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Abstract

Point cloud processing and 3D shape understanding are very challenging tasks for which
deep learning techniques have demonstrated a great potential. Still further progresses
are essential to allow artificial intelligent agents to interact with the real world, where
the amount of annotated data may be limited and integrating new sources of knowledge
becomes crucial to support autonomous learning. Here we consider several possible
scenarios involving synthetic and real-world point clouds and we propose to combine
supervised and self-supervised learning. We introduce a multi-task model that can solve
a 3D puzzle while learning the main task of shape classification or part segmentation on
the available annotated data. An extensive analysis over several state-of-the-art datasets
investigating transfer learning and cross-domain settings shows the effectiveness of our
approach.
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Chapter 1

Introduction

1.1 Contextual Overview

We are living interesting times, what machines are able to do nowadays is con-
stantly shifting through new scenarios. A growing-up number of semantic percep-
tual tasks is getting solved by machines at near-superhuman levels of performance.
Although it’s rather reckless speaking about machine thinking and acting as hu-
mans, in a safer way we refer to algorithms approximating nonlinear processes
efficiently. Those generally fall under the name of Deep Learning techniques. At
the base of Deep Learning techniques there are Deep Neural Networks, mathemat-
ical entities able to learn from examples which enabled the overall field of Artificial
Intelligence. AI has achieved a great leap in recent years with terrific results in
the area of computer vision. This naturally reflects also in our every-day life with
apps able to collect images and automatically classify object, detect faces, recog-
nize places and so on. Still the task of fully understanding our real world remains
far-fetched for many reasons ranging from the inherent difficulty of dealing with a
three-dimensional space as well as time and domain variations which makes any
prediction unstable. Currently those issues are the same that maintain a large
gap between having a smartphone in our hands and a robot at home. Embodied
intelligent systems need more than 2D-visual perception: 3D-shapes have to be
reliably recognized regardless of the environmental constraints and possibly seg-
mented in their functional parts to allow a robot completing a simple task as can
be opening a honey jar. Thanks to the rise of powerful computational resources,
3D research is also progressively flourishing together with new ways to collect
and describe 3D data. LiDAR scanners and stereo cameras gave rise to massive
point cloud datasets possibly spanning even large entities such as an entire city.
However, they come with three main drawbacks: point clouds are unstructured,
unordered and eager for precise manual annotation due to the many causes of
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1 – Introduction

noise. The first two properties make typical convolutional neural networks (CNN)
unsuitable for point clouds. Possible solutions consists in rendering point clouds
to multiple 2D views or pass through a separate voxelization step only followed
by 3D CNN, but these techniques are either computationally expensive or come
with inevitable loss of information with negative effects on the overall recognition
or segmentation performance. The third property has initially guided research to-
wards very well lab-controlled and synthetic CAD object datasets where labeling
is simpler. However the most recent results on those kind of testbed are witnessing
a trend of performance saturation raising the question of how to move forward.
All these challenges describe a research area in need of new solutions for effective
and efficient deep learning models able to deal with large amount of unsupervised
real-world point cloud data.

1.2 A matter of Perception
Despite the impressive results achieved by CNN architectures in the 2D domain
(RGB images), research on 2D data also highlighted the need for huge labeled
training dataset as ImageNet. Large scale 3D CAD labelled models datasets, as
ModelNet [1] and ShapeNet [2], have been released only few years ago (2015), open-
ing the door for more experiments and boosting the research in this area. Large
data availability, cheaper and more accurate data acquisition devices, highly par-
allel GPU computing affordability, all these factors together motivated the push
for 3D deep learning, aiming to exploit 3D data representations in end-to-end
deep learning algorithms. 3D data directly encode the geometric properties of
sensed objects, pushing computer vision beyond the inherent limitations of a 2D
representation. For an increasing number of AI application fields, such as object
manipulation, autonomous vehicles, car detection etc. 2D images does not provide
sufficient information to leverage for the task accomplishment.
Intelligent systems, to be such, must be aware of what is around them in terms of
dimension, location and orientation; they should also be able to interact with the
surrounding elements in an effective and reasonable way. To allow intelligent sys-
tems build a robust comprehensive perception of what is around, perform planning
and decision making, an increasing amount of information should be provided to
those, using 3D data have quite an impact on this process.

Robot Vision and 3D Grasping Robot vision refers to the capability of a
robot to visually perceive the environment and interact with it [3]. Having percep-
tion of what is around is not trivial, the realization of a robot perception system
is fundamental for having robots behaving in an intelligent way, interacting with
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1 – Introduction

objects and people in realistic scenarios. An example of a robot complex inter-
action is object manipulation: a robot, once chosen a target object, must control
its gripper moving it (in terms of 3D position and orientation) according to the
position and structure of the target object. Several factors affect grasping process:
object geometry, toughness or mass, gripper geometry, materials friction, possible
interactions with other objects in the neighbourhood, etc. While object recognition
and categorisation works reasonably well in the 2D domain, 3D vision is manda-
tory for building robot perception systems, enabling those to ‘consciously’ interact
with real-world objects, performing everyday manipulation tasks in realistic hu-
man environments. Mousavian et al. in [4] tackled the problem of unknown objects
grasping with a learning-based 3D vision framework whose goal is to automatically
predict stable grasping regions of 3D point clouds.

Autonomous Vehicles Self-driving cars are equipped with several sensors (in-
cluding LiDAR 3D scanners, radars, cameras, radars, and ultrasound imaging)
in order to perceive what happens around them at different semantic levels and
capacities. However, information is not knowledge, the difference between simply
gathering information on what’s around and getting some understanding of it is
huge. Intelligent algorithms needs to be developed in order to exploit the gathered
information for taking actions and react to stimulus from the world outside, this
is exactly where AI comes into play. Vision systems in autonomous vehicles has
to solve several tasks (including road detection, on-road object detection etc.) to
successfully mature a perception of the surrounding environment. Additional in-
formation provided by 3D data is essential and is greedily exploited in building this
environment perception. 3D data from LiDAR scanners provide multiple advan-
tages with respect to 2D images, overcoming one of the main drawback in case of
2D-representation, i.e. performance degradation under different illumination and
weather conditions.

1.3 Motivation
The novelty of this work consists in the introduction of cross-domain adaptive
learning to 3D vision. A large amount of recent literature focusing on images has
shown how the lack of data annotation and the possible domain shift issues can be
alleviated by being able to integrate different source of knowledge in the learning
process. Domain Transfer exploits pre-trained models as initialization when the
number of training data is scarce. Domain Adaptation leverage transductively
on the unlabeled target data to align training and target distributions. Domain
Generalization elaborates optimization methods and regularization tools that lead
to a better learning equilibrium conditions on the training data and reflects on
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more reliable results on samples from new and variable testing conditions. Self-
supervised tasks have also shown to be a helpful support. They are defined on
unsupervised data, by neglecting part of the original inherent sample information
(orientation, relative part position, color) and then using it as annotation for su-
pervised learning. Tasks like rotation recognition or jisgaw puzzle solution can be
easily used as pre-text warm up procedures for transfer learning in 2D.
When moving to 3D data, however, the design of self-supervision tasks is more
difficult and less explored. Moreover, the need to deploy this models in real-world
settings moves the problem from the controlled transfer learning setting on a single
test problem to real generalization for any novel domain without the need of costly
relearning procedures. Despite the remarkable results achieved for object recogni-
tion by operating on standard RGB images, there are inherent limitations due to
the loss of data caused by projecting the 3-dimensional world into a 2-dimensional
image plane. Further on, while 2D images have a unified representation as pixels
array, 3D data can be modelled with multiple representations such as point cloud,
mesh, volumetric field, multi-view images and parametric models, each fitting a
specific application scenario. The existence of multiple acknowledged representa-
tions translates into a non-trivial challenge for 3D understanding, not only, since
each representation has specific properties it is impossible to develop a unified
deep learning architecture managing all them. The advent of PointNet [5], which
processes irregular point cloud data by neural networks directly, draws attention
to the 3D point cloud representation, making it the most widely used for 3D shape
learning. Such network provides end-to-end classification and segmentation with-
out the memory overheads of voxel grids or the potential loss of information from
2D image representations. Not only, with [6] a new research field named Geo-
metric Deep Learning is opened, investigating the learning from non-Euclidean
structured data as point clouds, meshes, manifolds, graphs. This context reveals
the need for efficient 3D deep learning approaches, in addition there is huge in-
dustry interests: robotics, autonomous driving, virtual/augmented reality, smart
manufacturing etc. All this highlights the importance of 3D vision for having
intelligent systems reasoning about 3D space more effectively.

1.4 Contribution
We see this work as a first attempt to push the limits of 3D deep learning towards
more realistic scenarios, with less stringent constraints in complexity of learning
models and annotation resources towards a speed up of real world understanding
for autonomous intelligent systems. 3D data became widely available and always
more spread, not only, thanks to the rise in computational power researchers start
looking at their potential. Although several representations of 3D data exists point
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clouds represent one of the most valuable, standing out for availability, compact-
ness and robustness. At the same time, learning from point clouds is definitely not
easy due to the lack of an ordered regular structure. The recent success of PointNet
[5] demonstrated that is possible to consume point clouds extracting feature repre-
sentation in an efficient way, encouraging researchers to move in this direction. In
this context 3D domain represents a golden opportunity for AI researchers, overall
it is still terra incognita. Recent progress achieved by 2D deep learning in Domain
Adaptation and Domain Generalization enabled deep learning models with better
generalization abilities, this also facilitated the deployment of these models to real
world settings. Unfortunately, those achievements are not easily transferable to
3D domain.
Our work aims to define a methodological approach for Domain Adaptation and
Domain Generalization in the 3D domain. We meet the real world challenges
for 3D shape understanding proposing our recipe, highlighting the importance of
methods able to deal jointly with labeled and unlabeled data possibly coming
from different domains. In this direction we proposed a multi-task approach com-
bining supervised and self-supervised learning with compelling results in all the
considered scenarios over several real world and synthetic datasets.

