw)|, |WT (jw)|)

To �nd W2, the two Bode diagrams of WT and Wu are analyzed:

Figure 3.18: Bode diagram of WT and Wu.

As the second degree case, the two functions have a superposition, so it is chosen
W2 = WT . Substituting the W1 pole in origin with a pole in 0.01wc and doing some
gain modi�cations also on W2, the controller is obtained through lmi optimization.
The �rst analysis to do is the tracking of the reference, and the correct production
of power.
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The tracking of reference is the following:

Figure 3.19: Tracking of the reference with high order controller(case 1).

The simulation output doesn't follow the reference in a proper way, having an
important oscillation of the reference. The comparison between the MPC torque
and the Robust one is the following:

Figure 3.20: Torque with high order controller(case 1).
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The comparison between the MPC power and the Robust one is the following:

Figure 3.21: Power with high order controller(case 1).

The results show that the H∞ method with the nine degree controller, using the
same WS and WT of the two degree case, doesn't provide good results in terms of
tracking reference, but especially in terms of produced torque and power.
Trying to change the nominal plant, the sensitivity function, the complementary
sensitivity function and the uncertainty weighted function, the results are di�erent.
Consider as nominal plant the �rst one(third wave pro�le).
The respective weighted function Wu is the following:

Wu(s) =
8.5392(s+ 85.24)(s2 + 0.7871s+ 0.2172)(s2 + 4.716s+ 64.8)

(s+ 93.92)(s2 + 1.214s+ 0.7142)(s2 + 3.057s+ 25.85)
(3.29)

Let's consider the following masks:

W−1
S (s) =

0.1s(1 + s
0.2

)

1 + 3.8484s+ ( s
0.3674

)2
; W−1

T (s) =
1.05

1 + ( s
70

)2
(3.30)

W1 = WS; W2 = WT ;

Substituting in W1 the pole in origin with another in 0.01wc, the lmi optimization
can be done.
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3.2 � Robust Control in ISWEC model

The tracking result, the power and the torque production, with the new controller,
are the following:

Figure 3.22: Tracking of the reference with high order controller(case 2).

Figure 3.23: Torque with high order controller(case 2).

55



Robust Control

Figure 3.24: Power with high order controller (case 2).

As can be seen in the previous �gures, the results in this case are few better than
the case 1, but on the other hand cannot be considered satisfactory.
It is possible to conclude that despite the Set-Membership Identi�cation has pro-
duced optimal results for both two degree and nine degree cases, the H∞ approach
can provide good results only in low case analyzed. The low order controller reaches
an important result in terms of tracking reference and produced power, which are
the most important objectives of the thesis work. It is possible now to improve the
better controller in the non linear model (MPC Simulink scheme).
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Chapter 4

Non linear validation

The second degree controller found in the previous chapter satis�es the tracking
reference and the power production objectives. The next step is to validate it in
the non linear model: the Simulink model developed with the Model Predictive
Control approach is taken in analysis. The �nal target is to have a controller that,
substituted to the controller of the non linear model, gives the same results in terms
of angular velocity ε̇, of torque (output of controller) T and of power P .
The �nal Simulink scheme is the following:

Figure 4.1: Non linear Simulink model.

The controller input is the error given from the output of the system subtracted
to the angular velocity that is produced, in normal operating conditions, by the
MPC Simulink scheme.
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Loading the model parameters with the proper Matlab script, the lower order
controller and running the model, the results of ε̇ and torque T are shown in �gures
4.2 and 4.3:

Figure 4.2: Non linear simulation output.

Figure 4.3: Non linear simulation torque.

The previous �gures show that the output doesn't follow the expected behaviour,
but it is divergent, as the torque. It is possible to deduce that despite the Set-
Membership produced a good plant with an apparent same behaviour to the non
linear model and the H∞ produced good results in terms of reference tracking, the
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total result cannot be applied in the non linear model. A cause can be an instability
of the system with the wrong controller, due to a wrong plant found in SM.
In order to solve the problem, a new Set-Membership identi�cation is considered:
assuming that the real plant of MPC has a pole in origin, is taken as new dataset
the torque multiplied by an integrator 1

s
, the angular velocity ε̇ and the input wave

force Fry.

