
POLITECNICO DI TORINO

Master degree in Computer Engineering

Master Thesis

Towards Visual Generalization
with Graph Deep Learning

Supervisors
prof. Tatiana Tommasi

Co-Supervisors:
prof. Barbara Caputo
doct. Davide Boscaini

Piero Cavalcanti
252117

December 2019



Towards Visual Generalization with Graph Deep Learning

II



Abstract

Starting from the great potential of graph convolutional neural networks, the core
idea of this thesis project is to tackle visual tasks via graph-based deep learning
methods. This of course requires a principled way to map images into graphs,
followed by an extensive evaluation of the visual recognition performance that
graph-based models can provide. Our intuition is that, passing through graphs,
it could be possible to maintain the semantic information of a picture while loosing
all the specific idiosyncrasies which limit generalization in traditional image-based
models. Still the graph construction is not trivial and tailored adaptive strategies
may be needed. The proposed research direction inevitably involves several fields:
from image segmentation and graph networks to multiple variants of cross-domain
learning and self-supervision. A preliminary study allowed us to search for the
most effective components to design our method. Then, we shifted our attention
on more challenging cases where training and test data belong to two different dis-
tributions. The obtained promising results pave the way to new approaches based
on graph-based learning for image understanding.

III



Acknowledgements

This chapter has to be intended as excluded from the academic content of the Thesis.
To allow reading to people who are unfamiliar with English language, the further
text will continue in my mother tongue.
Al termine del mio percorso di laurea magistrale al Politecnico di Torino, ci tengo a
ringraziare tutte le persone che mi hanno sostenuto e motivato in questi due anni,
senza le quali non sarei arrivato a questo punto.
In primo luogo, ringrazio la professoressa Tatiana Tommasi e la professoressa Bar-
bara Caputo per avermi dato la possibilità di far parte a tutti gli effetti del gruppo
VANDAL in questi mesi e di avermi fatto provare cosa significa davvero fare ricerca
ad alti livelli. Ringrazio Davide Boscaini per l’impegno, la passione e gli insegna-
menti trasmessi lungo tutto il periodo di collaborazione. Spero che questa espe-
rienza rappresenti solo l’inizio di una lunga carriera in questo campo, di cui rapp-
resentate di diritto il trampolino di lancio.
Ringrazio la mia famiglia, in ogni suo membro, per non avermi mai fatto mancare
il sostegno e la sicurezza di avere qualcuno su cui contare in ogni momento. Mio
padre, mia madre e mia sorella per avermi ascoltato nelle mie noiose elucubrazioni
sulla tecnologia e su ciò che di fantastico stavo studiando, e per avermi dato modo
di seguire le mie passioni senza pormi mai alcun limite. Grazie, non sarei qui senza
di voi. Mia nonna, i miei zii e i miei cugini per avermi fatto sentire fiero di ciò che
stavo facendo e di ciò a cui appartengo.
Voglio ringraziare la tribù Skopelos, varie famiglie che ne formano una più larga,
di cui mi sentirò per sempre parte. In particolare Carlo, Francesco, Raffaele e Toto
che mi accompagnano da una vita ormai e che, nonostante la lunga lontananza,
riescono a farmi sentire a casa ogni volta che torno. Il vostro sostegno è stato più
prezioso di quanto possiate immaginare. Ringrazio gli amici del liceo e Francesco,
Carlo e Vincenzo per non essersi ancora annoiati di me nonostante tutto il tempo
passato insieme.
Un ringraziamento speciale va a chi mi ha sostenuto in questi anni di vita a Torino:
Federico, Flavio, Francesco, Francesco, Giuseppe, Mattia, Nico, Toppa, Uccio. Gra-
zie per tutto ciò che abbiamo condiviso qui a Torino e tutto ciò che continuiamo a
condividere ora che siamo sparsi per il mondo. I miei coinquilini, vecchi e nuovi, con

IV



cui ho passato la maggior parte del mia vita torinese e che mi hanno sostenuto ed
aiutato anche nei momenti peggiori. Ringrazio i compagni di corso Luca, Giuseppe,
Gaetano, Totò, Giorgio, Gianluca, Vincenzo, e tutti coloro che hanno dovuto sop-
portare la mia ansia da esami e chi mi ha sostenuto in questo impervio percorso di
magistrale.
Infine, vorrei dedicare questo progetto di tesi a due persone che hanno un valore
speciale nella mia vita, Sara e Ciro. Quando ero indeciso sulla direzione da in-
traprendere, ho ricevuto un consiglio, l’ultimo di una lunga serie di riflessioni: "Vai
a Torino, diventa un ingegnere". Se dicessi che questa è stata l’unica ragione che
mi ha spinto a scegliere questa strada, che ora più che mai sento fatta per me, sarei
ingiusto. Ma dal primo momento in cui ho messo piede in questa città sapevo già
chi avrei dovuto ringraziare.

V



Contents

1 Introduction 1

2 Preliminaries on Visual Learning 5
2.1 Machine and Deep Learning . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . 11
2.3 Segmentation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 SLIC Superpixels . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 The Domain-Shift Problem . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Domain Generalization . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.4 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . 20
2.4.5 Domain Generalization by Solving Jigsaw Puzzles . . . . . . 22
2.4.6 Domain Adversarial Training . . . . . . . . . . . . . . . . . 23

3 Preliminaries on Graph Deep Learning 25
3.1 Introduction to Graph Theory . . . . . . . . . . . . . . . . . . . . . 25
3.2 Geometric Deep Learning . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Deep learning on Euclidean Data . . . . . . . . . . . . . . . 27
3.2.2 Deep Learning on Graphs . . . . . . . . . . . . . . . . . . . 29
3.2.3 Graph Convolutions . . . . . . . . . . . . . . . . . . . . . . 30
3.2.4 Graph Coarsening . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.5 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.6 Dynamic Edge-Conditioned Filters . . . . . . . . . . . . . . 34

VI



4 Experiments 37
4.1 Settings and Implementation . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Digits Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 Image-to-Graph Mapping . . . . . . . . . . . . . . . . . . . 40
4.1.3 Domain Adaptation and Generalization . . . . . . . . . . . . 44
4.1.4 CNN Backbones . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Single-Domain Classification . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Domain shift due to Graph Construction . . . . . . . . . . . . . . . 53
4.4 Domain shift due to Visual Style . . . . . . . . . . . . . . . . . . . 55

5 Conclusion and Future Works 57

List of Tables 59

List of Figures 61

VII



Chapter 1

Introduction

Almost a century has passed since the concept of Robot was conceived, and since
those days relevant progresses have been reached in terms of automatic physical
tasks and, mainly, cognitive tasks. Although it is true that the boundary between
human and machine continues to be sharp, the more the time passes, the shorter
this range becomes. Artificial Intelligence is a discipline whose aim is to constitute,
design and test the cognitive tasks of the automatic components: basically, it de-
velops the intelligence of machines.
One of the most interesting fields of research in this context is Computer Vision,
which is attracting the growing interest of the scientific community due to the
incredible results of the state-of-the-art algorithms. Computer vision is a long-
standing discipline which deals with recognizing and exploiting knowledge within
images. Common challenges in Computer Vision are image classification, object
recognition and detection, semantic segmentation and localization.
The history of Computer Vision took an unexpected turn thanks to the introduc-
tion of the back-propagation training method and, moreover, with the development
of the first deep neural network, which, since its debut, has beaten all previous re-
sults. The presentation of AlexNet [1] at the Neural Information Processing System
(NIPS) Conference, in 2012, can be considered to be the first milestone in Deep
Learning, as the application of the CNN led to a rapid increment of accuracy. Since
then, Deep Learning methods became the undisputed star of Computer Vision re-
search, as they consistently increase the score on classical benchmarks and they are
still undefeated when compared with alternative automatic learning models.
The current overview greatly differs from the one of almost ten years ago. Modern
networks have overcome human recognition ability [2], while deep learning approach
has widely spread in different areas and with different types of information: from
videos [3], with the introduction of the new recurrent CNN architecture and Long-
Short Term Memory, to sounds and speech, where Natural Language Processing is
constantly based on deep learning models.

1



1 – Introduction

Among the new frontiers of Deep Learning, the analysis of 3D shapes and graphs is
one of the most attractive scenarios for researchers, as its range of possible applica-
tions is wide and heterogeneous. Moreover, it is evident that the adaptation of 2D-
based architecture to the world of three-dimensional and non-Euclidean geometry
is not trivial. Since the introduction of the topic, there have been various formu-
lations of possible solutions to perform neural networks analysis on non-Euclidean
geometry, with different results and applications. All the adaptation approaches
of standard Convolutional Neural Networks to the non-Euclidean geometry or 3D
objects come together under the name of Geometric Deep Learning.
The present work mainly focuses on graph-based geometric deep learning, orGraph
Deep Learning. The first attempt to apply neural networks to graphs was con-
ducted by Scarselli et al. [4], in 2005, but it remained unnoticed until the problem
was revived by Bruna et al. [5]. In their paper, the authors introduced for the
first time a deep neural network on graphs based on spectral domain, leaning on an
analogy between Fourier transforms and results deriving from the graph Laplacian
operator.
Subsequently, this approach was intensely lightened by Kipf and Welling [6], using
simple filters operating on 1-hop neighborhoods of the graph, avoiding the explicit
Laplacian eigenvectors computation based on recurrent Chebyshev polynomials.
The introduction of graph-based neural networks represents a long step forward
compared to the spectral approach, as it conveys a better generalization and a
faster computation. Since that, a number of new approaches have been presented
to perform graph classification, node classification and other tasks in the field of
graph geometry. The last attempts include the capture of a finer structure of the
neighborhood, analyzing vertices of graphs similarly to the way neighboring pixels
are treated in conventional CNNs. Those approaches [7], [8] represent the starting
point of our research project. Although some results have been presented as sec-
ondary experiments in graph-based Geometric Deep Learning [7], [9], we are not
aware of previous work focusing on the application of non-Euclidean Deep Learning
methods for Visual Learning tasks as their main purpose. As a matter of fact, re-
search has proven that geometric deep learning methods can work on simple image
classification tasks, such as digits recognition, and analogies suggest that the use
of graph-based neural networks on images is coherent and can be done with both
the full input or just a set of attention points.

Contribution of the thesis

Starting from these assumptions, we created a full framework in order to
extract significant pixels from the image and structure a coherent set of
vertices, that will then be interpolated to build a graph. The construction
of the graph was based on two main stages: first, the segmentation of the original
sample into a set of correlated points; and second, the computation of a significant

2



1 – Introduction

point as summary or mean of the whole set. After the down-sampling of the input,
we used different criteria with the aim to create the connections of each vertex
through edges, which must keep semantic information about the relations among
the nodes. Those two stages were not trivial and requested many experimental tri-
als: we evaluated different segmentation techniques and different edge definitions
in order to perform the graph construction. Such research was conducted consid-
ering different domains in the field of digits recognition: we considered 3 datasets,
MNIST, MNIST-M and USPS. Although they have been widely used to investigate
the domain shift problem due to the large variety of covered styles, only MNIST
had previously been involved in graph-learning experiments. In the first part we
focused on segmentation, comparing different algorithms while maintaining a fixed
basic Graph Convolutional Neural Network, known as ECC Network [7]. This lead
us to recognition results lower than those those obtained with standard CNNs, but
produced with much less input information. Then, we focused on designing
new deeper graph-based network to emphasize their learning power. We
obtained different architectures, with different strengths and weaknesses: some of
those backbones originated from concepts borrowed from existing architectures,
others were obtained by logical deductions. As a result, we were able to obtain
competitive results with respect to standard convolutional networks still using a
heavily reduced number of points for each sample of the set. This proves that
knowledge from image can be extracted from minimal number of pixels by exploit-
ing the relations among them and their arrangement. Following, we shifted our
attention on more challenging cases where training and test data belong
to two different distributions. We leveraged on a recent domain generalization
method, which has shown how combining supervised and self-supervised knowledge
can improve generalization [10]. More specifically, such method includes a jigsaw
puzzle task which is simple and intuitive for 2D images, but needs a relevant re-
design to be included in graph networks. The first strategy we proposed was a
sequence of patch-based clustering, graph vertices grouping and group shuffling.
The puzzle tasks consisted in learning and then predicting the right permutation
index. We also considered a second adaptation method based on the alignment of
the representative features of the different domains by reversing the contribution
of a domain discriminator [11]. As a result, the features extracted would be the
best ones to confound the different domains in input. Starting from this concept,
we developed a suitable method for graph-based geometric deep learning.

This work has to be regarded as a mere starting point for a more in-depth anal-
ysis and evaluation of the described intuition that connects images and graphs
to generalization. Future developments envisage a smoother integration of all the
components analyzed thus far, towards a fully learnable end-to-end model able to
perform image segmentation for graph extraction and cross-domain visual recogni-
tion.

3



4



Chapter 2

Preliminaries on Visual
Learning

2.1 Machine and Deep Learning

In the big data era in which we are living, Machine Learning became a core task
to exploit the huge amount of accessible information and in that way to sustain
the technological, cultural and social growth. Since it has proven to be effective,
machine learning technology has spread and now supports many aspects of modern
society: it underpins a large part of object identification, natural language process-
ing, automatic recommendation systems and so on. It is even a key power in social
networks, e-commerce system and research browser, and in many other components
of our daily routine. Increasingly it is achieved by using Convolutional Neural Net-
works as main technique.
For many times, convolutional neural networks meant significant amount of works
and resources used to tune and test the convolutional parameters in a non-automatic
fashion. Today, the modern deep learning techniques overcome the issue by au-
tomatic learning the parameters that compose the network architecture with a
reiterate process called back-propagation. Deep Learning is a sub-part of the con-
ventional Representation Learning, that are based on understanding the nec-
essary representation of the data to perform results in classification or detection,
etc. In deep learning methods, this is achieved by multiple levels of representation,
obtained in a hierarchical way by applying subsequent module on the retrieved
input (starting from the original sample), making possible to extract even slightly
abstract representations. These kind of high representations takes the name of fea-
tures. Composing these levels of representations makes possible to reach incredible
prediction results, even with very complex raw input data. To deeper understand

5



2 – Preliminaries on Visual Learning

this application, let us make a representative example in computer vision (image-
related) tasks: a digital image is submitted to the network on its regular format,
means as an array of pixels. Generally, the first module layer (convolutional
layer) simply detects the presence of edges in a particular orientation and location
over the image. Then, the second layer, where the first layer output is processed,
recognizes simple patterns, exploiting the retrieved edges. The representation is
higher on the third layer, when the patterns are assembled to identify presence of
particular objects in the image. As layers processes the images among the hierar-
chical structure of the network, as deeper and higher becomes the image analysis.
Deep Learning structures are today based on thousand and thousand of parameters
tuned each time a batch of images is processed to the network: it is unimaginable
to expect to design all the network by human engineers, while it is today made
by an automatic learning procedure. This is a key potential in machine learning
process: the deep learning methods achieve state-of-the-art in a very large set of
different applications without asking discouraging network design phase. It just
requires little manual engineering, and can easily take advantage of increases in the
computational power and storage capability that characterizes our epoch.