5



Chapter 2

Related Works

How to use powerful deep learning tools for multiple task accomplishment (first
and foremost object classification and part segmentation) on point clouds is an
extremely active area of research. One of the first deep learning models working
with 3D point clouds was proposed by Qi et al. [5] and is called PointNet. It
combines symmetry and spatial transform functions to learn point-wise features
which are then aggregated into global representations. The follow-up work, namely
PointNet++ [7], further introduce a hierarchical combination of different Point-
Net modules. More recently, PointCNN [8] introduced a transformation mapping
shape vertices to a canonical space where their order is preserved and therefore
allowing for the application of traditional convolutional operators on them. Many
other solutions have also been published with the aim of making it possible the
use convolutional filters on point clouds either in the spatial [9, 10, 11] or in the
spectral domain [12, 13]. Self-supervised learning is a framework recently achieving
a large attention in the 2D computer vision community. It deals with originally
unlabeled data for which a supervised signal is obtained by first hiding part of
the available information and then trying to recover it. This procedure is gen-
erally indicated as pretext task and possible examples are image completion [14],
colorization [15, 16], relative position of patches [17, 18], rotation recognition [19],
identification of synthetic artifacts [20] or image clusters [21]. Several applications
also consider multi-modal data, involving depth [22], sound [23], motion-based
segmentation, video temporal ordering [24] and physical interactions [25]. The so-
lution of the pretext task capture high-level semantic knowledge from the data so
that the learned representation can be transferred to other downstream tasks as a
powerful warm-up initialization. The notion of self-supervision appears extremely
relevant also for 3D structures, both to capture internal local information at a good
neighborhood resolution before combining it with global shape knowledge, and to
get information on context and surfaces. Recently, several works dealing with 3d
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representations have proposed autoencoder-based architectures that search for self-
organizing maps [26], or extract latent point capsules [27]. Other approaches either
learn to deform a 2D grid onto the underlying 3D object surface [28], or directly
learn to generate the surface of 3D shapes. The recent work of [29] split a point
cloud into a front and a back half from several angles and train a model to predict
one from the other. A network to verify whether two randomly sampled parts
from the dataset belong or not to the same object is presented in [30], while [31]
proposes to reconstruct point clouds whose parts have been randomly rearranged.
In [32] a recurrent neural network (RNN) is trained to predict the next point on a
sequence created by a space filling curve. Finally, reconstruction, clustering, and
self-supervised classification are combined together in [33], defining a fully unsu-
pervised multi-task approach for feature learning. The pretext and downstream
stages define a particular case of Transfer Learning (TL) where unsupervised data
is exploited to support supervised learning on a collection and task of interest. In
many real-world applications, despite unlabeled data may be freely available, their
distribution can significantly differ from that of the supervised data at hand rising
the extra issue of how to deal with a domain shift for which the transfer procedure
may backfire. A similar problem holds also when the unsupervised collection is
not an extra source of knowledge, but corresponds instead to the test on which we
need to evaluate a supervised model. Domain Adaptation (DA) literature focuses
on this scenario supposing that the unsupervised test data is available at training
time. Many adaptive solutions have been proposed in the last years for 2D vision
problems some of which involve feature alignment strategies with dedicated losses
[34, 35, 36, 37], ad-hoc network layers [38, 39] and adversarial learning approaches
[40, 41]. Several recent works also involve generative style transfer methods [42,
43], reconstruction penalties [44, 45, 46] or conditions on metric [47] and feature
norms [48]. An even wider and more challenging problem is the one tackled by
Domain Generalization (DG). In this case, the specific adaptation target is not
provided at training time and the goal is learning a model robust to any kind of
new domain shift that can appear during deployment. Only few works have shown
good results in this setting, mainly considering feature alignment among multiple
data sources when available [44, 45, 49, 50], data augmentation [51, 52] and meta-
learning [53, 54]. Most recently, self-supervised learning has also shown promising
results in the DA and DG scenarios [55, 56, 57]. Although the main focus of the
aforementioned literature is object classification, the problem of dealing with con-
sistent domain shifts extends also to object detection and semantic segmentation
where several works have investigated the gap between synthetic and real data
which is crucial for automotive and robotics applications [58, 59, 60]. Still, all
the mentioned literature focuses on 2D images. Only one very recent work has
started investigating DA for 3D point clouds, [61] just touching the problem for
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moderate domain shifts and leaving open questions on how to deal with real world
applications in large need of adaptive solutions as evidenced by [62].
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Chapter 3

Background

3.1 Self-Supervised Learning

Most modern machine learning algorithms have the same drawback: the need for
huge amount of labeled training data, which are significantly more expensive and
time-consuming to obtain than raw unlabeled data. This drawback is emphasized
when dealing with learning tasks such as semantic or part segmentation which
require dense annotations. Self-Supervised Learning (SSL) is a particular form of
unsupervised learning in which the data provide the supervision by itself. SSL
have shown great potential, making the most of unlabeled data which are often
largely available and ‘free to use’. SSL does not depend on human annotations,
instead exploits pseudo labels directly generated from the data [63]. In SSL a
supervised signal is obtained by first hiding part of the available information and
then trying to recover it. This procedure is generally indicated as pretext task, pos-
sible examples are image completion [14], colorization [15, 16], channel prediction
[64], relative position of patches [17, 18], rotation recognition [19], identification
of synthetic artifacts [20] or image clusters [21]. Several applications also consider
multi-modal data, involving depth [22], sound [23], motion-based segmentation,
video temporal ordering [24] and physical interactions [25].
Recent publications have also shown extensions to 3D point clouds for object and
scene understanding as well as to 3D medical structures. Specifically [30] trains
a network to verify whether two randomly sampled parts from the dataset belong
or not to the same object and [31] proposes to reconstruct point clouds whose
parts have been randomly rearranged. Clustering and autoencoder-based recon-
struction are combined in [33], while in [32] an RNN is trained to predict the next
point on a sequence created by a space filling curve. In [65] translational and
rotational invariant volumetric features are learned by solving a Rubik’s Cube. In
all the previous cases, the pretext tasks are defined so that a high-level semantic
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understanding is essential for their solution: the knowledge encoded in the learned
deep feature representation is then transferred to other downstream tasks that
are trained either with linear SVM on those features or by fine-tuning from the
self-supervised models. Besides this sequential two-step procedure, recent works
focusing on image recognition have proposed alternative approaches based on a
multi-task framework [55, 56, 57] where supervised and self-supervised learning
are combined together with the the latter supporting robustness of the former in
case of limited annotated data and domain shift.

3.2 Multi-Task Learning

Multi-Task Learning (MTL) is an inductive transfer mechanism aiming to improve
the generalization of machine learning models by learning multiple tasks in par-
allel. When dealing with multiple related tasks, training them in isolation may
not be the best strategy. Instead, learning them in parallel can lead to better
generalizing models because the MTL process takes advantage of the common
information shared across the tasks to learn better features, availing of domain-
specific information which are contained in related tasks training signals. Domain
specific information of a task can act as inductive bias for others. In the MTL
setting, the network backbone share a certain number of hidden layers between all
tasks, in this way features learned by a task can help other tasks to better learn.
A pretty common phenomena in human learning process, a person who has learnt
riding a tricycle will do half of the work when learning to ride a bike because will
exploit useful knowledge from the ‘tricycle domain’. An example of a MTL archi-
tecture is presented in [66], where a standard neural network architecture with a
single fully connected hidden layer is trained to solve 4 tasks in parallel 3.1. When
multiple tasks share the hidden layers of the same neural network architecture,
and only the heads of the network are task-specific, we refer to hard parameter
sharing. The introduction of multiple parallel tasks has a regularization effect and
reduce the overfitting, because the parameters of the shared hidden layers should
have a representation capturing all of the tasks instead of specializing to a single
one. Recent works [67, 68, 69] proposed a different way of doing multitask learn-
ing. Multiple tasks have their private model and their own parameters. At the
same time different tasks parameters are interconnected between them, allowing
one task with its own model to draw from other tasks parameters [70], we refer
to this approach as soft parameter sharing. Although each task has its own model
with its own parameters, the distance between the parameters of the model is then
regularized in order to encourage the parameters to be similar.
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Multi-Task in Geometric Deep Learning To the best of our knowledge,
there are only few works in Geometric Deep Learning adopting a real end-to-end
multi-task approach. In a very recent work, Hassani et al. [33] proposed a new
architecture for unsupervised multi-task feature learning on point clouds. The ar-
chitecture is composed by a first multi-scale graph-based encoder extracting point
and shape features from the input point cloud. Three more decoders, each special-
ized in solving a specific task among Reconstruction, Clustering and Prediction,
work on the feature extracted by the multi-scale decoder, jointly providing the
architecture with a multi-task loss.

Figure 3.1. Schematic of Hard Parameter sharing MTL network with a single
shared hidden layer. Figure source: [66]

3.3 Domain Shift
A distribution shift happens when a deep learning model, once trained on data
from a specific distribution (source) is used to inference on data from a different
but someway related distribution (target), in general target distribution shares the
labels space with source. The consequence of domain shift is a model well per-
forming on source domain but performing poorly on target domain, an issue well
known in Computer Vision community. Dealing with visual distribution shifts is
fundamental since living in a constantly evolving world. In real-world setting the
distribution of test data (target) often differs from that of training data (source).
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The endless number of real world domain shifts makes impossible to consider all
of them in training source domain, thus making domain shift the main issue pre-
venting in-lab trained deep learning models from being successfully deployed in
real-world settings. Existing approaches for domain shift mitigation can be cate-
gorized into two main branches which are Domain Adaptation (DA) and Domain
Generalization (DG), while in the 2d domain this problem has been largely dis-
cussed there are only few works doing the same in the 3d domain.

3.3.1 Transfer Learning
We define a domain D as the combination of a d-dimensional features space X ∈
RD, a marginal probability distribution P (X) and a task T . The latter (T ) in
its turn is defined by a label space Y and the conditional probability distribution
P (Y |X).
Considering a single domain D = {X , P (X)} with T = {Y , P (Y |X)}, supervised
learning focus in learning the conditional probability P (Y |X) from the samples
x1, x2, . . . , xn ∈ X and the corresponding labels y1, y2, . . . , yn ∈ Y .
When considering multiple domains, e.g. a source Ds and target Dt, when these
have different distributions, the machine learning model trained on source is not
guaranteed to perform well on target one, especially if the two are significantly
different. When source and target distributions are different but somewhat related
it is possible to catch the ‘related info’ from the source domain Ds exploiting it
to learn the target conditional probability P (Xt|Yt), this process is called Transfer
Learning.

Definition 3.3.1. (Transfer Learning) Given a source domain Ds and learning
task Ts, a target domain Dt and learning task Tt, transfer learning aims to help
improve the learning of the target predictive function ft(.) in Dt using the knowledge
in Ds and Ts, where Ds /= Dt or Ts /= Tt [71].

Transfer Learning can be divided into two main categories: homogeneous and
heterogeneous. In Homegenous Transfer Learning setting source and target do-
mains, although having different marginal distribution due to domain shift, are
represented in the same feature space: P (Xs) /= P (Xt) with Xs = Xt. Homoge-
neous TL focuses in reducing the gap between the data distributions of the two
domains in cross-domain transfer. Differently, in TL heterogeneous setting, source
and target data can have different representations Xs /= Xt. [71] further catego-
rizes TL approaches into three main groups: inductive TL, transductive TL and
unsupervised TL. In inductive TL source task and target task are different but
related (Ts /= Tt), source and target domain can also be the same.
In transductive TL, source and target task are the same Ts = Tt while source and
target domains are different: P (Xs) /= P (Xt) with Xs = Xt or Xs /= Xt. In general
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source domain is labeled while no labeled data are available in target domain. Last
setting is unsupervised TL, as for the inductive case, the source task is different but
related to the target task. However, in this setting, no labeled data are available,
nor in source nor in target domain.

3.3.2 Domain Adaptation
Definition 3.3.2. Domain Adaptation (DA) consists in learning a discrimina-
tive classifier or other predictor in the presence of a shift between train and test
distribution [72].

DA can be seen as a slightly relaxed transductive TL setting in which task
and label space across the different domains are common, Ts = Tt and Ys = Yt.
Digging into DA setting: we consider source domain(s) and an unseen domain
of interest (target). Source and target domains are different, P (Xs) /= P (Xt),
but somehow related. In general a huge quantity of supervised data is available
from source domain/s. In addition to supervised data, when dealing with DA
setting, are also available some unsupervised training data in the domain of interest
(target). As expected, because of the differences between source and target domain
distributions, a model trained only on the source supervised data will perform
poorly on target domain. Domain Adaptation aims to solve this problem taking
advantage of target domain unlabeled data.