Figure 4.4: Original model.

Figure 4.5: New concept model.

The scheme taken in analysis is the 4.5, where the torque considered is T̃ε.
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Considering as error structure the output error as in �gure 2.8, the new plant
transfer function and the new disturbance transfer function, of second degree are:

G̃p(q
−1) =

ε̇1(t)

T̃ε(t)
=
β10 + β11q

−1 + β12q
−2

1 + α11q−1 + α12q−2
(4.1)

Gd(q
−1) =

ε̇2(t)

Fry(t)
=
β20 + β21q

−1 + β22q
−2

1 + α21q−1 + α22q−2
(4.2)

From the 4.1 and 4.2 it is possible to de�ne the equality constraints of the problem:

ε̇1(t)(1 + α11q
−1 + α12q

−2) = T̃ε(t)(β10 + β11q
−1 + β12q

−2)

ε̇1(t) + α11ε̇1(t− 1) + α12ε̇1(t− 2) = β10T̃ε(t) + β11T̃ε(t− 1) + β12T̃ε(t− 2)

ε̇1(t) + α11ε̇1(t− 1) + α12ε̇1(t− 2)− β10T̃ε(t)− β11T̃ε(t− 1)− β12T̃ε(t− 2) = 0
(4.3)

ε̇2(t)(1 + α21q
−1 + α22q

−2) = Fry(β20 + β21q
−1 + β22q

−2)

ε̇2(t) + α21ε̇2(t− 1) + α22ε̇2(t− 2) = β20Fry(t) + β21Fry(t− 1) + β22Fry(t− 2)

ε̇2(t) + α21ε̇2(t− 1) + α22ε̇2(t− 2)− β20Fry(t)− β21Fry(t− 1)− β22Fry(t− 2) = 0
(4.4)

The relation that links 4.3 and 4.4 to the real output(angular speed) is the following:

ε̇(t) = ε̇1(t) + ε̇2(t) (4.5)

The parameters ε̇1(t) and ε̇2(t) are the partial outputs of the two transfer functions,
unknown, from which the sum gives the real output(PTO shaft angular speed).
Considering the equations 4.3, 4.4, 4.5 and 2.12,it is possible to proceed to the
extended feasible parameter set(EFPS):

Dθ,ε̇1,ε̇2,∆η = {θ = [α11, α12, α21, α22, β10, β11, β12, β20, β21, β22] ∈ <10,

ε̇1 ∈ <N , ε̇2 ∈ <N ,∆η ∈ <1 :

ε̇1(t) + α11ε̇1(t− 1) + α12ε̇1(t− 2)− β10T̃ε(t)− β11T̃ε(t− 1)− β12T̃ε(t− 2) = 0

ε̇2(t) + α21ε̇2(t− 1) + α22ε̇2(t− 2)− β20Fry(t)− β21Fry(t− 1)− β22Fry(t− 2) = 0

y(t) = ε̇1(t) + ε̇2(t) + η(t) → η(t) = y(t)− ε̇1(t)− ε̇2(t) (4.6)

|η(t)| ≤ ∆η} (4.7)

Substituting the equation 4.6 into equation 4.7 and evolving the inequality, the
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successive equations are obtained:

Dθ,ε̇1,ε̇2,∆η = {θ = [α11, α12, α21, α22, β10, β11, β12, β20, β21, β22] ∈ <10,

ε̇1 ∈ <N , ε̇2 ∈ <N ,∆η ∈ <1 :

ε̇1(t) + α11ε̇1(t− 1) + α12ε̇1(t− 2)− β10T̃ε(t)− β11T̃ε(t− 1)− β12T̃ε(t− 2) = 0
(4.8)

ε̇2(t) + α21ε̇2(t− 1) + α22ε̇2(t− 2)− β20Fry(t)− β21Fry(t− 1)− β22Fry(t− 2) = 0
(4.9)

y(t)− ε̇1(t)− ε̇2(t) ≤ ∆η → ∆η − y(t) + ε̇1(t) + ε̇2(t) ≥ 0, ∀t = 1, . . . , N
(4.10)