Figure 2.1: Example of a convolutional neural network applied in a computer vision
task (from [12])

The most diffuse form of machine learning is the standard supervised learning.
The supervision property means the capability to compare the predictor results
with empirical evidence (commonly refers to as ground truth) that gives the possi-
bility to understand whether or not the prediction is correct. In case we want to
automatically classify images, we can model the task in a supervised manner by
collecting a large set of images and assign to each of them a label representing the
class of the image (i.e. understanding the subject in the image). The supervised

6



2.1 – Machine and Deep Learning

setting makes the network able to perform automatic tuning of the network pa-
rameters (or weights) with the usage of a loss function, that measures the distance
between the ground truth (representing the ideal behaviour of the net) and the
network outputs. Exploiting the result of the loss function, network tunes every
weights in such a way that the next output will reduce the gap from the ground
truth. The concept is both simple and effective. The weights of the networks are
nothing but real numbers, regulated according to the network expected behavior.
As more layers are used, as more the number of weights grows; and in turn as more
the number of weights grows, as more training dataset has to be large. Today, mod-
ern networks perform tuning on hundreds of millions of these adjustable weights,
and thus requires hundreds of millions of labelled samples.

It is clear that the process of adjusting the weight vectors is a crucial part of deep
learning: it is possible by the computation of a proper gradient vector representing
for each weights the quantity of increment or decrement in the distance from the
ground truth if the weights were increased by a value small as you wish. The
weights vector is adjusted according to the negative gradient vector, since we want
to get the global minimum of the loss function. Indeed, it can be proven that
the loss function has a convex trend, and negative gradient vector indicates the
way to obtain the steepest descent in the trend. Leaving the theory, practical
application of the gradient descent principle is the Stochastic Gradient Descent.
Stochastic optimization, briefly, is an optimization process where assumptions are
taken by a probabilistic approach, in contrast with deterministic methods. In our
case, the SGD consists on optimizing the weights vector by submitting to the
network a small batch of the whole dataset and adjust it accordingly. So the
small batch represent an exemplar of the entire population of the dataset, and then
the estimation results slightly noisy. Despite that, SGD performs an optimization
procedure that overcomes efficiently other complex methods for weights tuning.
As long as the modules represent relatively smooth functions of their inputs and
internal wights, the gradients can be computed by a simple backwards propagation
procedure. The back-propagation method is a key point in the CNN workflow,
and it is based on the chain rule of the derivatives. Indeed, the module gradient can
be computed by working backwards from the gradient with respect to the output
of that module. Repeated application of the back-propagation allow to propagate
gradients through all modules, starting from the output, through to initial layers.
The final step is to validate the results by testing on an unseen set of samples
(called, therefore, test set, instead of the "seen" training set): it allow to simulate
the behavior of the network when his application is required for new, unknown
data. Standard practice is to split the original sample set in two subsets, training
and test set, and then use just the first one to tune the net. As we will see, this
separation has its limitations, due to the fact the both subsets belongs to the same

7



2 – Preliminaries on Visual Learning

distributions, so the test samples are quite similar in comparison to the training
samples, and it do not stress enough the generalization ability of the machine.

2.2 Neural Networks

General neural networks are known as interconnected hierarchical structures of
simple processing elements, units or nodes, whose trigger mechanisms are based on
animal neurons. In the human brain, for example, there are 100 billion of neurons,
which communicates with electrical impulses through the inter-neuron connections,
the so-called synapses. The processing ability of the network is stored in the inter-
unit connection strengths, or weights, obtained by a process of adaptation to a set
of training sample. The artificial equivalents of synapses are modelled by a single
number (the weight) so that each input is multiplied by it before being sent to the
equivalent of the cell body. Here, the weighted signals are summed together by
simple arithmetic addition to supply a node activation. When the sum, or acti-
vation, is computed, it is compared with a determined threshold; if the activation
exceeds the threshold, the unit produces a high-valued output (conventionally "1"),
otherwise it outputs zero. Thus, a simple neuron output can be represented in the
following form:

y = f
1 nØ
i=1

wixi + b
2

(2.1)

This is the canonical form to reproduce a single neuron function. xi are the input
signals from the m neurons of the previous layer, b is the bias term. f represents
the activation function, that is typically a non-linear function such as step function,
sigmoid, and, the most commonly used in modern application, ReLU. The adap-
tation procedure, that has effect during the training phase, adjust the weights and
the bias term.
A neural network is the result of the combination of aggregation of multiple neurons,
structured in layers. Layers are interconnected in a hierarchical way, means in a
direction so that the output of a layer will be the input of the following layer.
The input of the initial layer is the input data, while the output of the last layer
represents the result, i.e. in classification the predicted class of belonging. In
fully-connected layers, the neurons within a layer are inter-connected with all the
neuron of the previous and the following layer. At each connection is assigned a
specific tunable (or, better, learnable) weight. Neural networks are based on various
layers, and architectures are often based on hidden layers, meaning the layers posed
between the input and output layers.
A typical architecture of fully-connected layers can be seen in figure 2.3. The first
layer processes the raw input(s), while the last one returns the desired output(s).

8



2.2 – Neural Networks

x2 w2 Σ f

Activate
function

y

Output

x1 w1

xn wn

Weights

Bias
b

...

Inputs

Figure 2.2: Representation of a neuron output function

...
... ...

I1

I2

I3

In

H1

Hn

O1

On

Input
layer

Hidden
layer

Output
layer

Figure 2.3: General diagram for a 3-layers NN architecture.

More hidden layers can be posed between the initial and last layer. For a general
classification task, the output layer is composed of m neurons, where m represent
the number of classes. Each neurons outputs a probability percentage, commonly
from 0 to 1, and the predicted class will be k where k − th neuron returns the
highest value.
As standard machine learning frameworks that works with a supervised approach,
Neural Networks has to be educated, given a labelled input, to outputs the relative
label. This learning process is generally known as training, and the set of input
sample with a manually-assigned label is so named training set. Training phase

9



2 – Preliminaries on Visual Learning

is constituted of two sub-parts that sharing the task of giving to the network the
possibility to learn: the forward propagation and backward propagation.
The first part is based on the evaluation the performance of the network in the
current state: each input sample is submitted to the neural network architecture
and the outputs are processed according to the result of each neuron computation.
The initial setting of a untrained neural networks is random, so the first evaluation
score is generally far from optimal values. To make possible to reduce the error-rate
between the desired outputs and the obtained ones, a loss function is computed.
Typical example of loss function in deep learning methods is the cross entropy loss,
or logarithmic loss (− q

i y
Í
i log2 yi). The backward propagation allow to convey

the loss information (the model literally learn from his mistakes): starting from
the final layers, the loss signal is propagated in the opposite direction respect to
the normal output computation (also said as forward propagation), through the
hidden layers, that will perturb the weights of the whole network. The impact
of the loss signal change among neurons according to the contribution of each of
them to the final output. The perturbation of the network parameters is driven
by the Gradient Descent, that allow to clarify the direction to follow to minimize
the prediction errors, described by the loss. This technique, briefly described in the
previous sections, use derivative calculation on the loss function, with respect of the
model parameters, to orient the increment or decrement of each weight according
to reaching the global minimum of the loss function. Since loss has not a close
form solution, it is not possible to obtain unambiguous assignments for the weights.
Otherwise, thanks to the fact that loss function is convex, we can approximate with
the gradient the descending direction of the function, that will conduct to relative
or global minima. This is done in batches of data in epochs, means consecutive
iterations, that simulate the behavior of the entire dataset in a stochastic way.
Given a general loss function such as:

C(W, b, xi, yi) = 1
2 |f(W,b)(xi) − yi| (2.2)

Where W, b represents respectively the weights and the bias term of the neural
networks, the update rule of the parameters will be:

Wi,j = Wi,j − α
∂C(W, b)

∂Wi,j

(2.3)

bi = bi − α
∂C(W, b)

∂bi
(2.4)

α parameter, where generally 0 < α < 1, representing the impact of the gradient
step, is called learning rate. The negative signs is justified by the fact that gradient
always points in the direction in which the value of the loss function increases.
Learning rate is one of the typical hyperparameters that constitute the learning

10



2.2 – Neural Networks

process: one hyper-parameter can be considered the optimizer, that can be SGD
or other alternatives such as Adam, or the batch size that indicates the number
of elements considered in each iteration of the learning process. Another common
hyper-parameter is the learning rate decay that allow to decrease in a specific
moment the learning rate, since parameter optimization requires to minimize the
rate as the model approaches to the solution.

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks starts from the simple concept that in images (and
also in other kind of euclidean data) the neighboring pixels are highly correlated,
and it has sense to do not consider each pixel individually but exploit small windows
for the feature extraction. This application allows to obtain strong results even
with a great saving of parameters to tune and, thus, in efficiency of the model.
Despite the similarities with the general neural network models, there are particular
elements in the architecture that differs from non-convolutional models:

Convolutional Layers: the core of the CNN, allow to perform the convolu-
tional operation on small window of the input volume. Convolutional layer are
based on set of learnable filters, or kernels, that are basically three-dimensional
matrices of weights with dimension equal to activation volume on which the
convolution will be applied. "Convolution" name derived from the so called
operator, generally represented by õ . In a general practical example, consider
a 5 × 5 image, that is digitally represented as a three-dimensional square ma-
trix of 5 × 5 elements. Let us define a generic kernel of size 3 × 3: the output
of the convolutional operation will be a matrix 3 × 3 where each element is
calculated by sliding the kernel matrix over the input matrix (the image) with
a stride of 1 pixel and performing an element-wise multiplication. The values
of the filters application represents the the feature detection. Changes in filters
parameters made by back-propagation determine changes in the effect of the
convolution and, thus, in the features detected. More than one filter can be
applied on a single input volume, and the several outputs define the depth of
the feature map produced. The stride define the number of pixels "jumped"
between two filter application. By using a stride larger than one pixel, it could
be necessary to define a 0-padding along the frames of the image so that it
is possible to divide exactly the input matrix by the kernel size.

Activation Layer: Generally, after a convolutional layer, a non-linear func-
tion is applied on the outputs. The application of such operation is used to
make the features extracted more expressive. ReLU multiplication with the
signal just "switch" the negative values into into 0, and it is formalized as:

Relu(x) = max(0, x)

11



2 – Preliminaries on Visual Learning

Figure 2.4: Convolutional operation: the input matrix (left) is convoluted with the
3 × 3 filter (center) on each 3 × 3 window to obtain the output volume (right).

. ReLU represents the most used operator in CNN application, but other
alternatives are also used in Conv Architecture, such as:

LeakyRelu =
x if x ≥ 1

0.01x otherwise
(2.5)

ELU =
x if x ≥ 0

α(ex − 1) otherwise
(2.6)

Pooling Layer: sometimes it could be useful to reduce the dimensionality
of the input information in a way that can preserve the semantic information
within. Pooling, or spatial pooling, perform this kind of operation by down-
sampling neighbors elements returning one resuming value. The most common
Pooling Layer is the Max Pooling, that returns the max elements among all
the elements in a n×n window of the input volume. Since even in the pooling
layer there is a concept of local application and sliding, there is a similarity
with the convolutional layer: we define the dimension of the filter, the number
of local element considered in the max detection, and the stride define in the
same way seen for convolution.
Another common pooling operator is the Average Pooling that simply ex-
tracts the mean of the values in the considered input window. The main
goal of pooling layers is to perform a strong reduction of the input in a way
that allow to manage features without loss of information, but there are other
important properties obtained by using pooling, such as the robustness to
transformations (local distortion, translation) or noisy samples, the reduction
of overfitting risk and so on.

Fully Connected Layer: standard CNN architectures are structured with
couple of sequential "Conv-Pooling" layers unit disposed in hierarchical order

12



2.2 – Neural Networks

Figure 2.5: Example of max pooling application

to exploit features detection. Sometimes these layers are interspersed with
pooling layers to perform dimensionality reduction of the processed units and
to let the model learn in a more efficient way. To perform the actual prediction,
it is good norm, particularly for regression and classification tasks, to exploit
the entire output volume to formulate the results of deep model computation.
In this cases is used the Fully Connected Layer, that, in a traditional neural
networks fashion, connect each neurons with the all the activations of the pre-
vious layer. In the final part of the architecture, more fully-connected layers
can be positioned in order to make more complex features analysis for com-
puting the predictions: in this cases, often a Dropout layer is used between
two fully connected layers. Dropout [13] is a form of model regularization
based on randomly switch-off some of the neurons of the FC layers during the
training. In this way, an ensemble method is simulated because of the differ-
ent neurons structure that the net assume by dropping-out nodes. It allow to
better generalize and to avoid the overfitting phenomenon.

Convolutional Neural Networks are mostly composed by these three layers, that
can be assembled in various forms to improve the ability to perform predictions on
the task submitted. There are several common architectures in the field of CNN
that are relevant and marked by name. Here we resume briefly some of them with
their characteristics, in chronological order:

• LeNet: first convolutional neural network developed by LeCun.

• AlexNet: a more robust, larger and deeper version of the basic LeNet was
developed in 2012 and outperformed state-of-the-art. Firstly introduced sub-
sequent convolutional layers without pooling.

• GoogLeNet: Google release in 2014 overcomes other competitors by intro-
ducing the Inception Module and other arrangements that make possible to
dramatically reduce the number of networks weights.

13



2 – Preliminaries on Visual Learning

• ResNet: ResNet, acronym of Residual Network, introduces a simple but ter-
rifically effective novelty by using skip-connections to add residuals. The prob-
lem of going deeper with convolutional networks is that, when too much layers
are connected, the back-propagation of the loss disrupt the information signal
and gradually disperse it. This problem is commonly known as Vanishing
Gradient Descent. The results is that, when the number of layers in the
deep network reaches a threshold, the performance gets saturated or degrades.
To skip connections, by simply adding a previous signal to the processed out-
put, keep the gradient more stable and do not affect performances. ResNet
is the most used architecture used in deep learning, a sort of state-of-the-art
architecture from which starts to works.

2.3 Segmentation Algorithms

The core idea of the thesis project is to bridge images to graph representations by a
function map that is able to incorporate pixels in similar regions (named as clusters
or superpixels hereafter) and then computes a graph by a unique point from the
cluster. This part focus the main algorithms proposed for the segmentation of the
input images.

2.3.1 SLIC Superpixels

SLIC Superpixels, acronym of Simple Linear Iterative Clustering [14] is an ef-
ficient segmentation method that allow to retrieve a selected number (or a close
approximation of it) of clusters given an input image. The algorithm uses a partic-
ular distance measure among five-dimensional vectors labxy representing the pixels,
where lab encode the pixel color in CIELAB space, and x and y the coordinates in
the 2d space. Firstly, said given parameter k as the desired number of clusters, k
cluster centers are located according to regular distance and than moved in a 3 × 3
range around the center, selecting the lowest gradient position to avoid non-optimal
center positioning (e.g. noisy pixels). Then each pixel is assigned at the nearest
cluster. This process is executed iteratively until convergence. A brief algorithm
presentation in form of pseudo-code is presented is illustrated below:

14



2.4 – The Domain-Shift Problem

Algorithm 1 Efficient Superpixel Segmentation
Result: Retrieve K optimal segmentation clusters
Given the cluster centers Ck, initialize it as centers of a regular grid of step S Move
cluster centers in the range of 3 × 3 pixels by following the lowest gradient criteria
to estimate best position repeat
for each Ck do

Assign the neareast pixel to the cluster center in the range of 2S ×2S square
neighborhood, using the similarity measure formulated for this specific task

end
Find new cluster centers positions and residual error E, as L1 distance from
previous center position and the new one

until E <= threshold;

SLIC algorithm is commonly used to perform image or video-frame segmentation,
thanks to the strong efficiency, parallelizable (gpu) computation [15], and the pos-
sibility to easily select the number of superpixel in output. Due to this reasons,
SLIC has been chosen as the main segmentation algorithm for our superpixel-based
experiments.