DA through self-supervision DA can be performed by learning auxiliary self-
supervised task(s) on both domains, source and target, simultaneously. The main
idea behind this is that solving self-supervised tasks on the destination domain
samples induces alignment between the source and target distributions. Self su-
pervised tasks are expected to bring the source and target domains closer together
along the direction relevant to the task. Jointly train the main task classifier on
supervised source domain data along with self-supervised tasks on target unlabeled
data is shown to produce better models with increased generalization abilities on
target domain. Possible examples of self-supervised tasks are image completion
[14], colorization [15, 16], relative position of patches [17, 18], rotation recognition
[19], identification of synthetic artifacts [20] or image clusters [21].

DANN Ganin et al. in Domain-Adversarial Neural Networks [72] propose an
approach to Domain Adaptation for deep learning architectures, the resulting
framework is presented in Figure 3.2. In DA setting a large amount of labeled
data from the source domain is available, together with large amount of target do-
main unlabeled data. The DA main goal is producing deep features that are: (1)
discriminative for the main learning task on the source domain and (2) invariant
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with respect to the shift between the domains. DANN strategy achieve this by
training a deep neural network architecture with two discriminative classifier in
a multi-task way: (1) label classifier, solving the primary classification task, used
at both train and test time; (2) domain classifier, working only at training time,
has to predict whether a sample is drawn from source or target distribution. The
secondary domain classification task has to predict the belonging domain for each
sample, thus represents a self-supervised binary task (source and target being the
labels), perfectly consistent with DA setting. During training the underlying deep
learning model parameters are optimized in order to minimize the label predic-
tion loss (1) and to maximize the domain classifier loss (2). This is achieved by
connecting the only domain classifier block to the feature extractor via a gradient
reversal layer (GRL) that multiplies the gradient by a certain negative constant
during the back-propagation based training. Maximizing the domain classifier loss
during training encourages domain-invariant features to emerge in the course of
the optimization. Extracted features will be as indistinguishable as possible for
the domain classifier.

Figure 3.2. DANN architecture consists of three parts, a deep feature extractor
(green), a deep label predictor (blue) and a domain classifier (red). Domain
classifier is connected to the feature extractor via a GRL module, the latter
ensuring that the feature distributions over the source and target domains are
made similar. Figure source: [72]

3.3.3 Domain Generalization
A model trained with source domains data may perform poorly on a new and
unseen target domain with a different distribution from the source one. This rep-
resents a huge limitation for deep learning models in practical applications. In
real-world are common situations in which a model, once deployed, has to face

14



3 – Background

with a distribution different from the training one (e.g. different background,
light condition etc.). Developing algorithms that are invariant to dataset bias is
a problem widely acknowledged in machine learning community. Domain Gen-
eralization setting assume to learn from multiple source domains and to extract
a domain-agnostic model. With domain-agnostic we intend a model performing
uniformly well on unseen target domains with different distributions [73]. We em-
phasise that DG (in contrast to DA) addresses this problem by leveraging only
on the source domains labeled data, aiming to learn a universal representation
when no target data are available [74]. Most of works in literature addressed the
DG problem in a data-driven way, exploiting labeled data from multiple source
domains, aiming to learn from these a universal representation generalizing well
also to unseen target domains. The basic idea is that minimizing the distribution
variance among multiple source domains should also provide a domain agnostic
representation. Data-driven approaches drawback is the risk of overfitting source
domains, the learned representation may generalize well to any of the source do-
mains but poorly to an unseen target domain. Starting from the assumption that
each domain is biased, composed of an intrinsic globally shared factor and a do-
main specific component, Khosla et al. in [75] explicitly takes into account for
bias when combining multiple source domains. Their method consists in learning
two weight sets: (1) bias vectors associated with each individual dataset and (2)
visual world weights that are common to all datasets. Visual world weights are
obtained by factoring out from each dataset its associated bias, these are the one
with good generalization ability. [55] propose a novel approach to DG (and DA)
called Jigsaw Generalization. In this work supervised and unsupervised inherent
signals from the images are jointly exploited, showing that generalization across
visual domains can be achieved in a multitask way, by learning at the same time
to classify and image parts spatial relations. Demonstrating that learning specific
type of invariance leads to models with increased generalization ability.

3.4 A leap into 3D and Real World
Nowadays machine learning methods have achieved remarkable success, especially
under the assumption that source and target data are sampled from the same
distribution. Unfortunately in real-world applications, this assumption is often
violated and, as a result, the trained system will perform poorly on target domain
data. This issue can be mitigated with Domain Adaptation (DA) or Domain Gen-
eralization (DG). DA tackles this issue by aligning source and target distributions
exploiting unlabeled target data samples. However, DA is contingent upon the
availability of unlabeled samples from the target domain for guiding the adapta-
tion procedure, unfortunately this is not always guaranteed, especially in real-world
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applications. A more challenging setting is DG, this setting does not depend on
the availability of target samples, works by training the model on multiple source
domains data, guiding the learning to capture domain agnostic information. The
resulting models should be discriminative for the trained task and, at the same
time, insensitive to domain shifts.For deploying deep learning models in real world
settings these generalization abilities are crucial, if a robot has to be deployed to
people’s homes has to be robust to the inherent distribution shift between the train-
ing setting and any random house.While this problem has been largely discussed in
the 2d domain, the same is not true for the 3d non-Euclidean structured domain.
To the best of our knowledge only few works deal with the Domain Adaptation
or the more challenging Domain Generalization setting directly on point clouds.
The recent PointDAN [61] represents a first attempt to Domain Adaptation with
point clouds, proposing a framework which jointly aligns the global and local fea-
tures. Moreover, most of the previous works only deal with the train on synthetic
→ test on syntetic scenario which is not representative of real world challenges.
ScanObject [62] recently raised this issue, proposing a new real world 3d point
cloud benchmark dataset, demonstrating that Object Classification is still a chal-
lenging task if performed on this type of data. This context reveals the need for
efficient 3d deep learning approaches, with this work we propose a hard parameter
sharing multi-task architecture highly exploiting self-supervision. In both DA and
DG settings, we analyzed the problems arising when shifting from synthetic to real
world distribution (or vice versa) and we proposed a robust approach for dealing
with real world challenges. It is interesting to note that few multi-task architecture
have been proposed in geometric deep learning literature, infact most of previous
works use self-supervision on huge datasets generating an initial set of weights and
then train (in a fully supervised manner) the task of interest using those weights as
initialization [32, 31]. Robotics, autonomous driving, virtual/augmented reality,
smart manufacturing etc. are eagerly waiting for robust 3d point cloud learning
methods capable of dealing with real world challenges, our work is the first push
in this direction.
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Chapter 4

Geometric Deep Learning

Figure 4.1. Summary of all 3d data representations. 3d representations are
further split into Euclidean structured and non-Euclidean. Figure source: [76]

Deep Learning has boosted computer vision field, with the advent of deep
Convolutional Neural Networks (CNN) impressive results have been achieved on
several 2d domain tasks. The success of DL on images and the increasing avail-
ability of 3d data has motivated a data-driven approach to learn features also from
this type of data , aiming to exploit the higher information quantity in 3d data
to achieve the same promising results - if non better - also in this challenging
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domain. However moving deep learning architectures to 3d is not trivial due to
the complex geometric nature of 3d objects and the several different types of 3d
representation existing. RGB images, audio, text, and many other types of data
fed to CNN are all Euclidean structured data; shapes, manifolds, graphs, point
clouds lack of an Euclidean structure. Although the CNN achievements and re-
sults in literature, traditional CNNs can’t handle non-euclidean structured data.
This limitation arises from the use of filters that are location invariant, those filters
can be applied only on input data with regular structure.
Shape learning is defined as the learning of a mapping from input geometrical
signals to features [77]. The specific representation of geometrical signals defines:
(1) the learning architecture to be used, (2) the quantity or richness of information
preserved by the representation. The latter being a bottleneck to the downstream
learning process. For all the reasons discussed, while applying classic deep learn-
ing techniques to euclidean structured data (also in 3d, e.g. RGB-D) is immediate,
elaborating a data-driven approach for learning features from non-Euclidean struc-
tured data is not straightforward and poses new challenges.

4.1 Euclidean Data

Euclidean data have an underlying grid structure allowing global parametrization
and a common system of coordinates. In the case of 3d representation, the eu-
clidean structure makes easy extending 2d deep learning methods to 3d, this is
done by simply using the same convolutional operator as defined in the 2d do-
main. Examples of 3-dimensional euclidean data are RGB-D data, multi-view
images, etc.

RGB-D data RGB-D data are combination of RGB image (IRGB) and corre-
sponding depth map (ID), the latter contains information on the distance from the
scene to the camera. RGB-D images have become popular thanks to the availabil-
ity of low-cost RGB-D sensors (e.g. Microsoft Kinect), defining what is commonly
referred as 2.5D. A huge number of RGB-D datasets exist, especially if comparing
to datasets of other 3d representation such as point clouds. Besides being inex-
pensive and largely available, by using RGB-D data remarkable results has been
achieved in several tasks including: scene reconstruction, pose regression, recogni-
tion. Since having an euclidean-structure, RGB-D data can be processed by using
traditional 2d deep learning methods.
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4.2 Non-Euclidean data
Shapes are represented in a non-Euclidean structured domain. Examples of other
non-Euclidean data are: point clouds, manifolds, mesh and graphs. Their non
Euclidean nature implies that fundamental data properties as: (1) global parame-
terization, (2) common system of coordinates, (3) vector space structure, (4) shift
invariance, are not followed. This represented the major obstacle that so far has
precluded the use of successful deep learning methods such as CNN or RNN on
non-Euclidean geometric data. Convolutional operator which is the key point of
CNN success in the Euclidean domain is not well defined in non-Euclidean, making
the translation of CNN and deep learning to non-Euclidean domain not immedi-
ate. Concretely, generalizing DL models to non-Euclidean data involves finding
a non-Euclidean counter part of the basic building blocks composing these mod-
els, e.g. replacing Euclidean-defined convolutional operator with pooling operator
[5]. Bronstein et al. in [6] specific focused on non-Euclidean data referring to as
Geometric Data, further on they also coined the term Geometric Deep Learning
indicating situations in which Deep Learning is applied to the previous defined
Geometric Data. In this work concrete methodologies to transfer Deep Learn-
ing techniques and achievements to non-Euclidean data domain are proposed, the
work focus is on generalizing CNNs to non-Euclidean structured domains enabling
deep learning on graphs, manifolds, meshes and point clouds.