−y(t) + ε̇1(t) + ε̇2(t) ≤ ∆η → ∆η + y(t)− ε̇1(t)− ε̇2(t) ≥ 0, ∀t = 1, . . . , N}
(4.11)

The previous table shows the two equality constraints (4.8, 4.9) and the two in-
equality constraints 4.10,4.11, so it is possible now to proceed to the the SparsePOP
execution in order to solve the problem.
In this new optimization, the SparsePOP code used is the same of the low order
design in chapter 2, however the obejctive function is not the error η as the previous
cases, but the quadratic norm of the error.
The solutions are:

G̃p =
4.368 · 10−7s2 + 1.73 · 10−6s+ 4.186 · 10−6

s2 + 0.9715s+ 2.902

Gd =
7.05 · 10−9s2 − 1.301 · 10−7s− 6.001 · 10−8

s2 + 0.1354s+ 1.445
(4.12)

Proceding �nding a controller through the H-inf design with lmi optimization, the
controller obtained is the following:

Gc =
5.2637 · 1010(s+ 0.418)(s2 + 0.9715s+ 2.902)

(s+ 9.347 · 104)(s+ 0.01005)(s2 + 1.543s+ 2.955)
(4.13)
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Loading the controller in the non linear Simulink scheme (4.1), the obtained
results in terms of reference tracking and produced power are the following:

Figure 4.6: Tracking for wave3.

Figure 4.7: Produced power for wave3.

As can be seen in the picture 4.6, the simulation output follows in a good way
the reference provided by the MPC model, with a bigger gain. The new aspect is
that the produced power, as can be seen in �gure 4.7, is bigger than the MPC one.
Furthermore the same result is obtained for all the 4 wave pro�les, obtaining a good
tracking and a bigger produced power. This result suggests also a robust stability
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and a robust performance of the system, due to the fact that for all the waves the
results are optimal.
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Chapter 5

Conclusions

The thesis work is improved in order to �nd a good model of the Iswec system and a
control strategy that can reply the MPC performance in terms of produced power.
The Set-Membership approach is used to identify a good plant, using as dataset the
output obtained by MPC optimal condition. A second degree identi�cation and a
nine degree one have shown optimal results, in terms of reproducing behaviour, in
particular the considering angular velocity ε̇ as single output. This highlights that
the Set-membership theory is an optimal instrument to identify the plant in this
work case and despite the higher complexity in nine degree case, the two degree
identi�cation showed the same optimal behaviour with a lower calculation e�ort.
The chosen control strategy for this purpose is been the Robust Control through H∞
approach, using lmi optimization. The objective followed is to reproduce the MPC
generated power, using the Robust Control theory, that requires a signi�cantly less
computational e�ort. So the problem is oriented to use a reference tracking model,
adopting as reference to follow the optimal angular velocity of MPC model, with a
robust controller. This approach has shown important results, precisely the tracking
and the produced power are very similar to the MPC case with the second degree
identi�ed model. This achievement suggests the fact that the system with lower
degree is easily usable and controllable, indeed it shows o� the best result. In this
way, the Robust Control theory is a good candidate to perform a control strategy
for the ISWEC system, with better results than PD case, as optimal as the MPC
case, but with a lower computational requirement.
Finally the computation shown in the last part of the thesis in the integrator case
study highlights optimal results, indeed the obtained controller satis�es also the
non linear validation on the generic Simulink model developed for PD and MPC,
obtaining an extra produced power bigger than the optimal one obtained with the
MPC controller.
The work of the thesis has passed all the previous control strategies developed for the
ISWEC system, producing a bigger power, with a low computation requirements.
The thesis work opens the road to new studies. The optimal results obtained show
that a possible improvement can be the research and the study of an estimator
model, that from the wave force predicts the pattern of the angular velocity, used
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as reference by the H∞ controller. In that way the total model is complete and it
will be possible to improve the total result on the real system, in order to test the
e�ciency and the obtained output.
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