2.4 The Domain-Shift Problem

Basic assumption in theoretical models of machine learning is that training in-
stances are drawn according to the same probability distribution as the test sam-
ples. It means that when a model fits on a training set with a certain probability
distribution, it is assumed that will be tested on samples with a representation that
is close to the one already seen. This hypothesis permits to provide basic guaran-
tees on the correctness of future decisions. Nevertheless, this scenario seems to be
hardly applicable in real world applications. Actually, it is more common that the
training and test set are drawn from different probability distribution, even with
great differences over the two samples set. Distance between domains [16] are due
to several reasons that do not make possible to align the two probability distribu-
tions, such as time, space, samples source device and so on. Familiar examples of
different domains in various machine learning scenarios are:

• For face recognition tasks, training samples are obtained under some set of
lighting or occlusion conditions that will probably change during the test.

• In speech recognition, acoustic models trained on one speaker have to be ca-
pable to work on other voices.

15



2 – Preliminaries on Visual Learning

• In natural language processing, part-of-speech taggers, parsers, and documents
classifiers are trained on carefully annotated training sets, but then applied on
text from different genders or styles.

• In autonomous driving semantic segmentation context, differences among cities
and/or landscapes can represent a typical problem.

The general setting of the problem is that the source domain (the domain from
witch the training set) mismatches the target domain distribution (the domain
from witch will be drawn the test samples). While the data drawn from the one
are labeled, the second ones are not.
The goal of the cross-domain learning research is to develop algorithms that are
robust to domain shifts, means that are able to fit the target domain(s) by only
leveraging the source domain(s). In this way, we get over the problem of collecting
labels for new samples, even avoiding the models to overfit on the available training
set.

Figure 2.6: Typical examples of domain shift problem
: is it possible to generalize among the three source domains to perform good

accuracy on the unseen target? Courtesy of [17].

16



2.4 – The Domain-Shift Problem

Figure 2.7: Explanatory diagrams representing common domain shift problems
such as Domain Adaptation, Transfer Learning, Multi-task Learning. Courtesy of
[18]

.

2.4.1 Domain Adaptation

Let’s define X ∈ X as the input variable (with X means the input variable space)
and with Y ∈ Y the output variable or labels (where Y indicate the label space). x
and y will be specific values of X,Y. Furthermore we call domain D = {X , P (X)}
the pair of feature space and marginal distribution on the data, while a task T =
{Y , f(X)} is the pair of label space and prediction function, where the last one
can be written in probabilistic terms as P (Y |X).
Domain adaptation defines the problem where, exploiting information from a
source domain Ds, we try to solve the learning problem on the target domain Dt,
by respecting the following assertions:

• Ds /= Dt, describes cases where samples of the target and the samples of the
source correspond to different domain (and probability distribution).

• Ts /= Tt, where Ts and Tt stands for, respectively, source task and target task.

• Label space Y is identical for both domains, so it is true Ys = Yt = Y . It
means that the discrete or continuous set of assignable labels is composed of
the same values for both the target and source.

• Ps(Y |X) ∼ Pt(Y |X). Conditional probabilities describe the relation between
the input variable and the label, so this hypothesis say that, in context of do-
main generalization, the probability distributions of the two different domains

17



2 – Preliminaries on Visual Learning

are quite similar (but not totally).

Domain adaptation could be particularly critical for service companies, where all
machine learning components deployed in a given service solution should be cus-
tomized for a new customer either by annotating new data or, preferably, by cali-
brating the models in order to achieve a contractual performance in the new envi-
ronment.
Domain Adaptation is exploited in two setting, different in the availability of infor-
mation on target data:

• Semi-Supervised Domain Adaptation, when only few samples of the target
are labeled

• Unsupervised Domain Adaptation, where there is not availability of labels
on any samples of the target domain.

There are no differences on the source domain, that is in general fully labeled and
with enough samples to perform the supervised training of the model.
All these definitions refers to case where a single source domain is used in su-
pervised adaptation. However, a better option is to use a multiples source domain
approaches, also known asmulti-source domain adaptation, which, relying only
on known domain labels, are able to exploit the specificity of each source domain.
Several works has attempted to reduce the problem of DA [19]: recent works fo-
cused on settings where on cases where the source data are drawn from multiple
distributions [20], [21], and with source classes that are only partially covered by
the target [22], [23]

2.4.2 Domain Generalization

As multi-source DA asset, domain generalization approach aims to extract gen-
eral knowledge from several related source domains, in order to learn a model for a
new target domain. But, in contrast to domain adaptation, where unlabeled target
instances are available to adapt the model, in domain generalization the model do
not have any access to samples of the target. So domain generalization experiments
result more tricky than adaptation because the source has to be leverage in order to
learn a general representation that allow to reach valid knowledge even for unseen
domains. A typical example of domain generalization challenge is the one related
to PACS dataset [17], which is composed of instances taken from four domains.
The four domains (art paining, sketches, photo, cartoon) have to be treated in a
sort of cross-validation setting to test the generalization power of the model: for
each domain, the model has to be trained on the other three and then tested on
the selected one. The test accuracies of the four experiments, that can be even

18



2.4 – The Domain-Shift Problem

very different from each other, will represent the relative generalization capability
on a certain domain. The average of the scores will represent the benchmark of the
overall ability of the model to learn in a domain-agnostic way.
For DG setting with no target data available at training time, a part of the previous
research works showed model-based strategies to prevent domain specific signatures
from multiple sources. They are both methods that build over multi-task learn-
ing [24], or domain specific aggregation layers [25]. Other research results exploit
source model weighting [20], or validation measures on tests virtually defined from
the sources available [26]. Other feature-level approaches search for a data repre-
sentation able to capture information shared among multiple domains. This was
based on the use of convolutional-based auto-encoders in [26]–[28], while [29] pro-
posed to determine an embedding space where samples of same classes but from
different source domains are projected nearby. [26] propose to adversarially exploit
class-specific domain classification modules to cover the cases where the covari-
ate shift assumption does not hold and the sources have different class conditional
distributions.

2.4.3 Transfer Learning

Transfer learning focuses on the possibility to pass useful knowledge from a source
task to a target task with different label sets Ys, that differs from Yt, when the
corresponding domains are not the same but the marginal distributions of data are
related [30].
In contrast to domain adaptation, now the classes contained in the source and target
set are not the same. Thus it is always necessary to evaluate in practice how much
the tasks are related and whether it is really worth to rely on the source knowledge
when solving a new learning problem[18]. Transfer Learning is commonly used by
the scientific community in different forms, according to the availability of labeled
samples for source or target problems.

• When labels are available for both source and target, we can perform
transfer learning in a supervised way. TL is often performed in this form when
we want to avoid the overfitting of the models when the number of target sam-
ples is too low: in this case giving more samples, even from different domains,
let the model learn in a more general and loose fashion. Noticeable kind of
this transfer learning form is the one-shot learning, when training of the model
is based on only one example of the target domain.

• When no label are available for the target domain, the task takes the name

19



2 – Preliminaries on Visual Learning

of transductive transfer learning. This category embrace also the zero-
shot learning. Zero-shot learning refers to the cases in which you the model
has to classify data based on very few or no labeled samples, meaning on the
fly. Briefly, zero-shot learning is about exploiting deep learning networks, pre-
trained by supervised learning, in new tasks, without the possibility to another
supervised training phase.

• Cases in which labels are available for the target domain but not for the source
are called self-taught learning [31]. In these situations, the application involves
unsupervised methods to extract useful information from the source domains,
that will be used to improves the supervised learning phase of the target
domain. Thus, source knowledge is collected by an high-level representation.

Transfer Learning approach, when properly used, gives sensible advantages in com-
parison to a learn "from scratch":

• Initial performances generally achieve, for target problem, stronger results
compared with the random-initialized networks. This is an natural conse-
quence of starting from a reasonable initial state respect to an optimized but
casual setting. [32]

• Starting with a prior extracted knowledge means shorter time to complete
the learning process of the target task. [32]

• Often, TL allow to overcomes scores made by learning from scratch. This
means that we can get greater final scores with application of transfer
learning approach, when possible. [32]

2.4.4 Multi-Task Learning

Multi-Task Learning is based on cases where multiple sets of data can be used for
training the network. With this setting, it is impossible to formulate the problem
with a source and a target task, but we want to learn from the sets at the same
time. The sets in which we are relying, supposed to be in number equal to N , will
share the same feature space X , with domains that presents different but close
probability distributions P i(X) ∼ P j(X) for i, j ∈ {1, .., N}. Other main assump-
tion is that the label space Y is even in common or is it possible to formalize a
mapping functions that traduce in a deterministic way Y i into Y j. Experiments
have shown that the model performance can be improved by adding new tasks to
the network, that has to be achieved simultaneously. This happens thanks to the
fact that each various simultaneous task works as bias for the others, driving the
inductive learner to prefer some settings than others: the multi-task bias causes

20



2.4 – The Domain-Shift Problem

the inductive learner to prefer hypotheses that explain more than one task [33].
Some solutions can be used to face the relatedness of these tasks: simplest approach
includes the usage of closeness measures. The impact of each task in the learning
process can be weighted according to the importance of the problem, so it is pos-
sible to implicitly define principal and secondary tasks. Furthermore, it has been
demonstrated the usefulness of use multiple tasks even if there is not correlation
between each others.
The assumption behind MTL is borrowed from the living beings way of learning:
while machine learning systems in general learn single, highly-focused tasks, people
use to learn multiple and very different tasks. It is right to ask ourselves if "the
similarities between the thousands of tasks you learn are what enable you to learn
any one of them" [34]. The application demonstrates that learning multiple related
tasks simultaneously, sharing features or learning processes, make the learning pro-
cess more robust then single task learning. A general example in Computer Vision
could be to train a neural network to simultaneously train the neural network to
recognize objects and their shapes, textures, size, orientation and so on, and in this
way improve the learning ability to recognize complex real world objects.
So, briefly, the main advantages MTL gives are:

1. Multitask models resolves multiple tasks using a compact unique structure,
that requires less resources (in terms of memory usage, time, etc) than training
two different specific models.

2. Despite the aggregate gradient in MTL is flatter, it is often more robust to
noise.

3. The model results pointed in MTL will be in general more meaningful com-
pared to single task learning. That’s because the aggregate gradient will drive
the model to choose solutions that fits well for more tasks, i.e. towards more
generally useful features.

The MTL models can be implemented in a variety of ways depending on the archi-
tectures, number of shared parameters, the way in which they are shared, etc. In
particular, there are two main categories of parameters sharing that can be adopted
in MTL:

• hard parameter sharing, in which some hidden layers are shared between
all tasks, while the final layers are task-specifics. The number of layers and
parameters shared or specific depends on the number and the weights of the
multiple tasks, and in generally requires inferences on test.

• soft parameter sharing, where single models are used for each task. In this
settings, the parameters of the model are regularized to maintain similarities

21



2 – Preliminaries on Visual Learning

among the nets. Regularization is done by applying typical normalization
operations such as L2 norm, or with more complex techniques.

A diffuse way to improve the generalization ability via multi-task learning is to setup
a self-supervised task, based on source dataset in Domain Generalization setting or
based on both source and target when the setting of experiments corresponds to
Domain Adaptation [24].

2.4.5 Domain Generalization by Solving Jigsaw Puzzles

It has been demonstrated [10] that, in a standard domain generalization setting
problem of computer vision, it is possible to reduce the domain shift problem by
adding a secondary task that, briefly, ask to the network to solve a simple jigsaw on
the image. So: starting from S domains, where Ni is the number of labeled samples
{(xij, yij)}Ni

j=i of the i-th domain, with xij and yij ∈ {1, .., C} represent respectively
the input image and class label of the instance j. To reach the first goal of the
model, that is to minimize the distance between label predicted by the model and
the ground-truth labels, it is asked to the model to satisfy a secondary condition
relative to jigsaw puzzles autonomous solution. Let us define as Lc(h(x|θf , θc), y)
the loss that measure the error between ground-truth y and prediction obtained
by submitting the input x at the deep network h(·) representing and parameters
(Θf , Θc) the setting of the whole amount of weights in the CNN (f stands for
feature extraction weights, c for classification-oriented layers). Together with this,
it is introduced another loss related to solving jigsaw: it means that a source image
is decomposed in n×n patches that are then shuffled on the space of the image. The
network has the task to find the correct permutation order among a dictionary of
P < n2! permutations, where n2! is the maximum number of possible permutations.
So it is possible to define a second classification-based task on Ki labeled samples,
with {(zik, pik)}Ki

k=1 where zik indicates the effectively recomposed instance (original
sample before patch shuffling) and pik ∈ 1, .., P the predicted permutation index
among the P possibilities. The loss function related to the task will be

Lp(h(z|θf , θp), p)
. Looking at the loss definition, it appears clearly that the deep model shares a
part of the network θf with the net, while the last part, θc and θp are separated and
allow to outputs the two task-related prediction. The training phase is processed
by solving the optimization problem

argminθf ,θc,θp

SØ
i=1

1 NiØ
j=1

Lc(h(xij|θf , θc), yij) +
NiØ
j=1

αLc(h(xik|θf , θc), pik)
2

(2.7)

Where the loss functions are standard cross-entropy loss, and α represents the
weight of the secondary task.

22



2.4 – The Domain-Shift Problem

Implementation requires to define some constraints on the experiments:

• P = 30, number of possible permutation

• β = 0.6 represents the percentage of shuffled samples in each batch size that
will orient the secondary task learning.

• n = 3, where n × n represents the number of patches in which the original
image is decomposed.

Experiments demonstrate that this secondary task allow to overcomes state-of-the-
art results on several domain generalization application such as digits and PACS
dataset.

2.4.6 Domain Adversarial Training

The appeal of the domain adaptation approaches is the ability to learn a mapping
between the source domain and the target domain in the situation when the target
data are fully unlabeled, or in simpler cases, with few labeled instances. The first
case, unsupervised domain adaptation, requires to drive the model learning to build
mappings between the source and the target, so that the classifier learned for the
source domain can also be applied to the target domain, without supervised in-
stance of the target. One noticeable approach to exploit representation learning for
domain adaptation is the proposed Domain Adversarial Training [11]. As training
progresses, the approach promotes the choice of features that are both discrimi-
native for the main learning task on the source domain and indiscriminate with
respect to the shift between the domains. By doing this, the learning process is
oriented to extract the most effective features that allow to solve the main task and
to be meaningful also for the target domain. To learn a classifier that can generalize
in the best way from one domain to another, it is necessary that the internal rep-
resentation of the neural network contains minimum or, better, no discriminative
information about the origin of the input (source or target), while preserving a low
risk on the source samples. Application of this principles can be applied on shallow
neural networks or even any general classifiers. In the field of Convolutional Neu-
ral Networks, the approach used is to define a CNN with two tasks: the first, the
principal, is focused on solving the standard supervised classification task on the
source domain, while the second has to answer to the needs of features that align
the domains. To achieve this, the domain adversarial networks requires a Gradient
Reversal Layer, that simply returns the input unchanged during forward propaga-
tion while reverses the gradient by multiplying it by a negative scalar during the
back-propagation. Particularly the architecture requires three different modules:

• Feature Extractor: the module is deputed on extracting the optimal features

23



2 – Preliminaries on Visual Learning

to perform the representative learning. It represents the first common branch
of the networks, that then forks on the two following modules

• Classifier: this modules takes in input the features and exploit fully-connected
layers to report the prediction on the class the inputs belongs to.