4.3 Point Clouds
Point cloud (pc) is a type of non-Euclidean data providing a compact and ex-
pressive representation of 3d geometry. Point clouds are an irregular format by
definition, point positions composing the ‘cloud’ are continuously distributed in
the space, any permutation of their ordering does not change the spatial distribu-
tion. Learning from point clouds is not trivial due to their inherent irregularity.
Previous approaches transformed such data to Euclidean-structured: regular 3D
voxel grids or collections of images. This, however, renders data unnecessarily
voluminous and causes issues: (1) introduction of representation errors, (2) in-
evitable reduction of the information content. We formally define point cloud Φ
as an unordered set of vectors xi:

Φ =
i=NÛ
i=1

xi, with xi ∈ RD (4.1)

A vector xi represents a point in some space. In general, we are not constrained to
3-dimensional space, it is possible to add more features to each point (e.g. color,
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normals, etc.), moving to a higher dimensionality space. Due to their unstruc-
tured nature point clouds represent an irregular non-Euclidean data representa-
tion. Deep learning models consuming pcs must be permutation invariant: given a
Point Cloud, points permutation should not alter task (recognition, segmentation,
retrieval etc.) result.

f(x1, x2, . . . , xn) ≡ f(xπ1, , xπ2, . . . , xπn), with xi ∈ RD (4.2)

In our learning pipeline input point clouds, before being fed in input to the used
network, are: (1) centered, (2) unit cube scaled and (3) random sampled to fixed
num points. Although possible designing special convolution operators working in
non-Euclidean domains consuming point clouds, rotation invariance is often not
guaranteed, leading to neural networks generalizing poorly to arbitrary axis rota-
tions. PointNet [5] tries to fulfill this constraint by using a Spatial Transformer
Network (STN) aligning point clouds in input before feeding them to the feature
extractor. To the best of my knowledge only few works propose point cloud net-
works that are really Rotation Invariant. Instead, most point cloud DL networks
exploit approaches similar to PointNet (using STN) or use data augmentation
techniques in order to be robust to different input pc orientations. The few recent
proposing point cloud rotation invariant convolutional operators, as [78], deal with
low-level geometric features such as distances and angles which are by definition
rotation invariant.

Figure 4.2. Point Cloud representing Airplane CAD from the ModelNet40
dataset. Points have been uniformly sampled to 2048 on the mesh faces
according to their face area.

4.4 Geometric Deep learning Tasks
The impressive results achieved by computer vision in the 2d domain and the need
for AI-based systems successfully deployed in real-world environments motivated
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the push for robust vision algorithm also in the more challenging 3-dimensional
domain. In this section we highlight the most important vision tasks and the
relative state-of-the-art in the field of geometric deep learning. In this work we
mainly used point cloud as ours 3d data representation, encouraged by its spread in
the deep learning community and the several recent works dealing with. However,
how to use powerful deep learning tools for different task accomplishment on point
clouds is an extremely active area of research that originally started with PointNet
[5].

Object Classification Object Classification is a fundamental computer vision
task. Given a 3D object shape, the goal is identifying the class or category to
which the shape belongs. Formally, a classification algorithm provides a function:

f : Rn → {1, . . . , k} (4.3)

assigning to each n-dimensional input vector x an integer number y = f(x) corre-
sponding to one of the possible k categories. When working with non-Euclidean
data as point clouds the widespread classification approach is the one proposed by
PointNet [5]. Classification is performed directly on unordered point sets rather
than passing to an intermediate regular representation. PointNet operates on each
point independently and then applies a symmetric function to accumulate features,
the use of a symmetric function let PointNet achieve permutation invariance prop-
erty. The main PointNet drawback is that largely treats points independently at
local scale, neglecting geometric relationships among points. Several extension of
PointNet has been released, [7] improves PointNet taking advantage of local struc-
tures formed by the metric space. Points are first partitioned into local regions
that overlap by the distance metric of their space, then features are extracted
with a hierarchical ‘fine to coarse’ process. Common testbed for object classifica-
tion performances is the ModelNet40 dataset [1] on which geometric deep learning
based methods have achieved the best performance. [11] propose a geometric deep
learning backbone achieving state-of-the-art performance on this dataset with an
overall accuracy of 93.5pp using 2048-points. However, shapes in ModelNet40 are
synthetic CAD models of isolated object with no background, despite the near
superhuman performance achieved on synthetic data we argue that shape classifi-
cation is still a challenging task when dealing with real-world object scans.

Part Segmentation Part Segmentation task consists into dividing the input
shape into meaningful parts. We formalise the Part Segmentation task on 3d
point cloud input shapes as the problem of assigning each vertex p to the part of
such shape to which it belongs to. Typically, part segmentation is modelled as a
point-wise classification problem where each shape part is represented by an integer
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label in {1, . . . , P}. The common benchmark dataset for Part Segmentation on
Geometric Data in ShapeNet Part [79], it provides per-point labels for each shape,
indicating which points belong to the region of interest. Fine-grained tasks like
part segmentation require detailed structural information, following [5], the quality
of the predicted part segmentation is evaluated in terms of the mean Intersection-
over-Union (mIoU) metric. The mIoU of a shape with P parts is defined as the
average over P parts of the IoU between ground-truth and predictions of each part.
The mIoU of a category is defined as the average of the mIoUs of the shapes it
contains. In Figure 4.3 we show the Part Segmentation result on a lamp category
shape from the ShapeNet Part dataset. A Geometric Deep Learning model predict
for each point of the shape a part prediction, representation has been obtained by
assigning a different color to each predicted part.

Figure 4.3. Part Segmentation on ShapeNet Part, example for lamp category
object. Right side figure represents ours GDL model (trained with only 1% of
supervision) parts prediction.

Semantic Scene Segmentation Semantic Scene Segmentation is the task of
splitting an input scene into semantic object classes, rather than object part labels.
Scene understanding is a core computer vision task, in both 2d and 3d domain.
This problem is highlighted by the fact that an increasing number of intelligent
systems have the urge for context understanding. Semantic segmentation achieves
fine-grained inference by making dense predictions inferring for each point of the
cloud its enclosing object region.

4.5 PointNet
PointNet [5] is the first end-to-end neural network architecture directly consum-
ing point clouds, enabling the solution of multiple task on unordered set of points:
Shape Classification, Semantic Segmentation and Part Segmentation. The authors

22



4 – Geometric Deep Learning

provide a network capable of working directly with (x, y, z) coordinates and, if
needed, with additional dimensions; network architecture is shown in Figure 4.4.
PointNet achieve Permutation Invariance property by using max pooling sym-
metric function. N.B. Pooling layers represent the equivalent of 2d convolutional
operators in the pc non-Euclidean domain. Considering an input Point Cloud
with n (x,y,z)-points, max pooling function is used after the n input points are
mapped to higher-dimensional space. The function output represents a global fea-
ture vector aggregating the captured information from the n input points, better
said, a global descriptor for the entire shape. Another property to consider when
dealing with Point Clouds is Transformation Invariance. Shape classification (but
also segmentation and other tasks) shouldn’t depend on the (x,y,z)-rotation degree
applied to the input shapes. PointNet aims to be robust to this by introducing
two data-dependent spatial transformer networks (STN3d and STNkd). The first
one (STN3d) attempts to align different input shapes before being processed by
the PointNet itself, for each shape in input an affine transformation matrix is
predicted and applied to shape input points coordinates using dot product. The
second alignment network (STNkd) produce an alignment in the feature space,
predicting a feature transformation matrix to align different input point clouds
features. Classification and segmentation branch share most of the network archi-
tecture (main features extractor). The Classification branch takes in input global
features and outputs class scores. Differently, the segmentation branch takes in
input the concatenation of local point features (network output after STNkd fea-
ture transformer) and global features (network output of max pooling), producing
in output per point scores.

Part Segmentation Arch. The PN Part Segmentation network is a slightly
modified version of the main basic architecture. Object shapes from different
categories have different parts, e.g. a ‘chair’ won’t have the same parts of an
‘airplane’. In order to overcome this and train on shapes from multiple object
categories a one-hot vector, indicating the input shape category, is introduced.
For each shape, the category one-hot will be concatenated with the shape features
from the max-pooling output. To boost performance, the capacity of some layers
is increased and skip-connections have been introduced to collect and concatenate
local point features from different layers. For each shape, a features vector is
obtained by concatenating: (1) its category one-hot, (2) the max-pooling output
and (3) local point features from different backbone layers; the obtained vector is
then fed to the segmentation network which outputs part scores.

23



4 – Geometric Deep Learning

Figure 4.4. PointNet architecture: classification and segmentation net-
works. Input is raw x, y, z point cloud data of size n × 3. raw Point
Cloud. 3 × 3 transformation matrix is applied to input Point Cloud. If
enabled also a 64×64 transformation matrix is applied regularizing features
from different point clouds. Point features are aggregated by max pooling.
All layers (except last one) include batch normalization and ReLU; Dropout
is used in the final MLP. Image Source: [5]

4.6 PointNet++

Figure 4.5. PointNet++ architecture. Hierarchical feature learning is introduced
to learn features at various scales. Sampling and grouping layers define and
sample neighbourhoods at various sizes which are fed into a PointNet module
architecture for local pattern extraction. Image source: [7].

PointNet++ [7] is a hierarchical feature learning framework on point clouds;
architecture is shown in Figure 4.5. This architecture works by applying PointNet
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recursively on nested partitions of the input point set. It also proposes novel lay-
ers with the aim of learning from point clouds with non-uniform densities. Two
key actions are iterated during this process: partitioning and abstracting sets of
points or local features by means of a local feature learner. Given an unordered
set of points, first step is partitioning it into overlapping local regions. Local fea-
tures, capturing fine geometric structures of a local neighborhood, are extracted
from each partition. These features are further grouped into larger units and then
processed in order to produce higher level features. This process is repeated until
we obtain the features from the whole cloud. Digging into details, a partition
is represented by a ‘neighborhood ball’ in the underlying Euclidean space. Each
neighborhood ball is completely defined by only two parameters: centroid location
and scale. Since it is mandatory to cover the whole set of points, some points of the
point cloud are promoted to centroids, these points are selected by using a farthest
point sampling algorithm. The hierarchical way in which PointNet++ works re-
minds us of CNNs. However PointNet++ local receptive fields depend on both the
input data and the metric, because of this should be more effective. PointNet++
exploits PointNet as a local feature learner. PointNet, in this new architecture,
takes the role of a functional block, capturing higher level representations from
local point sets or features for local pattern learning.
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Datasets

In this chapter we briefly introduce the main datasets used in this work. We
mostly used datasets which are common benchmark for 3D-Object Classification
and Segmentation.Recent 3D object classification methods reported state-of-the-
art performance on CAD model datasets such as ModelNet40.However, CADs
are high quality synthetic models, not alway near to what real-world scans are,
we argue that 3D-object classification and segmentation are definitely not trivial
when performed in real-world settings.

5.1 Synthetic vs Real-World data
The recent availability of large-scale synthetic 3d datasets motivated the recent
advances in 3d deep learning, especially in Object Classification and Segmentation
tasks, most of the proposed learning methods [5, 7, 11, 8] have been evaluated using
purely synthetic data, focusing on isolated object models, a complete evaluation
of those methods on real world scans is essentially missing.

The 3d technology evolution lead to cheaper and more reliable sensors, a grow-
ing up number of different types of 3d sensors are now easily deployable on intel-
ligent systems such as robots or autonomous vehicles. In this context the amount
of 3d real-world data spread, drawing the DL community attention to robust deep
learning methods performing well also on this type of data. Real-world data are
significantly different from CADs due to the presence of background, occlusions,
reconstruction errors. In real word scans objects are often in under-segmentation
situation, meaning that in most of 3d scans not only is present the target object
but also background and, maybe, pieces from interacting or nearby objects. An
example is represented by real-world scan of a ‘pen’ lying on a desk. The presence
of background and pieces from nearby objects is a double-edged sword. If on the
one hand it is possible take advantage of this context information, on the other
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hand this information if not properly exploited can easily distract the learning
architecture leading to worse results. Due to the inherent differences between real
and synthetic 3d data, such as noise and occlusion patterns, deep learning mod-
els trained on synthetic perform bad when test is performed on real data, this
highlights the need for robust deep learning models generalising well also to real
data.

5.2 Modelnet
ModelNet (Wu et al. [1] , 2014) is a a large-scale 3D CAD models dataset for
3d object recognition and classification. Represents one of the most well-known
and commonly used 3D dataset. The authors, from Princeton University, ac-
quired a huge amount of 3D CAD models, manually checked and categorized each
one. They removed irrelevant objects from each model (e.g, background, floor,
thumbnail image, person standing next to the object, etc) and discarded unreal-
istic or duplicate models. This work led to a 151,128 3D CAD models dataset,
each CAD belonging to only one of the 660 overall object categories. ModelNet
provides the 3D geometry of the shape in form of point cloud, without any infor-
mation about the texture. The multitude of works in which ModelNet dataset has
been used for recognition and retrieval tasks highlights the spread of DL methods
for learning such 3d unstructured data. From ModelNet two subsets are avail-
able and commonly used: ModelNet40 and ModelNet10, with 40 and 10 object
classes/categories respectively. Note that the ten classes of ModelNet10 are a just
a subset of the forty from ModelNet40. ModelNet40 contains 12,311 CAD models
divided into 40 total categories; synset of categories in Table 5.1. The authors
provides an official training and testing split. The number of training samples
is 9, 843 while there are 2, 468 samples for testing. CAD Models have not the
same orientation and have widely different scales. Before performing our exper-
iments, when using ModelNet40, we will firstly scale each shape to Unit Cube.
ModelNet10, being a ModelNet40 subset, consists of 4899 CAD models from 10
classes. Unlike for ModelNet40, ModelNet10 CAD models are orientation aligned
along their gravity axis. However, since models are not aligned w.r.t scale we will
perform also for this subset unit cube scaling. ModelNet10 training split consists
of 3991 CAD models while 908 CAD models are reserved for testing.
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Figure 5.1. Rendering of shapes from ModelNet40 dataset, from left to
right: air, car, lamp, table.

Table 5.1. ModelNet40 categories distribution, CAD models are not equally
distributed between categories. Categories in ModelNet10 subset are bold.

Category Train Test
airplane 626 100
bathtub 106 50
bed 515 100
bench 173 20
bookshelf 572 100
bottle 335 100
bowl 64 20
car 197 100
chair 889 100
cone 167 20
cup 79 20
curtain 138 20
desk 200 86
door 109 20
dresser 200 86
flower pot 149 20
glass box 171 100
guitar 155 100
keyboard 145 20
lamp 124 20

Category Train Test
laptop 149 20
mantel 284 100
monitor 465 100
night stand 200 86
person 88 20
piano 231 100
plant 240 100
radio 104 20
range hood 115 100
sink 128 20
sofa 680 100
stairs 124 20
stool 90 20
table 392 100
tent 163 20
toilet 344 100
tv stand 267 100
vase 475 100
wardrobe 87 20
xbox 103 20
Total 9843 2468
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5.3 Shapenet
ShapeNet (Chang et al. [2], 2015) is a richly-annotated, large-scale repository of
shapes represented by 3D CAD models of objects. ShapeNet represents a col-
laborative effort between re-searchers at Princeton, Stanford, and TTIC (Toyota
Technological Institute at Chicago). It consists in two subsets: ShapeNetCore
and ShapeNetSem. ShapeNetCore subset contains single clean 3D models with
manually verified category and alignment annotations. It has 55 object categories
with 51, 209 unique 3D models; categories statistic are in Table 5.2 . This subset
also covers the 12 object categories of the PASCAL 3D+, a popular computer
vision 3D benchmark dataset. ShapeNetSem subset is a smaller, more densely an-
notated subset consisting of 12,000 models in a set of 270 categories. In addition
to manually verified category labels and consistent alignments, these models are
annotated with real-world dimensions, estimates of their material composition at
the category level, and estimates of their total volume and weight. In our work
we mostly used the ShapeNetCore (v1) subset. The 3D models data in ShapeNet
Core have to be preprocessed before being fed to our neural network. Most of this
preprocessing has been done using Python with packages such as NumPy [80] and
Open3D [81].
For each ShapeNet Core 3D model:

1. Mesh clean up

2. Uniformly sample 2048 points from the mesh → Point Cloud Generation

3. Center and Scale to fit in unit box → Object ready.

5.4 ShapeNet Part
ShapeNet Parts [79] is a common benchmark dataset for Part Segmentation. Over-
all it contains 16,881 annotated models with the following split: 12137 training
shapes, 1870 validation and 2874 shapes are for test. Shapes are from 16 different
categories, depending on the category each shape can have from 2 to 6 parts. For
each shape per-point part annotation is available. The Part Segmentation task
consists in predicting for each point of a shape the associated part, for this reason
this task can be seen as a dense classification problem in which we give a prediction
for each point of each shape. Since possibile parts in a shape depend on the specific
shape category we use category label (e.g. chair, airplane) for trimming irrelevant
part predictions. Different categories have different vertex density distribution,
in order to reduce density variability across categories we random sampled 2048
points from each shape.
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Table 5.2. ShapeNetCore categories distribution. CAD models are not equally
distributed between categories.

Name Num
table 8443
car 7497
chair 6778
airplane 4045
sofa 3173
rifle 2373
lamp 2318
watercraft 1939
bench 1816
loudspeaker 1618
cabinet 1572
display 1095
telephone 1052
bus 939
bathtub 857
guitar 797
faucet 744
clock 655
flowerpot 602

Name Num
jar 597
bottle 498
bookshelf 466
laptop 460
knife 424
train 389
trash bin 343
motorbike 337
pistol 307
file cabinet 298
bed 254
piano 239
stove 218
mug 214
bowl 186
washer 169
printer 166
helmet 162
microwaves 152

Name Num
skateboard 152
tower 133
camera 113
basket 113
can 108
pillow 96
mailbox 94
dishwasher 93
rocket 85
bag 83
birdhouse 73
earphone 73
microphone 67
remote 67
keyboard 65
bicycle 59
cap 56

Total 57386

5.5 ScanObject

ScanObject [62] is a real-world objects dataset extracted from two popular scene
meshes datasets: SceneNN [82] and ScanNet [83]. The authors from a total of more
than 1600 scenes selected a subset of 700 and then manually extracted objects from
these scenes. The result is an object dataset with 2902 models categorised into 15
different categories. Each object is represented by a point cloud with 2048 points
and its object category label. Normals, colors attributes, per-point part labels
are also available, the latter being not currently available for all categories. This
dataset, differently from the synthetic ModelNet and ShapeNet, aims to provide
real-world 3d scans. Real-world 3D object scans are significantly different from
synthetic models due to many factors including: presence of background and noise,
object partiality caused by occlusion or incomplete scanning, different deformation
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variants, non-uniform density etc. Despite the impressive state-of-the-art perfor-
mance achieved by deep learning architectures on synthetic 3d data (ModelNet,
ShapeNet), real world scans are way more complex and challenging for current
learning methods. This dataset give us the opportunity to test the effectiveness
of point cloud classification methods also in real-world setting. At the same time
this new benchmark dataset raises a new issue, highlighting that current GDL
methods poorly generalize to real-world domain, with train on synthetic → test
on real-world scenario being not only the hardest in terms of overall test accuracy
but also the one actually preventing intelligent systems from better reasoning real-
world.
The dataset is randomly split into two subsets: 80% for training and 20% for
test, these subsets contain objects from different scenes in order to avoid similar
objects in the two. The authors provide different variants of their object scans:
OBJ_ONLY, OBJ_BG, PB_T25, PB_T25_R, PB_T50_R and PB_T50_RS.
Variants are listed in increasing difficulty order. The easiest one is OBJ_ONLY,
containing only objects without background, this variant is the most similar to
synthetic CAD data. Right after we have OBJ_BG in which objects are attached
with background data, given a bounding box, all points in the box are extracted
to form the object. Then we have the perturbations, each one introducing various
degrees of background and partiality to objects. Suffixes T25, T50 denote random
translation shifting the object bounding box up to 25% and 50% of its size from the
box centroid along each world axis. Suffix R and S denotes rotation and scaling.

Figure 5.2. Example Chair from ScanObject dataset. In this figure it is shown
the effect of different perturbation on a chair object, from the simplest OBJ_BG
to the hardest PB_T50_RS. Image Source: [62]
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The Method

The main motivations behind this work are (1) coping with the lack of huge
amounts of labeled data and (2) producing models with stronger generalization
abilities, capable of dealing with real world challenges. While many approaches
in literature have shown great results using supervised machine learning methods
with 3D synthetic models (CADs) the main bottleneck of fully supervised methods
still lies in the need of large annotated datasets for efficient learning. At the basis
of our work there is the intuition that 3D point cloud understanding can still be
extremely challenging even when supervised knowledge is provided. This becomes
particularly true when moving from synthetic to real-world data and tasks. Infact
there is no huge dataset of real world objects available and, furthermore, learning
from real data is definitely not an easy task due to noise, presence of background,
occlusions, data capture errors etc.
On top of that, models trained on synthetic data poorly generalize to real world
data due to the strong gap between the two domains. We propose a novel way to
exploit self-supervision for dealing with the lack of large quantities of annotated
data and, at the same time, feeding the generalization gap across domains with
different distributions.

6.1 Jigsaw Generalization
Self-Supervision can help in coping with lack of annotated data and lead to more ro-
bust machine learning models with increased generalization ability. Mehdi Noroozi
and Paolo Favaro in [18] proposed a novel self-supervised task: the Jigsaw puz-
zle reassembly problem. The authors argue that by learning how to solve jigsaw
puzzles the network learns that input objects are made of parts, what these parts
are and how these are interconnected between them. Concept immediately trans-
lated in terms of features learned, more over they argued that these features can
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be easily transferred to a multitude of different tasks like detection, classification,
person re-identification and so on. In [55] the Jigsaw Puzzle task is re-formulated,
demonstrating through experiments how this self-supervised task can be used for
improving Image Object Recognition performance in a Domain Generalization
setting. Previous deep learning jigsaw-puzzle solvers works formulated the jigsaw
problem dealing with the separate tiles and then finding a way to recombine them.
Although this type of strategy can be profitable for solving the task, on the other
side, implies a tile-dedicated network architecture and eventually transferring the
features learnt to a standard (non tile-specific) architecture. The approach pro-
posed by [55] is quite different, a standard neural network architecture is used for
both Obj. Classification and Jigsaw puzzle solving tasks in a completely multitask
fashion. During training, a certain portion of the images in input to the network
will be jigsawed. Since images in input must match in dimensionality, we can apply
the same n ·n tiles grid on each. Then, at random, selected images will be jigsawed
by permutating the tiles in the grid. At training time, the network jointly learns to
classify object categories and jigsaw permutation classes applied to images, in this
way the jigsaw task is easily formulated as a classification problem. Jigsaw task is
based only on intrinsic self-supervisory image signals, no extra labeling is required
and, at the same time, allows capturing the natural invariances and regularities
useful to bridge across different domains. Since the two task are jointly learnt by a
standard neural network architecture, the features learnt by solving jigsaw puzzles
are ready-to-use, with no need to transfer those features to another architecture.