• Domain Classifier: the domain classifier module has in charge to discrim-
inate among domains. It means that it will predict at which domain each
sample belongs. Simple example of Domain Classifier for two domains (source
and target) requires a binary classifier.

It is clear that the contribute of the domain discriminator in the back-propagation
phase is to drive the model to learn features that contributes to distinguish the
source from the target. Because it is exactly the opposite behavior we want, by
inverting the contribute of the loss with the GRL, we are driving the neural networks
to extract features that will confound the two domains. By this simple approach,
we can get heavy improvements in the generalization ability of the model and strong
reduction of the domain-shift problem.

Figure 2.8: DANN general Neural Network architecture, courtesy of [11]

24



Chapter 3

Preliminaries on Graph
Deep Learning

3.1 Introduction to Graph Theory

In our thesis project, much of the learning process relates to the use of geometric
graph structures. It is therefore essential to give an overview on the concepts and
properties related to graphs.
A graph is a geometrical representation of a set of objects that are connected, two
by two, in some ways. This flexible behaviour allow to represent information drawn
from various and different domains.
The interconnected entities are called vertices or nodes, while the connection be-
tween the nodes are called edges. A graph G = (V, E) can be formalized as the set
of the vertices V and the set of edges E.

A

B

C

D

E

Figure 3.1: Example of simple, general graph.

25



3 – Preliminaries on Graph Deep Learning

The figure 3.1 depict a visual representation of a general graph G1 = (V1, E1). In
a mathematical way of visualize, G1 is:

G1 = (V1, E1) where:


V1 = {A; B; C; D; E}
E1 = {(A, B); (B, D); (A, D);
(B, C); (C, D); (C, E); (D, E)}

(3.1)

This definition is so abstract. We can notice that graphs has not an explicit posi-
tioning in the space: nodes positional references depends only on the connections
between nodes and the representation in 3.1 is just one of the infinite possible
designs in which we can depict it.
The edges of the represented graph has not a direction, and thus it is a undirected
graph. By defining a directed graph, we have to label each edge with an explicit
direction, i.e. connection (A,B) just represent the connection from A to B, and
not vice versa. Directions can also seen as assigning at each edge a sign, where
"1" represents the direction from the first node to the second while "-1" the inverse
direction. This is the first example of weighted graph, where each edge is distin-
guished by a weight, that will be an index of some information related. Labels, as
vertices, do not have a limited format, but can be expressed by numbers, strings,
vectors and so on.

A

B

C

D

E

2

1

5

3
4

3

2

Figure 3.2: Example of weighted, directed graph.

Another typical representation of graphs, particularly familiar for computational
purpose is the Adjacency Matrix. An adjacency matrix is a square array whose
rows are out-node and columns are in-nodes of a graph (so direction is understood):
each entry of the adjacency matrix represents an edge with his weight. A zero means
no connection between the related vertices. This compact matrix takes care of all
the properties we have explained before. We can see a brief example in table 3.1
Lastly, an important concept bounded with deep learning methods on graphs is the
graph walk: a path or a walk is a collection of vertices for which it is true:

W1 = {v1, v2, ..., vn} : (vi, vi+1) ∈ E ∀ i ∈ {1, ..., n} (3.2)

26



3.2 – Geometric Deep Learning

To enrich these concepts,it can be useful to define the signal function, or vertex
function, f : V → R, defined on the vertices of the graph. It can be represented as
a vector f ∈ RN , where the ith component is the function value related to vertex
ith ∈ V of the graph. In this way, we are able to perform deep learning methods
based on the input features defined by function f.

A B C D E
A 0 0 0 0 0
B 2 0 0 0 0
C 0 1 0 3 0
D 5 4 0 0 0
E 0 0 3 2 0

Table 3.1: Adjacency matrix representation for graph in 3.2.

3.2 Geometric Deep Learning

Since the advent of the Neural Networks, many were the attempts to propose ap-
plications on different data representations. The majority of successful applications
in this regard are mainly on euclidean data: it includes data representations in one
or two dimensions. Examples of euclidean representations involves images, texts,
audio records, signals, etc. Each of these is an example of discretization of physi-
cal information into euclidean representations, but other types of geometry can be
involved in sampling processing. Non-Euclidean Geometry, briefly, can repro-
duce more complex data in comparison with mono-dimensional or bi-dimensional
samples: commonly associated to this concept are Graphs and Manifolds. Ge-
ometric Deep Learning involves every attempts of generalizing neural networks
methods on non-Euclidean structures.

3.2.1 Deep learning on Euclidean Data

To deeper understand the theoretical concepts about Convolutional Neural Net-
works, and thus the advantages of introducing a new, non-euclidean, method for
data analysis, let us introduce some formal definition of CNN components1.
Standard CNNs applied in computer vision tasks consists generally on several con-
volutional layers, passing the input images through a set of filters Γ and then on a
non-linearity layer ε. The model generally includes a bias term, equivalent to the
addiction of a coordinates constraint to the input.

1mathematical formulations are largely inspired from [35]

27



3 – Preliminaries on Graph Deep Learning

Defining:

1. Euclidean domain Ω = [0,1]d ⊂ Rd of d dimensions.

2. f ∈ L2(Ω) as the square-integrable function that represents the input of the
network. For image application domain, function f belongs to Ω = [0,1]2

3. y : L2(Ω) → Y unknown function that describes the association between labels
y ∈ Y in general supervised tasks. For a supervised classification experiments,
Y is a discrete set of definite dimension |Y |, while for regression tasks, Y = R.
It is true that a label is assigned to each inputs. This statements is resumed
in the definition:

{fi ∈ L2(Ω), yi = y(fi)}

By starting from these definitions, Convolutional Neural Networks are based on
prior geometric knowledge on the function y that constitute a fundamental as-
sumption to validate the relative methods:

• y is translation-invariant or -equivariant in relation to the required task. It
means that the translation do not perturb the output of the unknown function
y or, at least, it translates whenever the input translates.

• Most of the y, according to the Computer Vision task, can be stable to local
deformations or scale mutations. For translation-invariant tasks, means that
the probability prediction is not heavily muted in case of slight deformation of
the input image. For translation equivariant, the property of stability is even
stronger. This properties make possible to validate another core assumption of
the CNN, that leads to the possibility of progressively reduce the dimension of
the layer input without losing substantial information of the original image. In
other words, "whereas long-range dependencies indeed exist in natural images
and are critical to object recognition, they can be captured and down-sampled
at different scales."[35]

A convolutional neural networks consists of several convolutional layers,
defined as g = CΓ(f) acting on an input that works on p dimensions, defined by the
vector of functions f(x) = ((f1(x), .., fp(x))) by applying a set of filters (kernels) Γ
where Γ = (γl.lÍ); l = 1, .., q; lÍ = 1, .., p and subsequently a predefined point-wise
non-linearity ξ. Following this definition, application of convolutional operation
over x is represented as:

gl(x) = ξ(
pØ

lÍ=1
(f Í
l õ γl,lÍ)(x))

The convolutional layers define the core of the networks: the duty of these layers
is to extract meaningful features by applying the convolutional operation on small

28



3.2 – Geometric Deep Learning

squared windows of the input volume and returning in output a q-dimensional
vector gl(x) = (g1(x), .., gl(x)) that is called feature map, meaning the map of
features generated by convolutional layer. Standard convolution is generally de-
noted by:

(f õ γ)(x) =
Ú

Ω
f(x − xÍ)γ(xÍ)dxÍ

In addiction to these operations, one of the fundamental layer in a CNN architec-
tures is the pooling layer, that consists of a rational downsampling operation to
reduce the amount of data to compute. The pooling layer g = P (f) can be stated
as:

gl(x) = P (fl(xÍ) : xÍ ∈ N(x)), l = 1, .., q

with N(x) ⊂ Γ define the neighborhood of x and P define a permutation-invariant
function applied over all x ∈ N(x). Common examples of pooling logics are average
pooling, where the pooling layers outputs the average measure of the N(x) set, and
max pooling layers, where the output is x∗ : x∗ > x ∀ x ∈ N(x). Convolutional
Neural Networks are essentially based on the concatenation of several convolutional
and pooling layers in a hierarchical disposition that begins to the input and ends
with an output that returns the probability of prediction among the possible target
labels. The entire processing function exploit in CNNs can be defined by:

UΘ(f) = (CΓ(K) ◦ ... ◦ P ◦ ... ◦ CΓ(2) ◦ CΓ(1))(f)

where the hyper-vector Θ = {Γ(1), .., Γ(K)} consists of the networks parameters (or
weights, means all the coefficients of the filters of convolutional layers).
these general definitions can be applied in the field of computer vision (i.e. image
classification, object retrieval, face detection, etc.) by considering the input images
as three-dimensional matrix with dimension h × w × d where h represents the
height, w the width, and d the dimension to represent the pixel gradient: d = 1
for grayscale images, d = 3 in case of RGB format, d = 4 in case of RGB-D inputs
as in [36].The depth of the networks refers to the multiple layers positioned in the
hierarchical structure. As more the research goes forward, as more complex the
networks becomes, and this is not only related to the deeper backbones (meaning
the structure of the conv and pooling layers that constitues the network), but also in
increasing the efficency and performances of the single layers. Convolutional Neural
Networks give us today an incredible space in research, with different directions and
new scenarios every day.

3.2.2 Deep Learning on Graphs

Graphs are meaningful data structures, based on nodes and edges, that allow to
reproduce individual features, while also providing information regarding relation-
ships and structure. Graphs are even flexible representations, particularly suitable

29



3 – Preliminaries on Graph Deep Learning

to depict physical interactions among different objects: it can models protein in-
teraction networks, molecules, Feynman diagrams, cosmological maps, etc. Even
Neural Networks are represented in both conceptual and effective maps (deep learn-
ing frameworks defines graphs to embed neural networks).

Adaptation of traditional Deep Learning methods to graph domain is bounded to
some issues that need to be managed:

• Irregularity of representations: while euclidean geometry samples belong
to continuous and (almost) grids-discreditable representations such as images,
audios or texts. Graphs do not lie in a regular domain, making hard to gener-
alize some basic mathematical operations to graphs. To redefine convolution
and pooling operation, that constitute core implementations for CNN archi-
tectures, for graph data was non-trivial task for developers.

• Different definitions for graph structures: as already explained, several
graph structures can be defined. Examples of graph discriminations are: het-
erogeneity (heterogeneous or homogeneous), edge-weights definition (weighted
or unweighted), edge direction definitions (directed or undirected),etc. In ad-
dition, tasks for graphs also are affected of many different variations, ranging
from node-focused problems such as node classification and link prediction,
to graph-focused problems such as graph classification and graph generation.
The more tasks are defined, the more different architectures are necessary to
tackle the specific challenge.

• Scalability: to model real world information requires millions edges and
nodes, especially in our era. It is necessary to develop scalable architectures.
As a result, how to design scalable models, preferably with a linear time com-
plexity, becomes a key problem. In addition, since nodes and edges in the
graph are interconnected and often need to be modeled as a whole, how to
conduct parallel computing is another critical issue.

• Interdisciplinary: potential of graphs could prove also challenging, since
it is necessary to leverage domain knowledge to solve specific problems but
integrating domain specificities could make designing the model more difficult.
For example, to handle loss optimization for molecular graphs is non-trivial due
to not-differentiable nature of the objective function and chemical constraints.

3.2.3 Graph Convolutions

We would like, at this point, to introduce some theoretical concept to understand
the convolutional neural networks on graphs [35]. We will consider, for the sake

30



3.2 – Geometric Deep Learning

of simplicity, only weighted undirected graphs, meanings graphs in which a weight,
but not a direction, is assigned at each edges. Given a graph G = (N , E ) where
N = {1, .., n} is the set of n vertices (or nodes) and E ⊆ N ×N is the set of edges
between two vertices. Since an undirected edge e among nodes i and j connect both
i to j and j to i, the undirected nature of graph can be formalized with the assertion
(i, j) ∈ E ⇐⇒ (j, i) ∈ E ∀ i, j ∈ N . Furthermore, it is true the assumption that
specifies that a weight is defined for all the nodes, so: ai > 0 ∀ i ∈ N . At the
same way, a weight is defined for all the edges wij ∀ (i, j) ∈ E . Real functions
f : N → R and F : E → R are function defined on nodes and edges of the
graphs. To Define the Hilbert spaces2, respectively L2{N } and L2{E }, of such
this functions is possible by specifying the inner products:

éf, gêL2(N ) =
Ø
i∈N

aifigi (3.3)

éF, GêL2(E ) =
Ø

(i,j)∈E

ω(i,j)F(i,j)G(i,j) (3.4)

Hilbert spaces are fundamental prior to define differential over f ∈ L2(N ) and
F ∈ L2(E ). We can define the graph gradient with the operator

(∇f)ij = fi − fj (3.5)

that satisfies (∇f)ij = (∇f)ji. On the other side, we can define graph divergence
as operator div : L2(E ) → L2(N ):

(divF )i = 1
ai

Ø
j:(i,j)∈E

ωijFij (3.6)

Operator div represents the reverse operation in comparison to the gradient op-
erator. The graph Laplacian is an operator ∆ : L2(N ) → L2(N ) that can be
represented as the operator ∆ = −div∇. By substituing the equation ref 3.5 and
3.6 it is possible to obtain a known expression of the formula:

(∆f)i = 1
ai

Ø
j:(i,j)∈E

ωij(fi − fj) (3.7)

The equation representation 3.7 allow to understand the geometric concept of the
Laplacian, that is the difference between the local average of a function applied
around a certain point, and the exact value of the function at the point itself.

2In mathematics, the Hilbert space is an “inner product space that is complete with respect to
the norm defined by the inner product. Hilbert spaces serve to clarify and generalize the concept
of Fourier expansion and certain linear transformations such as the Fourier transform.”

31



3 – Preliminaries on Graph Deep Learning

Laplacian operator is a positive-semidefinite operator. In compact domains, mean-
ing domains limited to a finite interval and where the Fourier transform of func-
tions defined on it will be discretes (all practical applications use compact do-
mains), Laplacian operator admits a eigendecomposition in a discrete set of eigen-
functions φi and real eigenvalues for which it is true 0 = λ0 ≤ λ1 ≤ λ2... and
∆φi = λiφi, i = 0,1,2, ...

Fourier Series of a function f defined on X can be obteined by:

f(x) =
Ø
i≥0

éf, φiê2
L(X )φi(x) =

Ø
i≥0

1 Ø
i∈N

aifigi
2
φi(x) (3.8)

Last representation is the graph-based equation that is obtained by substituing the
inner product with the definition in 3.3.
Fundamental component of the Euclidean CNN processing is, obviously, the con-
volutional operation f õg. The convolution operation can be generalized to work
in non-Euclidean context with the definition:

(f õ g)(x) =
Ø
i≥0

éf, φiêL2(X )ég, φiêL2(X )φi(x) (3.9)

Even in this case, the inner product can be replaced by 3.3 in graph-based con-
texts. This adaptation do not support the shift-invariance property of the classical
convolution in Euclidean domain; meaning that the filters are dependent on the
position and every shift in the input can change the results, even widely.
In a matrix-vector notation, the convolution can be defined by the expression

Gf = Φdiag(ĝ)ΦTf

where ĝ = (ĝ1, ĝ2, ..., ĝn) is the spectral representation of the filter and Φ =
(φ1, φ2, ..., φn) is composed by Laplacian eigenvectors.