6.2 Intuition

Due to their un-ordered nature, how to properly exploit local neighbours and at
the same time taking into account the global structure of the 3D shape is quite
challenging. As shown in [18, 31] a simple self-supervised task like reordering a 3D
block puzzle can be solved by leveraging on the spatial co-location of shape parts
and needs reliable knowledge on relative point positions both at global and local
level. In this regard, while learning to solve a 3D puzzle we gain useful knowledge
that can support recognition at different scales (whole object and parts). We
formalize our learning model as a multi-task deep network where a main recognition
task and the self-supervised puzzle task jointly learn a shared data representation.
As we will see, the two tasks complement each other making the obtained features
(1) more precise in case of large amount of labeled data, (2) more robust in case
of scarce data, (3) easier to transfer for adaptation and (4) more reliable for out
of domain generalization.
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6.3 Method Formalization
Let us assume to observe data S = {(si,ui)}Ni=1 where each sample si is an order-
invariant set of K points, si = {pi1, pi2, . . . , piK}. Each point pik ∈ Rd is a vector
describing its Euclidean coordinates (x, y, z) plus extra possible feature channels
such as color, normal, etc. The corresponding label ui depends on the specific task
at hand. In case of shape classification it is a one-dimensional vector, so that each
set of points is annotated with its belonging class identity ui ∈ {1, . . . , C} out of
C categories. For part segmentation, instead ui is a K-dimensional vector with
each component uik ∈ {1, . . . , Q} where Q is the number of object parts. In the
following we will refer either to classification or part segmentation as our main task
and we will describe how each of them can be jointly learned with the auxiliary self-
supervised task of solving 3D puzzles. Our multi-task model can be described as
the combination of two parametric non-linear functions: Φθf ,θm and Ψθf ,θp , where
the subscripts of the parameters θ refer respectively to the feature extraction f ,
main task m, and puzzle portion p of our deep network. The feature encoder is
shared between the two functions and is in charge of summarizing the local and
global geometric information from the input point cloud to a richer latent space.
The obtained representation enters the final fully connected part of the network
that ends with the loss function Lm(Φ(s|θf , θm),u) measuring the error between
the predicted and the true label. The auxiliary function Ψ deals with a variant of
the original input point clouds. The samples are firstly scaled to unit cube before
each axis is split into l equal lengths forming l3 voxels which are labeled on the
basis of their original position. This label is then used to annotate the internal
points. Finally pairs of voxels are randomly selected and voxels in each pair are
swapped between them, producing a new shuffled point cloud. We indicate with
Z = {(zi,vi)}Ni=1 the obtained puzzled samples where the voxel position label for
each point is vik ∈ {1, . . . , l3}. Once these new displaced data are encoded in
the feature latent space, a second ending network branch focuses on solving the
3D puzzle problem by minimizing the auxiliary loss that measures the reordering
error Lp(Ψ(z|θf , θp),v) in terms of difference between the assigned voxel ID and
the correct one per point.

Overall we train the network to obtain the optimal model through:

arg min
θf ,θm,θp

NØ
i=1

î
Lm(Φ(si|θf , θm),ui)+

αLp(Ψ(zi|θf , θp),vi)
ï
, (6.1)

where both Lm and Lp are cross-entropy losses.
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Figure 6.1. PN architecture used for shape classification. Color scheme: green
= input data, blue = parametric layer, white = non-parametric layer, grey =
output features, red = loss function.

Figure 6.2. PN++ architecture used for shape classification. The color
scheme is the same as Figure 6.1.

6.4 Implementation Choices

The described learning problem has two main hyper-parameters: one is α that
weights the self-supervised loss, and the second, denoted as β, takes care of the data
balancing in each sample batch during training. Specifically with β we indicate the
percentage of the training batch composed of the original (not-jigsawed) samples.
Both contribute to the trade off between the supervised and self-supervised tasks.
Since we exploit self-supervision as an auxiliary objective we reasonably assign
less importance to it with respect to the main task and set β = α = 0.6 for
all our analysis. We reserved some variations for β only when investigating the
small-sample scenarios (few shot and semi-supervised). A further parameter is
the quantization step of the space to define the puzzle parts: we set l = 3 and
considered its reduction to l = 2 only in the single domain setting on complex
real-world data. Finally, in the puzzle creation phase we always kept one single
permuted copy of each sample. To realize our model we built over two well known
and reliable architectures: PointNet and PointNet++ by extending their structure
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with the inclusion of a new ending branch dedicated to 3D puzzle resolution.
By investigating both of them as starting point we can highlight the different

Figure 6.3. Illustration of our multitask architecture. Two tasks are jointly
solved: Object Classification and Jigsaw puzzle solving. Weights are shared
between the two tasks.

effect of the context information learned with the puzzles to different ways of
dealing with point clouds. Indeed the first architecture basically learn on each
point independently and only accumulates the final features, while the second
follows a multi-scale strategy with a heuristic point grouping at separate layers. In
both case, the main feature encoder is shared between the two tasks, only few task-
specific layers are added at the head of the network. Our proposed architectures,
inspired by [66] and [55], perfectly fits into the context of hard parameter sharing
multitask learning. Figure 6.1 and 6.2 illustrate the corresponding architectures
for our multi-task approach.
Out of the l3 possible input point cloud permutations we offline selected and stored
a random set of 31 permutation classes P , we kept the same set throughout all
our experiments. This set includes the permutation zero ρ0 which corresponds to
the not jigsawed case. Voxelization is fundamental in our pipeline since we define
the Jigsaw puzzle as a rigid swap between voxels in selected pairs. While the
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jigsaw branch operates on the whole set of input point clouds (jigsawed or not)
we let the main task branch working only on not jigsawed pcs. This is realized by
doing back-propagation on main task specific layers only for not jigsawed indices.
Since working in a multitask learning fashion, with the feature encoder shared
between the two tasks, features learnt by Jigsaw puzzle solving will be immediately
available and exploitable by the primary task with no need to transfer the jigsaw
learnt features to another standard architecture. Furthermore, we claim that the
Jigsaw task has a regularization effect on the main task, natural invariances and
regularities learnt by solving the Jigsaw puzzle can be useful to get better the main
task.

Our approach is synthesised in 6.3. The network is trained for jointly solve
two tasks: Object Classification (main task) and Jigsaw puzzle solving (secondary
task). The network not only has to predict the object category ui ∈ {1, . . . , C} out
of C categories of the observed point cloud but has also to solve jigsaw puzzles.
Given a shuffled 3d shape the puzzle solving problem has been formulated as a
segmentation (or voxel prediction) task, the network assign to each of the input
points a label vik ∈ {1, . . . , l3} where l3 is the total number of voxels. For better
visualization, in Figure 6.3, voxels are represented with colors, each of them is
associated to a label vik.

Jigsaw Solving (Visualization): In Figure 6.4 we show the 3D puzzle task
getting progressively solved by our model during training. At each epoch we
tested the performance of the jigsaw puzzle solver on few shapes. Out of the
100 total epochs we selected few relevant ones with the intent of visualizing the
jigsaw predictions. We remind the reader that the Jigsaw puzzle task is formulated
as per-point voxel prediction. In Figure 6.4 we associate to each voxel index a
unique color. We expect that in initial epochs visualization colors get confused,
this because the Jigsaw task, not sufficiently trained, will output wrong random
per-point original voxel prediction. After a certain number of epochs, the Jigsaw
Puzzle task cost function converge, meaning that the Jigsaw predictions from that
moment should be valuable, points get uniformly colored accorded to their original
(before puzzling) position. In first and second row the shuffled part of the lamp
and of the car at the beginning (epoch 0) are almost uniformly wrong. Then, from
epoch 10 going on, the predicted voxels starts to get well separated. Third row
shows that annotating the correct original voxel appears particularly difficult for
this table due to the presence of multiple similar subparts. In last row, airplane
case, seems easy to have coherent predictions per voxel but the voxel identity is
initially mistaken and progressively corrected only in the following epochs.
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Original Epoch = 0 Epoch = 10 Epoch = 20 Ground-truth

Figure 6.4. Visualization of 3D puzzle progressively solved by our model.
First and second row: the shuffled part of the lamp and of the car at the
beginning are almost uniformly wrong. The different voxels are then sepa-
rately identified during training. Third row: annotating the correct original
voxel appears particularly difficult for this table case due to the presence of
multiple similar subparts. Fourth row: for the airplane it seems easy to have
coherent predictions per voxel but the voxel identity is initially mistaken and
progressively corrected only in the following epochs.
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Experiments

In this chapter we describe the experimental part of this work. In order to vali-
date the value of our approach we tested it in many acknowledged computer vision
settings including Domain Adaptation and the more challenging Domain Gener-
alization. In the first part of this chapeter we describe experiments with Object
Classification as primary task while in the second we discuss experiments with
Part Segmentation.
Results, provided in tables, will help the reader in understanding the contributions
of our approach with respect to the previous state-of-the-art methods.

7.1 Preface

Working on raw 3D data is pretty computational expensive. For this reason and
also encouraged by the impressive results obtained in the 2D field with CNN, com-
puter vision community has first tried to deal with the 3D by reducing it to a 2D
problem.
According to this approach 3D data were reduced into multiple 2D images and a
multiview-based CNN was trained to solve the object classification problem in the
2D field. Recent works proposed a new approach, directly learning from unordered
point sets (also known as point clouds) without any need to project or map 3D (or
higher dimensionality) data to lower dimensionality space. PointNet [5] is a novel
type of neural network consuming point clouds which respects the permutation
invariance property of points in input, for sure the pioneer in this direction. In our
experiments we also follow this direction, we always work directly on point clouds
and we mainly use PointNet and PointNet++ as our backbones. Most of the ex-
periments performed in this work will be reported and explained in this chapter,
through all experiments we followed specific settings commonly acknowledged by
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the machine learning community. All these settings can be divided into two cat-
egories which are Single Domain and Across Domains. With Single Domain we
intend that source domain and destination (or target) domain are from the same
distribution. There is no domain shift between the source and target. This is
usually achieved by training on a split of a dataset and then testing on a differ-
ent and never-seen split of the same dataset. In case of Across Domains source
distribution is different from target distribution. This is a way more challenging
setting because the machine learning model must learn domain agnostic features
from source domain and then exploit those features on a target domain with a
different distribution.

Training details Throughout all the experiments we used PyTorch as our ma-
chine learning framework. The training is conduced on a NVIDIA Titan X GPU.
Models are always trained from scratch, training parameters as batch size, learning
rate and the scheduler parameters are chosen according to the specific backbone
used, the dataset and the specific task (obj. classification, part segmentation etc.).
In general for PointNet we used a batch size of 64, Adam optimizer with initial
learning rate 0.001, decreased by a factor of 4 every 20 epochs. For PointNet++
we used batch size of 64, SGD optimizer with momentum 0.9, initial learning rate
0.01, decreased by a factor of 2 every 20 epochs. Other parameters are the one
related to the Jigsaw selfsupervised task. Data augmentation is performed only on
ScanObjectNN by following verbatim the procedure proposed by [5], i.e. random
vertex jittering drawn from N (0, 0.01), and random rotation around the shape
elongation axis.

7.2 Settings
We consider different experimental settings involving a source dataset S divided
into Strain and Stest parts, a possible extra set of unlabeled data from a different
source domain S Í and an unlabeled target domain T , different from both S and
S Í. In the following we refer to the different settings as

Single Domain the whole set of annotated samples from Strain are available
for supervised learning. Finally we test on the portion Stest of the same original
dataset.

Few-Shot under this name we investigate the case of limited training data sam-
ples. We reduce at different percentage scales the cardinality of Strain and we
evaluate on Stest. Regardless of this reduction we follow the same batch learning
procedure of the previous setting as well as the same final evaluation protocol.
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This setting aim to test model robustness when decreasing the quantity of super-
vised data. Our expectation is that by jointly learning jigsaw puzzle task valuable
features will be learnt, those features should positively influence the main segmen-
tation or classification task leading to a less label greedy method.

Semi-Supervised in this case Strain is divided into two complementary λ% su-
pervised and (1−λ)% unsupervised parts.The first is provided as input to the main
task of our network, while the second goes to the self-supervised task. Finally we
test on Stest. The difference with the previous few-shot setting is in the fact that
held out portion of Strain is taken as unlabeled data, fed to our jigsaw puzzle solver
task.

Transfer Learning (TL) here besides the annotated data from S, a further set
of unlabeled samples from a different domain S Í is available at training time. In
this case when running the multi-task approach we feed the self-supervised task
with the extra unlabeled samples while the supervised data is only used for the
main task. The final evaluation is performed on Stest.

Domain Generalization (DG) this setting is analogous to the Single Domain
one and differs only in the evaluation phase where the performance is finally com-
puted on a new target collection T belonging to a different domain with respect
to the supervised data S on which the model is trained.

Domain Adaptation (DA) here we consider available at training time both the
supervised data S and the unsupervised target data T , belonging to two different
domains. Only the target is given as input to the self-supervised part of our
multi-task method, while the main task is learned on S. Finally we transductively
evaluate the model on the same data T as standard practice in domain adaptation.

7.3 Object Classification Results
First part of our experimental analysis is dedicated to the main task of shape
classification. The goal is to predict the object category of the observed point
cloud out of a set of C classes. We evaluate the performance in terms of overall
accuracy.

7.3.1 Single Domain
In the first experiment we evaluate the performance of our multitask approach in
the most classical scenario when a single domain is available and present the results
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in Table 7.1. Since we are in a single domain setting source domain and target do-
main distribution exactly match, with no shift between them. In this experiment
we train our network to jointly solve two tasks: Object Classification primary task
and Jigen self-supervised secondary task. We expect that by jointly solving the
Jigsaw puzzle self-supervised task our model will be able to learn semantically rel-
evant features concerning object parts, their spatial correlation and arrangement.
This secondary task not only helps the network to learn the concepts of spatial
correlation but also acts a regularizer for the primary Object Classification task.
We consider as testbed ModelNet40 (C=40) and ScanObjectNN (C=16), respec-
tively a synthetic and a real-world dataset. We observe that in both cases our mul-
titask approach consistently outperform over its baseline regardless of the specific
considered backbone. These results indicate that by simply solving the auxiliary
self-supervised task the learned representation is better able to capture the object
semantic provides further discriminative information to the final classifier. The
advantage appears particularly evident on the real world dataset ScanObjectNN
with a gain of about 3 percentage points (pp) for the difficult PB_T50_RS with
and without background. This further confirm the effectiveness of the proposed
approach to tackle the most challenging real world scenarios.

7.3.2 Transfer Learning
We also perform TL experiments considering the availability of an extra source
S Í of unsupervised knowledge. In particular, with the aim of maintaining a good
balance between S Í and the annotated S we used a random subset of 5k samples
from the ShapeNet (S Í) dataset for the experiments on ModelNet40 (S) and a
random sample of 4k samples from training set of ModelNet40 (S Í) for the ex-
periments on ScanObjectNN (S). The first TL case allow us to study knowledge
transfer among two different synthetic domains while the second correspond to
knowledge transfer from synthetic to real point clouds. The results are in the last
row of Table 7.1. Overall we observe again a further improvement up to 1 pp
with respect to the previous results without transfer, with the only exception of
ModelNet40 and OBJ_ONLY for PN++. Here the extra synthetic information does
not seem to actually provide useful information and also degrades the advantage
provided by the self-supervised task on the original source S. However this is not
true for PN, indicating that also the backbone network has a role in the specific
transfer process. We highlight that, although previous work have discussed TL in
combination with self-supervised tasks, the used setting differ from ours. In [31],
the whole ShapeNet dataset is used to train a model for 3D puzzle solution and the
obtained weights are transferred to initialize supervised learning on ModelNet40.
The obtained accuracy is 92.4%, while the baseline with random initialization is
92.2%. Considering the amount of extra unsupervised data used there and that
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the used learning architecture is the powerful DGCNN [11], our 92.10% obtained
without extra information appears upstanding. Another interesting comparison
can be done with the multi-task method recently presented [62] which performs
classification and segmentation jointly as a possible strategy to deal with real world
point clouds. Although effective, this approach doubles the need of data annota-
tion producing an accuracy of 80.2% on PB_T50_RS_BG over a baseline of 77.9%.
With a matching baseline, our result is 79.08% without using any extra labeled
annotation and confirm the effectiveness of the auxiliary self-supervised task.

7.3.3 Limited Annotated Data
As previously said one of the main bottleneck for efficient 3D deep learning is the
need for huge datasets largely annotated. In this experiment we demonstrate that
self-supervised learning can be a valuable ally in coping with this issue. We show
how the performance of trained models vary widely depending on the quantity
of training data and how self-supervision makes our learned models more robust
to limited quantity of annotated training data. We focused on ModelNet40 for
experiments in the few shot and semi-supervised setting. The results in Table 7.2
show the performance obtained when the amount of labeled training data reduces
up to only 20% of the original amount. We can observe that, despite the overall
drop in performance when reducing the quantity of training data, our multi-task
approach in the few shot setting tends to maintain its advantage with respect to
the baseline. When considering also the unlabeled data for the semi-supervised
setting, we observe a further small increase in performance at least with PN.

Shape Classification

Method ModelNet40 ScanObjectNN
OBJ_ONLY OBJ_BG PB_T50_RS PB_T50_RS_BG

PN
baseline 88.65 75.22 70.22 71.37 62.56
our multitask 89.71 75.04 71.26 73.39 65.20
our multitask TL 90.72 77.45 71.26 73.49 65.61

PN++
baseline 91.93 84.17 83.99 78.66 77.90
our multitask 92.10 85.89 83.13 79.22 78.00
our multitask TL 91.58 84.68 84.33 80.46 79.08

Table 7.1. Shape classification accuracy (%) of our multi-task approach with
respect to the main classification baseline implemented on two different backbone
architectures (PN [5], PN++ [7]). In the Transfer Learning (TL) setting, extra
unsupervised data sources are integrated in the learning process as input to the
self-supervised task (ShapeNet for ModelNet40 and ModelNet40 for ScanObject).
The suffix BG indicates that the point clouds contains background vertices as well.
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Shape Classification with limited annotated data

Method ModelNet40
20% 40% 60% 100%

PN
baseline 82.94 85.49 87.11 88.65
our mult. (few-shot) 82.09 87.03 88.13 89.71
our mult. (semi-sup.) 83.06 87.27 88.57 -

PN++
baseline 85.37 88.25 89.63 91.93
our mult. (few-shot) 86.35 89.59 89.18 92.10
our mult. (semi-sup.) 86.02 88.41 89.83 -

Table 7.2. Shape classification accuracy (%) of our multi-task approach when
the training set contains a limited amount of annotated data.

7.3.4 Domain Adaptation and Generalization

When training and test data are drawn from two very different distributions the
learned model usually fails to generalize. Being able to maintain a good perfor-
mance in this challenging setting is crucial in all the cases in which accessing to
annotated data of the target domain is not possible.
In our experiments it’s particularly evident that when shifting from synthetic
source domain (as ModelNet40) to real world target domain (as ScanObjectNN)
deep learning models fails to generalize. Since annotated real world data are not
largely available we still want to exploit synthetic data as source, we propose to
reduce the domain gap by exploiting our multitask approach. We consider the DG
setting when training on ModelNet40 and testing on ScanObjectNN and report
results in Table 7.3. Our multitask approach fully learned only on synthetic data
shows a significant better performance with respect to the baseline with improve-
ments up to 6 and 8 pp in the OBJ_BG and with a still relevant gain of 2 and 4
pp in the most challenging PB_T50_RS_BG, respectively with PN and PN++. We
also consider the inverse generalization direction, using real world data as source
and synthetic data as target, from PB_T50_RS_BG to ModelNet40. Here with PN
we observe a drop in performance, while PN++ shows the opposite behaviour still
presenting a large gain. To complete the analysis we also investigated whether our
multi-task approach could close the domain gap between the considered domains.
The results in the DA setting provide a positive answer showing a further increase
in performance over the DG results with only few exceptions with PN. An overall
look to the behaviour several recent point cloud networks (top part of Table 7.3)
indicates that with our multitask approach we are establishing the new state of
the art for classification on real world data from synthetic training. Even in the
opposite learning direction from real to synthetic, our multitask shows promising
results and the ability to adapt provides it with a further way to improve over
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existing references.

Domain Generalization and Adaptation

Method ModelNet40 → PB_T50_RS_BG →
OBJ_ONLY OBJ_BG PB_T50_RS PB_T50_RS_BG ModelNet40

3DmFV [10] 30.90 24.00 24.90 16.40 51.50
SpiderCNN [9] 44.20 42.10 30.90 22.20 46.60
DGCNN [11] 49.30 46.70 36.80 27.20 54.70
PointCNN [8] 32.20 29.50 24.60 19.20 49.20

PN

baseline [62] 42.30 41.10 31.10 23.20 50.90
our baseline 54.74 43.58 44.96 34.25 47.43
our multitask DG 54.53 49.68 45.22 36.28 39.30
our multitask DA 58.53 47.58 46.70 34.46 51.54

PN++

baseline [62] 43.60 37.70 32.00 22.90 47.40
our baseline 52.84 44.00 44.83 34.29 47.66
our multitask DG 56.84 52.42 52.84 38.65 52.88
our multitask DA 60.84 53.89 54.66 39.63 56.07

Table 7.3. Shape classification accuracy (%) of our multi-task when training and
testing is done on different domains (DG). If the unlabeled target data is provided
at training time (DA), our multitask is able to adapt and reduce the domain gap.

7.4 Part Segmentation Results
The second set of experiments is dedicated to part segmentation task. Given a 3D
point cloud represented by an unordered set of vertices, part segmentation goal
is to assign a part label to each vertex. Typically, part segmentation is modelled
as a point-wise classification problem where each shape part is represented by
an integer label in {1, . . . , P}. Following [5], the quality of the predicted part
segmentation is evaluated in terms of the mean Intersection-over-Union (mIoU)
metric. The mIoU of a shape with P parts is defined as the average over P parts
of the IoU between ground-truth and predictions of each part. The mIoU of a
category (e.g. chair) is defined as the average of the mIoUs of all the point clouds
referring to that category.