3.2.4 Graph Coarsening

This is a recall of the concept of pooling defined in euclidean CNN.It is necessary
to define, in order to replicate standard convolutional network pipelines, a layer
that gives the possibility to:

1. Lighten the overall features to gain in performanes

2. Enrich the generalization power by avoid overfitting

3. Get some invariance to local and global deformations.

32



3.2 – Geometric Deep Learning

Typically the operation of downsampling a given graph G = (V, E) into Gred =
(V red, Ered) is referred as graph coarsening. The standard approach foresees
the search of grouped vertices and perform pooling operations starting from those
groups. One common method of coarsening is the Normalized Cut, based on the
assumption that the dissimilarity between two sets of vertices can be computed as
the total weight of the edges that connect nodes of the first set to nodes of the second
one, and viceversa. Such this approach has proved effective in various applications,
but is characterized by a considerable computational complexity. Another approach
often used in modern application is the Graclus [37] algorithm, with a more efficient
way to perform graph downsampling.

Figure 3.3: Example of graph coarsening (before and after)

3.2.5 Previous Works

Literature in the field of graph prediction models is substantially condensed in
two main branches: the first field try to to generalize signal processing methods
to graph-based data [38]. Spectral analysis techniques were applied to graphs by
considering orthogonal eigenfunctions of the Laplacian operator as a generalization
of the Fourier basis. Constructions such as wavelets [39]–[43] or other algorithms
such as dictionary learning [44], Lasso [45], PCA [46], originally based on Euclidean
geometry, were also adapted to non-Euclidean graph-structured data. Then, the
second and more recent field regards the deep learning models applied on graph
structures. The interest in non-Euclidean deep learning is due to the recent works of
Bruna et al. [5], [47] in which the authors presented convolutional-based [48] neural
networks on graphs in the spectral domain, leaning on an analogy between Fourier
transforms and results deriving from graph Laplacian operator [38]. Lately, [49]
proposed an efficient filtering approach that does not require explicit computation

33



3 – Preliminaries on Graph Deep Learning

of the Laplacian operator by approximate it with recurrent Chebyshev polynomials.
Then, the approach was intensely lightened by Kipf and Welling [6], using simple
filters operating on one-hop neighborhoods of the graph. Similar methods were
proposed in [50] and [51]. Finally, in the network analysis community, several works
began to base on graph embedding [52]–[56] methods inspired by the technique
mainly known as Word2Vec [57]. A key criticism of spectral approaches such as [5],
[47] is the problem that the spectral definition of convolution is dependent on the
Fourier basis, which is domain-dependent. It implies that a spectral convolutional
neural networks tuned one graph cannot be easily applied to another graph with a
different Fourier basis, as it belongs to a complete different domain.

3.2.6 Dynamic Edge-Conditioned Filters

Thanks to the fast spread of Deep Learning on Graph and Manifolds, new architec-
tures for nets and convolutional layers are frequently published. So it was necessary
to pick the architecture that fit our problem (image-based graph analysis) as best
as possible.
The architecture that we have choosen as backbone of our network is a Convolution
Neural Network that works on both directed or undirected graphs, called ECC [7].
ECC network is based on edge-conditioned convolution layers, that exploits
both node and edge labels during convolution over local graphs neighborhoods. We
used ECC network essentially to perform graph classification, means identifying
label for the whole input graph, but it could be used likewise for local nodes clas-
sification.
The Edge-conditioned convolution defined in ECC takes care of both vertex and
edge labels to performs the output predictions. Let us present a formal definition
of the convolutional layer.
Considering:

• G as a directed or undirected graph, for which:

– V represents the finite set of vertices componing the graph, where |V | = n

– E is the finite set of edges that connect two vertices, so E ⊆ V × V and
|E| = m

– Exists X l : V → Rdl , the function that assign a label (also named in
this context signal or feature) at each vertex (vertex-labeled graph). By
representing this function as a matrix X l ∈ Rm×dl , X0 shall identify the
input signal of the convolutional layer.

– Exists L : E → Rd, the function that assign at each edge one label, or
attribute (edge-labeled graph). The function L can be represented as a
matrix L ∈ Rm×s

34



3.2 – Geometric Deep Learning

• l ∈ {0, .., lmax} as the layer index that localize a layer among the feed-forward
network in use(i.e. Multi-Layer Perceptron).

Then, define:

• N(i) = {j; (j, i) ∈ E} ∪ {i} define the neighborhood of the vertex i, means the
set of all adjacent vertices (or, in directed graphs, predecessors) of i, consid-
ering i itself.

The ECC approach is based on obtaining the filtered signal X l(i) by combining all
the signals of the neighbors defined by N(i). So the output of an edge-conditioned
convolution layer will depend on the linear combination (weighted sum) of the
signals X l−1(j) where j ∈ N(i). To keep in care structural information of the edge
attributes, the weight used in the weighted sum is computed by using a dinamic
filter networks that, given an edge attributes L(j, i) will return a specific weight
Θl
ji ∈ Rdl×dl−1 , by a specific function F l : Rs → Rdl×dl−1 .

The formal definition of the convolutional function, said bl and F l the dinamic filter
network parametrized by learnable networks weights ωl as learnable bias:

X l(i) = 1
|N(i)|

Ø
j∈N(i)

F l(L(j, i); ωl)X l−1(j) + bl = 1
|N(i)|

Ø
j∈N(i)

Θl
jiX

l−1(j) + bl

As reported on paper [7].
This conv-layer is proposed, albeit with some variations of the common layers that
has been adapted in the context of graphs processing (e.g. a different approach
is required for max pooling applied on graph inputs compared to the one used for
images) to compose deep networks.
Our experiments has been executed on both original ECC source code and a custom
code based on PyTorch Geometric Framework [58].
The ECC-conv layer proposed has some analogies to the standard convolutional
layer of the euclidean-based neural networks: as the nets use to apply the kernel to
a n×n set of pixels, which in general is a small number (i.e. 3), we can consider the
pixels as nodes and these small frames as the neighborhood of the node N(i). In
this way, we allow to overcomes the standard grid application of the convolutional
layers, but we can define the neighborhood as we prefer. Furthermore, we can
weight each connection among nodes by assigning a value to the edges, that is even
considered in the convolution.
Applications of the ECC-based neural networks, since its discovery, on simple im-
ages have achieved good results even compared with specific CNN on images.

35



36



Chapter 4

Experiments

4.1 Settings and Implementation

4.1.1 Digits Datasets

Since its introduction, Digit Recognition has represented one of the most common
problems linked to computer vision. The reputation is due to the fast spread of the
problem of recognizing handwritten documents and to the simplicity of the task.
Indeed, digits recognition is considered the elementary problem for computer vision:
generally, digits classification is used as initial experimental setting to inference if
a particular predictive model can be properly applied in visual learning tasks. A
digits recognition model is used to label unseen instances of handwritten digits
with the relative represented number, from 0 to 9. The problem is just a variant
of the standard classification task, and the learning process follows the supervised
approach. Digits recognition is imputed to be a too easy problem to actually check
the learning power of a model, but even for humans recognize digits can be harder
than it looks: similarity between digits (i.e. 1 and 7, 5 and 6, 3 and 8, 2 and 5) and
visualization problems (i.e. view occlusions, distortions, low quality images, noise)
can make the recognition difficult or even impossible.
Furthermore, various digits datasets have been developed or acquired during the
last decade, with large difference in representation, style and probability distribu-
tion. For this reason, we can work with different domains of digits datasets and
experiment techniques of domain adaptation, domain generalization and transfer
learning on them. Indeed investigating the gap between digits domains and how
to close them has recently attracted a large attention in the scientific community
[59]–[62].

37



4 – Experiments

MNIST

The MNIST database [63] is composed of black-and-white handwritten digits, with
a training set of 60,000 examples, and a test set of 10,000 examples. It was de-
veloped by National Institute of Standards and Technology (USA) and is just a
subset of the original dataset. The digits have been size-normalized and centered
in a fixed-size image: specifically, the original bi-level images were adjusted to fit in
a 20 × 20 pixel box and to preserve the aspect ratio. Images were in turn centered
in a 28 × 28 window by computing the center of mass of the pixels, and translating
the image so as to locate this point at the center of the 28 × 28 field.

Figure 4.1: MNIST Dataset
.

A random sub-set of instances is available in figure 4.1
It represents a crucial starting point for digits recognition and computer vision
challenges. Despite the large number of samples available, the small size and black-
and-white format of the instances ensure relatively fast training phase.

MNIST-M

Firstly introduced in [11] in the context of Domain Adaptation, MNIST-M is a
digits dataset originally presented to challenge models to deal with a domain shift
where the source domain comprehends MNIST. According to the authors of the
dataset, MNIST-M is obtained by blending digits from the original MNIST set
over patches randomly extracted from color photos belonging to BSDS500 [64].
Briefly, each output sample is made by extracting a 32×32 patch from a photo and
inverting pixel colors at positions corresponding to the digit. While for humans
the digit recognition becomes just slightly harder compared to the original MNIST
samples (digits are still distinguishable), for a Convolutional Neural Networks this
domain largely differs from MNIST, as the background and the strokes are no
longer constant. Consequently, CNN trained from MNIST are not able to recognize

38



4.1 – Settings and Implementation

MNIST-M digits when introduced. However, MNIST-M preserve the location of
the samples, thus the digits remains centered with respect of the center of the mass.
Some examples are available in figure 4.2

Figure 4.2: MNISTM Dataset
.

USPS

USPS is a digit dataset automatically scanned by the United States Postal Ser-
vice from envelopes, and contains 9298 samples with 16 × 16 pixel, in gray-scale
format. Instances are centered, normalized and show a highly variable range of
orthography styles. For the experiments the standard sub-setting is training/test
7438/1859 samples and the images are upscaled to 28 × 28. Visualization could be
similar to MNIST for an human beings, but the gap between probability distribu-
tions of MNIST and USPS is quite large, and the domain shift is not trivial for a
Convolutional Network. Random samples are shown in figure 4.3

Figure 4.3: USPS Dataset
.

39



4 – Experiments

4.1.2 Image-to-Graph Mapping

The first step of our project consists in mapping an image into a graph, so passing
from a full pixel matrix to a sparse graph defined by a set of vertices and their
connections. This needs a pipeline with two main modules: (1) selecting informative
points to identify the vertices and their representation, also indicated as nodes in
the following; (2) choose the connections between nodes, or edges, as well as their
strength.

Node Selection and Description

Given an image, we need to extrapolate well-distributed points that allow to sum-
marize its semantic content while discarding non-relevant details which might cap-
ture a specific domain bias. Just as intuitive reference, consider this high-level
example: from the image of an elephant we would like to get to a simple represen-
tation of its skeleton which also neglects the original background.
With this aim we explored existing segmentation algorithms to collect clusters of
points. Formally, these algorithms are based on functions that allow to define a
mask, meaning a vector with the same size of the original input, where at each
pixel is assigned a label identifying one of the clusters. A general segmentation
function f : Rd×d → Ω where Ω ⊂ Nd×d returns a value contained in the discrete
set according to the number of clusters, or superpixels, we want. Starting from the
obtained segmentation results, we compute the center of mass of each cluster and
assign to each center the mean of the colors within the superpixel. In case of gray-
scale images, we just compute the average of the intensity values for each cluster;
while when RGB inputs is used, we calculate the means of each channel separately.
This standard approach provides several different configurations according to the
settings of the segmentation algorithm. In particular, SLIC segmentation algorithm
(in the version provided by openCV library) handle the segmentation with three
main tunable parameters:

• Number of Segments (N): The chosen number of labels (clusters) in the seg-
mented output image.

• Compactness (C): Balances color proximity and space proximity. Higher
values give more weight to space proximity, making superpixel shapes more
squared. This parameter depends strongly on image contrast and on the shapes
of objects in the image.

• Sigma (Σ): Width of Gaussian smoothing kernel for pre-processing for each
dimension of the image. The same Σ is applied to each dimension in case of a
scalar value and Σ = 0 means no smoothing.

40



4.1 – Settings and Implementation

Since for digits dataset the common input dimension is 28×28, the maximum num-
ber of segments cannot overcome the 784 superpixels (trivial segmentation where
each pixel belongs to a different superpixel). We will practically focus on cases with
less than 50% of the total number of pixels to check if the overall image content
can still be preserved: this means considering always N < 400. The parameters
C and Σ define the shape of single superpixels generated over the image, perturb-
ing the smoothness and regularity of the borders. There are no pre-defined rules
to set these parameters and from an initial set of experiments we observed that
extremely irregular superpixels may lead to graph structures that are difficult to
understand, even for human eyes. For our analysis we chose C = [0.1,1,5] and
Σ = [1,5]: these ranges allow to cover structure variability and experiment with
different final representations while keeping a reasonable visual structure (see figure
4.4 and 4.5).
Regarding the node description, we adopted two basic strategies: we either con-
sidered only the 2D, (x, y) position of the node in the original image frame, or we
extend this vector with the intensity pixel values. In case of gray-scale images, this
means just adding the gray-scale intensity (igray) element to the position descriptor
(x, y, igray), while in case of colorful images the vector dimension rises to five with
the three channels intensity values (x, y, r, g, b). In case of comparison between
domains with different color-map, we replicate the igray intensity three times to
obtain the same number of components with respect of rgb-mapped samples.

Edge Detection and Description

Starting from the un-ordered set of points obtained from the previous node selec-
tion, we need to connect each vertex with one or more of the others through a
meaningful criterion that preserves the geometric structure of the original input.
Moreover, not all the edges should be created equal: the node similarity will affect
their connection with different weights as edge descriptors.
Several methods are possible for detecting edges. By adopting approaches from
previous works [7], we test two different edge definition methods:

• Radius: we choose a value ρ as radius. For each vertex vi ∈ V , where V is the
set of points extracted, we connect all the vertices vj that satisfy the condition:

distance(vi, vj) < ρ ∀ vi, vj ∈ V

• K-Nearest Neighbors: we choose a value K as parameter of the edge definition
method, and select the edges according to the standard KNN algorithm, as-
sociating each vertex with the (k) nearest vertices according to the distance
measure selected.

41



4 – Experiments

Figure 4.4: Example of points extraction on different datasets. In this case was
used SLIC with sigma = 1, compactness = 1, Segments = 200.

42



4.1 – Settings and Implementation

Figure 4.5: Example of points extraction on different datasets. In this case was
used SLIC with sigma = 5, compactness = 0.1, Segments = 200.

43



4 – Experiments

In both cases, we use the Euclidean distance based on the position of each ver-
tex. Since the input is defined on 2D, the distance is typically computed through
the (x, y) components that describe the vertices, or L2 norm in vector notation.
Moreover, when an edge is present, its weights corresponds to the distance between
the nodes, estimated either on the basis of their simple 2D position or exploiting
their full descriptors including grayscale or color intensity values. Experimentally
we investigate the parameter range ρ, K ∈ {2,6}.

Figure 4.6: Example of full graph embedding. In this case was used SLIC with
sigma = 1, compactness = 1, Segments = 200. Edges are detected with k-nearest
neighbors method (k = 3).

4.1.3 Domain Adaptation and Generalization

Although summarizing images through their structural graphs can help keeping
only their most relevant semantic content, per-se this choice may not decrease the
risk of dealing with domain shift conditions. Indeed, even when the original image
distribution of training and test is the same, if samples are pre-processed through
different node and edge extraction procedures without a centralized control, we
might need to recover coherence among them to get good generalization perfor-
mance. In the more challenging case of source and target belonging to two different
datasets, even admitting full control on the graph extraction, it might not be enough
to impose the same structural parameters for all the samples. Overall, as long as
the graph creation is considered as an external and separate pre-processing step
with respect to the following discriminative learning procedure (i.e. digit classifica-
tion), a dedicated and adaptive solution will still be needed to get a robust model.
We investigate here two different adaptive strategies based on self-supervision and

44



4.1 – Settings and Implementation

adversarial feature alignment.

Self-Supervised Adaptation: Solving Jigsaw Puzzles

As already discussed in section 2.4.5, optimizing jointly a self-supervised auxiliary
task with the main classification objective may help supporting robustness across
domains. In particular, [10] focused on solving jigsaw puzzles where the images are
decomposed in patches which are then shuffled and re-used to produce disordered
images. The network finally identifies the correct class from the original image
while also recognizing the correct patch order of the puzzled image version out of a
predefined subset of possible permutations. Translating this strategy into a graph-
based network is not trivial. A first challenge is to re-elaborate the concept of patch
location when dealing with graphs. Indeed position and distance in a graph are
defined and measured differently with respect to plain images due to the sparse
structure of vertices and edges. Specifically, the distance between a starting and an
ending node depends on the number of nodes that has to be crossed between them,
as well as on the weight of the connecting edges (typical definition of walk). Luckily,
Pytorch-Geometric [58] allows to embed an explicit location for each vertex of the
graph, expressed in terms of x and y of the original image. In this way, we are able
to define the problem in a similar form respect to the computer vision proposed
method. We start from the clustered image with pre-selected nodes and divide
it into a regular 3 × 3 grid of patches. From their original positions, the patches
are moved according to 30 different random patch permutations. We identify for
each patch the original barycenter of the contained nodes and swap two patches
by simply moving their barycenters. This operation is repeated as many time as
needed to produce every puzzled version of the original graph and overall to get all
the 30 different puzzled versions of each original sample. Finally, edge detection
and description re-ran on each of the produced puzzles to get a complete permuted
graph.
During training in the Domain Generalization setting, each batch of source training
samples will contain 60% of original graphs and 40% of puzzled graphs. In the
Domain Adaptation setting, the ratio remains the same, but the 40% puzzled graphs
are selected from both source and target. Indeed, while the main classification task
needs annotated samples, the auxiliary jigsaw puzzle task is trained to recognize
the permutation index out of the self-defined 30 classes, thus can easily exploit the
unlabeled target samples.

Adversarial Feature Alignment

The adversarial adaptive method DANN, already described in section 2.4.6, can be
easily introduced in our graph-based network. Differently from the Jigsaw Puzzle

45



4 – Experiments

case where several difficulties arise from the definition of the self-supervised task
and its dedicated data processing, here the auxiliary objective trained together
with the main digit recognition task consists simply in a binary classification on
the domain label. Source and target samples are considered as belonging to two
different categories that should be correctly annotated to minimize a binary cross-
entropy loss. The internal gradient reversal layer inverts the learning trend so that
the internal features are updated to make source and target look alike. It is clear
that, due to the essential need of target samples, DANN can be used in the Domain
Adaptation setting but not in the Domain Generalization case.

4.1.4 CNN Backbones

With the term Backbone, we mean the main architecture, in terms of layers and
branches, of the Convolutional Neural Networks that has been employed in the
project. We tested different convolutional kernels, different hierarchical structures,
different construction and connections between layers. Sill, all the network variants
follow a general design that can be resumed in two main blocks:

• Feature Extractor: represents the part of the network in which the input
is processed by convolutional layers and, optionally, pooling layers, to extract
meaningful features to support the classification prediction. In this part we
often use a sequence of 2 or 3 layers, possibly interspersed with pooling oper-
ation. Convolutional layers are mainly based on the ECC kernel, described in
section 3.2.6. Some particular skip connections has been tested (concatena-
tions of features or residual connection).

• Main Classifier: the main classifier block is the one in charge of producing a
final prediction in terms of digit label from the extracted features. It is based
on mainly 2 fully-connected layers with a final Softmax layer, that outputs as
many values as the number of possible labels, representing the probabilities
that the input belongs to the related class. The fully-connected layers are
separated by a Dropout Layer [13] to improve the generalization capability.

Here there is the main backbones used in our work:

BB.1 (ECCNet): x → ECC1(nfeat,32) → MaxPool(2) → ECC2(32,64) →
MaxPool(4) → GlobalMeanPool → FC(64,128) → DropOut(.5) → FC(128, nclasses).

BB.2 (ReinforcedECCNet): x → ECC1(nfeat,32) → MaxPool(2) → ECC2(32,64) →
MaxPool(4) → ECC3(64,128) → MaxPool(8) → GlobalMeanPool → FC1(128,256) →
DropOut(.5) → FC2(256, nclasses).

BB.3 (Deep / plain): x → ECC1(nfeat, 64) → ECC2(64,64) → ECC3(64,64) →
GlobalMeanPool → FC(64,128) → DropOut(.5) → FC(128, nclasses).

46



4.1 – Settings and Implementation

BB.4 (Deeper / nopool): x → ECC1(nfeat, 32) → ECC2(32,64) → ECC3(64,128) →
GlobalMeanPool → FC(128,256) → DropOut(.5) → FC(256, nclasses).

BB.5 (Residual based): x⊕ → ECCConv1(nfeat, 64) → ECCConv2(64,64)⊕ →
ECCConv3(64,64) → GlobalMeanPool → FC(64,128) → DropOut(.5) →
FC(128, nclasses)1.

With ECC, we indicate the graph-based edge-conditioned convolutional layer (for
a further description, see chapter 3.2.6). FC stands for fully-connected layers.
Numbers in parenthesis indicate respectively the input and the output features.
With −Pool we refers to different pooling layer, where number in parenthesis rep-
resents the reduction factor with respect of the original input. DropOut refers to
homonym layer, with dropout probability described between parenthesis. We will
refer to them by using symbolic reference (i.e. BB.1).
The two tested adaptive methods (JiGraphNet, GraphDANN ) are both multi-task
variants of the considered backbones and extend the network with the introduction
of a third block as illustrated in figure 4.7.
For JiGraphNet, implementation of Jigen method [10], we introduce a branch
at the end of the feature extraction part of the network with two fully-connected
layers of the same dimension (64 features in output), interlaced with a dropout
layer. Finally a softmax layer computes prediction on the right permutation. We
can formalize the side branch as:

... → FC(nfeat,64) → DropOut(p = 0.5) → FC(64, Np) → SoftMax

For GraphDANN, implementation of DANN method [11], we introduce the same
architecture of previous method, with a branch with two fully-connected layer with
same dimension (64 features in output) and an ending softmax layer to compute
binary prediction on the right domain. Here the main difference is in the introduc-
tion of a Gradient Reversal Layer that during the back-propagation inverts the loss
and multiplies it for an optimal parameter depending on the iteration, epoch and
learning parameters. The side branch can be represented as follows:

... → GRL → FC(nfeat,64) → DropOut(p = 0.5) → FC(64,2) → SoftMax

1With ⊕, we refers to the common behaviour of adding the input to the output representation
computed by the convolutional layer. It is a novelty introduced with Residual Networks [65]

47



4 – Experiments

Figure 4.7: GraphDAN and JiGraphNet, architecture and losses involved

4.2 Single-Domain Classification

In this section, we focus on all the experiments done considering each single dataset
separaterly: in other words train and test samples are drawn from the same
domain as in the most standard supervised setting. Our aim is to evaluate the
proposed graph creation procedure and verify the potentiality and possible limits of
graph deep learning with respect to the most common CNN solutions when dealing
with images.

48



4.2 – Single-Domain Classification

The different choices included in this experiments can be summarized as follow:

• Node Selection Algorithm: SLIC segmentation was mainly used. We also
ran initial tests with Felzenszwalb’s algorithm [66] as baseline, but the results
were not competitive. We also consider a further reference with nodes selected
randomly on a regular grid.

• Node Selection Setting: we considered different parameters for SLIC (N ,
C, Σ).

• Node Description: meaning the features assigned to vertices. We tested
scenarios with rgb features, or just gray intensity (with a coherent translation
of rgb to black and white), or incorporating to the color channel also the spatial
components x and y.

• Edge Selection: the connection between the nodes are mainly selected on
the basis of their reciprocal Euclidean distance on the (x, y) location with a
threshold ρ. The KNN algorithm was less effective but we show anyway the
best result we were able to get as reference.

• Edge Description: meaning the features assigned to the edges. We tested
situations where the edge weight is equal to the Euclidean distance between
connected nodes, or using an L2 norm based on the components (r, g, b, x, y)

• Network Backbone: we considered different variants for the main network
architecture as discussed above. We ran most of the experiments with BB.1
to evaluate the graph representation. Starting from the best graph structures,
we then extended the analysis also to the deeper network structures.

Experiments with BB.1 Network

We trained our basic network backbone with learning rate = 0.05; decay step each
20 epoch of ×0.1; optimizer = SGD; batch size = 64; epochs = 60 and present the
results for different dataset in separate tables.
Table 4.1 regards the MNIST dataset. Here most of the parameter variations do
not heavily perturb the learning power of the network. Best results are reached
with 200 segments, but the difference when using 300 or 100 is limited to 1 or
2 percentage points (pp) in classification accuracy. Small modifications of ρ for
edge definition have a similar effect, but its influence seems to increase when this
threshold value grows high (ρ = 6). The parameter that mostly influences the
results is C, at least in combination with limited values of Σ and N . For the edge
descriptors, including the pixel intensity is not a good choice as well as using KNN
for edge selection.

49



4 – Experiments

SLIC (N ,Σ,C) Node Feat. Edge Selection Edge Feat. Test Acc (%)
(300,5,5) gray ρ = 3 xy Distance 96.66
(200,5,5) gray ρ = 3 xy Distance 98.38
(100,5,5) gray ρ = 3 xy Distance 97.37
(200,1,1) gray ρ = 3 xy Distance 98.17
(100,1,1) gray ρ = 3 xy Distance 97.42
(200,1,0.1) gray ρ = 3 xy Distance 69.75
(100,1,0.1) gray ρ = 3 xy Distance 65.84
(200,5,1) gray ρ = 3 xy Distance 94.65
(200,5,0.1) gray ρ = 3 xy Distance 98.20
(200,5,5) gray ρ = 2 xy Distance 97.81
(200,5,5) gray ρ = 4 xy Distance 97.70
(200,5,5) gray ρ = 6 xy Distance 94.86
(200,5,5) gray ρ = 3 rgbxy Distance 85.96
(200,5,5) gray KNN k = 3 xy Distance 73.32

Table 4.1: Results on MNIST dataset with different graph-creation settings and
BB.1 network.

Table 4.2 shows the results on the MNIST-M dataset. Here the task is more chal-
lenging because we deal with colorful and confusing images due to their complex
background. The learning model is more sensitive to graph parameter variations
and the drop in performance is particularly evident for low values of all the ele-
ments in the tuple (N , Σ, C). Moving ρ too far from the best value 3 can cause
a significant performance loss. Moreover, both ignoring the rgb features for the
nodes or extending them with the xy location show bad results.
Finally, table 4.3 focuses on the USPS dataset. In this case we are dealing again
with a grayscale dataset, but the results are much more sensitive to variations in
the chosen parameters, with respect to MNIST. To better investigate the graph
effect on the digit recognition accuracy, we also extended the original parameter
ranges (considering ρ = 9,11) and to overcome the SLIC convergence limits for a
number of segments over 300 we considered the case of 400 and 600 random nodes
as baseline references.
Regardless of the specific trend shown by each dataset, the overall conclusion that
we can draw from this initial set of experiments, is that with a proper graph
construction it is possible to discard most of the image pixels while
maintaining the image semantic content.

50



4.2 – Single-Domain Classification

SLIC (N ,Σ,C) Node Feat. Edge Selection Edge Feat. Test Acc (%)

(300,5,5) rgb ρ = 3 xy Distance 86.45
(200,5,5) rgb ρ = 3 xy Distance 85.48
(100,5,5) rgb ρ = 3 xy Distance 61.80
(200,1,1) rgb ρ = 3 xy Distance 75.84
(100,1,1) rgb ρ = 3 xy Distance 22.23
(200,1,0.1) rgb ρ = 3 xy Distance 54.06
(100,1,0.1) rgb ρ = 3 xy Distance 23.34
(200,5,1) rgb ρ = 3 xy Distance 25.43
(200,5,0.1) rgb ρ = 3 xy Distance 82.76
(200,5,5) rgb ρ = 2 xy Distance 73.20
(200,5,5) rgb ρ = 4 xy Distance 82.61
(200,5,5) rgb ρ = 6 xy Distance 73.13
(200,5,5) rgb ρ = 3 rgbxy Distance 83.09
(200,5,5) rgb KNN k = 3 xy Distance 76.30
(300,1,1) gray ρ = 3 xy Distance 30.65
(200,5,5) gray ρ = 3 xy Distance 53.07
(100,5,5) gray ρ = 3 xy Distance 28.62
(300,1,1) rgbxy ρ = 3 xy Distance 47.88
(200,5,5) rgbxy ρ = 3 xy Distance 11.57
(100,5,5) rgbxy ρ = 3 xy Distance 26.95

Table 4.2: Results on MNIST-M dataset with different graph-creation settings and
BB.1 network.

Experiments on different backbones

After having identified the best graph settings for each dataset, we focused on eval-
uating the proposed network variants defined by increasing the depth in different
ways. Specifically we started with the BB.2. The results in table indicate that for
MNIST-M and USPS the network backbone can make a significant difference with
a performance gain up to 6 pp.
For MNIST the BB.2 network does not present any advantage with respect to
its simpler version, but further improvement can be observed by considering other
graph-parameter combination and the network variants described in 4.1.4, as shown
in table 4.5.
All experiments are executed in 60 epochs, with learning rate 0.05 and decay step

51



4 – Experiments

SLIC (N ,Σ,C) Node Feat. Edge Selection Edge Feat. Test Acc (%)
(600,random) gray ρ = 3 xy Distance 41.20
(400,random) gray ρ = 3 xy Distance 78.00

(300,5,5) gray ρ = 3 xy Distance 86.44
(200,5,5) gray ρ = 3 xy Distance 77.62
(100,5,5) gray ρ = 3 xy Distance 80.53
(300,1,1) gray ρ = 3 xy Distance 83.86
(200,1,1) gray ρ = 3 xy Distance 77.68
(100,1,1) gray ρ = 3 xy Distance 79.83
(300,1,0.1) gray ρ = 3 xy Distance 74.45
(200,1,0.1) gray ρ = 3 xy Distance 71.01
(100,1,0.1) gray ρ = 3 xy Distance 67.13
(300,5,1) gray ρ = 3 xy Distance 37.51
(300,5,0.1) gray ρ = 3 xy Distance 38.22
(300,5,5) gray ρ = 2 xy Distance 63.85
(300,5,5) gray ρ = 4 xy Distance 82.30
(300,5,5) gray ρ = 6 xy Distance 86.34
(200,5,5) gray ρ = 2 xy Distance 53.85
(200,5,5) gray ρ = 4 xy Distance 74.66
(200,5,5) gray ρ = 6 xy Distance 81.01
(100,5,5) gray ρ = 6 xy Distance 80.90
(100,5,5) gray ρ = 9 xy Distance 86.07
(100,5,5) gray ρ = 11 xy Distance 83.65
(300,5,5) gray ρ = 3 rgbxy Distance 88.49
(200,5,5) gray ρ = 3 rgbxy Distance 78.75
(300,5,5) gray KNN k = 3 xy Distance 82.95
(200,5,5) gray KNN k = 3 xy Distance 76.33

Table 4.3: Results on USPS dataset with different graph-creation settings and
BB.1 network.

each 20 epochs, even if convergence is reached earlier (epoch 45) for simpler problem
(i.e. 200 superpixels).