Training details: throughout all the part segmentation experiments we used the
PointNet Part Segmentation backbone from [5]. We slightly modified the network
architecture introducing a branch for jointly solving the Jigsaw self-supervised
task, this branch shares most of the inital network layers with the main segmen-
tation one. Our modifications does not increase the original segmentation branch
capacity. A batch size of 64 has been used, further more the chosen optimizer is
Adam with an initial learning of rate 0.001, decreased by a factor of 2 every 20
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epochs. Data augmentation is applied only on ScanObjectNN exactly as in our
classification experiments.

Figure 7.1. Illustration of our multitask architecture for Part Segmentation. Two
tasks are jointly solved: Part Segmentation and Jigsaw puzzle solving. Weights
are shared between the two tasks.

7.4.1 Few Shot and Semi-Supervised Results
In this experiment we wanted to study how limited amount of annotated data
affect Part Segmentation perfomance. Following [33] we randomly sample 1%
and 5% of the ShapeNet Part train set to evaluate our multitask approach in a
semi-supervised setting. Since we embrace a semi-supervised approach we will use
only the 1% (or 5%) of the overall training ShapeNet Part dataset as supervised
training source, the remaining 99% (or 95%) will be used as self-supervised data,
fed to our Jigsaw puzzle solver task. The results in Table 7.4 indicates that our
multitask, although not improving over the baseline in the few-shot setting, in the
semi-supervised setting outperforms the current state of the art in the 1% case
and practically matches it in the 5% case. It is interesting to underline that also
our best competitor CCD operates exactly in our same semi-supervised setting
and is a multitask approach that combines clustering and reconstruction with a
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self-supervised classification obtained by learning on the clustering auto-defined
labels.

Part Segmentation: mIoU in case 1% of supervision
Method 1% 5%
SO-Net [26] 64.0 69.0
PointCapsNet [27] 67.0 70.0
CCD [33] 68.2 77.7
baseline 64.52 75.75
our multitask (few-shot) 64.49 75.07
our multitask (semi-sup) 72.95 77.42

Table 7.4. Intersection-over-Union (mIoU) accuracy for ShapeNetPart segmentation.

For a more in-depth analysis of our results we also plotted some visualizations
out of our 1% part segmentation experiment in Figure 7.2 and 7.4. In Figures 7.2
and 7.3, our multitask approach seems to allow a better recognition of the chair
armrests. Indeed the position of these relative small parts of the chair may be
better learned thanks to the puzzle solution task. A similar consideration may be
done for the lamp basis in Figures 7.4 and 7.5 .
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Figure 7.2. Part annotation of the chairs when only 1% of training data are
available. On the top left we show the predictions obtained by the baseline, on
the bottom right the predictions obtained by our approach. On the last column
we show the worst case for the baseline. Black points denotes predictions whose
maximum value was not a chair part.

7.4.2 Single Domain and Transfer Learning on Real World
data

We wanted to evaluate the performance of our multitask approach also on the most
challenging ScanObjectNN real world dataset. At the time of the work this dataset
was not publicly available, available only to individuals who requested to download
for academic purposes. ScanObjectNN kindly gave us access to real-world ‘chairs’
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Figure 7.3. Part annotation of the chairs when only 1% of training data are
available. On the left we show the predictions obtained by the baseline, on the
right the predictions obtained by our approach. Our approach reveals to be more
robust in case of limited data producing better per-point part predictions, in this
example we highlight that the baseline not only produces a worse prediction but
also completely miss chair’s arms (red colored).
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Figure 7.4. Same visualization of Figure 7.2 but for the lamp category.

Figure 7.5. Same visualization of Figure 7.3 but for the lamp category. The
baseline (left side) miss lamp basis parts, our approach (right side) producing a
better prediction in case of limited training data.

part-annotated dataset. We start by considering the class chair from two of the
subsets of ScanObjectNN and running our multitask for part segmentation on
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them. We present the results in Table 7.5 adopting for this case the same evaluation
metric used in [62]. Both the per-class average and the overall accuracy indicate
that in this case the introduction of self-supervision in the learning process does
not have a visible effect and in the more difficult PB_T50_R_BG subset it may also
slightly decrease the performance. We also extended the analysis to the TL setting
including as extra source of knowledge the unlabeled samples of class chair from
ModelNet40: in this case the lack of annotation refers to the missing part label
for each point. In this setting our multitask approach presents a small advantage,
more visible in the easier OBJ_BG, confirming its effectiveness.

Part Segmentation
Dataset Method Bg Seat Back Base Arm Avg. Acc. Overall Acc.

OBJ_BG
our baseline 65.14 87.88 89.73 67.16 58.97 73.02 81.62
our multitask 64.97 87.46 86.27 68.96 57.54 73.04 81.67
our multitask TL 69.43 86.59 88.71 72.70 61.37 75.76 82.60

PB_T50_R_BG
our baseline 82.06 83.71 75.30 54.75 35.11 66.19 81.13
our multitask 82.02 83.50 77.80 51.53 25.50 64.07 81.31
our multitask TL 83.08 81.87 79.06 50.71 30.40 64.99 81.82

Table 7.5. Per part average accuaracy (%) and overall accuracy (%) of part
segmentation of chairs in two variants of ScanObjectNN, in both chosen variants
background points are present.

7.4.3 Domain Generalization and Adaptation
As done for shape classification we complete the cross-domain analysis also for the
part segmentation task by running experiments from synthetic to real ScanOb-
ject chairs. Specifically we used the same datasets already described in the paper
ShapeNetPart as source and ScanObjectNN as target. We highlight that ScanOb-
jectNN has some part annotation issue confirmed by the authors through personal
communications, thus we prefer to use only the OBJ_BG provided subdomain, ne-
glecting the background which is absent in ShapenNetPart. Table 7.6 collects
the results for this setting confirming also in this case the advantage of our mul-
titask approach over the supervised learning baseline. As soon as a real world
part-annotated dataset will be publicly available we will repeat the Domain Gen-
eralization and Adaptation experiments on a bigger set of object categories.
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Part Segmentation - Domain Generalization and Adaptation
ShapeNetPart → OBJ_BG

Method Seat Back Base Arm Parts Avg.
our baseline 67.85 45.60 84.89 14.87 53.30
our DG 71.80 42.61 84.57 21.48 55.11
our DA 65.70 49.11 85.91 21.40 55.53

Table 7.6. Per part and average accuracy (%) of chair segmentation. We are
adopting the same metric used in Table 4 of the main paper. All the results are
average values over three runs.
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Chapter 8

Conclusions

Figure 8.1. Illustration of our multitask framework. We accept the 3d real–
world challenges proposing our ‘recipe’ to deal with, our method takes advan-
tage of self-supervision by solving jigsaw puzzles on shuffled input signals. We
propose a complete framework for Classification and Part Segmentation, achiev-
ing state-of-the-art performance in case of limited amount of training data and
generalization from synthetic to real world domain.

In the introduction, we presented the 3d challenges that we briefly sum up with:
(1) reducing the need for large annotated training data for efficient learning, (2)
need for learning methods with good generalization ability on real-world data. We
concentrated our analysis on a specific type ofGeometric Data [6] represented by 3d
point clouds, unordered sets of points lacking of Euclidean structure. Point cloud
data annotation process is expensive and time-consuming, depending also on the
annotation type required by the specific learning task. Recently multiple synthetic
point cloud and mesh datasets came up: ModelNet [1] and ShapeNet [2] have
been the forerunners, pushing for effective learning methods consuming this type
of data. However, synthetic point clouds are missing the artefacts usually existing

51



8 – Conclusions

in real-world point cloud scans acquired with 3D LiDAR or others 3d sensors.
As a result, the performance of models trained on synthetic degrade when tested
on real-world due to the domain shift between the two domains. Despite this,
from our point of view synthetic data are still crucial since huge labeled real-word
3d datasets for effective learning are still lacking. In this context, several recent
works exploit self-supervision also in the 3d domain [32, 61, 33, 31]. The notion
of self-supervision appears extremely relevant for 3D structures, both to capture
internal local information at a good neighborhood resolution before combining
it with global shape knowledge, and to get information on context and surfaces.
While most of related works in 3d domain take advantage of self-supervision in a
two-phase learning fashion [31, 32], we propose a different approach consisting in a
multi-task end-to-end learning architecture. Our multi-task architecture, built on
top of the reliable PointNet [5] and PointNet++ [7], jointly learns two task: the
primary task (classification or segmentation) and the jigsaw puzzle secondary task.
The intuition is that solving the puzzle self-supervised task allows capturing the
natural invariances and regularities useful to bridge across different domains. This
intuition is brightly confirmed by our experiments. We tested the performance of
our approach with Object Classification and Part Segmentation primary tasks.
In both cases we placed great emphasis on tackling the real-world challenges,
testing our multitask architecture not only in Single Domain setting but also in
Domain Adaptation (DA) and Domain Generalization (DG) settings. In case of
Object Classification we mostly used two datasets: ModelNet40 [1] which is a
very popular synthetic dataset for Obj. Classification and ScanObjectNN [62], a
real-world object scans dataset providing several splits with increasing difficulty
(in the sense of background, noise, presence of occlusions etc.). Differently, for
Part Segmentation experiments we needed further annotated data with per-point
part labels, our choice fell on ShapeNet Part [79] for synthetic and, once again,
ScanObjectNN for real-world annotated scans.

Results in Single Domain setting indicate that by simply solving the auxiliary
self-supervised task the learned representation is better able to capture the object
semantic providing further discriminative information to the final classifier, the
advantage is particularly evident on real-world data, see Table 7.1. Our multi-task
has proven to be robust to limited quantity of training data, in semi-supervised
setting we outperform previous state-of-the-art method [33] for Part Segmentation
with limited annotated data, i.e. using only 1% of annotated data, see Table 7.4.
In DA and DG cases we discussed the following domain shifts case:

(1) Synthetic → Real-World

(2) Synthetic ← Real-World
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the first (1) being the one actually preventing intelligent systems from reason-
ing about 3d space more effectively. In Table 7.3, we confirm the value of our
approach also for DA and DG setting, establishing with our multitask the new
state-of-the-art for classification on real-world data from synthetic training. Even
on the opposite direction, from real to synthetic, our multitask shows promising
results and the ability to adapt provides it with a further way to improve over
existing references. The remarkable results obtained by our multitask highlight
the importance of methods able to deal jointly with labeled and unlabeled data
possibly coming from different domains. Also the spread of different 3d sensors,
easily deployable on intelligent systems, suggests a future huge availability of un-
labeled 3d real-world scans. In this direction ours multi-task approach (Figure
8) combines supervised and self-supervised learning with compelling results in all
the considered scenarios over several real world and synthetic datasets. We see
this work as a first exciting step towards a new family of methods better able to
generalize and adapt to novel testing conditions for 3D point clouds. Our choice
of the specific self-supervised task of solving 3D puzzle is indeed just one of the
many possible that deserve attention for future work.
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