52



4.3 – Domain shift due to Graph Construction

Domain SLIC (N ,Σ,C) Node Feat. Edge Selection Edge Feat. Test Acc (%)
MNIST (200,5,5) gray ρ=3 xy 98.85

MNIST-M (200,5,5) rgb ρ=3 xy 92.13
USPS (300,5,5) gray ρ=3 xy 90.71

Table 4.4: Best scores executed with backbone BB.2

Backbone Domain SLIC (N ,Σ,C) Test Acc (%)

BB.4

MNIST (200,5,5) 99.07
MNIST (100,5,5) 98.46
MNIST (100,1,0.1) 84.75
MNIST (100,1,1) 98.40
MNIST (200,1,1) 99.17

BB.3

MNIST (200,5,5) 99.07
MNIST (100,5,5) 84.06
MNIST (100,1,0.1) 84.90
MNIST (100,1,1) 98.29
MNIST (200,1,1) 99.17

BB.5

MNIST (200,5,5) 98.87
MNIST (100,5,5) 98.50
MNIST (100,1,0.1) 85.04
MNIST (100,1,1) 98.53
MNIST (200,1,1) 99.05

Table 4.5: Combined analysis on different graph parameters and our deeper graph-
based networks on MNIST.

With these experiments, we actually achieve competitive results even in comparison
with standard Convolutional Neural Networks and we overcomes results of the
original graph network illustrated in [7]. We highlight that their result on MNIST
(99.14) was obtained considering only white pixels which largely facilitated the
digit recognition out of the black backround. This approach is not replicable for
other real-world (rgb) images, while our graph extraction method is not restricted
to bi-level color maps.

4.3 Domain shift due to Graph Construction

Due to the variability observed in the previous experiments we can state that the
way in which we define the graph may have a relevant effect on the observed data

53



4 – Experiments

Source - SLIC,ρ Target - SLIC,ρ NoAdapt. Jig(DG) Jig(DA) GDANN
M
N
IS
T (200,5,5),3 (200,5,5),3 98.38 98.08 - -

(200,5,5),3 (100,1,1),3 51.72 62.86 61.61 77.25
(200,5,5),3 (200,5,5),6 30.85 16.60 29.36 16.04
(200,5,5),3 (200,1,0.1),3 66.30 49.45 61.73 67.07

M
N
IS
T
-M (200,5,5),3 (200,5,5),3 85.48 76.33 - -

(200,5,5),3 (200,1,1),3 42.13 78.58 40.09 21.80
(200,5,5),3 (100,5,5),3 23.13 29.06 17.85 25.10
(200,5,5),3 (200,1,0.1),3 66.30 36.26 41.31 33.59

U
SP

S

(300,5,5),3 (300,5,5),3 86.44 92.08 - -
(300,5,5),3 (100,5,5),3 61.05 20.46 39.02 57.34
(300,5,5),3 (200,1,1),3 84.79 88.52 93.71 85.24
(300,5,5),3 (100,1,0.1),3 38.65 10.36 12.23 56.29

Table 4.6: Domain generalization (DG) and adaptation (DA) with different graph
extraction. SLIC parameters are listed as (NumSegments, Sigma, Compactness).
Jig(DG) and Jig(DA) stand for JiGraphNet in its applications in the two consid-
ered settings. GDANN stands for GraphDANN. Results are compared per-row and
appear in bold when improving over the NoAdapt. baseline.

S - SLIC,ρ T - SLIC,ρ NoAdapt. Jig(DG) Jig(DA) GDANN
MNIST (200,5,5),3 (100,1,1),3 69.35 76.15 75.38 86.13
MNISTM (200,5,5),3 (200,1,0.1),3 48.75 52.93 62.13 71.74
USPS (300,5,5),3 (200,1,1),3 87.12 86.51 90.55 92.08

Table 4.7: Domain Adaptation and generalization with different graph extraction,
repeating best score on BB.2. SLIC parameters are listed as (NumSegments,
Sigma, Compactness)

distribution. Thus, although starting from a single dataset, the used graph setting
may introduce a structural domain shift. We investigate this condition and how
to overcome the shift with adaptive learning solutions. Specifically we sub-selected
cases with significantly different graph configurations and tested both JiGraphNet
and GraphDANN. The first refer to our graph-based implementation of [10] method,
based on solving unsupervised jigsaws based on different domains. We indicate with
Jig DA the Domain Adaptation experiments when both the source and the target
are involved in the unsupervised method. Conversely, Jig DG stands for Domain
Adaptation experiments, meaning when only the source is involved in the secondary
task. For GraphDANN only the DA setting is feasible.
The results in table 4.6 confirm a significant performance drop when source and tar-
get samples are described with different graph parameters (column NoAdapt.). In

54



4.4 – Domain shift due to Visual Style

five out of twelve cases Jig(DG), by just introducing the secondary auxiliary puzzle
task, support the main classification performance producing a significant accuracy
improvement over the non adaptive baseline. In the DA setting, GraphDANN
seems more effective than Jig(DA). Our intuition is that the graph quantization
needed to define the puzzle may interfere at different extent with source and tar-
get when there is a structural shift among them. Thus, simple feature adaptation
with GraphDANN shows better results. Indeed this reasoning may also justify the
Jig(DG) performance tha appear better than the corresponding DA case: in DG
we do not observe the target, thus the method deals only with samples of a single
graph structure, avoiding any quantization confusion during training.
We re-ran the experiments with top results also with the deeper BB.2 network,
showing the results in table 4.7. Here with DG we get performance almost equal
or higher than the NoAdapt. baseline and we always observe an improvement over
this reference in the DA settings.

4.4 Domain shift due to Visual Style

The second part of our study focuses on the more standard domain shift problem,
due to a visual style variation across datasets. In this context, the gap between
domains is larger than the case in the previous section and the effect of the adap-
tation approach is more evident. We fix several graph embeddings and change the
visual domain between source and target considering different dataset pairs. Table
4.8 show the obtained results both without adaptation as well as in the DG and DA
settings. As can be observed, almost all the performance improve over the naïve
not-adaptive baseline. Moreover here Jig(DA) outperforms GDANN in 8 out of 12
cases, confirming that the proposed self-supervised solution tend to be better than
its competitor when the source and target share the same graph structure. This
behaviour is also confirmed when using the deeper version of the network, as shown
by the results in 4.9.

55



4 – Experiments

Source Target SLIC NoAdapt. Jig(DG) Jig(DA) GDANN
MNIST USPS (100,5,5) 68.81 71.27 69.40 60.19
MNIST USPS (300,5,5) 24.7 54.71 58.22 54.61
MNIST USPS (200,5,5) 24.04 53.09 55.69 45.55
MNIST MNISTM (100,5,5) 12.63 10.65 9.78 12.44
MNIST MNISTM (200,1,1) 9.42 9.79 13.76 9.97
MNIST MNISTM (200,5,5) 10.76 10.99 10.80 14.76
MNISTM USPS (100,5,5) 17.63 16.63 18.23 18.90
MNISTM USPS (300,5,5) 18.69 27.35 28.41 23.70
MNISTM USPS (200,5,5) 20.62 24.29 28.91 20.96
USPS MNIST (100,5,5) 23.65 24.02 8.83 39.62
USPS MNIST (200,5,5) 11.72 21.52 45.5 20.04
USPS MNIST (300,5,5) 12.01 32.04 30.12 19.96

Table 4.8: Domain Adaptation and generalization with different graph extraction.
SLIC parameters are listed as (NumSegments, Sigma, Compactness).

Source Target SLIC NoAdapt. Jig (DG) Jig (DA) GDANN
MNIST USPS (100,5,5) 65.36 60.86 70.18 70.09
MNIST MNISTM (300,5,5) 11.48 10.33 12.21 25.99
MNISTM USPS (200,5,5) 22.71 32.38 32.30 19.09
USPS MNIST (300,5,5) 21.27 31.48 46.38 20.29

Table 4.9: Domain Adaptation and generalization with different graph extraction,
repeating best score on BB.2. SLIC parameters are listed as (NumSegments,
Sigma, Compactness)

56



Chapter 5

Conclusion and Future
Works

In the present work, we experimented a new way of dealing with computer vision
challenges. Our first goal was to validate the hypothesis of being able to dealing with
visual learning by: 1. using just a subset of relevant points of the original samples;
2. building graph structures on those points to embed meaningful relations between
points; 3. exploiting state-of-the-art graph-based Convolutional Neural Networks
to analyze those graphs. We considered a simple computer vision task such as digits
recognition, taking under consideration different domains with a different level of
complexity. We mainly looked at 3 datasets, MNIST, MNISTM and USPS. It
should be noted that, apart from MNIST, this was the first time these domains
were used in the context of graph deep learning. We created a full framework able
to extract relevant points from the input samples and to define edges that connect
each other with different criteria and options. The construction of the graph was
based on two main stages: extraction of points based on clusters of pixels, obtained
in turn by segmentation method SLIC ; and the definition of the edges, and the
relative weight, among nodes.
As a baseline of our research, we found that Dynamic Edge-Conditioned Filters [7]
convolutional kernel was the best solution to implement convolutions over image-
based graphs. Starting from this convolutional layer and the original architecture
made available, we researched different neural network structures in order to obtain
the optimal solution. Furthermore, we examined different graph extraction methods
to validate the most meaningful graph-based representation of the input. As a result
of this first part of our project, we were able to obtain competitive results regarding
standard convolutional networks, despite using a heavily reduced number of points
from the original samples (∼ 1 order of magnitude). This means that, even with a
strongly reduced set of points, it is possible to approach state-of-the-art results for

57



5 – Conclusion and Future Works

digits recognition.
The second part of our research focused on the hard challenge of the domain shift
problem: this refers to cases where training and test data belong to two different
distributions. To handle the gap between domains, we considered two main domain
generalization methods. The first one was the adaptation to the graph world of a
recent domain generalization method that has shown how combining supervised and
self-supervised knowledge can improve generalization [10]. To adjust the method for
graph geometry, we passed through group-based shuffling and graph reconstruction.
The puzzle tasks consisted in learning and then predicting the right permutation
index. Our second method lay on the existing technique [11] of domain adversarial
learning. As in the original method, we used a combination of Gradient Reversal
Layer and domain classifier to avoid the extraction of domain-dependent features.
Although our research mainly focused on these two methods, further methods were
originally considered. Furthermore, we defined two different domain shift problems:
the first is induced by using different segmentation methods on the same domain
to define the source and target domain, while the second one depends on actual
different domains used as source and target. Results of the second part of the
research are compelling. Since the aim of an experimental setting is to validate
the effectiveness of adaptation methods in the context of a graph, it should be
stressed that our goal was not to obtain the best scores, but to obtain a sensible
increment of learning performances when adaptation methods are involved in the
network training. With the present research, we were able to demonstrate that
domain adaptation methods work for graph-based learning models, in both single
and multiple-domain tasks. Furthermore, we tested with successful outcomes a new
adaptation method that had never been applied before in graph context.
Needless to say, this work is only a starting point to a more in-depth analysis and
evaluation of the described intuition that connects images and graphs to generaliza-
tion. One possibility for future developments envisages a smoother integration of
all the components analyzed thus far, towards a fully learnable end-to-end model
able to perform jointly segmentation and cross-domain visual learning. Another
possibility regards the actuation of graph-based generalization methods for other
tasks, such as node classification [6], [67] or graph classification with other datasets
[68][69].

58



List of Tables

3.1 Adjacency matrix representation for graph in 3.2. . . . . . . . . . . 27

4.1 Results on MNIST dataset with different graph-creation settings and
BB.1 network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Results on MNIST-M dataset with different graph-creation settings
and BB.1 network. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Results on USPS dataset with different graph-creation settings and
BB.1 network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Best scores executed with backbone BB.2 . . . . . . . . . . . . . . 53
4.5 Combined analysis on different graph parameters and our deeper

graph-based networks on MNIST. . . . . . . . . . . . . . . . . . . . 53
4.6 Domain generalization (DG) and adaptation (DA) with different

graph extraction. SLIC parameters are listed as (NumSegments,
Sigma, Compactness). Jig(DG) and Jig(DA) stand for JiGraphNet
in its applications in the two considered settings. GDANN stands
for GraphDANN. Results are compared per-row and appear in bold
when improving over the NoAdapt. baseline. . . . . . . . . . . . . . 54

4.7 Domain Adaptation and generalization with different graph extrac-
tion, repeating best score on BB.2. SLIC parameters are listed as
(NumSegments, Sigma, Compactness) . . . . . . . . . . . . . . . . . 54

4.8 Domain Adaptation and generalization with different graph extrac-
tion. SLIC parameters are listed as (NumSegments, Sigma, Com-
pactness). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.9 Domain Adaptation and generalization with different graph extrac-
tion, repeating best score on BB.2. SLIC parameters are listed as
(NumSegments, Sigma, Compactness) . . . . . . . . . . . . . . . . . 56

59



60



List of Figures

2.1 Example of a convolutional neural network applied in a computer
vision task (from [12]) . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Representation of a neuron output function . . . . . . . . . . . . . . 9
2.3 General diagram for a 3-layers NN architecture. . . . . . . . . . . . 9
2.4 Convolutional operation: the input matrix (left) is convoluted with

the 3 × 3 filter (center) on each 3 × 3 window to obtain the output
volume (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Example of max pooling application . . . . . . . . . . . . . . . . . . 13
2.6 Typical examples of domain shift problem . . . . . . . . . . . . . . 16
2.7 Explanatory diagrams representing common domain shift problems

such as Domain Adaptation, Transfer Learning, Multi-task Learning.
Courtesy of [18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 DANN general Neural Network architecture, courtesy of [11] . . . . 24

3.1 Example of simple, general graph. . . . . . . . . . . . . . . . . . . . 25
3.2 Example of weighted, directed graph. . . . . . . . . . . . . . . . . . 26
3.3 Example of graph coarsening (before and after) . . . . . . . . . . . 33

4.1 MNIST Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 MNISTM Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 USPS Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Example of points extraction on different datasets. In this case was

used SLIC with sigma = 1, compactness = 1, Segments = 200. . 42
4.5 Example of points extraction on different datasets. In this case was

used SLIC with sigma = 5, compactness = 0.1, Segments = 200. 43

61



List of Figures

4.6 Example of full graph embedding. In this case was used SLIC with
sigma = 1, compactness = 1, Segments = 200. Edges are detected
with k-nearest neighbors method (k = 3). . . . . . . . . . . . . . . 44

4.7 GraphDAN and JiGraphNet, architecture and losses involved . . . . 48

62



Bibliography

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks”, in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

[2] R. Geirhos, C. R. Temme, J. Rauber, H. H. Schütt, M. Bethge, and F. A.
Wichmann, “Generalisation in humans and deep neural networks”, in Ad-
vances in Neural Information Processing Systems, 2018, pp. 7538–7550.

[3] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, “Multimodal
deep learning”, in Proceedings of the 28th international conference on machine
learning (ICML-11), 2011, pp. 689–696.

[4] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in graph
domains”, Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005., vol. 2, 729–734 vol. 2, 2005.

[5] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, Spectral Networks and Lo-
cally Connected Networks on Graphs, 2013. arXiv: 1312.6203 [cs.LG].

[6] T. N. Kipf and M. Welling, Semi-Supervised Classification with Graph Con-
volutional Networks, 2016. arXiv: 1609.02907 [cs.LG].

[7] M. Simonovsky and N. Komodakis, “Dynamic Edge-Conditioned Filters in
Convolutional Neural Networks on Graphs”, CoRR, vol. abs/1704.02901, 2017.
arXiv: 1704.02901. [Online]. Available: http://arxiv.org/abs/1704.
02901.

[8] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon,
“Dynamic Graph CNN for Learning on Point Clouds”, ACM Transactions on
Graphics, vol. 38, no. 5, 1–12, 2019, issn: 0730-0301. doi: 10.1145/3326362.
[Online]. Available: http://dx.doi.org/10.1145/3326362.

[9] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein,
“Geometric Deep Learning on Graphs and Manifolds Using Mixture Model
CNNs”, 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. doi: 10.1109/cvpr.2017.576. [Online]. Available: http:
//dx.doi.org/10.1109/CVPR.2017.576.

63

https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1704.02901
http://arxiv.org/abs/1704.02901
http://arxiv.org/abs/1704.02901
https://doi.org/10.1145/3326362
http://dx.doi.org/10.1145/3326362
https://doi.org/10.1109/cvpr.2017.576
http://dx.doi.org/10.1109/CVPR.2017.576
http://dx.doi.org/10.1109/CVPR.2017.576


BIBLIOGRAPHY

[10] F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tommasi, “Do-
main Generalization by Solving Jigsaw Puzzles”, in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[11] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky, “Domain-Adversarial Training of Neural
Networks”, Advances in Computer Vision and Pattern Recognition, 189–209,
2017, issn: 2191-6594. doi: 10.1007/978- 3- 319- 58347- 1_10. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-58347-1_10.

[12] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, nature, vol. 521,
no. 7553, p. 436, 2015.

[13] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”,
Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014. [Online].
Available: http://jmlr.org/papers/v15/srivastava14a.html.

[14] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “Slic
superpixels”, Tech. Rep., 2010.

[15] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, “SLIC
Superpixels Compared to State-of-the-Art Superpixel Methods”, IEEE Trans.
Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282, Nov. 2012.

[16] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W.
Vaughan, “A theory of learning from different domains”, Machine learning,
vol. 79, no. 1-2, pp. 151–175, 2010.

[17] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Deeper, broader and artier
domain generalization”, in Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 5542–5550.

[18] T. Tommasi, “Learning to learn by exploiting prior knowledge”, EPFL, Tech.
Rep., 2013.

[19] G. Csurka, Domain Adaptation for Visual Applications: A Comprehensive
Survey, 2017. arXiv: 1702.05374 [cs.CV].

[20] M. Mancini, L. Porzi, S. R. Bulo, B. Caputo, and E. Ricci, “Boosting Domain
Adaptation by Discovering Latent Domains”, 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2018. doi: 10.1109/cvpr.2018.
00397. [Online]. Available: http://dx.doi.org/10.1109/CVPR.2018.00397.

[21] M.-M. Paumard, D. Picard, and H. Tabia, “Image Reassembly Combining
Deep Learning and Shortest Path Problem”, in European Conference on Com-
puter Vision (ECCV 2018), Munich, Germany, Sep. 2018. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01869765.

64

https://doi.org/10.1007/978-3-319-58347-1_10
http://dx.doi.org/10.1007/978-3-319-58347-1_10
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1702.05374
https://doi.org/10.1109/cvpr.2018.00397
https://doi.org/10.1109/cvpr.2018.00397
http://dx.doi.org/10.1109/CVPR.2018.00397
https://hal.archives-ouvertes.fr/hal-01869765


BIBLIOGRAPHY

[22] Z. Cao, L. Ma, M. Long, and J. Wang, “Partial adversarial domain adapta-
tion”, in Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 135–150.

[23] G. Angeletti, B. Caputo, and T. Tommasi, “Adaptive Deep Learning Through
Visual Domain Localization”, in 2018 IEEE International Conference on Robotics
and Automation (ICRA), 2018, pp. 7135–7142. doi: 10.1109/ICRA.2018.
8460650.

[24] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation learn-
ing by predicting image rotations”, arXiv preprint arXiv:1803.07728, 2018.

[25] A. D’Innocente and B. Caputo, “Domain Generalization with Domain-Specific
Aggregation Modules”, Pattern Recognition, 187–198, 2019, issn: 1611-3349.
doi: 10.1007/978-3-030-12939-2_14. [Online]. Available: http://dx.doi.
org/10.1007/978-3-030-12939-2_14.

[26] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Learning to generalize:
Meta-learning for domain generalization”, in Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[27] R. Gong, W. Li, Y. Chen, and L. V. Gool, “DLOW: Domain flow for adapta-
tion and generalization”, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 2477–2486.

[28] M. Ghifary, W Bastiaan Kleijn, M. Zhang, and D. Balduzzi, “Domain general-
ization for object recognition with multi-task autoencoders”, in Proceedings of
the IEEE international conference on computer vision, 2015, pp. 2551–2559.

[29] S. Motiian, M. Piccirilli, D. A. Adjeroh, and G. Doretto, “Unified deep su-
pervised domain adaptation and generalization”, in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 5715–5725.

[30] S. J. Pan and Q. Yang, “A survey on transfer learning”, IEEE Transactions
on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[31] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught learning:
transfer learning from unlabeled data”, in Proceedings of the 24th interna-
tional conference on Machine learning, ACM, 2007, pp. 759–766.

[32] L. Torrey and J. Shavlik, “Transfer learning”, in Handbook of research on ma-
chine learning applications and trends: algorithms, methods, and techniques,
IGI Global, 2010, pp. 242–264.

[33] R. Caruana, “Multitask Learning”, Machine Learning, vol. 28, no. 1, pp. 41–
75, 1997, issn: 1573-0565. doi: 10.1023/A:1007379606734. [Online]. Avail-
able: https://doi.org/10.1023/A:1007379606734.

[34] ——, “Multitask Learning: A Knowledge-Based Source of Inductive Bias”, in
ICML, 1993.

65

https://doi.org/10.1109/ICRA.2018.8460650
https://doi.org/10.1109/ICRA.2018.8460650
https://doi.org/10.1007/978-3-030-12939-2_14
http://dx.doi.org/10.1007/978-3-030-12939-2_14
http://dx.doi.org/10.1007/978-3-030-12939-2_14
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734


BIBLIOGRAPHY

[35] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, Geo-
metric deep learning: going beyond Euclidean data, 2016. arXiv: 1611.08097
[cs.CV].

[36] F. Cermelli, M. Mancini, E. Ricci, and B. Caputo, The RGB-D Triathlon:
Towards Agile Visual Toolboxes for Robots, 2019. arXiv: 1904.00912 [cs.RO].

[37] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted Graph Cuts without Eigen-
vectors A Multilevel Approach”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 29, no. 11, pp. 1944–1957, 2007. doi: 10.1109/
TPAMI.2007.1115.

[38] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains”, IEEE signal process-
ing magazine, vol. 30, no. 3, pp. 83–98, 2013.

[39] R. R. Coifman and M. Maggioni, “Diffusion wavelets”, Applied and Compu-
tational Harmonic Analysis, vol. 21, no. 1, pp. 53–94, 2006.

[40] M. Gavish, B. Nadler, and R. R. Coifman, “Multiscale Wavelets on Trees,
Graphs and High Dimensional Data: Theory and Applications to Semi Super-
vised Learning.”, in ICML, 2010, pp. 367–374.

[41] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs
via spectral graph theory”, Applied and Computational Harmonic Analysis,
vol. 30, no. 2, pp. 129–150, 2011.

[42] R. Rustamov and L. J. Guibas, “Wavelets on graphs via deep learning”, in
Advances in neural information processing systems, 2013, pp. 998–1006.

[43] N. Sharon and Y. Shkolnisky, “A class of Laplacian multiwavelets bases for
high-dimensional data”, Applied and Computational Harmonic Analysis, vol. 38,
no. 3, pp. 420–451, 2015.

[44] X. Zhang, X. Dong, and P. Frossard, “Learning of structured graph dictionar-
ies”, in 2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, 2012, pp. 3373–3376.

[45] X. Bresson, T. Laurent, and J. von Brecht, “Enhanced lasso recovery on
graph”, in 2015 23rd European Signal Processing Conference (EUSIPCO),
IEEE, 2015, pp. 1501–1505.

[46] N. Shahid, V. Kalofolias, X. Bresson, M. Bronstein, and P. Vandergheynst,
“Robust principal component analysis on graphs”, in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 2812–2820.

[47] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on graph-
structured data”, arXiv preprint arXiv:1506.05163, 2015.

66

https://arxiv.org/abs/1611.08097
https://arxiv.org/abs/1611.08097
https://arxiv.org/abs/1904.00912
https://doi.org/10.1109/TPAMI.2007.1115
https://doi.org/10.1109/TPAMI.2007.1115


BIBLIOGRAPHY

[48] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-based learning
applied to document recognition”, Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[49] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural net-
works on graphs with fast localized spectral filtering”, in Advances in neural
information processing systems, 2016, pp. 3844–3852.

[50] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks”, in Ad-
vances in Neural Information Processing Systems, 2016, pp. 1993–2001.

[51] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A.
Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs for learn-
ing molecular fingerprints”, in Advances in neural information processing sys-
tems, 2015, pp. 2224–2232.

[52] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social
representations”, in Proceedings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, ACM, 2014, pp. 701–710.

[53] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale
information network embedding”, in Proceedings of the 24th international
conference on world wide web, International World Wide Web Conferences
Steering Committee, 2015, pp. 1067–1077.

[54] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with
global structural information”, in Proceedings of the 24th ACM international
on conference on information and knowledge management, ACM, 2015, pp. 891–
900.

[55] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks”,
in Proceedings of the 22nd ACM SIGKDD international conference on Knowl-
edge discovery and data mining, ACM, 2016, pp. 855–864.

[56] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-supervised
learning with graph embeddings”, arXiv preprint arXiv:1603.08861, 2016.

[57] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality”, in Advances
in neural information processing systems, 2013, pp. 3111–3119.

[58] M. Fey and J. E. Lenssen, “Fast Graph Representation Learning with PyTorch
Geometric”, in ICLR Workshop on Representation Learning on Graphs and
Manifolds, 2019.

[59] P. Russo, F. M. Carlucci, T. Tommasi, and B. Caputo, “From source to target
and back: symmetric bi-directional adaptive gan”, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 8099–
8108.

67



BIBLIOGRAPHY

[60] S. Cicek and S. Soatto, “Unsupervised Domain Adaptation via Regularized
Conditional Alignment”, arXiv preprint arXiv:1905.10885, 2019.

[61] F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tommasi, “Do-
main Generalization by Solving Jigsaw Puzzles”, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp. 2229–
2238.

[62] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backprop-
agation”, arXiv preprint arXiv:1409.7495, 2014.

[63] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit database”,
AT&T Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, vol. 2,
p. 18, 2010.

[64] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour Detection and
Hierarchical Image Segmentation”, IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 5, pp. 898–916, May 2011, issn: 0162-8828. doi: 10.1109/TPAMI.
2010.161. [Online]. Available: http://dx.doi.org/10.1109/TPAMI.2010.
161.

[65] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition”, in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

[66] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image seg-
mentation”, International journal of computer vision, vol. 59, no. 2, pp. 167–
181, 2004.

[67] B. Jiang, Z. Zhang, J. Tang, and B. Luo, Graph Optimized Convolutional
Networks, 2019. arXiv: 1904.11883 [cs.CV].

[68] M. Cho, K. Alahari, and J. Ponce, “Learning graphs to match”, in Proceedings
of the IEEE International Conference on Computer Vision, 2013, pp. 25–32.

[69] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading
digits in natural images with unsupervised feature learning”, 2011.

[70] C. Qin, H. You, L. Wang, C.-C. J. Kuo, and Y. Fu, “PointDAN: A Multi-Scale
3D Domain Adaption Network for Point Cloud Representation”, in Advances
in Neural Information Processing Systems, 2019, pp. 7190–7201.

[71] H. Li, S. Jialin Pan, S. Wang, and A. C. Kot, “Domain generalization with
adversarial feature learning”, in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2018, pp. 5400–5409.

[72] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, and et al., “ImageNet Large Scale Visual
Recognition Challenge”, International Journal of Computer Vision, vol. 115,
no. 3, 211–252, 2015, issn: 1573-1405. doi: 10.1007/s11263-015-0816-y.
[Online]. Available: http://dx.doi.org/10.1007/s11263-015-0816-y.

68

https://doi.org/10.1109/TPAMI.2010.161
https://doi.org/10.1109/TPAMI.2010.161
http://dx.doi.org/10.1109/TPAMI.2010.161
http://dx.doi.org/10.1109/TPAMI.2010.161
https://arxiv.org/abs/1904.11883
https://doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y


BIBLIOGRAPHY

[73] Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, and D. Tao, “Deep domain
generalization via conditional invariant adversarial networks”, in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp. 624–639.

[74] N. Courty, R. Flamary, A. Habrard, and A. Rakotomamonjy, Joint Distri-
bution Optimal Transportation for Domain Adaptation, 2017. arXiv: 1705.
08848 [stat.ML].

[75] J. Shi and J. Malik, “Normalized cuts and image segmentation”, Departmental
Papers (CIS), p. 107, 2000.

[76] Q. Wu and P. Hall, “Modelling Visual Objects Invariant to Depictive Style”,
in BMVC, 2013.

[77] Q. Wu, H. Cai, and P. Hall, “Learning Graphs to Model Visual Objects across
Different Depictive Styles”, in Computer Vision – ECCV 2014, D. Fleet, T.
Pajdla, B. Schiele, and T. Tuytelaars, Eds., Cham: Springer International
Publishing, 2014, pp. 313–328, isbn: 978-3-319-10584-0.

[78] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning,
10. Springer series in statistics New York, 2001, vol. 1.

[79] P. K. Chan, M. D. F. Schlag, and J. Y. Zien, “Spectral K-way ratio-cut par-
titioning and clustering”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 13, no. 9, pp. 1088–1096, 1994. doi:
10.1109/43.310898.

69

https://arxiv.org/abs/1705.08848
https://arxiv.org/abs/1705.08848
https://doi.org/10.1109/43.310898

	Introduction
	Preliminaries on Visual Learning
	Machine and Deep Learning
	Neural Networks
	Convolutional Neural Networks

	Segmentation Algorithms
	SLIC Superpixels

	The Domain-Shift Problem
	Domain Adaptation
	Domain Generalization
	Transfer Learning
	Multi-Task Learning
	Domain Generalization by Solving Jigsaw Puzzles
	Domain Adversarial Training


	Preliminaries on Graph Deep Learning
	Introduction to Graph Theory
	Geometric Deep Learning
	Deep learning on Euclidean Data
	Deep Learning on Graphs
	Graph Convolutions
	Graph Coarsening
	Previous Works
	Dynamic Edge-Conditioned Filters


	Experiments
	Settings and Implementation
	Digits Datasets
	Image-to-Graph Mapping
	Domain Adaptation and Generalization
	CNN Backbones

	Single-Domain Classification
	Domain shift due to Graph Construction
	Domain shift due to Visual Style

	Conclusion and Future Works
	List of Tables
	List of Figures

